

Contents

I Preface 2

II Author 3

III Table of Contents 4

1 *args and **kwargs 5
1.1 Usage of *args . 5
1.2 Usage of **kwargs . 6
1.3 Using *args and **kwargs to call a function 6
1.4 When to use them? . 7

2 Debugging 8

3 Generators 10
3.1 Iterable . 10
3.2 Iterator . 11
3.3 Iteration . 11
3.4 Generators . 11

4 Map & Filter 14
4.1 Map . 14
4.2 Filter . 15

i

5 set Data Structure 16

6 Ternary Operators 18

7 Decorators 20
7.1 Everything in python is an object: 20
7.2 Defining functions within functions: 21
7.3 Returning functions from within functions: 22
7.4 Giving a function as an argument to another function: 23
7.5 Writing your first decorator: . 23

8 Global & Return 28
8.1 Multiple return values . 29

9 Mutation 32

10 __slots__ Magic 35

11 Virtual Environment 37

12 Collections 39
12.1 defaultdict . 39
12.2 counter . 41
12.3 deque . 41
12.4 namedtuple . 43
12.5 enum.Enum (Python 3.4+) . 45

13 Enumerate 47

14 Object introspection 49
14.1 dir . 49
14.2 type and id . 50
14.3 inspect module . 50

15 Comprehensions 51
15.1 list comprehensions . 51
15.2 dict comprehensions . 52
15.3 set comprehensions . 53

16 Exceptions 54
16.1 Handling multiple exceptions: . 54

17 Lambdas 57

ii

18 One-Liners 59

19 For - Else 61
19.1 else clause: . 61

20 Open function 63

21 Targeting Python 2+3 66

22 Coroutines 69

23 Function caching 71
23.1 Python 3.2+ . 71
23.2 Python 2+ . 72

24 Context managers 73
24.1 Implementing Context Manager as a Class: 74
24.2 Handling exceptions . 75
24.3 Implementing a Context Manager as a Generator 76

iii

iv

Note: You can donate me for my hardwork if you want to by buying the dona-
tion version of Intermediate Python from Gumroad. Your help would be greatly
appreciated!

You can also sign up to my mailing list so that you remain in sync with any
major updates to this book or my future projects!

1

https://gumroad.com/l/intermediate_python
http://eepurl.com/bwjcej

Part I

PREFACE

Python is an amazing language with a strong and friendly community of pro-
grammers. However, there is a lack of documentation on what to learn after
getting the basics of Python down your throat. Through this book I aim to solve
this problem. I would give you bits of information about some interesting topics
which you can further explore.

The topics which are discussed in this book open up your mind towards some
nice corners of Python language. This book is an outcome of my desire to have
something like this when I was beginning to learn Python.

If you are a beginner, intermediate or even an advanced programmer there is
something for you in this book.

Please note that this book is not a tutorial and does not teach you Python. The
topics are not explained in depth, instead only the minimum required informa-
tion is given.

I am sure you are as excited as I am so let’s start!

Note: This book is a continuous work in progress. If you find anything which
you can further improve (I know you will find a lot of stuff) then kindly submit
a pull request!

2

Part II

AUTHOR

I am Muhammad Yasoob Ullah Khalid. I have been programming extensively
in Python for over 3 years now. I have been involved in a lot of Open Source
projects. I regularly blog about interesting Python topics over at my blog . In
2014 I also spoke at EuroPython which was held in Berlin. It is the biggest
Python conference in Europe. If you have an interesting Internship opportunity
for me then I would definitely like to hear from you!

3

http://www.pythontips.com

Part III

TABLE OF CONTENTS

4

CHAPTER 1

*args and **kwargs

I have come to see that most new python programmers have a hard time fig-
uring out the *args and **kwargs magic variables. So what are they ? First of
all let me tell you that it is not necessary to write *args or **kwargs. Only the
* (asterisk) is necessary. You could have also written *var and **vars. Writing
*args and **kwargs is just a convention. So now lets take a look at *args first.

1.1 Usage of *args

*args and **kwargs are mostly used in function definitions. *args and **kwargs
allow you to pass a variable number of arguments to a function. What variable
means here is that you do not know beforehand how many arguments can be
passed to your function by the user so in this case you use these two keywords.
*args is used to send a non-keyworded variable length argument list to the
function. Here’s an example to help you get a clear idea:

def test_var_args(f_arg, *argv):
print("first normal arg:", f_arg)
for arg in argv:

print("another arg through *argv:", arg)

test_var_args('yasoob', 'python', 'eggs', 'test')

This produces the following result:

5

first normal arg: yasoob
another arg through *argv: python
another arg through *argv: eggs
another arg through *argv: test

I hope this cleared away any confusion that you had. So now let’s talk about
**kwargs

1.2 Usage of **kwargs

**kwargs allows you to pass keyworded variable length of arguments to a func-
tion. You should use **kwargs if you want to handle named arguments in a
function. Here is an example to get you going with it:

def greet_me(**kwargs):
for key, value in kwargs.items():

print("{0} == {1}".format(key, value))

>>> greet_me(name="yasoob")
name == yasoob

So you can see how we handled a keyworded argument list in our function.
This is just the basics of **kwargs and you can see how useful it is. Now let’s
talk about how you can use *args and **kwargs to call a function with a list or
dictionary of arguments.

1.3 Using *args and **kwargs to call a function

So here we will see how to call a function using *args and **kwargs. Just con-
sider that you have this little function:

def test_args_kwargs(arg1, arg2, arg3):
print("arg1:", arg1)
print("arg2:", arg2)
print("arg3:", arg3)

Now you can use *args or **kwargs to pass arguments to this little function.
Here’s how to do it:

6

first with *args
>>> args = ("two", 3, 5)
>>> test_args_kwargs(*args)
arg1: two
arg2: 3
arg3: 5

now with **kwargs:
>>> kwargs = {"arg3": 3, "arg2": "two", "arg1": 5}
>>> test_args_kwargs(**kwargs)
arg1: 5
arg2: two
arg3: 3

Order of using *args **kwargs and formal args

So if you want to use all three of these in functions then the order is

some_func(fargs, *args, **kwargs)

1.4 When to use them?

It really depends on what your requirements are. The most common use case
is when making function decorators (discussed in another chapter). Moreover
it can be used in monkey patching as well. Monkey patching means modifying
some code at runtime. Consider that you have a class with a function called
get_info which calls an API and returns the response data. If we want to test it
we can replace the API call with some test data. For instance:

import someclass

def get_info(self, *args):
return "Test data"

someclass.get_info = get_info

I am sure that you can think of some other use cases as well.

7

CHAPTER 2

Debugging

Debugging is also something which once mastered can greatly enhance your
bug hunting skills. Most of the newcomers neglect the importance of the Python
debugger (pdb). In this section I am going to tell you only a few important
commands. You can learn more about it from the official documentation.

Running from commandline

You can run a script from the commandline using the Python debugger. Here is
an example:

$ python -m pdb my_script.py

It would cause the debugger to stop the execution on the first statement it finds.
This is helpful if your script is short. You can then inspect the variables and
continue execution line-by-line.

Running from inside a script

You can set break points in the script itself so that you can inspect the vari-
ables and stuff at particular points. This is possible using the pdb.set_trace()
method. Here is an example:

import pdb

def make_bread():
pdb.set_trace()
return "I don't have time"

print(make_bread())

8

Try running the above script after saving it. You would enter the debugger
as soon as you run it. Now it’s time to learn some of the commands of the
debugger.

Commands:

• c: continue execution

• w: shows the context of the current line it is executing.

• a: print the argument list of the current function

• s: Execute the current line and stop at the first possible occasion.

• n: Continue execution until the next line in the current function is reached
or it returns.

The difference between next and step is that step stops inside a called function,
while next executes called functions at (nearly) full speed, only stopping at the
next line in the current function.

These are just a few commands. pdb also supports post mortem. It is also a
really handy function. I would highly suggest you to look at the official docu-
mentation and learn more about it.

9

CHAPTER 3

Generators

First lets understand iterators. According to Wikipedia, an iterator is an object
that enables a programmer to traverse a container, particularly lists. However,
an iterator performs traversal and gives access to data elements in a container,
but does not perform iteration. You might be confused so lets take it a bit slow.
There are three parts namely:

• Iterable

• Iterator

• Iteration

All of these parts are linked to each other. We will discuss them one by one and
later talk about generators.

3.1 Iterable

An iterable is any object in Python which has an __iter__ or a __getitem__
method defined which returns an iterator or can take indexes (Both of these
dunder methods are fully explained in a previous chapter). In short an iterable
is any object which can provide us with an iterator. So what is an iterator?

10

3.2 Iterator

An iterator is any object in Python which has a next (Python2) or __next__
method defined. That’s it. That’s an iterator. Now let’s understand iteration.

3.3 Iteration

In simple words it is the process of taking an item from something e.g a list.
When we use a loop to loop over something it is called iteration. It is the name
given to the process itself. Now as we have a basic understanding of these terms
let’s understand generators.

3.4 Generators

Generators are iterators, but you can only iterate over them once. It’s because
they do not store all the values in memory, they generate the values on the
fly. You use them by iterating over them, either with a ‘for’ loop or by passing
them to any function or construct that iterates. Most of the time generators are
implemented as functions. However, they do not return a value, they yield it.
Here is a simple example of a generator function:

def generator_function():
for i in range(10):

yield i

for item in generator_function():
print(item)

Output: 0
1
2
3
4
5
6
7
8
9

11

It is not really useful in this case. Generators are best for calculating large sets of
results (particularly calculations involving loops themselves) where you don’t
want to allocate the memory for all results at the same time. Many Standard
Library functions that return lists in Python 2 have been modified to return
generators in Python 3 because generators require fewer resources.

Here is an example generator which calculates fibonacci numbers:

generator version
def fibon(n):

a = b = 1
for i in range(n):

yield a
a, b = b, a + b

Now we can use it like this:

for x in fibon(1000000):
print(x)

This way we would not have to worry about it using a lot of resources. How-
ever, if we would have implemented it like this:

def fibon(n):
a = b = 1
result = []
for i in range(n):

result.append(a)
a, b = b, a + b

return result

It would have used up all our resources while calculating a large input. We
have discussed that we can iterate over generators only once but we haven’t
tested it. Before testing it you need to know about one more built-in function of
Python, next(). It allows us to access the next element of a sequence. So let’s
test out our understanding:

def generator_function():
for i in range(3):

yield i

gen = generator_function()
print(next(gen))
Output: 0

12

print(next(gen))
Output: 1
print(next(gen))
Output: 2
print(next(gen))
Output: Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

As we can see that after yielding all the values next() caused a StopIteration
error. Basically this error informs us that all the values have been yielded. You
might be wondering that why don’t we get this error while using a for loop?
Well the answer is simple. The for loop automatically catches this error and
stops calling next. Do you know that a few built-in data types in Python also
support iteration? Let’s check it out:

my_string = "Yasoob"
next(my_string)
Output: Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: str object is not an iterator

Well that’s not what we expected. The error says that str is not an iterator.
Well it is right! It is an iterable but not an iterator. This means that it supports
iteration but we can not directly iterate over it. How can we then iterate over it?
It’s time to learn about one more built-in function, iter. It returns an iterator
object from an iterable. Here is how we can use it:

my_string = "Yasoob"
my_iter = iter(my_string)
next(my_iter)
Output: 'Y'

Now that is much better. I am sure that you loved learning about generators.
Do bear it in mind that you can fully grasp this concept only when you use
it. Make sure that you follow this pattern and use generators whenever they
make sense to you. You won’t be disappointed!

13

CHAPTER 4

Map & Filter

These are two functions which facilitate a functional approach to programming.
We will discuss them one by one and understand their use cases.

4.1 Map

Map applies a function to all the items in an input_list. Here is the blueprint:

Blueprint

map(function_to_apply, list_of_inputs)

Most of the times we want to pass all the list elements to a function one-by-one
and then collect the output. For instance:

items = [1, 2, 3, 4, 5]
squared = []
for i in items:

squared.append(i**2)

Map allows us to implement this in a much simpler and nicer way. Here you go:

items = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, items))

Most of the times we use lambdas with map so I did the same. Instead of a list
of inputs we can even have a list of functions!

14

def multiply(x):
return (x*x)

def add(x):
return (x+x)

funcs = [multiply, add]
for i in range(5):

value = list(map(lambda x: x(i), funcs))
print(value)

Output:
[0, 0]
[1, 2]
[4, 4]
[9, 6]
[16, 8]

4.2 Filter

As the name suggests, filter creates a list of elements for which a function re-
turns true. Here is a short and concise example:

number_list = range(-5, 5)
less_than_zero = list(filter(lambda x: x < 0, number_list))
print(less_than_zero)

Output: [-5, -4, -3, -2, -1]

The filter resembles a for loop but it is a builtin function and faster.

Note: If map & filter do not appear beautiful to you then you can read about
list/dict/tuple comprehensions.

15

CHAPTER 5

set Data Structure

set is a really useful data structure. sets behave mostly like lists with the dis-
tinction that they can not contain duplicate values. It is really useful in a lot
of cases. For instance you might want to check whether there are duplicates in
a list or not. You have two options. The first one involves using a for loop.
Something like this:

some_list = ['a', 'b', 'c', 'b', 'd', 'm', 'n', 'n']

duplicates = []
for value in some_list:

if some_list.count(value) > 1:
if value not in duplicates:

duplicates.append(value)

print(duplicates)
Output: ['b', 'n']

But there is a simpler and more elegant solution involving sets. You can simply
do something like this:

some_list = ['a', 'b', 'c', 'b', 'd', 'm', 'n', 'n']
duplicates = set([x for x in some_list if some_list.count(x) > 1])
print(duplicates)
Output: set(['b', 'n'])

Sets also have a few other methods. Below are some of them.

Intersection

16

You can intersect two sets. For instance:

valid = set(['yellow', 'red', 'blue', 'green', 'black'])
input_set = set(['red', 'brown'])
print(input_set.intersection(valid))
Output: set(['red'])

Difference

You can find the invalid values in the above example using the difference
method. For example:

valid = set(['yellow', 'red', 'blue', 'green', 'black'])
input_set = set(['red', 'brown'])
print(input_set.difference(valid))
Output: set(['brown'])

You can also create sets using the new notation:

a_set = {'red', 'blue', 'green'}
print(type(a_set))
Output: <type 'set'>

There are a few other methods as well. I would recommend visiting the official
documentation and giving it a quick read.

17

CHAPTER 6

Ternary Operators

Ternary operators are more commonly known as conditional expressions in
Python. These operators evaluate something based on a condition being true
or not. They became a part of Python in version 2.4

Here is a blueprint and an example of using these conditional expressions.

Blueprint:

condition_is_true if condition else condition_is_false

Example:

is_fat = True
state = "fat" if is_fat else "not fat"

It allows to quickly test a condition instead of a multiline if statement. Often
times it can be immensely helpful and can make your code compact but still
maintainable.

Another more obscure and not widely used example involves tuples. Here is
some sample code:

Blueprint:

(if_test_is_false, if_test_is_true)[test]

Example:

fat = True
fitness = ("skinny", "fat")[fat]

18

print("Ali is ", fitness)
Output: Ali is fat

This works simply because True == 1 and False == 0, and so can be done with
lists in addition to tuples.

The above example is not widely used and is generally disliked by Pythonistas
for not being Pythonic. It is also easy to confuse where to put the true value and
where to put the false value in the tuple.

Another reason to avoid using a tupled ternery is that it results in both elements
of the tuple being evaluated, whereas the if-else ternary operator does not.

Example:

condition = True
print(2 if condition else 1/0)
#Output is 2

print((1/0, 2)[condition])
#ZeroDivisionError is raised

This happens because with the tupled ternary technique, the tuple is first built,
then an index is found. For the if-else ternary operator, it follows the normal if-
else logic tree. Thus, if one case could raise an exception based on the condition,
or if either case is a computation-heavy method, using tuples is best avoided.

19

CHAPTER 7

Decorators

Decorators are a significant part of Python. In simple words: they are functions
which modify the functionality of another function. They help to make our
code shorter and more Pythonic. Most of the beginners do not know where to
use them so I am going to share some areas where decorators can make your
code more concise.

First, let’s discuss how to write your own decorator.

It is perhaps one of the most difficult concepts to grasp. We will take it one step
at a time so that you can fully understand it.

7.1 Everything in python is an object:

First of all let’s understand functions in python:

def hi(name="yasoob"):
return "hi " + name

print(hi())
output: 'hi yasoob'

We can even assign a function to a variable like
greet = hi
We are not using parentheses here because we are not calling the function hi
instead we are just putting it into the greet variable. Let's try to run this

20

print(greet())
output: 'hi yasoob'

Let's see what happens if we delete the old hi function!
del hi
print(hi())
#outputs: NameError

print(greet())
#outputs: 'hi yasoob'

7.2 Defining functions within functions:

So those are the basics when it comes to functions. Let’s take your knowledge
one step further. In Python we can define functions inside other functions:

def hi(name="yasoob"):
print("now you are inside the hi() function")

def greet():
return "now you are in the greet() function"

def welcome():
return "now you are in the welcome() function"

print(greet())
print(welcome())
print("now you are back in the hi() function")

hi()
#output:now you are inside the hi() function
now you are in the greet() function
now you are in the welcome() function
now you are back in the hi() function

This shows that whenever you call hi(), greet() and welcome()
are also called. However the greet() and welcome() functions
are not available outside the hi() function e.g:

greet()

21

#outputs: NameError: name 'greet' is not defined

So now we know that we can define functions in other functions. In other
words: we can make nested functions. Now you need to learn one more thing,
that functions can return functions too.

7.3 Returning functions from within functions:

It is not necessary to execute a function within another function, we can return
it as an output as well:

def hi(name="yasoob"):
def greet():

return "now you are in the greet() function"

def welcome():
return "now you are in the welcome() function"

if name == "yasoob":
return greet

else:
return welcome

a = hi()
print(a)
#outputs: <function greet at 0x7f2143c01500>

#This clearly shows that `a` now points to the greet() function in hi()
#Now try this

print(a())
#outputs: now you are in the greet() function

Just take a look at the code again. In the if/else clause we are returning greet
and welcome, not greet() and welcome(). Why is that? It’s because when you
put a pair of parentheses after it, the function gets executed; whereas if you
don’t put parenthesis after it, then it can be passed around and can be assigned
to other variables without executing it. Did you get it? Let me explain it in a
little bit more detail. When we write a = hi(), hi() gets executed and because
the name is yasoob by default, the function greet is returned. If we change the

22

statement to a = hi(name = "ali") then the welcome function will be returned.
We can also do print hi()() which outputs now you are in the greet() function.

7.4 Giving a function as an argument to another func-
tion:

def hi():
return "hi yasoob!"

def doSomethingBeforeHi(func):
print("I am doing some boring work before executing hi()")
print(func())

doSomethingBeforeHi(hi)
#outputs:I am doing some boring work before executing hi()
hi yasoob!

Now you have all the required knowledge to learn what decorators really are.
Decorators let you execute code before and after a function.

7.5 Writing your first decorator:

In the last example we actually made a decorator! Let’s modify the previous
decorator and make a little bit more usable program:

def a_new_decorator(a_func):

def wrapTheFunction():
print("I am doing some boring work before executing a_func()")

a_func()

print("I am doing some boring work after executing a_func()")

return wrapTheFunction

def a_function_requiring_decoration():
print("I am the function which needs some decoration to remove my foul smell")

23

a_function_requiring_decoration()
#outputs: "I am the function which needs some decoration to remove my foul smell"

a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)
#now a_function_requiring_decoration is wrapped by wrapTheFunction()

a_function_requiring_decoration()
#outputs:I am doing some boring work before executing a_function_requiring_decoration()
I am the function which needs some decoration to remove my foul smell
I am doing some boring work after executing a_function_requiring_decoration()

Did you get it? We just applied the previously learned principles. This is ex-
actly what the decorators do in python! They wrap a function and modify its
behaviour in one way or the another. Now you might be wondering that we
did not use the @ anywhere in our code? That is just a short way of making up
a decorated function. Here is how we could have run the previous code sample
using @.

@a_new_decorator
def a_function_requiring_decoration():

"""Hey you! Decorate me!"""
print("I am the function which needs some decoration to "

"remove my foul smell")

a_function_requiring_decoration()
#outputs: I am doing some boring work before executing a_func()
I am the function which needs some decoration to remove my foul smell
I am doing some boring work after executing a_func()

#the @a_new_decorator is just a short way of saying:
a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)

I hope you now have a basic understanding of how decorators work in Python.
Now there is one problem with our code. If we run:

print(a_function_requiring_decoration.__name__)
Output: wrapTheFunction

That’s not what we expected! Its name is “a_function_requiring_decoration”.
Well our function was replaced by wrapTheFunction. It overrode the name and
docstring of our function. Luckily Python provides us a simple function to solve
this problem and that is functools.wraps. Let’s modify our previous example
to use functools.wraps:

24

from functools import wraps

def a_new_decorator(a_func):
@wraps(a_func)
def wrapTheFunction():

print("I am doing some boring work before executing a_func()")
a_func()
print("I am doing some boring work after executing a_func()")

return wrapTheFunction

@a_new_decorator
def a_function_requiring_decoration():

"""Hey yo! Decorate me!"""
print("I am the function which needs some decoration to "

"remove my foul smell")

print(a_function_requiring_decoration.__name__)
Output: a_function_requiring_decoration

Now that is much better. Let’s move on and learn some use-cases of decorators.

Blueprint:

from functools import wraps
def decorator_name(f):

@wraps(f)
def decorated(*args, **kwargs):

if not can_run:
return "Function will not run"

return f(*args, **kwargs)
return decorated

@decorator_name
def func():

return("Function is running")

can_run = True
print(func())
Output: Function is running

can_run = False
print(func())
Output: Function will not run

25

Note: @wraps takes a function to be decorated and adds the functionality of
copying over the function name, docstring, arguments list, etc. This allows to
access the pre-decorated function’s properties in the decorator.

7.5.1 Use-cases:

Now let’s take a look at the areas where decorators really shine and their usage
makes something really easy to manage.

7.5.2 Authorization

Decorators can help to check whether someone is authorized to use an endpoint
in a web application. They are extensively used in Flask web framework and
Django. Here is an example to employ decorator based authentication:

Example :

from functools import wraps

def requires_auth(f):
@wraps(f)
def decorated(*args, **kwargs):

auth = request.authorization
if not auth or not check_auth(auth.username, auth.password):

authenticate()
return f(*args, **kwargs)

return decorated

7.5.3 Logging

Logging is another area where the decorators shine. Here is an example:

from functools import wraps

def logit(func):
@wraps(func)
def with_logging(*args, **kwargs):

print(func.__name__ + " was called")
return func(*args, **kwargs)

return with_logging

26

@logit
def addition_func(x):

"""Do some math."""
return x + x

result = addition_func(4)
Output: addition_func was called

I am sure you are already thinking about some clever uses of decorators.

27

CHAPTER 8

Global & Return

You might have encountered some functions written in python which have a
return keyword in the end of the function. Do you know what it does? It is
similar to return in other languages. Lets examine this little function:

def add(value1, value2):
return value1 + value2

result = add(3, 5)
print(result)
Output: 8

The function above takes two values as input and then output their addition.
We could have also done:

def add(value1,value2):
global result
result = value1 + value2

add(3,5)
print(result)
Output: 8

So first lets talk about the first bit of code which involves the return keyword.
What that function is doing is that it is assigning the value to the variable which
is calling that function which in our case is result. In most cases and you won’t
need to use the global keyword. However lets examine the other bit of code
as well which includes the global keyword. So what that function is doing is

28

that it is making a global variable result. What does global mean here? Global
variable means that we can access that variable outside the scope of the function
as well. Let me demonstrate it with an example :

first without the global variable
def add(value1, value2):

result = value1 + value2

add(2, 4)
print(result)

Oh crap we encountered an exception. Why is it so ?
the python interpreter is telling us that we do not
have any variable with the name of result. It is so
because the result variable is only accessible inside
the function in which it is created if it is not global.
Traceback (most recent call last):

File "", line 1, in
result

NameError: name 'result' is not defined

Now lets run the same code but after making the result
variable global
def add(value1, value2):

global result
result = value1 + value2

add(2, 4)
result
6

So hopefully there are no errors in the second run as expected. In practical pro-
gramming you should try to stay away from global keyword as it only makes
life difficult by introducing unwanted variables to the global scope.

8.1 Multiple return values

So what if you want to return two variables from a function instead of one?
There are a couple of approaches which new programmers take. The most fa-
mous approach is to use global keyword. Let’s take a look at a useless example:

29

def profile():
global name
global age
name = "Danny"
age = 30

profile()
print(name)
Output: Danny

print(age)
Output: 30

Note:Don’t try to use the above mentioned method. I repeat, don’t try to
use the above mentioned method!

Some try to solve this problem by returning a tuple, list or dict with the re-
qired values after the function terminates. It is one way to do it and works like
a charm:

def profile():
name = "Danny"
age = 30
return (name, age)

profile_data = profile()
print(profile_data[0])
Output: Danny

print(profile_data[1])
Output: 30

But what many programmers don’t know is that you can return two separate
values as well. Let’s take a look at an example so that you can better understand
it:

def profile():
name = "Danny"
age = 30
return name, age

name, age = profile()
print(name)

30

Output: Danny

print(age)
Output: 30

This is a better way to do it along with returning tuples, lists and dicts. Don’t
use global keyword unless you know what you are doing. global might be a
better option in a few cases but is not in most of them.

31

CHAPTER 9

Mutation

The mutable and immutable datatypes in Python cause a lot of headache for
new programmers. In simple words, mutable means ‘able to be changed’ and
immutable means ‘constant’. Want your head to spin? Consider this example:

foo = ['hi']
print(foo)
Output: ['hi']

bar = foo
bar += ['bye']
print(foo)
Output: ['hi', 'bye']

What just happened? We were not expecting that! We were expecting some-
thing like this:

foo = ['hi']
print(foo)
Output: ['hi']

bar = foo
bar += ['bye']

print(foo)
Output: ['hi']

print(bar)

32

Output: ['hi', 'bye']

It’s not a bug. It’s mutability in action. Whenever you assign a variable to
another variable of mutable datatype, any changes to the data are reflected by
both variables. The new variable is just an alias for the old variable. This is only
true for mutable datatypes. Here is a gotcha involving functions and mutable
data types:

def add_to(num, target=[]):
target.append(num)
return target

add_to(1)
Output: [1]

add_to(2)
Output: [1, 2]

add_to(3)
Output: [1, 2, 3]

You might have expected it to behave differently. You might be expecting that a
fresh list would be created when you call add_to like this:

def add_to(num, target=[]):
target.append(num)
return target

add_to(1)
Output: [1]

add_to(2)
Output: [2]

add_to(3)
Output: [3]

Well again it is the mutability of lists which causes this pain. In Python the de-
fault arguments are evaluated once when the function is defined, not each time
the function is called. You should never define default arguments of mutable
type unless you know what you are doing. You should do something like this:

33

def add_to(element, target=None):
if target is None:

target = []
target.append(element)
return target

Now whenever you call the function without the target argument, a new list is
created. For instance:

add_to(42)
Output: [42]

add_to(42)
Output: [42]

add_to(42)
Output: [42]

34

CHAPTER 10

__slots__ Magic

In Python every class can have instance attributes. By default Python uses a dict
to store an object’s instance attributes. This is really helpful as it allows setting
arbitrary new attributes at runtime.

However, for small classes with known attributes it might be a bottleneck. The
dict wastes a lot of RAM. Python can’t just allocate a static amount of memory
at object creation to store all the attributes. Therefore it sucks a lot of RAM if
you create a lot of objects (I am talking in thousands and millions). Still there is
a way to circumvent this issue. It involves the usage of __slots__ to tell Python
not to use a dict, and only allocate space for a fixed set of attributes. Here is an
example with and without __slots__:

Without __slots__:

class MyClass(object):
def __init__(name, identifier):

self.name = name
self.identifier = identifier
self.set_up()

...

With __slots__:

class MyClass(object):
__slots__ = ['name', 'identifier']
def __init__(name, identifier):

self.name = name
self.identifier = identifier

35

self.set_up()
...

The second piece of code will reduce the burden on your RAM. Some people
have seen almost 40 to 50% reduction in RAM usage by using this technique.

On a sidenote, you might want to give PyPy a try. It does all of these optimiza-
tions by default.

36

CHAPTER 11

Virtual Environment

Have you ever heard of virtualenv? If you are a beginner, then you might not
have heard about it but if you are a seasoned programmer then it may well be
a vital part of your toolset.

So what is virtualenv? Virtualenv is a tool which allows us to make isolated
python environments. Imagine you have an application that needs version 2
of a library, but another application requires version 3. How can you use and
develop both these applications?

If you install everything into /usr/lib/python2.7/site-packages (or whatever
your platform’s standard location is), it’s easy to end up in a situation where
you unintentionally upgrade a package.

In another case, imagine that you have an application which is fully developed
and you do not want to make any change to the libraries it is using but at the
same time you start developing another application which requires the updated
versions of those libraries.

What will you do? Use virtualenv! It creates isolated environments for your
python application and allows you to install Python libraries in that isolated
environment instead of installing them globally.

To install it, just type this command in the shell:

$ pip install virtualenv

The most important commands are:

• $ virtualenv myproject

37

• $ source bin/activate

This first one makes an isolated virtualenv environment in the myproject folder
and the second command activates that isolated environment.

While creating the virtualenv you have to make a decision. Do you want this
virtualenv to use packages from your system site-packages or install them in
the virtualenv’s site-packages? By default, virtualenv will not give access to the
global site-packages.

If you want your virtualenv to have access to your systems site-packages, use
the --system-site-packages switch when creating your virtualenv like this:

$ virtualenv --system-site-packages mycoolproject

You can turn off the env by typing:

$ deactivate

Running python after deactivating will use your system installation of Python
again.

Bonus

You can use smartcd which is a library for bash and zsh and allows you to alter
your bash (or zsh) environment as you cd. It can be really helpful to activate
and deactivate a virtualenv when you change directories. I have used it quite
a lot and love it. You can read more about it on GitHub

This was just a short intro to virtualenv. There’s a lot more to it; this link has
more information.

38

https://github.com/cxreg/smartcd
http://docs.python-guide.org/en/latest/dev/virtualenvs/

CHAPTER 12

Collections

Python ships with a module that contains a number of container data types
called Collections. We will talk about a few of them and discuss their usefulness.

The ones which we will talk about are:

• defaultdict

• counter

• deque

• namedtuple

• enum.Enum (outside of the module; Python 3.4+)

12.1 defaultdict

I personally use defaultdict quite a bit. Unlike dict, with defaultdict you do
not need to check whether a key is present or not. So we can do:

from collections import defaultdict

colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
('Ali', 'Black'),

39

('Yasoob', 'Red'),
('Ahmed', 'Silver'),

)

favourite_colours = defaultdict(list)

for name, colour in colours:
favourite_colours[name].append(colour)

print(favourite_colours)

output
defaultdict(<type 'list'>,
{'Arham': ['Green'],
'Yasoob': ['Yellow', 'Red'],
'Ahmed': ['Silver'],
'Ali': ['Blue', 'Black']
})

One other very important use case is when you are appending to nested lists
inside a dictionary. If a key is not already present in the dictionary then you are
greeted with a KeyError. defaultdict allows us to circumvent this issue in a
clever way. First let me share an example using dict which raises KeyError and
then I will share a solution using defaultdict.

Problem:

some_dict = {}
some_dict['colours']['favourite'] = "yellow"
Raises KeyError: 'colours'

Solution:

import collections
tree = lambda: collections.defaultdict(tree)
some_dict = tree()
some_dict['colours']['favourite'] = "yellow"
Works fine

You can print some_dict using json.dumps. Here is some sample code:

import json
print(json.dumps(some_dict))
Output: {"colours": {"favourite": "yellow"}}

40

12.2 counter

Counter allows us to count the occurrences of a particular item. For instance it
can be used to count the number of individual favourite colours:

from collections import Counter

colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
('Ali', 'Black'),
('Yasoob', 'Red'),
('Ahmed', 'Silver'),

)

favs = Counter(name for name, colour in colours)
print(favs)
Output: Counter({
'Yasoob': 2,
'Ali': 2,
'Arham': 1,
'Ahmed': 1
})

We can also count the most common lines in a file using it. For example:

with open('filename', 'rb') as f:
line_count = Counter(f)

print(line_count)

12.3 deque

deque provides you with a double ended queue which means that you can ap-
pend and delete elements from either side of the queue. First of all you have to
import the deque module from the collections library:

from collections import deque

Now we can instantiate a deque object.

41

d = deque()

It works like python lists and provides you with somewhat similar methods as
well. For example you can do:

d = deque()
d.append('1')
d.append('2')
d.append('3')

print(len(d))
Output: 3

print(d[0])
Output: '1'

print(d[-1])
Output: '3'

You can pop values from both sides of the deque:

d = deque(range(5))
print(len(d))
Output: 5

d.popleft()
Output: 0

d.pop()
Output: 4

print(d)
Output: deque([1, 2, 3])

We can also limit the amount of items a deque can hold. By doing this when we
achieve the maximum limit of our deque it will simply pop out the items from
the opposite end. It is better to explain it using an example so here you go:

d = deque(maxlen=30)

Now whenever you insert values after 30, the leftmost value will be popped
from the list. You can also expand the list in any direction with new values:

42

d = deque([1,2,3,4,5])
d.extendleft([0])
d.extend([6,7,8])
print(d)
Output: deque([0, 1, 2, 3, 4, 5, 6, 7, 8])

This was just a quick drive through the collections module. Make sure you
read the official documentation after reading this.

12.4 namedtuple

You might already be acquainted with tuples. A tuple is a lightweight object
type which allows to store a sequence of immutable Python objects. They are
just like lists but have a few key differences. The major one is that unlike lists,
you can not change a value in a tuple. In order to access the value in a tuple
you use integer indexes like:

man = ('Ali', 30)
print(man[0])
Output: Ali

Well, so now what are namedtuples? They turn tuples into convenient contain-
ers for simple tasks. With namedtuples you don’t have to use integer indexes
for accessing members of a tuple. You can think of namedtuples like dictionar-
ies but unlike dictionaries they are immutable.

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")

print(perry)
Output: Animal(name='perry', age=31, type='cat')

print(perry.name)
Output: 'perry'

You can now see that we can access members of a tuple just by their name
using a .. Let’s dissect it a little more. A named tuple has two required ar-
guments. They are the tuple name and the tuple field_names. In the above
example our tuple name was ‘Animal’ and the tuple field_names were ‘name’,

43

‘age’ and ‘cat’. Namedtuple makes your tuples self-document. You can easily
understand what is going on by having a quick glance at your code. And as you
are not bound to use integer indexes to access members of a tuple, it makes it
more easy to maintain your code. Moreover, as ‘namedtuple‘ instances do not
have per-instance dictionaries, they are lightweight and require no more mem-
ory than regular tuples. This makes them faster than dictionaries. However, do
remember that as with tuples, attributes in namedtuples are immutable. It
means that this would not work:

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
perry.age = 42

Output: Traceback (most recent call last):
File "", line 1, in
AttributeError: can't set attribute

You should use named tuples to make your code self-documenting. They are
backwards compatible with normal tuples. It means that you can use integer
indexes with namedtuples as well:

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
print(perry[0])
Output: perry

Last but not the least, you can convert a namedtuple to a dictionary. Like this:

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type="cat")
print(perry._asdict())
Output: OrderedDict([('name', 'Perry'), ('age', 31), ...

44

12.5 enum.Enum (Python 3.4+)

Another useful collection is the enum object. It is available in the enum mod-
ule, in Python 3.4 and up (also available as a backport in PyPI named enum34.)
Enums (enumerated type) are basically a way to organize various things.

Let’s consider the Animal namedtuple from the last example. It had a type field.
The problem is, the type was a string. This poses some problems for us. What
if the user types in Cat because they held the Shift key? Or CAT? Or kitten?

Enumerations can help us avoid this problem, by not using strings. Consider
this example:

from collections import namedtuple
from enum import Enum

class Species(Enum):
cat = 1
dog = 2
horse = 3
aardvark = 4
butterfly = 5
owl = 6
platypus = 7
dragon = 8
unicorn = 9
The list goes on and on...

But we don't really care about age, so we can use an alias.
kitten = 1
puppy = 2

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type=Species.cat)
drogon = Animal(name="Drogon", age=4, type=Species.dragon)
tom = Animal(name="Tom", age=75, type=Species.cat)
charlie = Animal(name="Charlie", age=2, type=Species.kitten)

And now, some tests.
>>> charlie.type == tom.type
True
>>> charlie.type
<Species.cat: 1>

45

https://en.wikipedia.org/wiki/Enumerated_type

This is much less error-prone. We have to be specific, and we should use only
the enumeration to name types.

There are three ways to access enumeration members. For example, all three
methods will get you the value for cat:

Species(1)
Species['cat']
Species.cat

46

CHAPTER 13

Enumerate

Enumerate is a built-in function of Python. It’s usefulness can not be summa-
rized in a single line. Yet most of the newcomers and even some advanced
programmers are unaware of it. It allows us to loop over something and have
an automatic counter. Here is an example:

for counter, value in enumerate(some_list):
print(counter, value)

This is not it. enumerate also accepts some optional arguments which make it
even more useful.

my_list = ['apple', 'banana', 'grapes', 'pear']
for c, value in enumerate(my_list, 1):

print(c, value)

Output:
1 apple
2 banana
3 grapes
4 pear

The optional argument allows us to tell enumerate from where to start the index.
You can also create tuples containing the index and list item using a list. Here
is an example:

my_list = ['apple', 'banana', 'grapes', 'pear']
counter_list = list(enumerate(my_list, 1))

47

print(counter_list)
Output: [(1, 'apple'), (2, 'banana'), (3, 'grapes'), (4, 'pear')]

48

CHAPTER 14

Object introspection

In computer programming, introspection is the ability to determine the type of
an object at runtime. It is one of Python’s strengths. Everything in Python is
an object and we can examine those objects. Python ships with a few built-in
functions and modules to help us.

14.1 dir

In this section we will learn about dir and how it facilitates us in introspection.

It is one of the most important functions for introspection. It returns a list of
attributes and methods belonging to an object. Here is an example:

my_list = [1, 2, 3]
dir(my_list)
Output: ['__add__', '__class__', '__contains__', '__delattr__', '__delitem__',
'__delslice__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__getslice__', '__gt__', '__hash__', '__iadd__', '__imul__',
'__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__',
'__setattr__', '__setitem__', '__setslice__', '__sizeof__', '__str__',
'__subclasshook__', 'append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']

Our introspection gave us the names of all the methods of a list. This can be
handy when you are not able to recall a method name. If we run dir() without
any argument then it returns all names in the current scope.

49

14.2 type and id

The type function returns the type of an object. For example:

print(type(''))
Output: <type 'str'>

print(type([]))
Output: <type 'list'>

print(type({}))
Output: <type 'dict'>

print(type(dict))
Output: <type 'type'>

print(type(3))
Output: <type 'int'>

id returns the unique ids of various objects. For instance:

name = "Yasoob"
print(id(name))
Output: 139972439030304

14.3 inspect module

The inspect module also provides several useful functions to get information
about live objects. For example you can check the members of an object by
running:

import inspect
print(inspect.getmembers(str))
Output: [('__add__', <slot wrapper '__add__' of

There are a couple of other methods as well which help in introspection. You
can explore them if you wish.

50

CHAPTER 15

Comprehensions

Comprehensions are a feature of Python which I would really miss if I ever have
to leave it. Comprehensions are constructs that allow sequences to be built from
other sequences. Three types of comprehensions are supported in both Python
2 and Python 3:

• list comprehensions

• dictionary comprehensions

• set comprehensions

We will discuss them one by one. Once you get the hang of using list compre-
hensions then you can use any of them easily.

15.1 list comprehensions

List comprehensions provide a short and concise way to create lists. It consists
of square brackets containing an expression followed by a for clause, then zero
or more for or if clauses. The expressions can be anything, meaning you can
put in all kinds of objects in lists. The result would be a new list made after the
evaluation of the expression in context of the if and for clauses.

Blueprint

variable = [out_exp for out_exp in input_list if out_exp == 2]

Here is a short example:

51

multiples = [i for i in range(30) if i % 3 is 0]
print(multiples)
Output: [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

This can be really useful to make lists quickly. It is even preferred by some
instead of the filter function. list comprehensions really shine when you want
to supply a list to a method or function to make a new list by appending to it
in each iteration of the for loop. For instance you would usually do something
like this:

squared = []
for x in range(10):

squared.append(x**2)

You can simplify it using list comprehensions. For example:

squared = [x**2 for x in range(10)]

15.2 dict comprehensions

They are used in a similar way. Here is an example which I found recently:

mcase = {'a': 10, 'b': 34, 'A': 7, 'Z': 3}

mcase_frequency = {
k.lower(): mcase.get(k.lower(), 0) + mcase.get(k.upper(), 0)
for k in mcase.keys()

}

mcase_frequency == {'a': 17, 'z': 3, 'b': 34}

In the above example we are combining the values of keys which are same but
in different typecase. I personally do not use dict comprehensions a lot. You
can also quickly switch keys and values of a dictionary:

{v: k for k, v in some_dict.items()}

52

15.3 set comprehensions

They are also similar to list comprehensions. The only difference is that they
use braces {}. Here is an example:

squared = {x**2 for x in [1, 1, 2]}
print(squared)
Output: {1, 4}

53

CHAPTER 16

Exceptions

Exception handling is an art which once you master grants you immense pow-
ers. I am going to show you some of the ways in which we can handle excep-
tions.

In basic terminology we are aware of try/except clause. The code which can
cause an exception to occur is put in the try block and the handling of the ex-
ception is implemented in the except block. Here is a simple example:

try:
file = open('test.txt', 'rb')

except IOError as e:
print('An IOError occurred. {}'.format(e.args[-1]))

In the above example we are handling only the IOError exception. What most
beginners do not know is that we can handle multiple exceptions.

16.1 Handling multiple exceptions:

We can use three methods to handle multiple exceptions. The first one involves
putting all the exceptions which are likely to occur in a tuple. Like so:

try:
file = open('test.txt', 'rb')

except (IOError, EOFError) as e:
print("An error occurred. {}".format(e.args[-1]))

54

Another method is to handle individual exceptions in separate except blocks.
We can have as many except blocks as we want. Here is an example:

try:
file = open('test.txt', 'rb')

except EOFError as e:
print("An EOF error occurred.")
raise e

except IOError as e:
print("An error occurred.")
raise e

This way if the exception is not handled by the first except block then it may
be handled by a following block, or none at all. Now the last method involves
trapping ALL exceptions:

try:
file = open('test.txt', 'rb')

except Exception:
Some logging if you want
raise

This can be helpful when you have no idea about the exceptions which may be
thrown by your program.

16.1.1 finally clause

We wrap our main code in the try clause. After that we wrap some code in an
except clause which gets executed if an exception occurs in the code wrapped
in the try clause. In this example we will use a third clause as well which is
the finally clause. The code which is wrapped in the finally clause will run
whether or not an exception occurred. It might be used to perform clean-up
after a script. Here is a simple example:

try:
file = open('test.txt', 'rb')

except IOError as e:
print('An IOError occurred. {}'.format(e.args[-1]))

finally:
print("This would be printed whether or not an exception occurred!")

Output: An IOError occurred. No such file or directory
This would be printed whether or not an exception occurred!

55

16.1.2 try/else clause

Often times we might want some code to run if no exception occurs. This can
easily be achieved by using an else clause. Most people don’t use it and hon-
estly I have myself not used it widely. Here is an example:

try:
print('I am sure no exception is going to occur!')

except Exception:
print('exception')

else:
print('This would only run if no exception occurs.')

finally:
print('This would be printed in every case.')

Output: I am sure no exception is going to occur!
This would only run if no exception occurs.
This would be printed in every case.

The else clause would only run if no exception occurs and it would run before
the finally clause.

56

CHAPTER 17

Lambdas

Lambdas are one line functions. They are also known as anonymous functions
in some other languages. You might want to use lambdas when you don’t want
to use a function twice in a program. They are just like normal functions and
even behave like them.

Blueprint

lambda argument: manipulate(argument)

Example

add = lambda x, y: x + y

print(add(3, 5))
Output: 8

Here are a few useful use cases for lambdas and just a few way in which they
are used in the wild:

List sorting

a = [(1, 2), (4, 1), (9, 10), (13, -3)]
a.sort(key=lambda x: x[1])

print(a)
Output: [(13, -3), (4, 1), (1, 2), (9, 10)]

Parallel sorting of lists

57

data = zip(list1, list2)
data.sort()
list1, list2 = map(lambda t: list(t), zip(*data))

58

CHAPTER 18

One-Liners

In this chapter I will show you some one-liner Python commands which can be
really helpful.

Simple Web Server

Ever wanted to quickly share a file over a network? Well you are in luck. Python
has a feature just for you. Go to the directory which you want to serve over the
network and write the following code in your terminal:

Python 2
python -m SimpleHTTPServer

Python 3
python -m http.server

Pretty Printing

You can print a list and dictionary in a beautiful format in the Python repl. Here
is the relevant code:

from pprint import pprint

my_dict = {'name': 'Yasoob', 'age': 'undefined', 'personality': 'awesome'}
pprint(my_dict)

This is more effective on ‘‘dict‘‘s. Moreover, if you want to pretty print json
quickly from a file then you can simply do:

59

cat file.json | python -m json.tool

Profiling a script

This can be extremely helpful in pinpointing the bottlenecks in your scripts:

python -m cProfile my_script.py

Note: cProfile is a faster implementation of profile as it is written in c

CSV to json

Run this in the terminal:

python -c "import csv,json;print json.dumps(list(csv.reader(open('csv_file.csv'))))"

Make sure that you replace csv_file.csv to the relevant file name.

List Flattening

You can quickly and easily flatten a list using itertools.chain.from_iterable
from the itertools package. Here is a simple example:

a_list = [[1, 2], [3, 4], [5, 6]]
print(list(itertools.chain.from_iterable(a_list)))
Output: [1, 2, 3, 4, 5, 6]

or
print(list(itertools.chain(*a_list)))
Output: [1, 2, 3, 4, 5, 6]

One-Line Constructors

Avoid a lot of boilerplate assignments when initializing a class

class A(object):
def __init__(self, a, b, c, d, e, f):

self.__dict__.update({k: v for k, v in locals().items() if k != 'self'})

Additional one-liners can be found on the Python website.

60

https://wiki.python.org/moin/Powerful%20Python%20One-Liners

CHAPTER 19

For - Else

Loops are an integral part of any language. Likewise for loops are an important
part of Python. However there are a few things which most beginners do not
know about them. We will discuss a few of them one by one.

Let’s first start of by what we know. We know that we can use for loops like
this:

fruits = ['apple', 'banana', 'mango']
for fruit in fruits:

print(fruit.capitalize())

Output: Apple
Banana
Mango

That is the very basic structure of a for loop. Now let’s move on to some of the
lesser known features of for loops in Python.

19.1 else clause:

For loops also have an else clause which most of us are unfamiliar with. The
else clause executes when the loop completes normally. This means that the
loop did not encounter any break. They are really useful once you understand
where to use them. I myself came to know about them a lot later.

61

The common construct is to run a loop and search for an item. If the item is
found, we break the loop using break. There are two scenarios in which the
loop may end. The first one is when the item is found and break is encountered.
The second scenario is that the loop ends. Now we may want to know which
one of these is the reason for a loops completion. One method is to set a flag
and then check it once the loop ends. Another is to use the else clause.

This is the basic structure of a for/else loop:

for item in container:
if search_something(item):

Found it!
process(item)
break

else:
Didn't find anything..
not_found_in_container()

Consider this simple example which I took from the official documentation:

for n in range(2, 10):
for x in range(2, n):

if n % x == 0:
print(n, 'equals', x, '*', n/x)
break

It finds factors for numbers between 2 to 10. Now for the fun part. We can add
an additional else block which catches the numbers which are prime and tells
us so:

for n in range(2, 10):
for x in range(2, n):

if n % x == 0:
prin(n, 'equals', x, '*', n/x)
break

else:
loop fell through without finding a factor
print(n, 'is a prime number')

62

CHAPTER 20

Open function

open opens a file. Pretty simple, eh? Most of the time, we see it being used like
this:

f = open('photo.jpg', 'r+')
jpgdata = f.read()
f.close()

The reason I am writing this article is that most of the time, I see open used like
this. There are three errors in the above code. Can you spot them all? If not,
read on. By the end of this article, you’ll know what’s wrong in the above code,
and, more importantly, be able to avoid these mistakes in your own code. Let’s
start with the basics:

The return of open is a file handle, given out from the operating system to your
Python application. You will want to return this file handle once you’re finished
with the file, if only so that your application won’t reach the limit of the number
of open file handle it can have at once.

Explicitly calling close closes the file handle, but only if the read was success-
ful. If there is any error just after f = open(...), f.close() will not be called
(depending on the Python interpreter, the file handle may still be returned, but
that’s another story). To make sure that the file gets closed whether an exception
occurs or not, pack it into a ‘with statement:

with open('photo.jpg', 'r+') as f:
jpgdata = f.read()

The first argument of open is the filename. The second one (the mode) determines

63

http://docs.python.org/dev/library/functions.html#open

how the file gets opened.

• If you want to read the file, pass in r

• If you want to read and write the file, pass in r+

• If you want to overwrite the file, pass in w

• If you want to append to the file, pass in a

While there are a couple of other valid mode strings, chances are you won’t ever
use them. The mode matters not only because it changes the behavior, but also
because it may result in permission errors. For example, if we were to open a
jpg-file in a write-protected directory, open(.., ’r+’) would fail. The mode
can contain one further character; we can open the file in binary (you’ll get a
string of bytes) or text mode (a string of characters).

In general, if the format is written by humans, it tends to be text mode. jpg
image files are not generally written by humans (and are indeed not readable
to humans), and you should therefore open them in binary mode by adding a
b to the text string (if you’re following the opening example, the correct mode
would be rb). If you open something in text mode (i.e. add a t, or nothing apart
from r/r+/w/a), you must also know which encoding to use - for a computer,
all files are just bytes, not characters.

Unfortunately, open does not allow explicit encoding specification in Python 2.x.
However, the function io.open is available in both Python 2.x and 3.x (where it is
an alias of open), and does the right thing. You can pass in the encoding with the
encoding keyword. If you don’t pass in any encoding, a system- (and Python-)
specific default will be picked. You may be tempted to rely on these defaults,
but the defaults are often wrong, or the default encoding cannot actually express
all characters (this will happen on Python 2.x and/or Windows). So go ahead
and pick an encoding. utf-8 is a terrific one. When you write a file, you can
just pick the encoding to your liking (or the liking of the program that will
eventually read your file).

How do you find out which encoding a file you read has? Well, unfortunately,
there is no foolproof way to detect the encoding - the same bytes can represent
different, but equally valid characters in different encodings. Therefore, you
must rely on metadata (for example, in HTTP headers) to know the encoding.
Increasingly, formats just define the encoding to be UTF-8.

Armed with this knowledge, let’s write a program that reads a file, determines
whether it’s JPG (hint: These files start with the bytes FF D8), and writes a text
file that describe the input file.

64

http://docs.python.org/2/library/io.html#io.open

import io

with open('photo.jpg', 'rb') as inf:
jpgdata = inf.read()

if jpgdata.startswith(b'\xff\xd8'):
text = u'This is a jpeg file (%d bytes long)\n'

else:
text = u'This is a random file (%d bytes long)\n'

with io.open('summary.txt', 'w', encoding='utf-8') as outf:
outf.write(text % len(jpgdata))

I am sure that now you would use open correctly!

65

CHAPTER 21

Targeting Python 2+3

In a lot of cases you might want to develop programs which can be run in both
Python 2+ and 3+.

Just imagine that you have a very popular Python module which is use by hun-
dreds of people but not all of them have Python 2 or 3. In that case you have
two choices. The first one is to distribute 2 modules, one for Python 2 and the
other for Python 3. The other choice is to modify your current code and make
is compatible with both Python 2 and 3.

In this section I am going to highlight some of the tricks which you can employ
to make a script compatible with both of them.

Future imports

The first and most important method is to use __future__ imports. It allows
you to import Python 3 functionality in Python 2. Here is an example:

• Context managers were new in Python 2.6+. For using them in Python 2.5
you can use:

from __future__ import with_statement

• print function

print was changed to a function in Python 3. If you want to use it in Python 2
you can import it from __future__.

print
Output:

66

from __future__ import print_function
print(print)
Output: <built-in function print>

Dealing with module renaming

First tell me how you import packages in your script ? Most of us do this :

import foo
or
from foo import bar

Do you know that you can do something like this as well?

import foo as foo

I know its function is the same as the above listed code but it is vital for making
your script compatible with Python 2 and 3. Now examine the code below :

try:
import urllib.request as urllib_request # for Python 3

except ImportError:
import urllib2 as urllib_request # for Python 2

So let me explain the above code a little. We are wrapping our importing
code in a try except clause. We are doing it because in Python 2 there is no
urllib.request module and will result in an ImportError. The functionality
of urllib.request is provided by urllib2 module in Python 2. So now when
in Python 2 we try to import urllib.request and get an ImportError we tell
Python to import urllib2 instead.

The final thing you need to know about is the as keyword. It is mapping the im-
ported module to urllib_request. So that now all of the Classes and methods
of urllib2 are available to us by urllib_request.

Obsolete Python 2 builtins

Another thing to keep in mind is that there are 12 Python 2 builtins which have
been removed from Python 3. Make sure that you don’t use them in Python 2
as well in order to make your code compatible with Python 3. Here is a way to
enforce you to abandon these 12 builtins in Python 2 as well.

from future.builtins.disabled import *

67

Now whenever you try to use the modules which are abandoned in Python 3,
it raises a NameError like this:

from future.builtins.disabled import *

apply()
Output: NameError: obsolete Python 2 builtin apply is disabled

External standard-library backports

There are a few packages in the wild which provide Python 3 functionality in
Python 2. For instance we have:

• enum pip install enum34

• singledispatch pip install singledispatch

• pathlib pip install pathlib

For further reading, the Python documentation has a comprehensive guide of
steps you need to take to make your code compatible with both Python 2 and 3.

68

https://docs.python.org/3/howto/pyporting.html

CHAPTER 22

Coroutines

Coroutines are similar to generators with a few differences. The main differ-
ences are:

• generators are data producers

• coroutines are data consumers

First of all let’s review the generator creation process. We can make generators
like this:

def fib():
a, b = 0, 1
while True:

yield a
a, b = b, a+b

We then commonly use it in a for loop like this:

for i in fib():
print(i)

It is fast and does not put a lot of pressure on memory because it generates
the values on the fly rather then storing them in a list. Now if we use yield
in the above example more generally we get a coroutine. Coroutines consume
values which are sent to it. A very basic example would be a grep alternative in
Python:

def grep(pattern):
print("Searching for", pattern)

69

while True:
line = (yield)
if pattern in line:

print(line)

Wait! What does yield return? Well we have turned it into a coroutine. It does
not contain any value initially instead we supply it values externally. We supply
values by using the .send() method. Here is an example:

search = grep('coroutine')
next(search)
Output: Searching for coroutine
search.send("I love you")
search.send("Don't you love me?")
search.send("I love coroutines instead!")
Output: I love coroutines instead!

The sent values are accessed by yield. Why did we run next()? It is done to
start the coroutine. Just like generators coroutines do not start the function im-
mediately. Instead they run it in response to __next__() and .send() methods.
Therefore you have to run next() so that the execution advances to the yield
expression.

We can close a coroutine by calling the .close() method. Like:

search = grep('coroutine')
...
search.close()

There is a lot more to coroutines. I suggest you check out this awesome pre-
sentation by David Beazley.

70

http://www.dabeaz.com/coroutines/Coroutines.pdf
http://www.dabeaz.com/coroutines/Coroutines.pdf

CHAPTER 23

Function caching

Function caching allows us to cache the return values of a function depending
on the arguments. It can save time when an I/O bound function is periodically
called with the same arguments. Before Python 3.2 we had to write a custom
implementation. In Python 3.2+ there is an lru_cache decorator which allows
us to quickly cache and uncache the return values of a function.

Let’s see how we can use it in Python 3.2+ and the versions before it.

23.1 Python 3.2+

Let’s implement a Fibonacci calculator and use lru_cache.

from functools import lru_cache

@lru_cache(maxsize=32)
def fib(n):

if n < 2:
return n

return fib(n-1) + fib(n-2)

>>> print([fib(n) for n in range(10)])
Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

The maxsize argument tells lru_cache about how many recent return values to
cache.

71

We can easily uncache the return values as well by using:

fib.cache_clear()

23.2 Python 2+

There are a couple of ways to achieve the same effect. You can create any type
of caching mechanism. It entirely depends upon your needs. Here is a generic
cache:

from functools import wraps

def memoize(function):
memo = {}
@wraps(function)
def wrapper(*args):

if args in memo:
return memo[args]

else:
rv = function(*args)
memo[args] = rv
return rv

return wrapper

@memoize
def fibonacci(n):

if n < 2: return n
return fibonacci(n - 1) + fibonacci(n - 2)

fibonacci(25)

Here is a fine article by Caktus Group in which they caught a bug in Django
which occurred due to lru_cache. It’s an interesting read. Do check it out.

72

https://www.caktusgroup.com/blog/2015/06/08/testing-client-side-applications-django-post-mortem/

CHAPTER 24

Context managers

Context managers allow you to allocate and release resources precisely when
you want to. The most widely used example of context managers is the with
statement. Suppose you have two related operations which you’d like to exe-
cute as a pair, with a block of code in between. Context managers allow you to
do specifically that. For example:

with open('some_file', 'w') as opened_file:
opened_file.write('Hola!')

The above code opens the file, writes some data to it and then closes it. If an
error occurs while writing the data to the file, it tries to close it. The above code
is equivalent to:

file = open('some_file', 'w')
try:

file.write('Hola!')
finally:

file.close()

While comparing it to the first example we can see that a lot of boilerplate code
is eliminated just by using with. The main advantage of using a with statement
is that it makes sure our file is closed without paying attention to how the nested
block exits.

A common use case of context managers is locking and unlocking resources and
closing opened files (as I have already showed you).

Let’s see how we can implement our own Context Manager. This would allow

73

us to understand exactly what’s going on behind the scenes.

24.1 Implementing Context Manager as a Class:

At the very least a context manager has an __enter__ and __exit__ methods
defined. Let’s make our own file opening Context Manager and learn the basics.

class File(object):
def __init__(self, file_name, method):

self.file_obj = open(file_name, method)
def __enter__(self):

return self.file_obj
def __exit__(self, type, value, traceback):

self.file_obj.close()

Just by defining __enter__ and __exit__ methods we can use it in a with state-
ment. Let’s try:

with File('demo.txt', 'w') as opened_file:
opened_file.write('Hola!')

Our __exit__ function accepts three arguments. They are required by every
__exit__ method which is a part of a Context Manager class. Let’s talk about
what happens under-the-hood.

1. The with statement stores the __exit__ method of File class.

2. It calls the __enter__ method of File class.

3. __enter__ method opens the file and returns it.

4. the opened file handle is passed to opened_file.

5. we write to the file using .write()

6. with statement calls the stored __exit__ method.

7. the __exit__ method closes the file.

74

24.2 Handling exceptions

We did not talk about the type, value and traceback arguments of the __exit__
method. Between the 4th and 6th step, if an exception occurs, Python passes
the type, value and traceback of the exception to the __exit__ method. It allows
the __exit__ method to decide how to close the file and if any further steps are
required. In our case we are not paying any attention to them.

What if our file object raises an exception? We might be trying to access a
method on the file object which it does not supports. For instance:

with File('demo.txt', 'w') as opened_file:
opened_file.undefined_function('Hola!')

Let’s list down the steps which are taken by the with statement when an error
is encountered.

1. It passes the type, value and traceback of the error to the __exit__ method.

2. It allows the __exit__ method to handle the exception.

3. If __exit__ returns True then the exception was gracefully handled.

4. If anything else than True is returned by __exit__ method then the excep-
tion is raised by with statement.

In our case the __exit__ method returns None (when no return statement is
encountered then the method returns None). Therefore, with statement raises
the exception.

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

AttributeError: 'file' object has no attribute 'undefined_function'

Let’s try handling the exception in the __exit__ method:

class File(object):
def __init__(self, file_name, method):

self.file_obj = open(file_name, method)
def __enter__(self):

return self.file_obj
def __exit__(self, type, value, traceback):

print("Exception has been handled")
self.file_obj.close()
return True

75

with File('demo.txt', 'w') as opened_file:
opened_file.undefined_function()

Output: Exception has been handled

Our __exit__ method returned True, therefore no exception was raised by the
with statement.

This is not the only way to implement context managers. There is another way
and we will be looking at it in this next section.

24.3 Implementing a Context Manager as a Generator

We can also implement Context Managers using decorators and generators.
Python has a contextlib module for this very purpose. Instead of a class, we
can implement a Context Manager using a generator function. Let’s see a basic,
useless example:

from contextlib import contextmanager

@contextmanager
def open_file(name):

f = open(name, 'w')
yield f
f.close()

Okay! This way of implementing Context Managers appear to be more intuitive
and easy. However, this method requires some knowledge about generators,
yield and decorators. In this example we have not caught any exceptions which
might occur. It works in mostly the same way as the previous method.

Let’s dissect this method a little.

1. Python encounters the yield keyword. Due to this it creates a generator
instead of a normal function.

2. Due to the decoration, contextmanager is called with the function name
(open_file) as it’s argument.

3. The contextmanager function returns the generator wrapped by the
GeneratorContextManager object.

76

4. The GeneratorContextManager is assigned to the open_file function.
Therefore, when we later call open_file function, we are actually calling
the GeneratorContextManager object.

So now that we know all this, we can use the newly generated Context Manager
like this:

with open_file('some_file') as f:
f.write('hola!')

77

	I Preface
	II Author
	III Table of Contents
	*args and **kwargs
	Usage of *args
	Usage of **kwargs
	Using *args and **kwargs to call a function
	When to use them?

	Debugging
	Generators
	Iterable
	Iterator
	Iteration
	Generators

	Map & Filter
	Map
	Filter

	set Data Structure
	Ternary Operators
	Decorators
	Everything in python is an object:
	Defining functions within functions:
	Returning functions from within functions:
	Giving a function as an argument to another function:
	Writing your first decorator:

	Global & Return
	Multiple return values

	Mutation
	__slots__ Magic
	Virtual Environment
	Collections
	defaultdict
	counter
	deque
	namedtuple
	enum.Enum (Python 3.4+)

	Enumerate
	Object introspection
	dir
	type and id
	inspect module

	Comprehensions
	list comprehensions
	dict comprehensions
	set comprehensions

	Exceptions
	Handling multiple exceptions:

	Lambdas
	One-Liners
	For - Else
	else clause:

	Open function
	Targeting Python 2+3
	Coroutines
	Function caching
	Python 3.2+
	Python 2+

	Context managers
	Implementing Context Manager as a Class:
	Handling exceptions
	Implementing a Context Manager as a Generator

