CURRENT Diagnosis & Treatment: Pediatrics

William W. Hay Jr., Myron J. Levin, Robin R. Deterding, Mark J. Abzug

McGraw Hill Education
Contents

Authors xix
Preface xxvii

1. Advancing the Quality and Safety of Care 1

Daniel Hyman, MD, MMM

Current Context 1
Strategies and Models for Quality Improvement (QI) 4
Principles of Patient Safety (Incident Reporting, Just Culture, Disclosure, FMEA, RCA, Reliability, Checklists) 7

2. The Newborn Infant 9

Adam A. Rosenberg, MD
Theresa Grover, MD

The Neonatal History 9
Assessment of Growth & Gestational Age 9
Examination at Birth 12
Examination in the Nursery 13
Care of the Well Neonate 15
Feeding the Well Neonate 16
Early Discharge of the Newborn Infant 18
Circumcision 18
Hearing Screening 19
Common Problems in the Term Newborn 19
 Neonatal Jaundice 19
 Hypoglycemia 27
 Respiratory Distress in the term Newborn Infant 28
 Heart Murmurs 30
 Birth Trauma 31
 Infants of Mothers Who Abuse Drugs 32
 Multiple Births 34
Neonatal Intensive Care 35
Perinatal Resuscitation 35
The Preterm Infant 40
The Late Preterm Infant 50
Cardiac Problems in the Newborn Infant 52
 Structural Heart Disease 52
 Persistent Pulmonary Hypertension 53
 Arrhythmias 53
Gastrointestinal & Abdominal Surgical Conditions in the Newborn Infant 54
 Esophageal Atresia & Tracheoesophageal Fistula 54
 Intestinal Obstruction 54
 Abdominal Wall Defects 56
 Diaphragmatic Hernia 56
 Gastrointestinal Bleeding 57
 Gastroesophageal Reflux 57
 Infections in the Newborn Infant 58
 Bacterial Infections 58
 Fungal Sepsis 61
 Congenital Infections 62
 Perinatally Acquired Infections 65
 Hematologic Disorders in the Newborn Infant 67
 Bleeding Disorders 67
 Anemia 68
 Polycythemia 69
 Renal Disorders in the Newborn Infant 69
 Renal Failure 70
 Urinary Tract Anomalies 70
 Renal Vein Thrombosis 71
 Neurologic Problems in the Newborn Infant 71
 Seizures 71
 Hypotonia 72
 Intracranial Hemorrhage 72
 Metabolic Disorders in the Newborn Infant 73
 Hyperglycemia 73
 Hypocalcemia 73
 Inborn Errors of Metabolism 74
 Quality Assessment and Improvement in the Newborn Nursery and NICU 74

3. Child Development & Behavior 75

Edward Goldson, MD
Ann Reynolds, MD

Normal Development 75
 The First 2 Years 75
 Ages 2–4 Years 92
 Early School Years: Ages 5–7 Years 92
 Middle Childhood: Ages 7–11 Years 92
 Behavioral & Developmental Variations 93
 Normality & Temperament 93
 Enuresis & Encopresis 94
 Enuresis 94
 Encopresis 95
 Common Developmental Concerns 96
 Colic 96
 Feeding Disorders in Infants & Young Children 97
 Sleep Disorders 99
 Temper Tantrums & Breath-Holding Spells 101
 Well-Child Surveillance & Screening 103
 Developmental Disorders 104
Contents

4. Adolescence

Amy E. Sass, MD, MPH
David W. Kaplan, MD, MPH

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demography</td>
<td>117</td>
</tr>
<tr>
<td>Mortality Data</td>
<td>117</td>
</tr>
<tr>
<td>Morbidity Data</td>
<td>117</td>
</tr>
<tr>
<td>Delivery of Health Services</td>
<td>119</td>
</tr>
<tr>
<td>Guidelines for Adolescent Preventive Services</td>
<td>119</td>
</tr>
<tr>
<td>Relating to the Adolescent Patient</td>
<td>119</td>
</tr>
<tr>
<td>The Setting</td>
<td>119</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>120</td>
</tr>
<tr>
<td>The Structure of the Visit</td>
<td>120</td>
</tr>
<tr>
<td>Growth & Development</td>
<td>125</td>
</tr>
<tr>
<td>Puberty</td>
<td>125</td>
</tr>
<tr>
<td>Physical Growth</td>
<td>126</td>
</tr>
<tr>
<td>Sexual Maturation</td>
<td>127</td>
</tr>
<tr>
<td>Psychosocial Development</td>
<td>127</td>
</tr>
<tr>
<td>Behavior & Psychological Health</td>
<td>129</td>
</tr>
<tr>
<td>Psychophysiologic Symptoms & Conversion Reactions</td>
<td>129</td>
</tr>
<tr>
<td>Depression</td>
<td>130</td>
</tr>
<tr>
<td>Adolescent Suicide</td>
<td>131</td>
</tr>
<tr>
<td>Substance Abuse</td>
<td>132</td>
</tr>
<tr>
<td>Eating Disorders</td>
<td>132</td>
</tr>
<tr>
<td>Overweight & Obesity</td>
<td>132</td>
</tr>
<tr>
<td>School Avoidance</td>
<td>134</td>
</tr>
<tr>
<td>School Failure</td>
<td>135</td>
</tr>
<tr>
<td>Breast Disorders</td>
<td>135</td>
</tr>
<tr>
<td>Breast Masses</td>
<td>136</td>
</tr>
<tr>
<td>Nipple Discharge & Galactorrhea</td>
<td>137</td>
</tr>
<tr>
<td>Gynecomastia</td>
<td>138</td>
</tr>
<tr>
<td>Gynecologic Disorders in Adolescence</td>
<td>139</td>
</tr>
<tr>
<td>Physiology of Menstruation</td>
<td>139</td>
</tr>
<tr>
<td>Pelvic Examination</td>
<td>140</td>
</tr>
<tr>
<td>Menstrual Disorders</td>
<td>141</td>
</tr>
<tr>
<td>Contraception</td>
<td>149</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>155</td>
</tr>
</tbody>
</table>

6. Eating Disorders

Eric J. Sigel, MD

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>172</td>
</tr>
<tr>
<td>Incidence</td>
<td>173</td>
</tr>
<tr>
<td>Predisposing Factors & Clinical Profiles</td>
<td>174</td>
</tr>
<tr>
<td>Anorexia Nervosa</td>
<td>174</td>
</tr>
<tr>
<td>Bulimia Nervosa</td>
<td>180</td>
</tr>
<tr>
<td>Binge-Eating Disorder</td>
<td>182</td>
</tr>
<tr>
<td>Eating Disorders Not Meeting</td>
<td>183</td>
</tr>
<tr>
<td>Criteria for Categorization</td>
<td>183</td>
</tr>
<tr>
<td>Avoidant/Restrictive Food Intake Disorder</td>
<td>183</td>
</tr>
<tr>
<td>Prognosis</td>
<td>184</td>
</tr>
<tr>
<td>Resources for Practioners and Families</td>
<td>184</td>
</tr>
</tbody>
</table>

7. Child & Adolescent Psychiatric Disorders & Psychosocial Aspects of Pediatrics

Adam Burstein, DO
Ayelet Talmi, PhD
Brian Stafford, MD, MPH
Kimberly Kelsay, MD

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models of Care Encompassing Mental Health in the Primary Care Setting</td>
<td>186</td>
</tr>
<tr>
<td>Early Identification & Prevention of Developmental & Socioemotional Problems</td>
<td>186</td>
</tr>
<tr>
<td>Identification & Assessment During Health Maintenance Visits</td>
<td>187</td>
</tr>
<tr>
<td>Consultation-Liaison Psychiatry</td>
<td>195</td>
</tr>
<tr>
<td>The Chronically Ill Child</td>
<td>195</td>
</tr>
<tr>
<td>The Terminally Ill Child</td>
<td>196</td>
</tr>
<tr>
<td>Psychiatric Disorders of Childhood & Adolescence</td>
<td>199</td>
</tr>
<tr>
<td>Pediatric Primary Care Behavioral Health Services</td>
<td>200</td>
</tr>
<tr>
<td>Anxiety Disorders</td>
<td>202</td>
</tr>
<tr>
<td>Attention-Deficit Hyperactivity Disorder</td>
<td>210</td>
</tr>
<tr>
<td>Mood Disorders</td>
<td>215</td>
</tr>
<tr>
<td>Suicide in Children & Adolescents</td>
<td>226</td>
</tr>
<tr>
<td>Conduct Disorders</td>
<td>228</td>
</tr>
<tr>
<td>High-Risk Patients and Homicide</td>
<td>232</td>
</tr>
<tr>
<td>Somatoform Disorders</td>
<td>233</td>
</tr>
<tr>
<td>Adjustment Disorders</td>
<td>234</td>
</tr>
<tr>
<td>Psychotic Disorders</td>
<td>235</td>
</tr>
<tr>
<td>Other Psychiatric Conditions</td>
<td>238</td>
</tr>
</tbody>
</table>

8. Child Abuse & Neglect

Antonia Chiesa, MD
Andrew P. Sirotnak, MD

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention</td>
<td>240</td>
</tr>
<tr>
<td>Clinical Findings</td>
<td>240</td>
</tr>
<tr>
<td>Differential Diagnosis</td>
<td>245</td>
</tr>
<tr>
<td>Treatment</td>
<td>246</td>
</tr>
<tr>
<td>Prognosis</td>
<td>246</td>
</tr>
</tbody>
</table>
9. **Ambulatory & Office Pediatrics** 248

 Meghan Treitz, MD
 Maya Bunik, MD, MSPH
 David Fox, MD

 - Pediatric History 248
 - Pediatric Physical Examination 249
 - Health Supervision Visits 251
 - Developmental & Behavioral Assessment 251
 - Growth Parameters 254
 - Blood Pressure 255
 - Vision & Hearing Screening 256
 - Screening 257
 - Anticipatory Guidance 260
 - Nutrition Counseling 262
 - Counseling About Television & Other Media 262
 - Immunizations 263
 - Acute-Care Visits 263
 - Prenatal Visits 264
 - Sports Physicals 264
 - Chronic Disease Management 264
 - Medical Home 265
 - Mental & Behavioral Health 265
 - Consultations 266
 - Telephone Management & Web-Based Information 266
 - Advocacy & Community Pediatrics 267
 - Common General Pediatric Issues 267
 - Fever 267
 - Growth Deficiency 269

10. **Immunization** 271

 Matthew F. Daley, MD
 Sean T. O’Leary, MD, MPH
 Ann-Christine Nyquist, MD, MSPH

 - Standards for Pediatric Immunization Practices 272
 - Routine Childhood & Adolescent Immunization Schedules 273
 - Vaccine Safety 273
 - Vaccination in Special Circumstances 277
 - Hepatitis B Vaccination 278
 - Rotavirus Vaccination 281
 - Diphtheria-Tetanus-Acellular Pertussis Vaccination 282
 - *Haemophilus Influenzae* Type B Vaccination 285
 - Pneumococcal Vaccination 286
 - Poliomyelitis Vaccination 288
 - Influenza Vaccination 289
 - Measles, Mumps, & Rubella Vaccination 291
 - Varicella Vaccination 293
 - Hepatitis A Vaccination 295
 - Meningococcal Vaccination 296
 - Tetanus-Reduced Diphtheria-Acellular Pertussis Vaccination (Adolescents & Adults) 298
 - Human Papillomavirus Vaccination 299
 - Vaccinations for Special Situations 299
 - Rabies Vaccination 299
 - Typhoid Fever Vaccination 301
 - Japanese Encephalitis Vaccination 301
 - Tuberculosis Vaccination 302
 - Yellow Fever Vaccination 303
 - Passive Prophylaxis 303

11. **Normal Childhood Nutrition & Its Disorders** 305

 Matthew A. Haemer, MD MPH
 Laura E. Primak, RD, CNSD, CSP
 Nancy F. Krebs, MD, MS

 - Nutritional Requirements 305
 - Nutrition & Growth 305
 - Energy 305
 - Protein 307
 - Lipids 307
 - Carbohydrates 308
 - Major Minerals 309
 - Trace Elements 309
 - Vitamins 309
 - Infant Feeding 311
 - Breast-Feeding 311
 - Special Dietary Products for Infants 320
 - Nutrition for Children 2 Years & Older 321
 - Pediatric Undernutrition 321
 - Pediatric Overweight & Obesity 323
 - Nutrition Support 326
 - 1. Enteral 326
 - 2. Parenteral Nutrition 327
 - Nutrient Requirements & Delivery 329

12. **Emergencies & Injuries** 334

 Maria J. Mandt, MD
 Joseph A. Grubenhoff, MD

 - Assessment & Management of the Acutely Ill Infant or Child 334
 - The ABCs of Resuscitation 334
 - Management of Shock 338
 - Summary of Resuscitating the Acutely Ill Infant or Child 339
 - Emergency Pediatric Drugs 340
 - Approach to the Acutely Ill Infant or Child 340
 - Preparation for Emergency Management 340
 - Reception & Assessment 340
Approach to the Pediatric Trauma Patient 342

Mechanism of Injury 342
Initial Assessment & Management 342
Primary Survey 343
Secondary Survey 345
Head Injury 347
Burns 349
Thermal Burns 349
Electrical Burns 351
Disorders Due to Extremes of Environment 351
Heat-Related Illnesses & Heat Stroke 351
Hypothermia 352
Submersion Injuries 353
Animal & Human Bites 354
Dog Bites 354
Cat Bites 355
Human Bites 355
Procedural Sedation & Analgesia 355

13. Poisoning 357

George Sam Wang, MD
Barry H. Rumack, MD
Richard C. Dart, MD, PhD

Pharmacologic Principles of Toxicology 357
Preventing Childhood Poisonings 358
General Treatment of Poisoning 358
Initial Telephone Contact 358
Initial Emergency Department Contact 361
Definitive Therapy of Poisoning 361
Management of Specific Common Poisonings 363
Acetaminophen (Paracetamol) 363
Alcohol, Ethyl (Ethanol) 363
Amphetamines & Related Drugs (Methamphetamine, MDMA) 365
Anesthetics, Local 366
Antihistamines & Cough & Cold Preparations 367
Arsenic 367
Barbiturates & Benzodiazepines 368
Belladonna Alkaloids (Atropine, Jimsonweed, Potato Leaves, Scopolamine, Stramonium) 368
β-Blockers & Calcium Channel Blockers 369
Carbon Monoxide 369
Caustics 369
Central Alpha-2 Adrenergic Agonist 370
Cocaine 371
Contraceptive Pills 371
Cosmetics & Related Products 371
Cyclic Antidepressants 372
Digitalis & Other Cardiac Glycosides 372
Diphenoxylate with Atropine (Lomotil) & Loperamide (Imodium) 373
Disinfectants & Deodorizers 373
Disk-Shaped "Button" Batteries 373
Ethylene Glycol & Methanol 374
γ-Hydroxybutyrate, γ-Butyrolactone, & Butanediol 374
Hydrocarbons (Benzene, Charcoal Lighter Fluid, Gasoline, Kerosene, Petroleum Distillates, Turpentine) 374
Ibuprofen 375
Insect Stings (Bee, Wasp, & Hornet) 375
Insecticides 375
Iron 376
Lead 377
Magnets 378
Mushrooms 378
Nitrites, Nitrates, Aniline, Pentachlorophenol, & Dinitrophenol 378
Opioids & Opiates 379
Oral Hypoglycemics (Sulfonylureas, Metformin) 380
Antipsychotics (Typical & Atypical) 380
Plants 381
Psychotropic Drugs 381
Salicylates 382
Scorpion Stings 383
Serotonin Reuptake Inhibitors 383
Snakebite 384
Soaps & Detergents 385
Spider Bites 385
Thyroid Preparations (Thyroid Desiccated, Sodium Levothyroxine) 386
Vitamins 386
Warfarin (Coumadin) and Other Oral Anticoagulants 386

14. Critical Care 387

Todd C. Carpenter, MD,
Angela S. Czaja, MD, MSc,
Jennifer Exo, DO, Eva N. Grayck, MD,
Cameron F. Gunville, DO, Carleen Zebuhr, MD

Introduction 387
Respiratory Critical Care 387
Acute Respiratory Failure 387
Conventional Mechanical Ventilation 391
Major Respiratory Diseases in the Pediatric ICU 395
Acute Respiratory Distress Syndrome 395
Status Asthmaticus 399
Cardiovascular Critical Care 402
Shock 402
Sepsis 405
Neurocritical Care 409
Traumatic Brain Injury 409
Hypoxic-Ischemic Encephalopathy 413
Additional Therapeutic Considerations in the Pediatric ICU 414
15. Skin

Joseph G. Morelli, MD
Lori D. Prok, MD

General Principles 426
Diagnosis of Skin Disorders 426
Treatment of Skin Disorders 426
Disorders of the Skin in Newborns 428
Transient Diseases in Newborns 428
Pigment Cell Birthmarks, Nevi, & Melanoma 429
Melanocytic Nevi 430
Vascular Birthmarks 430
Epidermal Birthmarks 431
Connective Tissue Birthmarks (Juvenile Elastoma, Collagenoma) 432
Hereditary Skin Disorders 432
Common Skin Diseases in Infants, Children, & Adolescents 432
Acne 432
Bacterial Infections of the Skin 435
Fungal Infections of the Skin 436
Viral Infections of the Skin 437
Virus-Induced Tumors 438
Insect Infestations 438
Dermatitis (Eczema) 439
Common Skin Tumors 442
Papulosquamous Eruptions 443
Hair Loss (Alopecia) 444
Reactive Erythemas 445
Miscellaneous Skin Disorders Seen in Pediatric Practice 445

16. Eye

Rebecca Sands Braverman, MD

Common Nonspecific Signs & Symptoms 447
Red Eye 447
Tearing 447
Discharge 447
Pain & Foreign Body Sensation 447
Photophobia 447
Leukocoria 448
Refractive Errors 448
Myopia (Nearsightedness) 449
Hyperopia (Farsightedness) 449
Astigmatism 449
Ophthalmic Examination 449
History 449
Visual Acuity 449
External Examination 450
Pupils 451
Alignment & Motility Evaluation 451
Ophthalmoscopic Examination 453
Ocular Trauma 453
Ocular Foreign Bodies 453
Corneal Abrasion 454
Intraocular Foreign Bodies & Perforating Ocular Injuries 455
Blunt Orbital Trauma 455
Lacerations 456
Burns 457
Hyphema 457
Abusive Head Trauma & Nonaccidental Trauma 458
Prevention of Ocular Injuries 459
Disorders of the Ocular Structures 459
Diseases of the Eyelids 460
Viral Eyelid Disease 460
Miscellaneous Eyelid Infections 461
Eyelid Ptosis 461
Horner Syndrome 462
Eyelid Tics 463
Disorders of the Nasolacrimal System 463
Nasolacrimal Duct Obstruction 463
Congenital Dacryocystocele 463
Dacryocystitis 464
Diseases of the Conjunctiva 465
Ophthalmia Neonatorum 465
Bacterial Conjunctivitis 466
Viral Conjunctivitis 466
Allergic Conjunctivitis 467
Mucocutaneous Diseases 467
Disorders of the Iris 469
Iris Coloboma 469
Aniridia 469
Albinism 470
Miscellaneous Iris Conditions 470
Glaucoma 470
Uveitis 471
Anterior Uveitis/Iridocyclitis/Iritis 471
Posterior Uveitis 472
Intermediate Uveitis 473
Ocular Manifestations of AIDS 473
Disorders of the Cornea 474
Cloudy Cornea 474
Viral Keratitis 474
Corneal Ulcers 475
Disorders of the Lens 475
Cataracts 476
Dislocated Lenses/Ectopia Lentis 476
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disorders of the Retina</td>
<td>477</td>
</tr>
<tr>
<td>Retinal Hemorrhages in the Newborn</td>
<td>477</td>
</tr>
<tr>
<td>Retinopathy of Prematurity</td>
<td>477</td>
</tr>
<tr>
<td>Retinoblastoma</td>
<td>478</td>
</tr>
<tr>
<td>Retinal Detachment</td>
<td>479</td>
</tr>
<tr>
<td>Diabetic Retinopathy</td>
<td>479</td>
</tr>
<tr>
<td>Diseases of the Optic Nerve</td>
<td>480</td>
</tr>
<tr>
<td>Optic Neuropathy</td>
<td>480</td>
</tr>
<tr>
<td>Optic Nerve Hypoplasia</td>
<td>480</td>
</tr>
<tr>
<td>Papilledema</td>
<td>481</td>
</tr>
<tr>
<td>Optic Neuritis</td>
<td>482</td>
</tr>
<tr>
<td>Optic Atrophy</td>
<td>482</td>
</tr>
<tr>
<td>Periorbital & Orbital Cellulitis</td>
<td>483</td>
</tr>
<tr>
<td>Craniofacial Anomalies</td>
<td>483</td>
</tr>
<tr>
<td>Orbital Tumors</td>
<td>484</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>485</td>
</tr>
<tr>
<td>Amblyopia</td>
<td>485</td>
</tr>
<tr>
<td>Strabismus</td>
<td>486</td>
</tr>
<tr>
<td>Unexplained Decreased Vision in Infants & Children</td>
<td>488</td>
</tr>
<tr>
<td>Learning Disabilities & Dyslexia</td>
<td>488</td>
</tr>
<tr>
<td>17. Oral Medicine & Dentistry</td>
<td>490</td>
</tr>
<tr>
<td>Ulrich Klein, DMD, DDS, MS</td>
<td></td>
</tr>
<tr>
<td>Issues in Pediatric Oral Health</td>
<td>490</td>
</tr>
<tr>
<td>Dental Caries</td>
<td>492</td>
</tr>
<tr>
<td>Oral Examination of the Newborn & Infant</td>
<td>495</td>
</tr>
<tr>
<td>Eruption of the Teeth</td>
<td>497</td>
</tr>
<tr>
<td>Periodontal Disease</td>
<td>498</td>
</tr>
<tr>
<td>Dental Emergencies</td>
<td>499</td>
</tr>
<tr>
<td>Antibiotics in Pediatric Dentistry</td>
<td>500</td>
</tr>
<tr>
<td>Special Patient Populations</td>
<td>500</td>
</tr>
<tr>
<td>Orthodontic Referral</td>
<td>501</td>
</tr>
<tr>
<td>18. Ear, Nose, & Throat</td>
<td>502</td>
</tr>
<tr>
<td>Norman R. Friedman, MD</td>
<td></td>
</tr>
<tr>
<td>Melissa A. Scholes, MD</td>
<td></td>
</tr>
<tr>
<td>Patricia J. Yoon, MD</td>
<td></td>
</tr>
<tr>
<td>The Ear</td>
<td>502</td>
</tr>
<tr>
<td>Infections of the Ear</td>
<td>502</td>
</tr>
<tr>
<td>Acute Trauma to the Middle Ear</td>
<td>512</td>
</tr>
<tr>
<td>Cerumen Impaction and Ear Canal Foreign Body</td>
<td>512</td>
</tr>
<tr>
<td>Auricular Hematoma</td>
<td>512</td>
</tr>
<tr>
<td>Congenital Ear Malformations</td>
<td>513</td>
</tr>
<tr>
<td>Identification & Management of Hearing Loss</td>
<td>513</td>
</tr>
<tr>
<td>The Nose & Paranasal Sinuses</td>
<td>515</td>
</tr>
<tr>
<td>Acute Viral Rhinitis</td>
<td>515</td>
</tr>
<tr>
<td>Rhinosinusitis</td>
<td>518</td>
</tr>
<tr>
<td>Choanal Atresia</td>
<td>520</td>
</tr>
<tr>
<td>Recurrent Rhinitis</td>
<td>520</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>521</td>
</tr>
<tr>
<td>Nasal Infection</td>
<td>521</td>
</tr>
<tr>
<td>Nasal Trauma</td>
<td>521</td>
</tr>
<tr>
<td>Foreign Bodies in the Nose</td>
<td>522</td>
</tr>
<tr>
<td>The Throat & Oral Cavity</td>
<td>522</td>
</tr>
<tr>
<td>Acute Stomatitis</td>
<td>522</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>523</td>
</tr>
<tr>
<td>Peritonsillar Cellulitis or Abscess (Quinsy)</td>
<td>526</td>
</tr>
<tr>
<td>Retropharyngeal Abscess</td>
<td>526</td>
</tr>
<tr>
<td>Ludwig Angina</td>
<td>527</td>
</tr>
<tr>
<td>Acute Cervical Adenitis</td>
<td>527</td>
</tr>
<tr>
<td>Snoring, Mouth Breathing, & Upper Airway Obstruction</td>
<td>528</td>
</tr>
<tr>
<td>Tonsillectomy & Adenoidectomy</td>
<td>530</td>
</tr>
<tr>
<td>Disorders of the Lips</td>
<td>531</td>
</tr>
<tr>
<td>Disorders of the Tongue</td>
<td>531</td>
</tr>
<tr>
<td>Halitosis</td>
<td>532</td>
</tr>
<tr>
<td>Salivary Gland Disorders</td>
<td>532</td>
</tr>
<tr>
<td>Congenital Oral Malformations</td>
<td>532</td>
</tr>
<tr>
<td>19. Respiratory Tract & Mediastinum</td>
<td>534</td>
</tr>
<tr>
<td>Monica J. Federico, MD, Christopher D. Baker, MD</td>
<td></td>
</tr>
<tr>
<td>Vivek Balasubramaniam, MD, Emily M. Deboer, MD</td>
<td></td>
</tr>
<tr>
<td>Robin R. Deterding, MD, Ann Hallowker, MD</td>
<td></td>
</tr>
<tr>
<td>Oren Kupfer, MD, Stacey L. Martiniano, MD</td>
<td></td>
</tr>
<tr>
<td>Scott D. Sagel, MD, Paul Stillwell, MD</td>
<td></td>
</tr>
<tr>
<td>Edith T. Zemanick, MD</td>
<td></td>
</tr>
<tr>
<td>Respiratory Tract</td>
<td>534</td>
</tr>
<tr>
<td>Growth & Development</td>
<td>534</td>
</tr>
<tr>
<td>Diagnostic AIDS</td>
<td>535</td>
</tr>
<tr>
<td>Physical Examination of the Respiratory Tract</td>
<td>535</td>
</tr>
<tr>
<td>Pulmonary Function Tests</td>
<td>536</td>
</tr>
<tr>
<td>Assessment of Oxygenation & Ventilation</td>
<td>537</td>
</tr>
<tr>
<td>Diagnosis of Respiratory Tract Infections</td>
<td>539</td>
</tr>
<tr>
<td>Imaging of the Respiratory Tract</td>
<td>540</td>
</tr>
<tr>
<td>Laryngoscopy & Bronchoscopy</td>
<td>540</td>
</tr>
<tr>
<td>General Therapy of Pediatric Lung Diseases</td>
<td>541</td>
</tr>
<tr>
<td>Oxygen Therapy</td>
<td>541</td>
</tr>
<tr>
<td>Inhalation of Medications</td>
<td>541</td>
</tr>
<tr>
<td>Airway Clearance Therapy</td>
<td>542</td>
</tr>
<tr>
<td>Avoidance of Environmental Hazards</td>
<td>542</td>
</tr>
<tr>
<td>Disorders of the Conducting Airways</td>
<td>543</td>
</tr>
<tr>
<td>Laryngomalacia & Congenital Disorders of the Extrathoracic Airway</td>
<td>544</td>
</tr>
<tr>
<td>Laryngomalacia</td>
<td>544</td>
</tr>
<tr>
<td>Other Causes of Congenital Extrathoracic Obstruction</td>
<td>544</td>
</tr>
<tr>
<td>Acquired Disorders of the Extrathoracic Airway</td>
<td>544</td>
</tr>
<tr>
<td>Foreign Body Aspiration in the Extrathoracic Airway</td>
<td>545</td>
</tr>
<tr>
<td>Croup Syndromes</td>
<td>545</td>
</tr>
<tr>
<td>Vocal Cord Paralysis</td>
<td>548</td>
</tr>
<tr>
<td>Subglottic Stenosis</td>
<td>548</td>
</tr>
</tbody>
</table>
20. Cardiovascular Diseases

Jeffrey R. Darst, MD
Kathryn K. Collins, MD
Shelley D. Miyamoto, MD

Diagnostic Evaluation
History
Physical Examination
Electrocardiography
Chest Radiograph
Echocardiography
Nuclear Cardiology
Magnetic Resonance Imaging
Cardiopulmonary Stress Testing
Arterial Blood Gases
Cardiac Catheterization & Angiography

Perinatal & Neonatal Circulation
Heart Failure
Genetic Basis of Congenital Heart Disease
Acyanotic Congenital Heart Disease
Defects in Septation
Patent (Persistent) Ductus Arteriosus
Right-Sided Obstructive Lesions
Left-Sided Lesions
Diseases of the Aorta
Coronary Artery Abnormalities
Cyanotic Congenital Heart Disease
Tetralogy of Fallot
Pulmonary Atresia with Ventricular Septal Defect
Pulmonary Atresia with Intact Ventricular Septum
Tricuspid Atresia
Hypoplastic Left Heart Syndrome
Transposition of the Great Arteries
Truncus Arteriosus
Total Anomalous Pulmonary Venous Return

Quality Improvement in Congenital Heart Disease
Acquired Heart Disease
Rheumatic Fever
Kawasaki Disease
Infective Endocarditis
Pericarditis
Cardiomyopathy
Myocarditis
Preventive Cardiology
Hypertension
Atherosclerosis & Dyslipidemias
Chest Pain
Cardiac Transplantation

Quality Improvement for Pediatric Heart Transplantation
Primary Pulmonary Hypertension
Disorders of Rate & Rhythm
Disorders of the Sinus Node
- Sinus Arrhythmia
- Sinus Bradycardia
- Sinus Tachycardia
- Sinus Node Dysfunction
- Premature Beats
- Supraventricular Tachycardia
- Ventricular Tachycardia
- Long QT Syndrome
- Sudden Death

Disorders of Atroventricular Conduction
- Syncope (Fainting)

Disorders of the Esophagus
- Gastroesophageal Reflux & GERD
- Eosinophilic Esophagitis
- Achalasia of the Esophagus
- Caustic Burns of the Esophagus
- Foreign Bodies in the Alimentary Tract

Disorders of the Stomach & Duodenum
- Hiatal Hernia
- Pyloric Stenosis
- Gastric & Duodenal Ulcer
- Congenital Diaphragmatic Hernia
- Congenital Duodenal Obstruction

Disorders of the Small Intestine
- Intestinal Atresia & Stenosis
- Intestinal Malrotation
- Short Bowel Syndrome
- Intussusception
- Inguinal Hernia
- Umbilical Hernia
- Patent Omphalomesenteric Duct
- Meckel Diverticulum
- Acute Appendicitis
- Duplications of the Gastrointestinal Tract

Disorders of the Colon
- Congenital Aganglionic Megacolon (Hirschsprung Disease)
- Constipation
- Anal Fissure
- Congenital Anorectal Anomalies
- *Clostridium difficile* Infection in Children

Disorders of the Peritoneal Cavity
- Peritonitis
- Chylous Ascites

Disorders of the Sinus Node
- Sinus Arrhythmia
- Sinus Bradycardia
- Sinus Tachycardia
- Sinus Node Dysfunction
- Premature Beats
- Supraventricular Tachycardia
- Ventricular Tachycardia
- Long QT Syndrome
- Sudden Death

Disorders of Atroventricular Conduction
- Syncope (Fainting)

Disorders of the Esophagus
- Gastroesophageal Reflux & GERD
- Eosinophilic Esophagitis
- Achalasia of the Esophagus
- Caustic Burns of the Esophagus
- Foreign Bodies in the Alimentary Tract

Disorders of the Stomach & Duodenum
- Hiatal Hernia
- Pyloric Stenosis
- Gastric & Duodenal Ulcer
- Congenital Diaphragmatic Hernia
- Congenital Duodenal Obstruction

Disorders of the Small Intestine
- Intestinal Atresia & Stenosis
- Intestinal Malrotation
- Short Bowel Syndrome
- Intussusception
- Inguinal Hernia
- Umbilical Hernia
- Patent Omphalomesenteric Duct
- Meckel Diverticulum
- Acute Appendicitis
- Duplications of the Gastrointestinal Tract

Disorders of the Colon
- Congenital Aganglionic Megacolon (Hirschsprung Disease)
- Constipation
- Anal Fissure
- Congenital Anorectal Anomalies
- *Clostridium difficile* Infection in Children

Disorders of the Peritoneal Cavity
- Peritonitis
- Chylous Ascites

Gastrointestinal Tumors & Malignancies
- Juvenile Polyps
- Cancers of the Esophagus, Small Bowel, & Colon
- Mesenteric Cysts
- Intestinal Hemangiomas and Vascular Malformations
- Major Gastrointestinal Symptoms & Signs
- Acute Diarrhea
- Chronic Diarrhea
- Gastrointestinal Bleeding
- Vomiting
- Recurrent Abdominal Pain
- Acute Abdomen
- Malabsorption Syndromes
- Inflammatory Bowel Disease

Liver Disorders
- Prolonged Neonatal Cholestasis
- Intrahepatic Cholestasis
- Extrahepatic Neonatal Cholestasis
- Other Neonatal Hyperbilirubinemic Conditions
- (Noncholestatic Nonhemolytic)
- Hepatitis A
- Hepatitis B
- Hepatitis C
- Hepatitis D (Delta Agent)
- Hepatitis E
- Other Hepatitis Viruses
- Acute Liver Failure
- Autoimmune Hepatitis
- Nonalcoholic Fatty Liver Disease
- Wilson Disease (Hepatolenticular Degeneration)
- Drug-Induced Liver Disease
- Cirrhosis
- Portal Hypertension
- Biliary Tract Disease
- Pyogenic & Amebic Liver Abscess
- Liver Tumors
- Liver Transplantation
- Pancreatic Disorders Acute Pancreatitis
- Chronic Pancreatitis
- Gastrointestinal & Hepatobiliary Manifestations of Cystic Fibrosis
Syndromes with Pancreatic Exocrine
 Insufficiency 740
Isolated Exocrine Pancreatic Enzyme Defect 740
Pancreatic Tumors 740

23. Fluid, Electrolyte, & Acid-Base Disorders & Therapy 742

Douglas M. Ford, MD
Regulation of Body Fluids, Electrolytes, & Tonicity 742
Acid-Base Balance 744
Fluid & Electrolyte Management 745
 Dehydration 746
 Hyponatremia 748
 Hypernatremia 748
 Potassium Disorders 749
 Acid-Base Disturbances 750
 Metabolic Acidosis 750
 Metabolic Alkalosis 751
 Respiratory Acidosis 751
 Respiratory Alkalosis 751

24. Kidney & Urinary Tract 752

Gary M. Lum, MD
Evaluation of the Kidney & Urinary Tract 752
 History 752
 Physical Examination 752
 Laboratory Evaluation of Renal Function 752
 Laboratory Evaluation of Immunologic Function 754
 Radiographic Evaluation 755
 Renal Biopsy 756
Congenital Anomalies of the Urinary Tract 756
 Renal Parenchymal Anomalies 756
 Distal Urinary Tract Anomalies 757
Hematuria & Glomerular Disease 757
 Microhematuria 757
 Glomerulonephritis 757
 Acute Interstitial Nephritis 760
Proteinuria & Renal Disease 760
 Congenital Nephrosis 760
 Idiopathic Nephrotic Syndrome of Childhood (Minimal Change Disease) 760
 Focal Glomerular Sclerosis 761
 Mesangial Nephropathy (Mesangial Glomerulonephritis) 761
 Membranous Nephropathy (Membranous Glomerulonephritis) 761
Diseases of the Renal Vessels 761
 Renal Vein Thrombosis 761
 Renal Arterial Disease 762
 Hemolytic-Uremic Syndrome 762
Renal Failure 763
 Acute Renal Failure 763
 Chronic Renal Failure 765
 Hypertension 767
Inherited or Developmental Defects of the Kidneys 769
 Disorders of the Renal Tubules 769
 Oculocerebrorenal Syndrome (Lowe Syndrome) 771
 Hypokalemic Alkalosis (Bartter Syndrome, Gitelman Syndrome, & Liddle Syndrome) 771
 Cystinosis 772
 Nephrogenic Diabetes Insipidus 772
 Nephrolithiasis 772
Urinary Tract Infections 773

25. Neurologic & Muscular Disorders 776

Sita Kedia, MD, Kelly Knupp, MD
Teri Schreiner, MD, MPH, Michele L. Yang, MD
Paul M. Levisohn, MD, Paul G. Moe, MD
Neurological Assessment & Neurodiagnostics 776
 History & Examination 776
 Diagnostic Testing 776
 Pediatric Neuroradiologic Procedures 778
Disorders Affecting the Nervous System in Infants & Children 782
 Altered States of Consciousness 782
 Seizure Disorders (Epilepsies) 786
 Sleep Disorders 800
 Headaches 801
 Pseudotumor Cerebri (Idiopathic Intracranial Hypertension) 804
 Cerebrovascular Disease 806
 Congenital Malformations of the Nervous System 809
 Abnormal Head Size 812
 Neurocutaneous Dysplasias 814
 Central Nervous System Degenerative Disorders of Infancy & Childhood 818
 Ataxias of Childhood 824
 Acute Ataxias of Childhood 824
 Congenital Causes of Chronic & Episodic Ataxias 827
 Intermittent/Episodic Ataxias 827
 Progressive Ataxias 828
 Extrapyramidal Disorders 829
 Cerebral Palsy 833
Infections & Inflammatory Disorders of the Central Nervous System 835
 Bacterial Meningitis 836
 Brain Abscess 837
 Viral Infections 838
Encephalopathy of Human Immunodeficiency Virus Infection 838
Other Infections 838
Noninfectious Inflammatory Disorders of the Central Nervous System 838
Other Parainfectious Encephalopathies 839
Multiple Sclerosis 839
Syndromes Presenting as Acute Flaccid Weakness 841
Disorders of Childhood Affecting Muscles 844
Benign Acute Childhood Myositis 853
Myasthenic Syndromes 853
Peripheral Nerve Palsies 855
Chronic Polyneuropathy 857
Miscellaneous Neuromuscular Disorders 858
Floppy Infant Syndrome 858
Web Resources 861

26. Orthopedics 862

Mark A. Erickson, MD, MMM
Brendan Caprio, BS

Disturbances of Prenatal Origin 862
Congenital Amputations & Limb Deficiencies 862
Deformities of the Extremities 863
Generalized Disorders of Skeletal or Mesodermal Tissues 865
Growth Disturbances of the Musculoskeletal System 867
Scoliosis 867
Slipped Capital Femoral Epiphysis 868
Genu Varum & Genu Valgum 869
Tibial Torsion 869
Femoral Anteversion 869
Common Foot Problems 870
Degenerative Problems (Arthritis, Bursitis, & Tenosynovitis) 871
Trauma 871
Soft Tissue Trauma (Sprains, Strains, & Contusions) 871
Traumatic Subluxations & Dislocations 872
Fractures 873
Infections of the Bones & Joints 874
Osteomyelitis 874
Tuberculous Arthritis 877
Diskitis 877
Transient (Toxic) Synovitis & Septic Arthritis of the Hip 877
Vascular Lesions & Avascular Necrosis (Osteochondroses) 878
Avascular Necrosis of the Proximal Femur (Legg-Calvé-Perthes Disease) 878
Osteochondritis Dissecans 879
Neurologic Disorders Involving the Musculoskeletal System 879
Orthopedic Aspects of Cerebral Palsy 879
Orthopedic Aspects of Myelodysplasia 880
Neoplasia of the Musculoskeletal System 880
Osteochondroma 880
Osteoid Osteoma 880
Enchondroma 881
Chondroblastoma 881
Nonossifying Fibroma 881
Osteosarcoma 881
Ewing Sarcoma 881
Miscellaneous Diseases of Bone and Joint 882
Fibrous Dysplasia 882
Unicameral Bone Cyst 882
Aneurysmal Bone Cyst 882
Infantile Cortical Hyperostosis (Caffey Syndrome) 882
Ganglion 883
Baker Cyst 883
National QI/QA Initiatives in Orthopedics 883

27. Sports Medicine 884

Rachel A. Coel, MD, PhD, FAAP, CAQSM
Quynh B. Hoang, MD, FAAP, CAQSM
Armando Vidal, MD

Basic Principles 884
Fitness & Conditioning 885
Sports Nutrition 885
Preparticipation Physical Evaluation 885
Rehabilitation of Sports Injuries 898
Common Sports Medicine Issues & Injuries 899
Infectious Diseases 899
Head & Neck Injuries 900
Spine Injuries 902
Shoulder Injuries 904
Elbow Injuries 906
Hand & Wrist Injuries 908
Hip Injuries 909
Knee Injuries 912
Foot & Ankle Injuries 915
Prevention 917

28. Rehabilitation Medicine 918

Pamela E. Wilson, MD
Gerald H. Clayton, PhD

Pediatric Brain Injury 918
Spinal Cord Injury 921
Brachial Plexus Lesions 923
Common Rehabilitation Problems 924
Quality Assurance/Improvement Initiatives in Rehabilitation Medicine 926
29. Rheumatic Diseases 927

Jennifer B. Soep, MD

- Juvenile Idiopathic Arthritis 927
- Systemic Lupus Erythematosus 930
- Dermatomyositis 932
- Vasculitis 933
- Raynaud Phenomenon 934
- Noninflammatory Pain Syndromes 934

30. Hematologic Disorders 936

Daniel R. Ambruso, MD

Rachelle Nuss, MD

Michael Wang, MD

- Normal Hematologic Values 936
- Bone Marrow Failure 936
 - Constitutional Aplastic Anemia (Fanconi Anemia) 936
 - Acquired Aplastic Anemia 937
- Anemias 938
 - Approach to the Child with Anemia 938
 - Pure Red Cell Aplasia 940
 - Nutritional Anemias 942
 - Anemia of Chronic Disorders 944
- Congenital Hemolytic Anemias: Red Cell Membrane Defects 945
- Congenital Hemolytic Anemias: Hemoglobinopathies 946
- Congenital Hemolytic Anemias: Disorders of Red Cell Metabolism 953
- Acquired Hemolytic Anemia 955
- Polycythemia & Methemoglobinemia 957
 - Congenital Erythrocytosis (Familial Polycythemia) 957
 - Secondary Polycythemia 957
 - Methemoglobinemia 957
- Disorders of Leukocytes 958
 - Neutropenia 958
 - Neutrophilia 960
 - Disorders of Neutrophil Function 960
 - Lymphocytosis 962
 - Eosinophilia 963
- Bleeding Disorders 963
 - Abnormalities of Platelet Number or Function 964
 - Inherited Bleeding Disorders 968
 - Von Willebrand Disease 972
 - Acquired Bleeding Disorders 973
 - Vascular Abnormalities Associated with Bleeding 976
 - Thrombotic Disorders 977
 - Splenic Abnormalities 980
 - Splenomegaly & Hypersplenism 980
 - Asplenia & Splenectomy 981

31. Neoplastic Disease 990

Doug K. Graham, MD, PhD, John A. Craddock, MD

Ralph R. Quinones, MD, Amy K. Keating, MD

Kelly Maloney, MD, Nicholas K. Foreman, MD, MRCP

Roger H. Giller, MD, Brian S. Greffe, MD

- Major Pediatric Neoplastic Diseases 990
 - Acute Lymphoblastic Leukemia 990
 - Acute Myeloid Leukemia 993
 - Myeloproliferative Diseases 996
 - Brain Tumors 997
 - Lymphomas & Lymphoproliferative Disorders 1001
 - Neuroblastoma 1006
 - Wilms Tumor (Nephroblastoma) 1008
 - Bone Tumors 1010
 - Rhabdomyosarcoma 1011
 - Retinoblastoma 1013
 - Hepatic Tumors 1014
 - Langerhans Cell Histiocytosis 1015
- Hematopoietic Stem Cell Transplant 1016
 - General Considerations 1016
 - HSCT Complications 1017
- Late Effects of Pediatric Cancer Therapy 1018
 - Growth Complications 1018
 - Endocrine Complications 1019
 - Cardiopulmonary Complications 1019
 - Renal Complications 1020
 - Neuropsychological Complications 1020
 - Second Malignancies 1020

32. Pain Management & Pediatric Palliative & End-of-Life Care 1022

Brian S. Greffe, MD

Jeffrey L. Galinkin, MD, FAAP

Nancy A. King, MSN, RN, CPNP

- Pain Assessment 1022
- Acute Pain 1022
- Chronic Pain Management 1024
- Pediatric Palliative & End-of-Life Care 1026
 - Introduction 1026
 - Children Who May Benefit From Palliative Care Interventions 1027
 - Pain Management in Pediatric Palliative Care 1027
 - Quality-of-Life Adjuncts & Symptom Management in Pediatric Palliative Care 1027
33. Immunodeficiency 1033

Pia J. Hauk, MD
Richard B. Johnston, Jr, MD
Andrew H. Liu, MD

Immunodeficiency Evaluation:
Primary Considerations 1033
Antibody Deficiency Syndromes 1038
Severe Combined Immunodeficiency Diseases 1042
Other Combined Immunodeficiency Disorders 1044
Phagocyte Disorders 1047
Complement Deficiencies 1048
Other Well-Defined Immunodeficiency Syndromes 1050
Genetic Syndromes Associated with Immunodeficiency 1052

34. Endocrine Disorders 1054

Philip S. Zeitler, MD, PhD
Sharon H. Travers, MD
Kristen Nadeau, MD
Jennifer M. Barker, MD
Megan Moriarty Kelsey, MD
Michael S. Kappy, MD, PhD

General Concepts 1054
Hormone Types 1054
Feedback Control of Hormone Secretion 1055
Disturbances of Growth 1056
Target Height & Skeletal Maturation 1056
Short Stature 1056
Tall Stature 1063
Disorders of the Posterior Pituitary Gland 1063
Arginine Vasopressin (Antidiuretic Hormone) Physiology 1063
Central Diabetes Insipidus 1064
Thyroid Gland 1065
Fetal Development of the Thyroid 1065
Physiology 1065
Hypothyroidism (Congenital & Acquired) 1065
Thyroiditis 1067
Hyperthyroidism 1068
Thyroid Cancer 1070
Disorders of Calcium & Phosphorus Metabolism 1071
Hypocalcemic Disorders 1071
Pseudohypoparathyroidism (Resistance to Parathyroid Hormone Action) 1075
Hypercalcemic States 1075
Familial Hypocalciuric Hypercalcemia (Familial Benign Hypercalcemia) 1077
Hypervitaminosis D 1077
Idiopathic Hypercalcemia of Infancy (Williams Syndrome) 1077
Immobilization Hypercalcemia 1077
Hypophosphatasia 1077
Gonads (Ovaries & Testes) 1078
Development & Physiology 1078
Disorders of Sexual Development 1078
Abnormalities in Female Pubertal Development & Ovarian Function 1081
Abnormalities in Male Pubertal Development & Testicular Function 1084
Adrenal Cortex 1086
Adrenocortical Insufficiency (Adrenal Crisis, Addison Disease) 1087
Congenital Adrenal Hyperplasias 1089
Adrenocortical Hyperfunction (Cushing Disease, Cushing Syndrome) 1091
Primary Hyperaldosteronism 1093
Uses of Glucocorticoids & Adrenocorticotropic Hormone in Treatment of Nonendocrine Diseases 1093
Adrenal Medulla Pheochromocytoma 1095

35. Diabetes Mellitus 1097

Marian Rewers, MD, PhD
H. Peter Chase, MD

General Considerations 1097

36. Inborn Errors of Metabolism 1106

Janet A. Thomas, MD
Johan L.K. Van Hove, MD, PhD, MBA

Diagnosis 1106
Suspecting Inborn Errors 1106
Laboratory Studies 1107
Common Clinical Situations 1107
Management of Metabolic Emergencies 1110
Newborn Screening 1110
Disorders of Carbohydrate Metabolism 1111
Glycogen Storage Diseases 1111
Galactosemia 1112
Hereditary Fructose Intolerance 1113
Disorders of Energy Metabolism 1113
Disorders of Amino Acid Metabolism 1115
Disorders of the Urea Cycle 1115
Phenylketonuria & The Hyperphenylalaninemia 1116
Hereditary Tyrosinemia 1117
Maple Syrup Urine Disease
(Branched-Chain Ketoacidurias) 1118
Homocystinuria 1118
Nonketotic Hyperglycinemia 1119
Organic Acidemias
Propionic & Methylmalonic Acidemia
(Ketotic Hyperglycinemias) 1120
Isovaleric Acidemia 1122
Carboxylase Deficiency 1122
Glutaric Acidemia Type I 1122
Disorders of Fatty Acid Oxidation & Carnitine
Fatty Acid Oxidation Disorders 1123
Carnitine 1124
Purine Metabolism Disorders 1125
Lysosomal Diseases 1125
Peroxisomal Diseases 1129
Congenital Disorders of Glycosylation 1129
Smith–Lemli–Opitz Syndrome & Disorders of Cholesterol Synthesis 1130
Disorders of Neurotransmitter Metabolism
Creatine Synthesis Disorders 1132
Quality Initiatives in the Field of Metabolic Disease 1132

37. Genetics & Dysmorphology 1134

Margarita Saenz, MD
Anne Chun-Hui Tsai, MD, MSc
David K. Manchester, MD
Ellen R. Elias, MD

Foundations of Genetic Diagnosis 1134
Cytogenetics 1134
Molecular Genetics 1140
Principles of Inherited Human Disorders 1142
Mendelian Inheritance 1142
Multifactorial Inheritance 1146
Nonmendelian Inheritance 1147
Family History & Pedigree 1148
Dysmorphology & Human Embryology 1149
Mechanisms 1149
Clinical Dysmorphology 1150
Chromosomal Disorders: Abnormal Number
Trisomies 1151
Sex Chromosome Abnormalities 1153
Chromosomal Abnormalities:
Abnormal Structure 1154
Chromosome Deletion Disorders 1155
Contiguous Gene Disorders 1155
Mendelian Disorders 1156
Autosomal Dominant Disorders 1156
Autosomal Recessive Disorders 1159
X-Linked Disorders 1160
Nonmendelian Disorders 1161
Disorders of Imprinting 1161
Disorders Associated with Anticipation 1162
Mitochondrial Disorders 1162
Disorders of Multifactorial Inheritance 1163
Cleft Lip & Cleft Palate 1163
Neural Tube Defects 1164
Common Recognizable Disorders with Variable or Unknown Cause 1165
Genetic Evaluation of the Child with Developmental Disabilities 1167
Perinatal Genetics 1168
Teratogens 1168
Assisted Reproduction 1169
Prenatal Diagnosis 1169

38. Allergic Disorders 1171

Ronina A. Covar, MD
David M. Fleischer, MD
Christine Cho, MD
Mark Boguniewicz, MD

Asthma 1171
Allergic Rhinoconjunctivitis 1186
Atopic Dermatitis 1190
Urticaria & Angioedema 1194
Anaphylaxis 1196
Adverse Reactions to Drugs & Biologicals 1199
Food Allergy 1203
Insect Allergy 1205

39. Antimicrobial Therapy 1207

John W. Ogle, MD

Principles of Antimicrobial Therapy 1207
Antimicrobial Susceptibility Testing 1208
Alteration of Dose & Measurement of Blood Levels 1212
The Use of New Antimicrobial Agents 1215
Prophylactic Antimicrobial Agents 1216
Initial Empiric Antimicrobial Choices for Selected Conditions 1217
Specific Antimicrobial Agents 1219
Penicillins 1219
Glycopeptide Agents 1221
Oxazolidinones 1221
Quinupristin-Dalfopristin 1221
Cephalosporins 1222
Aztreonam 1222
Carbapenems 1222
Macrolides & Azalides 1223
Clindamycin 1223
Sulfonamides 1223
Tetracyclines 1224
Aminoglycosides 1224
40. Infections: Viral & Rickettsial 1227

Myron J. Levin, MD
Adriana Weinberg, MD

Viral Infections 1227
Respiratory Infections 1227
Viruses Causing the Common Cold 1227
Infections Due to Adenoviruses 1233
Influenza 1234
Parainfluenza (Croup) 1236
Respiratory Syncytial Virus Disease 1236
Human Metapneumovirus Infection 1238
Infections Due to Enteroviruses 1239
Acute Febrile Illness 1239
Respiratory Tract Illnesses 1239
Rashes (Including Hand-Foot- and-Mouth Disease) 1240
Central Nervous System Illnesses 1241
Infections Due to Herpesviruses 1243
Herpes Simplex Infections 1243
Varicella & Herpes Zoster 1246
Roseola Infantum (Exanthem Subitum) 1249
Cytomegalovirus Infections 1250
Infectious Mononucleosis (Epstein-Barr Virus) 1253
Viral Infections Spread by Insect Vectors 1255
Encephalitis 1255
Dengue 1255
Colorado Tick Fever 1259
Other Major Viral Childhood Exanthems 1259
Erythema Infectiosum 1259
Measles (Rubeola) 1261
Rubella 1262
Infections Due to Other Viruses 1264
Hantavirus Cardiopulmonary Syndrome 1264
Mumps 1265
Rabies 1266
Rickettsial Infections 1267
Human Ehrlichiosis 1267
Rocky Mountain Spotted Fever 1268
Endemic Typhus (Murine Typhus) 1269
Q Fever 1270

41. Human Immunodeficiency

Elizabeth J. McFarland, MD

Perinatally HIV-Exposed Infant 1273
Acute Retroviral Syndrome 1274
Progressive HIV Disease 1274
Prevention 1281

42. Infections: Bacterial & Spirochetal 1283

John W. Ogle, MD
Marsha S. Anderson, MD

Bacterial Infections 1283
Group A Streptococcal Infections 1283
Group B Streptococcal Infections 1287
Streptococcal Infections with Organisms other than Group A or B 1293
Pneumococcal Infections 1294
Staphylococcal Infections 1298
Meningococcal Infections 1303
Gonococcal Infections 1305
Botulism 1308
Tetanus 1310
Gas Gangrene 1312
Diphtheria 1313
Infections Due to Enterobacteriaceae 1315
Pseudomonas Infections 1317
Salmonella Gastroenteritis 1318
Typhoid Fever & Paratyphoid Fever 1320
Shigellosis (Bacillary Dysentery) 1322
Cholera 1323
Campylobacter Infection 1325
Tularemia 1326
Plague 1327
Haemophilus Influenzae Type B Infections 1328
Pertussis (Whooping Cough) 1331
Listeriosis 1333
Tuberculosis 1335
Infections with Nontuberculous Mycobacteria 1338
Legionella Infection 1339
Chlamydia Infections (Psittacosis [Ornithosis], C Pneumoniae & C Trachomatis) 1341
Cat-Scratch Disease 1343
Spirochetal Infections 1344
Syphilis 1344
Relapsing Fever 1348
Leptospirosis 1349
Lyme Disease 1350

43. Infections: Parasitic & Mycotic 1353

Kevin Messacar, MD
Samuel R. Dominguez, MD, PhD
Myron J. Levin, MD

Parasitic Infections 1353
Protozoal Infections 1357
Systemic Infections 1357
Gastrointestinal Infections 1369
Trichomoniasis 1374
Metazoal Infections 1374
Nematode Infections 1374
Cestode Infections (Flukes) 1380
Trematode Infections 1383
Pneumocystis and Other Opportunistic Fungal Infections 1395
Pneumocystis jiroveci Infection 1397

44. Sexually Transmitted Infections 1400

Daniel H. Reideren, MD
Ann-Christine Nyquist, MD, MSPH

Adolescent Sexuality 1400
Risk Factors 1401
Prevention of Sexually Transmitted Infections 1401
Screening For Sexually Transmitted Infections 1402
Signs & Symptoms 1402
The Most Common Antibiotic-responsive Sexually Transmitted Infections 1403
Chlamydia trachomatis Infection 1403
Neisseria gonorrhoeae Infection 1409
The Spectrum of Signs & Symptoms of Sexually Transmitted Infections 1410
Cervicitis 1410
Pelvic Inflammatory Disease 1410
Urethritis 1412
Epididymitis 1412
Proctitis, Proctocolitis, & Enteritis 1413
Vaginal Discharge 1413
Genital Ulcerations 1415
Genital Warts & Human Papillomavirus 1419
Other Viral Infections 1420
Ectoparasitic Infections 1422

45. Travel Medicine 1423

Suchitra Rao, MBBS
Sarah K. Parker, MD

Introduction 1423
Preparing Children and Infants for Travel 1423
Vaccinations—Routine Childhood Vaccines Modified for Travel 1425
Vaccinations—Travel-Specific 1427
Traveler’s Diarrhea 1429
Malaria Prophylaxis & Prevention 1430
Visits to Friends & Relatives (VFR) in High-Risk Areas 1431
HIV & Sexually Transmitted Diseases 1434
Fever in the Returned Traveler 1434

46. Chemistry & Hematology Reference Intervals 1439

Georgette Siparsky, PhD
Frank J. Accurso, MD

Challenges in Determining & Interpreting Pediatric Reference Intervals 1439
Guidelines for Use of Data in a Reference Range Study 1439
Statistical Computation of Reference Intervals 1440
Why Reference Intervals Vary 1441
Sensitivity & Specificity 1442
Pediatric Reference Intervals 1442
Index 1455
Authors

Frank Accurso, MD
Professor, Department of Pediatrics, Head, Section of Pediatric Pulmonary Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado
frank.accurso@childrenscolorado.org
Chapter 46: Chemistry & Hematology Reference Intervals

Daniel R. Ambruso, MD
Professor, Department of Pediatrics, University of Colorado School of Medicine, Associate Medical Director, Belle Bonfils Blood Center
daniel_ambruso@bonfils.org
Chapter 30: Hematologic Disorders

Marsha S. Anderson, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado School of Medicine and Children’s Hospital Colorado
marsha.anderson@childrenscolorado.org
Chapter 42: Infections: Bacterial & Spirochetal

Christopher D. Baker, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Pulmonary Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado
christopher.baker@ucdenver.edu
Chapter 19: Respiratory Tract & Mediastinum

Vivek Balasubramaniam, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Pulmonary Medicine, Director, Pediatric Heart Lung Center Laboratory, University of Colorado School of Medicine and Children’s Hospital Colorado
vivek.balasubramaniam@ucdenver.edu
Chapter 19: Respiratory Tract & Mediastinum

Jennifer M. Barker MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Endocrinology, University of Colorado School of Medicine and Children’s Hospital Colorado
jennifer.barker@ucdenver.edu
Chapter 34: Endocrine Disorders

Mark Boguniewicz, MD
Professor, Department of Pediatrics, Section of Pediatric Allergy and Clinical Immunology, University of Colorado School of Medicine, Department of Clinical Immunology, National Jewish Health
boguniewicz@njhealth.org
Chapter 38: Allergic Disorders

Rebecca Sands Braverman, MD
Assistant Professor, Department of Ophthalmology, University of Colorado School of Medicine and Eye Clinic, Children’s Hospital Colorado
rebecca.sandsbraverman@ucdenver.edu
Chapter 16: Eye

David Brumbaugh, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and Children’s Hospital Colorado
david.brumbaugh@childrenscolorado.org
Chapter 21: Gastrointestinal Tract

Maya Bunik, MD, MSPH
Associate Professor, Department of Pediatrics, Section of General Academic Pediatrics, Child Health Clinic, University of Colorado School of Medicine and Children’s Hospital Colorado
maya.bunik@childrenscolorado.org
Chapter 9: Ambulatory & Office Pediatrics

Adam Burnstein, DO
House Staff, Psychiatry Residency Training Program, Department of Psychiatry, University of Colorado School of Medicine and Children’s Hospital Colorado
adam.burnstein@ucdenver.edu
Chapter 7: Child & Adolescent Psychiatric Disorders & Psychosocial Aspects of Pediatrics

Brendan Caprio, BS
Research Assistant, Department of Orthopedic Surgery, University of Colorado School of Medicine, Orthopedic Institute/Musculoskeletal Research Center, Children’s Hospital Colorado
capriobf@mail.uc.edu
Chapter 26: Orthopedics

Todd C. Carpenter, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Critical Care Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado	odd.carpenter@ucdenver.edu
Chapter 14: Critical Care
H. Peter Chase, MD
Professor, Department of Pediatrics, Clinical Director Emeritus, Barbara Davis Center for Childhood Diabetes
University of Colorado School of Medicine and Children’s Hospital Colorado
peter.chase@ucdenver.edu
Chapter 35: Diabetes Mellitus

Antonia Chiesa, MD
Senior Instructor, Department of Pediatrics, University of Colorado School of Medicine, Kempe Child Protection Team, Kempe Center for the Prevention and Treatment of Child Abuse and Neglect and Children’s Hospital Colorado
antonia.chiesa@childrenscolorado.org
Chapter 8: Child Abuse & Neglect

Christine Cho, MD
Assistant Professor, Section of Allergy & Clinical Immunology, Department of Pediatrics, National Jewish Hospital (Primary Appointment), University of Colorado School of Medicine and Children’s Hospital Colorado
chrisbcho@gmail.com
Chapter 38: Allergic Disorders

Gerald H. Clayton, PhD
Instructor, Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine and Children’s Hospital Colorado
jerry.clayton@ucdenver.edu
Chapter 28: Rehabilitation Medicine

Rachel A. Coel, MD, PhD, FAAP, CAQSM
Assistant Professor, Department of Orthopedics, Co-Medical Director, Sports Medicine Program, University of Colorado School of Medicine and Children’s Hospital Colorado
rachel.coel@childrenscolorado.org
Chapter 27: Sports Medicine

Kathryn K. Collins, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Cardiology, University of Colorado School of Medicine and Children’s Hospital Colorado
kathryn.collins@childrenscolorado.org
Chapter 20: Cardiovascular Diseases

Ronina A. Covar, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Allergy and Clinical Immunology, University of Colorado School of Medicine, and National Jewish Health
covarr@njhealth.org
Chapter 38: Allergic Disorders

John A. Craddock, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Center for Cancer/Blood Disorders, University of Colorado School of Medicine and Children’s Hospital Colorado
john.craddock@childrenscolorado.org
Chapter 31: Neoplastic Disease

Angela S. Czaja, MD, MSc
Assistant Professor, Department of Pediatrics, Section of Pediatric Critical Care Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado
angela.czaja@childrenscolorado.org
Chapter 14: Critical Care

Matthew F. Daley, MD
Assistant Professor, Department of Pediatrics, Section of General Academic Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Senior Investigator, Institute for Health Research, Kaiser Permanente Colorado
matthew.f.daley@kp.org
Chapter 10: Immunization

Jeffrey R. Darst, MD
Assistant Professor, Department of Pediatrics, Section of General Academic Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado
jeffrey.darst@ucdenver.edu
Chapter 20: Cardiovascular Diseases

Richard C. Dart, MD, PhD
Professor, Department of Surgery, Director, Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, University of Colorado School of Medicine
rdart@rmpdc.org
Chapter 13: Poisoning

Emily M. Deboer, MD
Instructor, Department of Pediatrics, Section of Pediatric Pulmonary Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado
emily.deboer@childrenscolorado.org
Chapter 19: Respiratory Tract & Mediastinum

Robin R. Deterding, MD
Professor, Department of Pediatrics, Section of Pediatric Pulmonary Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado, Medical Director, Breathing Institute Children’s Hospital Colorado
robin.deterding@childrenscolorado.org
Chapter 19: Respiratory Tract & Mediastinum
Samuel R. Dominguez, MD, PhD
Assistant Professor, Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado School of Medicine and Children’s Hospital Colorado
samuel.dominguez@ucdenver.edu
Chapter 43: Infections: Parasitic & Mycotic

Ellen R. Elias, MD
Professor, Departments of Pediatrics and Genetics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Director, Special Care Clinic, Children’s Hospital Colorado
ellen.elias@childrenscolorado.org
Chapter 37: Genetics & Dysmorphology

Mark A. Erickson, MD, MMM
Associate Professor, Department of Orthopedic Surgery, University of Colorado School of Medicine, Chairman, Department of Pediatric Orthopedics, Orthopedic Institute, Children’s Hospital Colorado
mark.erickson@childrenscolorado.org
Chapter 26: Orthopedics

Jennifer Exo, DO
Assistant Professor, Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado
jennifer.exo@ucdenver.edu
Chapter 14: Critical Care

Monica J. Federico, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Pulmonology Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado
monica.federico@childrenscolorado.org
Chapter 19: Respiratory Tract & Mediastinum

David M. Fleischer, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Allergy and Clinical Immunology, University of Colorado School of Medicine and National Jewish Health
fleischerd@njhealth.org
Chapter 38: Allergic Disorders

Douglas M. Ford, MD
Professor, Department of Pediatrics, Section of Pediatric Nephrology, Director, Home Dialysis and Renal Transplantation, University of Colorado School of Medicine and Children’s Hospital Colorado
douglas.ford@childrenscolorado.org
Chapter 23: Fluid, Electrolyte, & Acid-Base Disorders & Therapy

Nicholas K. Foreman, MD, MRCP
Professor, Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Center for Cancer/Blood Disorders, Seebaum/Tscherter Chair of Neuro-Oncology, University of Colorado School of Medicine and Children’s Hospital Colorado
nicholas.foreman@childrenscolorado.org
Chapter 31: Neoplastic Disease

David Fox, MD
Assistant Professor, Department of Pediatrics, Section of General Academic Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado
david.fox@childrenscolorado.org
Chapter 9: Ambulatory & Office Pediatrics

Norman R. Friedman, MD
Associate Professor, Department of Otolaryngology, University of Colorado School of Medicine and ENT Clinic, Children’s Hospital Colorado
norman.friedman@childrenscolorado.org
Chapter 18: Ear, Nose, & Throat

Glenn T. Furuta, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Director, Gastrointestinal Eosinophil Disease Program National Jewish Hospital, University of Colorado School of Medicine and Children’s Hospital Colorado
glenn.furuta@childrenscolorado.org
Chapter 21: Gastrointestinal Tract

Jeffrey L. Galinkin, MD, FAAP
Associate Professor, Department of Anesthesiology, University of Colorado School of Medicine and Children’s Hospital Colorado
jeffrey.galinkin@ucdenver.edu
Chapter 32: Pain Management & Pediatric Palliative & End-of-Life Care

Roger H. Giller, MD
Professor, Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Center for Cancer/Blood Disorders, Director, Pediatric Bone Marrow Transplant Program, University of Colorado School of Medicine and Children’s Hospital Colorado
roger.giller@childrenscolorado.org
Chapter 31: Neoplastic Disease

Edward Goldson, MD
Professor, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado
edward.goldson@childrenscolorado.org
Chapter 3: Child Development & Behavior
Douglas K. Graham, MD, PhD
Associate Professor, Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Center for Cancer/Blood Disorders, University of Colorado School of Medicine and Children's Hospital Colorado
doug.graham@ucdenver.edu
Chapter 31: Neoplastic Disease

Eva N. Grayck, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
eva.grayck@ucdenver.edu
Chapter 14: Critical Care

Brian S. Greffe, MD
Professor, Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Center for Cancer/Blood Disorders, University of Colorado School of Medicine and Children's Hospital Colorado
brian.greffe@childrenscolorado.org
Chapter 31: Neoplastic Disease
Chapter 32: Pain Management & Pediatric Palliative & End-of-Life Care

Theresa Grover, MD
Associate Professor, Department of Pediatrics, Section of Neonatology, Medical Director, Neonatal Intensive Care Unit of Children's Hospital Colorado, University of Colorado School of Medicine and Children's Hospital Colorado
theresa.grover@childrenscolorado.org
Chapter 2: The Newborn Infant

Joseph A. Grubenhoff, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Emergency Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
joe.grubenhoff@childrenscolorado.org
Chapter 12: Emergencies & Injuries

Cameron F. Gunville, DO
Assistant Professor, Department of Pediatrics, Section of Pediatric Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
cameron.gunville@childrenscolorado.org
Chapter 14: Critical Care

Matthew A. Haemer, MD
Assistant Professor, Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine and Children's Hospital Colorado
matthew.haemer@childrenscolorado.org
Chapter 11: Normal Childhood Nutrition & Its Disorders

Ann Halbower, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Pulmonary Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
ann.halbower@childrenshospital.org
Chapter 19: Respiratory Tract & Mediastinum

Pia J. Hauk, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Allergy and Clinical Immunology, University of Colorado School of Medicine and National Jewish Health
haukp@njhealth.org
Chapter 33: Immunodeficiency

Quynh B. Hoang, MD, FAAP, CAQSM
Assistant Professor, Department of Orthopedics, Sports Medicine Program, University of Colorado School of Medicine and Children's Hospital Colorado
quynh.b.hoang@ucdenver.edu
Chapter 27: Sports Medicine

Edward J. Hoffenberg, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and Children's Hospital Colorado
edward.hoffenberg@childrenscolorado.org
Chapter 21: Gastrointestinal Tract

Daniel Hyman, MD, MMM
Chief Quality Officer, Children’s Hospital Colorado, Department of Pediatrics, Section of Pediatric Administration, University of Colorado School of Medicine and Children's Hospital Colorado
daniel.hyman@childrenscolorado.org
Chapter 1: Advancing the Quality & Safety of Care

Richard B. Johnston Jr., MD
Professor, Department of Pediatrics, Section of Allergy and Clinical Immunology, Associate Dean for Research Development, University of Colorado School of Medicine and National Jewish Health
richard.johnston@ucdenver.edu
Chapter 33: Immunodeficiency

David W. Kaplan, MD, MPH
Professor, Department of Pediatrics, Head, Section of Adolescent Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
david.kaplan@childrenscolorado.org
Chapter 4: Adolescence
Michael S. Kappy, MD, PhD
Professor, Department of Pediatrics, Head, Section of Pediatric Endocrinology, University of Colorado School of Medicine and Children's Hospital Colorado
michael.kappy@childrenscolorado.org
Chapter 34: Endocrine Disorders

Paritosh Kaul, MD
Associate Professor, Department of Pediatrics, Section of Adolescent Medicine, University of Colorado School of Medicine, Denver Health and Children's Hospital Colorado
paritosh.kaul@childrenscolorado.org
Chapter 5: Adolescent Substance Abuse

Amy K. Keating, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Center for Cancer/Blood Disorders, University of Colorado School of Medicine and Children's Hospital Colorado
amy.keating@ucdenver.edu
Chapter 31: Neoplastic Disease

Sita Kedia, MD
Assistant Professor, Departments of Pediatrics and Neurology, Section of Pediatric Neurology, University of Colorado School of Medicine and Children's Hospital Colorado
sita.kedia@ucdenver.edu
Chapter 25: Neurologic & Muscular Disorders

Kimberly Kelsay, MD
Associate Professor, Department of Psychiatry, Division of Child and Adolescent Psychiatry, University of Colorado School of Medicine, Department of Psychiatry and Behavioral Sciences, Children's Hospital Colorado
Chapter 7: Child & Adolescent Psychiatric Disorders & Psychosocial Aspects of Pediatrics

Megan Moriarty Kelsey, MD
Instructor, Department of Pediatrics, Section of Pediatric Endocrinology, University of Colorado School of Medicine and Children's Hospital Colorado
megan.kelsey@childrenscolorado.org
Chapter 34: Endocrine Disorders

Nancy A. King, MSN, RN, CPNP
Senior Instructor, Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Center for Cancer/Blood Disorder, University of Colorado School of Medicine and Children's Hospital Colorado
nancy.king@childrenscolorado.org
Chapter 32: Pain Management & Pediatric Palliative & End-of-Life Care

Ulrich Klein, DMD, DDS, MS
Associate Professor, Chair, Department of Pediatric Dentistry, University of Colorado School of Dental Medicine and Children's Hospital Colorado
ulric.klein@childrenscolorado.org
Chapter 17: Oral Medicine & Dentistry

Kelly Knupp, MD
Assistant Professor, Departments of Pediatrics and Neurology, Section of Pediatric Neurology, University of Colorado School of Medicine and Children's Hospital Colorado
kelly.knupp@childrenscolorado.org
Chapter 25: Neurologic & Muscular Disorders

Gregg Kobak, MD
Senior Instructor of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado School of Medicine
gregory.kobak@childrenscolorado.org
Chapter 21: Gastrointestinal Tract

Robert E. Kramer, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and Children's Hospital Colorado
robert.kramer@childrenscolorado.org
Chapter 21: Gastrointestinal Tract

Nancy F. Krebs, MD, MS
Professor, Department of Pediatrics, Head, Section of Pediatric Nutrition, University of Colorado School of Medicine and Children's Hospital Colorado
nancy.krebs@ucdenver.edu
Chapter 11: Normal Childhood Nutrition & Its Disorders

Orten Kupfer, MD
Fellow, Department of Pediatrics, Section of Pediatric Pulmonary Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
oren.kupfer@childrenscolorado.org
Chapter 19: Respiratory Tract & Mediastinum

Myron J. Levin, MD
Professor, Departments of Pediatrics and Medicine, Section of Pediatric Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado
myron.levin@ucdenver.edu
Chapter 40: Infections: Viral & Rickettsial
Chapter 43: Infections: Parasitic & Myotic

Paul M. Levisohn, MD
Associate Professor, Departments of Pediatrics and Neurology, Section of Pediatric Neurology, University of Colorado School of Medicine and Children's Hospital Colorado
paul.levisohn@childrenscolorado.org
Chapter 25: Neurologic & Muscular Disorders

Andrew H. Liu, MD
Associate Professor, Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, National Jewish Health and Children's Hospital Colorado
liua@njhealth.org
Chapter 33: Immunodeficiency
Edward Liu, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado School of Medicine and Children's Hospital Colorado
edwin.liu@childrenscolorado.org
Chapter 21: Gastrointestinal Tract

Gary M. Lum, MD
Professor, Department of Pediatrics, Head, Section of Pediatric Nephrology, University of Colorado School of Medicine and Children's Hospital Colorado
gary.lum@childrenscolorado.org
Chapter 24: Kidney & Urinary Tract

Cara L. Mack, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children's Hospital Colorado
cara.mack@childrenscolorado.org
Chapter 22: Liver & Pancreas

Kelly Maloney, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and Children's Hospital Colorado
kelly.maloney@childrenscolorado.org
Chapter 23: Nutrition

David K. Manchester, MD
Professor, Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine and Children's Hospital Colorado
david.manchester@childrenscolorado.org
Chapter 37: Genetics & Dysmorphology

Maria J. Mandt, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Emergency Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
maria.mandt@childrenscolorado.org
Chapter 12: Emergencies & Injuries

Stacey L. Martiniano, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Pulmonary Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
stackey.martiniano@childrenscolorado.org
Chapter 19: Respiratory Tract & Mediastinum

Elizabeth J. McFarland, MD
Professor, Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado
betsy.mcfarland@ucdenver.edu
Chapter 41: Human Immunodeficiency Virus Infection

Kevin Messacar, MD
Fellow, Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado
kevin.messacar@childrenscolorado.org
Chapter 43: Infections: Parasitic & Fungal

Shelley D. Miyamoto, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Cardiology, University of Colorado School of Medicine and Children's Hospital Colorado
shelley.miyamoto@childrenscolorado.org
Chapter 20: Cardiovascular Diseases

Paul G. Moe, MD
Professor, Departments of Pediatrics and Neurology, Section of Pediatric Neurology, University of Colorado School of Medicine and Children's Hospital Colorado
paul.moe@childrenscolorado.org
Chapter 25: Neurologic & Muscular Disorders

Joseph G. Morelli, MD
Professor, Departments of Dermatology and Pediatrics, Head, Section of Pediatric Dermatology, University of Colorado School of Medicine and Children's Hospital Colorado
joseph.morelli@ucdenver.edu
Chapter 15: Skin

Kristen Nadeau, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Endocrinology, University of Colorado School of Medicine and Children's Hospital Colorado
kristen.nadeau@ucdenver.edu
Chapter 34: Endocrine Disorders

Michael R. Narkeiwicz, MD
Professor, Department of Pediatrics, Hewitt-Andrews Chair in Pediatric Liver Disease, Medical Director, The Pediatric Liver Center and Liver Transplantation Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and Children's Hospital Colorado
michael.narkeiwicz@childrenscolorado.org
Chapter 22: Liver & Pancreas

Rachelle Nuss, MD
Professor, Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Sickle Cell Center, University of Colorado School of Medicine and Children's Hospital Colorado
rachelle.nuss@childrenscolorado.org
Chapter 30: Hematologic Disorders
Ann-Christine Nyquist, MD, MSPH
Professor, Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado
ann-christine.nyquist@childrenscolorado.org
Chapter 10: Immunization
Chapter 43: Sexually Transmitted Infections

John W. Ogle, MD
Professor and Vice Chairman, Department of Pediatrics, Director, Department of Pediatrics, Denver Health and University of Colorado School of Medicine
jogle@dhha.org
Chapter 39: Antimicrobial Therapy
Chapter 42: Infections: Bacterial & Spirochetal

Sean T. O'Leary, MD, MPH
Assistant Professor, Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado
olearysea@gmail.com
Chapter 10: Immunization

Sarah K. Parker, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado
sarah.parker@ucdenver.edu
Chapter 45: Travel Medicine

Laura E. Primak, RD, CNSD, CSP
Coordinator/Professional Research Assistant/Dietitian, Department of Pediatrics, Section of Pediatric Nutrition, University of Colorado School of Medicine and Children's Hospital Colorado
laura.primak@ucdenver.edu
Chapter 11: Normal Childhood Nutrition & Its Disorders

Lori D. Prok, MD
Assistant Professor, Departments of Pediatrics and Dermatology, Section of Pediatric Dermatology, University of Colorado School of Medicine and Children's Hospital Colorado
lori.prok@ucdenver.edu
Chapter 15: Skin

Ralph R. Quinones, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine and Children's Hospital Colorado
ralph.quinones@childrenscolorado.org
Chapter 31: Neoplastic Disease

Suchitra Rao, MBBS
Assistant Professor, Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado
suchitra.rao@childrenscolorado.org
Chapter 45: Travel Medicine

Daniel H. Reiden, MD
Assistant Professor, Departments of Internal Medicine and Pediatrics, Sections of Adolescent Medicine and Pediatric Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado
daniel.reiden@childrenscolorado.org
Chapter 44: Sexually Transmitted Infections

Marian Rewers, MD, PhD
Professor and Clinical Director, Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine and Children's Hospital Colorado
marian.rewers@ucdenver.edu
Chapter 35: Diabetes Mellitus

Ann Reynolds, MD
Assistant Professor, Department of Pediatrics, Section of Child Developmental and Behavioral Pediatrics, Director, The Child Development Unit, University of Colorado School of Medicine and Children's Hospital Colorado
ann.reynolds@childrenscolorado.org
Chapter 3: Child Development & Behavior

Adam A. Rosenberg, MD
Professor, Department of Pediatrics, Section of Neonatology, Director, Pediatrics Residency Program, University of Colorado School of Medicine and Children's Hospital Colorado
adam.rosenberg@childrenscolorado.org
Chapter 2: The Newborn Infant

Barry H. Rumack, MD
Clinical Professor, Department of Pediatrics, University of Colorado School of Medicine, Director Emeritus, Rocky Mountain Poison and Drug Center, Denver Health Authority
barry@rumack.com
Chapter 13: Poisoning

Margarita Saenz, MD
Assistant Professor, Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine and Children's Hospital Colorado
margarita.saenz@childrenscolorado.org
Chapter 37: Genetics & Dysmorphology
Scott D. Sagel, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Pulmonary Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
scott.sagel@childrenscolorado.org
Chapter 19: Respiratory Tract & Mediastinum

Amy E. Sass, MD, MPH
Assistant Professor, Department Pediatrics, Section of Adolescent Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
amy.sass@childrenscolorado.org
Chapter 4: Adolescence

Melissa A. Scholes, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Otolaryngology, University of Colorado School of Medicine and Children's Hospital Colorado
Chapter 18: Ear, Nose, Throat

Teri Schreiner, MD, MPH
Assistant Professor, Department of Pediatrics, Section of Child Neurology, University of Colorado School of Medicine and Children's Hospital Colorado
teri.schreiner@childrenscolorado.org
Chapter 25: Neurologic & Muscular Disorders

Eric J. Sigel, MD
Associate Professor, Department of Pediatrics, Section of Adolescent Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
eric.sigel@childrenscolorado.org
Chapter 6: Eating Disorders

Georgette Siparsky, PhD
Clinical Data Analyst, Department of Clinical Informatics, University of Colorado School of Medicine and Children's Hospital Colorado
georgette.siparsky@childrenscolorado.org
Chapter 46: Chemistry & Hematology Reference Intervals

Andrew P. Sirotnak, MD
Professor and Vice Chair for Faculty Affairs, Department of Pediatrics, University of Colorado School of Medicine, Director, Child Protection Team, Children's Hospital Colorado, Kempe Center for the Prevention and Treatment of Child Abuse and Neglect
andrew.sirotnak@childrenscolorado.org
Chapter 8: Child Abuse & Neglect

Jason Soden, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and children's Hospital Colorado
jason.soden@childrenscolorado.org
Chapter 21: Gastrointestinal Tract

Jennifer B. Soep, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Rheumatology, University of Colorado School of Medicine and Children's Hospital Colorado
jennifer.soep@childrenscolorado.org
Chapter 29: Rheumatic Diseases

Ronald J. Sokol, MD
Professor and Vice Chair, Department of Pediatrics, Head, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Director, Colorado Clinical and Translational Sciences Institute, University of Colorado School of Medicine and Children's Hospital Colorado
ronald.sokol@childrenscolorado.org
Chapter 22: Liver & Pancreas

Brian Stafford, MD, MPH
Assistant Professor, Departments of Psychiatry and Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado
brian.stafford@childrenscolorado.org
Chapter 7: Child & Adolescent Psychiatric Disorders & Psychosocial Aspects of Pediatrics

Paul Stillwell, MD
Senior Instructor, Department of Pediatrics, Section of Pediatric Pulmonary Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
paul.stillwell@childrenscolorado.org
Chapter 19: Respiratory Tract & Mediastinum

Shikha S. Sundaram, MD, MSCI
Assistant Professor, Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and Children's Hospital Colorado
shikha.sundaram@childrenscolorado.org
Chapter 22: Liver & Pancreas

Ayelet Talmi, PhD
Assistant Professor, Departments of Psychiatry and Pediatrics, Associate Director, Irving Harris Program in Child Development and Infant Mental Health, University of Colorado School of Medicine and Children's Hospital Colorado
talmi.ayelet@ucdenver.edu
Chapter 7: Child & Adolescent Psychiatric Disorders & Psychosocial Aspects of Pediatrics

Janet A. Thomas, MD
Associate Professor, Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine and Children's Hospital Colorado
janet.thomas@childrenscolorado.org
Chapter 36: Inborn Errors of Metabolism
Sharon H. Travers, MD
Associate Professor, Department of Pediatrics, Section of Pediatric Endocrinology, University of Colorado School of Medicine and Children's Hospital Colorado
sharon.travers@childrenscolorado.org
Chapter 34: Endocrine Disorders

Meghan Treitz, MD
Assistant Professor, Department of Pediatrics, Section of General Academic Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado
meghan.treitz@childrenscolorado.org
Chapter 9: Ambulatory & Community Pediatrics

Anne Chun-Hui Tsai, MD, Msc
Associate Professor, Departments of Pediatrics and Genetics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine and Children's Hospital Colorado
chun-hui.tsai@childrenscolorado.org
Chapter 37: Genetics & Dysmorphology

Johan L. K. Van Hove, MD, PhD, MBA
Associate Professor, Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine and Children's Hospital Colorado
johan.vanhove@childrenscolorado.org
Chapter 36: Inborn Errors of Metabolism

Armando Vidal, MD
Assistant Professor, Department of Orthopedics, Sports Medicine Program, University of Colorado School of Medicine and Children's Hospital Colorado
armando.vidal@ucdenver.edu
Chapter 27: Sports Medicine

George Sam Wang, MD
Fellow, Rocky Mountain Poison and Drug Center, Denver Health Authority, Clinical Instructor, Department of Pediatrics, Section of Pediatric Emergency Medicine, University of Colorado School of Medicine
george.wang2childrenscolorado.org
Chapter 13: Poisoning

Michael Wang, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Center for Cancer/Blood Disorders, University of Colorado School of Medicine and Children's Hospital Colorado
michael.wang@ucdenver.edu
Chapter 30: Hematologic Disorders

Adriana Weinberg, MD
Professor, Department of Pediatrics, Director, Clinical Virology Laboratory, Section of Pediatric Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado
adriana.weinberg@ucdenver.edu
Chapter 40: Infections: Viral & Rickettsial

Pamela E. Wilson, MD
Assistant Professor, Department of Rehabilitation Medicine, Rehabilitation Center, University of Colorado School of Medicine and Children's Hospital Colorado
pamela.wilson@childrenscolorado.org
Chapter 28: Rehabilitation Medicine

Michele L. Yang, MD
Assistant Professor, Departments of Pediatrics and Neurology, Section of Pediatric Neurology, University of Colorado School of Medicine and Children's Hospital Colorado
michele.yang@childrenscolorado.org
Chapter 25: Neurologic & Muscular Disorders

Patricia J. Yoon, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Otolaryngology, University of Colorado School of Medicine and Children's Hospital Colorado
patricia.yoon@childrenscolorado.org
Chapter 18: Ear, Nose, & Throat

Carleen Zebuhr, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
carleen.zebuhr@childrenscolorado.org
Chapter 14: Critical Care

Philip S. Zeitler, MD, PhD
Professor, Department of Pediatrics, Head, Section of Pediatric Endocrinology, University of Colorado School of Medicine and Children's Hospital Colorado
phil.zeitler@ucdenver.edu
Chapter 34: Endocrine Disorders

Edith T. Zemanick, MD
Assistant Professor, Department of Pediatrics, Section of Pediatric Pulmonary Medicine, University of Colorado School of Medicine and Children's Hospital Colorado
edith.zemanick@childrenscolorado.org
Chapter 19: Respiratory Tract & Mediastinum
Preface

The 22nd edition of *Current Diagnosis & Treatment: Pediatrics (CDTP)* features practical, up-to-date, well-referenced information on the care of children from birth through infancy and adolescence. *CDTP* emphasizes the clinical aspects of pediatric care while also covering important underlying principles. *CDTP* provides a guide to diagnosis, understanding, and treatment of the medical problems of all pediatric patients in an easy-to-use and readable format.

INTENDED AUDIENCE

Like all Lange medical books, *CDTP* provides a concise, yet comprehensive source of current information. Students will find *CDTP* an authoritative introduction to pediatrics and an excellent source for reference and review. *CDTP* provides excellent coverage of The Council on Medical Student Education in Pediatrics (COMSEP) curriculum used in pediatric clerkships. Residents in pediatrics (and other specialties) will appreciate the detailed descriptions of diseases as well as diagnostic and therapeutic procedures. Pediatricians, family practitioners, nurses and nurse practitioners, and other healthcare providers who work with infants and children will find *CDTP* a useful reference on management aspects of pediatric medicine.

COVERAGE

Forty-six chapters cover a wide range of topics, including neonatal medicine, child development and behavior, emergency and critical care medicine, and diagnosis and treatment of specific disorders according to major problems, etiologies, and organ systems. A wealth of tables and figures provides quick access to important information, such as acute and critical care procedures in the delivery room, the office, the emergency room, and the critical care unit; anti-infective agents; drug dosages; immunization schedules; differential diagnosis; and developmental screening tests. The final chapter is a handy guide to normal laboratory values.

NEW TO THIS EDITION

The 22nd edition of *CDTP* has been revised comprehensively by the editors and contributing authors. New references as well as up-to-date and useful Web sites have been added, permitting the reader to consult original material and to go beyond the confines of the textbook. As editors and practicing pediatricians, we have tried to ensure that each chapter reflects the needs and realities of day-to-day practice.

CHAPTERS WITH MAJOR REVISIONS INCLUDE:

3 Child Development & Behavior
6 Eating Disorders
9 Ambulatory & Office Pediatrics
10 Immunization
13 Poisoning
14 Critical Care
15 Skin
19 Respiratory Tract & Mediastinum
21 Gastrointestinal Tract
22 Liver & Pancreas
25 Neurologic & Muscular Disorders
26 Orthopedics
31 Neoplastic Disease

xxvii
32 Pain Management & Pediatric Palliative & End-of-Life Care
33 Immunodeficiency
37 Genetics & Dysmorphology
38 Allergic Disorders
39 Antimicrobial Therapy
40 Infections: Viral & Rickettsial
41 Human Immunodeficiency Virus Infection
42 Infections: Bacterial & Spirochetal
43 Infections: Parasitic & Mycotic

CHAPTER REVISIONS

The 22 chapters that have been extensively revised, with new authors added in several cases, reflect the substantially updated material in each of their areas of pediatric medicine. Especially important are updates to the chapters on immunizations, diabetes, and endocrinology. The chapter on HIV includes current guidelines for prevention and treatment of HIV, and updates information on the new antiretroviral therapies that have become available. The chapter on immunizations contains the most recently published recommendations, discusses the contraindications and precautions relevant to special populations, and includes the new vaccines licensed since the last edition of this book. Chapters on Skin, Immunodeficiency, and Neoplastic Disease are markedly updated with the latest information. All laboratory tables in Chapter 46 Pediatric Laboratory Medicine, including Reference Ranges and Reference Intervals, have been updated. All other chapters are substantially revised and references have been updated. Nineteen new authors have contributed to these revisions.

ACKNOWLEDGMENTS

The editors would like to thank Bonnie Savone for her expert assistance in managing the flow of manuscripts and materials among the chapter authors, editors, and publishers. Her attention to detail was enormously helpful. The editors also would like to thank Tia Brayman at Children’s Hospital Colorado who produced the cover photographs.

William W. Hay, Jr., MD
Myron J. Levin, MD
Robin R. Deterding, MD
Mark J. Abzug, MD

Denver, Colorado
June 2014
While the history of the patient safety movement can be traced back to Hippocrates’ famous dictum *primum non nocere* some 2500 years ago, the more modern safety effort was galvanized by the Institute of Medicine’s (IOM) 1999 landmark report *To Err Is Human*. The most quoted statistic from this report, that between 44,000 and 98,000 Americans die each year as a result of medical error, was based upon studies of hospital mortality in Colorado, Utah, and New York and extrapolated to an annual estimate for the country. The IOM followed up this report with a second publication, *Crossing the Quality Chasm*, in which they said, “Health care today harms too frequently, and routinely fails to deliver its potential benefits…. Between the health care we have and the care we could have lies not just a gap, but a chasm.” These two reports have served as central elements in an advocacy movement that has engaged stakeholders across the continuum of our healthcare delivery system and changed the nature of how we think about the quality of care we provide, and receive.

In *Crossing the Quality Chasm*, the IOM included a simple but elegant definition of the word “Quality” as it applies to health care. They defined six domains of healthcare quality: (1) SAFE—free from preventable harm, (2) EFFECTIVE—optimal clinical outcomes; doing what we should do, not what we should not do according to the evidence, (3) EFFICIENT—without waste of resources—human, financial, supplies/equipment, (4) TIMELY—without unnecessary delay, (5) PATIENT/FAMILY CENTERED—according to the wishes and values of patients and their families, (6) EQUITABLE—eliminating disparities in outcomes between patients of different race, gender, and socioeconomic status.

In the years since these two reports were published, the multiple stakeholders concerned about the effectiveness, safety, and cost of health care in the United States, and indeed throughout the world, have accelerated their individual and collective involvement in analyzing and improving care. In the United States, numerous governmental agencies, large employer groups, health insurance plans, consumers/patients, healthcare providers, and delivery systems are among the key constituencies calling for and working toward better and safer care at lower cost. Similar efforts are occurring internationally. Indeed, the concept of the Triple Aim is now being promoted as an organizing framework for considering the country’s overall healthcare improvement goals.

The healthcare industry is in a period of transformation being driven by at least four converging factors: (1) the recognition of serious gaps in the safety and quality of care we provide (and receive), (2) the unsustainable increases in the cost of care as a percent of the national economy, (3) the aging of the population, and (4) the emerging role of healthcare information technology as a potential tool to improve care. These are impacting healthcare organizations as well as individual practitioners in numerous ways that can also be traced to expectations regarding transparency and increasing accountability for results. As depicted in Figure 1–1, the Triple Aim includes the simultaneous goals of better care (outcomes/experience) for individual patients, better health for the population, and lower cost overall. Practitioners and trainees must adapt to a new set of priorities that focus attention on new goals to extend our historic focus on the doctor/patient relationship and autonomous physician decision making. Instead, new imperatives are evidence-based medicine, advancing safety, and reducing unnecessary expense.

The impact of healthcare quality improvement will increasingly influence clinical practice and the delivery of pediatric care.
care in the future. This chapter provides a summary of some of the central elements of healthcare quality improvement and patient safety, and offers resources for the reader to obtain additional information and understanding about these topics.

To understand the external influences driving many of these changes, there are at least six key national organizations central to the transitions occurring.

1. Center for Medicare and Medicaid Services (Department of Health and Human Services)—www.cms.gov

 Center for Medicare and Medicaid Services (CMS) oversees the United States’ federally funded healthcare programs including Medicare, Medicaid, and other related programs. CMS and the Veterans Affairs Divisions together now provide funding for more than one trillion of the total $2.6 trillion the United States spends annually on healthcare expense. CMS is increasingly promoting payment mechanisms that withhold payment for the costs of preventable complications of care and giving incentives to providers for achieving better outcomes for their patients, primarily in its Medicare population. The agency has also enabled and advocated for greater transparency of results and makes available on its website comparative measures of performance for its Medicare population. CMS is also increasingly utilizing its standards under which hospitals and other healthcare provider organizations are licensed to provide care as tools to ensure greater compliance with these regulations. It has adopted a list of hospital-acquired conditions (HACs) in 10 categories for which hospitals are no longer reimbursed. This list of HACs includes for 2013: foreign object retained after surgery, air embolism, blood incompatibility, stage III and IV pressure ulcers, falls and trauma, manifestations of poor glycemic control, catheter-associated urinary tract infection, iatrogenic pneumothorax, vascular catheter-associated infection, and surgical site infection or deep vein thrombosis/pulmonary embolism after selected procedures. It is worth noting that CMS is able to generate comparative national data only for its Medicare population because it, unlike Medicaid, is a single federal program with a single financial database. Because the Medicaid program functions as 51 state/federal partnership arrangements, patient experience and costs are captured in 51 separate state-based program databases. This segmentation has limited the development of national measures for pediatric care in both inpatient and ambulatory settings. Similarly, while the reporting of HACs is uniform across the United States for Medicare patients, in the Medicaid population it varies by individual state.

 National Quality Forum (NQF) is a private, not-for-profit organization whose members include consumer advocacy groups, healthcare providers, accrediting bodies, employers and other purchasers of care, and research organizations. The NQF’s mission is to promote improvement in the quality of American health care primarily through defining priorities for improvement, approving consensus standards and metrics for performance reporting, and through educational efforts. The NQF, for example, has endorsed a list of 29 “serious reportable events” in health care that include events related to surgical or invasive procedures, products or device failures, patient protection, care management, environmental issues, radiologic events, and potential criminal events. This list and the CMS list of HACs are both being used by insurers to reduce payment to hospitals/providers as well as to require reporting to state agencies for public review. In 2011, NQF released a set of 41 measures for the quality of pediatric care, largely representing outpatient preventive services and management of chronic conditions, and population-based measures applicable to health plans, for example immunization rates and frequency of well-child care.

3. Leapfrog—www.leapfroggroup.org

 Leapfrog is a group of large employers who seek to use their purchasing power to influence the healthcare community to achieve big “leaps” in healthcare safety and quality. Leapfrog promotes transparency and issues public reports of how well individual hospitals meet their recommended standards, including computerized physician-order entry, ICU staffing models, and rates of hospital-acquired infections. There is some evidence that meeting these standards is associated with improved hospital quality and/or mortality outcomes.

 Agency for Healthcare Research and Quality (AHRQ) is one of 12 agencies within the US Department of Health
and Human Services. AHRQ’s primary mission has been to support health services research initiatives that seek to improve the quality of health care in the United States. Its activities extend well beyond the support of research and now include the development of measurements of quality and patient safety, reports on disparities in performance, measures of patient safety culture in organizations, and promotion of tools to improve care among others. AHRQ also convenes expert panels to assess national efforts to advance quality and patient safety and to recommend strategies to accelerate progress.

5. Specialty Society Boards
Specialty Society Boards, for example, American Board of Pediatrics (ABP). The ABP, along with other specialty certification organizations, has responded to the call for greater accountability to consumers by enhancing its maintenance of certification programs (MOC). All trainees, and an increasing proportion of active practitioners, are now subject to the requirements of the MOC program, including participation in quality improvement activities in the diplomate’s clinical practice. The Board’s mission is focused on assuring the public that certificate holders have been trained according to their standards and also meet continuous evaluation requirements in six areas of core competency: patient care, medical knowledge, practice-based learning and improvement, interpersonal and communication skills, professionalism, and systems-based practice. These are the same competencies as required of residents in training programs as certified by the Accreditation Council on Graduate Medical Education. Providers need not only to be familiar with the principles of quality improvement and patient safety, but also must demonstrate having implemented quality improvement efforts within their practice settings.

6. The Joint Commission—www.jointcommission.org
The Joint Commission (JC) is a private, nonprofit agency that is licensed to accredit healthcare provider organizations, including hospitals, nursing homes, and other healthcare provider entities in the United States as well as internationally. Its mission is to continuously improve the quality of care through evaluation, education, and enforcement of regulatory standards. Since 2003, JC has annually adopted a set of National Patient Safety Goals designed to help advance the safety of care provided in all healthcare settings. Examples include the use of two patient identifiers to reduce the risk of care being provided to an unintended patient; the use of time-outs and a universal protocol to improve surgical safety and reduce the risk of wrong site procedures; adherence to hand hygiene recommendations to reduce the risk of spreading hospital-acquired infections, to name just a few. These goals often become regulatory standards with time and widespread adoption. Failure to meet these standards can result in actions against the licensure of the healthcare provider, or more commonly, requires corrective action plans, measurement to demonstrate improvement, and resurveying depending upon the severity of findings. The JC publishes a monthly journal on quality and safety, available at http://store.jcrcinc.com/the-joint-commission-journal-on-quality-and-patient-safety/.

Finally, advances in quality and safety will be impacted by the provisions of the American Recovery and Reinvestment Act (ARRA) and Patient Protection and Affordable Care Act (PPACA) enacted by the United States government in the past 2 years. These laws and their implications are only beginning to be understood in the United States. The landmark 2010 federal healthcare legislation will provide for near-universal access to health care, and now that the Supreme Court has upheld the law, states are beginning the process of creating healthcare exchanges or deferring to the federal government to do so. It is likely that changes in payment mechanisms for health care will continue irrespective of ARRA/PPACA, and current and future providers’ practices will be economically, structurally, and functionally impacted by these emerging trends. Furthermore, changes in the funding and structure of the US healthcare system may ultimately also result in changes in other countries. Many countries have single-payer systems for providing health care to their citizens and often are leaders in defining new strategies for healthcare improvement.
STRATEGIES AND MODELS FOR QUALITY IMPROVEMENT (QI)

There are a number of commonly employed approaches to improving the quality of care in healthcare settings. This section highlights three representative approaches to conducting clinical improvement work, but they are by no means the only potential strategies that physicians and staff may see or utilize. The Model for Improvement is primarily emphasized because of its ease of adoption, and because it is the foundation for most improvement efforts included in the Maintenance of Certification program of the American Board of Pediatrics. Briefer summaries of Lean and Six-Sigma methods are also included, with listings of resources where the reader can find additional information.

“MODEL FOR IMPROVEMENT”

Widely taught and promoted by the Boston-based educational and advocacy organization the Institute for Healthcare Improvement (IHI), the Model for Improvement (MFI) is grounded in three simple questions that guide the work of the improvement leader and team. The model’s framework includes an Aim statement, a measurement strategy, and then the use of “rapid cycle” changes to achieve the aim. The IHI website, www.ihi.org, has an extensive resource library, and hosts an “Open School” that includes a QI/Patient safety modular curriculum for health professional students and their faculty at www.ihi.org(openschool).

AIM STATEMENT

The Aim statement answers the question, “What do we want to accomplish?” The measure question is “How will we know that a change is an improvement?” and the change component is focused on “What changes can we make that will result in improvement?” This model is represented in Figure 1–2.

Aim statements are a written description of what the team’s improvement goal is, and also include information on who comprises the patient population and a time frame within which the improvement will be achieved. They identify a “stretch” but achievable improvement target goal, and, often, some general statement regarding how the improvement will be achieved. Aim statements are sometimes characterized using the mnemonic SMAART: Specific, Measurable, Achievable, Actionable, Relevant, and Timely. Aim statements should be unambiguous and understandable to the stakeholders, and are most likely to be achieved if they are aligned with the strategic goals of the team or organization.

For example, the following statement meets the criteria for a SMAART aim statement, “We will reduce the frequency of emergency department visits and hospitalizations for patients with asthma seen at E Street Pediatrics by 25% by December 31, 2013.” Whereas, this next statement does not, “We will improve the care for patients with asthma by appropriately prescribing indicated medications and better educating families in their use.”

The first example provides a specific measurable goal, a time frame, and clarity with respect to who the patients are. A 25% reduction in ED/inpatient asthma visits will require a change in the system for asthma care delivery for the entire population of children with asthma; that extent of level of improvement is a stretch, but it is much more achievable than a goal would be if it was set to “eliminate” such encounters. The second example is unclear in terms of the measure for improvement, the time frame for the goal to be met, and even the population in question. The statement provides some sense of processes that could be utilized to improve asthma care but is missing needed specificity.
MEASURES

Specific measures provide a means to assess whether or not the improvement effort is on track. Three types of measures are useful. Outcome measures answer questions concerning the healthcare impact for the patients, such as how has their health status changed? Process measures are related to the healthcare delivery system itself. They answer questions like how is the system performing? Balancing measures seek to identify potential unintended consequences that are related to the improvement effort being undertaken. Examples are helpful to contextualize these conceptual definitions.

Continuing with asthma as an example of the improvement effort, and utilizing the first aim statement example, here are some examples of measures that might be employed, and the type of measure each is.

Examples of measures for an asthma improvement project:

1. Proportion of children with an asthma severity assessment in their medical record in the past year (process).
2. Percent of children with asthma in the practice seen in the ED or hospitalized for asthma in the past 6 months (outcome).
3. Average difference in the time between the last office patient’s scheduled appointment time and the actual office close time (balancing).
4. Staff satisfaction with their job (balancing).
5. Percent of children with persistent asthma, of any severity, prescribed a controller medication at their most recent visit (process).
6. Percent of children prescribed a controller medication who report taking their medicine (process—this one might seem surprising, but an outcome measures the health status of the patient, not the taking of a medication. One might argue that adherence to a treatment plan is an outcome of the work of the practice/practitioner prescribing the medication. It is more consistent, however, to consider the translation of the treatment plan into action as a part of the process of care, and that the health status or outcome measure will be improved by fully improving the measured processes of care, including patient adherence to the treatment plan.)
7. Percent of children in a practice asthma registry provided with a complete asthma action plan in the past twelve months (process).
8. Percent of children who missed any school days due to asthma in the past 6 months (outcome).

Measures are essential elements of any improvement work. It is a good idea to choose a manageable (4–6) number of measures, all of which can be obtained with limited or no extra effort, and with a mix of outcome, process, and balancing measures. Ideally, the best process measures are those that are directly linked to the outcome goal. The hypothesis in this specific example would be that assessing asthma severity and appropriately using controller medications and action plans would all contribute to reducing the number or frequency of missed school days and the need for ED/hospital utilization.

It is important to note that measurement in the setting of an improvement project is different from measurement in a research study. Improvement projects require “just enough” data to guide the team’s continuing efforts. Often the results seen in a sequence of 10 patients is enough to tell you whether a particular system is functioning consistently or not. For example, considering measure example number 1, if in the last 10 patients seen with asthma, only two had their asthma severity documented, how many more charts need to be checked to conclude that the system is not functioning as intended and that changes are needed? Other measures may require larger sample sizes, especially when assessing the impact of care changes on a population of patients with a particular condition. See Randolph’s excellent summary for a fuller description of measurement for improvement.

CHANGES AND IDEAS

Once the team’s aim is established and the measures are selected, the third component of the Model for Improvement focuses on what changes in the system must be made that will result in the targeted improvements. Here, the model draws from the field of industrial engineering and the work of improvement pioneers W. Edwards Deming and Walter Shewhart. To answer the question “What changes will result in improvement?”, the improvement team should incorporate “Plan-Do-Study (or check)-Act” cycles, typically referred to as PDSA cycles. The cycles include the following steps.

Plan: What will we do that will likely improve the process measures linked to the outcome target goal? Who will do it? Where? When? How? How will the data be collected?

Do: Implementation of the planned change(s). TIP! It is good to make the change cycles as small as possible, for example, trying a new process on the next five patients being seen by one provider as opposed to wide scale implementation of a new chart documentation form across an entire clinic.

Study (or check): Once the small test of change is tried, its results are assessed. How many times did the process work as planned for the five patients included in the cycle?

Act: Based upon the results of the study of the cycle, recommendations are made as to what the next steps ought to be to achieve the goal. At this point, the cycle then resumes and planning begins for the next cycle.

Over the course of an improvement effort, multiple tests of change might be implemented for any or all of the process measures felt to be likely to impact the outcome measures relevant to the project.
The Model for Improvement has been used by improvement teams across numerous healthcare settings around the world. Further information about the model and examples can be found at www.ihi.org/openschool, or in The Improvement Guide (Langley et al.).

The IHI Open School modules are an excellent online resource for clinicians interested in learning more about the fundamentals of quality improvement and patient safety. These educational lessons are free of charge to health professional students, residents, and university faculty members, and for a modest subscription fee to other clinicians. They are also free to healthcare practitioners in the developing world. An excellent original resource on implementing this model in clinical practice is in Berwick’s summary article from 1998.

“LEAN”

Also grounded in industrial engineering, an increasingly popular method for driving improvement efforts in healthcare settings is “Lean” or “Lean processing.” Early thinking about Lean processes is credited to the Toyota Manufacturing Company in Japan. The crossover to health care from manufacturing is a relatively recent phenomenon, but numerous hospitals and healthcare delivery settings, including individual clinics, have benefited from the application of these principles to their clinical operations. Lean improvement methods focus on reducing errors and variability in repetitive steps that are part of any process. In health care, examples of repeated processes would include how patients are registered and their information obtained; how medications are ordered, compounded, distributed, and administered; how consent forms are accurately completed; and how patients are scheduled for their appointments. Lean is a philosophy of continuous improvement. It is grounded in recognizing that the way we do things today is merely “current state.” With time, effort, focus, and long-term thinking, we can create a “future state” that is better than the status quo. It does so by focusing on identifying the value of all steps in any process and eliminating those steps that do not contribute to the value sought by the customer, or in health care, the patient/family. In doing so, improvements in outcomes, including cost and productivity, and in clinical measures of effectiveness can be realized. See Young for an early critical assessment of the incorporation of Lean into healthcare settings.

There are four categories that describe the essential elements of Toyota’s adoption of “Lean” as a management strategy. These four categories are: (1) philosophy (emphasize long-term thinking over short-term gain); (2) process (eliminate waste through very defined approaches including an emphasis on process flow and the use of pull systems to reduce overproduction, for example); (3) people/partners (respect, challenge, and grow staff); and (4) problem solving (create a culture of continuous learning and improvement).

There are a number of hospitals that have fully integrated Lean management as a primary basis for its organizational approach to improvement. Several were featured in a “White Paper” published by the Institute for Healthcare Improvement in 2005.

“SIX SIGMA”

A third quality-improvement methodology also arose in the manufacturing industry. Motorola is generally credited with promoting Six Sigma as a management strategy designed to reduce the variability in its processes and thereby reducing the number of defects in its outputs. Organizations adopting Six Sigma as an improvement strategy utilize measurement-based strategies that focus on process improvement and variation reduction to eliminate defects in their work and to reduce cycle times, thereby increasing profitability and enhancing customer satisfaction. Sigma is the statistical measure of standard deviation and Motorola adopted Six Sigma as a performance indicator, promoting consistency of processes in order to have fewer than 3.4 defects per million opportunities. This performance goal has since become the common descriptor for this approach to improvement both in manufacturing and in service industries, including health care. Similar to Lean, the translation of business manufacturing strategies into health care has various challenges, but there are many processes that repeatedly occur in health care that can be routinized and made more consistent. Many healthcare processes fail far more frequently than 3.4 times per million opportunities. Consider pharmacy dispensing errors, medication ordering or administration errors, and patient-scheduling errors,
just to name a few. These are a few of many examples of processes that could potentially benefit from the kind of rigorous analysis that is integral to the Six-Sigma approach.

In a typical Six-Sigma structured improvement project, there are five phases generally referred to as DMAIC: (1) Define (what is the problem, what is the goal?), (2) Measure (quantify the problem and improvement opportunity), (3) Analyze (use of observations and data to identify causes), (4) Improve (implementation of solutions based on data analysis), and finally, (5) Control (sustainable change).

One of the central aspects of Six Sigma as an improvement strategy is its defined focus on understanding the reasons for defects in any process. By understanding these drivers, it is then possible to revise the approach to either the manufacturing process or the service functions in order to reduce these errors and failures.

“Lean-Six Sigma” is a newer entity that draws from both methodologies in order to simplify the improvement work where possible, but retain the rigorous statistical method that is a hallmark of Six-Sigma projects. Lean focuses on where time is lost in any process and can identify opportunities to eliminate steps or reduce time. Six Sigma aims to reduce or eliminate defects in the process, thereby resulting in a higher-quality product through a more efficient and lower cost process.

Regardless of the method used, improvement happens because an organization, team, or individual sets a goal to improve a current process through systematic analysis of the way things are done now, and then implementing planned changes to see how they impact the outputs or outcomes.

For additional information on Lean and Six Sigma, see www.isixsigma.com or www.asq.org/sixsigma.

PRINCIPLES OF PATIENT SAFETY (INCIDENT REPORTING, JUST CULTURE, DISCLOSURE, FMEA, RCA, RELIABILITY, CHECKLISTS)

Safe patient care avoids preventable harm; it is care that does not cause harm as it seeks to cure. The list of adverse events that are considered to be preventable is evolving. As mentioned earlier, both CMS and NQF have endorsed lists of various complications of care as being “never events” or “serious reportable events” for which providers are often now not reimbursed, and which are increasingly reportable to the public through various state transparency programs.

Irrespective of one’s views about whether various complications are entirely preventable at the current state of science or not, these approaches reflect a changing paradigm that is impacting many aspects of healthcare delivery. Transparency of results is increasingly expected. Perspectives and data on how these kinds of efforts are impacting actual improvement in outcomes are mixed.

Given these trends, healthcare providers need to have robust systems for measuring and improving the safety of care provided to patients. The methods for improving quality reviewed above are frequently used to reduce harm, just as they can be used to improve effectiveness or efficiency. For example, hospitals attempting to reduce infections have successfully used these types of process improvement approaches to improve antibiotic use prior to surgical procedures or to improve hand hygiene practices.

Common patient safety tools are summarized here.

Incident-reporting systems: Efforts to advance safety in any organization require a clear understanding of the kinds of harm occurring within that organization, as well as the kinds of “near-misses” that are occurring. These reporting systems can range from a simple paper reporting form to a “telephone hot-line” to a computerized database that is available to staff (and potentially patients) within the organization. Events are traditionally graded according to the severity of harm that resulted from the incident. One example is the NCC MERP Index, which grades events from A (potential to cause harm) to I (resulting in patient death). Errors that are recognized represent only a fraction of the actual errors and near-misses that are present in the system. Incident-reporting systems depend upon people recognizing the error or near-miss, being comfortable reporting it, knowing how and when to report, and then actually doing so. It is no surprise therefore that estimates for how frequently incidents that could or should be reported into incident-reporting systems range from 1.5% to 30% depending on the type of adverse or near-miss event. “Trigger tools” (either manual chart reviews for indications of adverse events, or automated reports from electronic medical records) are increasingly being used to increase the recognition of episodes of harm in healthcare settings.

“Just culture”: The effectiveness of incident-reporting systems is highly dependent upon the culture of the organization within which the reporting is occurring. Aviation industry safety-reporting systems are often highlighted for their successes over the past few decades in promoting reporting of aviation events that might have led to accidents. The Aviation Safety Reporting System (ASRS) prioritizes confidentiality in order to encourage reporting and protects reporters from punishment, with certain limitations when they report incidents, even if related to nonadherence to aviation regulations. Although the system is voluntary, more than 880,000 reports have been submitted and used by the Federal Aviation Administration to improve air travel safety.

In health care, the variable recognition of adverse events as well as any fear about reprisal for reporting events both work to reduce the consistent reporting of events. The concept of “just culture” has been promoted as a strategy to increase the comfort of staff members to report the occurrence of errors.
or near-misses, even if they may have done something incorrectly. See the work of David Marx and the “Just Culture Community” for more information on how to evaluate error so as to support reporting and safer practices in organizations. A great deal more information about “just culture” principles is available at http://www.justculture.org.

Failure modes and effects analyses (FMEA): An FMEA is a systematic methodology used to proactively identify ways in which any process might fail, and then to prioritize among strategies for reducing the risk or impact of identified potential failures. In conducting an FMEA, which all hospitals are required to do annually, a team will carefully describe and analyze each step in a particular process, consider what and how anything might go wrong, why it would happen and what the impact would be of such failures. Like Lean and Six Sigma, the FMEA has been adopted into healthcare from its origins in military and industrial settings. The FMEA is an effective method for identifying strategies to reduce risks in healthcare settings, thereby protecting patients if interventions are put into place as a result of the analysis. A tool to use in conducting an FMEA is available from the IHI (http://www.ihi.org/knowledge/Pages/Tools/FailureModesandEffectsAnalysisTool.aspx). Their site includes additional information and resources about the FMEA process.

Root-cause analyses (RCA) (post-event reviews): As contrasted with the proactive FMEA process, an RCA is a retrospective analysis of an adverse occurrence (or near-miss) that has already happened. It too is a systematic process that in this case allows a team to reach an understanding of why certain things occurred, what systems factors and human factors contributed to the occurrence, and what defects in the system might be changed in order to reduce the likelihood of recurrence. Key to an effective RCA process, and similar to the principles discussed above related to “just culture,” RCAs are designed not to ask who was at fault, but rather what system reasons contributed to the event. “Why,” not “who,” is the essential question to be asked. The answer to the question “why did this occur” almost invariably results in a combination of factors, often illustrated by a series of pieces of Swiss cheese where the holes all line up. Taken from the writings of James Reason, the “Swiss Cheese Model” illustrates the many possible system failures that can contribute to an error, and contributes to identifying potential system changes that reduce the risk of error recurrence. Strategies for approaching retrospective RCA are available at http://www.ncbi.nlm.nih.gov/pmc/articles/pmc117770.

Communication and team training: Because failures of communication are the most common identified factors in the analysis of reported serious healthcare events, many healthcare organizations have incorporated tools from other industries, particularly aviation, in order to enhance patient safety. As a result of the knowledge gained through analysis of tragic aviation accidents, the airline industry implemented methods like crew resource management training to ensure that communication among cockpit team members is effective and clear, thereby reducing risk of air accidents. Similar methods have been used to train teams in operating rooms, delivery rooms, and other team-based settings. Most of these curricula include a few common elements: introductions to be sure all team members know one another’s name, promoting the likelihood of speaking up; leader clarity with team members about the expectation that all will speak up if anyone has a concern; and structured language and other tools like verbal read-back of critical information to ensure clarity in interpersonal or interdisciplinary communications. Such training also seeks to flatten the hierarchy, making it more likely that potential risks or problems will be identified and effectively addressed. Common tools used in promoting effective team communication include structured language like SBAR (Situation, Background, Assessment, and Recommendation), taken from the navy, to promote clarity of communication.

A number of resources exist in the public domain to support better teamwork and communication. One good place to start is the TeamSTEPPS program from the Agency for Healthcare Research and Quality. It can be found at http://teamstepps.ahrq.gov/.

The newborn infant is defined as the first 28 days of life. In practice, however, sick or very immature infants may require neonatal care for many months. There are three levels of newborn care. Level 1 refers to basic care of well newborns of 35 weeks' gestation or more, neonatal resuscitation, and stabilization prior to transport. Level 2 refers to specialty neonatal care of premature infants greater than 1500 g or more than 32 weeks' gestation. Level 3 is subspecialty care of higher complexity ranging from 3A to 3D based on newborn size and gestational age, availability of medical subspecialties, advanced imaging, pediatric ophthalmology, pediatric general surgery, cardiac surgery, and extracorporeal membrane oxygenation. Level 3 care is often part of a perinatal center offering critical care and transport to the high-risk mother and fetus as well as the newborn infant. A level 4 center has additional capabilities to care for complex surgical conditions including cardiac surgery with bypass.

THE NEONATAL HISTORY

The newborn medical history has three key components:

1. Maternal and paternal medical and genetic history
2. Maternal past obstetric history
3. Current antepartum and intrapartum obstetric history

The mother's medical history includes chronic medical conditions, medications taken during pregnancy, unusual dietary habits, smoking history, occupational exposure to chemicals or infections of potential risk to the fetus, and any social history that might increase the risk for parenting problems and child abuse. Family illnesses and a history of congenital anomalies with genetic implications should be sought. The past obstetric history includes maternal age, gravidity, parity, blood type, and pregnancy outcomes. The current obstetric history includes the results of procedures during the current pregnancy such as ultrasound, amniocentesis, screening tests (rubella antibody, hepatitis B surface antigen, serum quadruple screen in the second trimester or first trimester ultrasound screening for nuchal translucency coupled with measurement in maternal serum of human chorionic gonadotropin and pregnancy-associated plasma protein A to screen for genetic disorders, HIV [human immunodeficiency virus]), and antepartum tests of fetal well-being (eg, biophysical profiles, nonstress tests, or Doppler assessment of fetal blood flow patterns). Pregnancy-related maternal complications such as urinary tract infection, pregnancy-induced hypertension, eclampsia, gestational diabetes, vaginal bleeding, and preterm labor should be documented. Significant peripartum events include duration of ruptured membranes, maternal fever, fetal distress, meconium-stained amniotic fluid, type of delivery (vaginal or cesarean section), anesthesia and analgesia used, reason for operative or forceps delivery, infant status at birth, resuscitative measures, and Apgar scores.

ASSESSMENT OF GROWTH & GESTATIONAL AGE

It is important to know the infant’s gestational age because normal behavior and possible medical problems can be predicted on this basis. The date of the last menstrual period is the best indicator of gestational age, if known, and if menses were regular. Fetal ultrasound provides supporting information. Postnatal physical characteristics and neurologic development are also clues to gestational age. Table 2–1 lists the physical and neurologic criteria of maturity used to estimate gestational age by the Ballard method. Adding the scores assigned to each neonatal physical and neuromuscular sign yields a score corresponding to gestational age.

Disappearance of the anterior vascular capsule of the lens is also helpful in determining gestational age. Until 27–28 weeks' gestation, the lens capsule is covered by vessels; by 34 weeks, this vascular plexus is completely atrophied. Foot length, from the heel to the tip of the longest toe, also correlates with gestational age in appropriately grown infants. The foot measures 4.5 cm at 25 weeks' gestation and increases 0.25 cm/wk until term.

If the physical examination indicates a gestational age within 2 weeks of that predicted by the obstetric dates, the gestational age is as assigned by the obstetric dating. Birth weight and gestational age are plotted on standard grids (Figure 2–1) to determine whether the birth weight is
Table 2-1. New Ballard score for assessment of fetal maturation of newly born infants.\(^a\)

<table>
<thead>
<tr>
<th>Neuromuscular Maturity</th>
<th>Score</th>
<th>Record Score Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square window (wrist)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm recoil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popliteal angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scarf sign</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heel to ear</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Maturity Sign</th>
<th>Physical Maturity</th>
<th>Score</th>
<th>Record Score Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>Sticky, friable,</td>
<td>-1</td>
<td>Sticky, friable,</td>
</tr>
<tr>
<td></td>
<td>transparent</td>
<td></td>
<td>transparent</td>
</tr>
<tr>
<td></td>
<td>Gelatinous, red,</td>
<td>0</td>
<td>Gelatinous, red,</td>
</tr>
<tr>
<td></td>
<td>translucent</td>
<td></td>
<td>translucent</td>
</tr>
<tr>
<td></td>
<td>Smooth, pink,</td>
<td>1</td>
<td>Smooth, pink,</td>
</tr>
<tr>
<td></td>
<td>visible veins</td>
<td></td>
<td>visible veins</td>
</tr>
<tr>
<td></td>
<td>Superficial</td>
<td>2</td>
<td>Superficial</td>
</tr>
<tr>
<td></td>
<td>peeling &/or rash;</td>
<td></td>
<td>peeling &/or rash;</td>
</tr>
<tr>
<td></td>
<td>few veins</td>
<td></td>
<td>few veins</td>
</tr>
<tr>
<td></td>
<td>Cracking, pale</td>
<td>3</td>
<td>Cracking, pale</td>
</tr>
<tr>
<td></td>
<td>areas; rare veins</td>
<td></td>
<td>areas; rare veins</td>
</tr>
<tr>
<td></td>
<td>Parchment,</td>
<td>4</td>
<td>Parchment,</td>
</tr>
<tr>
<td></td>
<td>deep cracking;</td>
<td></td>
<td>deep cracking;</td>
</tr>
<tr>
<td></td>
<td>no vessels</td>
<td>5</td>
<td>no vessels</td>
</tr>
<tr>
<td></td>
<td>Leather, cracked,</td>
<td></td>
<td>Leather, cracked,</td>
</tr>
<tr>
<td></td>
<td>wrinkled</td>
<td></td>
<td>wrinkled</td>
</tr>
<tr>
<td>Lanugo</td>
<td>None</td>
<td>-1</td>
<td>None</td>
</tr>
<tr>
<td>Plantar surface</td>
<td>Sparse</td>
<td>0</td>
<td>Sparse</td>
</tr>
<tr>
<td></td>
<td>Abundant</td>
<td>1</td>
<td>Abundant</td>
</tr>
<tr>
<td>Breast</td>
<td>Imperceptible</td>
<td>2</td>
<td>Imperceptible</td>
</tr>
<tr>
<td></td>
<td>Barely perceptible</td>
<td></td>
<td>Barely perceptible</td>
</tr>
<tr>
<td></td>
<td>Flat areola;</td>
<td>3</td>
<td>Flat areola;</td>
</tr>
<tr>
<td></td>
<td>no bud</td>
<td></td>
<td>no bud</td>
</tr>
<tr>
<td></td>
<td>Stippled</td>
<td>4</td>
<td>Stippled</td>
</tr>
<tr>
<td></td>
<td>areola; 1- to 2-mm</td>
<td></td>
<td>areola; 1- to 2-mm</td>
</tr>
<tr>
<td></td>
<td>bud</td>
<td></td>
<td>bud</td>
</tr>
<tr>
<td></td>
<td>Well-curved pinna</td>
<td>5</td>
<td>Well-curved pinna</td>
</tr>
<tr>
<td></td>
<td>soft but ready</td>
<td></td>
<td>soft but ready</td>
</tr>
<tr>
<td></td>
<td>recoil</td>
<td></td>
<td>recoil</td>
</tr>
<tr>
<td>Eye/Ear</td>
<td>Lids fused loosely:</td>
<td>6</td>
<td>Lids fused loosely:</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Lids open; pinna</td>
<td>7</td>
<td>Lids open; pinna</td>
</tr>
<tr>
<td></td>
<td>flat; stays folded</td>
<td></td>
<td>flat; stays folded</td>
</tr>
<tr>
<td></td>
<td>Slightly curved</td>
<td>8</td>
<td>Slightly curved</td>
</tr>
<tr>
<td></td>
<td>pinna; soft; slow</td>
<td></td>
<td>pinna; soft; slow</td>
</tr>
<tr>
<td></td>
<td>recoil</td>
<td></td>
<td>recoil</td>
</tr>
<tr>
<td>Genitals (male)</td>
<td>Scrotum flat,</td>
<td>9</td>
<td>Scrotum flat,</td>
</tr>
<tr>
<td></td>
<td>smooth</td>
<td></td>
<td>smooth</td>
</tr>
<tr>
<td></td>
<td>Scrotum empty;</td>
<td>10</td>
<td>Scrotum empty;</td>
</tr>
<tr>
<td></td>
<td>fant rugae</td>
<td></td>
<td>fant rugae</td>
</tr>
<tr>
<td></td>
<td>Testes in upper</td>
<td>11</td>
<td>Testes in upper</td>
</tr>
<tr>
<td></td>
<td>canal; rare rugae</td>
<td></td>
<td>canal; rare rugae</td>
</tr>
<tr>
<td></td>
<td>Tests descending;</td>
<td>12</td>
<td>Tests descending;</td>
</tr>
<tr>
<td></td>
<td>few rugae</td>
<td></td>
<td>few rugae</td>
</tr>
<tr>
<td></td>
<td>Testes down;</td>
<td>13</td>
<td>Testes down;</td>
</tr>
<tr>
<td></td>
<td>good rugae</td>
<td></td>
<td>good rugae</td>
</tr>
<tr>
<td></td>
<td>Testes pendulous;</td>
<td>14</td>
<td>Testes pendulous;</td>
</tr>
<tr>
<td></td>
<td>deep rugae</td>
<td></td>
<td>deep rugae</td>
</tr>
<tr>
<td>Genitals (female)</td>
<td>Clitoris prominent</td>
<td>15</td>
<td>Clitoris prominent</td>
</tr>
<tr>
<td></td>
<td>& labia flat</td>
<td></td>
<td>& labia flat</td>
</tr>
<tr>
<td></td>
<td>Prominent</td>
<td>16</td>
<td>Prominent</td>
</tr>
<tr>
<td></td>
<td>clitoris & small</td>
<td></td>
<td>clitoris & small</td>
</tr>
<tr>
<td></td>
<td>labia minora</td>
<td></td>
<td>labia minora</td>
</tr>
<tr>
<td></td>
<td>Prominent</td>
<td>17</td>
<td>Prominent</td>
</tr>
<tr>
<td></td>
<td>clitoris &</td>
<td></td>
<td>clitoris &</td>
</tr>
<tr>
<td></td>
<td>enlarging minora</td>
<td></td>
<td>enlarging minora</td>
</tr>
<tr>
<td></td>
<td>Majora &</td>
<td>18</td>
<td>Majora &</td>
</tr>
<tr>
<td></td>
<td>minora equally</td>
<td></td>
<td>minora equally</td>
</tr>
<tr>
<td></td>
<td>prominent</td>
<td></td>
<td>prominent</td>
</tr>
<tr>
<td></td>
<td>Majora large;</td>
<td>19</td>
<td>Majora large;</td>
</tr>
<tr>
<td></td>
<td>minora small</td>
<td></td>
<td>minora small</td>
</tr>
<tr>
<td></td>
<td>Majora cover</td>
<td>20</td>
<td>Majora cover</td>
</tr>
<tr>
<td></td>
<td>clitoris & minora</td>
<td></td>
<td>clitoris & minora</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Physical Maturity Score</th>
<th>Score</th>
<th>Record Score Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature</td>
<td>-10</td>
<td>Mature</td>
</tr>
<tr>
<td>Rating</td>
<td>Weeks</td>
<td>Rating</td>
</tr>
</tbody>
</table>

\(^a\)See text for a description of the clinical gestational age examination.
Figure 2–1. Fetal-infant growth chart for weight, length, and head circumference. Sources: intrauterine weight, length and head circumference, postterm sections—CDC growth charts 2000. URL: http://www.biomedcentral.com/1471-2431/3/13. (Reproduced with permission from Fenton TR: A new growth chart for preterm babies: Babson and Benda’s chart updated with recent data and a new format, BMC Pediatr. 2003 Dec 16;3:13.)
appropriate for gestational age (AGA), small for gestational age (SGA, also known as intrauterine growth restriction or IUGR), or large for gestational age (LGA). Birth weight for gestational age in normal neonates varies with race, maternal nutrition, access to obstetric care, and environmental factors such as altitude, smoking, and drug and alcohol use. Whenever possible, standards for newborn weight and gestational age based on local or regional data should be used. Birth weight related to gestational age is a screening tool that should be supplemented by clinical data when entertaining a diagnosis of IUGR or excessive fetal growth. These data include the infant’s physical examination and other factors such as parental size and the birth weight–gestational age of siblings.

An important distinction, particularly in SGA infants, is whether a growth disorder is symmetrical (weight, length, and occipitofrontal circumference [OFC] all ≤ 10%) or asymmetrical (only weight ≤ 10%). Asymmetrical growth restriction implies a problem late in pregnancy, such as pregnancy-induced hypertension or placental insufficiency. Symmetrical growth restriction implies an event of early pregnancy: chromosomal abnormality, drug or alcohol use, or congenital viral infections (Table 2–2). In general, the outlook for normal growth and development is better in asymmetrically growth-restricted infants whose intrauterine brain growth has been spared.

The fact that SGA infants have fewer problems (such as respiratory distress syndrome) than AGA infants of the same birth weight but a lower gestational age has led to the misconception that SGA infants have accelerated matura-
tion. SGA infants, when compared with AGA infants of the same gestational age, actually have increased morbidity and mortality rates.

Knowledge of birth weight in relation to gestational age allows anticipation of some neonatal problems. LGA infants are at risk for birth trauma; LGA infants of diabetic mothers are also at risk for hypoglycemia, polycythemia, congenital anomalies, cardiomyopathy, hyperbilirubinemia, and hypocalcemia. SGA infants are at risk for fetal distress during labor and delivery, polycythemia, hypoglycemia, and hypocalcemia.

Table 2–2. Causes of variations in neonatal size in relation to gestational age.

Infants large for gestational age	Infant of a diabetic mother
Infants small for gestational age	Asymmetrical
	Placental insufficiency secondary to pregnancy-induced hypertension or other maternal vascular disease
	Maternal age > 35 y
	Poor weight gain during pregnancy
	Multiple gestation
	Symmetrical
	Maternal drug abuse
	Narcotics
	Cocaine
	Alcohol
	Chromosomal abnormalities
	Intrauterine viral infection (eg, cytomegalovirus)

EXAMINATION AT BIRTH

The extent of the newborn physical examination depends on the condition of the infant and the setting. Examination in the delivery room consists largely of observation plus auscultation of the chest and inspection for congenital anomalies and birth trauma. Major congenital anomalies occur in 1.5% of live births and account for 20%–25% of perinatal and neonatal deaths. Because infants are physically stressed during parturition, the delivery room examination should not be extensive. The Apgar score (Table 2–3) should be recorded at 1 and 5 minutes of age. In severely depressed infants, scores can be recorded out to 20 minutes. Although the 1- and 5-minute Apgar scores have almost no predictive value for long-term outcome, serial scores provide a useful description of the severity of perinatal depression and the response to resuscitative efforts.

Skin color is an indicator of cardiac output because of the normal high blood flow to the skin. Stress that triggers a catecholamine response redirects cardiac output away from the skin to preserve oxygen delivery to more critical organs. Cyanosis and pallor are thus two useful signs suggestive of inadequate cardiac output.

Skeletal examination at delivery serves to detect obvious congenital anomalies and to identify birth trauma, particularly in LGA infants or those born after a protracted second stage of labor where a fractured clavicle or humerus might be found.

The number of umbilical cord vessels should be determined. Normally, there are two arteries and one vein. In 1% of deliveries (5%–6% of twin deliveries), the cord has only one artery and one vein. This minor anomaly slightly
increases the risk of associated defects. The placenta should be examined at delivery. Small placentas are always associated with small infants. The placental examination includes identification of membranes and vessels (particularly in multiple gestations) as well as placental infarcts or clots (placental abruption) on the maternal side.

EXAMINATION IN THE NURSERY

The purpose of the newborn examination is to identify abnormalities or anomalies that might impact the infant’s well-being, and to evaluate for any acute illness or difficulty in the transition from intrauterine to extraterine life. The examiner should have warm hands and a gentle approach. Start with observation, then auscultation of the chest, and then palpation of the abdomen. Examination of the eyes, ears, throat, and hips should be performed last, as these maneuvers are most disturbing to the infant. The heart rate should range from 120 to 160 beats/min and the respiratory rate from 30 to 60 breaths/min. Systolic blood pressure on day 1 ranges from 50 to 70 mm Hg and increases steadily during the first week of life. Blood pressure is influenced more significantly by perinatal asphyxia and mechanical ventilation than it is by gestational age. An irregularly irregular heart rate, usually caused by premature atrial contractions, is common, benign, and usually resolves in the first days of life.

Approximately 15%–20% of healthy newborns have one minor anomaly (a common variant that would not impact the infant’s well-being; eg, a unilateral transverse palmar [simian] crease, or a single umbilical artery). Those with a minor anomaly have a 3% risk of an associated major anomaly. Approximately 0.8% of newborns have two minor anomalies, and 0.5% have three or more, with a risk of 10% and 20%, respectively, of also having a major malformation.

Other common minor anomalies requiring no special investigation in healthy infants include preauricular pits, a shallow sacral dimple without other cutaneous abnormality within 2.5 cm of the anus, and three or fewer café au lait spots in a white infant or five or fewer in an African-American infant.

Table 2–3. Infant evaluation at birth—Apgar score.a

<table>
<thead>
<tr>
<th>Score</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>Absent</td>
<td>Slow (< 100)</td>
<td>> 100</td>
</tr>
<tr>
<td>Respiratory effort</td>
<td>Absent</td>
<td>Slow, irregular</td>
<td>Good, crying</td>
</tr>
<tr>
<td>Muscle tone</td>
<td>Limp</td>
<td>Some flexion</td>
<td>Active motion</td>
</tr>
<tr>
<td>Response to catheter in nostrilb</td>
<td>No response</td>
<td>Grimace</td>
<td>Cough or sneeze</td>
</tr>
<tr>
<td>Color</td>
<td>Blue or pale</td>
<td>Body pink; extremities blue</td>
<td>Completely pink</td>
</tr>
</tbody>
</table>

aOne minute and 5 minutes after complete birth of the infant (disregarding the cord and the placenta), the following objective signs should be observed and recorded.

bTested after the oropharynx is clear.

Skin

Observe for bruising, petechiae (common over the presenting part), meconium staining, and jaundice. Visible jaundice in the first 24 hours is never normal, and generally indicates either a hemolytic process, or a congenital hepatitis, either of which requires further evaluation. Peripheral cyanosis is commonly present when the extremities are cool or the infant is polycythemic. Generalized cyanosis merits immediate evaluation. Pallor may be caused by acute or chronic blood loss or by acidosis. In dark-skinned infants, pallor and cyanosis should be assessed in the lips, mouth, and nail beds. Plethora suggests polycythemia. Note the presence of vernix caseosa (a whitish, greasy material covering the body that decreases as term approaches) and lanugo (the fine hair covering the preterm infant’s skin). Dry skin with cracking and peeling of the superficial layers is common in postterm infants. Edema may be generalized (hydrops) or localized (eg, on the dorsum of the feet in Turner syndrome). Check for birthmarks such as capillary hemangiomas (lower occiput, eyelids, and forehead) and mongolian spots (bluish-black pigmentation over the back and buttocks). There are many benign skin eruptions such as milia, miliaria, erythema toxicum, and pustular melanosis that are present in the newborn period, but more serious conditions may be indicated by blistering or erosive lesions. See Chapter 15 for a more in-depth description of these conditions.
Head
Check for cephalohematoma (a swelling over one or both parietal bones that is contained within suture lines) and caput succedaneum (edema of the scalp over the presenting part that crosses suture lines). Subgaleal hemorrhages (beneath the scalp) are uncommon but can cause extensive blood loss into this large potential space, resulting in hypovolemic shock. Skull fractures may be linear or depressed and may be associated with cephalohematoma. Check for the presence and size of the fontanelles. The anterior fontanelle varies from 1 to 4 cm in any direction; the posterior fontanelle should be less than 1 cm. A third fontanelle is a bony defect along the sagittal suture in the parietal bones and may be seen in syndromes, such as trisomy 21. Sutures should be freely mobile, but are often overriding just after birth. Craniosynostosis, a prematurely fused suture causing an abnormal cranial shape, is more easily diagnosed a few days or more after birth.

Face
Unusual faces may be associated with a specific syndrome. Bruising from birth trauma (especially with face presentation) and forceps application should be identified. Face presentation may cause soft tissue swelling around the nose and mouth and significant facial distortion. Facial nerve palsy is most obvious during crying; the unaffected side of the mouth moves normally, giving an asymmetric grimace.

Eyes
Subconjunctival hemorrhages are a frequent result of birth trauma. Less commonly, a corneal tear (presenting as a clouded cornea), or a hyphema (a layering of blood in the anterior chamber of the eye) may occur. Ophthalmologic consultation is indicated in such cases. Extraocular movements should be assessed. Occasional uncoordinated eye movements are common, but persistent irregular movements are abnormal. The iris should be inspected for abnormalities such as speckling (Brushfield spots seen in trisomy 21) and colobomas. Retinal red reflexes should be present and symmetrical. Dark spots, unilateral blunted red reflex, absent reflex, or a white reflex all require ophthalmologic evaluation. Leukocoria can be caused by glaucoma (cloudy cornea), cataract, or tumor (retinoblastoma). Infants with suspected or known congenital viral infection should have a retinoscopic examination with pupils dilated to look for chorioretinitis.

Nose
Examine the nose for size and shape. In-utero compression can cause deformities. Because infants younger than 1 month of age are obligate nose breathers, any nasal obstruction (eg, bilateral choanal atresia or stenosis) can cause respiratory distress. Unilateral choanal atresia can be diagnosed by occluding each naris, although patency is best checked by holding a cold metal surface (eg, a chilled scissor) under the nose, and observing the fog from both nares on the metal. Purulent nasal discharge at birth suggests congenital syphilis (“snuffles”).

Ears
Malformed or malpositioned (low-set or posteriorly rotated) ears are often associated with other congenital anomalies. The tympanic membranes should be visualized. Preauricular pits and tags are common minor variants, and may be familial. Any external ear abnormality may be associated with hearing loss.

Mouth
Epithelial (Epstein) pearls are benign retention cysts along the gum margins and at the junction of the hard and soft palates. Natal teeth may be present and sometimes must be removed to prevent their aspiration. Check the integrity and shape of the palate for clefts and other abnormalities. A small mandible and tongue with cleft palate is seen with Pierre-Robin syndrome and can present as respiratory difficulty, as the tongue occludes the airway; prone positioning can be beneficial. A prominent tongue can be seen in trisomy 21 and Beckwith-Wiedemann syndrome. Excessive oral secretions suggest esophageal atresia or a swallowing disorder.

Neck
Redundant neck skin or webbing, with a low posterior hairline, is seen in Turner syndrome. Cervical sinus tracts may be seen as remnants of branchial clefts. Check for masses: mid-line (thyroglossal duct cysts), anterior to the sternocleidomastoid (branchial cleft cysts), within the sternocleidomastoid (hematoma and torticollis), and posterior to the sternocleidomastoid (cystic hygroma).

Chest & Lungs
Check for fractured clavicles (crepitus, bruising, and tenderness). Increased anteroposterior diameter (barrel chest) can be seen with aspiration syndromes. Check air entry bilaterally and the position of the mediastinum by locating the point of maximum cardiac impulse and assessment of heart tones. Decreased breath sounds with respiratory distress and a shift in the heart tones suggest pneumothorax (tension) or a space-occupying lesion (eg, diaphragmatic hernia). Pneumomediastinum causes muffled heart sounds. Expiratory grunting and decreased air entry are observed in hyaline membrane disease. Rales are not of clinical significance at this age.

Heart
Cardiac murmurs are common in the first hours and are most often benign; conversely, severe congenital heart
disease in the newborn infant may be present with no murmur at all. The two most common presentations of heart disease in the newborn infant are (1) cyanosis and (2) congestive heart failure with abnormalities of pulses and perfusion. In hypoplastic left heart and critical aortic stenosis, pulses are diminished at all sites. In aortic coarctation and interrupted aortic arch, pulses are diminished in the lower extremities.

Abdomen

Check for tenderness, distention, and bowel sounds. If polyhydramnios was present or excessive oral secretions are noted, pass a soft catheter into the stomach to rule out esophageal atresia. Most abdominal masses in the newborn infant are associated with kidney disorders (eg, multicystic or dysplastic, and hydronephrosis). When the abdomen is relaxed, normal kidneys may be felt but are not prominent. A markedly scaphoid abdomen plus respiratory distress suggests diaphragmatic hernia. Absence of abdominal musculature (prune belly syndrome) may occur in association with renal abnormalities. The liver and spleen are superfi cial in the neonate and can be felt with light palpation. A distended bladder may be seen as well as palpated above the pubic symphysis.

Genitalia & Anus

Male and female genitals show characteristics according to gestational age (see Table 2–1). In the female infant during the first few days, a whitish vaginal discharge with or without blood is normal. Check the patency and location of the anus.

Skeleton

Check for obvious anomalies such as absence of a bone, club-foot, fusion or webbing of digits, and extra digits. Examine for hip dislocation by attempting to dislocate the femur posteriorly and then abducting the legs to relocate the femur noting a clunk as the femoral head relocates. Look for joint contractures (eg, hip dislocation) results from chronic limitation of movement in utero that may result from lack of amniotic fluid or injuries) and evidence of spinal deformities (eg, scoliosis, cysts, sinuses, myelomeningocele). Arthrogryposis (multiple joint contractures) results from chronic limitation of movement in utero that may result from lack of amniotic fluid or from congenital neuromuscular disease.

Neurologic Examination

Normal newborns have reflexes that facilitate survival (eg, rooting and sucking reflexes), and sensory abilities (eg, hearing and smelling) that allow them to recognize their mother soon after birth. Although the retina is well developed at birth, visual acuity is poor (20/400) because of a relatively immobile lens. Acuity improves rapidly over the first 6 months, with fixation and tracking becoming well developed by 2 months. Observe the newborn’s resting tone. Normal term newborns should exhibit flexion of the upper and lower extremities and symmetrical spontaneous movements. Extension of the extremities should result in spontaneous recoil to the flexed position. Assess the character of the cry; a high-pitched cry with or without hypotonia may indicate disease of the central nervous system (CNS) such as hemorrhage or infection, a congenital neuromuscular disorder, or systemic disease. Check the following newborn reflexes:

1. **Sucking reflex**: The newborn sucks in response to a nipple in the mouth; observed by 14 weeks’ gestation.
2. **Rooting reflex**: Head turns to the side of a facial stimulus, present by 28 weeks’ gestation.
3. **Traction response**: The infant is pulled by the arms to a sitting position. Initially, the head lags, then with active flexion, comes to the midline briefly before falling forward.
4. **Palmar grasp**: Evident with the placement of the examiner’s finger in the newborn’s palm; develops by 28 weeks’ gestation and disappears by age 4 months.
5. **Deep tendon reflexes**: A few beats of ankle clonus and an upgoing Babinski reflex may be normal.
6. **Moro (startle) reflex**: Hold the infant supine while supporting the head. Allow the head to drop 1–2 cm suddenly. The arms will abduct at the shoulder and extend at the elbow with spreading of the fingers. Adduction with flexion will follow. This reflex develops by 28 weeks’ gestation (incomplete) and disappears by age 3 months.
7. **Tonic neck reflex**: Turn the infant’s head to one side; the arm and leg on that side will extend while the opposite arm and leg flex (“fencing position”). This reflex disappears by age 8 months.

care. Staff must monitor infants for signs and symptoms of illness, including temperature instability, change in activity, refusal to feed, pallor, cyanosis, early or excessive jaundice, tachypnea, respiratory distress, delayed (beyond 24 hours) first stool or first void, and bilious vomiting. Several preventive measures are routine in the normal newborn nursery.

Prophylactic erythromycin ointment is applied to the eyes within 1 hour of birth to prevent gonococcal ophthalmia. Vitamin K (1 mg) is given intramuscularly or subcutaneously within 4 hours of birth to prevent hemorrhagic disease of the newborn.

All infants should receive hepatitis B vaccine. Both hepatitis B vaccine and hepatitis B immune globulin (HBIG) are administered if the mother is positive for hepatitis B surface antigen (HBsAg). If maternal HBsAg status is unknown, vaccine should be given before 12 hours of age, maternal blood should be tested for HBsAg, and HBIG should be given to the neonate before 7 days of age if the test is positive.

Cord blood is collected from all infants at birth and can be used for blood typing and Coombs testing if the mother is type O or Rh-negative to help assess the risk for development of jaundice.

Bedside glucose testing should be performed in infants at risk for hypoglycemia (infants of diabetic mothers, preterm, SGA, LGA, or stressed infants). Values below 45 mg/dL should be confirmed by laboratory blood glucose testing and treated. Hematocrit should be measured at age 3–6 hours in infants at risk for or those who have symptoms of polycythemia or anemia (see section on Hematologic Disorders).

State-sponsored newborn genetic screens (for inborn errors of metabolism such as phenylketonuria [PKU], galactosemia, sickle cell disease, hypothyroidism, congenital adrenal hyperplasia, and cystic fibrosis) are performed prior to discharge, after 24–48 hours of age if possible. In many states, a repeat test is required at 8–14 days of age because the PKU test may be falsely negative when obtained before 48 hours of age. Not all state-mandated screens include the same panel of diseases. The most recent additions include an expanded screen that tests for other inborn errors of metabolism such as fatty acid oxidation defects and amino or organic acid disorders and screening for severe combined immunodeficiency syndrome.

Infants should routinely be positioned supine to minimize the risk of sudden infant death syndrome (SIDS). Prone positioning is contraindicated unless there are compelling clinical reasons for that position. Bed sharing with adults, tobacco exposure, overheating, soft items in the bed and prone positioning are associated with increased risk of SIDS.

FEEDING THE WELL NEONATE

A neonate is ready for feeding if he or she is (1) alert and vigorous, (2) has no abdominal distention, (3) has good bowel sounds, and (4) has a normal hunger cry. These signs usually occur within 6 hours after birth, but fetal distress or traumatic delivery may prolong this period. The healthy full-term infant should be allowed to feed every 2–5 hours on demand. The first breast feeding may occur in the delivery room. For formula-fed infants, the first feeding usually occurs by 3 hours of life. The feeding volume generally increases from 0.5 to 1 oz per feeding initially to 1.5–2 oz per feeding on day 3. By day 3, the average full-term newborn takes about 100 mL/kg/d of milk.

A wide range of infant formulas satisfy the nutritional needs of most neonates. Breast milk is the standard on which formulas are based (see Chapter 11). Despite low concentrations of several vitamins and minerals in breast milk, bioavailability is high. All the necessary nutrients, vitamins, minerals, and water are provided by human milk for the first 6 months of life except vitamin K (1 mg IM is administered at birth), vitamin D (400 IU/d for all infants beginning shortly after birth), and vitamin B₁₂ and zinc (if the mother is a strict vegetarian and takes no supplements). Other advantages of breast milk include (1) immunologic, antimicrobial, and anti-inflammatory factors such as immunoglobulin A (IgA) and cellular, protein, and enzymatic components that decrease the incidence of upper respiratory and gastrointestinal (GI) infections; (2) possible decreased frequency and severity of childhood eczema and asthma; (3) improved mother-infant bonding; and (4) improved neurodevelopmental outcome.

Although about 70% of mothers in the United States start by breast feeding, only 33% continue to do so at 6 months. Hospital practices that facilitate successful initiation of breast feeding include rooming-in, nursing on demand, and avoiding unnecessary supplemental formula. Nursery staff must be trained to recognize problems associated with breast feeding and provide help and support for mothers in the hospital. An experienced professional should observe and assist with several feedings to document good latch-on. Good latch-on is important in preventing the common problems of sore nipples, unsatisfied infants, breast engorgement, poor milk supply, and hyperbilirubinemia.

Table 2–4 presents guidelines the nursing mother and healthcare provider can use to assess successful breast feeding.

Table 2-4. Guidelines for successful breast feeding.

<table>
<thead>
<tr>
<th></th>
<th>First 8 h</th>
<th>First 8–24 h</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6 Onward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk supply</td>
<td>You may be able to express a few drops of milk.</td>
<td>Milk should come in between the second and fourth days.</td>
<td></td>
<td></td>
<td></td>
<td>Milk should be in. Breasts may be firm or leak milk.</td>
<td>Breasts should feel softer after feedings.</td>
</tr>
<tr>
<td>Baby’s activity</td>
<td>Baby is usually wide-awake in the first hour of life. Put baby to breast within 30 min after birth.</td>
<td>Wake up your baby. Babies may not wake up on their own to feed.</td>
<td>Baby should be more cooperative and less sleepy.</td>
<td>Look for early feeding cues such as rooting, lip smacking, and hands to face.</td>
<td></td>
<td></td>
<td>Baby should appear satisfied after feedings.</td>
</tr>
<tr>
<td>Feeding routine</td>
<td>Baby may go into a deep sleep 2-4 h after birth.</td>
<td>Feed your baby every 1-4 h or as often as wanted—at least 8-12 times a day.</td>
<td>Use chart to write down time of each feeding.</td>
<td></td>
<td></td>
<td>May go one longer interval (up to 5 h between feeds) in a 24-h period.</td>
<td></td>
</tr>
<tr>
<td>Breast feeding</td>
<td>Baby will wake up and be alert and responsive for several more hours after initial deep sleep.</td>
<td>As long as the mother is comfortable, nurse at both breasts as long as baby is actively sucking.</td>
<td>Try to nurse both sides each feeding, aiming at 10 min per side. Expect some nipple tenderness.</td>
<td>Consider hand expressing or pumping a few drops of milk to soften the nipple if the breast is too firm for the baby to latch on.</td>
<td>Nurse a minimum of 10-30 min per side every feeding for the first few weeks of life. Once milk supply is well established, allow baby to finish the first breast before offering the second.</td>
<td>Mother’s nipple tenderness is improving or is gone.</td>
<td></td>
</tr>
<tr>
<td>Baby’s urine output</td>
<td>Baby must have a minimum of one wet diaper in the first 24 h.</td>
<td>Baby must have at least one wet diaper every 8-11 h.</td>
<td>You should see an increase in wet diapers (up to four to six) in 24 h.</td>
<td>Baby’s urine should be light yellow.</td>
<td>Baby should have six to eight wet diapers per day of colorless or light yellow urine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baby’s stool</td>
<td>Baby may have a very dark (meconium) stool.</td>
<td>Baby may have a stool second very dark (meconium) stool.</td>
<td>Baby’s stools should be in transition from black-green to yellow.</td>
<td>Baby should have three or four yellow, seedy stools a day.</td>
<td>Baby should have three or four yellow, seedy stools a day.</td>
<td></td>
<td>The number of stools may decrease gradually after 4-6 wk.</td>
</tr>
</tbody>
</table>

Modified, with permission, from Gabrielski L: Lactation support services. Childrens Hospital Colorado; 1999.
EARLY DISCHARGE OF THE NEWBORN INFANT

Discharge at 24–36 hours of age is safe and appropriate for some newborns if there are no contraindications (Table 2–5) and if a follow-up visit within 48 hours is ensured. Most infants with cardiac, respiratory, or infectious disorders are identified in the first 12–24 hours of life. The exception may be the infant treated intrapartum with antibiotic prophylaxis for maternal group B streptococcal (GBS) colonization or infection. The Centers for Disease Control and Prevention (CDC) and the American Academy of Pediatrics (AAP) recommend that such infants be observed in hospital for 48 hours if they received no or inadequate intrapartum antibiotic prophylaxis (< 4 hours prior to delivery, or drug other than ampicillin, penicillin, or cefazolin. Hospital observation beyond 24 hours may not be necessary for well-appearing full-term infants who received adequate intrapartum chemoprophylaxis (penicillin, ampicillin, or cefazolin ≥ 4 hours prior to delivery), and for whom ready access to medical care can be ensured if needed. Other problems, such as jaundice and breast-feeding problems, typically occur after 48 hours and can usually be dealt with on an outpatient basis.

The AAP recommends a follow-up visit within 48 hours for all newborns discharged before 72 hours of age. Infants who are small or late preterm—especially if breast feeding—are at particular risk for inadequate intake; the early visit is especially important for these infants. Suggested guidelines for the follow-up interview and physical examination are presented in Table 2–6. The optimal timing of discharge must be determined in each case based on medical, social, and financial factors.

Table 2–5. Contraindications to early newborn discharge.

<table>
<thead>
<tr>
<th>Contraindications to early newborn discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jaundice ≤ 24 h</td>
</tr>
<tr>
<td>2. High risk for infection (eg, maternal chorioamnionitis); discharge allowed after 24 h with a normal transition</td>
</tr>
<tr>
<td>3. Known or suspected narcotic addiction or withdrawal</td>
</tr>
<tr>
<td>4. Physical defects requiring evaluation</td>
</tr>
<tr>
<td>5. Oral defects (clefts, micrognathia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative contraindications to early newborn discharge (infants at high risk for feeding failure, excessive jaundice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prematurity or early term infant (< 38 weeks’ gestation)</td>
</tr>
<tr>
<td>2. Birth weight < 2700 g (6 lb)</td>
</tr>
<tr>
<td>3. Infant difficult to arouse for feeding; not demanding regularly in nursery</td>
</tr>
<tr>
<td>4. Medical or neurologic problems that interfere with feeding (Down syndrome, hypotonia, cardiac problems)</td>
</tr>
<tr>
<td>5. Twins or higher multiples</td>
</tr>
<tr>
<td>6. ABO blood group incompatibility or severe jaundice in previous child</td>
</tr>
<tr>
<td>7. Mother whose previous breast-fed infant gained weight poorly</td>
</tr>
<tr>
<td>8. Mother with breast surgery involving periareolar areas (if attempting to nurse)</td>
</tr>
</tbody>
</table>

Table 2–6. Guidelines for early outpatient follow-up evaluation.

<table>
<thead>
<tr>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhythmic sucking and audible swallowing for at least 10 min total per feeding?</td>
</tr>
<tr>
<td>Infant wakes and demands to feed every 2-3 h (at least 8-10 feedings per 24 h)?</td>
</tr>
<tr>
<td>Do breasts feel full before feedings, and softer after?</td>
</tr>
<tr>
<td>Are there at least 6 noticeably wet diapers per 24 h?</td>
</tr>
<tr>
<td>Are there yellow bowel movements (no longer meconium)—at least 4 per 24 h?</td>
</tr>
<tr>
<td>Is infant still acting hungry after nursing (frequently sucks hands, rooting)?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight, unclad: should not be more than 8%-10% below birth weight</td>
</tr>
<tr>
<td>Extent and severity of jaundice</td>
</tr>
<tr>
<td>Assessment of hydration, alertness, general well-being</td>
</tr>
<tr>
<td>Cardiovascular examination: murmurs, brachial and femoral pulses, respirations</td>
</tr>
</tbody>
</table>

CIRCUMCISION

Circumcision is an elective procedure to be performed only in healthy, stable infants. The procedure has medical benefits, including prevention of phimosis, paraphimosis, balanoposthitis, and urinary tract infection. Important later benefits of circumcision include decreased incidence of penile cancer, decreased incidence of sexually transmitted diseases (including HIV), and decreased incidence of cervical cancer in female sexual partners. Most parental decisions regarding circumcision are religious and social, not medical. The risks of circumcision include local infection, bleeding, removal of too much skin, and urethral injury. The combined incidence of complications is less than 1%. Local anesthesia by dorsal penile nerve block or circumcision ring block using 1% lidocaine without epinephrine, or topical anesthetic cream are safe and effective methods that should always be used. Techniques allowing visualization of the glans throughout the procedure (Plastibell and Gomco clamp) are preferred to blind techniques (Mogen clamp).
as occasional amputation of the glans occurs with the latter technique. Circumcision is contraindicated in infants with genital abnormalities (eg, hypospadias). A coagulation screen should be performed prior to the procedure in infants with a family history of serious bleeding disorders.

HEARING SCREENING

Normal hearing is critical to normal language development. Significant bilateral hearing loss is present in 1–3 infants per 1000 well neonates and in 2–4 per 100 neonates in the intensive care unit population. Infants should be screened for hearing loss by auditory brainstem evoked responses or evoked otoacoustic emissions as early as possible because up to 40% of hearing loss will be missed by risk analysis alone. Primary care providers and parents should be advised of the possibility of hearing loss and offered immediate referral in suspect cases. With the use of universal screening, the average age at which hearing loss is confirmed has dropped from 24–30 months to 2–3 months. If remediation is begun by 6 months, language and social development are commensurate with physical development.

COMMON PROBLEMS IN THE TERM NEWBORN

NEONATAL JAUNDICE

General Considerations

Sixty-five percent of newborns develop visible jaundice with a total serum bilirubin (TSB) level higher than 6 mg/dL during the first week of life. Bilirubin, a potent antioxidant and peroxyl scavenger, may protect the normal newborn, who is deficient in antioxidants such as vitamin E, catalase, and super-oxide dismutase, from oxygen toxicity in the first days of life. Approximately 8%–10% of newborns develop excessive hyperbilirubinemia (TSB > 17 mg/dL), and 1%–2% have TSB above 20 mg/dL. Extremely high and potentially dangerous TSB levels are rare. Approximately 1 in 700 infants have TSB higher than 25 mg/dL, and 1 in 10,000 have TSB above 30 mg/dL. Such high levels can cause kernicterus, characterized by injury to the basal ganglia and brainstem.

Kernicterus caused by hyperbilirubinemia was common in neonates with Rh-isoimmunization until the institution of exchange transfusion for affected infants and postpartum high-titer Rho (D) immune globulin treatment to prevent sensitization of Rh-negative mothers. For several decades after the introduction of exchange transfusion and phototherapy aimed at keeping the neonate’s TSB below 20 mg/dL, there were no reported cases of kernicterus in the United States. Since the early 1990s, however, there has been a reappearance of kernicterus, with more than 120 cases reported. Common factors in the recent cases are newborn discharge before 48 hours, breast feeding, delayed measurement of TSB, unrecognized hemolysis, lack of early post discharge follow-up, and failure to recognize the early symptoms of bilirubin encephalopathy.

Bilirubin is produced by the breakdown of heme (iron protoporphyrin) in the reticuloendothelial system and bone marrow. Heme is cleaved by heme oxygenase to iron, which is conserved; carbon monoxide, which is exhaled; and biliverdin, which is converted to bilirubin by bilirubin reductase. Each gram of hemoglobin yields 34 mg of bilirubin (1 mg/dL = 17.2 mmol/L of bilirubin). This unconjugated bilirubin is bound to albumin and carried to the liver, where it is taken up by hepatocytes. In the presence of the enzyme uridyldiphosphoglucuronyl transferase (UDPGT; glucuronyl transferase), bilirubin is conjugated to one or two glucuronide molecules. Conjugated bilirubin is then excreted through the bile into the intestine. In the presence of normal gut flora, conjugated bilirubin is metabolized to stercobilins and excreted in the stool. Absence of gut flora and slow GI motility, both characteristics of the newborn, cause stasis of conjugated bilirubin in the intestinal lumen, where mucosal β-glucuronidase removes the glucuronide molecules and leaves unconjugated bilirubin to be reabsorbed (enterohemorrhagic circulation).

Excess accumulation of bilirubin in blood depends on both the rate of bilirubin production and the rate of excretion. It is best determined by reference to an hour-specific TSB level above the 95th percentile for age in hours (Figure 2–2).

1. Physiologic Jaundice

- Visible jaundice appearing after 24 h of age.
- Total bilirubin rises by < 5 mg/dL (86 mmol/L) per day.
Peak bilirubin occurs at 3–5 d of age, with a total bilirubin of no more than 15 mg/dL (258 mmol/L).

Visible jaundice resolves by 1 wk in the full-term infant and by 2 wk in the preterm infant.

Factors contributing to physiologic jaundice in neonates include low UDPGT activity, relatively high red cell mass, absence of intestinal flora, slow intestinal motility, and increased enterohepatic circulation of bilirubin in the first days of life. Hyperbilirubinemia outside of the ranges noted in Figure 2–2 is not physiologic and requires further evaluation.

2. Pathologic Unconjugated Hyperbilirubinemia

Pathologic unconjugated hyperbilirubinemia can be grouped into two main categories: overproduction of bilirubin or decreased conjugation of bilirubin (Table 2–7). The TSB is a reflection of the balance between these processes. Visible jaundice with a TSB greater than 5 mg/dL before 24 hours of age is most commonly a result of significant hemolysis.

A. Increased Bilirubin Production

Increased bilirubin production is caused by excessive destruction of neonatal red blood cells. Destruction may be mediated by maternal antibodies (Coombs test–positive), or may be due to abnormal red cell membranes (spherocytosis), or abnormal red cell enzymes (glucose-6-phosphate dehydrogenase [G6PD] deficiency) causing decreased red cell life span not mediated by antibodies. Antibodies can be directed against the major blood group antigens (type A or type B infant of a type O mother); the antigens of the Rh-system (D, E, C, d, e, c); and Kell, Duffy, and other antigens.

1. Antibody-mediated hemolysis (Coombs test-positive)

ABO blood group incompatibility—This finding can accompany any pregnancy in a type O mother. Hemolysis is usually mild, but the severity is unpredictable because of variability in the amount of naturally occurring maternal anti-A or anti-B IgG antibodies. Although 20% of
antenatal intervention, fetal or neonatal death often results. The most severe form of Rh-isoimmunization, erythroblastosis fetalis, is characterized by life-threatening anemia, generalized edema, and fetal or neonatal heart failure. Without antenatal intervention, fetal or neonatal death often results. The cornerstone of antenatal management is transfusion of the fetus with Rh-negative cells, either directly into the umbilical vein or into the fetal abdominal cavity. Phototherapy is usually started in these infants upon delivery, with exchange transfusion frequently needed. Intravenous immune globulin (IVIG; 0.5–1 g/kg) given to the infant as soon as the diagnosis is made may decrease the need for exchange transfusion. Ongoing hemolysis occurs until all maternal antibodies are gone; therefore, these infants require monitoring for 2–3 months for recurrent anemia severe enough to require transfusion.

2. Nonimmune hemolysis (Coombs test-negative)

A. Hereditary spherocytosis—This condition is the most common of the red cell membrane defects and causes hemolysis by decreasing red cell deformability. Affected infants may have hyperbilirubinemia severe enough to require exchange transfusion. Splenomegaly may be present. Diagnosis is suspected by peripheral blood smear and family history. See Chapter 30 for a more in-depth discussion.

B. G6PD deficiency—This condition is the most common red cell enzyme defect causing hemolysis, especially in infants of African, Mediterranean, or Asian descent. Onset of jaundice is often later than in isoimmune hemolytic disease, toward 1 week of age. The role of G6PD deficiency in neonatal jaundice is probably underestimated as up to 10%–13% of African Americans are G6PD-deficient. Although the disorder is X-linked, female heterozygotes are also at increased risk of hyperbilirubinemia due to X-chromosome inactivation. In most cases, no triggering agent for hemolysis is found in the newborn. Rather, some infants who develop severe jaundice with G6PD deficiency have been found also to have Gilbert syndrome (see below). Their increased bilirubin production is further exaggerated by a decreased rate of bilirubin conjugation. Since G6PD enzyme activity is high in reticulocytes, neonates with a large number of reticulocytes may have falsely normal enzyme tests. A low G6PD level should always raise suspicions. Repeat testing in suspect cases with initially normal results is indicated at 2–3 months of age. Please also see Chapter 30 for more details.

3. Nonhemolytic increased bilirubin production—Enclosed hemorrhage, such as cephalohematoma, intracranial hemorrhage, or extensive bruising in the skin, can lead to jaundice. Polycythemia leads to jaundice by increased red cell mass, with increased numbers of cells reaching senescence daily. Bowel obstruction, functional or mechanical, leads to an increased enterohepatic circulation of bilirubin.

B. Decreased Rate of Conjugation

1. UDPGT deficiency: Crigler-Najjar syndrome type I (complete deficiency, autosomal recessive) and type II (partial deficiency, autosomal dominant)—These rare conditions result from mutations in the exon or encoding
region of the UDPGT gene that cause complete or nearly complete absence of enzyme activity. Both can cause severe unconjugated hyperbilirubinemia, bilirubin encephalopathy, and death if untreated. In type II, the enzyme can be induced with phenobarbital, which may lower bilirubin levels by 30%–80%. Liver transplantation is curative.

2. Gilbert syndrome—This is a common mild autosomal dominant disorder characterized by decreased hepatic UDPGT activity caused by genetic polymorphism at the promoter region of the UDPGT gene. Approximately 9% of the population is homozygous, and 42% is heterozygous for this abnormality, with a gene frequency of 0.3. Affected individuals tend to develop hyperbilirubinemia in the presence of conditions that increase bilirubin load, including G6PD deficiency. They are also more likely to have prolonged neonatal jaundice and breast-milk jaundice.

C. Hyperbilirubinemia Caused by Unknown or Multiple Factors

1. Racial differences—Asians (23%) are more likely than whites (10%–13%) or African Americans (4%) to have a peak neonatal TSB greater than 12 mg/dL (206 mmol/L). It is likely that these differences result from racial variations in prevalence of UDPGT gene polymorphisms or associated G6PD deficiency.

2. Prematurity—Premature infants often have poor enteral intake, delayed stooling, and increased enterohepatic circulation, as well as a shorter red cell life. Infants at 35–36 weeks’ gestation are 13 times more likely than term infants to be readmitted for hyperbilirubinemia. Even early-term infants (37–38 weeks’ gestation) are four times more likely than term neonates to have TSB greater than 13 mg/dL (224 mmol/L).

3. Breast feeding and jaundice

a. Breast-milk jaundice—Unconjugated hyperbilirubinemia lasting until 2–3 months of age is common in breast-fed infants. An increased prevalence of the Gilbert syndrome promoter polymorphism may be involved. Moderate unconjugated hyperbilirubinemia for 6–12 weeks in a thriving breast-fed infant without evidence of hemolysis, hypothyroidism, or other disease strongly suggests this diagnosis.

b. Breast feeding–associated jaundice—This common condition has also been called “lack-of-breast-milk” jaundice. Breast-fed infants have a higher incidence (9%) of unconjugated serum bilirubin levels greater than 13 mg/dL (224 mmol/L) than do formula-fed infants (2%) and are more likely to have TSB greater than 15 mg/dL (258 mmol/L) than formula-fed infants (2% vs 0.3%). The pathogenesis is probably poor enteral intake and increased enterohepatic circulation. There is no apparent increase in bilirubin production as measured by carbon monoxide exhalation. Although rarely severe enough to cause bilirubin encephalopathy, nearly 100% of the infants with kernicterus reported over the past 20 years were exclusively breast fed, and in 50%, breast feeding was the only known risk factor. Excessive jaundice should be considered a possible sign of failure to establish an adequate milk supply, and should prompt specific inquiries (Table 2–8). If jaundice is inadequate, the infant should receive supplemental formula and the mother should be instructed to nurse more frequently and to use an electric breast pump every 2 hours to enhance milk production. Consultation with a lactation specialist should be considered. Because hospital discharge of normal newborns occurs before the milk supply is established and before jaundice peaks, a follow-up visit 2 days after discharge is recommended by the AAP to evaluate adequacy of intake and degree of jaundice.

3. Bilirubin Toxicity

Unconjugated bilirubin anion is the agent of bilirubin neurotoxicity. The anion binds to the phospholipids (gangliosides) of neuronal plasma membranes causing injury, which then allows more anion to enter the neuron. Intracellular bilirubin anion binds to the membrane phospholipids of subcellular organelles, causing impaired energy metabolism and cell death. The blood-brain barrier undoubtedly has a role in protecting the infant from brain damage, but its integrity is impossible to measure clinically. The amount of albumin available to bind the unconjugated bilirubin anion and the presence of other anions that may displace bilirubin from albumin-binding sites are also important. It is unknown whether there is a fixed level of bilirubin above which brain damage always occurs. The term kernicterus describes the pathologic finding of staining of basal ganglia and brainstem nuclei, as well as the clinical syndrome of chronic brain injury due to hyperbilirubinemia. The term acute bilirubin encephalopathy describes the signs and symptoms of evolving brain injury in the newborn.

The risk of bilirubin encephalopathy is small in healthy, term neonates even at bilirubin levels of 25–30 mg/dL (430–516 mmol/L). Risk depends on the duration of hyperbilirubinemia, the concentration of serum albumin, associated illness, acidosis, and the concentrations of competing anions such as sulfisoxazole and ceftriaxone. Premature infants are at greater risk than term infants because of the greater frequency of associated illness affecting the integrity of the blood-brain barrier, reduced albumin levels.

Table 2–8. Signs of inadequate breast-milk intake.

| Weight loss of > 8%–10% from birth |
| Fewer than six noticeably wet diapers per h by day 3–4 |
| Fewer than six stools per day, or still meconium, by day 3–4 |
| Nursing fewer than eight times per 24 h, or for less than 10 min each feeding |
and decreased affinity of albumin-binding sites. For these reasons, the “exchange level” (the level at which bilirubin encephalopathy is thought likely to occur) in premature infants may be lower than that of a term infant.

4. Acute Bilirubin Encephalopathy

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Lethargy, poor feeding.
- Irritability, high-pitched cry.
- Arching of the neck (retrocollis) and trunk (opisthotonos).
- Apnea, seizures, coma (late).

Newborn infants with evolving acute bilirubin encephalopathy may be described as “sleepy and not interested in feeding.” Although these symptoms are nonspecific, they are also the earliest signs of acute bilirubin encephalopathy and should trigger, in the jaundiced infant, a detailed evaluation of the birth and postnatal history, feeding and elimination history, an urgent assessment for signs of bilirubin-induced neurologic dysfunction (BIND), and a TSB and albumin measurement. A scoring system has been proposed (Table 2–9) to monitor the severity and progression of bilirubin encephalopathy. A score of 4–6 indicates progressive encephalopathy likely to be reversible with aggressive treatment, whereas a score of 7–9 represents advanced and possibly irreversible damage.

5. Chronic Bilirubin Encephalopathy (Kernicterus)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Extrapyramidal movement disorder (choreoathetoid cerebral palsy).
- Gaze abnormality, especially limitation of upward gaze.
- Auditory disturbances (deafness, failed auditory brainstem evoked response with normal evoked otoacoustic emissions, auditory neuropathy, auditory dyssynchrony).
- Dysplasia of the enamel of the deciduous teeth.

Kernicterus is an irreversible brain injury characterized by choreoathetoid cerebral palsy and hearing impairment. Intelligence is probably normal but may be difficult to assess because of associated hearing, communication, and coordination problems. The diagnosis is clinical but is strengthened if audiologic testing shows auditory neuropathy and auditory dyssynchrony in which the otoacoustic emission test is normal but the auditory brainstem response is absent. Infants with such findings are usually deaf. Infants with milder kernicterus may have normal audiograms but abnormal auditory processing and subsequent problems with speech comprehension. Magnetic resonance imaging (MRI) scanning of the brain is nearly diagnostic if it shows abnormalities isolated to the globus pallidus or the subthalamic nuclei, or both.

Table 2-9. BIND scoring system.

<table>
<thead>
<tr>
<th>Mental status</th>
<th>1 Point (Non-specific, Subtle)</th>
<th>2 Points (Progressive Toxicity)</th>
<th>3 Points (Advanced Toxicity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleepy, poor feeding</td>
<td>Lethargy + irritability</td>
<td>Hypertonia or hypotonia, depending on arousal state or Mild arching</td>
<td>Markedly increased (opisthotonus) or decreased or Bicycling</td>
</tr>
<tr>
<td>Slight decrease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-pitched</td>
<td>Shriil</td>
<td></td>
<td>Inconsolable</td>
</tr>
</tbody>
</table>

BIND, bilirubin-induced neurologic dysfunction.

Correlation between TSB level and neurotoxicity is poor. Although 65% of recently reported cases of kernicterus had TSB levels above 35 mg/dL, 15% had levels below 30 mg/dL, and 8% were below 25 mg/dL. Measurement of free, unbound, unconjugated bilirubin (Bf) may be a more meaningful predictor of risk for brain injury, although this test is not yet clinically available. Currently the most sensitive means of assessing neurotoxicity may be the auditory brainstem evoked response, which shows predictable, early effects of bilirubin toxicity.
Evaluation of Hyperbilirubinemia

Because most newborns are discharged at 24–48 hours of age, before physiologic jaundice peaks and before maternal milk supply is established, a predischarge TSB or a transcutaneous bilirubin measurement (TcB) may help predict which infants are at risk for severe hyperbilirubinemia. In all infants, an assessment of risk for severe hyperbilirubinemia should be performed before discharge (Table 2–10). As recommended by the AAP, follow-up within 24–48 hours for all infants discharged before 72 hours of age (depending on the number of risk factors present) is imperative. Although jaundice is usually visible above a TSB level of 5 mg/dL (86 mmol/L), visual estimation of the bilirubin level is inaccurate. TSB should be measured and interpreted based on the age of the infant in hours at the time of sampling. Term infants with a TSB level greater than the 95th percentile for age in hours have a 40% risk of developing significant hyperbilirubinemia (see Figure 2–2). Serial bilirubin levels should be obtained from a single laboratory whenever possible to make interpretation of serial measurements more meaningful.

It is important to remember that these nomograms apply only to early-term and full-term infants, 36 weeks and older. Infants with visible jaundice on the first day of life or who develop excessive jaundice require further evaluation. The minimal evaluation consists of the following:

- Feeding and elimination history.
- Birth weight and percent weight change since birth.
- Examination for sources of excessive heme breakdown.
- Assessment of blood type, Coombs testing, complete blood count (CBC) with smear, serum albumin, and TSB.
- G6PD test if jaundice is otherwise unexplained, and in African-American infants with severe jaundice.
- Fractionated bilirubin level in infants who appear ill, those with prolonged jaundice, acholic stool, hepatosplenomegaly, or dark urine.

Table 2–10. Factors affecting the risk of severe hyperbilirubinemia in infants 35 or more weeks’ gestation (in approximate order of importance).

<table>
<thead>
<tr>
<th>Major risk factors</th>
<th>Minor risk factors</th>
<th>Decreased risk (these factors are associated with decreased risk of significant jaundice, listed in order of decreasing importance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predischarge TSB or TcB level in the high-risk zone (> 95th percentile; see Figure 2-2)</td>
<td>Predischarge TSB or TcB level in the high-intermediate-risk zone (75-95th percentile)</td>
<td>TSB or TcB level in the low-risk zone (see Figure 2-2)</td>
</tr>
<tr>
<td>Jaundice observed in the first 24 h</td>
<td>Gestational age 35-36 wk</td>
<td>Gestational age ≥ 41 wk</td>
</tr>
<tr>
<td>Blood group incompatibility with positive direct Coombs test, other known hemolytic disease (eg, G6PD deficiency), or elevated ETCO</td>
<td>Previous sibling required phototherapy</td>
<td>Exclusive bottle feeding</td>
</tr>
<tr>
<td>Cephalohematoma or significant bruising</td>
<td>Gestational age 37-38 wk</td>
<td>Black racea</td>
</tr>
<tr>
<td>Exclusive breast feeding, particularly if weight loss is excessive</td>
<td>Jaundice observed before discharge</td>
<td>Discharge from hospital after 72 h</td>
</tr>
<tr>
<td>East Asian racea</td>
<td>Previous sibling with jaundice</td>
<td></td>
</tr>
<tr>
<td>Macrosomic infant of a diabetic mother</td>
<td>Macrosomic infant of a diabetic mother</td>
<td></td>
</tr>
</tbody>
</table>

ETCO, end-tidal carbon monoxide; G6PD, glucose-6-phosphate dehydrogenase; TcB, transcutaneous bilirubin; TSB, total serum bilirubin.

aRace as defined by mother’s description.

Treatment of Indirect Hyperbilirubinemia

A. Phototherapy

Phototherapy is the most common treatment for indirect hyperbilirubinemia. It is relatively noninvasive and safe. Light of wavelength 425–475 nm (blue-green spectrum) is absorbed by unconjugated bilirubin in the skin converting it to a water-soluble stereoisomer that can be excreted in bile without conjugation. The minimum effective light dose is 10–14 μW/cm² irradiance. Intensive phototherapy employs irradiance of 30 μW/cm² or higher. Irradiance can be increased by increasing the exposed body surface area or by moving the light source closer to the infant. Fiberoptic blankets are useful as adjuncts but are not adequate as sole therapy for term infants because they do not cover sufficient surface area. Intensive phototherapy should decrease TSB by 30%–40% in the first 24 hours, most significantly in the first 4–6 hours. The infant’s eyes should be shielded to prevent retinal damage. Diarrhea, which sometimes occurs during phototherapy, can be treated if necessary by feeding a nonlactose-containing formula.

Phototherapy is started electively when the TSB is approximately 6 mg/dL (102 mmol/L) lower than the predicted exchange level for that infant (eg, at 16–19 mg/dL [272–323 mmol/L] for a full-term infant for whom exchange transfusion would be considered at a TSB of approximately 22–25 mg/dL [374–425 mmol/L]). AAP guidelines for phototherapy and exchange transfusion in infants of 35 or more weeks’ gestation are shown in Figures 2–3 and 2–4. Hyperbilirubinemic infants should be fed by mouth if possible to decrease enterohepatic bilirubin circulation. Casein hydrolysate formula to supplement breast milk decreases enterohepatic circulation by inhibiting mucosal β-glucuronidase activity. IVIG (0.5–1.0 g/kg) in severe antibody-mediated hemolysis may interrupt the hemolytic process. Although phototherapy has been shown to decrease
the need for exchange transfusion, its long-term benefits, if any, in infants with less severe jaundice are unknown.

B. Exchange Transfusion

Although most infants with indirect hyperbilirubinemia can be treated with phototherapy, extreme indirect hyperbilirubinemia is a medical emergency. Infants should be admitted at once to a neonatal intensive care unit where exchange transfusion can be performed before irreversible neurologic damage occurs. Intensive phototherapy should be instituted immediately, during transport to the hospital if possible. As TSB nears the potentially toxic range, serum albumin should be determined. Albumin (1 g/kg) will aid in binding and removal of bilirubin during exchange transfusion, as well as afford some neuroprotection while preparing for the procedure. Table 2–11 illustrates the bilirubin/albumin ratios at which exchange transfusion should be considered.

Double-volume exchange transfusion (approximately 160–200 mL/kg body weight) is most often required in infants with extreme hyperbilirubinemia secondary to Rh isoimmunization, ABO incompatibility, or hereditary spherocytosis. The procedure decreases serum bilirubin acutely by approximately 50% and removes about 80% of sensitized or abnormal red blood cells and offending antibody so that ongoing hemolysis is decreased. Exchange transfusion is also indicated in any infant with TSB above 30 mg/dL, in infants with signs of encephalopathy, or when intensive phototherapy has not lowered TSB by at least 0.5 mg/dL/h after 4 hours. The decision to perform exchange transfusion should be based on TSB, not on the indirect fraction of bilirubin.

Exchange transfusion is invasive, potentially risky, and infrequently performed. It should therefore be performed at a referral center. Mortality is 1%–5% and is greatest in the smallest, most immature, and unstable infants. Sudden death during the procedure can occur in any infant. There
A 5%–10% risk of serious complications such as necrotizing enterocolitis (NEC), infection, electrolyte disturbances, or thrombocytopenia. Isovolemic exchange (withdrawal through an arterial line with infusion through a venous line) may decrease the risk of some complications.

C. Protoporphyrins

Tin and zinc protoporphyrin or mesoporphyrin (Sn-PP, Zn-PP; Sn-MP, Zn-MP) are inhibitors of heme oxygenase, the enzyme that initiates the catabolism of heme (iron protoporphyrin). Studies are underway involving a single injection of these substances shortly after birth to prevent...
the formation of bilirubin. Although results are promising, these drugs are not yet approved for use in the United States.

HYPOGLYCEMIA

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

► Blood glucose < 40 mg/dL at birth to 4 h, or < 45 mg/dL at 4-24 h of age.
► LGA, SGA, preterm, and stressed infants at risk.
► May be asymptomatic.
► Infants can present with lethargy, poor feeding, irritability, or seizures.

► General Considerations

Blood glucose concentration in the fetus is approximately 15 mg/dL less than maternal glucose concentration. Glucose concentration decreases in the immediate postnatal period, to as low as 30 mg/dL in many healthy infants at 1–2 hours after birth. Concentrations below 40 mg/dL after the first feeding are considered hypoglycemic. By 3 hours, the glucose concentration in normal full-term infants stabilizes at ≥ 45 mg/dL. The two groups of full-term newborn infants at highest risk for hypoglycemia are infants of diabetic mothers (IDMs) and IUGR infants.

A. Infants of Diabetic Mothers

The infant of a diabetic mother (IDM) has abundant glucose stores in the form of glycogen and fat but develops hypoglycemia because of hyperinsulinemia induced by maternal and fetal hyperglycemia. Increased energy supply to the fetus from the maternal circulation results in a macrosomic infant. The large infant is at increased risk for trauma during delivery. Some infants have cardiomyopathy (asymmetrical septal hypertrophy) which may present with murmur, respiratory distress, or cardiac failure. Microcolon is occasionally present in IDMs and causes symptoms of low intestinal obstruction similar to Hirschsprung disease. Other neonatal problems include hypercoagulability and polycythemia, a combination that predisposes the infant to large vein thromboses (especially the renal vein). IDMs are often somewhat immature for their gestational age and are at increased risk for surfactant deficiency, hypocalcemia, feeding difficulties, and hyperbilirubinemia. Infants of mothers who were diabetic at conception have a higher incidence of congenital anomalies, probably related to first-trimester glucose control.

B. Intrauterine Growth-Restricted Infants

The intrauterine growth-restricted (IUGR) infant has reduced glucose stores in the form of glycogen and body fat and is prone to hypoglycemia. In addition, marked hyperglycemia and a transient diabetes mellitus–like syndrome occasionally develop, particularly in the very premature IUGR infant. These problems usually respond to adjustment in glucose intake, although insulin is sometimes needed transiently. Some IUGR infants have hyperinsulinemia that persists for a week or more.

C. Other Causes of Hypoglycemia

Hypoglycemia occurs in disorders with islet cell hyperplasia including the Beckwith-Wiedemann syndrome, nesidioblastosis, and other genetic forms of hyperinsulinism. Hypoglycemia also occurs in certain inborn errors of metabolism such as glycogen storage disease and galactosemia. Endocrine causes of hypoglycemia include adrenal insufficiency and hypopituitarism, the latter of which should be suspected in the setting of hypoglycemia and microphens. Hypoglycemia also occurs in infants with birth asphyxia, hypoxia, and bacterial or viral sepsis.

► Clinical Findings and Monitoring

The signs of hypoglycemia in the newborn infant may be non-specific and subtle: lethargy, poor feeding, irritability, tremors, jitteriness, apnea, and seizures. Hypoglycemia due to increased
insulin is the most severe and most resistant to treatment. Cardiac failure may occur in severe cases, particularly in IDMs with cardiomyopathy. Hypoglycemia in hyperinsulinemic states can develop within the first 30–60 minutes of life.

Blood glucose can be measured by heelstick using a bedside glucometer. All infants at risk should be screened, including IDMs, IUGR infants, premature infants, and any infant with suggestive symptoms. All low or borderline values should be confirmed by laboratory measurement of blood glucose concentration. It is important to continue surveillance of glucose concentration until the baby has been on full enteral feedings without intravenous supplementation for 24 hours, with a target of > 45 mg/dL before feeding. Relapse of hypoglycemia thereafter is unlikely.

Infants with hypoglycemia requiring IV glucose infusions for more than 5 days should be evaluated for less common disorders, including inborn errors of metabolism, hyperinsulinemic states, and deficiencies of counterregulatory hormones.

Treatment

Therapy is based on the provision of enteral or parenteral glucose. Treatment guidelines are shown in Table 2–12. In hyperinsulinemic states, glucose boluses should be avoided and a higher glucose infusion rate used. After initial correction with a bolus of 10% dextrose in water (D$_{10}$W; 2 mL/kg), glucose infusion should be increased gradually as needed from a starting rate of 6 mg/kg/min. IDMs and IUGR infants with polycythemia are at greatest risk for symptomatic hypoglycemia.

Prognosis

The prognosis of hypoglycemia is good if therapy is prompt. CNS sequelae are more common in infants with hypoglycemic seizures and in neonates with persistent hyperinsulinemic hypoglycemia. Hypoglycemia may also potentiate brain injury after perinatal depression or other insults, and should be avoided.

Table 2–12. Hypoglycemia: suggested therapeutic regimens.

<table>
<thead>
<tr>
<th>Screening Test a</th>
<th>Presence of Symptoms</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>30–40 mg/dL</td>
<td>No symptoms of hypoglycemia</td>
<td>Draw blood glucose b; if the infant is alert and vigorous, feed; follow with frequent glucose monitoring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the infant continues to have blood glucose < 40 mg/dL, or is unable to feed, provide intravenous glucose at 6 mg/kg/min (D$_{10}$W at 3.6 mL/kg/h).</td>
</tr>
<tr>
<td>< 40 mg/dL</td>
<td>Symptoms of hypoglycemia present</td>
<td>Draw blood glucose b; provide bolus of D$_{10}$W (2 mL/kg) followed by an infusion of 6 mg/kg/min (3.6 mL/kg/h).</td>
</tr>
<tr>
<td>< 30 mg/dL</td>
<td>With or without symptoms of hypoglycemia</td>
<td>Draw blood glucose b; provide bolus of D$_{10}$W followed by an infusion of 6 mg/kg/min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If IV access cannot be obtained immediately, an umbilical vein line should be used.</td>
</tr>
</tbody>
</table>

aRapid bedside determination.

bLaboratory confirmation.

RESPIRATORY DISTRESS IN THE TERM NEWBORN INFANT

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Tachypnea, respiratory rate > 60 breaths/min.
- Intercostal and sternal retractions.
- Expiratory grunting.
- Cyanosis in room air.

General Considerations

Respiratory distress is one of the most common symptom complexes of the newborn. It may result from cardiopulmonary and noncardiopulmonary causes (Table 2–13). Chest radiography, arterial blood gases, and pulse oximetry are useful in assessing the cause and severity of the distress. It is important to consider the noncardiopulmonary causes (see Table 2–13), because the natural tendency is to focus on the heart and lungs. Most of the noncardiopulmonary causes can be ruled out by the history, physical examination, and a few simple laboratory tests. The most common pulmonary causes of respiratory distress in the full-term infant are transient tachypnea, aspiration syndromes, congenital pneumonia, and air leaks.
Table 2–13. Causes of respiratory distress in the newborn.

<table>
<thead>
<tr>
<th>Noncardiopulmonary</th>
<th>Cardiovascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothermia or hyperthermia</td>
<td>Left-sided outflow tract obstruction</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>Hypoplastic left heart</td>
</tr>
<tr>
<td>Polycythemia</td>
<td>Aortic stenosis</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>Coarctation of the aorta, interrupted aortic arch</td>
</tr>
<tr>
<td>Drug intoxications or withdrawal</td>
<td>Cyanotic lesions</td>
</tr>
<tr>
<td>Insult to the central nervous system</td>
<td>Transposition of the great vessels</td>
</tr>
<tr>
<td>Asphyxia</td>
<td>Total anomalous pulmonary venous return</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>Tricuspid atresia</td>
</tr>
<tr>
<td>Neur muscular disease</td>
<td>Right-sided outflow obstruction</td>
</tr>
<tr>
<td>Phrenic nerve injury</td>
<td>Skeletal dysplasia</td>
</tr>
<tr>
<td>Skeletal dysplasia</td>
<td></td>
</tr>
</tbody>
</table>

Respiratory Tract

<table>
<thead>
<tr>
<th>Upper airway obstruction</th>
<th>Lobar emphysema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choanal atresia</td>
<td>Cystic adenomatoid malformation</td>
</tr>
<tr>
<td>Vocal cord paralysis</td>
<td>Congenital diaphragmatic hernia</td>
</tr>
<tr>
<td>Subglottic stenosis</td>
<td></td>
</tr>
<tr>
<td>Lingual thyroid</td>
<td></td>
</tr>
<tr>
<td>Meconium aspiration</td>
<td></td>
</tr>
<tr>
<td>Clear fluid aspiration</td>
<td></td>
</tr>
<tr>
<td>Transient tachypnea</td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td></td>
</tr>
<tr>
<td>Pulmonary hypoplasia</td>
<td></td>
</tr>
<tr>
<td>Hyaline membrane disease</td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td></td>
</tr>
<tr>
<td>Pleural effusions</td>
<td></td>
</tr>
<tr>
<td>Mass lesions</td>
<td></td>
</tr>
</tbody>
</table>

A. Transient Tachypnea (Retained Fetal Lung Fluid)

Respiratory distress is typically present at birth, usually associated with a mild-to-moderate oxygen requirement (25%–50% O₂). The infant is usually full term or late preterm, nonasphyxiated, and born following a short labor or cesarean section without labor. The pathogenesis of the disorder is related to delayed clearance of fetal lung fluid via the circulation and pulmonary lymphatics. The chest radiograph shows perihilar streaking and fluid in interlobar fissures. Resolution usually occurs within 12–24 hours. Nasal CPAP can be very helpful in the clearance of the fluid.

B. Aspiration Syndromes

Aspiration syndromes typically occur in full term or late preterm infants with fetal distress prior to delivery or depression at delivery. Blood or meconium is often present in the amniotic fluid. Aspiration of meconium most commonly occurs in utero as a stressed infant gasps. Delivery room management of these infants is discussed in the resuscitation section. Respiratory distress is present from birth, often accompanied by a barrel chest appearance and coarse breath sounds. Pneumonitis may cause an increasing O₂ need and may require intubation and ventilation. The chest radiograph shows coarse irregular infiltrates, hyperexpansion, and in the worst cases, lobar consolidation. In some cases, because of secondary surfactant deficiency, the radiograph shows a diffuse homogeneous infiltrate pattern. Infants who aspirate are at risk of pneumothorax because of uneven aeration with segmental overdistention and are at risk for persistent pulmonary hypertension (see section on Cardiac Problems in the Newborn Infant, later).

C. Congenital Pneumonia

The lungs are the most common site of infection in the neonate. Infections usually ascend from the genital tract before or during labor, with the vaginal or rectal flora the most likely agents (group B streptococci and Escherichia coli). Infants of any gestational age, with or without a history of prolonged rupture of membranes, chorioamnionitis, or maternal antibiotic administration, may be affected. Respiratory distress may begin at birth or may be delayed for several hours. The chest radiograph may resemble that of retained lung fluid or hyaline membrane disease. Rarely, there may be a lobar infiltrate or pleural effusion. Shock, poor perfusion, absolute neutropenia (< 2000/mL), and elevated C-reactive protein provide supportive evidence for pneumonia. Gram stain of tracheal aspirate may be helpful. Because no signs or laboratory findings can confirm a diagnosis of pneumonia, all infants with respiratory distress should have a blood culture performed and should receive broad-spectrum antibiotic therapy (ampicillin, 100 mg/kg in two divided doses, and gentamicin, 4 mg/kg q24h or 2.5 mg/kg q12h) until the diagnosis of bacterial infection is eliminated.

D. Spontaneous Pneumothorax

Spontaneous pneumothorax occurs in 1% of all deliveries. Risk is increased by manipulations such as positive-pressure ventilation (PPV). Respiratory distress (primarily tachypnea) is present from birth and typically is not severe. Breath sounds may be decreased on the affected side; heart...
tones may be shifted toward the opposite side and may be distant. The chest radiograph shows pneumothorax or pneumomediastinum.

Treatment usually consists of supplemental O₂ and watchful waiting. Breathing 100% O₂ for a few hours may accelerate reabsorption of extrapulmonary gas by creating a diffusion gradient for nitrogen across the surface of the lung (nitrogen washout technique). This is effective only if the infant was breathing room air or a low O₂ concentration at the time of the pneumothorax; the long-term effects of the use of 100% O₂ in this way are unknown. Drainage by needle thoracentesis or tube thoracostomy is occasionally required. There is a slightly increased risk of renal abnormalities associated with spontaneous pneumothorax. Thus, careful physical examination of the kidneys and observation of urine output are indicated. If pulmonary hypoplasia with pneumothorax is suspected, renal ultrasound is also indicated.

E. Other Respiratory Tract Causes

Other respiratory tract causes of respiratory distress are rare. Bilateral choanal atresia should be suspected if there is no air movement when the infant breathes through the nose. These infants have good color and heart rate while crying at delivery but become cyanotic and bradycardic when they resume normal nasal breathing. Other causes of upper airway obstruction usually produce some degree of stridor or poor air movement despite good respiratory effort. Pleural effusion is likely in hydropic infants. Space-occupying lesions cause a shift of the mediastinum with asymmetrical breath sounds and are apparent on chest radiographs. Many are associated with severe respiratory distress.

Treatment

Whatever the cause, neonatal respiratory distress is treated with supplemental oxygen sufficient to maintain a PaO₂ of 60–70 mm Hg and an oxygen saturation by pulse oximetry (SpO₂) of 92%–96%. Oxygen should be warmed, humidified, and delivered through an air blender. Concentration should be measured with a calibrated oxygen analyzer. An umbilical or peripheral arterial line should be inserted in infants requiring more than 45% fraction of inspired oxygen (Fio₂) by 4–6 hours of life to allow frequent blood gas determinations. Noninvasive monitoring with pulse oximetry should be used.

Other supportive treatment includes IV glucose and water. Unless infection can be ruled out, blood cultures should be obtained and broad-spectrum antibiotics started. Volume expansion (normal saline) can be given in infusions of 10 mL/kg over 30 minutes for low blood pressure, poor perfusion, and metabolic acidosis. Other specific testing should be done as indicated by the history and physical examination. In most cases, a chest radiograph, blood gas measurements, CBC, and blood glucose determination allow a diagnosis.

Intubation and ventilation should be undertaken if there is respiratory failure (PaO₂ < 60 mm Hg in > 60% Fio₂, Paco₂ > 60 mm Hg, or recurrent apnea). Peak pressures should be adequate to produce chest wall expansion and audible breath sounds (usually 18–24 cm H₂O). Positive end-expiratory pressure (4–6 cm H₂O) should be used. Ventilation rates of 20–40 breaths/min are usually required. The goal is to maintain a PaO₂ of 60–70 mm Hg and a Paco₂ of 45–55 mm Hg.

Prognosis

Most respiratory conditions of the full-term infant are acute and resolve in the first several days. Meconium aspiration and congenital pneumonia carry a mortality rate of up to 10% and can produce significant long-term pulmonary morbidity. Mortality has been reduced by use of high-frequency oscillatory ventilation and inhaled nitric oxide for treatment of pulmonary hypertension. Only rarely is extracorporeal membrane oxygenation (ECMO) needed as rescue therapy.

E. Other Respiratory Tract Causes

Other respiratory tract causes of respiratory distress are rare. Bilateral choanal atresia should be suspected if there is no air movement when the infant breathes through the nose. These infants have good color and heart rate while crying at delivery but become cyanotic and bradycardic when they resume normal nasal breathing. Other causes of upper airway obstruction usually produce some degree of stridor or poor air movement despite good respiratory effort. Pleural effusion is likely in hydropic infants. Space-occupying lesions cause a shift of the mediastinum with asymmetrical breath sounds and are apparent on chest radiographs. Many are associated with severe respiratory distress.

Treatment

Whatever the cause, neonatal respiratory distress is treated with supplemental oxygen sufficient to maintain a PaO₂ of 60–70 mm Hg and an oxygen saturation by pulse oximetry (SpO₂) of 92%–96%. Oxygen should be warmed, humidified, and delivered through an air blender. Concentration should be measured with a calibrated oxygen analyzer. An umbilical or peripheral arterial line should be inserted in infants requiring more than 45% fraction of inspired oxygen (Fio₂) by 4–6 hours of life to allow frequent blood gas determinations. Noninvasive monitoring with pulse oximetry should be used.

Other supportive treatment includes IV glucose and water. Unless infection can be ruled out, blood cultures should be obtained and broad-spectrum antibiotics started. Volume expansion (normal saline) can be given in infusions of 10 mL/kg over 30 minutes for low blood pressure, poor perfusion, and metabolic acidosis. Other specific testing should be done as indicated by the history and physical examination. In most cases, a chest radiograph, blood gas measurements, CBC, and blood glucose determination allow a diagnosis.

Intubation and ventilation should be undertaken if there is respiratory failure (PaO₂ < 60 mm Hg in > 60% Fio₂, Paco₂ > 60 mm Hg, or recurrent apnea). Peak pressures should be adequate to produce chest wall expansion and audible breath sounds (usually 18–24 cm H₂O). Positive end-expiratory pressure (4–6 cm H₂O) should be used. Ventilation rates of 20–40 breaths/min are usually required. The goal is to maintain a PaO₂ of 60–70 mm Hg and a Paco₂ of 45–55 mm Hg.

Prognosis

Most respiratory conditions of the full-term infant are acute and resolve in the first several days. Meconium aspiration and congenital pneumonia carry a mortality rate of up to 10% and can produce significant long-term pulmonary morbidity. Mortality has been reduced by use of high-frequency oscillatory ventilation and inhaled nitric oxide for treatment of pulmonary hypertension. Only rarely is extracorporeal membrane oxygenation (ECMO) needed as rescue therapy.
difference, the infant can be discharged home with follow-up in 2–3 days for auscultation and evaluation for signs of congestive failure. If signs of congestive failure or cyanosis are present, the infant should be referred for evaluation without delay. If the murmur persists without these signs, the infant can be referred for elective evaluation at age 2–4 weeks. Many centers now perform routine pulse oximetry screening in the nursery to identify infants with serious congenital heart disease. Oxygen saturation less than 95% at sea level is evaluated by clinical assessment and echocardiogram.

Mahle WT et al, on behalf of the American Heart Association Congenital Heart Defects Committee of the Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, and Interdisciplinary Council on Quality of Care and Outcomes Research, and the American Academy of Pediatrics Section on Cardiology and Cardiac Surgery, and Committee on Fetus and Newborn: Role of pulse oximetry in examining newborns for congenital heart disease: a scientific statement from the AHA and AAP. Pediatrics 2009;124:823 [PMID: 19581259].

BIRTH TRAUMA

Most birth trauma is associated with difficult delivery (e.g., large fetus, abnormal presenting position, or fetal distress requiring rapid extraction). The most common injuries are soft tissue bruising, fractures (clavicle, humerus, or femur), and cervical plexus palsies. Skull fracture, intracranial hemorrhage (primarily subdural and subarachnoid), and cervical spinal cord injury can also occur.

Fractures are often diagnosed by the obstetrician, who may feel or hear a snap during delivery. Clavicular fractures may cause decreased spontaneous movement of the arm, with local tenderness and crepitus. Humeral or femoral fractures usually cause tenderness and swelling over the shaft with a diaphyseal fracture, and always cause limitation of movement. Epiphyseal fractures are harder to diagnose radiographically owing to the cartilaginous nature of the epiphysis. After 8–10 days, callus is visible on radiographs. Treatment consists of gentle handling, with immobilization for 8–10 days: the humerus against the chest with elbow flexed; the femur with a posterior splint from below the knee to the buttock.

Brachial plexus injuries may result from traction as the head is pulled away from the shoulder during delivery. Injury to the C5–C6 roots is most common (Erb-Duchenne palsy). The arm is limp, adducted, and internally rotated, extended and pronated at the elbow, and flexed at the wrist (so-called waiter’s tip posture). Grasp is present. If the lower nerve roots (C8–T1) are injured (Klumpke palsy), the hand is flaccid. If the entire plexus is injured, the arm and hand are flaccid, with associated sensory deficit. Early treatment for brachial plexus injury is conservative, because function usually returns over several weeks. Referral should be made to a physical therapist so that parents can be instructed on range-of-motion exercises, splinting, and further evaluation if needed. Return of function begins in the deltoid and biceps, with recovery by 3 months in most cases.

Spinal cord injury can occur at birth, especially in difficult breech extractions with hyperextension of the neck, or in midforceps rotations when the body fails to turn with the head. Infants are flaccid, quadriplegic, and without respiratory effort at birth. Facial movements are preserved. The long-term outlook for such infants is poor.

Facial nerve palsy is sometimes associated with forceps use but more often results from in-utero pressure of the baby’s head against the mother’s sacrum. The infant has asymmetrical mouth movements and eye closure with poor facial movement on the affected side. Most cases resolve spontaneously in a few days to weeks.

Subgaleal hemorrhage into the large potential space under the scalp (Figure 2–5) is associated with difficult vaginal deliveries and repeated attempts at vacuum extraction. It can lead to hypovolemic shock and death from blood loss.

loss and coagulopathy triggered by consumption of clotting factors. This is an emergency requiring rapid replacement of blood and clotting factors.

INFANTS OF MOTHERS WHO ABUSE DRUGS

Studies demonstrate that 11% of pregnant women use alcohol, 5% use illicit drugs, and 16% use tobacco. Use of illegal drugs, including marijuana, opiates, cocaine, and methamphetamine, is highest in 15–17 year olds (16%). Because mothers may abuse many drugs and give an unreliable history of drug usage, it is difficult to pinpoint which drug is causing the morbidity seen in a newborn infant. Early hospital discharge makes recognition of these infants based on physical findings and abnormal behavior difficult. Except for alcohol, a birth defect syndrome has not been clearly defined for any other substance of abuse.

1. Cocaine & Methamphetamine

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Triad of no prenatal care, premature delivery, placental abruption.
- Possible IUGR.
- Irritability.

Cocaine and methamphetamine are currently the most common hard drugs used during pregnancy, often in association with other drugs such as tobacco, alcohol, and marijuana. These stimulants can cause maternal hypertension, decreased uterine blood flow, fetal hypoxemia, uterine contractions, and placental abruption. Rates of stillbirth, placental abruption, symmetric IUGR, and preterm delivery are increased two- to fourfold in users. In the high-risk setting of no prenatal care, placental abruption, and preterm labor, urine toxicology screens should be performed on the mother and infant; consent from the mother for testing her urine may be required. Meconium should be sent for drug screening as it enhances diagnosis by indicating cumulative drug exposure from the first trimester forward. Although no specific malformation complex or withdrawal syndrome is described for cocaine and methamphetamine abuse, infants may show irritability and growth restriction.

Children of mothers who use methamphetamines are at particularly high risk for neglect and abuse. Social services evaluation is especially important to assess the home environment for these risks. The risk of SIDS is three to seven times higher in infants of users than in those of nonusers (0.5%–1% of exposed infants). The risk may be lessened by environmental interventions such as avoidance of tobacco smoke and supine infant positioning. Long-term neurobehavioral effects have been described.

2. Opioids

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- CNS—irritability, hyperactivity, hypertonicity, incessant high-pitched cry, tremors, seizures.
- GI—vomiting, diarrhea, weight loss, poor feeding, incessant hunger, excessive salivation.
- Metabolic and respiratory—nasal stuffiness, sneezing, yawning, sweating, hyperthermia.
- Often IUGR.

Clinical Findings

The withdrawal signs seen in infants born to narcotic-addicted mothers, whether heroin, prescription narcotics, or methadone, are similar. The symptoms in infants born to methadone-maintained mothers may be delayed in onset, more severe, and more prolonged than those seen with heroin addiction. Symptoms usually begin within 1–3 days of life. The clinical picture is typical enough to suggest a diagnosis even if a maternal history of narcotic abuse has not been obtained. Confirmation should be made with urine and meconium toxicology screening.

Treatment

If opioid abuse or withdrawal is suspected, the infant is not a candidate for early discharge. A serial scoring system should be used. Supportive treatment includes swaddling the infant and providing a quiet, dimly lit environment, minimizing procedures, and disturbing the infant as little as possible. Specific treatment should be used when the infant has severe symptoms or excessive weight loss. No single drug has been identified as optimally effective. Phenobarbital 16 mg/kg orally as a loading dose and 2.5 mg/kg orally twice a day may be used for irritability. If diarrhea and weight loss are prominent, or if adequate control of symptoms has not been achieved, oral morphine sulphate 0.1–0.5 mg/kg/dose q6–12h, titrated to improve symptoms, or methadone (0.05–0.1 mg/kg q6h) are more beneficial than phenobarbital alone. It can be
very difficult to wean some of these infants off of methadone. It is also important to review maternal tests for HIV, hepatitis B, and hepatitis C, as all are common in intravenous drug users.

Prognosis

These infants often have chronic neurobehavioral handicaps; however, it is difficult to distinguish the effects of in-utero drug exposure from those of the environment. Infants of opioid abusers have a four- to fivefold increased risk of SIDS.

3. Alcohol

Alcohol is the only recreational drug of abuse that is clearly teratogenic, and prenatal exposure to alcohol is the most common preventable cause of mental retardation. Prevalence estimates of fetal alcohol syndrome (FAS) in the United States range from 0.5 to 2 per 1000 live births with up to 1 in 100 having lesser effects (fetal alcohol spectrum disorders). The effects of alcohol on the fetus and newborn are determined by the degree and timing of ethanol exposure and by the maternal, fetal, and placental metabolism of ethanol, which is likely genetically determined. Although there is no clear evidence that minimal amounts of alcohol are harmful, there is no established safe dose. Fetal growth and development are adversely affected if drinking continues throughout the pregnancy, and infants can occasionally experience withdrawal similar to that associated with maternal opioid abuse. Clinical features of FAS that may be observed in the newborn period are listed in Table 2–14. This diagnosis is usually easier to recognize in older infants and children. Long-term neurobehavioral consequences are well described with in utero alcohol exposure.

4. Tobacco Smoking

Smoking has a negative effect on fetal growth rate. The more the mother smokes, the greater is the degree of IUGR. There is a twofold increase in low birth weight even in light smokers (< 10 cigarettes per day). Smoking during pregnancy has been associated with mild neurodevelopmental handicaps. The possibility of multiple drug abuse also applies to smokers, and the potential interaction of multiple factors on fetal growth and development must be considered.

5. Toluene Embryopathy

Solvent toxicity may be intentional (paint, lacquer, or glue sniffing) or environmental (dry cleaning industry). The active organic solvent in these agents is toluene. Features attributable to in-utero toluene exposure are prematurity, IUGR, microcephaly, craniofacial abnormalities similar to those associated with in-utero alcohol exposure (see Table 2–14), large anterior fontanelle, hair patterning abnormalities, nail hypoplasia, and renal anomalies. Long-term effects include postnatal growth deficiency and developmental delay.

6. Marijuana

Marijuana is the most frequently used illegal drug. It does not appear to be teratogenic, and although a mild abstinence-type syndrome has been described, infants exposed to marijuana in utero rarely require treatment. Some long-term neurodevelopmental problems, particularly disordered sleep patterns, have been noted.

7. Other Drugs

Other drugs with potential effects on the newborn fall in two categories. First are drugs to which the fetus is exposed because of therapy for maternal conditions. The human placenta is relatively permeable, particularly to lipophilic solutes. If possible, maternal drug therapy should be postponed until after the first trimester to avoid teratogenic effects. Drugs with potential fetal toxicity include antineoplastics, antithyroid agents, warfarin, lithium, and angiotensin-converting enzyme inhibitors (eg, captopril and enalapril). Anticonvulsants, especially high-dose or multiple drug therapy, may be associated with craniofacial abnormalities. The use of selective serotonin reuptake inhibitors (SSRIs), benzodiazepines, and antipsychotic medications appears to be generally safe, and risk should be balanced against the risk of untreated psychiatric conditions in the mother. However, up to 33% of infants exposed to SSRI medications in utero experience signs of neonatal abstinence syndrome during the first days of life. Paroxetine seems to have the greatest propensity to cause abstinence symptoms. Phenobarbital may be used for severe irritability. SSRI use in pregnancy has also been associated with persistent pulmonary hypertension of the newborn.

In the second category are drugs transmitted to the infant in breast milk. Most drugs taken by the mother achieve some concentration in breast milk, although they usually do not present a problem to the infant. If the drug is one that could have adverse effects on the infant, timing breast feeding to coincide with trough concentrations in the mother may be useful.

Table 2–14. Features observed in fetal alcohol syndrome in the newborn.

<table>
<thead>
<tr>
<th>Craniofacial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Short palpebral fissures</td>
<td></td>
</tr>
<tr>
<td>Thin vermilion of upper lip</td>
<td></td>
</tr>
<tr>
<td>Flattened philtrum</td>
<td></td>
</tr>
<tr>
<td>Growth</td>
<td></td>
</tr>
<tr>
<td>Prenatal and postnatal growth deficiency (small for gestational age, failure to thrive)</td>
<td></td>
</tr>
<tr>
<td>Central nervous system</td>
<td></td>
</tr>
<tr>
<td>Microcephaly</td>
<td></td>
</tr>
<tr>
<td>Partial or complete agenesis of the corpus callosum</td>
<td></td>
</tr>
<tr>
<td>Optic nerve hypoplasia</td>
<td></td>
</tr>
<tr>
<td>Hypotonia, poor feeding</td>
<td></td>
</tr>
</tbody>
</table>
MULTIPLE BIRTHS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- **Monochorial twins**
 - Always monozygous (identical twins) and same sex.
 - Can be diamniotic or monoamniotic.
 - Risk for twin-to-twin transfusion and higher risk of congenital anomalies, neurodevelopmental problems, and cerebral palsy.

- **Dichorial twins**
 - Either dizygous (fraternal twins) or monozygous (identical twins); same sex or different sex.
 - Can have growth restriction due to abnormal placental implantation.
 - Not at risk for twin transfusion syndrome; less risk for anomalies and neurodevelopmental problems than monochorial twins.

Historically, twinning occurred at a rate of 1 in 80 pregnancies (1.25%). The incidence of twinning and higher-order multiple births in the United States has increased because of assisted reproductive technologies. In 2005, twins occurred in 3.2% of live births in the United States, a 70% increase since 1980.

A distinction should be made between dizygous (fraternal) and monozygous (identical) twins. Race, maternal parity, and maternal age affect the incidence of dizygous, but not monoyzygous, twinning. Drugs used to induce ovulation, such as clomiphene citrate and gonadotropins, increase the incidence of dizygotic or polyzygotic twinning. Monozygous twinning also seems to be more common after assisted reproduction. The incidence of malformations is also increased in identical twins and may affect only one of the twins. If a defect is found in one twin, the other should be examined carefully for lesser degrees of the same defect.

Early transvaginal ultrasound and examination of the placenta after birth can help establish the type of twinning. Two amniotic membranes and two chorionic membranes are found in all dizygous twins and in one-third of monochorial twins even when the placental disks appear to be fused into one. A single chorionic membrane always indicates monochorial twins. The rare monochorial, monoamniotic situation (1% of twins) is especially dangerous, with a high risk of antenatal cord entanglement and death of one or both twins. Close fetal surveillance is indicated, and preterm delivery is often elected.

Complications of Multiple Births

A. Intrauterine Growth Restriction

There is some degree of IUGR in most multiple pregnancies, especially after 32 weeks, although it is usually not clinically significant with two exceptions. First, in monochorial twin pregnancy an arteriovenous shunt may develop between the twins (twin-twin transfusion syndrome). The twin on the venous side (recipient) becomes plethoric and larger than the smaller anemic twin (donor), who may ultimately die or be severely growth restricted. The occurrence of polyhydramnios in the larger twin and severe oligohydramnios in the smaller may be the first sign of this problem. Second, discordance in size (birth weights that are significantly different) can also occur when separate placentas are present if one placenta develops poorly, because of a poor implantation site. In this instance, no fetal exchange of blood takes place but the growth rates of the two infants are different.

B. Preterm Delivery

Length of gestation tends to be inversely related to the number of fetuses. The mean age at delivery for singletons is 38.8 weeks, for twins 35.3 weeks, for triplets 32.2 weeks, and for quadruplets 29.9 weeks. The prematurity rate in multiple gestations is 5–10 times that of singletons, with 50% of twins and 90% of triplets born before 37 weeks. There is an increased incidence of cerebral palsy in multiple births, more so with monochorial than dichorial infants. Prematurity is the main cause of increased mortality and morbidity in twins, although in the case of monochorial twins, intravascular exchange through placental anastomoses, particularly after the death of one twin, also increases the risk substantially.
C. Obstetric Complications

Polyhydramnios, pregnancy-induced hypertension, premature rupture of membranes, abnormal fetal presentations, and prolapsed umbilical cord occur more frequently in women with multiple fetuses. Multiple pregnancy should always be identified prenatally with ultrasound examinations; doing so allows the obstetrician and pediatrician or neonatologist to plan management jointly. Because neonatal complications are usually related to prematurity, prolongation of pregnancy significantly reduces neonatal morbidity.

NEONATAL INTENSIVE CARE

PERINATAL RESUSCITATION

Perinatal resuscitation refers to the steps taken by the obstetrician to support the infant during labor and delivery and the resuscitative steps taken by the pediatrician after delivery. Intrapartum support includes maintaining maternal blood pressure, maternal oxygen therapy, positioning the mother to improve placental perfusion, readjusting oxytocin infusions or administering a tocolytic if appropriate, amnio-infusion, minimizing trauma to the infant, obtaining all necessary cord blood samples, and completing an examination of the placenta. The pediatrician or neonatologist focuses on temperature support, initiation and maintenance of effective ventilation, maintenance of perfusion and hydration, and glucose regulation.

A number of conditions associated with pregnancy, labor, and delivery place the infant at risk for birth asphyxia: (1) maternal diseases such as diabetes, pregnancy-induced hypertension, heart and renal disease, and collagen-vascular disease; (2) fetal conditions such as prematurity, multiple births, growth restriction, and fetal anomalies; and (3) labor and delivery conditions, including fetal distress with or without meconium in the amniotic fluid, and administration of anesthetics and opioid analgesics.

Physiology of Birth Asphyxia

Birth asphyxia can be the result of (1) acute interruption of umbilical blood flow (eg, prolapsed cord with cord compression), (2) premature placental separation, (3) maternal hypotension or hypoxia, (4) chronic placental insufficiency, and (5) failure to perform resuscitation properly.

The neonatal response to asphyxia follows a predictable pattern (Figure 2–6). The initial response to hypoxia is an increase in respiratory rate and a rise in heart rate and blood pressure. Respirations then cease (primary apnea) as heart rate and blood pressure begin to fall. The initial period of apnea lasts 30–60 seconds. Gasping respirations (3–6 per minute) then begin, while heart rate and blood pressure gradually decline. Secondary or terminal apnea then ensues, with further decline in heart rate and blood pressure. The longer the duration of secondary apnea, the greater is the risk for organ injury. A cardinal feature of the defense against hypoxia is the underperfusion of certain tissue beds (eg, skin, muscle, kidneys, and GI tract), which allows maintenance of perfusion to core organs (ie, heart, brain, and adrenals).
Response to resuscitation also follows a predictable pattern. During the period of primary apnea, almost any physical stimulus causes the infant to initiate respirations. Infants in secondary apnea require positive pressure ventilation (PPV). The first sign of recovery is an increase in heart rate, followed by an increase in blood pressure with improved perfusion. The time required for rhythmic, spontaneous respirations to occur is related to the duration of the secondary apnea. As a rough rule, for each minute past the last gasp, 2 minutes of PPV is required before gasping begins, and 4 minutes is required to reach rhythmic breathing. Not until sometime later do spinal and corneal reflexes return. Muscle tone gradually improves over the course of several hours.

Delivery Room Management

When perinatal depression is anticipated, a resuscitation team of at least two persons should be present, one to manage the airway and one to monitor the heartbeat and provide assistance. The necessary equipment and drugs are listed in Table 2–15.

A. Steps in the Resuscitative Process (Figure 2–7)

1. Dry the infant well, and place him or her under a radiant heat source. Do not allow the infant to become hyperthermic.
2. Position the infant to open the airway. Gently suction the mouth, then the nose.
3. Quickly assess the infant’s condition. The best criteria are the infant’s respiratory effort (apneic, gasping or, regular) and heart rate (> 100 or < 100 beats/min). A depressed heart rate—indicative of hypoxic myocardial depression—is the single most reliable indicator of the need for resuscitation.
4. Infants who are breathing and have heart rates more than 100 beats/min usually require no further intervention other than supplemental oxygen if persistently cyanotic. Infants with heart rates less than 100 beats/min and apnea or irregular respiratory efforts should be stimulated gently. The infant’s back should be rubbed and/or heels flicked.
5. If the infant fails to respond to tactile stimulation within a few seconds, begin bag and mask ventilation, using a soft mask that seals well around the mouth and nose. For the initial inflations, pressures up to 30–40 cm H₂O may be necessary to overcome surface-active forces in the lungs. Adequacy of ventilation is assessed by observing expansion of the infant’s chest accompanied by an improvement in heart rate, perfusion, and color. After the first few breaths, lower the peak pressure to 15–20 cm H₂O. The chest movement should resemble that of an easy breath rather than a deep sigh. The rate of bagging should be 40–60 breaths/min. An oximeter probe should be placed on the infant’s right hand.

<table>
<thead>
<tr>
<th>Table 2–15. Equipment for neonatal resuscitation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Needs</td>
</tr>
<tr>
<td>Thermoregulation</td>
</tr>
<tr>
<td>Airway management</td>
</tr>
<tr>
<td>Ventilation</td>
</tr>
<tr>
<td>Gastric decompression</td>
</tr>
<tr>
<td>Administration of drugs and volume replacement</td>
</tr>
<tr>
<td>Transport</td>
</tr>
</tbody>
</table>

*Epinephrine 1:10,000, 10% dextrose.

6. Most neonates can be resuscitated effectively with a bag and mask. If the infant does not respond to bag and mask ventilation, reposition the head (slight extension), reapply the mask to achieve a good seal, consider suctioning the mouth and the oropharynx, and try ventilating with the mouth open. An increase in peak pressure should also be attempted, but if the infant does not respond within 30 seconds, intubation is appropriate.

Failure to respond to intubation and ventilation can result from (1) mechanical difficulties (Table 2–16), (2) profound asphyxia with myocardial depression, and (3) inadequate circulating blood volume.

Quickly rule out the mechanical causes listed in Table 2–16. Check to ensure that the endotracheal tube passes...
through the vocal cords. A CO₂ detector placed between the endotracheal tube and the bag can be helpful as a rapid confirmation of proper tube position in the airway. Occlusion of the tube should be suspected when there is resistance to bagging and no chest wall movement. Very few neonates (approximately 0.1%) require either cardiac compressions or drugs during resuscitation. Almost all newborns respond to ventilation if done effectively. All resuscitations in term infants should begin using room air. Oxygen concentration can be increased using an oxygen blender during positive pressure ventilation to achieve oxygen saturation targets (Figure 2–7). It is not expected for the preductal (right hand) oxygen saturation to reach 90% until 10 minutes of age. The use of 100% oxygen may increase the risk of postresuscitative oxidative injury without any improvement in efficacy.
If mechanical causes are ruled out and the heart rate remains less than 60 beats/min after intubation and effective PPV for 30 seconds, cardiac compressions should be initiated. Chest compressions should be synchronized with ventilation at a 3:1 ratio (90 compressions and 30 breaths/min).

If drugs are needed, the drug and dose of choice is epinephrine 1:10,000 solution (0.1–0.3 mL/kg) given via an umbilical venous line. If volume loss is suspected, 10 mL/kg of normal saline should be administered through an umbilical vein line.

B. Continued Resuscitative Measures

The appropriateness of continued resuscitative efforts should be reevaluated in infants who do not respond to initial measures. In current practice, resuscitative efforts are made even in apparent stillbirths (ie, infants whose Apgar score at 1 minute is 0–1). Modern resuscitative techniques have led to improved survival in such infants, with 60% of survivors showing normal development. Although it is clear that resuscitation of these infants should be performed, subsequent continued support depends on the response to resuscitation. If the Apgar score does not improve markedly in the first 10 minutes of life, the mortality rate and the incidence of severe developmental handicaps among survivors are high.

C. Special Considerations

1. Preterm infants

A. Minimizing heat loss improves survival. Prewarmed towels should be available. The environmental temperature of the delivery suite should be raised to more than 25°C (especially for infants weighing < 1500 g). An occlusive plastic skin cover with an opening to slip over the infant’s head and an exothermic blanket should be used to minimize heat loss in the extremely low-birth-weight (< 1000 g) infant.

B. The lungs of preterm infants are especially prone to injury from PPV due to volutrauma. For this reason, if possible, the infant’s respiratory efforts should be supported with continuous positive airway pressure (CPAP) rather than PPV. If PPV is needed, a T-piece resuscitation device should be used to allow precise and consistent regulation of pressure delivery. Resuscitation in the preterm should begin with a blended oxygen concentration of 30%–40% with titration to achieve target oxygen saturations (Figure 2–7).

C. In the infant of extremely low gestational age (< 27 weeks), immediate intubation for administration of surfactant can be considered.

D. Volume expanders should be infused slowly to minimize rapid swings in blood pressure.

2. Narcotic depression

In the case of opioid administration to the mother within 4 hours of delivery, institute resuscitation as described earlier. When the baby is stable with good heart rate, color, and perfusion, but still has poor respiratory effort, a trial of naloxone (0.1 mg/kg IV or IM) may be indicated. Naloxone should not be administered in place of PPV. Naloxone should not be used in the infant of an opioid-addicted mother because it will precipitate withdrawal. Respiratory depression may recur over the next hours, requiring redosing of the antagonist.

3. Meconium-stained amniotic fluid

A. The obstetrician performs routine suctioning of the mouth and nose after birth.

B. If the infant is active and breathing, requiring no resuscitation, the airway need not be inspected—only further suctioning of the mouth and nasopharynx as required.

C. The airway of any depressed infant requiring ventilation must be checked and cleared (by passage of a tube below the vocal cords) before PPV is instituted. Special adapters are available for use with regulated wall suction to allow suction to be applied directly to the endotracheal tube.

D. Because most severe cases of meconium aspiration syndrome with pulmonary hypertension likely have their origin in utero, resuscitative efforts should not be excessively delayed with attempts to clear the airway of meconium.

4. Universal precautions

In the delivery suite, universal precautions should always be observed.

Treatment of the Asphyxiated Infant

Asphyxia is manifested by multiorgan dysfunction, seizures, neonatal encephalopathy, and metabolic acidemia. The
The newborn infant with significant perinatal hypoxia and ischemia is at risk for dysfunction of multiple end organs (Table 2–17). The organ of greatest concern is the brain.

Table 2–17. Signs and symptoms caused by asphyxia.

<table>
<thead>
<tr>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal encephalopathy, seizures</td>
</tr>
<tr>
<td>Respiratory distress due to aspiration or secondary surfactant deficiency, pulmonary hemorrhage</td>
</tr>
<tr>
<td>Persistent pulmonary hypertension</td>
</tr>
<tr>
<td>Hypotension due to myocardial dysfunction</td>
</tr>
<tr>
<td>Transient tricuspid valve insufficiency</td>
</tr>
<tr>
<td>Anuria or oliguria due to acute tubular necrosis</td>
</tr>
<tr>
<td>Feeding intolerance; necrotizing enterocolitis</td>
</tr>
<tr>
<td>Elevated aminotransferases due to liver injury</td>
</tr>
<tr>
<td>Adrenal insufficiency due to hemorrhage</td>
</tr>
<tr>
<td>Disseminated intravascular coagulation</td>
</tr>
<tr>
<td>Hypocalcemia</td>
</tr>
<tr>
<td>Persistent metabolic acidemia</td>
</tr>
<tr>
<td>Hyperkalemia</td>
</tr>
</tbody>
</table>

Management is directed at supportive care and treatment of specific abnormalities. Fluids should be restricted initially to 60–80 mL/kg/d; oxygenation should be maintained with mechanical ventilation if necessary; blood pressure should be supported with judicious volume expansion (if hypovolemic) and pressors; and serum glucose concentrations should be maintained in the normal range of 45–100 mg/dL. Hypocalcemia, coagulation abnormalities, and metabolic acidemia should be corrected and seizures treated with IV phenobarbital (20 mg/kg as loading dose, with total initial 24-hour dosing up to 40 mg/kg). Other anticonvulsants should be reserved for refractory seizures. Hypothermia, either selective head cooling with mild systemic hypothermia or whole body cooling, initiated within 6 hours of birth in infants 36 weeks gestation or greater, has been shown to improve outcome at 18-month and 6- to 8-year follow-up of infants with moderate to severe neurologic symptoms and an abnormal amplitude-integrated EEG.

Birth Asphyxia: Long-Term Outcome

Fetal heart rate tracings, cord pH, and 1-minute Apgar scores are imprecise predictors of long-term outcome. Apgar scores of 0–3 at 5 minutes in full-term infants are associated with an increased risk of death in the first year of life and an 8% risk of cerebral palsy among survivors. The risks of mortality and morbidity increase with more prolonged depression of the Apgar score. The single best predictor of outcome is the severity of clinical neonatal encephalopathy (severe symptomatology including coma carries a 75% chance of death and a 100% rate of neurologic sequelae among survivors). The major sequelae of neonatal encephalopathy is cerebral palsy with or without mental retardation and epilepsy. Other prognostic features are prolonged seizures refractory to therapy, markedly abnormal EEG, and MRI scan with evidence of major ischemic injury. Other clinical features required to support perinatal hypoxia as the cause of cerebral palsy include the presence of fetal distress prior to birth, a low arterial cord pH of less than 7.00, evidence of other end-organ dysfunction, and absence of a congenital brain malformation.

THE PRETERM INFANT

Premature infants comprise the majority of high-risk newborns. The preterm infant faces a variety of physiologic handicaps:

1. The ability to coordinate sucking, swallowing, and breathing is not achieved until 34–36 weeks’ gestation. Therefore, enteral feedings must be provided by gavage. Further, preterm infants often have an immature gag reflex, which increases the risk of aspiration of feedings.
2. Lack of body fat stores causes decreased ability to maintain body temperature, and may predispose to hypoglycemia.
3. Pulmonary immaturity–surfactant deficiency is associated with structural immaturity in infants younger than 26 weeks’ gestation. This condition is exacerbated by the combination of noncompliant lungs and an extremely compliant chest wall, causing inefficient respiratory mechanics.
4. Immature respiratory control leads to apnea and bradycardia.
5. Persistent patency of the ductus arteriosus compromises pulmonary gas exchange because of overperfusion and edema of the lungs.
6. Immature cerebral vasculature and structure predisposes to subependymal and intraventricular hemorrhage, and periventricular leukomalacia.
7. Impaired substrate absorption by the GI tract compromises nutritional management.
8. Immature renal function (including both filtration and tubular functions) complicates fluid and electrolyte management.
9. Increased susceptibility to infection.
10. Immaturity of metabolic processes predisposes to hypoglycemia and hypocalcemia.

1. Delivery Room Care

See section on Perinatal Resuscitation, earlier.

2. Care in the Nursery

A. Thermoregulation

Maintaining stable body temperature is a function of heat production and conservation balanced against heat loss. Heat production in response to cold stress occurs through voluntary muscle activity, involuntary muscle activity (shivering), and thermogenesis not caused by shivering. Newborns produce heat mainly through the last of these three mechanisms. This metabolic heat production depends on the quantity of brown fat, which is very limited in the preterm infant. Heat loss to the environment can occur through: (1) radiation—transfer of heat from a warmer to a cooler object not in contact; (2) convection—transfer of heat to the surrounding gaseous environment, influenced by air movement and temperature; (3) conduction—transfer of heat to a cooler object in contact; and (4) evaporation—cooling secondary to water loss through the skin. Heat loss in the preterm newborn is accelerated because of a high ratio of surface area to body mass, reduced insulation by subcutaneous tissue, and water loss through the immature skin.

The thermal environment of the preterm neonate must be regulated carefully. The infant can be kept warm in an isolette, in which the air is heated and convective heat loss is minimized. The infant can also be kept warm on an open bed with a radiant heat source. Although evaporative and convective heat losses are greater with radiant warmers, this system allows better access to an ill neonate. Ideally, the infant should be kept in a neutral thermal environment (Figure 2–8). The neutral thermal environment allows the infant to maintain a stable core body temperature with a minimum of metabolic heat production through oxygen consumption. The neutral thermal environment depends on the infant’s size, gestational age, and postnatal age. The neutral thermal environment (for either isolette or radiant

B. Monitoring the High-Risk Infant

At a minimum, equipment to monitor heart rate, respirations, and blood pressure should be available. Oxygen saturation is assessed continuously using pulse oximetry, correlated with arterial oxygen tension \((P_{aO_2}) \) as needed. Transcutaneous \(P_O_2 \) and \(P_CO_2 \) can also be used to assess oxygenation and ventilation in sicker infants. Arterial blood gases, electrolytes, glucose, calcium, bilirubin, and other chemistries must be measured on small volumes of blood. Early in the care of a sick preterm infant, the most efficient way to sample blood for tests as well as to provide fluids and monitor blood pressure is through an umbilical arterial line. Once the infant is stable and the need for frequent blood samples is reduced (usually 4–7 days), the umbilical line should be removed. All indwelling lines are associated with morbidity from thrombosis or embolism, infection, and bleeding.

C. Fluid and Electrolyte Therapy

Fluid requirements in preterm infants are a function of (1) insensible losses (skin and respiratory tract), (2) urine output, (3) stool output (<5% of total), and (4) other losses, such as nasogastric losses. In most circumstances, the fluid requirement is determined largely by insensible losses plus urine losses. The major contribution to insensible water loss is evaporative skin loss. The rate of water loss is a function of gestational age (body weight, skin thickness, and maturity), environment (losses are greater under a radiant warmer than in an isolette), and the use of phototherapy. Respiratory losses are minimal when humidified oxygen is used. The renal contribution to water requirement is influenced by the limited ability of the preterm neonate either to concentrate the urine and conserve water, or to excrete a water load.

Electrolyte requirements are minimal for the first 24–48 hours until there is significant urinary excretion. Basal requirements thereafter are as follows: sodium, 3 mEq/kg/d; potassium, 2 mEq/kg/d; chloride, 2–3 mEq/kg/d; and bicarbonate, 2–3 mEq/kg/d. In the infant younger than 30 weeks’ gestation, sodium and bicarbonate losses in the urine are often elevated, thereby increasing the infant’s requirements.

Initial fluid management after birth varies with the infant’s size and gestation. Infants of more than 1200 g should start at 80–100 mL/kg/d of D\(_{10}\)W. Those weighing less should start at 100–120 mL/kg/d of either D\(_{10}\)W or D\(_{2}\)W (infants < 800 g and born before 26 weeks’ gestation often become hyperglycemic on D\(_{10}\)W at these infusion rates). The most critical issue in fluid management is monitoring. Monitoring body weight, urine output, fluid and electrolyte intake, serum and urine electrolytes, and glucose allows fairly precise determination of the infant’s water, glucose, and electrolyte needs. Parenteral nutrition should be started early, preferably on the first day, and continued until an adequate enteral intake is achieved.

D. Nutritional Support

The average caloric requirement for the growing premature infant is 120 kcal/kg/d. Desired weight gain is 15–20 g/kg/d for infants younger than 35 weeks, and 15 g/kg/d for those older than 35 weeks; linear and head circumference growth should average 1 cm/wk. Infants initially require IV glucose infusion to maintain blood glucose concentration in the range of 60–100 mg/dL. Infusions of 5–7 mg/kg/min (approximately 80–100 mL/kg/d of D\(_{10}\)W) are usually needed. Aggressive nutritional support in the very low-birth-weight infant should be started as soon as possible after birth, with parenteral alimentation solutions containing 3–4 g/kg/d of amino acids, given either peripherally or centrally via an umbilical vein line or percutaneous catheter (Table 2–18). Small-volume trophic feeds with breast milk or 20 kcal/oz premature formula should be started by gavage at 10% or less of the infant’s nutritional needs (< 10 mL/kg/d) as soon as possible, generally within the first few days after birth. After several days of trophic feeds the infant can be slowly advanced to full caloric needs over 5–7 days. Even extremely small feedings can enhance intestinal readiness to accept larger feeding volumes. Intermittent bolus feedings are preferred because these appear to stimulate the release of gut-related hormones and may accelerate maturation of the GI tract, although in the extremely low-birth-weight infant (< 1000 g) or the postsurgical neonate, continuous-drip feeds are sometimes better tolerated. A more rapid advancement schedule is used for infants weighing more than 1500 g, and the slowest schedule for those weighing less than 1000 g.

In general, long-term nutritional support for infants of very low birth weight consists either of breast milk supplemented to increase protein, caloric density, and mineral content, or infant formulas modified for preterm infants. In these formulas, protein concentrations (approximately 2 g/dL) and caloric concentrations (approximately 24 kcal/oz) are relatively high. In addition, premature formulas contain some medium-chain triglycerides—which do not require bile for absorption—as an energy source. Increased calcium and phosphorus are provided to enhance bone mineralization. Formulas for both full-term and premature infants are enriched with long-chain polyunsaturated fatty acids in the hope of enhancing brain and retinal development. The infant should gradually be offered feedings of higher caloric density after a substantial volume (100–120 mL/kg/d) of 20 kcal/oz breast milk or formula is tolerated. Success of feedings is assessed by timely passage of feeds out of the stomach without emesis or large residual volumes, an abdominal examination free of distention, and a normal stool pattern.
When the preterm infant approaches term, the nutritional source for the bottle-fed infant can be changed to a transitional formula (22 kcal/oz) until age 6–9 months. Additional iron supplementation (2–4 mg/kg/d) is recommended for premature infants, beginning at 2 weeks to 2 months of age, depending on gestational age and number of previous transfusions. Infants who are treated with erythropoietin (epoetin alfa) for prevention or treatment of anemia of prematurity require a higher dosage of 6 mg/kg/d. Iron overload is a possibility in multiply-transfused sick preterm infants; such infants should be evaluated with serum ferritin levels prior to beginning iron supplementation.

Table 2–18. Use of parenteral alimentation solutions.

<table>
<thead>
<tr>
<th></th>
<th>Volume (mL/kg/d)</th>
<th>Carbohydrate (g/dL)</th>
<th>Protein (g/kg)</th>
<th>Lipid (g/kg)</th>
<th>Calories (kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral: Short-term (7–10 d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting solution</td>
<td>100–150</td>
<td>D10W</td>
<td>3</td>
<td>1</td>
<td>56–84</td>
</tr>
<tr>
<td>Target solution</td>
<td>150</td>
<td>D12.5W</td>
<td>3–4</td>
<td>3</td>
<td>80–110</td>
</tr>
<tr>
<td>Central: Long-term (> 10 d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting solution</td>
<td>100–150</td>
<td>D10W</td>
<td>3</td>
<td>1</td>
<td>56–84</td>
</tr>
<tr>
<td>Target solution</td>
<td>130</td>
<td>D12.5–D15W</td>
<td>3–4</td>
<td>3</td>
<td>80–110</td>
</tr>
</tbody>
</table>

Notes:
- Advance dextrose in central hyperalimentation as tolerated per day as needed to achieve appropriate weight gain, as long as blood glucose remains normal, keeping glucose as 40%–60% of total calories administered.
- Advance lipids by 0.5–1.0 g/kg/d as long as triglycerides are normal. Use 20% concentration.
- Total water should be 100–150 mL/kg/d, depending on the child’s fluid needs.

Monitoring:
- Blood glucose two or three times a day when changing dextrose concentration, then daily.
- Electrolytes daily, then twice a week when the child is receiving a stable solution.
- Every 1–2 weeks: blood urea nitrogen and serum creatinine; total protein and serum albumin; serum calcium, phosphate, magnesium, direct bilirubin, and CBC with platelet counts.
- Triglyceride level after 24 h at 2 g/kg/d and 24 h at 3 g/kg/d, then every other week.

When the preterm infant approaches term, the nutritional source for the bottle-fed infant can be changed to a transitional formula (22 kcal/oz) until age 6–9 months. Additional iron supplementation (2–4 mg/kg/d) is recommended for premature infants, beginning at 2 weeks to 2 months of age, depending on gestational age and number of previous transfusions. Infants who are treated with erythropoietin (epoetin alfa) for prevention or treatment of anemia of prematurity require a higher dosage of 6 mg/kg/d. Iron overload is a possibility in multiply-transfused sick preterm infants; such infants should be evaluated with serum ferritin levels prior to beginning iron supplementation.

3. Apnea in the Preterm Infant

Essentials of Diagnosis & Typical Features

- Respiratory pause of sufficient duration to result in cyanosis or bradycardia.

- Most common in infants born before 34 weeks’ gestation; onset before 2 weeks of age.
- Methylxanthines (eg, caffeine) provide effective treatment.

General Considerations

Apnea is defined as a respiratory pause lasting more than 20 seconds—or any pause accompanied by cyanosis and bradycardia. Shorter respiratory pauses associated with cyanosis or bradycardia also qualify as significant apnea, whereas periodic breathing, which is common in full-term and preterm infants, is defined as regularly recurring ventilatory cycles interrupted by short pauses not associated with bradycardia or color change. By definition, apnea of prematurity is not associated with a predisposing factor, and is a diagnosis of exclusion. A variety of processes may precipitate apnea (Table 2–19) and should be considered before a diagnosis of apnea of prematurity is established.

Apnea of prematurity is the most frequent cause of apnea. Most apnea of prematurity is mixed apnea characterized by a centrally (brainstem) mediated respiratory pause preceded or followed by airway obstruction. Less common is pure central or pure obstructive apnea. Apnea of prematurity is the result of immaturity of both the central respiratory regulatory centers and protective mechanisms that aid in maintaining airway patency.
Table 2–19. Causes of apnea in the preterm infant.

<table>
<thead>
<tr>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature instability—both cold and heat stress</td>
</tr>
<tr>
<td>Response to passage of a feeding tube</td>
</tr>
<tr>
<td>Gastroesophageal reflux</td>
</tr>
<tr>
<td>Hypoxemia</td>
</tr>
<tr>
<td>Pulmonary parenchymal disease</td>
</tr>
<tr>
<td>Patent ductus arteriosus</td>
</tr>
<tr>
<td>Anemia</td>
</tr>
<tr>
<td>Infection</td>
</tr>
<tr>
<td>Sepsis (viral or bacterial)</td>
</tr>
<tr>
<td>Necrotizing enterocolitis</td>
</tr>
<tr>
<td>Metabolic causes</td>
</tr>
<tr>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
</tr>
<tr>
<td>Posthemorrhagic hydrocephalus</td>
</tr>
<tr>
<td>Seizures</td>
</tr>
<tr>
<td>Drugs (eg, morphine)</td>
</tr>
<tr>
<td>Apnea of prematurity</td>
</tr>
</tbody>
</table>

Clinical Findings

Onset is typically during the first 2 weeks of life. The frequency of spells gradually increases with time. Pathologic apnea should be suspected if spells are sudden in onset, unusually frequent, or very severe. Apnea at birth or on the first day of life is unusual but can occur in the nonventilated preterm infant. In the full-term or late preterm infant, presentation at birth suggests neuromuscular abnormalities of an acute (asphyxia, birth trauma, or infection) or chronic (eg, congenital hypotonia or structural CNS lesion) nature.

All infants—regardless of the severity and frequency of apnea—require a minimum screening evaluation, including a general assessment of well-being (eg, tolerance of feedings, stable temperature, normal physical examination), a check of the association of spells with feeding, measurement of PaO₂ or SaO₂, blood glucose, hematocrit, and a review of the drug history. Infants with severe apnea of sudden onset require more extensive evaluation for primary causes, especially infection.

Other specific tests are dictated by relevant signs, for example, evaluation for necrotizing enterocolitis (NEC) in an infant with apnea and abdominal distention or feeding intolerance.

Treatment

Any underlying cause should be treated. If the apnea is due simply to prematurity, symptomatic treatment is dictated by the frequency and severity of apneic spells. Spells frequent enough to interfere with other aspects of care (eg, feeding), or severe enough to cause cyanosis or bradycardia necessitating significant intervention or bag and mask ventilation require treatment. Caffeine citrate (20 mg/kg as loading dose and then 5–10 mg/kg/d) is the drug of choice. Side effects of caffeine are generally mild, and include tachycardia and occasional feeding intolerance. The dose used should be the smallest dose necessary to decrease the frequency of apnea and eliminate severe spells. Target drug level, if monitored, is usually 10–20 mcg/mL. Nasal continuous positive airway pressure (CPAP) or high flow nasal cannula, by treating the obstructive component of apnea, is effective in some infants. Intubation and ventilation can eliminate apneic spells but carry the risks associated with mechanical ventilation. Although many preterm infants are treated medically for possible reflux-associated apnea, there is little evidence to support this intervention. If suspected, a trial of continuous drip gastric or transpyloric feedings can be helpful as a diagnostic and therapeutic intervention.

Prognosis

In most premature infants, apneic and bradycardiac spells cease by 34–36 weeks postmenstrual age. Spells that require intervention cease prior to self-resolving episodes. In infants born at less than 28 weeks’ gestation, episodes may continue past term. Apneic and bradycardiac episodes in the nursery are not predictors of later SIDS, although the incidence of SIDS is slightly increased in preterm infants. Thus, home monitoring in infants who experienced apnea in the nursery is rarely indicated.

4. Hyaline Membrane Disease

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Tachypnea, cyanosis, and expiratory grunting.
- Poor air movement despite increased work of breathing.
- Chest radiograph showing hypoexpansion and air bronchograms.

General Considerations

The most common cause of respiratory distress in the preterm infant is hyaline membrane disease. The incidence increases from 5% of infants born at 35–36 weeks’ gestation to more than 50% of infants born at 26–28 weeks’ gestation. This condition is caused by a deficiency of surfactant production as well as surfactant inactivation by protein leak into airspaces. Surfactant decreases surface tension in the alveolus, allowing the alveolus to remain partly expanded and maintain a functional residual capacity during expiration. The absence or inactivation of surfactant results in poor lung compliance and atelectasis. The infant must expend a great deal of effort to expand the lungs with each breath, and respiratory failure ensues (Figure 2–9).
Surfactant extract (Infasurf) is 3 mL/kg, and the porcine-derived bovine-derived beractant (Survanta) is 4 mL/kg, the calf lung surfactant-treated infants than in controls. The dose of the surfactant and oxygen requirements are significantly lower in both the mortality rate in preterm infants and air leak complications of the disease. During the acute course, ventilator ventilators are available for rescue of infants doing poorly on conventional ventilation, and close physiologic monitoring (eg, placement of umbilical artery and vein lines) are the initial interventions required. A ventilator that can deliver breaths synchronized with the infant’s respiratory efforts (synchronized intermittent mandatory ventilation) and accurately deliver a preset tidal volume (5–6 mL/kg) should be used. Alternatively, pressure limited ventilation with measurement of exhaled tidal volumes can be used. High-frequency ventilators are available for rescue of infants doing poorly on conventional ventilation or who have air leak problems.

Surfactant replacement is used both in the delivery room as prophylaxis for infants born before 27 weeks’ gestation and with established hyaline membrane disease as rescue, preferably within 2–4 hours of birth. Surfactant therapy decreases both the mortality rate in preterm infants and air leak complications of the disease. During the acute course, ventilator settings and oxygen requirements are significantly lower in surfactant-treated infants than in controls. The dose of the bovine-derived beractant (Survanta) is 4 mL/kg, the calf lung surfactant extract (Infasurf) is 3 mL/kg, and the porcine-derived poractant (Curosurf) is 1.25–2.5 mL/kg, given intratracheally. Repeat dosing is indicated in infants who remain on the ventilator in more than 30%–40% oxygen. A total of two to three doses given 8–12 hours apart may be administered. Endogenous surfactant production begins within 48 hours after delivery in most infants. As the disease evolves, proteins that inhibit surfactant function leak into the air spaces, making surfactant replacement less effective. In stable infants, a trial of nasal CPAP at 5–6 cm H2O pressure can be attempted prior to intubation and surfactant administration. For those who require mechanical ventilation, extubation to nasal CPAP should be done as early as possible to minimize lung injury and evolution of chronic lung disease. Nasal intermittent positive pressure ventilation (NIPPV) is another modality that may be attempted for ventilatory support of the VLBW infant, with potential for less morbidity. Antenatal administration of corticosteroids to the mother is an important strategy to accelerate lung maturation. Infants whose mothers were given corticosteroids more than 24 hours prior to preterm birth are less likely to have respiratory distress syndrome and have a lower mortality rate.

5. Chronic Lung Disease in the Premature Infant

General Considerations

Chronic lung disease, defined as respiratory symptoms, oxygen requirement, and chest radiograph abnormalities at 36 weeks postconception, occurs in about 20% of preterm infants ventilated for surfactant deficiency. The incidence is higher at lower gestational ages and in infants exposed to chorioamnionitis prior to birth. The development of chronic lung disease is a function of lung immaturity at birth, inflammation, and exposure to high oxygen concentrations and ventilator volutrauma. Surfactant-replacement therapy or early nasal CPAP has diminished the severity of chronic lung disease. The mortality rate from chronic lung disease is very low, but there is still significant morbidity secondary to reactive airway symptoms and hospital readmissions during the first 2 years of life for intercurrent respiratory infection.

Treatment

Long-term supplemental oxygen, mechanical ventilation, and nasal CPAP are the primary therapies for chronic lung disease of the premature. Diuretics (furosemide, 1–2 mg/kg/d, or hydrochlorothiazide-spiromonolactone, 1–2 mg/kg/d), inhaled β2-adrenergics, inhaled corticosteroids (fluticasone or budesonide), and systemic corticosteroids (dexamethasone [0.2 mg/kg/d], prednisone [1–2 mg/kg/d] or hydrocortisone [4–5 mg/kg/d]) are used as adjunctive therapy. The use of systemic corticosteroids remains controversial. Although a decrease in lung inflammation can aid infants in weaning from ventilator support, there are data associating dexamethasone use in the first week of life with an increased incidence

Figure 2–9. Pressure–volume relationships for the inflation and deflation of surfactant-deficient and surfactant-treated preterm rabbit lungs. (Reproduced, with permission, from Jobe AH: The developmental biology of the lung. In: Fanaoroff AA, Martin RJ (eds). Neonatal-Perinatal Medicine: Diseases of the Fetus and Infant. 6th ed. Mosby, 1997.)

Clinical Findings

Infants with hyaline membrane disease show all the clinical signs of respiratory distress. On auscultation, air movement is diminished despite vigorous respiratory effort. The chest radiograph demonstrates diffuse bilateral atelectasis, causing a ground-glass appearance. Major airways are highlighted by the atelectatic air sacs, creating air bronchograms. In the unintubated child, doming of the diaphragm and hypoinflation occur.

Treatment

Supplemental oxygen, nasal CPAP, early intubation for surfactant administration and ventilation, and close physiologic monitoring (eg, placement of umbilical artery and vein lines) are the initial interventions required. A ventilator that can deliver breaths synchronized with the infant’s respiratory efforts (synchronized intermittent mandatory ventilation) and accurately deliver a preset tidal volume (5–6 mL/kg) should be used. Alternatively, pressure limited ventilation with measurement of exhaled tidal volumes can be used. High-frequency ventilators are available for rescue of infants doing poorly on conventional ventilation or who have air leak problems.
of cerebral palsy. This risk must be balanced against the higher risk of neurodevelopmental handicap in infants with severe chronic lung disease. There is likely a point in the course of these infants at which the benefit of using systemic corticosteroids for the shortest amount of time at the lowest dose possible outweighs the risk of continued mechanical ventilation. After hospital discharge, some of these infants will require oxygen at home. This can be monitored by pulse oximetry with a target SaO_2 of 94%–96%. Some will continue to manifest pulmonary symptomatology into adolescence.

General Considerations

Clinically significant patent ductus arteriosus usually presents on days 3–7 as the respiratory distress from hyaline membrane disease is improving. Presentation can be on days 1 or 2, especially in infants born before 28 weeks’ gestation and in those who have received surfactant-replacement therapy. The signs include a hyperdynamic precordium, increased peripheral pulses, and a widened pulse pressure with or without a systolic machinery type heart murmur. Early presentations are sometimes manifested by systemic hypotension without a murmur or hyperdynamic circulation. These signs are often accompanied by an increased need for respiratory support and metabolic acidaemia. The presence of patent ductus arteriosus is confirmed by echocardiography.

Treatment

Treatment of patent ductus arteriosus is by medical or surgical ligation. A clinically significant ductus can be closed with indomethacin (0.2 mg/kg IV q12h for three doses) in about two-thirds of cases. If the ductus reopens or fails to close completely, a second course of drug may be used or surgical ligation can be considered if the infant remains symptomatic. In addition, in the extremely low-birth-weight infant (< 1000 g) who is at very high risk of developing a symptomatic ductus, a prophylactic strategy of indomethacin (0.1 mg/kg q24h for 3–5 days) beginning on the first day of life may be used, with the possible additional benefit of decreasing the incidence of severe IVH, although there is no evidence of an effect on mortality or neurodevelopment. The most common side effect of indomethacin is transient oliguria, which can be managed by fluid restriction until urine output improves. Indomethacin should not be used if the infant is hyperkalaemic, if the creatinine is higher than 2 mg/dL, or if the platelet count is less than 50,000/mL. There is an increased incidence of intestinal perforation if indomethacin is used concomitantly with hydrocortisone in extremely low-birth-weight infants (9% vs 2% for either drug alone). Ibuprofen lysine can be used as an alternative to indomethacin (0.2 mg/kg IV q12h for three doses) in about two-thirds of cases. If the ductus reopens or fails to close completely, a second course of drug may be used or surgical ligation can be considered if the infant remains symptomatic. In addition, in the extremely low-birth-weight infant (< 1000 g) who is at very high risk of developing a symptomatic ductus, a prophylactic strategy of indomethacin (0.1 mg/kg q24h for 3–5 days) beginning on the first day of life may be used, with the possible additional benefit of decreasing the incidence of severe IVH, although there is no evidence of an effect on mortality or neurodevelopment. The most common side effect of indomethacin is transient oliguria, which can be managed by fluid restriction until urine output improves. Indomethacin should not be used if the infant is hyperkalaemic, if the creatinine is higher than 2 mg/dL, or if the platelet count is less than 50,000/mL. There is an increased incidence of intestinal perforation if indomethacin is used concomitantly with hydrocortisone in extremely low-birth-weight infants (9% vs 2% for either drug alone). Ibuprofen lysine can be used as an alternative to indomethacin given every 24 hours as an initial dose of 10 mg/kg and then 5 mg/kg for two doses. Oliguria is less severe and less frequent than with indomethacin.

6. Patent Ductus Arteriosus

Essentials of Diagnosis & Typical Features

- Hyperdynamic precordium.
- Widened pulse pressure.
- Hypotension.
- Presence of a systolic heart murmur in many cases.

Treatment

Treatment of patent ductus arteriosus is by medical or surgical ligation. A clinically significant ductus can be closed with indomethacin (0.2 mg/kg IV q12h for three doses) in about two-thirds of cases. If the ductus reopens or fails to close completely, a second course of drug may be used or surgical ligation can be considered if the infant remains symptomatic. In addition, in the extremely low-birth-weight infant (< 1000 g) who is at very high risk of developing a symptomatic ductus, a prophylactic strategy of indomethacin (0.1 mg/kg q24h for 3–5 days) beginning on the first day of life may be used, with the possible additional benefit of decreasing the incidence of severe IVH, although there is no evidence of an effect on mortality or neurodevelopment. The most common side effect of indomethacin is transient oliguria, which can be managed by fluid restriction until urine output improves. Indomethacin should not be used if the infant is hyperkalaemic, if the creatinine is higher than 2 mg/dL, or if the platelet count is less than 50,000/mL. There is an increased incidence of intestinal perforation if indomethacin is used concomitantly with hydrocortisone in extremely low-birth-weight infants (9% vs 2% for either drug alone). Ibuprofen lysine can be used as an alternative to indomethacin given every 24 hours as an initial dose of 10 mg/kg and then 5 mg/kg for two doses. Oliguria is less severe and less frequent than with indomethacin.
Abdominal distention and tenderness.

Pneumatosis intestinalis on abdominal radiograph.

General Considerations

NEC is the most common acquired GI emergency in the newborn. It is most common in preterm infants, with an incidence of 6% in infants less than 1500 g. In full-term infants, it occurs in association with polycythemia, congenital heart disease, and birth asphyxia. The pathogenesis of NEC is multifactorial. Ischemia, immaturity, microbial dysbiosis (proliferation of pathogenic bacteria with less colonization with beneficial or commensal bacteria), and genetics are all thought to play a role. In up to 20% of affected infants, the only risk factor is prematurity. IUGR infants with a history of absent or reversed end-diastolic flow in the umbilical artery prior to delivery have abnormalities of splanchnic flow after delivery and have an increased risk of NEC.

Clinical Findings

The most common presenting sign is abdominal distention. Other signs are vomiting, increased gastric residuals, hemodynamic instability, increased apnea and bradycardia, decreased urine output, and poor perfusion. There may be an increased white blood cell count with an increased band count or, as the disease progresses, absolute neutropenia. Thrombocytopenia often occurs along with stress-induced hyperglycemia and metabolic acidosis. Diagnosis is confirmed by the presence of pneumatosis intestinalis (air in the bowel wall) or biliary tract air on a plain abdominal radiograph. There is a spectrum of disease, and milder cases may exhibit only distention of bowel loops with bowel wall edema.

Treatment

A. Medical Treatment

NEC is managed by making the infant NPO, nasogastric decompression of the gut, maintenance of oxygenation, mechanical ventilation if necessary, and IV fluids to replace third-space GI losses. Enough fluid should be given to restore good urine output. Other measures include broad-spectrum antibiotics (usually ampicillin, a third-generation cephalosporin or an aminoglycoside, and possibly additional anaerobic coverage), close monitoring of vital signs, and serial physical examinations and laboratory studies (blood gases, white blood cell count, platelet count, and radiographs). Although there are no proven strategies to prevent NEC, use of trophic feedings, breast milk, and cautious advancement of feeds, as well as probiotic agents, may provide some protection, even though the optimal formulation and dose of probiotics for prevention are as yet unknown.

B. Surgical Treatment

Indications for surgery are evidence of perforation (free air present on a left lateral decubitus or cross-table lateral film), a fixed dilated loop of bowel on serial radiographs, abdominal wall cellulitis, or deterioration despite maximal medical support. All of these signs are indicative of necrotic bowel. In the operating room, necrotic bowel is removed and ostomies are created, although occasionally a primary end-to-end anastomosis may be performed. In extremely low-birthweight infants, the initial surgical management may simply be the placement of peritoneal drains. Reanastomosis in infants with ostomies is performed after the disease resolves and the infant is bigger (usually > 2 kg and after 4–6 weeks).

Course & Prognosis

Infants treated medically or surgically should not be refed until the disease is resolved (normal abdominal examination and resolution of pneumatosis), usually after 7–10 days. Nutritional support during this time should be provided by total parenteral nutrition. Death occurs in 10% of cases. Surgery is needed in fewer than 25% of cases. Long-term prognosis is determined by the amount of intestine lost. Infants with short bowel require long-term support with IV nutrition (see Chapter 21). Late strictures—about 3–6 weeks after initial diagnosis—occur in 8% of patients whether treated medically or surgically, and generally require operative management. Infants with surgically managed NEC have an increased risk of poor neurodevelopmental outcome.

8. Anemia in the Premature Infant

General Considerations

In the premature infant, the hemoglobin concentration reaches its nadir at about 8–12 weeks and is 2–3 g/dL lower than that of the full-term infant. The lower nadir in premature infants appears to be the result of decreased erythropoietin response to the low red cell mass. Symptoms of anemia include poor feeding, lethargy, increased heart rate, poor weight gain, and perhaps periodic breathing.
Treatment

Transfusion is not indicated in an asymptomatic infant simply because of a low hematocrit. Most infants become symptomatic if the hematocrit drops below 20%. Infants on ventilators and supplemental oxygen are usually maintained with hematocrits above 25%–30%. Alternatively, infants can be treated with erythropoietin (350 U/kg/d for 7–10 days for hematocrits < 28%). The therapeutic goal is to minimize blood draws and use conservative guidelines for transfusion. Delayed cord clamping 1–2 minutes after birth, if possible, can significantly decrease the need for future transfusion. Early use of erythropoietin may increase the rate and severity of retinopathy of prematurity and should be used judiciously.

General Considerations

Periventricular–intraventricular hemorrhage occurs almost exclusively in premature infants. The incidence is 15%–25% in infants born before 31 weeks’ gestation and weighing less than 1500 g. The highest incidence occurs in infants of the lowest gestational age (< 26 weeks). Bleeding most commonly occurs in the subependymal germinal matrix (a region of undifferentiated cells adjacent to or lining the lateral ventricles). Bleeding can extend into the ventricular cavity. The proposed pathogenesis of bleeding is presented in Figure 2–10. The critical event is ischemia with reperfusion.

Figure 2–10. Pathogenesis of periventricular and intraventricular hemorrhage.
injury to the capillaries in the germinal matrix in the immediate perinatal period. The actual amount of bleeding is influenced by a variety of factors that affect the pressure gradient across the injured capillary wall, such as venous congestion or increased arterial inflow. This pathogenetic scheme applies also to intraparenchymal bleeding (venous infarction in a region rendered ischemic) and to periventricular leukomalacia (ischemic white matter injury in a watershed region of arterial supply). CNS complications in preterm infants are more frequent in infants exposed to intrapartum and postnatal infection, implying also the involvement of inflammatory mediators in the pathogenesis of brain injury.

Clinical Findings

Up to 50% of hemorrhages occur before 24 hours of age, and virtually all occur by the fourth day. The clinical syndrome ranges from rapid deterioration (coma, hypoventilation, decerebrate posturing, fixed pupils, bulging anterior fontanelle, hypotension, acidosis, or acute drop in hematocrit) to a more gradual deterioration with more subtle neurologic changes. In some cases, infants manifest no physiologic or neurologic signs.

The diagnosis can be confirmed by ultrasound scan. Routine scanning should be done at 7–10 days in all infants born before 29 weeks’ gestation. Hemorrhages are graded as follows: grade I, germinal matrix hemorrhage only; grade II, intraventricular bleeding without ventricular enlargement; grade III, intraventricular bleeding with ventricular enlargement; or grade IV, any intraparenchymal bleeding. The amount of bleeding is minor (grade I or II) in the majority of infants who bleed. Follow-up ultrasound examinations are scheduled based on the results of the initial scan. Infants with no bleeding or germinal matrix hemorrhage require only a single follow-up scan at age 4–6 weeks to look for periventricular leukomalacia (PVL). An infant with blood in the ventricular system is at risk for posthemorrhagic ventriculomegaly. This is usually the result of impaired absorption of cerebrospinal fluid (CSF) but can also occur secondary to obstructive phenomena. An initial follow-up scan should be done 1–2 weeks after the initial scan. Infants with intraventricular bleeding and ventricular enlargement should be followed every 7–10 days until ventricular enlargement stabilizes or decreases. Infants born at 29–32 weeks’ gestational age need only a single late scan done at 4–6 weeks of age to look for PVL or ventriculomegaly.

Treatment

During acute hemorrhage, supportive treatment (restoration of volume and hematocrit, oxygenation, and ventilation) should be provided to avoid further cerebral ischemia. Progressive posthemorrhagic hydrocephalus is treated initially with a subgaleal shunt. When the infant is large enough, this can be converted to a ventriculoperitoneal shunt.

Although the incidence and severity of intracranial bleeding in premature infants have decreased, strategies to prevent this complication are still needed. Maternal antenatal corticosteroids appear to decrease the risk of intracranial bleeding, and phenobarbital may have a role in the mother who has not been prepared with steroids and is delivering before 28 weeks’ gestation. Magnesium sulfate administered to the mother appears to reduce the rate of cerebral palsy, although not the rate of IVH per se.

Prognosis

No deaths occur as a result of grade I and grade II hemorrhages. Grade III and IV hemorrhages carry a mortality rate of 10%–20%. Posthemorrhagic ventricular enlargement is rarely seen with grade I hemorrhages but is seen in 54%–87% of grade II–IV hemorrhages. Very few of these infants will require a ventriculoperitoneal shunt. Long-term neurologic sequelae are seen slightly more frequently in infants with grade I and grade II hemorrhages than in preterm infants without bleeding. In infants with grade III and grade IV hemorrhages, severe sequelae occur in 20%–25% of cases, mild sequelae in 35% of cases, but no sequelae in 40% of cases. Severe periventricular leukomalacia, large parenchymal bleeds, especially if bilateral, and progressive hydrocephalus increase the risk of neurologic sequelae. It is important to note that extremely low-birth-weight infants without major ultrasound findings also remain at increased risk for both cerebral palsy and cognitive delays. Recent reports using quantitative MRI scans demonstrate that subtle gray and white matter findings not seen with ultrasound are prevalent in preterm survivors and are predictive of neurodevelopmental handicap. This is especially true in infants born weighing less than 1000 g and before 28 weeks’ gestation.

10. Retinopathy of Prematurity

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- **Risk of severe retinopathy is greatest in the most immature infants.**
Retinopathy of prematurity occurs only in the incompletely vascularized premature retina. The incidence of retinopathy in infants weighing less than 1250 g is 66%, but only 6% have retinopathy severe enough to warrant intervention. The incidence is highest in infants of the lowest gestational age. The condition appears to be triggered by an initial injury to the developing retinal vessels and low levels of insulin-like growth factor-1. After the initial injury, normal vessel development may follow or abnormal vascularization may occur due to excessive vascular endothelial growth factor (VEGF), with ridge formation on the retina. Lability in oxygen levels with periods of hypoxia/hyperoxia likely potentiate this progression. The frequency of retinopathy progressing to the need for treatment can be diminished by careful monitoring of the infant’s oxygen saturation levels. The process can regress at this point or may continue, with growth of fibrovascular tissue into the vitreous associated with inflammation, scarring, and retinal folds or detachment. The disease is graded by stages of abnormal vascular development and retinal detachment (I–V), by the zone of the eye involved (1–3, with zone 1 being the posterior region around the macula), and by the amount of the retina involved, in “clock hours” (eg, a detachment in the upper, outer quadrant of the left eye would be defined as affecting the left retina from 12 to 3 o’clock).

Initial eye examination should be performed at 31 weeks postmenstrual age or at 4 weeks of age, whichever is earlier, in infants born at 30 weeks’ gestation or 1500 g or less, as well as in infants up to 32 weeks’ gestation with an unstable clinical course. Follow-up occurs at 1- to 3-week intervals, depending on the findings, until the retina is fully vascularized. Laser therapy is used in infants with progressive disease at risk for retinal detachment. Although this treatment does not always prevent retinal detachment, it reduces the incidence of poor outcomes based on visual acuity and retinal anatomy. A new investigational form of therapy is intravitreal bevacizumab, an anti-VEGF monoclonal antibody, which may prove to be superior to laser therapy for severe Zone 1 retinopathy of prematurity.

11. Discharge & Follow-Up of the Premature Infant

A. Hospital Discharge

Criteria for discharge of the premature infant include maintaining normal temperature in an open crib, adequate oral intake, acceptable weight gain, and absence of apnea and bradycardia spells requiring intervention. Infants going home on supplemental oxygen should not desaturate below 80% in room air or should demonstrate the ability to arouse in response to hypoxia. Factors such as support for the mother at home and the stability of the family situation play a role in the timing of discharge. Home nursing visits and early physician follow-up can be used to hasten discharge. Additionally, the American Academy of Pediatrics recommends that preterm infants have a period of observation in an infant car seat, preferably their own, before hospital discharge, with careful positioning to mimic optimal restraint as would occur in the car, to see that they do not have obstructive apnea or desaturation for periods up to 90–120 minutes.

B. Follow-Up

With advances in obstetric and maternal care, survival of infants born after 28 weeks’ gestation or weighing as little as 1000 g at birth is now better than 90%. Mortality increases at lower birth weights and gestational ages (Figure 2–11). These high rates of survival come with some morbidity. Major neurologic sequelae, including cerebral palsy, cognitive delay, and hydrocephalus, occur in 10%–25% of survivors of birth weight less than 1500 g. The rate of these sequelae tends to be higher in infants with lower birth weights. Infants with birth weights less than 1000 g also have an increased rate of lesser disabilities, including learning, behavioral, and psychiatric problems. Risk factors for neurologic sequelae include seizures, grade III or IV intracranial hemorrhage, periventricular leukomalacia, ventricular dilation, white matter abnormalities on term-equivalent MRI examinations, severe IUGR, poor early head growth, need for mechanical ventilation, chronic lung disease, bacterial and candidal sepsis, NEC, and low socioeconomic class. Maternal fever and chorioamnionitis

are associated with an increased risk of cerebral palsy. Other morbidities include chronic lung disease and reactive airway disease, resulting in increased severity of respiratory infections and hospital readmissions in the first 2 years; retinopathy of prematurity with associated loss of visual acuity and strabismus; hearing loss; and growth failure. All of these issues require close multidisciplinary outpatient follow-up. Infants with residual lung disease are candidates for monthly palivizumab (Synagis) injections during their first winter after hospital discharge to prevent infection with respiratory syncytial virus. Routine immunizations should be given at the appropriate chronologic age and should not be age-corrected for prematurity.

Barre N et al: Language abilities in children who were very preterm and/or very low birth weight: a meta-analysis. J Pediatr 2011;158:766 [PMID: 21317804].

THE LATE PRETERM INFANT

The rate of preterm births in the United States has increased by more than 30% in the past 30 years, so that preterm infants now comprise 12.8% of all births. Late preterm births, those from 34 0/7 to 36 6/7 weeks' gestation (Figure 2–12), have
increased the most, and now account for over 70% of all preterm births. While births less than 34 weeks’ gestation have increased by 10% since 1990, late preterm births have increased by 25%. This is in part due to changes in obstetric practice with an increase in inductions of labor (up from 9.5% in 1990 to 22.5% today), and an increase in cesarean sections (currently more than 30% of all births), as well as a rise in multiple births. While many late preterm births are unavoidable and/or medically indicated, perhaps 1 in 5 late preterm births could be prevented by implementing well-conceived delivery guidelines that would be safe for both the mother and her fetus.

Compared with term infants, late preterm infants have higher prevalence of acute neonatal problems including respiratory distress, temperature instability, hypoglycemia, kernicterus, apnea, seizures, feeding problems, and rehospitalization after hospital discharge. The respiratory issues are caused by delayed clearance of lung fluid or surfactant deficiency, or both, and can progress to respiratory failure requiring mechanical ventilation and even ECMO support. Feeding issues are caused by immature coordination of suck and swallow, which can interfere with bottle feeding and cause failure to establish successful breast feeding, putting the infant at risk for excessive weight loss and dehydration. These infants are nearly five times as likely as full-term infants to require either supplemental IV fluids, or gavage feedings. Related both to feeding issues and immaturity, late preterm infants have at least four times the risk of developing a bilirubin level above 20 mg/dL when compared with infants born after 40 completed weeks. As a consequence, late preterm gestation is a major risk factor for excessive hyperbilirubinemia and kernicterus. Relaportalizations due to jaundice, proven or suspected infection, feeding difficulties, and failure to thrive are much more common than in term infants. Long-term development may also be adversely affected, with some large population-based studies showing a higher incidence of cerebral palsy, developmental delay, and behavioral and emotional disturbances compared with term infants.

Late preterm infants, even if similar in size to their term counterparts, should be considered preterm rather than near term, and require close in-hospital monitoring after birth for complications. Although they may feed reasonably well for the first day or two, they often fail to increase feeding volume and become more sleepy and less interested in feeding as they lose weight and become jaundiced, especially if younger than 36 weeks. Discharge of these newborns should be delayed until they have demonstrated reliable and appropriately increasing intake and absence of other issues such as hypothermia, hypoglycemia, significant jaundice, or apnea. If nursing, use of a breast pump to ensure adequate emptying of the breast and milk supply should also be instituted, along with supplementation of the infant’s breast feeding with expressed milk by bottle or gavage. It is better to ensure adequate feeding and mature behaviors for an extra day or two in the hospital than to have a readmission for “lethargy and poor feeding, possible sepsis” after premature discharge. Following nursery discharge, close outpatient follow-up is indicated, generally within 48–72 hours, to ensure continued adequate intake and weight gain.
1. Cyanotic Presentations

Essentials of Diagnosis & Typical Features

- Cyanosis, initially without associated respiratory distress.
- Failure to increase $P_{A\text{O}_2}$ with supplemental oxygen.
- Chest radiograph with decreased lung markings suggests right heart obstruction, while increased lung markings suggest transposition or pulmonary venous obstruction.

General Considerations

The causes of cyanotic heart disease in the newborn are transposition of the great vessels, total anomalous pulmonary venous return, truncus arteriosus (some types), tricuspid atresia, and pulmonary atresia or critical pulmonary stenosis. Most can be diagnosed antenatally by ultrasound.

Clinical Findings

Infants with these disorders present with early cyanosis. The hallmark of many of these lesions is cyanosis without associated respiratory distress. In most of these infants, tachypnea develops over time either because of increased pulmonary blood flow or secondary to metabolic acidemia from progressive hypoxemia. Diagnostic aids include comparing the blood gas or oxygen saturation in room air to that in 100% F_{IO_2}. Failure of $P_{A\text{O}_2}$ or $S_{\text{A\text{O}_2}}$ to increase suggests cyanotic heart disease. Note: A $P_{A\text{O}_2}$, if feasible, is the preferred measure. Saturation in the newborn may be misleadingly high despite pathologically low $P_{A\text{O}_2}$ due to the left-shifted oxyhemoglobin dissociation curve seen with fetal hemoglobin. Other useful aids are chest radiography, electrocardiography, and echocardiography.

Transposition of the great vessels is the most common form of cyanotic heart disease presenting in the newborn. Examination generally reveals a systolic murmur and single S_2. Chest radiograph shows a generous heart size and a narrow mediastinum with normal or increased lung markings. There is little change in $P_{A\text{O}_2}$ or $S_{\text{A\text{O}_2}}$ with supplemental oxygen. Total anomalous pulmonary venous return, in which venous return is obstructed, presents early with severe cyanosis and respiratory failure because of severe pulmonary edema. The chest radiograph typically shows a small to normal heart size with marked pulmonary edema. Infants with right heart obstruction (pulmonary and tricuspid atresia, critical pulmonary stenosis, and some forms of truncus arteriosus) have decreased lung markings on chest radiographs and, depending on the severity of hypoxia, may develop metabolic acidemia. Those lesions with an underdeveloped right heart will have left-sided predominance on electrocardiography. Although tetralogy of Fallot is the most common form of cyanotic heart disease, the obstruction at the pulmonary valve is often not severe enough to result in cyanosis in the newborn. In all cases, diagnosis can be confirmed by echocardiography.

2. Acyanotic Presentations

Essentials of Diagnosis & Typical Features

- Most newborns with symptomatic acyanotic heart disease have left-sided outflow obstruction.
- Differentially diminished pulses (coarctation) or decreased pulses throughout (aortic atresia).
- Metabolic acidemia.
- Chest radiograph showing large heart and pulmonary edema.

General Considerations

Newborn infants who present with serious acyanotic heart disease usually have congestive heart failure secondary to left-sided outflow tract obstruction. Infants with left-to-right shunt lesions (eg, ventricular septal defect) may have murmurs in the newborn period, but clinical symptoms do not occur until pulmonary vascular resistance drops enough to cause significant shunting and subsequent congestive heart failure (usually at 3–4 weeks of age).

Clinical Findings

Infants with left-sided outflow obstruction generally do well for several days until the ductus arteriosus—the source of all or some of the systemic flow—narrows. Tachypnea, tachycardia, congestive heart failure, and metabolic acidosis develop. On examination, all of these infants have abnormalities of the pulses. In aortic atresia (hypoplastic left heart syndrome) and stenosis, pulses are all diminished, whereas in coarctation syndromes, differential pulses (diminished or absent in the lower extremities) are evident, and S_{PO_2} may be lower in the legs than in the right upper extremity. Chest radiographic films in these infants show a large
heart and pulmonary edema. Diagnosis is confirmed with echocardiography.

3. Treatment of Cyanotic & Acyanotic Lesions

Early stabilization includes supportive therapy as needed (eg, IV glucose, oxygen, ventilation for respiratory failure, and pressor support). Specific therapy includes infusions of prostaglandin E₁ (0.0125–0.025 mcg/kg/min) to maintain ductal patency. In some cyanotic lesions (eg, pulmonary atresia, tricuspid atresia, and critical pulmonary stenosis) in which lung blood flow is ductus-dependent, this improves pulmonary blood flow and Pao₂ by allowing shunting through the ductus to the pulmonary artery. In left-sided outflow tract obstruction, systemic blood flow is ductus-dependent; prostaglandins improve systemic perfusion and resolve the acidosis. Further specific management—including palliative surgical and cardiac catheterization procedures—is discussed in Chapter 20. Neurodevelopmental outcome with congenital heart disease depends on the lesion, associated defects and syndromes, severity of neonatal presentation, and complications related to palliative and corrective surgery.

PERSISTENT PULMONARY HYPERTENSION

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Onset of symptoms on day 1 of life.
- Hypoxia with poor response to high concentrations of inspired oxygen.
- Right-to-left shunts through the foramen ovale, ductus arteriosus, or both.
- Most often associated with parenchymal lung disease.

General Considerations

Persistent pulmonary hypertension of the newborn (PPHN) results when the normal decrease in pulmonary vascular resistance after birth does not occur. Most affected infants are full term or postterm, and many have experienced perinatal asphyxia. Other clinical associations include hypothermia, meconium aspiration syndrome, hyaline membrane disease, polycythemia, neonatal sepsis, chronic intrathecal hypoxia, and pulmonary hypoplasia.

There are three underlying pathophysiologic mechanisms of PPHN: (1) vasoconstriction due to perinatal hypoxia related to an acute event such as sepsis or asphyxia; (2) prenatal increase in pulmonary vascular smooth muscle development, often associated with meconium aspiration syndrome; and (3) decreased cross-sectional area of the pulmonary vascular bed associated with lung hypoplasia (eg, diaphragmatic hernia).

Clinical Findings

Clinically, the syndrome is characterized by onset on the first day of life, usually from birth. Respiratory distress is prominent, and Pao₂ is usually poorly responsive to high concentrations of inspired oxygen. Many infants have associated myocardial depression with systemic hypotension. Echocardiography reveals right-to-left shunting at the level of the ductus arteriosus or foramen ovale, or both. The chest radiograph may show lung infiltrates related to associated pulmonary pathology (eg, meconium aspiration and hyaline membrane disease). If the majority of right-to-left shunting is at the ductal level, pre- and postductal differences in Pao₂ and Sao₂ will be observed.

Treatment

Therapy for PPHN involves treatment of other postasphyxia problems such as seizures, renal failure, hypoglycemia, and infection. Specific therapy is aimed at both increasing systemic arterial pressure and decreasing pulmonary arterial pressure to reverse the right-to-left shunting through fetal pathways. First-line therapy includes oxygen and ventilation (to reduce pulmonary vascular resistance) and crystalloid infusions (10 mL/kg, up to 30 mL/kg) to improve systemic pressure. Ideally, systolic pressure should be greater than 50–60 mm Hg. With compromised cardiac function, systemic pressors can be used as second-line therapy (eg, dopamine, 5–20 mcg/kg/min; epinephrine 0.01–0.1 mcg/kg/min; or both). Metabolic acidemia should be corrected because acidemia exacerbates pulmonary vasoconstriction. Pulmonary vasodilation can be enhanced using inhaled nitric oxide, which is identical or very similar to endogenous endothelium-derived relaxing factor, at doses of 5–20 ppm. High-frequency oscillatory ventilation has proved effective in many of these infants, particularly those with severe associated lung disease, by improving lung expansion and recruitment. In cases in which conventional therapy is failing (poor oxygenation despite maximum support) extracorporeal membrane oxygenation (ECMO) is used. The lungs are essentially at rest during ECMO, and with resolution of pulmonary hypertension infants are weaned from ECMO back to ventilator therapy. Approximately 10%–15% of survivors of PPHN have significant neurologic sequelae, with cerebral palsy or cognitive delays. Other sequelae such as chronic lung disease, sensorineural hearing loss, and feeding problems have also been reported.

ARRHYTHMIAS

Irregularly irregular heart rates, commonly associated with premature atrial contractions and less commonly with premature ventricular contractions, are common in the first
days of life in well newborns. These arrhythmias are benign. Clinically significant bradyarrhythmias are seen in association with congenital heart block. Heart block can be seen in an otherwise structurally normal heart (associated with maternal lupus) or with structural cardiac abnormalities. In the absence of fetal hydrops, the bradyarrhythmia is often well tolerated. Cardiac pacing may be required if there are symptoms of inadequate cardiac output.

Tachyarrhythmias can be either wide complex (ventricular tachycardia) or narrow complex (supraventricular tachycardia) on ECG. Supraventricular tachycardia is the most common neonatal tachyarrhythmia and may be a sign of structural heart disease, myocarditis, left atrial enlargement, and aberrant conduction pathways, or may be an isolated event. Acute treatment is ice to the face to induce a vagal response, and if unsuccessful, IV adenosine (50 mcg/kg). If there is no response, the dose can be increased every 2 minutes by 50 mcg/kg to a maximum dose of 250 mcg/kg. Long-term prophylactic antiarrhythmic therapy is generally indicated; cardiology consultation is suggested. Cardioversion is rarely needed for supraventricular tachycardia but is needed acutely for hemodynamically unstable ventricular tachycardia.

GASTROINTESTINAL & ABDOMINAL SURGICAL CONDITIONS IN THE NEWBORN INFANT (SEE ALSO CHAPTER 21)

ESOPHAGEAL ATRESIA & TRACHEOESOPHAGEAL FISTULA

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Polyhydramnios.
- Excessive drooling and secretions; choking with attempted feeding.
- Unable to pass an orogastric tube to the stomach.

General Considerations

Esophageal atresia is characterized by a blind esophageal pouch with or without a fistulous connection between the proximal or distal esophagus (or both) and the airway. In 85% of infants, the fistula is between the distal esophagus and the airway. Polyhydramnios is common because of high GI obstruction. Incidence is approximately 1 in 3000 births.

Clinical Findings

Infants present in the first hours of life with copious secretions, choking, cyanosis, and respiratory distress. Diagnosis is confirmed with chest radiograph after careful placement of a nasogastric (NG) tube to the point at which resistance is met. The tube will be seen radiographically in the blind pouch. If a tracheoesophageal fistula is present to the distal esophagus, gas will be present in the bowel. In esophageal atresia without tracheoesophageal fistula, there is no gas in the bowel.

Treatment

The NG tube in the proximal pouch should be placed on low intermittent suction to drain secretions and prevent aspiration. The head of the bed should be elevated to prevent reflux of gastric contents through the distal fistula into the lungs. IV glucose and fluids should be provided and oxygen administered as needed. Definitive treatment is surgical, and the technique used depends on the distance between the segments of esophagus. If the distance is not too great, the fistula can be ligated and the ends of the esophagus anastomosed. If the ends of the esophagus cannot be brought together, the initial surgery is fistula ligation and a feeding gastrostomy. Echocardiography should be performed prior to surgery to rule out a right-sided aortic arch (for which a left-sided thoracotomy would be preferred).

Prognosis

Prognosis is determined primarily by the presence or absence of associated anomalies, particularly cardiac, and low birth weight. Mortality is highest when the infant is less than 2000 g and has a serious associated cardiac defect. Vertebral, anal, cardiac, renal, and limb anomalies are the most likely to be observed (VACTERL association). Evaluation for associated anomalies should be initiated early.

INTESTINAL OBSTRUCTION

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Infants with high intestinal obstruction present soon after birth with emesis.
- Bilious emesis suggests intestinal malrotation with midgut volvulus until proved otherwise.
Low intestinal obstruction is characterized by abdominal distention and late onset of emesis, often with delayed or absent stooling.

General Considerations

A history of polyhydramnios is common, and the fluid, if bile-stained, can easily be confused with thin meconium staining. The higher the location of the obstruction in the intestine, the earlier the infant will develop vomiting and the less prominent the abdominal distention will be. Lower intestinal obstruction presents with abdominal distention and later onset of emesis. Most obstructions are bowel atresias, believed to be caused by an ischemic event during development. Approximately 30% of cases of duodenal atresia are associated with Down syndrome. Meconium ileus is a distal small bowel obstruction caused by the viscous meconium produced in-utero by infants with pancreatic insufficiency secondary to cystic fibrosis. Hirschsprung disease is caused by a failure of neuronal migration to the myenteric plexus of the distal bowel. The distal bowel lacks ganglion cells, causing a lack of peristalsis in that region with a functional obstruction.

Malrotation with midgut volvulus is a surgical emergency that appears in the first days to weeks as bilious vomiting without distention or tenderness. If malrotation is not treated promptly, torsion of the intestine around the superior mesenteric artery will lead to necrosis of the entire small bowel. For this reason, bilious vomiting in the neonate always demands immediate attention and evaluation.

Diagnosis of intestinal obstructions depends on plain abdominal radiographs with either upper GI series (high obstruction suspected) or contrast enema (lower obstruction apparent) to define the area of obstruction. Table 2–20 summarizes the findings expected.

Infants with meconium ileus are suspected to have cystic fibrosis, although infants with pancolonic Hirschsprung disease, colon pseudo-obstruction syndrome, or colonic dysgenesis or atresia may also present with meconium impacted in the distal ileum. Definitive diagnosis of cystic fibrosis is by the sweat chloride test (Na^+ and Cl^- concentration > 60 mEq/L) or by genetic testing. Approximately 10%–20% of infants with cystic fibrosis have meconium ileus. Infants with cystic fibrosis and meconium ileus generally have a normal immunoreactive trypsinogen on their newborn screen because of the associated severe exocrine pancreatic insufficiency in utero.

Intestinal perforation in-utero results in meconium peritonitis with residual intra-abdominal calcifications. Many perforations are completely healed at birth. If the infant has no signs of obstruction or ongoing perforation, no immediate evaluation is needed. A sweat test to rule out cystic fibrosis should be done at a later date.

Low intestinal obstruction may present with delayed stooling (> 24 hours in term infants is abnormal) with mild distention. Radiographic findings of gaseous distention should prompt contrast enema to diagnose (and treat) meconium plug syndrome. If no plug is found, the diagnosis may be small left colon syndrome (occurring in IDMs) or Hirschsprung disease. Rectal biopsy will be required to confirm the presence of aganglionosis.

Clinical Findings

Table 2–20. Intestinal obstruction.

<table>
<thead>
<tr>
<th>Site of Obstruction</th>
<th>Clinical Findings</th>
<th>Plain Radiographs</th>
<th>Contrast Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duodenal atresia</td>
<td>Down syndrome (30%–50%); early vomiting, sometimes bilious</td>
<td>“Double bubble” (dilated stomach and proximal duodenum, no air distal)</td>
<td>Not needed</td>
</tr>
<tr>
<td>Malrotation and volvulus</td>
<td>Bilius vomiting with onset anytime in the first few weeks</td>
<td>Dilated stomach and proximal duodenum; paucity of air distally (may be normal gas pattern)</td>
<td>UGI shows displaced duodenojejunal junction with “corkscrew” deformity of twisted bowel</td>
</tr>
<tr>
<td>Jejunoileal atresia, meconium ileus</td>
<td>Bilius gastric contents > 25 mL at birth; progressive distention and bilius vomiting</td>
<td>Multiple dilated loops of bowel; intra-abdominal calcifications if in-utero perforation occurred (meconium peritonitis)</td>
<td>Barium or osmotic contrast enema shows microcolon; contrast refluxed into distal ileum may demonstrate and relieve meconium obstruction (successful in about 50% of cases)</td>
</tr>
<tr>
<td>Meconium plug syndrome; Hirschsprung disease</td>
<td>Distention, delayed stooling (> 24 h)</td>
<td>Diffuse bowel distention</td>
<td>Barium or osmotic contrast enema outlines and relieves plug; may show transition zone in Hirschsprung disease; delayed emptying (> 24 h) suggests Hirschsprung disease</td>
</tr>
</tbody>
</table>

UGI, upper gastrointestinal contrast study.
clarify these two diagnoses. Imperforate anus is generally apparent on physical examination, although a rectovaginal fistula with a mildly abnormal-appearing anus can occasionally be confused with normal. High imperforate anus in males may be associated with rectourethral or rectovesical fistula, with meconium “pearls” seen along the median raphe of the scrotum, and meconium being passed via the urethra.

Treatment

NG suction to decompress the bowel, IV glucose, fluid and electrolyte replacement, and respiratory support as necessary should be instituted. Antibiotics are usually indicated due to the bowel distention and possibility of translocation of bacteria. The definitive treatment for these conditions (with the exception of meconium plug syndrome, small left colon syndrome, and some cases of meconium ileus) is surgical.

Prognosis

Up to 10% of infants with meconium plug syndrome are subsequently found to have cystic fibrosis or Hirschsprung disease. For this reason, it is appropriate to obtain a sweat chloride test and rectal biopsy in all of these infants before discharge, especially the infant with meconium plug syndrome who is still symptomatic after contrast enema.

In duodenal atresia associated with Down syndrome, the prognosis depends on associated anomalies (eg, heart defects) and the severity of prestenotic duodenal dilation and subsequent duodenal dysmotility. Otherwise, these conditions usually carry an excellent prognosis after surgical repair.

ABDOMINAL WALL DEFECTS

1. Omphalocele

Omphalocele is a membrane-covered herniation of abdominal contents into the base of the umbilical cord; the incidence is 2 per 10,000 live births (0.02%). Over 50% of cases have either an abnormal karyotype or an associated syndrome. The sac may contain liver and spleen as well as intestine. Prognosis varies with the size of the lesion, with the presence of pulmonary hypoplasia and respiratory insufficiency, and with the presence of associated abnormalities.

At delivery, the omphalocele is covered with a sterile dressing soaked with warm saline to prevent fluid loss. NG decompression is performed, and IV fluids, glucose, and antibiotics are given. If the contents of the omphalocele fit into the abdomen and can be covered with skin, muscle, or both, primary surgical closure is done. If not, staged closure is performed, with placement of a Gore-Tex patch over the exposed contents, and gradual coverage of the patch by skin over days to weeks. A large ventral hernia is left, which is repaired in the future.

2. Gastroschisis

In gastroschisis, the uncovered intestine extrudes through a small abdominal wall defect to the right of the umbilical cord. There is no membrane or sac and no liver or spleen outside the abdomen. Gastroschisis is associated with intestinal atresia in approximately 10%–20% of infants, and with intrauterine growth restriction (IUGR). The evisceration is thought to be related to abnormal involution of the right umbilical vein or a vascular accident involving the omphalomesenteric artery, although the exact cause is unknown. The prevalence of gastroschisis has been increasing worldwide over the past 20 years, from 0.03% to 0.1%. Environmental factors, including use of illicit drugs such as methamphetamine and cocaine, and cyclooxygenase inhibitors such as aspirin and ibuprofen taken during pregnancy, may be involved. Young maternal age is also strongly linked to the occurrence of gastroschisis.

Therapy initially involves placing the bowel or the lower half of the infant into a silastic bowel bag to decrease fluid and electrolyte losses as well as to conserve heat. IV fluids, antibiotics, and low intermittent gastric suction are required. The infant is placed right side down to preserve bowel perfusion. Subsequent therapy involves replacement of the bowel into the abdominal cavity. This is done as a single primary procedure if the amount of bowel to be replaced is small. If the amount of bowel is large or if the bowel is very dilated, staged closure with placement of a silastic silo and gradual reduction of the bowel into the underdeveloped abdominal cavity over several days is preferred. Postoperatively, third-space fluid losses may be extensive; fluid and electrolyte therapy, therefore, must be monitored carefully. Bowel motility, especially duodenal, may be slow to return if the bowel was dilated, thickened, matted together, and covered with a fibrinous “peel” at delivery. Prolonged intravenous nutrition is often required, but long-term outcome is very good.

DIAPHRAGMATIC HERNIA

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Respiratory distress from birth.
- Poor breath sounds; flat or scaphoid abdomen.
Bowel loops seen in the chest with mediastinal shift to opposite side on chest radiograph.

This congenital malformation consists of herniation of abdominal organs into the hemithorax (usually left-sided) through a posterolateral defect in the diaphragm. The incidence overall is 1 in 2500 births. It is often diagnosed antenatally by ultrasound, and, if so, delivery should occur at a perinatal center. If undiagnosed, it should be suspected in any infant with severe respiratory distress, poor breath sounds, and a scaphoid abdomen. The rapidity and severity of presentation depend on several factors: the degree of pulmonary hypoplasia resulting from lung compression by the intrathoracic abdominal contents in utero; degree of associated pulmonary hypertension; and associated anomalies, especially chromosomal abnormalities and congenital cardiac defects. Affected infants are prone to development of pneumothorax during attempts at ventilation of the hypoplastic lungs.

Treatment includes intubation, gentle mechanical ventilation, and decompression of the GI tract with an NG tube. An IV infusion of glucose and fluid should be started. A chest radiograph confirms the diagnosis. Surgery to reduce the abdominal contents from the thorax and close the diaphragmatic defect is delayed until after the infant is stabilized and pulmonary hypertension and compliance have improved, usually after 24–48 hours. Both pre- and postoperatively, pulmonary hypertension may require therapy with high-frequency oscillatory ventilation, inhaled nitric oxide, or ECMO. The survival rate for infants with this condition is improving, and now approaches 80%. Use of a gentle ventilation style and permissive hypercarbia is recommended to avoid barotrauma and further lung injury. Many of these infants have ongoing problems with severe gastroesophageal reflux, and are at risk for neurodevelopmental problems, behavior problems, hearing loss, and poor growth.

Gastrointestinal bleeding is large or persistent, endoscopy may be needed. Bright red blood from the stomach is most likely from acute bleeding due to gastritis. Treatment generally consists of gastric lavage to obtain a sample for Apt testing or blood typing to determine if it is mother’s or baby’s blood, and antiacid medication. If the volume of bleeding is large, intensive monitoring, fluid and blood replacement, and endoscopy are indicated. Coagulation studies should also be sent, and vitamin K administration confirmed or repeated.

Lower Gastrointestinal Bleeding

Rectal bleeding in the newborn is less common than upper GI bleeding and is associated with infections (eg, Salmonella acquired from the mother perinatally), milk protein intolerance (blood streaks with diarrhea), or, in ill infants, NEC. An abdominal radiograph should be obtained to rule out pneumatosis intestinalis or other abnormalities in gas pattern suggesting inflammation, infection, or obstruction. If the radiograph is negative and the examination is benign, a protein hydrolysate or elemental formula should be tried. The nursing mother should be instructed to avoid all cow milk protein products in her diet. If the amount of rectal bleeding is large or persistent, endoscopy may be needed.

Gastroesophageal Reflux

Physiologic regurgitation is common in infants. Reflux is pathologic and should be treated when it results in failure to thrive owing to excessive regurgitation, poor intake due to dysphagia and irritability, apnea or cyanotic episodes, or chronic respiratory symptoms of wheezing and recurrent pneumonias. Diagnosis is clinical, with confirmation by pH probe and impedance study. Barium radiography is helpful to rule out anatomic abnormalities causing delayed gastric emptying, but is not diagnostic of pathologic reflux.

Most antireflux therapies have not been studied systematically in infants, especially in premature infants, and there is little correlation between clinical symptoms and documented gastroesophageal reflux events when studied. Treatment modalities have included thickened feeds for those with frequent regurgitation and poor weight gain, and positioning in a prone or left side down position for 1 hour after a feeding, although this may increase risk for SIDS. Gastric acid suppressants such as ranitidine (2 mg/kg bid) or lansoprazole (1.5 mg/kg/d) can also be used, especially if there is associated irritability; however, these may be associated with an increased incidence of NEC and invasive infections in the young and/or premature infant. Prokinetic agents such as erythromycin or metoclopramide are of little benefit and have significant side effects. Because most infants improve by 12–15 months of age, surgery is reserved for the most severe cases.

There are three major routes of perinatal infection: (1) blood-borne transplacental infection of the fetus (eg, cytomegalovirus [CMV], rubella, and syphilis); (2) ascending infection with disruption of the barrier provided by the amniotic membranes (eg, bacterial infections after 12–18 hours of ruptured membranes); and (3) infection on passage through the infected birth canal or exposure to infected blood at delivery (eg, herpes simplex, hepatitis B, HIV, and bacterial infections).

Susceptibility of the newborn infant to infection is related to immaturity of the immune system at birth. This feature applies particularly to the preterm neonate. Passive protection against some organisms is provided by transfer of IgG across the placenta, particularly during the third trimester of pregnancy. Preterm infants, especially those born before 30 weeks' gestation, do not have the full amount of passively acquired antibody.

BACTERIAL INFECTIONS

1. Bacterial Sepsis

Most infants with early-onset sepsis present at < 24 hours of age.
Respiratory distress is the most common presenting symptom.
Hypotension, acidemia, and neutropenia are associated clinical findings.
The presentation of late-onset sepsis is more subtle.

General Considerations
The incidence of early-onset (<3 days) neonatal bacterial infection is 1–2 in 1000 live births. If rupture of the membranes occurs more than 24 hours prior to delivery, the infection rate increases to 1 in 100 live births. If early rupture of membranes with chorioamnionitis occurs, the infection rate increases further to 1 in 10 live births. Regardless of membrane rupture, infection rates are five times higher in preterm than in full-term infants.

Clinical Findings
Early-onset bacterial infections appear most commonly on day 1 of life, the majority by 12 hours of age. Respiratory distress due to pneumonia is the most common presenting sign. Other features include unexplained low Apgar scores without fetal distress, poor perfusion, and hypotension. Late-onset bacterial infection (>3 days of age) presents in a more subtle manner, with poor feeding, lethargy, hypotonia, temperature instability, altered perfusion, new or increased oxygen requirement, and apnea. Late-onset bacterial sepsis is more often associated with meningitis or other localized infections.

Low total white blood cell count, absolute neutropenia (<1000/mL), and elevated ratio of immature to mature neutrophils all suggest neonatal bacterial infection. Thrombocytopenia is another common feature. Other laboratory signs are hypoglycemia or hyperglycemia with no change in glucose administration, unexplained metabolic acidosis, and elevated C-reactive protein and procalcitonin. In early-onset bacterial infection, pneumonia is invariably present; chest radiography shows infiltrates, but these infiltrates cannot be distinguished from those resulting from other causes of neonatal lung disease. Presence of a pleural effusion makes a diagnosis of pneumonia more likely. Definitive diagnosis is made by positive cultures from blood, CSF, or other body fluids.

Early-onset infection is most often caused by group B β-hemolytic streptococci (GBS) and gram-negative enteric pathogens (most commonly E coli). Other organisms to consider are non-typeable Haemophilus influenzae, enterococcus, Staphylococcus aureus, other streptococci and Listeria monocytogenes. Late-onset sepsis is caused by coagulase-negative staphylococci (most common in infants with indwelling central venous lines), S aureus, GBS, enterococcus, and gram-negative organisms, in addition to Candida species (see Fungal Sepsis).

Treatment
A high index of suspicion is important in diagnosis and treatment of neonatal infection. Infants with risk factors (rupture of membranes >18 hours, maternal chorioamnionitis, prematurity) need to be carefully observed for signs of infection. Evaluation with a CBC and differential, blood and cerebrospinal fluid cultures are indicated in infants with clinical signs of sepsis. Early-onset sepsis is usually caused by GBS or gram-negative enteric organisms; broad-spectrum antibiotics are usually required.
coverage, therefore, should include ampicillin (100–150 mg/ kg/d divided every 12 h) plus an aminoglycoside (3–4 mg/ kg/dose every 24 hours based on gestational age at birth) or third-generation cephalosporin (cefotaxime 100 mg/ kg/d divided every 12 h). Late-onset infections can also be caused by the same organisms, but coverage may need to be expanded to include staphylococci. In particular, the preterm infant with an indwelling line is at risk for infection with coagulase-negative staphylococci, for which vancomycin (10–15 mg/kg every 8–24 h based on gestational and postnatal age) is the drug of choice. Initial broad-spectrum coverage should also include a third-generation cephalosporin (cefotaxime or ceftazidime, if *Pseudomonas aeruginosa* is strongly suspected) or an aminoglycoside. To prevent the development of vancomycin-resistant organisms, vancomycin should be stopped as soon as cultures and sensitivities indicate that it is not needed. The evaluation for late onset symptoms should include cultures of blood, urine, and cerebrospinal fluid. The duration of treatment for proven sepsis is 10–14 days of IV antibiotics. In sick infants, the essentials of good supportive therapy should be provided: IV glucose and nutritional support, volume expansion and pressors as needed, and oxygen and ventilator support.

Prevention

Prevention of early onset neonatal GBS infection has been achieved with intrapartum administration of penicillin given more than 4 hours prior to delivery, with overall rates of infection now at 0.3–0.4 cases per 1000 live births. The current guideline (Figure 2–13) is to perform a vaginal and rectal GBS culture at 35–37 weeks’ gestation in all pregnant women. Prophylaxis with penicillin or ampicillin is given to GBS-positive women, to those who had GBS bacteriuria during the current pregnancy, to those who had a previous infant with invasive GBS disease, and to those who have unknown GBS status at delivery with risk factors for infection. Figure 2–14 presents an algorithm for secondary prevention of early onset GBS infections in newborns.

2. Meningitis

Any newborn with bacterial sepsis is at risk for meningitis. The incidence is low in infants presenting in the first day of life, and higher in infants with later-onset infection. The workup for any newborn with possible signs of CNS infection should include a lumbar puncture because blood cultures can be negative in neonates with meningitis. The presence of seizures should increase the suspicion for meningitis. Diagnosis is suggested by a CSF protein level higher than 150 mg/dL, glucose less than 30 mg/dL, leukocytes of more than 20/μL, and a positive Gram stain. The diagnosis is confirmed by culture. The most common organisms are GBS and gram-negative enteric bacteria. Although sepsis can be treated with antibiotics for 10–14 days, meningitis requires 14–21 days. Gram-negative infections, in particular, are difficult to eradicate, and may relapse. The mortality rate of neonatal meningitis is approximately 10%, with significant neurologic morbidity present in one-third of the survivors.

Figure 2–13. Indications for intrapartum antimicrobial prophylaxis to prevent early-onset group B streptococcal (GBS) disease using a universal prenatal culture screening strategy at 35–37 weeks’ gestation for all pregnant women. (Reproduced, with permission, from the Centers for Disease Control and Prevention: Prevention of perinatal group B streptococcal disease. MMWR 2010;59:RR-10.)
Signs of Neonatal Sepsis

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signs of neonatal sepsis?</td>
<td>Yes</td>
<td>Full diagnostic evaluation*
Antibiotic therapy†</td>
</tr>
<tr>
<td>Maternal chorioamnionitis?§</td>
<td>Yes</td>
<td>Limited evaluation‖
Antibiotic therapy‖</td>
</tr>
<tr>
<td>GBS prophylaxis indicated for mother?**</td>
<td>Yes</td>
<td>Observation for ≥48 hours††§§</td>
</tr>
<tr>
<td>Mother received intravenous penicillin, ampicillin, or cefazolin for ≥4 hours before delivery?</td>
<td>Yes</td>
<td>Observation for ≥48 hours††¶¶</td>
</tr>
<tr>
<td>≥37 weeks and duration of membrane rupture <18 hours?</td>
<td>Yes</td>
<td>Observation for ≥48 hours††¶¶</td>
</tr>
<tr>
<td>Either <37 weeks or duration of membrane rupture ≥18 hours?</td>
<td>Yes</td>
<td>Limited evaluation§
observation for ≥48 hours††</td>
</tr>
</tbody>
</table>

*Full diagnostic evaluation includes a blood culture, a complete blood count (CBC) including white blood cell differential and platelet counts, chest radiograph (if respiratory abnormalities are present), and lumbar puncture (if patient is stable enough to tolerate procedure and sepsis is suspected).

†Antibiotic therapy should be directed toward the most common causes of neonatal sepsis, including intravenous ampicillin for GBS and coverage for other organisms (including *Escherichia coli* and other gram-negative pathogens) and should take into account local antibiotic resistance patterns.

§Consultation with obstetric providers is important to determine the level of clinical suspicion for chorioamnionitis. Chorioamnionitis is diagnosed clinically and some of the signs are nonspecific.

¶Limited evaluation includes blood culture (at birth) and CBC with differential and platelets (at birth and/or at 6–12 hours of life).

**See Figure 2–13 for indications for intrapartum GBS prophylaxis.

††If signs of sepsis develop, a full diagnostic evaluation should be conducted and antibiotic therapy initiated.

§§If ≥37 weeks’ gestation, observation may occur at home after 24 hours if other discharge criteria have been met, access to medical care is readily available, and a person who is able to comply fully with instructions for home observation will be present. If any of these conditions is not met, the infant should be observed in the hospital for at least 48 hours and until discharge criteria are achieved.

¶¶Some experts recommend a CBC with differential and platelets at age 6–12 hours.

3. Pneumonia

The respiratory system can be infected in-utero, on passage through the birth canal, or postnatally. Early-onset neonatal infection is usually associated with pneumonia. Pneumonia should also be suspected in older neonates with a recent onset of tachypnea, retractions, and cyanosis. In infants already receiving respiratory support, an increase in the requirement for oxygen or ventilator support, perhaps with a change in the character of tracheal secretions, may indicate pneumonia. Not only common bacteria but also viruses...
(CMV, respiratory syncytial virus, adenovirus, influenza, herpes simplex, parainfluenza) and *Chlamydia* can cause pneumonia. In infants with preexisting respiratory disease, intercurrent pulmonary infections contribute to the development of chronic lung disease.

4. Urinary Tract Infection

Infection of the urine is uncommon in the first days of life. Urinary tract infection in the newborn can occur in association with genitourinary anomalies and is usually caused by gram-negative enteric pathogens, or *enterococcus*. Urine should always be evaluated as part of the workup for later-onset infection. Culture should be obtained either by suprapubic aspiration or bladder catheterization. Antibiotic IV therapy is continued for 3–5 days if the blood culture is negative and clinical signs resolve quickly, then completed with oral medications. Evaluation for genitourinary anomalies with an ultrasound examination and a voiding cystourethrogram should be done in most cases.

5. Omphalitis

A normal umbilical cord stump atrophies and separates at the skin level. A small amount of purulent material at the base of the cord is common and can be minimized by keeping the cord open to air and dry. The cord can become colonized with streptococci, staphylococci, or gram-negative organisms that can cause local infection. Infections are more common in cords manipulated for venous or arterial lines. Omphalitis is diagnosed when redness and edema develop in the soft tissues around the stump. Local and systemic cultures should be obtained. Treatment is with broad-spectrum IV antibiotics (usually nafcillin at 50–75 mg/kg/d divided every 8–12 h) or vancomycin and a third-generation cephalosporin. Complications are determined by the degree of infection of the cord vessels and include septic thrombophlebitis, hepatic abscess, necrotizing fasciitis, and portal vein thrombosis. Surgical consultation should be obtained because of the potential for necrotizing fasciitis. It is also prudent at this point to add anaerobic coverage with metronidazole (15 mg/kg/d divided every 12 h) as the infection may be polymicrobial.

6. Conjunctivitis

Neisseria gonorrhoeae may colonize an infant during passage through an infected birth canal. Gonococcal ophthalmia presents at 3–7 days with copious purulent conjunctivitis. The diagnosis can be suspected when gram-negative intracellular diplococci are seen on a Gram-stained smear and confirmed by culture. Treatment for nondisseminated disease is with IV or IM ceftriaxone, 25–50 mg/kg (not to exceed 125 mg) given once. For disseminated disease (sepsis, arthritis, or meningitis) cefotaxime for 7–10 days is preferred. Prophylaxis at birth is with 0.5% erythromycin ointment. Infants born to mothers with known gonococcal disease should also receive a single dose of ceftriaxone.

Chlamydia trachomatis is another important cause of conjunctivitis, appearing at 5 days to several weeks of age with conjunctival congestion, edema, and minimal discharge. The organism is acquired at birth after passage through an infected birth canal. Acquisition occurs in 50% of infants born to infected women, with a 25%–50% risk of conjunctivitis. Prevalence in pregnancy is over 10% in some populations. Diagnosis is by isolation of the organism or by rapid antigen detection tests. Treatment is with oral erythromycin (30 mg/kg/d in divided doses q8–12h) for 14 days. Topical treatment alone will not eradicate nasopharyngeal carriage, leaving the infant at risk for the development of pneumonia.
repeated exposures to broad-spectrum antibiotics are at highest risk. For infants of birth weight less than 1500 g, colonization rates of 27%–64% have been demonstrated. Many of these infants develop cutaneous lesions, with the GI tract as the initial site of colonization. A much smaller percentage develops systemic disease. The infection is more common in the smallest and least mature infants; up to 20% in infants 24 weeks’ gestation, and 7% overall in those <1000 g.

Clinical symptom complexes include IUGR, chorioretinitis, rash, and brain calcifications. More rarely, Malassezia furfur is also seen in infants with central lines receiving IV fat emulsion. To eradicate this organism, as well as Candida species, it is necessary to remove the indwelling line.

More rarely, Malassezia furfur is also seen in infants with central lines receiving IV fat emulsion. To eradicate this organism, as well as Candida species, it is necessary to remove the indwelling line.

CONGENITAL INFECTIONS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Can be acquired in utero, perinatally, and postnatally.
- Can be asymptomatic in the newborn period.
- Clinical symptom complexes include IUGR, chorioretinitis, cataracts, cholestatic jaundice, thrombocytopenia, skin rash, and brain calcifications.
- Diagnosis can be confirmed using polymerase chain reaction (PCR) testing, antigen and antibody studies, and culture.

1. **Cytomegalovirus Infection (See also Chapter 40)**

Cytomegalovirus (CMV) is the most common virus transmitted in utero, affecting approximately 1% of all newborns. Symptomatic disease in the newborn period occurs in 10% of these congenitally infected infants, with a spectrum of findings including hepatosplenomegaly, pectechiae and blueberry muffin spots, growth restriction, microcephaly, direct hyperbilirubinemia, thrombocytopenia, intracranial calcifications, and chorioretinitis. More than half of these infants will develop long-term sequelae, including sensorineural deafness in 20%–30%. Sensorineural hearing loss is common even in asymptomatic infants, leading to deafness in another 10%–15%. Transmission of CMV can occur during either primary or reactivated maternal infection; the risk of symptomatic neonatal disease is highest when the mother acquires a primary infection in the first half of pregnancy. Children, especially in the day care setting, are an important source of infection. Diagnosis in the neonate should be confirmed by culture of the virus from urine or with PCR testing of urine or saliva. Diagnosis can also be confirmed in utero from an amniocentesis specimen. Ganciclovir therapy (6 mg/kg IV q12h for 6 weeks) is recommended for neonates with symptomatic congenital infection affecting the central nervous system and may prevent progression of hearing loss and neuronal damage. Trials with longer course therapy and oral valganciclovir are in progress.

Infection can also be acquired around the time of delivery, and postnatally through blood transfusion or ingestion of CMV-infected breast milk. These infections generally cause no symptoms or sequelae although hepatitis, pneumonia, and neurologic illness may occur in compromised seronegative premature infants. Transfusion risk can be minimized by using frozen, washed red blood cells; leukodepleted blood; or CMV antibody-negative donors.

2. **Rubella (See also Chapter 40)**

Congenital rubella infection occurs as a result of maternal rubella infection during pregnancy. The risk of fetal infection and congenital defects is as high as 80%–85% in mothers infected during the first trimester, but after 12 weeks’ gestation, the risk of congenital malformation decreases markedly. Features of congenital rubella syndrome include microcephaly and encephalitis; cardiac defects (patent ductus arteriosus and pulmonary arterial stenosis and arterial hypoplasia); cataracts, retinopathy, and microphthalmia; growth restriction, hepatosplenomegaly, thrombocytopenia, and purpura; and deafness. Affected infants can be asymptomatic at birth but develop clinical sequelae during the first year of life as the viral infection is persistent due to an inadequate immune response. The diagnosis should be suspected...
in cases of a characteristic clinical illness in the mother (rash, adenopathy, and arthritis) confirmed by an increase in serum rubella-specific IgM or culture of pharyngeal secretions in the infant. Congenital rubella is now rare in industrialized countries because of widespread immunization, but is still possible due to the prevalence of unimmunized individuals in the population and widespread travel.

3. Varicella

Congenital varicella syndrome is rare (1%–2% after maternal varicella infection acquired during the first 20 weeks of pregnancy) and may include limb hypoplasia, cutaneous scars, microcephaly, cortical atrophy, chorioretinitis, and cataracts. Perinatal exposure (5 days before to 2 days after delivery) can cause severe to fatal disseminated varicella in the infant. If maternal varicella infection develops within this perinatal risk period, the newborn should receive varicella-zoster immune globulin. If varicella immune globulin is not available, IVIG can be used instead. If this has not been done, subsequent illness can be treated with IV acyclovir.

Hospitalized premature infants of at least 28 weeks’ gestation whose mothers have no history of chickenpox—and all hospitalized infants younger than 28 weeks’ gestational age—should receive varicella immune globulin following any postnatal exposure.

4. Toxoplasmosis (See also Chapter 43)

Toxoplasmosis is caused by the protozoan Toxoplasma gondii. Maternal infection occurs in 0.1%–0.5% of pregnancies and is usually asymptomatic; it is estimated that between 1 in 1000 and 1 in 10,000 infants are infected, 70%–90% initially asymptomatic. These children may develop mental retardation, visual impairment and learning disabilities within months to years. The sources of infection include exposure to cat feces and ingestion of raw or undercooked meat. Although the risk of transmission increases to 90% near term, fetal damage is most likely to occur when maternal infection occurs in the second to sixth month of gestation.

Clinical findings may include growth restriction, chorioretinitis, seizures, jaundice, hydrocephalus, microcephaly, intracranial calcifications, hepatosplenomegaly, adenopathy, cataracts, maculopapular rash, thrombocytopenia, and pneumonia. The serologic diagnosis is based on a positive toxoplasma-specific IgA, IgE, or IgM in the first 6 months of life, a rise in serial IgG levels compared to the mother’s, or a persistent IgG beyond 12 months. Infants with suspected infection should have eye and auditory examinations and a CT scan of the brain. Organism isolation from placenta or cord blood and PCR tests on amniotic fluid or CSF are also available for diagnosis.

Spiramycin (an investigational drug in the United States) treatment of primary maternal infection is used to try to reduce transmission to the fetus. Neonatal treatment using pyrimethamine and sulfadiazine with folinic acid can improve long-term outcome.

5. Parvovirus B19 Infection

Parvovirus B19 is a small, nonenveloped, single-stranded DNA virus that causes erythema infectiosum (fifth disease) in children, with a peak incidence at ages 6–7 years. Transmission to the mother is primarily by respiratory secretions. The virus replicates initially in erythroid progenitor cells and induces cell-cycle arrest, resulting in severe anemia, myocarditis, nonimmune hydrops, or fetal death in approximately 3%–6% of fetuses infected during pregnancy. Resolution of the hydrops may occur in utero, either spontaneously or after fetal transfusion. Mothers who have been exposed may have specific serologic testing, and serial ultrasound, Doppler examinations, and percutaneous umbilical cord blood sampling of the fetus to assess for anemia. If the fetus survives, the long-term outcome is good with no late effects from the infection.

6. Congenital Syphilis (See also Chapter 42)

Active primary and secondary maternal syphilis leads to transplacental passage of Treponema pallidum to the fetus in nearly 100% of affected pregnancies while latent maternal infection leads to transplacental infection of the fetus in 40% of cases, and late maternal infection in 10%. Fetal infection is rare before 18 weeks’ gestation. Fetal infection can result in stillbirth or prematurity. Findings of early congenital syphilis (presentation before age 2 years) include mucocutaneous lesions, lymphadenopathy, hepatosplenomegaly, bony changes, and hydrops, although newborn infants are often asymptomatic. Late manifestations (after 2 years of age) in untreated infants involve the central nervous system, bones and joints, teeth, eyes and skin. An infant should be evaluated for congenital syphilis if he or she has proven or probable congenital syphilis, defined as a suggestive examination, serum quantitative nontreponemal titer more than fourfold the mother’s, positive darkfield exam of body fluids, or birth to a mother with positive nontreponemal tests confirmed by a positive treponemal test but without documented adequate treatment (parenteral penicillin G), including the expected fourfold decrease in nontreponemal antibody titer.

Infants of mothers treated less than 1 month before delivery also require evaluation. Evaluation should include physical examination; a quantitative nontreponemal serologic test for syphilis; CBC; CSF examination for cell count, protein, and Venereal Disease Research Laboratory (VDRL) testing; and long bone radiographs. Guidelines for evaluation and therapy are presented in Figure 2–15.
Reactive maternal RPR/VDRL

Nonreactive maternal treponemal test

False-positive reaction: no further evaluation

Maternal treatment:
• none, OR
• undocument, OR
• 4 wk or less before delivery, OR
• nonpenicillin drug, OR
• maternal evidence of reinfection/relapse (fourfold or greater increase in maternal titers)

Infant physical examination normal; OR
evaluation normal; infant RPR/VDRL same or less than fourfold the maternal RPR/VDRL titer

Treatment

Infant physical examination abnormal; OR
evaluation abnormal; infant RPR/VDRL greater than maternal RPR/VDRL titer

Evaluation and Treatment (Option 1)

Treatment (Option 1)

Infant RPR/VDRL same or less than fourfold the maternal RPR/VDRL titer

Evaluation and Treatment (Option 1)

No evaluation: Treatment (Option 2)

Adequate maternal treatment before pregnancy with stable low titer (serofast), AND infant examination normal; if infant examination is abnormal, proceed with evaluation

Maternal penicillin treatment during pregnancy AND more than 4 weeks before delivery, AND no evidence of maternal reinfection or relapse

Infant physical examination abnormal

Infant physical examination normal

Maternal treatment:
• none, OR
• undocument, OR
• 4 wk or less before delivery, OR
• nonpenicillin drug, OR
• maternal evidence of reinfection/relapse (fourfold or greater increase in maternal titers)

Infant physical examination abnormal

Infant physical examination normal

Maternal treatment:
• none

Infant RPR/VDRL greater than maternal RPR/VDRL titer

Infant physical examination normal

No evaluation: Treatment (Option 2)

Adequate maternal treatment before pregnancy with stable low titer (serofast), AND infant examination normal; if infant examination is abnormal, proceed with evaluation

Infant physical examination abnormal

Infant physical examination normal

Maternal treatment:
• none

Infant RPR/VDRL same or less than fourfold the maternal RPR/VDRL titer

Evaluation and Treatment (Option 1)

Infant physical examination abnormal

Infant physical examination normal

Maternal treatment:
• nonpenicillin drug

Infant physical examination abnormal

Infant physical examination normal

Maternal treatment:
• nonpenicillin drug

Infant RPR/VDRL same or less than fourfold the maternal RPR/VDRL titer

Evaluation and Treatment (Option 1)

Infant physical examination abnormal

Infant physical examination normal

Nonreactive maternal treponemal test

Infant physical examination normal; infant RPR/VDRL same or less than fourfold the maternal RPR/VDRL titer

Evaluation and Treatment (Option 1)

Infant physical examination abnormal

Infant physical examination normal

Adequate maternal treatment before pregnancy with stable low titer (serofast), AND infant examination normal; if infant examination is abnormal, proceed with evaluation

Reactive maternal treponemal test

Infant physical examination abnormal

Infant physical examination normal

Adequate maternal treatment before pregnancy with stable low titer (serofast), AND infant examination normal; if infant examination is abnormal, proceed with evaluation

Evaluation and Treatment (Option 1)

Treatment (Option 1 or Option 2, below), with many experts recommending Treatment Option 1. If a single dose of benzathine penicillin G is used, then the infant must be fully evaluated, full evaluation must be normal, and follow-up must be certain. If any part of the infant's evaluation is abnormal or not performed, or if the CSF analysis is rendered uninterpretable, then a 10-day course of penicillin is required.

Some experts would consider a single intramuscular injection of benzathine penicillin (Treatment Option 2), particularly if follow-up is not certain.

Treatment Options:
(1) Aqueous penicillin G, 50 000 U/kg, intravenously, every 12 hours (1 week of age or younger) or every 8 hours (older than 1 week); or procaine penicillin G, 50 000 U/kg, intramuscularly, as a single daily dose for 10 days. If 24 or more hours of therapy is missed, the entire course must be restarted.

(2) Benzathine penicillin G, 50 000 U/kg, intramuscularly, single dose.

▲ Figure 2–15. Algorithm for evaluation and treatment of infants born to mothers with reactive serologic tests for syphilis. (Reproduced, with permission, from Pickering LK et al: Red Book 2012 Report of the Committee on Infectious Diseases, AAP, Elk Grove Village, Ill; 2012.)
PERINATALLY ACQUIRED INFECTIONS

1. Herpes Simplex (See also Chapter 40)

Herpes simplex virus (HSV) infection is usually acquired at birth during transit through an infected birth canal. The mother may have either primary or reactivated secondary infection. Primary maternal infection, because of the high titer of organisms and the absence of antibodies, poses the greatest risk to the infant. The risk of neonatal infection with vaginal delivery in this setting is 25%–60%. Seventy percent of mothers with primary herpes at the time of delivery are asymptomatic. The risk to an infant born to a mother with recurrent herpes simplex is much lower (<2%). Time of presentation of localized (skin, eye, or mouth) or disseminated disease (pneumonia, shock, or hepatitis) in the infant is usually 5–14 days of age. CNS disease usually presents later, at 14–28 days with lethargy, fever, and seizures. In rare cases, presentation is as early as day 1 of life, suggesting in-utero infection. In about 45% of patients, localized skin, eye, and mouth disease is the first indication of infection. Another 30% present with CNS disease, whereas the remaining 25% have disseminated or multiorgan disease indistinguishable from bacterial sepsis. Herpes infection should be considered in neonates with sepsis syndrome, negative bacteriologic culture results, and severe liver dysfunction or coagulopathy. HSV also should be considered as a causative agent in neonates with fever, irritability, and abnormal CSF findings, especially in the presence of seizures. Viral culture from vesicles, usually positive in 24–72 hours, makes the definitive diagnosis. PCR can assist in diagnosis but may be falsely negative in the CSF early in the course. If a CSF PCR performed shortly after the onset of symptoms is negative, it should be repeated after several days if HSV disease is considered a strong possibility.

Acyclovir (60 mg/kg/d divided q8h) is the drug of choice for neonatal herpes infection. Localized disease is treated for 14 days, and a 21-day course is used for disseminated or CNS disease. A repeat spinal tap should be done at the end of treatment for CNS disease to be sure the PCR is negative prior to discontinuing therapy. Treatment improves survival of neonates with CNS and disseminated disease and prevents the spread of localized disease.

Prevention is possible by not allowing delivery through an infected birth canal (eg, by cesarean section within 6 hours after rupture of the membranes in the presence of known infection). However, antepartum cervical cultures are poor predictors of the presence of virus at the time of delivery. Furthermore, the low incidence of infection in the newborn from recurrent maternal infection, cesarean delivery is not indicated for asymptomatic mothers with a history of recurrent herpes. Cesarean deliveries are performed in mothers with active lesions (either primary or recurrent) at the time of delivery.

Infants born to mothers with a history of genital HSV infection but no active lesions at delivery can be observed closely after birth and do not need to be isolated. Cultures should be obtained and acyclovir treatment initiated only for clinical signs of herpes virus infection. In infants born to mothers with a history of genital HSV infection and active lesions at delivery—regardless of the route of delivery—cultures of the eye, oropharynx, nasopharynx, and rectum and blood HSV PCR should be performed 12–24 hours after delivery, and the infant should be in contact isolation or with the mother. If the infant is colonized (positive cultures or PCR) or if symptoms consistent with herpes infection develop, additional evaluation (CSF examination and HSV PCR and serum ALT) should be performed and treatment with acyclovir should be started (to be administered for 10 days if no other evidence of disease identified; treatment for 14–21 days if other evidence of disease identified). In infants born to mothers who lack a history of genital HSV but who have active lesions at time of delivery (vaginal or cesarean), infant specimens including HSV surface cultures, blood and CSF HSV PCR, CSF cell count, and serum ALT should be obtained and IV acyclovir (60 mg/kg/d) should be initiated. If feasible, typing of virus from maternal lesions and determination of maternal type-specific serology for HSV-1 and HSV-2 antibodies should be performed. If these studies indicate that maternal infection actually represents recurrent infection, acyclovir may be stopped if neonatal virology studies are negative; if neonatal virology studies are positive, treatment should be continued as for infected infants born to mothers with known history of recurrent infection. If maternal evaluation confirms that maternal infection is not due to recurrent genital HSV infection, acyclovir should be administered for 10 days even in infants with negative studies to decrease the risk of invasive infection. Infants with abnormal evaluations and/or who develop symptomatic disease should be treated for 14–21 days of IV acyclovir. A repeat spinal tap should be done at the end of treatment for CNS disease to be sure the PCR is negative prior to discontinuing therapy. The major problem facing perinatologists is the high percentage of asymptomatic primary maternal infection and, therefore, unrecognized, high-risk neonatal exposures.

The prognosis is good for localized skin and mucosal disease that does not progress, although skin recurrences...
are common. The mortality rate for disseminated herpes is high (approximately 30%) even with treatment, with significant morbidity among survivors of both disseminated (20%) and CNS (80%) infections despite treatment. Delay in initiation of acyclovir treatment is associated with worse long-term outcome in infants with HSV disease. Cutaneous recurrences are common following all types of neonatal HSV disease, and examination of the CSF should be considered with skin recurrences. Infants who had neonatal HSV disease should receive long term suppressive oral acyclovir for 6 months after completion of intravenous treatment.

2. Hepatitis B & C

Infants become infected with hepatitis B at the time of birth; intrauterine transmission is rare. Clinical illness is rare in the neonatal period, but infants born to positive mothers are at risk of becoming chronic hepatitis B surface antigen (HBsAg) carriers and developing chronic active hepatitis, and even hepatocellular carcinoma. The presence of HBsAg should be determined in all pregnant women. If the result is positive, the infant should receive hepatitis B immune globulin (HBIG) and hepatitis B vaccine as soon as possible after birth, followed by two subsequent vaccine doses at 1 and 6 months of age. If HBsAg has not been tested prior to birth in a mother at risk, the test should be run after delivery and hepatitis B vaccine given within 12 hours after birth. If the mother is subsequently found to be positive, HBIG should be given as soon as possible (preferably within 48 hours, but not later than 1 week after birth). Subsequent vaccine doses should be given at 1 and 6 months of age. In premature infants born to HBsAg-positive mothers, vaccine and HBIG should be given at birth, but a three-vaccine hepatitis B series should be given beginning at 1 month of age.

Perinatal transmission of hepatitis C occurs in about 5% of infants born to mothers who carry the virus; maternal coinfection with HIV increases the risk of transmission. At present, no prevention strategies exist. Serum antibody to hepatitis C and hepatitis C RNA have been detected in colostrum, but the risk of hepatitis C transmission is similar in breast-fed and bottle-fed infants. Up to 12 months of age, the only reliable screen for hepatitis C infection is PCR. After that time, the presence of hepatitis C antibodies in the infant strongly suggests that infection has occurred.

3. Enterovirus Infection

Enterovirus infections occur most frequently in the late summer and early fall. Infection is usually acquired in the perinatal period. There is often a history of maternal fever, diarrhea, and/or rash in the week prior to delivery. The illness appears in the infant in the first 2 weeks of life and is most commonly characterized by fever, lethargy, irritability, diarrhea, and/or rash. More severe forms occasionally occur, especially if infection occurs before 1 week of age, including meningoencephalitis, myocarditis, hepatitis, pneumonia, shock, and disseminated intravascular coagulation. Diagnosis is best confirmed by PCR.

No therapy has proven efficacy. The prognosis is good in most cases, except those with severe hepatitis, myocarditis, or disseminated disease, which carry high mortality rates.

4. HIV Infection (See also Chapter 41)

HIV can be acquired in utero or at the time of delivery, or can be transmitted postpartum via breast milk. Testing for HIV should be performed in all pregnant women. Without treatment, transmission of virus occurs in 13%–39% of births to infected mothers, mostly at the time of delivery. Treating the mother with zidovudine therapy, starting as early as 14 weeks’ gestation and intrapartum, and the infant for the first 6 weeks of life (zidovudine beginning within 12 hours of birth) decreases vertical transmission to 7%. Shorter courses of zidovudine and cesarean delivery before the onset of labor or rupture of membranes are also associated with decreased disease transmission. The combination of zidovudine treatment, elective cesarean delivery, and avoidance of breast feeding can lower transmission to 1%–2%. Treatment of the mother with highly active antiretroviral therapy during pregnancy coupled with intrapartum and neonatal prophylaxis further reduces the risk of ante- and intrapartum transmission to < 1%. Current guidelines for antiretroviral drugs in pregnant HIV-infected women are similar to those for nonpregnant patients (ie, highly active antiretroviral combination therapy). In newborns whose mothers did not receive highly active combination therapy, prophylaxis with a 2 or 3 drug regimen is superior to zidovudine alone for the prevention of intrapartum transmission. In cases of unknown HIV status at presentation in labor, rapid HIV testing and intrapartum treatment if positive should be offered. The risk of transmission is increased in mothers with advanced disease, high viral loads, low CD4 counts, and intrapartum events such as chorioamnionitis and prolonged membrane rupture that increase exposure of the fetus to maternal blood.

Newborns with congenitally acquired HIV are usually asymptomatic. Infants of HIV-infected women should be tested by HIV DNA (or RNA) PCR at less than 48 hours, at 2 weeks, at 1–2 months, and at 2–4 months. If an infant aged 4 months has a negative PCR result, infection can be reasonably excluded. HIV-positive mothers should be counseled not to breastfeed their infants if safe feeding alternatives are available.
HEMATOLOGIC DISORDERS IN THE NEWBORN INfant

BLEEDING DISORDERS

Bleeding in the newborn infant may result from inherited clotting deficiencies (eg, factor VIII deficiency) or acquired disorders—hemorrhagic disease of the newborn (vitamin K deficiency), disseminated intravascular coagulation, liver failure, and isolated thrombocytopenia.

1. Vitamin K Deficiency Bleeding of the Newborn

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Frequently exclusively breast fed, otherwise clinically well infant.
- Bleeding from mucous membranes, GI tract, skin, or internal (intracranial).
- Prolonged prothrombin time (PT), relatively normal partial thromboplastin time (PTT), normal fibrinogen and platelet count.

Bleeding is caused by the deficiency of the vitamin K–dependent clotting factors (II, VII, IX, and X). Bleeding occurs in 0.25%–1.7% of newborns who do not receive vitamin K prophylaxis after birth, generally in the first 5 days to 2 weeks in an otherwise well infant. There is an increased risk in infants of mothers receiving therapy with anticonvulsants that interfere with vitamin K metabolism. Early vitamin K deficiency bleeding (0–2 weeks) can be prevented by either parenteral or oral vitamin K administration, whereas late disease (onset 2 weeks to 6 months) is most effectively prevented by administering parenteral vitamin K. Sites of ecchymoses and surface bleeding include the GI tract, umbilical cord, circumcision site, and nose, although devastating intracranial hemorrhage can occur. Bleeding from vitamin K deficiency is more likely to occur in exclusively breast-fed infants because of very low amounts of vitamin K in breast milk and slower and more restricted intestinal bacterial colonization. Differential diagnosis includes disseminated intravascular coagulation and hepatic failure (Table 2–21).

Treatment consists of 1 mg of vitamin K in SC or IV. IM injections should be avoided in infants who are actively bleeding. Such infants may also require factor replacement in addition to vitamin K administration.

2. Thrombocytopenia

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Generalized petechiae; oozing at cord or puncture sites.
- Thrombocytopenia, often marked (platelets < 10,000–20,000/mL).
- In an otherwise well infant, suspect isoimmune thrombocytopenia.

Table 2–21. Features of infants bleeding from vitamin K deficiency (VKDB), disseminated intravascular coagulation (DIC), or liver failure.

<table>
<thead>
<tr>
<th></th>
<th>VKDB</th>
<th>DIC</th>
<th>Liver Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>Well infant; no prophylactic vitamin K</td>
<td>Sick infant; hypoxia, sepsis, etc</td>
<td>Sick infant; hepatitis, inborn errors of metabolism, shock liver</td>
</tr>
<tr>
<td>Bleeding</td>
<td>GI tract, umbilical cord, circumcision, nose</td>
<td>Generalized</td>
<td>Generalized</td>
</tr>
<tr>
<td>Onset</td>
<td>2-3 d to 2 wk</td>
<td>Any time</td>
<td>Any time</td>
</tr>
<tr>
<td>Platelet count</td>
<td>Normal</td>
<td>Decreased</td>
<td>Normal or decreased</td>
</tr>
<tr>
<td>Prothrombin time</td>
<td>Prolonged</td>
<td>Prolonged</td>
<td>Prolonged</td>
</tr>
<tr>
<td>Partial thromboplastin time</td>
<td>Normal or prolonged</td>
<td>Prolonged</td>
<td>Prolonged</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>Normal</td>
<td>Decreased</td>
<td>Decreased</td>
</tr>
</tbody>
</table>

GI, gastrointestinal.
In a sick or asphyxiated infant, suspect disseminated intravascular coagulation.

Infants with thrombocytopenia have generalized petechiae (not just on the presenting part) and platelet counts less than 150,000/mL (usually < 50,000/mL; may be < 10,000/mL). Neonatal thrombocytopenia can be isolated in a seemingly well infant or may occur in association with a deficiency of other clotting factors in a sick infant. The differential diagnosis for thrombocytopenia is presented in Table 2–22. Treatment of neonatal thrombocytopenia is transfusion of platelets (10 mL/kg of platelets increases the platelet count by approximately 70,000/mL). Indications for transfusion in the full-term infant are clinical bleeding or a total platelet count less than 10,000–20,000/mL. In the preterm infant at risk for intraventricular hemorrhage, transfusion is indicated for counts less than 40,000–50,000/mL.

Isoimmune (alloimmune) thrombocytopenia is analogous to Rh-isoimmunization, with a human platelet antigen [HPA]-1a (in 80%– or HPA-5b (in 15%–negative mother and an HPA-1a– or HPA-5b–positive fetus. Transplacental passage of IgG antibody leads to platelet destruction. If platelet transfusion is required for acute bleeding, washed maternal platelets may be the most readily available antigen-negative platelet source, because 98% of the general population will also be HPA-1a– or HPA-5b–positive. Treatment with IVIG infusion, 1 g/kg/d for 2–3 days, until the platelet count has doubled or is over 50,000/mL, is potentially beneficial. Twenty to thirty percent of infants with isoimmune thrombocytopenia will experience intracranial hemorrhage, half of them before birth. Antenatal therapy of the mother with IVIG with or without steroids may reduce this risk.

Infants born to mothers with idiopathic thrombocytopenic purpura are at low risk for serious hemorrhage despite the thrombocytopenia, and treatment is usually unnecessary. If bleeding does occur, IVIG can be used.

ANEMIA

- Hematocrit < 40% at term birth.
- Acute blood loss—signs of hypovolemia, normal reticulocyte count.
- Chronic blood loss—pallor without hypovolemia, elevated reticulocyte count.
- Hemolytic anemia—accompanied by excessive hyperbilirubinemia.

The newborn infant with anemia from acute blood loss presents with signs of hypovolemia (tachycardia, poor perfusion, and hypotension), with an initially normal hematocrit that falls after volume replacement. Anemia from chronic blood loss is evidenced by pallor without signs of hypovolemia, with an initially low hematocrit and reticulocytosis.

Anemia can be caused by hemorrhage, hemolysis, or failure to produce red blood cells. Anemia occurring in the first 24–48 hours of life is the result of hemorrhage or hemolysis. Hemorrhage can occur in utero (fetoplacental, fetomaternal, or twin-to-twin), perinatally (cord rupture, placenta previa, placental abruption, or incision through the placenta at cesarean section), or internally (intracranial hemorrhage, cephalohematoma, or ruptured liver or spleen). Hemolysis is caused by blood group incompatibilities, enzyme or membrane abnormalities, infection, and disseminated intravascular coagulation, and is accompanied by significant hyperbilirubinemia.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Clinical Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immune</td>
<td>Proper history, maternal thrombocytopenia</td>
</tr>
<tr>
<td>Passive acquired antibody; idiopathic thrombocytopenic purpura, systemic lupus erythematosus, drug-induced</td>
<td>No rise in platelet count from random donor platelet transfusion. Positive antiplatelet antibodies in baby’s serum, sustained rise in platelets by transfusion of mother’s platelets</td>
</tr>
<tr>
<td>Isoimmune sensitization to HPA-1a antigen</td>
<td></td>
</tr>
<tr>
<td>Infections</td>
<td>Sick infants with other signs consistent with infection</td>
</tr>
<tr>
<td>Bacterial infections</td>
<td></td>
</tr>
<tr>
<td>Congenital viral infections</td>
<td></td>
</tr>
<tr>
<td>Syndromes</td>
<td>Congenital anomalies, associated pancytopenia</td>
</tr>
<tr>
<td>Absent radii</td>
<td></td>
</tr>
<tr>
<td>Fanconi anemia</td>
<td></td>
</tr>
<tr>
<td>Disseminated intravascular coagulation (DIC)</td>
<td>Sick infants, abnormalities of clotting factors</td>
</tr>
<tr>
<td>Giant hemangioma</td>
<td></td>
</tr>
<tr>
<td>Thrombosis</td>
<td>Hyperviscous infants, vascular catheters</td>
</tr>
<tr>
<td>High-risk infant with respiratory distress syndrome, pulmonary hypertension, etc</td>
<td>Isolated decrease in platelets is not uncommon in sick infants even in the absence of DIC (localized trapping)</td>
</tr>
</tbody>
</table>

HPA, human platelet antigen.
Initial evaluation should include a review of the perinatal history, assessment of the infant’s volume status, and a complete physical examination. A Kleihauer-Betke test for fetal cells in the mother’s circulation should be done. A CBC, blood smear, reticulocyte count, and direct and indirect Coombs tests should be performed. This simple evaluation should suggest a diagnosis in most infants. Most infants tolerate anemia quite well due to the increased oxygen availability in the extrauterine environment; however, treatment with erythropoietin or transfusion might be needed if the infant fails to thrive or develops signs of cardiopulmonary compromise. Additionally, if blood loss is the cause of the anemia, early supplementation with iron will be needed. It is important to remember that hemolysis related to blood group incompatibility can continue for weeks after birth. Serial hematocrits should be followed, because late transfusion may be needed.

Polycythemia

Essentials of Diagnosis & Typical Features

- Hematocrit > 65% (venous) at term.
- Plethora, tachypnea, retractions.
- Hypoglycemia, irritability, lethargy, poor feeding.

Polycythemia in the newborn is manifested by plethora, cyanosis, respiratory distress with tachypnea and oxygen need, hypoglycemia, poor feeding, emesis, irritability, and lethargy. Hyperbilirubinemia is expected. The consequence of polycythemia is hyperviscosity with decreased perfusion of the capillary beds. Clinical symptomatology can affect several organ systems (Table 2–23). Renal vein, other deep vein, or artery thrombosis is a severe complication. Screening can be done by measuring a capillary (heelstick) hematocrit. If the value is greater than 68%, a peripheral venous hematocrit should be measured. Values greater than 65% should be considered consistent with hyperviscosity.

Elevated hematocrits occur in 2%–5% of live births. Delayed cord clamping is the most common cause of benign neonatal polycythemia. Although 50% of polycythemic infants are AGA, the prevalence of polycythemia is greater in the SGA and LGA populations. Other causes of increased hematocrit include (1) twin-twin transfusion, (2) maternal-fetal transfusion, and (3) chronic intrauterine hypoxia (SGA infants, and LGA infants of diabetic mothers).

Treatment is recommended for symptomatic infants. Treatment for asymptomatic infants based strictly on hematocrit is not indicated as there is no proven long term benefit. Treatment for symptomatic infants is isovolemic partial exchange transfusion with normal saline, effectively decreasing the hematocrit. The amount to exchange (in milliliters) is calculated using the following formula:

\[
\text{Number of milliliters to exchange} = \frac{(PVH - DH)}{PVH} \times BV \times Wt \ (\text{kg})
\]

where PVH is peripheral venous hematocrit, DH is desired hematocrit, BV is blood volume in mL/kg, and Wt is weight in kilograms.

Blood is withdrawn at a steady rate from an umbilical venous line while the replacement solution is infused at the same rate through a peripheral IV line over 15–30 minutes. The desired hematocrit value is 50%–55%; the assumed blood volume is 80 mL/kg.

Table 2–23. Organ-related symptoms of hyperviscosity.

<table>
<thead>
<tr>
<th>Central nervous system</th>
<th>Irritability, jitteriness, seizures, lethargy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiopulmonary</td>
<td>Respiratory distress secondary to congestive heart failure, or persistent pulmonary hypertension</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Vomiting, heme-positive stools, distention, necrotizing enterocolitis</td>
</tr>
<tr>
<td>Renal</td>
<td>Decreased urinary output, renal vein thrombosis</td>
</tr>
<tr>
<td>Metabolic</td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>Hematologic</td>
<td>Hyperbilirubinemia, thrombocytopenia</td>
</tr>
</tbody>
</table>

Renal function depends on postmenstrual age. The glomerular filtration rate is 20 mL/min/1.73 m² in full-term neonates.
and 10–13 mL/min/1.73 m² in infants born at 28–30 weeks’ gestation. The speed of maturation after birth also depends on postmenstrual age. Creatinine can be used as a clinical marker of glomerular filtration rate. Values in the first month of life are shown in Table 2–24. Creatinine at birth reflects the maternal level and should decrease slowly over the first 3–4 weeks. An increasing serum creatinine is never normal.

The ability to concentrate urine and retain sodium also depends on gestational age. Infants born before 28–30 weeks’ gestation are compromised in this respect and can easily become dehydrated and hyponatremic. Preterm infants also have an increased bicarbonate excretion and a low tubular maximum for glucose (approximately 120 mg/dL).

Renal Failure

Essentials of Diagnosis & Typical Features

- **Clinical setting**—birth depression, hypovolemia, hypotension, shock.
- **Low or delayed urine output** (< 1 mL/kg/h).
- **Rising serum creatinine; hyperkalemia; metabolic acidosis; fluid overload.**

Renal failure is most commonly seen in the setting of birth asphyxia, hypovolemia, or shock from any cause. The normal rate of urine flow is 1–3 mL/kg/h. After a hypoxic or ischemic insult, acute tubular necrosis may ensue. Typically, 2–3 days of anuria or oliguria is associated with hematuria, proteinuria, and a rise in serum creatinine. The period of anuria or oliguria is followed by a period of polyuria and then gradual recovery. During the polyuric phase, excessive urine sodium and bicarbonate losses may be seen.

The initial management is restoration of the infant’s intravascular volume status. Thereafter, restriction of fluids to insensible water loss (60 mL/kg/d) without added electrolytes, plus milliliter-for-milliliter urine replacement, should be instituted. Serum and urine electrolytes and body weights should be followed frequently. These measures should be continued through the polyuric phase. After urine output has been reestablished, urine replacement should be decreased to between 0.5 and 0.75 mL for each milliliter of urine output to see if the infant has regained normal function. If that is the case, the infant can be returned to maintenance fluids.

Finally, many of these infants experience fluid overload and should be allowed to lose enough water through urination to return to birth weight. Hyperkalemia, which may become life-threatening, may occur if urine output is low despite the lack of added IV potassium. If the serum potassium reaches 7 mEq/L, therapy should be started with glucose and insulin infusion, giving 1 unit of insulin for every 3 g of glucose administered, in addition to binding resins per rectum. Calcium chloride (20 mg/kg bolus), inhaled albuterol, and correction of metabolic acidosis with bicarbonate are also helpful in the acute management of arrhythmias resulting from hyperkalemia.

Peritoneal dialysis is occasionally needed for the management of neonatal acute renal failure and for removal of waste products and excess fluid. Hemodialysis, although possible, is difficult due to the small blood volume of the infant and problems with vascular access. Although most acute renal failure in the newborn resolves, ischemic injury severe enough to result in acute cortical necrosis and chronic renal failure can occur. Such infants are also at risk of developing hypertension.

Urinary Tract Anomalies

Abdominal masses in the newborn are most frequently caused by renal enlargement. Most common is a multicystic or dysplastic kidney; congenital hydronephrosis is second in frequency. Chromosomal abnormalities and syndromes with multiple anomalies frequently include renal abnormalities. An ultrasound examination is the first step in diagnosis. In pregnancies complicated by oligohydramnios, renal agenesis or obstruction secondary to posterior urethral valves should be considered.

Only bilateral disease or disease in a solitary kidney is associated with oligohydramnios, significant morbidity, and death. Such infants will generally also have pulmonary hypoplasia, and present with pulmonary rather than renal insufficiency.

Ultrasonography identifies many infants with renal anomalies (most often hydronephrosis) prior to birth. Postnatal evaluation of infants with hydronephrosis should

<table>
<thead>
<tr>
<th>Gestational Age at Birth (wk)</th>
<th>Postnatal Age (d)</th>
<th>0–2</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 28</td>
<td></td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>29–32</td>
<td></td>
<td>1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>33–36</td>
<td></td>
<td>1.1</td>
<td>0.45</td>
</tr>
<tr>
<td>36–42</td>
<td></td>
<td>0.8</td>
<td>0.3</td>
</tr>
</tbody>
</table>
include renal ultrasound and a voiding cystourethrogram at about 1 week of age, depending on the severity of the antenatal findings. Earlier postnatal ultrasound might underestimate the severity of the hydronephrosis due to low glomerular filtration rates in the first days of life, although cases in which oligohydramnios or severe renal abnormality are suspected will be accurately diagnosed even on the first day of life. Until the presence and severity of vesicoureteral reflux is evaluated, some experts recommend antibiotic prophylaxis with low-dose penicillin or amoxicillin. However, the necessity for prophylaxis is a controversial issue.

RENAral VEIN THROMBOSIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- History of IDM, birth depression, dehydration.
- Hematuria, oliguria.
- Thrombocytopenia, polycythemia.
- Renal enlargement on examination.

Renal vein thrombosis occurs most often in dehydrated polycythemic newborns. At particular risk is the IDM with polycythemia. If fetal distress is superimposed on polycythemia and dehydration, prompt reduction in blood viscosity is indicated. Thrombosis is unilateral in 70%, usually begins in intrarenal venules, and can extend into larger veins and the vena cava. Hematuria, oliguria, thrombocytopenia, and possibly an enlarged kidney raise suspicion for this diagnosis. With bilateral renal vein thrombosis, anuria ensues. Diagnosis can be confirmed with an ultrasound examination that includes Doppler flow studies of the kidneys. Treatment involves correcting the predisposing condition; systemic heparinization or the use of thrombolytics for this condition is controversial. Prognosis for a full recovery is uncertain. Many infants will develop significant atrophy of the affected kidney, and some develop systemic hypertension. All require careful follow-up.

SEIZURES

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Usual onset at 12–48 hours.
- Seizure types include subtle (characterized by variable findings), tonic, and multifocal clonic.
- Most common causes include hypoxic-ischemic encephalopathy, intracranial bleeds, and infection.

Newborns rarely have well-organized tonic-clonic seizures because of their incomplete cortical organization and a preponderance of inhibitory synapses. The most common type of seizure is characterized by a constellation of findings, including horizontal deviation of the eyes with or without jerking; eyelid blinking or fluttering; sucking, smacking, drooling, and other oral-buccal movements; swimming or bicycling movements; and apneic spells. Strictly tonic or multifocal clonic episodes are also seen.

Clinical Findings

The differential diagnosis of neonatal seizures is presented in Table 2–25. Most neonatal seizures occur between 12 and 48 hours of age. Later-onset seizures suggest meningitis, benign familial seizures, or hypocalcemia. Information regarding antenatal drug use, the presence of birth asphyxia or trauma, and family history (regarding inherited disorders) should be obtained. Physical examination focuses on neurologic features, other signs of drug withdrawal, concurrent signs of infection, dysmorphic features, and intrauterine growth. Screening workup should include blood glucose, ionized calcium, and electrolytes in all cases. Further workup depends on diagnoses suggested by the history and physical examination. In most cases, a lumbar puncture should be done. Hemorrhages, perinatal stroke, and structural disease of the CNS can be addressed with ultrasound, CT, and MRI scans. Metabolic workup should be pursued when appropriate. EEG should be done; the presence of spike discharges must be noted and the background wave pattern evaluated. At times correlation between EEG changes and clinical seizure activity is absent making a prolonged EEG with video monitoring a useful tool.

Treatment

Adequate ventilation and perfusion should be ensured. Hypoglycemia should be treated immediately with a 2-mL/kg
Table 2-25. Differential diagnosis of neonatal seizures.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoxic-ischemic encephalopathy</td>
<td>Most common cause (60%), onset in first 24 h</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
<td>Up to 15% of cases, periventricular/intraventricular hemorrhage, subdural or subarachnoid bleeding, stroke</td>
</tr>
<tr>
<td>Infection</td>
<td>12% of cases</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>Small for gestational age, IDM</td>
</tr>
<tr>
<td>Hypocalcemia, hypomagnesemia</td>
<td>Infant of low birth weight, IDM</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>Rare, seen with SIADH</td>
</tr>
<tr>
<td>Disorders of amino and organic acid metabolism, hyperammonemia</td>
<td>Associated acidosis, altered level of consciousness</td>
</tr>
<tr>
<td>Pyridoxine dependency</td>
<td>Seizures refractory to routine therapy; cessation of seizures after administration of pyridoxine</td>
</tr>
<tr>
<td>Developmental defects</td>
<td>Other anomalies, chromosomal syndromes</td>
</tr>
<tr>
<td>Drug withdrawal</td>
<td></td>
</tr>
<tr>
<td>No cause found</td>
<td>10% of cases</td>
</tr>
<tr>
<td>Benign familial neonatal seizures</td>
<td></td>
</tr>
</tbody>
</table>

IDM, infant of a diabetic mother; SIADH, syndrome of inappropriate secretion of antidiuretic hormone.

Infusion of D_{10}W followed by 6 mg/kg/min of D_{10}W (100 mL/kg/d). Other treatments such as calcium or magnesium infusion and antibiotics are indicated to treat hypocalcemia, hypomagnesemia, and suspected infection. Electrolyte abnormalities should be corrected. Phenobarbital (20 mg/kg IV) should be administered to stop seizures. Supplemental doses of 5 mg/kg can be used if seizures persist, up to a total of 40 mg/kg. In most cases, phenobarbital controls seizures.

If seizures continue, therapy with fosphenytoin, levetiracetam, or lorazepam may be indicated. For refractory seizures, a trial of pyridoxine is indicated.

Prognosis

Outcome is related to the underlying cause of the seizure. The outcomes for hypoxic-ischemic encephalopathy and intraventricular hemorrhage have been discussed earlier in this chapter. In these settings, seizures that are difficult to control carry a poor prognosis for normal development. Seizures resulting from hypoglycemia, infection of the CNS, some inborn errors of metabolism, and developmental defects also have a high rate of poor outcome. Seizures caused by hypocalcemia or isolated subarachnoid hemorrhage generally resolve without sequelae.

HYPOTONIA

One should be alert to the diagnosis of congenital hypotonia when a mother has polyhydramnios and a history of poor fetal movement. The newborn may present with poor respiratory effort and birth asphyxia. For a discussion of causes and evaluation, see Chapter 25.

INTRACRANIAL HEMORRHAGE

1. **Subdural Hemorrhage**

Subdural hemorrhage is related to birth trauma; the bleeding is caused by tears in the veins that bridge the subdural space. Prospective studies relating incidence to specific obstetric complications are not available.

Most commonly, subdural bleeding is from ruptured superficial cerebral veins, with blood over the cerebral convexities. These hemorrhages can be asymptomatic or may cause seizures, with onset on days 2–3 of life, vomiting, irritability, and lethargy. Associated findings include retinal hemorrhages and a full fontanelle. The diagnosis is confirmed by CT scan.

Specific treatment entailing needle drainage of the subdural space is rarely necessary. Most infants survive; 75% are normal on follow-up.

2. **Primary Subarachnoid Hemorrhage**

Primary subarachnoid hemorrhage is the most common type of neonatal intracranial hemorrhage. In the full-term infant, it can be related to trauma of delivery, whereas subarachnoid hemorrhage in the preterm infant can be seen in association with germinal matrix hemorrhage. Clinically, these hemorrhages can be asymptomatic or can present with seizures and irritability on day 2, or rarely, a massive hemorrhage with hemodynamic instability. The seizures associated with subarachnoid hemorrhage are very characteristic—usually brief, with a normal examination interictally. Diagnosis can be suspected on lumbar puncture and confirmed with CT scan. Long-term follow-up is uniformly good.

3. **Neonatal Stroke**

Focal cerebral ischemic injury can occur in the context of intraventricular hemorrhage in the premature infant and hypoxic-ischemic encephalopathy. Neonatal stroke has also been described in the context of underlying disorders of thrombolysis, maternal drug use (cocaïne), a history of infertility, preeclampsia, prolonged membrane rupture, and chorioamnionitis. In some cases, the origin is unclear. The

1 Intraventricular hemorrhage is discussed earlier, in the section on The Preterm Infant.
injury often occurs antenatally. The most common clinical presentation of an isolated cerebral infarct is with seizures, and diagnosis can be confirmed acutely with diffusion-weighted MRI scan. The most frequently described distribution is that of the middle cerebral artery.

Treatment is directed at controlling seizures. Use of anticoagulants and thrombolytics are controversial. Long-term outcome is variable, ranging from near-normal to hemiplegias and cognitive deficits.

HYPERGLYCEMIA

Hyperglycemia may develop in preterm infants, particularly those of extremely low birth weight who are also SGA. Glucose concentrations may exceed 200–250 mg/dL, particularly in the first few days of life. This transient diabetes-like syndrome usually lasts approximately 1 week.

Management may include simply reducing glucose intake while continuing to supply IV amino acids to prevent protein catabolism with resultant gluconeogenesis and worsened hyperglycemia. Intravenous insulin infusions may be needed in infants who remain hyperglycemic despite glucose infusion rates of less than 5–6 mg/kg/min, but caution should be used as hypoglycemia is a frequent complication.

HYPOCALCEMIA (SEE ALSO CHAPTER 34)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Irritability, jitteriness, seizures.
- Normal blood glucose.
- Possible dysmorphic features, congenital heart disease (DiGeorge syndrome).

Calcium concentration in the immediate newborn period decreases in all infants. The concentration in fetal plasma is higher than that of the neonate or adult. Hypocalcemia is usually defined as a total serum concentration less than 7 mg/dL (equivalent to a calcium activity of 3.5 mEq/L), although the physiologically active fraction, ionized calcium, should be measured whenever possible, and is usually normal even when total calcium is as low as 6–7 mg/dL. An ionized calcium level above 0.9 mmol/L (1.8 mEq/L; 3.6 mg/dL) is not likely to be detrimental.

Clinical Findings

The clinical signs of hypocalcemia and hypocalcemic tetany include a high-pitched cry, jitteriness, tremulousness, and seizures.

Hypocalcemia tends to occur at two different times in the neonatal period. Early-onset hypocalcemia occurs in the first 2 days of life and has been associated with prematurity, maternal diabetes, asphyxia, and rarely, maternal hypoparathyroidism. Late-onset hypocalcemia occurs at approximately 7–10 days and is observed in infants receiving modified cow’s milk rather than infant formula (high phosphorus intake), in infants with hypoparathyroidism (DiGeorge syndrome, 22q11 deletion), or in infants born to mothers with severe vitamin D deficiency. Hypomagnesemia should be sought and treated in cases of hypocalcemia that are resistant to treatment.

Treatment

A. Oral Calcium Therapy

The oral administration of calcium salts, often along with vitamin D, is the preferred method of treatment for chronic forms of hypocalcemia resulting from hypoparathyroidism. (See Chapter 34.)

B. Intravenous Calcium Therapy

IV calcium therapy is usually needed for infants with symptomatic hypocalcemia or an ionized calcium level below 0.9 mmol/L. A number of precautions must be observed when calcium is given intravenously. The infusion must be given slowly so that there is no sudden increase in calcium concentration of blood entering the right atrium, which could cause severe bradycardia and even cardiac arrest. Furthermore, the infusion must be observed carefully, because an IV infiltrate containing calcium can cause full-thickness skin necrosis requiring grafting. For these reasons, IV calcium therapy should be given judiciously and through a central venous line if possible. IV administration of 10% calcium gluconate is usually given as a bolus of 100–200 mg/kg (1–2 mL/kg) over approximately 10–20 minutes, followed by a continuous infusion (0.5–1 g/kg/d) over 1–2 days, if central venous access is available. Ten percent calcium chloride (20 mg/kg or 0.2 mL/kg per dose) may result in a larger increment in
ionized calcium and greater improvement in mean arterial blood pressure in sick hypocalcemic infants and thus may have a role in the newborn. Note: Calcium salts cannot be added to IV solutions that contain sodium bicarbonate because they precipitate as calcium carbonate.

Prognosis

The prognosis is good for neonatal seizures entirely caused by hypocalcemia that is promptly treated.

INBORN ERRORS OF METABOLISM (SEE ALSO CHAPTER 36)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Altered level of consciousness (poor feeding, lethargy, seizures) in a previously well-appearing infant.
- Tachypnea without hypoxemia or distress.
- Hypoglycemia, respiratory alkalosis, metabolic acidosis.
- Recurrent “sepsis” without proven infection.

Each individual inborn error of metabolism is rare, but collectively they have an incidence of 1 in 1000 live births. Expanded newborn genetic screening undoubtedly aids in the diagnosis of these disorders; however, many infants will present prior to these results being available. These diagnoses should be entertained when infants who were initially well present with sepsis-like syndromes, recurrent hypoglycemia, neurologic syndromes (seizures or altered levels of consciousness), or unexplained acidosis (suggestive of organic acidemias).

In the immediate neonatal period, urea cycle disorders present as an altered level of consciousness (coma) secondary to hyperammonemia. A clinical clue that supports this diagnosis is hyperventilation with primary respiratory alkalosis, along with a low blood urea nitrogen. The other major diagnostic category to consider consists of infants with severe and unremitting acidemia secondary to organic acidemias.

QUALITY ASSESSMENT AND IMPROVEMENT IN THE NEWBORN NURSERY AND NICU

Quality improvement initiatives are a critical element to provide the best care possible for patients and their families. This involves recognition that there is a gap between care as it is and care as it could and should be. Clinical units either individually or as part of a consortium need to identify goals for improvement and carry out changes using a plan, do, study, act (PDSA) approach to rapid cycle improvements in care. This involves planning and enacting a change, studying and analyzing the data collected during the change and then acting to assess what changes are to be made for the next PDSA cycle. Individual units can benchmark their care through participation in multicenter databases such as the Vermont Oxford Network. Neonatal intensive care units from over 600 sites submit data on their care of infants born at less than 1500 g. An individual unit can track their outcomes compared to outcomes seen across the network. These data can form the framework for strategies to improve performance in areas in a unit that are below network standards. Examples of possible initiatives include lowering the incidence of central line-associated bacteremia, decreasing the incidence of ventilator-associated pneumonia or structured feeding protocols to decrease the incidence of necrotizing enterocolitis. There is currently a national collaborative through the Children’s Hospitals Neonatal Consortium to reduce central line-associated blood stream infections in Children’s hospitals neonatal intensive care units. This provides an example of a multicenter effort to determine best practices for line insertion and care.
This chapter provides an overview of typical development, identifies developmental variations, and discusses several developmental disorders. This chapter does not cover typical development in the newborn period or adolescence (see Chapters 2 and 4, respectively). It will address behavioral variations that reflect the spectrum of normal development, along with developmental and behavioral disorders and their treatment. The developmental principle, that is, the concept of ongoing change and maturation, is integral to the daily practice of pediatrics. It is the basic science of pediatrics. For example, we recognize that a 3-month-old infant is very different from a 3-year-old toddler or a 13-year-old adolescent, not only with respect to what the child can do, but also in terms of the kind of illness he or she might have. From the perspective of the general pediatrician, all of these areas should be viewed in the context of a “medical home.” The medical home is defined as the setting that provides consistent, continuous, culturally competent, comprehensive, and sensitive care to children and their families. It is a setting that advocates for all children, whether they are typical or have developmental challenges or disabilities. By incorporating the principles of child development—the concept that children are constantly changing—the medical home is the optimum setting to understand and enhance typical development and to address variations, delays, and deviations as they may occur in the life trajectory of the child and the family.

NORMAL DEVELOPMENT

Typical children follow a trajectory of increasing physical size (Figures 3–1 through 3–10) and increasing complexity of function (Figures 3–7 and 3–8 and Tables 3–1 and 3–2). Table 3–3 provides the theoretical perspectives of human behavior, taking into consideration the work of Freud, Erikson, and Piaget.

The first 5 years of life are a period of extraordinary physical growth and increasing complexity of function. The child triples his or her birth weight within the first year and achieves two-thirds of his or her adult brain size by age 2½–3 years of age. The child progresses from a totally dependent infant at birth to a mobile, verbal person who is able to express his or her needs and desires by age 2–3 years. In the ensuing 3 years the child further develops the capacity to interact with peers and adults, achieves considerable verbal and physical prowess, and becomes ready to enter the academic world of learning and socialization.

It is critical for the clinician to identify disturbances in development during these early years because there may be windows of time or sensitive periods when appropriate interventions may be instituted to effectively address developmental issues.

THE FIRST 2 YEARS

From a motor perspective, children develop in a cephalo-caudal direction. They can lift their heads with good control at 3 months, sit independently at 6 months, crawl at 9 months, walk at 1 year, and run by 18 months. The child learning to walk has a wide-based gait at first. Next, he or she walks with legs closer together, the arms move medially, a heel-toe gait develops, and the arms swing symmetrically by 18–24 months.

Clinicians often focus on gross motor development, but an appreciation of fine motor development and dexterity, particularly the grasp, can be instructive not only in monitoring normal development but also in identifying deviations in development. The grasp begins as a raking motion involving the ulnar aspect of the hand at age 3–4 months. The thumb is added to this motion at about age 5 months as the focus of the movement shifts to the radial side of the hand. The thumb opposes the fingers for picking up objects just before age 7 months, and the neat pincer grasp emerges at about age 9 months. Most young children have symmetrical movements. Children should not have a significant hand preference before 1 year of age and typically develop handedness between 18 and 30 months.
Figure 3–1. Percentile standards for length for age and weight for age in girls, birth to age 36 months. (Centers for Disease Control and Prevention. November 1, 2009. Source: WHO Child Growth Standards—http://www.who.int/childgrowth/en.)
Figure 3–4. Percentile standards for head circumference for age and weight for length in boys, birth to age 36 months.
Girls, 2 to 20 years

STATURE FOR AGE AND WEIGHT FOR AGE PERCENTILES

Mother’s Stature _______ Father’s Stature _______

Date Age Weight Stature BMI*

*To Calculate BMI: Weight (kg) + Stature (cm) × 10,000
or Weight (lb) + Stature (in) + Stature (in) × 703

▲ Figure 3–5. Percentile standards for stature for age and weight for age in girls, 2–20 years. (Centers for Disease Control and Prevention.)
Girls, 2 to 20 years

BODY MASS INDEX FOR AGE PERCENTILES

<table>
<thead>
<tr>
<th>Date</th>
<th>Age</th>
<th>Weight</th>
<th>Stature</th>
<th>BMI</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*To Calculate BMI: Weight (kg) + Stature (cm) × 10,000
or Weight (lb) + Stature (in) + Stature (in) × 703

▲ Figure 3-6. Percentile standards for body mass index for age in girls, 2–20 years. (Centers for Disease Control and Prevention.)
Girls, 2 to 20 years

STATURE FOR AGE AND WEIGHT FOR AGE PERCENTILES

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Stature (cm)</th>
<th>Weight (kg)</th>
<th>Stature (in)</th>
<th>Weight (lb)</th>
<th>BMI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>60</td>
<td>14</td>
<td>24</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>62</td>
<td>15</td>
<td>24</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>15</td>
<td>26</td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>68</td>
<td>15</td>
<td>27</td>
<td>30</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>15</td>
<td>28</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>72</td>
<td>15</td>
<td>29</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>74</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>15</td>
<td>31</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>78</td>
<td>15</td>
<td>32</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>15</td>
<td>33</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>82</td>
<td>15</td>
<td>34</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>14</td>
<td>84</td>
<td>15</td>
<td>35</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>15</td>
<td>86</td>
<td>15</td>
<td>36</td>
<td>30</td>
<td>44</td>
</tr>
<tr>
<td>16</td>
<td>88</td>
<td>15</td>
<td>37</td>
<td>30</td>
<td>47</td>
</tr>
<tr>
<td>17</td>
<td>90</td>
<td>15</td>
<td>38</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>92</td>
<td>15</td>
<td>39</td>
<td>30</td>
<td>53</td>
</tr>
<tr>
<td>19</td>
<td>94</td>
<td>15</td>
<td>40</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td>20</td>
<td>96</td>
<td>15</td>
<td>41</td>
<td>30</td>
<td>59</td>
</tr>
</tbody>
</table>

*To Calculate BMI: Weight (kg) + Stature (cm) × 10,000 or Weight (lb) + Stature (in) + Stature (in) × 703

Figure 3-7. Percentile standards for stature for age and weight for age in boys, 2–20 years. (Centers for Disease Control and Prevention.)
Boys, 2 to 20 years

BODY MASS INDEX FOR AGE PERCENTILES

<table>
<thead>
<tr>
<th>Date</th>
<th>Age</th>
<th>Weight</th>
<th>Stature</th>
<th>BMI*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*BMI = Weight (kg) + Stature (cm) × 10,000

*To Calculate BMI: Weight (kg) + Stature (cm) × 10,000
or Weight (lb) + Stature (in) + Stature (in) × 703

▲ Figure 3-8. Percentile standards for body mass index for age in boys, 2–20 years. (Centers for Disease Control and Prevention.)
Language is a critical area to consider as well. Communication is important from birth (Figure 3–11, see Table 3–2), particularly the nonverbal, reciprocal interactions between infant and caregiver. By age 2 months, these interactions begin to include melodic vowel sounds called cooing and reciprocal vocal play between parent and child. Babbling, which adds consonants to vowels, begins by age 6–10 months, and the repetition of sounds such as “da-dada-da” is facilitated by the child’s increasing oral muscular control. Babbling reaches a peak at age 12 months. The child then moves into a stage of having needs met by using individual words to represent objects or actions. It is common at this age for children to express wants and needs by pointing to objects or using other gestures. Children usually have 5–10 comprehensible words by 12–18 months; by age 2 years they are putting 2–3 words into phrases, 50% of which their caregivers can understand (see Tables 3–1 and 3–2 and Figure 3–11). The acquisition of expressive vocabulary varies greatly between 12 and 24 months of age. As a group, males and children who are bilingual tend to...
Table 3-1. Developmental charts.

<table>
<thead>
<tr>
<th>Age</th>
<th>Activities to be observed</th>
<th>Activities related by parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 mo</td>
<td>Activities to be observed:
 - Holds head erect and lifts head.
 - Turns from side to back.
 - Regards faces and follows objects through visual field.
 - Drops toys.
 - Becomes alert in response to voice.
 Activities related by parent:
 - Recognizes parents.
 - Engages in vocalizations.
 - Smiles spontaneously.</td>
<td></td>
</tr>
<tr>
<td>3-5 mo</td>
<td>Activities to be observed:
 - Grasps cube—first ulnar then later thumb opposition.
 - Reaches for and brings objects to mouth.
 - Makes “raspberry” sound.
 - Sits with support.
 Activities related by parent:
 - Laughs.
 - Anticipates food on sight.
 - Turns from back to side.</td>
<td></td>
</tr>
<tr>
<td>6-8 mo</td>
<td>Activities to be observed:
 - Sits alone for a short period.
 - Reaches with 1 hand.
 - First scoops up a pellet then grasps it using thumb opposition.
 - Imitates “bye-bye.”
 - Passes object from hand to hand in midline.
 - Babbles.
 Activities related by parent:
 - Rolls from back to stomach.
 - Is inhibited by the word no.</td>
<td></td>
</tr>
<tr>
<td>9-11 mo</td>
<td>Activities to be observed:
 - Stands alone.
 - Imitates pat-a-cake and peek-a-boo.
 - Uses thumb and index finger to pick up pellet.
 Activities related by parent:
 - Walks by supporting self on furniture.
 - Follows 1-step verbal commands, eg, “Come here,” “Give it to me.”</td>
<td></td>
</tr>
<tr>
<td>1 y</td>
<td>Activities to be observed:
 - Walks independently.
 - Says “mama” and “dada” with meaning.
 - Can use a neat pincer grasp to pick up a pellet.
 - Releases cube into cup after demonstration.
 - Gives toys on request.
 - Tries to build a tower of 2 cubes.</td>
<td></td>
</tr>
<tr>
<td>18 mo</td>
<td>Activities to be observed:
 - Builds tower of 3-4 cubes.
 - Throws ball.
 - Seats self in chair.
 - Dumps pellet from bottle.
 Activities related by parent:
 - Walks up and down stairs with help.
 - Says 4-20 words.
 - Understands a 2-step command.
 - Carries and hugs doll.
 - Feeds self.</td>
<td></td>
</tr>
<tr>
<td>24 mo</td>
<td>Activities to be observed:
 - Speaks short phrases, 2 words or more.
 - Kicks ball on request.
 - Builds tower of 6-7 cubes.
 - Points to named objects or pictures.
 - Jumps off floor with both feet.
 - Stands on either foot alone.
 - Uses pronouns.
 Activities related by parent:
 - Verbalizes toilet needs.
 - Pulls on simple garment.
 - Turns pages of book singly.
 - Plays with domestic mimicry.</td>
<td></td>
</tr>
<tr>
<td>30 mo</td>
<td>Activities to be observed:
 - Walks backward.
 - Begins to hop on 1 foot.
 - Uses prepositions.
 - Copies a crude circle.
 - Points to objects described by use.
 - Refers to self as I.
 - Holds crayon in fist.
 Activities related by parent:
 - Helps put things away.
 - Carries on a conversation.</td>
<td></td>
</tr>
<tr>
<td>3 y</td>
<td>Activities to be observed:
 - Holds crayon with fingers.
 - Builds tower of 9-10 cubes.
 - Imitates 3-cube bridge.
 - Copies circle.
 - Gives first and last name.
 Activities related by parent:
 - Rides tricycle using pedals.
 - Dresses with supervision.</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 3–1. Developmental charts. (Continued)

<table>
<thead>
<tr>
<th>3–4 y</th>
<th>7–8 y</th>
</tr>
</thead>
</table>
| **Activities to be observed:**
Climbs stairs with alternating feet.
Beginning to button and unbutton.
“What do you like to do that’s fun?” (Answers using plurals,
personal pronouns, and verbs.)
Responds to command to place toy in, on, or under table.
Drawing a circle when asked to draw a person.
Knows own sex. (“Are you a boy or a girl?”)
Writing full name.
Drawing a circle already drawn. (“Can you make one like this?”) | **Activities to be observed:**
Counts by 2s and 5s.
Ties shoes.
Copies a 0.
Knows what day of the week it is. (Not date or year.)
No evidence of sound substitution in speech (eg, fr for thr).
Writing a man with 16 details.
Reading:
Muff is a little yellow kitten. She drinks milk. She sleeps on a chair.
She does not like to get wet.
Corresponding arithmetic:
<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>+4</td>
<td>+7</td>
<td>-4</td>
<td>-3</td>
</tr>
</tbody>
</table>
| Adds and subtracts 1-digit numbers. | **Corresponding arithmetic:**
| 67 | 16 | 14 | 84 |
| +4 | +27 | -8 | -36 |
| Is learning borrowing and carrying processes in addition and subtraction. | **Activities related by parent:**
| Feeds self at mealtime.
Takes off shoes and jacket. | **Reading:**
| A little black dog ran away from home. He played with two big dogs. They ran away from him. It began to rain. He went under a tree. He wanted to go home, but he did not know the way. He saw a boy he knew. The boy took him home. | **Corresponding arithmetic:**
| **Activities related by parent:**
| Self-care at toilet. (May need help with wiping.)
Plays outside for at least 30 minutes.
Dresses self except for tying. | 5204 | 23 | 837 |
| **Activities related by parent:**
| Does simple chores at home (eg, taking out garbage, drying silverware).
Gets to school unattended or meets school bus.
Good motor ability but little awareness of dangers. | **Corresponding arithmetic:**
| −530 | ×3 | ×7 |
| Learning simple multiplication. | (Continued) |
The Early Language Milestone Scale-2 (see Figure 3–11) is a simple tool for assessing early language development in the pediatric office setting. It is scored in the same way as the Denver II (Figure 3–12) but tests receptive and expressive language areas in greater depth.

Receptive language usually develops more rapidly than expressive language. Word comprehension begins to increase at age 9 months, and by age 13 months the child’s receptive vocabulary may be as large as 20–100 words. After age 18 months, expressive and receptive vocabularies increase dramatically, and by the end of the second year there is typically a quantum leap in language development. The child begins to put together words and phrases, and begins to use language to represent a new world, the symbolic world. Children begin to put verbs into phrases and focus much of their language on describing their new abilities, for example, “I go out.” They begin to incorporate prepositions, such as “I” and “you” into speech and ask “why?” and “what?” questions more frequently. They also begin to appreciate time factors and to understand and use this concept in their speech (see Table 3–1).

The work of Piaget and others is quite instructive and provides some insight into behavioral and affective development. One may easily memorize the developmental milestones that characterize the trajectory of the typical child; however, these milestones become more meaningful and clinically useful if placed in empirical and theoretical contexts. The milestones should still fall within the expected range. Gender and exposure to two languages should never be used as an excuse for failing to refer a child who has significant delay in the acquisition of speech and language for further evaluation. It is also important to note that most children are not truly bilingual. Most children have one primary language, and any other languages are secondary.

Receptive language usually develops more rapidly than expressive language. Word comprehension begins to increase at age 9 months, and by age 13 months the child’s receptive vocabulary may be as large as 20–100 words. After age 18 months, expressive and receptive vocabularies increase dramatically, and by the end of the second year there is typically a quantum leap in language development. The child begins to put together words and phrases, and begins to use language to represent a new world, the symbolic world. Children begin to put verbs into phrases and focus much of their language on describing their new abilities, for example, “I go out.” They begin to incorporate prepositions, such as “I” and “you” into speech and ask “why?” and “what?” questions more frequently. They also begin to appreciate time factors and to understand and use this concept in their speech (see Table 3–1).

The work of Piaget and others is quite instructive and provides some insight into behavioral and affective development. One may easily memorize the developmental milestones that characterize the trajectory of the typical child; however, these milestones become more meaningful and clinically useful if placed in empirical and theoretical contexts. The work of Piaget and others is quite instructive and provides some insight into behavioral and affective development (see Table 3–3). Piaget described the first 2 years of life as the sensorimotor period, during which infants learn with increasing sophistication how to link sensory input from the environment with a motor response. Infants build on primitive reflex patterns of behavior (termed schemata; sucking is an example) and constantly incorporate or assimilate new experiences. The schemata evolve over time as infants accommodate new experiences and as new levels of cognitive ability unfold in an orderly sequence. Enhancement of neural networks through dendritic branching and pruning (apoptosis) occurs.

In the first year of life, the infant’s perception of reality revolves around itself and what it can see or touch. The infant follows the trajectory of an object through the field of vision, but before age 6 months the object ceases to exist once it leaves the infant’s field of vision. At age 9–12 months, the infant gradually develops the concept of object permanence, or the realization that objects exist even when not seen. The development of object permanence correlates with enhanced frontal activity on the electroencephalogram (EEG). The concept attaches first to the image of the mother or primary caregiver because of his or her emotional importance and is a critical part of attachment behavior.
(discussed later). In the second year, children extend their ability to manipulate objects by using instruments, first by imitation and later by trial and error.

Freud described the first year of life as the oral stage because so many of the infant’s needs are fulfilled by oral means. Nutrition is obtained through sucking on the breast or bottle, and self-soothing occurs through sucking on fingers or a pacifier. During this stage of symbiosis with the mother, the boundaries between mother and infant are blurred. The infant’s needs are totally met by the mother, and the mother has been described as manifesting “narcissistic possessiveness” of the infant. This is a very positive interaction in the bidirectional attachment process called bonding. The parents learn to be aware of and to interpret the infant’s cues, which reflect its needs. A more sensitive emotional interaction process develops that can be seen in the mirroring of facial expressions by the primary caregiver and infant and in their mutual engagement in cycles of attention and inattention, which further develop into social play. A parent who is depressed or cannot respond to the infant’s expressions and cues can have a profoundly adverse effect on the child’s future development. Erikson’s terms of basic trust versus mistrust are another way of describing the reciprocal interaction that characterizes this stage. Turn-taking games, which occur between ages 3 and 6 months, are a pleasure for both the parents and the infant and are an early form of imitative behavior, which is important in later social and cognitive development. More sophisticated games, such as peek-a-boo, occur at approximately age 9 months. The infant’s thrill at the reappearance of the face that vanished momentarily demonstrates the emerging understanding of

| Table 3–2. Normal speech and language development. |
|---|---|---|---|
| **Age** | **Speech** | **Language** | **Articulation** |
| 1 mo | Throaty sounds | Vowels: \ah\, \uh\, \ee\ | |
| 2 mo | Vowel sounds (“eh”), coos | Consonants: m, p, b | Vowels: \o\, \u\ |
| 2½ mo | Squeals | Syllables: da, ba, ka | |
| 3 mo | Babbles, initial vowels | “Dada” or “mama” nonspecifically | Approximates names: baba/bottle |
| 4 mo | Guttural sounds (“ah,” “go”) | One word other than “mama” or “dada” | Understandable: 2–3 words |
| 5 mo | | Imitates speech sounds | |
| 6 mo | | Three words | |
| 10 mo | | “Dada” or “mama” nonspecifically | Approximates names: baba/bottle |
| 12 mo | Jargon begins (own language) | One word other than “mama” or “dada” | Understandable: 2–3 words |
| 13 mo | | | |
| 16 mo | | | |
| 18-24 mo | | | |
| 24-30 mo | | | |
| 2 y | Vowels uttered correctly | Approximately 270 words; understands pauses | Approximately 270 words; uses phrases |
| 3 y | Some degree of hesitancy and uncertainty common | Approximately 900 words; intelligible 4-word phrases | Approximately 900 words; intelligible 4-word phrases |
| 4 y | | Approximately 1540 words; intelligible 5-word phrases or sentences | Approximately 1540 words; intelligible 5-word phrases |
| 6 y | | Approximately 2560 words; intelligible 6- or 7-word sentences | Approximately 2560 words; intelligible 6- or 7-word sentences |
| 7-8 y | Adult proficiency | | |

object permanence. Age 8–9 months is also a critical time in the attachment process because this is when separation anxiety and stranger anxiety become marked. The infant at this stage is able to appreciate discrepant events that do not match previously known schemata. These new events cause uncertainty and subsequently fear and anxiety. The infant must be able to retrieve previous schemata and incorporate new information over an extended time. These abilities are developed by age 8 months and give rise to the fears that may subsequently develop: stranger anxiety and separation anxiety. In stranger anxiety, the infant analyzes the face of a stranger, detects the mismatch with previous schemata or what is familiar, and responds with fear or anxiety, leading to crying. In separation anxiety, the child perceives the difference between the primary caregiver’s presence and his or her absence by remembering the schema of the caregiver’s presence. Perceiving the inconsistency, the child first becomes uncertain and then anxious and fearful. This begins at age 8 months, reaches a peak at 15 months, and disappears by the end of 2 years in a relatively orderly progression as central nervous system (CNS) maturation facilitates the development of new skills. A parent can put the child’s understanding of object permanence to good use by placing a picture of the mother (or father) near the child or by leaving an object (e.g., her sweater) where the child can see it during her absence. A visual substitute for the mother’s presence may comfort the child.

Once the child can walk independently, he or she can move away from the parent and explore the environment. Although the child uses the parent, usually the mother, as “home base,” returning to her frequently for reassurance, he or she has now taken a major step toward independence. This is the beginning of mastery over the environment and an emerging sense of self. The “terrible twos” and the frequent self-asserting use of “no” are the child’s attempt to develop a better idea of what is or might be under his or her control. The child is starting to assert his or her autonomy. Ego development during this time should be fostered but with appropriate limits. As children develop a sense of self, they begin to understand the feelings of others and develop empathy. They hug another child who is in perceived distress or become concerned when one is hurt. They begin to understand how another child feels when he or she is harmed, and this realization helps them to inhibit their own aggressive behavior. They hug another child who is in perceived distress or become concerned when one is hurt. They begin to understand how another child feels when he or she is harmed, and this realization helps them to inhibit their own aggressive behavior. Children also begin to understand right and wrong and parental expectations. They recognize that they have done something “bad” and may signify that awareness by saying “uhoh” or with other expressions of distress. They also take pleasure in their accomplishments and become more aware of their bodies.

An area of child behavior that has often been overlooked is play. Play is the child’s work and a significant means of learning. Play is a very complex process whose purpose can include the practice and rehearsal of roles, skills, and relationships; a
means of revisiting the past; a means of actively mastering a range of experiences; and a way to integrate the child’s life experiences. It involves emotional development (affect regulation and gender identification and roles), cognitive development (nonverbal and verbal function and executive functioning and creativity), and social/motor development (motor coordination, frustration tolerance, and social interactions such as turn taking). Of interest is that play has a developmental progression. The typical 6- to 12-month-old engages in the game of peek-a-boo, which is a form of social interaction. During the next year or so, although children engage in increasingly complex social interactions and imitation, their play is primarily solitary. However, they do begin to engage in symbolic play such as by drinking from a toy cup and then by giving a doll a drink from a toy cup. By age 2–3 years children begin to engage in parallel play (engaging in behaviors that are imitative). This form of play gradually evolves into more interactive or collaborative play by age 3–4 years and is also more thematic in nature. There are of course wide variations in the development of play, reflecting cultural, educational, and socioeconomic variables. Nevertheless, the development of play does follow a sequence that can be assessed and can be very informative in the evaluation of the child.

Brain maturation sets the stage for toilet training. After age 18 months, toddlers have the sensory capacity for awareness of a full rectum or bladder and are physically able to control bowel and urinary tract sphincters. They also take great pleasure in their accomplishments, particularly in appropriate elimination, if it is reinforced positively. Children must be given some control over when elimination occurs. If parents impose severe restrictions, the achievement of this developmental milestone can become a battle between parent
Figure 3-12. Denver II. (Copyright © 1969, 1989 1990 WK Frankenburg and JB Dodds. © 1978 WK Frankenberg.)
and child. Freud termed this period the anal stage because the developmental issue of bowel control is the major task requiring mastery. It encompasses a more generalized theme of socialized behavior and overall body cleanliness, which is usually taught or imposed on the child at this age.

AGES 2–4 YEARS

Piaget characterized the 2–to 6-year-old stage as preoperational. This stage begins when language has facilitated the creation of mental images in the symbolic sense. The child begins to manipulate the symbolic world; sorts out reality from fantasy imperfectly; and may be terrified of dreams, wishes, and foolish threats. Most of the child’s perception of the world is egocentric or interpreted in reference to his or her needs or influence. Cause-effect relationships are confused with temporal ones or interpreted egocentrically. For example, children may focus their understanding of divorce on themselves (“My father left because I was bad” or “My mother left because she didn’t love me”). Illness and the need for medical care are also commonly misinterpreted at this age. The child may make a mental connection between a sibling’s illness and a recent argument, a negative comment, or a wish for the sibling to be ill. The child may experience significant guilt unless the parents are aware of these misconceptions and take time to deal with them.

At this age, children also endow inanimate objects with human feelings. They also assume that humans cause or create all natural events. For instance, when asked why the sun sets, they may say, “The sun goes to his house” or “It is pushed down by someone else.” Magical thinking blossoms between ages 3 and 5 years as symbolic thinking incorporates more elaborate fantasy. Fantasy facilitates development of role playing, sexual identity, and emotional growth. Children test new experiences in fantasy, both in their imagination and in play. In their play, children often create magical stories and novel situations that reflect issues with which they are dealing, such as aggression, relationships, fears, and control. Children often invent imaginary friends at this time, and nightmares or fears of monsters are common. At this stage, other children become important in facilitating play, such as in a preschool group. Play gradually becomes more cooperative; shared fantasy leads to game playing. Freud described the oedipal phase between ages 3 and 6 years, when there is strong attachment to the parent of the opposite sex. The child’s fantasies may focus on play-acting the adult role with that parent, although by age 6 years oedipal issues are usually resolved and attachment is redirected to the parent of the same sex.

EARLY SCHOOL YEARS: AGES 5–7 YEARS

Attendance at kindergarten at age 5 years marks an acceleration in the separation-individuation theme initiated in the preschool years. The child is ready to relate to peers in a more interactive manner. The brain has reached 90% of its adult weight. Sensorimotor coordination abilities are maturing and facilitating pencil-and-paper tasks and sports, both part of the school experience. Cognitive abilities are still at the preoperational stage, and children focus on one variable in a problem at a time. However, most children have mastered conservation of length by age 5½ years, conservation of mass and weight by 6½ years, and conservation of volume by 8 years.

By first grade, there is more pressure on the child to master academic tasks—recognizing numbers, letters, and words and learning to write. Piaget described the stage of concrete operations beginning after age 6 years, when the child is able to perform mental operations concerning concrete objects that involve manipulation of more than one variable. The child is able to order, number, and classify because these activities are related to concrete objects in the environment and because these activities are stressed in early schooling. Magical thinking diminishes greatly at this time, and the reality of cause-effect relationships is better understood. Fantasy and imagination are still strong and are reflected in themes of play.

MIDDLE CHILDHOOD: AGES 7–11 YEARS

Freud characterized ages 7–11 years as the latency years, during which children are not bothered by significant aggressive or sexual drives but instead devote most of their energies to school and peer group interactions. In reality, throughout this period there is a gradual increase in sex drive, manifested by increasingly aggressive play and interactions with the opposite sex. Fantasy still has an active role in dealing with sexuality before adolescence, and fantasies often focus on movie and music stars. Organized sports, clubs, and other activities are other modalities that permit preadolescent children to display socially acceptable forms of aggression and sexual interest.

For the 7-year-old child, the major developmental tasks are achievement in school and acceptance by peers. Academic expectations intensify and require the child to concentrate on, attend to, and process increasingly complex auditory and visual information. Children with significant learning disabilities or problems with attention, organization, and impulsivity may have difficulty with academic tasks and subsequently may receive negative reinforcement from teachers, peers, and even parents. Such children may develop a poor self-image manifested as behavioral difficulties. The pediatrician must evaluate potential learning disabilities in any child who is not developing adequately at this stage or who presents with emotional or behavioral problems. The developmental status of school-aged children is not documented as easily as that of younger children because of the complexity of the milestones. In the school-aged child, the quality of the response, the attentional abilities, and the
Behavioral and developmental variations and disorders encompass a wide range of issues of importance to pediatricians. Practitioners will be familiar with most of the problems discussed in this chapter; however, with increasing knowledge of the factors controlling normal neurologic and behavioral development in childhood, new perspectives on these disorders and novel approaches to their diagnosis and management are emerging.

Variations in children’s behavior reflect a blend of intrinsic biologic characteristics and the environments with which the children interact. The next section focuses on some of the more common complaints about behavior encountered by those who care for children. These behavioral complaints are by and large normal variations in behavior, a reflection of each child’s individual biologic and temperament traits and the parents’ responses. There are no cures for these behaviors, but management strategies are available that can enhance the parents’ understanding of the child and the child’s relationship to the environment. These strategies also facilitate the parents’ care of the growing infant and child.

The last section of this chapter discusses developmental disorders of cognitive and social competence. Diagnosis and management of these conditions requires a comprehensive and often multidisciplinary approach. The healthcare provider can play a major role in diagnosis, in coordinating the child’s evaluation, in interpreting the results to the family, and in providing reassurance and support.

BEHAVIORAL & DEVELOPMENTAL VARIATIONS

The physician confronted by a disturbance in physiologic function rarely has doubts about what is atypical. Variations in temperament and behavior are not as straightforward. Labeling such variations as disorders implies that a disease entity exists. The behaviors described in this section are viewed as part of a continuum of responses by the child to a variety of internal and external experiences. Variations in temperament have been of interest to philosophers and writers since ancient times. The Greeks believed there were four temperament types: choleric, sanguine, melancholic, and phlegmatic. In more recent times, folk wisdom has defined temperament as a genetically influenced behavioral disposition that is stable over time. Although a number of models of temperament have been proposed, the one usually used by pediatricians in clinical practice is that of Thomas and Chess, who describe temperament as being the “how” of behavior as distinguished from the “why” (motivation) and the “what” (ability). Temperament is an independent psychological attribute that is expressed as a response to an external stimulus. The influence of temperament is bidirectional: The effect of a particular experience will be influenced by the child’s temperament, and the child’s temperament will influence the responses of others in the child’s environment. Temperament is the style with which the child interacts with the environment.

The perceptions and expectations of parents must be considered when a child’s behavior is evaluated. A child that one parent might describe as hyperactive might not be characterized as such by the other parent. This truism can be expanded to include all the dimensions of temperament. Thus, the concept of “goodness of fit” comes into play. For example, if the parents want and expect their child to be predictable but that is not the child’s behavioral style, the parents may perceive the child as being bad or having a behavioral disorder rather than as having a developmental variation. An appreciation of this phenomenon is important because the physician may be able to enhance the parents’ understanding of the child and influence their responses to the child’s behavior. When there is goodness of fit, there will be more harmony and a greater potential for healthy development not only of the child but also of the family. When goodness of fit is not present, tension and stress can result in parental anger, disappointment, frustration, and conflict with the child.

Other models of temperament include those of Rothbart, Buss and Plomin, and Goldsmith and Campos (Table 3–4). All models seek to identify intrinsic behavioral characteristics that lead the child to respond to the world in particular ways.

NORMALITY & TEMPERAMENT

References

Enuresis and encopresis are common childhood problems encountered in the pediatric and family practitioner’s office. Bedwetting is particularly common with about 20% of children in the first grade occasionally wetting the bed and 4% wetting the bed two or more times a week. Enuresis is more common in boys than in girls. In a recent large US study, the prevalence of enuresis among boys 7 and 9 years was 9% and 7%, respectively, and among girls at those ages, 6% and 3%, respectively. The data on constipation and encopresis seem less clear with about 1%–3% of children experiencing this problem, but with anywhere from 0.3% to 29% of children worldwide experiencing constipation. Overall, encopresis/constipation accounts for 3% of referrals to pediatricians’ offices. What is very striking, however, is that constipation and enuresis often co-occur; in such a case the constipation needs to be dealt with before the enuresis can be addressed.

Table 3-4. Theories of temperament.

<table>
<thead>
<tr>
<th>Author</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas and Chess</td>
<td>Temperament is an independent psychologic attribute, biologically determined, which is expressed as a response to an external stimulus. It is the behavioral style: an interactive model.</td>
</tr>
<tr>
<td>Rothbart</td>
<td>Temperament is a function of biologically based individual differences in reactivity and self-regulation. It is subsumed under the concept of “personality” and goes beyond mere “behavioral style.”</td>
</tr>
<tr>
<td>Buss and Plomin</td>
<td>Temperament is a set of genetically determined personality traits that appear early in life and are different from other inherited and acquired personality traits.</td>
</tr>
<tr>
<td>Goldsmith and Campos</td>
<td>Temperament is the probability of experiencing emotions and arousal.</td>
</tr>
</tbody>
</table>

One child may be highly emotional and another less so (ie, calmer) in response to a variety of experiences, stressful or pleasant. The clinician must recognize that each child brings some intrinsic, biologically based traits to its environment and that such characteristics are neither good nor bad, right nor wrong, normal nor abnormal; they are simply part of the child. Thus, as one looks at variations in development, one should abandon the illness model and consider this construct as an aid to understanding the nature of the child’s behavior and its influence on the parent–child relationship.

ENURESIS & ENCOPEPSIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- A child who does not achieve urine and bowel continence by 5–6 years of age and generally has no underlying pathology to which the incontinence can be attributed.
- The child does not respond to a full bladder or rectum.
- The child is constipated and/or is withholding stools.

ENURESIS

Enuresis is defined as repeated urination into the clothing during the day and into the bed at night by a child who is chronologically and developmentally older than 5 years; this pattern of urination must occur at least twice a week for 3 months. Enuresis has been categorized by the International Children’s Continence Society as monosymptomatic or nonmonosymptomatic. Monosymptomatic enuresis is uncomplicated nocturnal enuresis (NE; must never have been dry at night for over 6 months with no daytime accidents); it is a reflection of a maturational disorder and there is no underlying organic problem. Complicated or nonmonosymptomatic enuresis often involves NE and daytime incontinence and often reflects an underlying disorder. The evaluation of both forms needs to take into consideration both the medical and psychological implications of these conditions.

Monosymptomatic enuresis reflects a delay in achieving nighttime continence and reflects a delay in the maturation of the urological and neurological systems. Both micturition and anorectal evacuation are dependent on neural connections and communications between the frontal lobes, locus ceruleus, mid pons, sacral voiding center, and the bladder and rectum. With respect to enuresis, most children are continent at night within 2 years of achieving daytime control. However, 15.5% of 7.5-year-old children wet the bed but only about 2.5% meet the criteria for enuresis. With each year of age the frequency of bedwetting decreases: by 15 years only about 1%–2% of children continue to wet. This occurs more commonly among boys than girls.

The causes for NE are varied and probably interact with one another. Genetic factors are strongly implicated, as enuresis tends to run in families. Many children with NE have a higher threshold for arousal and do not awake to the sensation of a full bladder. NE also can be a result of overproduction of urine from decreased production of desmopressin or a resistance to antidiuretic hormone. In such
cases, the bladder has decreased functional capacity and empties before it is filled.

The evaluation of a child with NE involves a complete history and physical examination to rule out any anatomical abnormalities, underlying pathology, or the presence of constipation. In addition, every child with NE should undergo a urinalysis including a specific gravity. A urine culture should be obtained, especially in girls.

Treatment involves education and the avoidance of being judgmental and shaming the child. Most children feel ashamed and the goal of treatment is to help the child establish continence and maintain his or her self-esteem. A variety of behavioral strategies have been employed such as limiting liquids before sleep and awakening the child at night so that he/she can go to the toilet. Central to this simple strategy is consistency on the parents’ part and the need for the child to be completely awake. If this simple approach is unsuccessful, the use of bedwetting alarms is suggested. Every time the alarm goes off, the child should go to the toilet and void. Therapy needs to be continued for at least 3 months and used every night. Critical to the success of therapy is that parents need to be active participants and get up with the child, as many children will just turn off the alarm and go back to sleep.

The alarm system, which is a form of cognitive behavioral therapy, has been found to cure two-thirds of affected children and should be highly recommended to affected children and their parents as a safe, effective treatment for NE. The most common cause of failure of this intervention is that the child doesn’t awaken or the parents do not wake the child.

While behavioral strategies should be the first line of treatment, when these fail one may need to turn to medications. Desmopressin acetate (DDAVP), an antidiuretic hormone analogue, has been used successfully. DDAVP decreases urine production. Imipramine, a tricyclic antidepressant, also has been used successfully to control NE, although the mechanism of action is not understood. However, potential adverse side effects, including the risk of death with an overdose, suggest that imipramine should be used only as a last resort. Unfortunately, when such medications are stopped, there is a very high relapse rate.

Daytime incontinence or nonmonosymptomatic enuresis is more complicated than NE. Daytime continence is achieved by 70% of children by 3 years of age and by 90% of children by 6 years. When this is not the case, one needs to consider underlying pathology, including cystitis, diabetes insipidus, diabetes mellitus, seizure disorders, neurogenic bladder, anatomical abnormalities of the urinary tract system such as urethral obstruction, constipation, and psychological stress and child maltreatment. A complete history and physical examination must be obtained, along with a diary that includes daily records of voiding and fecal elimination. Treatment must be directed at the underlying pathology and often requires the input of pediatric subspecialists. Following diagnosis, family support and education are essential.

ENCOPRESIS

Constipation (see Chapter 21) is defined by two or more of the following events for 2 months: (1) fewer than three bowel movements per week; (2) more than one episode of encopresis per week; (3) impaction of the rectum with stool; (4) passage of stool so large that it obstructs the toilet; (5) retentive posturing and fecal withholding; and (6) pain with defecation.

Encopresis is defined in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) as the repeated passage of stool into inappropriate places (such as in the underpants) by child who is chronologically or developmentally older than 4 years. Behavioral scientists often divide encopresis into (1) retentive encopresis, (2) continuous encopresis, and (3) discontinuous encopresis. In rare instances children have severe toilet phobia and so do not defecate into the toilet. It is critical to note that more than 90% of the cases of encopresis result from constipation. Thus, in the evaluation of a child with encopresis, one must rule out underlying pathology associated with constipation (see Chapter 21) while at the same time addressing functional and behavioral issues. Conditions associated with constipation include metabolic disorders such as hypothyroidism, neurologic disorders such as cerebral palsy or tethered cord, and anatomical abnormalities of the anus. In addition, children who have been continent can also develop encopresis as a response to stress or child maltreatment.

The prevalence of encopresis is somewhat difficult to precisely ascertain as it is a subject often kept secret by the family and the child. However, some authors report that 1%–3% of children ages 4–11 years of age suffer from encopresis. The highest prevalence is between 5 and 6 years of age.

A complete history and meticulous physical examination must be performed, including a rectal examination, particularly looking for abnormalities around the anus and spine. An abdominal radiograph can be helpful in determining the degree of constipation, the appearance of the bowel, and whether there is obstruction. Assuming no gastrointestinal abnormalities, initial intervention starts with treatment of constipation. Subsequently education, support, and guidance around evacuation are essential, including behavioral strategies such as having the child sit on the toilet after meals to stimulate the gastrocolic reflex. It is most important to avoid punishing the child and making him or her feel guilty and ashamed. Helping the child to clean himself and his clothing in a nonjudgmental, nonpunitive manner is far more productive approach than criticism and reproach. At the same time, if there is an underlying psychiatric disorder such as depression, the child should be treated for the mental health problem along with the treatment of the constipation.

When medical management of constipation is indicated, oral medication or an enema for “bowel cleanout” followed by oral medications should be used. Such treatment can be
Infant colic is characterized by severe and paroxysmal crying that occurs mainly in the late afternoon. The infant’s knees are drawn up and its fists are clenched, flatus is expelled, the facies has a pained appearance, and there is minimal response to attempts at soothing. Studies in the United States have shown that among middle-class infants, crying occupies about 2 hours per day at 2 weeks of age, about 3 hours per day by 6 weeks, and gradually decreases to about 1 hour per day by 3 months. The word “colic” is derived from Greek kolikos (“pertaining to the colon”). Although colic has traditionally been attributed to gastrointestinal disturbances, this has never been proved. Others have suggested that colic reflects a disturbance in the infant’s sleep-wake cycling or an infant state regulation disorder. In any case, colic is a behavioral sign or symptom that begins in the first few weeks of life and peaks at age 2–3 months. In about 30%–40% of cases, colic continues into the fourth and fifth months.

A colicky infant, as defined by Wessel, is one who is healthy and well fed but cries for more than 3 hours a day, for more than 3 days a week, and for more than 3 weeks—commonly referred to as the “rule of threes.” The important word in this definition is “healthy.” Thus, before the diagnosis of colic can be made, the pediatrician must rule out diseases that might cause crying. With the exception of the few infants who respond to elimination of cow’s milk from its own or the mother’s diet, there has been little firm evidence of an association of colic with allergic disorders. Gastroesophageal reflux is often suspected as a cause of colicky crying in young infants. Undetected corneal abrasion, urinary tract infection, and unrecognized traumatic injuries, including child abuse, must be among the physical causes of crying considered in evaluating these infants. Some attempts have been made to eliminate gas with simethicone and to slow gut motility with dicyclomine. Simethicone has not been shown to ameliorate colic. Dicyclomine has been associated with apnea in infants and is contraindicated.

This then leaves characteristics intrinsic to the child (ie, temperament) and parental caretaking patterns as contributing to colic. Behavioral states have three features: (1) They are self-organizing—that is, they are maintained until it is necessary to shift to another one; (2) they are stable over several minutes; and (3) the same stimulus elicits a state-specific response that is different from other states. The behavioral states are (among others) a crying state, a quiet alert state, an active alert state, a transitional state, and a state of deep sleep. The states of importance with respect to colic are the crying state and the transitional state. During transition from one state to another, infant behavior may be more easily influenced. Once an infant is in a stable state (eg, crying), it becomes more difficult to bring about a change (eg, to soothe). How these transitions are accomplished is probably influenced by the infant’s temperament and neurologic maturity. Some infants move from one state to another easily and can be diverted easily; other infants sustain a particular state and are resistant to change.

The other factor to be considered in evaluating the colicky infant is the feeding and handling behavior of the caregiver. Colic is a behavioral phenomenon that involves interaction between the infant and the caregiver. Different caregivers perceive and respond to crying behavior differently. If the caregiver perceives the crying infant as being spoiled and demanding and is not sensitive to or knowledgeable about the infant’s cues and rhythms—or is hurried and “rough” with the infant—the infant’s ability to organize and soothe him- or herself or respond to the caregiver’s attempts at soothing may be compromised. Alternatively, if the temperament of an infant with colic is understood and the rhythms and cues deciphered, crying can be anticipated and the caregiver can intervene before the behavior becomes “organized” in the crying state and more difficult to extinguish.

REFERENCES

Management

Several approaches can be taken to the management of colic.

1. Parents may need to be educated about the developmental characteristics of crying behavior and made aware that crying increases normally into the second month and abates by the third to fourth month.

2. Parents may need reassurance, based on a complete history and physical examination, that the infant is not sick. Although these behaviors are stressful, they are normal variants and are usually self-limited. This discussion can be facilitated by having the parent keep a diary of crying and weight gain. If there is a diurnal pattern and adequate weight gain, an underlying disease process is less likely to be present. Parental anxiety must be relieved, because it may be contributing to the problem.

3. For parents to effectively soothe and comfort the infant, they need to understand the infant’s cues. The pediatrician (or nurse) can help by observing the infant’s behavior and devising interventions aimed at calming both the infant and the parents. One should encourage a quiet environment without excessive handling. Rhythmic stimulation such as gentle swinging or rocking, soft music, drives in the car, or walks in the stroller may be helpful, especially if the parents are able to anticipate the onset of crying. Another approach is to change the feeding habits so that the infant is not rushed, has ample opportunity to burp, and, if necessary, can be fed more frequently so as to decrease gastric distention if that seems to be contributing to the problem.

4. Medications such as phenobarbital elixir and dicyclomine have been found to be somewhat helpful, but their use is to be discouraged because of the risk of adverse reactions and overdosage. A trial of ranitidine hydrochloride or other proton pump inhibitor might be of help if gastroesophageal reflux is contributing to the child’s discomfort.

5. For colic that is refractory to behavioral management, a trial of changing the feedings, and eliminating cow’s milk from the formula or from the mother’s diet if she is nursing, may be indicated. The use of whey hydrolysate formulas for formula-fed infants has been suggested.

Inadequate or disordered intake of food due to any of the following conditions:

- Poor oral-motor coordination.
- Fatigue resulting from a chronic disease.
- Lack of appetite.
- Behavioral issues relating to parent–child interaction.
- Pain associated with feeding.

Children have feeding problems for various reasons, including oral-motor dysfunction, (gagging, trouble with chewing and/or swallowing, aspiration) cardiopulmonary disorders leading to fatigue, gastrointestinal disturbances causing pain, social or emotional issues, and problems with regulation. The common denominator, however, is usually food refusal. Infants and young children may refuse to eat if they find eating painful or frightening. They may have had unpleasant experiences (emotional or physiologic) associated with eating, they may be depressed, or they may be engaged in a developmental conflict with the caregiver that is being played out in the arena of feeding. The infant may refuse to eat if the rhythm of the feeding experience with the caregiver is not harmonious. The child who has had an esophageal atresia repair and has a stricture may find eating uncomfortable. The very young infant with severe oral candidiasis may refuse to eat because of pain. The child who has had a choking experience associated with feeding may be terrified to eat (oral-motor dysfunction or aspiration). The child who is forced to eat by a maltreating parent or an overzealous caregiver may refuse feeds. Children who have required nasogastric feedings or who have required periods of fasting and intravenous nutrition in the first 1–2 months of life are more likely to display food refusal behavior upon introduction of oral feedings.

Depression in children may be expressed through food refusal. Food refusal may develop when the infant’s cues...
around feeding are not interpreted correctly by the parent. The infant who needs to burp more frequently or who needs time between bites but instead is rushed will often passively refuse to eat. Some will be more active refusers, turning their heads away to avoid the feeder, spitting out food, or pushing away food.

Chatoor and coworkers have proposed a developmental and interactive construct of the feeding experience. The stages through which the child normally progresses are establishment of homeostasis (0–2 months), attachment (2–6 months), and separation and individuation (6 months to 3 years). During the first stage, feeding can be accomplished most easily when the parent allows the infant to determine the timing, amount, pacing, and preference of food intake. During the attachment phase, allowing the parent to control the feeding permits the parent to engage the infant in a positive manner. This paves the way for the separation and individuation phase. When a disturbance occurs in the parent-child relationship at any of these developmental levels, difficulty in feeding may ensue, with both the parent and the child contributing to the dysfunctional interaction. One of the most striking manifestations of food refusal occurs during the stage of separation and individuation. Conflict may arise if the parent seeks to dominate the child by intrusive and controlling feeding behavior at the same time the child is striving to achieve autonomy. The scenario then observed is of the parent forcing food on the child while the child refuses to eat. This often leads to extreme parental frustration and anger, and the child may be inadequately nourished and developmentally and emotionally thwarted.

When the pediatrician is attempting to sort out the factors contributing to food refusal, it is essential first to obtain a complete history, including a social history. This should include information concerning the parents’ perception of the child’s behavior and their expectations of the child. Second, a complete physical examination should be performed, with emphasis on oral-motor behavior and other clues suggesting neurologic, anatomic, or physiologic abnormalities that could make feeding difficult. The child’s emotional state and developmental level must be determined. This is particularly important if there is concern about depression or a history of developmental delays. If evidence of oral-motor difficulty is suspected, evaluation by an occupational therapist or speech pathologist is warranted. Third, the feeding interaction needs to be observed live, if possible. Finally, the physician needs to help the parents understand that infants and children may have different styles of eating and different food preferences, and may refuse foods they do not like. This is not necessarily abnormal but may reflect differences in temperament and variations in the child’s way of processing olfactory, gustatory, and tactile stimuli.

Management

The goal of intervention is to identify factors contributing to the disturbance and to work to overcome them. The parents may be encouraged to view the child’s behavior differently and try not to impose their expectations and desires. Alternatively, the child’s behavior may need to be modified so that the parents can provide adequate nurturing.

When the chief complaint is failure to gain weight, a different approach is required. The differential diagnosis should include not only food refusal but also medical disorders and maltreatment. The most common reason for failure to gain weight is inadequate caloric intake. Excessive weight loss may be due to vomiting or diarrhea, to malabsorption, or to a combination of these factors. In this situation more extensive diagnostic evaluation may be needed. Laboratory studies may include a complete blood count; erythrocyte sedimentation rate; urinalysis and urine culture; blood urea nitrogen; serum electrolytes and creatinine; and stool examination for fat, occult blood, and ova and parasites. Some practitioners also include liver and thyroid profiles. Occasionally an assessment of swallowing function or evaluation for the presence of gastroesophageal reflux may be indicated. Because of the complexity of the problem, a team approach to the diagnosis and treatment of failure to thrive, or poor weight gain, may be most appropriate. The team should include a physician, nurse, social worker, and dietitian. Occupational and physical therapists, developmentalists, and psychologists may be required.

The goals of treatment of the child with poor weight gain are to establish a typical pattern of weight gain and to establish better family functioning. Guidelines to accomplishing these goals include the following: (1) Establish a comprehensive diagnosis that considers all factors contributing to poor weight gain; (2) monitor the feeding interaction and ensure appropriate weight gain; (3) monitor the developmental progress of the child and the changes in the family dynamics that facilitate optimal weight gain and psychosocial development; and (4) provide support to the family as they seek to help the child.

Difficulty initiating or maintaining sleep that is viewed as a problem by the child or caregiver. May be characterized by its severity, chronicity, frequency, and associated impairment in daytime function in the child or family. May be due to a primary sleep disorder or occur in association with other sleep, medical, or psychiatric disorders. Adolescents—difficulty initiating or maintaining sleep, or early morning awakening, or nonrestorative sleep, or a combination of these problems.

Sleep is a complex physiologic process influenced by intrinsic biologic properties, temperament, cultural norms and expectations, and environmental conditions. Between 20% and 40% of children experience sleep disturbances at some point in the first 4 years of life. The percentage decreases to 10%–12% in school-aged children. The most common sleep disorder encountered by pediatricians is insomnia which refers to problems with initiating and maintaining sleep. Parasomnias refer to abnormalities of arousal, partial arousal, and transitions between stages of sleep. Other sleep disorders include sleep disordered breathing (covered in greater depth in Chapter 19), restless legs syndrome (RLS)/periodic limb movement disorder (PLMD), narcolepsy, and circadian rhythm disturbances. Narcolepsy, benign neonatal sleep myoclonus, and nocturnal frontal lobe epilepsy will be covered in Chapter 25. DSM-5 will change primary insomnia to insomnia in an effort to acknowledge the importance of managing sleep issues no matter what the perceived cause, and to recognize the bidirectional and interactive effects between sleep issues and coexisting conditions.

Sleep is controlled by two different biologic clocks. The first is a circadian rhythm—daily sleep-wake cycle. The second is an ultradian rhythm that occurs several times per night—the stages of sleep. Sleep stages cycle every 50–60 minutes in infants to every 90 minutes in adolescents. The circadian clock is longer than 24 hours. Environmental cues entrain the sleep-wake cycle into a 24-hour cycle. The cues are light-dark, ambient temperature, core body temperature, noise, social interaction, hunger, pain, and hormone production. Without the ability to perceive these cues (ie, blindness) a child might have difficulty entraining a 24-hour sleep-wake cycle.

Two major sleep stages have been identified clinically and with the use of polysomnography: rapid eye movement (REM) and nonrapid eye movement (NREM) sleep. In REM sleep, muscle tone is relaxed, the sleeper may twitch and grimace, and the eyes move erratically beneath closed lids. REM sleep occurs throughout the night but is increased during the latter half of the night. NREM sleep is divided into four stages. In the process of falling asleep, the individual enters stage 1, light sleep, characterized by reduced bodily movements, slow eye rolling, and sometimes opening and closing of the eyelids. Stage 2 sleep is characterized by slowing of eye movements, slowing of respirations and heart rate, and relaxation of the muscles. Most mature individuals spend about half of their sleep time in this stage. Stages 3 and 4 (also called delta or slow-wave sleep) are the deepest NREM sleep stages, during which the body is relaxed, breathing is slow and shallow, and the heart rate is slow. The deepest NREM sleep occurs during the first 1–3 hours after going to sleep. Most parasomnias occur early in the night during deep NREM sleep. Dreams and nightmares that occur later in the night occur during REM sleep.

Sleep is clearly a developmental phenomenon. Infants are not born with a sleep-wake cycle. REM sleep is more common than NREM sleep in newborns and decreases by 3–6 months of age.

Sleep patterns slowly mature throughout infancy, childhood, and adolescence until they become adult like. Newborns sleep 10–19 hours per day in 2- to 5-hour blocks. Over the first year of life, the infant slowly consolidates sleep at night into a 9- to 12-hour block and naps gradually decrease to one per day by about 12 months. Most children stop napping between 3 and 5 years of age. School-aged children typically sleep 10–11 hours per night without a nap. Adolescents need 9–9½ hours per night but often only get 7–7¼ hours per night. This is complicated by an approximate 1- to 3-hour sleep phase delay in adolescence that is due to physiologic changes in hormonal regulation of the circadian system. Often, adolescents are not tired until 2 hours after their typical bedtime but still must get up at the same time in the morning. Some school districts have implemented later start times for high school students because of this phenomenon.

1. Parasomnias

Parasomnias include both NREM arousal disorders such as confusional arousals, night terrors, sleepwalking (somniloquy), and sleepwalking (somnambulism), and REM-associated sleep abnormalities which are beyond the scope of this chapter.
A. Night Terrors and Sleepwalking

Night terrors commonly occur within 2 hours after falling asleep, during the deepest stage of NREM sleep, and are often associated with sleepwalking. They occur in about 3% of children and most cases occur between ages 3 and 8 years. During a night terror, the child may sit up in bed screaming, thrashing about, and exhibiting rapid breathing, tachycardia, and sweating. The child is often incoherent and unresponsive to comforting. The episode may last up to ½ hour, after which the child goes back to sleep and has no memory of the event the next day. The parents must be reassured that the child is not in pain and that they should let the episode run its course.

Management of night terrors consists of reassurance of the parents plus measures to avoid stress, irregular sleep schedule, or sleep deprivation, which prolongs deep sleep when night terrors occur. Scheduled awakening (awakening the child 30–45 minutes before the time the night terrors usually occur) has been used in children with nightly or frequent night terrors, but there is little evidence that this is effective.

Sleepwalking also occurs during slow-wave/deep sleep and is common between 4 and 8 years of age. It is often associated with other complex behaviors during sleep. It is typically benign except that injuries can occur while the child is walking around. Steps should be taken to ensure that the environment is free of obstacles and that doors to the outside are locked. Parents may also wish to put a bell on their child’s door to alert them that the child is out of bed. As with night terrors, steps should be taken to avoid stress and sleep deprivation. Scheduled awakenings may also be used if the child sleep walks frequently and at a predictable time.

B. Nightmares

Nightmares are frightening dreams that occur during REM sleep, typically followed by awakening, which usually occurs in the latter part of the night. The peak occurrence is between ages 3 and 5 years, with an incidence between 25% and 50%. A child who awakens during these episodes is usually alert. He or she can often describe the frightening images, recall the dream, and talk about it during the day. The child seeks and will respond positively to parental reassurance. The child will often have difficulty going back to sleep and will want to stay with the parents. Nightmares are usually self-limited and need little treatment. They can be associated with stress, trauma, anxiety, sleep deprivation that can cause a rebound in REM sleep, and medications that increase REM sleep.

2. Insomnia

Insomnia includes difficulty initiating sleep and nighttime awakenings. Although parasomnias are frightening, insomnia is frustrating. It can result in daytime fatigue for both the parents and the child, parental discord about management, and family disruption.

Several factors contribute to these disturbances. The quantity and timing of feeds in the first years of life will influence nighttime awakening. Most infants beyond age 6 months can go through the night without being fed. Thus, under normal circumstances, night waking for feeds is probably a learned behavior and is a function of the child’s arousal and the parents’ response to that arousal.

Bedtime habits can influence settling in for the night as well as nighttime awakening. If the child learns that going to sleep is associated with pleasant parental behavior such as rocking, singing, reading, or nursing, going back to sleep after nighttime arousal without these pleasant parental attentions may be difficult. This is called a sleep-onset association disorder and usually is the reason for night waking. Every time that the child gets to the light sleep portion of the sleep-wake cycle, he or she may wake up. This is usually brief and not remembered the next morning, but for the child who does not have strategies for getting to sleep, getting back to sleep may require the same interventions needed to get to sleep initially, such as rocking, patting, and drinking or sucking. Most of these interventions require a parent. Night waking occurs in 40%–60% of infants and young children.

Parents need to set limits for the child while acknowledging the child’s individual biologic rhythms. They should resist the child’s attempts to put off bedtime or to engage them during nighttime awakenings. The goal is to establish clear bedtime rituals, to put the child to bed while still awake, and to create a quiet, secure bedtime environment.

The child’s temperament is another factor contributing to sleep. It has been reported that children with low sensory thresholds and less rhythmicity (regulatory disorder) are more prone to night waking. Night waking often starts at about 9 months as separation anxiety is beginning. Parents should receive anticipatory guidance prior to that time so that they know to reassure their child without making the interaction prolonged or pleasurable. Finally, psychosocial stressors and changes in routine can play a role in night waking.

Insomnia is common in children with complex medical conditions and neurological, developmental, and psychiatric disorders.

3. Sleep-Disordered Breathing

Sleep-disordered breathing or obstructive sleep apnea is characterized by obstructed breathing during sleep accompanied by loud snoring, chest retractions, morning headaches and dry mouth, and daytime sleepiness. Obstructive sleep apnea occurs in 1%–3% of preschoolers. It has its highest peak in childhood between the ages of 2 and 6 years, which corresponds with the peak in adenotonsillar hypertrophy.
It has been associated with daytime behavioral disorders, including attention-deficit hyperactivity disorder (ADHD). A thorough physical examination is important to look for adenotonsillar hypertrophy, hypotonia, and facial anomalies that may predispose the child to obstruction during sleep. Lateral neck films may be helpful. The gold standard for diagnosis is polysomnography. (See also Chapter 19.)

4. Restless Legs Syndrome & Periodic Limb Movement Disorder

Restless legs syndrome (RLS) and periodic limb movement disorder (PLMD) are common disorders in adults and frequently occur together. The frequency of these disorders in children is about 2%. RLS is associated with an uncomfortable sensation in the lower extremities that occurs at night when trying to fall asleep, is relieved by movement, and is sometimes described by children as “creepy-crawly” or “itchy bones.” PLMD is stereotyped, repetitive limb movements often associated with a partial arousal or awakening. The etiology of these disorders is unknown but there has been some association with iron deficiency. A diagnosis of RLS is generally made by history and a diagnosis of PLMD can be made with a sleep study. Caffeine, nicotine, antidepressants and other drugs have been associated with RLS and PLMD. The medical evaluation includes obtaining a serum ferritin and C-reactive protein (CRP) level. If the CRP is normal and the ferritin is less than 50, treatment with ferrous sulfate should be considered. Medications have been studied for treatment of RLS and PLMD in adults.

Management of Sleep Disorders

A complete medical and psychosocial history should be obtained, and a physical examination performed. A detailed sleep history and diary should be completed, and both parents should contribute. Assessment for allergies, lateral neck films, and polysomnography may be indicated to complete the evaluation, especially if sleep-disordered breathing is suspected. It is important to consider disorders such as gastroesophageal reflux, which may cause discomfort or pain when recumbent. Dental pain or eczema may cause nighttime awakening. It also is important to make sure that any medications that the child is taking do not interfere with sleep.

The key to treatment of children who have difficulty going to sleep or who awaken during the night and disturb others is for the physician and parents to understand normal sleep patterns, the parents’ responses that inadvertently reinforce undesirable sleep behavior, and the child’s individual temperament traits. Good sleep hygiene includes discontinuing any activities that are stimulating in the hour before bedtime. It is also important to dim lights during the “wind down” time. Television and video games are particularly stimulating.

There is little evidence regarding pharmacologic management of sleep disorders in children. While the role for melatonin in children with typical development is unclear, there is mounting evidence that it can be effective in children with visual impairments, developmental disabilities, and autism spectrum disorders (ASDs). Medications such as clonidine are often used for sleep disorders, especially in children with ADHD and autistic spectrum disorder (ASD), but there are little data to support its use.

The Pediatric Sleep Medicine Update in Pediatric Clinics of North America from June 2011 is a good resource for more in-depth information.

American Academy of Sleep Medicine sponsored website: http://yoursleep.aasmnet.org/

1. Temper Tantrums

Temper tantrums are common between ages 12 months and 4 years, occurring about once a week in 50%–80% of children in this age group. The child may throw him- or herself down, kick and scream, strike out at people or objects in the room, and hold his or her breath. These behaviors may be considered normal as the young child seeks to achieve autonomy and mastery over the environment. They are often a reflection of immaturity as the child strives to accomplish age-appropriate developmental tasks and meets with difficulty because of inadequate motor and language skills, impulsiveness, or parental restrictions. In the home, these behaviors may be annoying. In public, they are embarrassing.

Some children tolerate frustration well, are able to persevere at tasks, and cope easily with difficulties; others have a much greater problem dealing with experiences beyond their developmental level. Parents can minimize tantrums by understanding the child’s temperament and what he or she is trying to communicate. Parents must also be committed to supporting the child’s drive to master his or her feelings.

Management

Appropriate intervention can provide an opportunity for enhancing the child’s growth. The tantrum is a loss of control on the child’s part that may be a frightening event and a blow to the child’s self-image. The parents and the physician need to view these behaviors within the child’s developmental context rather than from a negative, adversarial, angry perspective.

Several suggestions can be offered to parents and physicians to help manage tantrums:

1. Minimize the need to say “no” by “child-proofing” the environment so that fewer restrictions need to be enforced.
2. Use distraction when frustration increases; direct the child to other, less frustrating activities; and reward the positive response.
3. Present options within the child’s capabilities so that he or she can achieve mastery and autonomy.
4. Fight only those battles that need to be won and avoid those that arouse unnecessary conflict.
5. Do not abandon the preschool child when a tantrum occurs. Stay nearby during the episode without intruding. A small child may need to be restrained. An older child can be asked to go to his or her room. Threats serve no purpose and should not be used.
6. Do not use negative terms when the tantrum is occurring. Instead, point out that the child is out of control and give praise when he or she regains control.
7. Never let a child hurt him- or herself or others.
8. Do not “hold a grudge” after the tantrum is over, but do not grant the child’s demands that led to the tantrum.
9. Seek to maintain an environment that provides positive reinforcement for desired behavior. Do not overreact to undesired behavior, but set reasonable limits and provide responsible direction for the child.
10. Approximately 5%–20% of young children have severe temper tantrums that are frequent and disruptive. Such tantrums may result from a disturbance in the parent-child interaction, poor parenting skills, lack of limit setting, and permissiveness. They may be part of a larger behavioral or developmental disorder or may emerge under adverse socioeconomic conditions, in circumstances of maternal depression and family dysfunction, or when the child is in poor health. Referral to a psychologist or psychiatrist is appropriate while the pediatrician continues to support and work with the family.

2. Breath-Holding Spells

Whereas temper tantrums can be frustrating to parents, breath-holding spells can be terrifying. The name for this behavior may be a misnomer in that it connotes prolonged inspiration. In fact, breath-holding occurs during expiration and is reflexive—not volitional—in nature. It is a paroxysmal event occurring in 0.1%–5% of healthy children from age 6 months to 6 years. The spells usually start during the first year of life, often in response to anger or a mild injury. The child is provoked or surprised, starts to cry—briefly or for a considerable time—and then falls silent in the expiratory phase of respiration. This is followed by a color change. Spells have been described as either pallid (acyanotic) or cyanotic, with the latter usually associated with anger and the former with an injury such as a fall. The spell may resolve spontaneously, or the child may lose consciousness. In severe cases, the child may become limp and progress to opisthotonos, body jerks, and urinary incontinence. Only rarely does a spell proceed to asystole or a seizure.

Management

For the child with frequent spells, underlying disorders such as seizures, orthostatic hypotension, obstructive sleep apnea, abnormalities of the CNS, tumors, familial dysautonomia, and Rett syndrome need to be considered. An association exists among breath-holding spells, pica, and iron-deficiency anemia. These conditions can be ruled out on the basis of the
history, physical examination, and laboratory studies. Once it has been determined that the child is healthy, the focus of treatment is behavioral. Parents should be taught to handle the spells in a matter-of-fact manner and monitor the child for any untoward events. The reality is that parents cannot completely protect the child from upsetting and frustrating experiences and probably should not try to do so. Just as in temper tantrums, parents need to help the child control his or her responses to frustration. Parents need to be careful not to be too permissive and submit to the child’s every whim for fear the child might have a spell.

If loss of consciousness occurs, the child should be placed on his or her side to protect against head injury and aspiration. Maintaining a patent oral airway is essential, but there are no prophylactic medications. Atropine, 0.01 mg/kg given subcutaneously, has been used with some benefit in spells accompanied by bradycardia or asystole.

If loss of consciousness occurs, the child should be placed on his or her side to protect against head injury and aspiration. Maintaining a patent oral airway is essential, but there are no prophylactic medications. Atropine, 0.01 mg/kg given subcutaneously, has been used with some benefit in spells accompanied by bradycardia or asystole.

WELL-CHILD SURVEILLANCE & SCREENING

The American Academy of Pediatrics (AAP) recently published guidelines for surveillance and screening at well child visits. Surveillance is a procedure for recognizing children at risk for a developmental disorder and involves asking parents if they have concerns about their child’s development. The PEDS (Pediatric Evaluation of Developmental Status) can be used for this purpose. Screening involves use of a standardized tool to clarify identified risk. An evaluation would be done by a specialist and would involve a more definitive evaluation of a child’s development.

Surveillance should occur at all well-child visits. Screening of development should occur at 9, 18, and 30 months. Because a 30-month visit is not part of the standard well child visit schedule and may not be reimbursed, screening may occur at 24 months instead. It is also recommended that autism-specific screening should occur at the 18-month visit. Although an autism-specific screen was only recommended at the 18-month visit in the AAP guidelines, the Autism Workgroup of the AAP separately has recommended a second autism-specific screen at 24–30 months in order to pick up children missed at the 18-month screen. Because the average age of regression is 20 months, some children may be missed by a single screen at 18 months.

Clinicians should keep in mind that if they are administering a screen because they are concerned and the child passes the screen, they should still schedule an early follow-up visit to ensure that appropriate progress has been made and that there are no further concerns.

Implementation of screening requires planning for timing of screening administration during office visits, defining the process for referral, and designing handouts prior to beginning screening. Screening is done to optimize the child’s development. However, it also demonstrates to the parent the interest their caretaker has not only for the child’s physical well-being but also for the child’s developmental and psychosocial well-being. Parents of children who receive a developmental assessment express greater satisfaction with their care provider.

The Child Health and Development Interactive System (CHADIS) is an online system that allows parents and teachers to complete screening questionnaires online prior to the visit. It supports billing for 96,110 screening assessments and complex visits, and provides quality assurance documentation.

Child Health and Development Interactive System: www.CHADIS.com.
DEVELOPMENTAL DISORDERS

Developmental disorders include abnormalities in one or more aspects of development, such as verbal, motor, visual-spatial, attention, and social abilities. These problems are diagnosed by comparing the child’s performance level with norms developed from evaluation of children of the same age. Problems with development are often noted by parents when a child does not meet typical motor and language milestones. Developmental disorders may also include difficulties with behavior or attention. ADHD is the most common neurodevelopmental disorder. ADHD occurs in 2%–10% of school-aged children and may occur in combination with a variety of other learning or developmental issues. Mild developmental disorders are often not noted until the child is of school age.

Many biologic and psychosocial factors may influence a child’s performance on developmental tests. In the assessment of the child, it is important to document adverse psychosocial factors, such as neglect or poverty, which can negatively influence developmental progress. Many of the biologic factors that influence development are genetic and are discussed throughout this section.

The diagnostic criteria for developmental disorders found in the Diagnostic and Statistical Manual, Fifth Edition, DSM-5 was released in May 2013. DSM-IV-TR used the term mental retardation, but DSM-5 will use the diagnosis intellectual disability (ID; intellectual developmental disorder) and there are changes to diagnostic criteria as well. The diagnosis of ADHD has several changes that will be reviewed later in this chapter. The diagnosis of ASDs has changed dramatically in DSM-5 and will be discussed later in this chapter as well. There are subtle changes to communication disorders, specific learning disorder, and motor disorders. These can be found at the following websites:

www.dsm5.org.

Evaluation

The neurodevelopmental evaluation must focus on (1) defining the child’s level of developmental abilities in a variety of domains, including language, motor, visual-spatial, attention, and social abilities; (2) attempting to determine the etiology of the child’s developmental delays; and (3) planning a treatment program. These objectives are ideally achieved by a multidisciplinary team that includes a physician, a psychologist, a speech or language therapist, an occupational therapist, and an educational specialist. The psychologist will usually carry out standardized testing of intellectual ability appropriate to the child’s age. The motor and language specialists will also carry out clinical testing to document the deficits in their areas and to organize a treatment program. The educational specialist will usually carry out academic testing for the school-aged child and plan a course of special education support through the school. The physician is often the integrator of the information from the team and must also obtain a detailed medical and developmental history and conduct a physical examination. This type of evaluation is ideal but not always readily available.

Medical & Neurodevelopmental Examination

The medical history should include the pregnancy, labor, and delivery to identify conditions that might compromise the child’s CNS function. The physician must ask the child’s parents about prenatal exposures to toxins, medications, alcohol, drugs, smoking, and infections; maternal chronic illness; complications of pregnancy or delivery; and neonatal course. Problems such as poor weight gain, chronic illnesses, hospitalizations, and maltreatment can interfere with typical development. Major illnesses or hospitalizations should be discussed. Any CNS problems, such as trauma, infection, or encephalitis, should be documented. The presence of metabolic diseases and exposure to environmental toxins such as lead should be determined. Chronic diseases such as chronic otitis media, hyper- or hypothyroidism, and chronic renal failure can impact typical development. The presence of motor or vocal tics, seizures, gastrointestinal, or sleep disturbances should be documented. In addition, parents should be questioned about any motor, cognitive, or behavioral regression.

The physician should review and document the child’s developmental milestones. The physician should also review temperament, difficulties with feeding, tantrums, poor attention, impulsivity, hyperactivity, anxiety/fears, and aggression.

A detailed history of school-related events should be recorded, including previous special education support, evaluations through the school, history of repeating grades, difficulties with specific academic areas, problems with peers, and the teacher’s impressions of the child’s difficulties, particularly related to problems with attention, impulsivity, or hyperactivity. Input from teachers can be invaluable and should be sought prior to the evaluation.

An important aspect of the medical history is a detailed family history of learning strengths and weaknesses, emotional or behavioral problems, learning disabilities, ID, or psychiatric disorders. Parental learning strengths and weaknesses, temperament difficulties, or attentional problems may be passed on to the child. For instance, dyslexia (deficits in decoding skills that result in reading difficulties) is often inherited.

The neurodevelopmental examination should include a careful assessment of dysmorphic features such as epicanthal
folds, palpebral fissure size, shape and length of the philtrum, low-set or posteriorly rotated ears, prominent ear pinnae, unusual dermatoglyphics (eg, a single transverse palmar crease), hyperextensibility of the joints, syndactyly, clinodactyly, or other anomalies. A detailed physical and neurologic examination needs to be carried out with an emphasis on both soft and hard neurologic findings. Soft signs can include motor incoordination, which can be related to handwriting problems and academic delays in written language or drawing. Visual-motor coordination abilities can be assessed by having the child write, copy shapes and designs, or draw a person.

The child’s growth parameters, including height, weight, and head circumference, need to be assessed. Normal hearing and visual acuity should be documented or evaluated. Cranial nerve abnormalities and oral-motor coordination problems need to be noted. The examiner should watch closely for motor or vocal tics. Both fine and gross motor abilities should be assessed. Tandem gait, ability to balance on one foot, and coordinating a skip should be evaluated based on age. Tremors can be noted when watching a child stack blocks or draw.

The developmental aspects of the examination can include an assessment of auditory processing and perceptual ability with simple tasks, such as two- to fivefold directions, assessing right and left directionality, memory for a series of spoken words or digit span, and comprehension of a graded paragraph. In assessing expressive language abilities, the examiner should look for difficulties with word retrieval, formulation, and articulation, and adequacy of vocabulary. Visual-perceptual abilities can be assessed by simple visual memory tasks, puzzles, or object assembly, and evaluating the child’s ability to decode words or organize math problems. Visual-motor integration and coordination can be assessed again with handwriting, design copying, and drawing a person. Throughout the assessment, the clinician should pay special attention to the child’s ability to focus attention and concentrate, and to other aspects of behavior such as evidence of depression or anxiety.

Additional questionnaires and checklists—such as the Child Behavior Checklist by Achenbach; ADHD scales such as the Conners’ Parent/Teacher Rating Scale; and the Swanson, Nolan and Pelham Questionnaire-IV, which includes the DSM-IV-TR criteria for ADHD—can be used to help with this assessment.

Referral of family to community resources is critical, as is a medical home (described earlier in this chapter).

ATTENTION-DEFICIT HYPERACTIVITY DISORDER

Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that may affect about 5% children and 2.5% of adults. It is associated with a triad of symptoms: impulsivity, inattention, and hyperactivity. DSMIV-TR has described three ADHD subtypes: hyperactive-impulsive, inattentive, and combined; the combined subtypes often do not appear until 7 years of age. To be classified according to either subtype, the child must exhibit six or more of the symptoms listed in Table 3–5. DSM-5 will continue to include the same 18 symptoms, 2 symptom domains, and require 6 symptoms from each domain for children under age 17. DSM-5 will include the following changes: Criteria will address symptoms across the life span, symptoms will need to be present prior to age 12 instead of age 7, multiple symptoms will need to be present across settings, subtypes will be called “presentation specifiers,” a diagnosis will be allowed in children with ASD, and symptom thresholds will be lower in adolescents 17 and older and in adults (only 5 symptoms required from each category).

The majority of children with ADHD have a combined type with symptoms of inattention as well as hyperactivity and impulsivity. Girls have a higher prevalence of the inattentive subtype; boys have a higher prevalence of the hyperactive subtype. Although symptoms begin in early childhood, they can diminish between ages 10 and 25 years. Hyperactivity declines more quickly, and impulsivity and inattentiveness often persist into adolescence and adulthood. ADHD may be combined with other psychiatric conditions, such as mood disorder in approximately 20% of patients, conduct disorders in 20%, and oppositional defiant disorder in up to 40%. Up to 25% of children with ADHD seen in a referral clinic have tics or Tourette syndrome. Conversely, well over 50% of individuals with Tourette syndrome also have ADHD.

ADHD has a substantial genetic component. Several candidate genes have been identified, although there is strong evidence that ADHD is a disorder involving multiple genes. ADHD is also associated with a variety of genetic disorders related to developmental disorders, including fragile X syndrome, Williams syndrome, Angelman syndrome, XXY syndrome (Klinefelter syndrome), and Turner syndrome. Fetal alcohol syndrome (FAS) is also strongly associated with ADHD. CNS trauma, CNS infections, prematurity, and a difficult neonatal course with brain injury can also be associated with later ADHD. Metabolic problems such as hyperthyroidism can sometimes cause ADHD. These organic causes of ADHD should be considered in the evaluation of any child presenting with attentional problems, hyperactivity, or impulsivity. However, in the majority of children who have ADHD, the cause remains unknown.
Despite that, behavior modification techniques usually help which makes the symptoms difficult for the child to control. It is important to educate the family regarding the symptoms such as anxiety, sleep disorders, and learning disabilities. The treatment of ADHD varies depending on the complexity of the individual case, including comorbid disorders such as anxiety, sleep disorders, and learning disabilities. It is important to educate the family regarding the symptoms of ADHD and to clarify that it is a neurologic disorder which makes the symptoms difficult for the child to control. Despite that, behavior modification techniques usually help these children and should include structure with consistency in daily routine, positive reinforcement whenever possible, and time-out for negative behaviors. A variety of educational interventions can be helpful, including preferential seating in the classroom, a system of consistent positive behavior reinforcement, consistent structure, the repetition of information when needed, and the use of instruction that incorporates both visual and auditory modalities. Many children

Table 3-5. Attention-deficit/hyperactivity disorder.

<table>
<thead>
<tr>
<th>Diagnostic Criteria</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. A persistent pattern of inattention and/or hyperactivity-impulsivity that interferes with functioning or development, as characterized by (1) and/or (2):</td>
<td></td>
</tr>
<tr>
<td>1. Inattention: Six (or more) of the following symptoms have persisted for at least 6 months to a degree that is inconsistent with developmental level and that negatively impacts directly on social and academic/occupational activities.</td>
<td></td>
</tr>
<tr>
<td>Note: The symptoms are not solely a manifestation of oppositional behavior, defiance, hostility, or a failure to understand tasks or instructions. For older adolescents and adults (age 17 and older), at least five symptoms are required.</td>
<td></td>
</tr>
<tr>
<td>a. Often fails to give close attention to details or makes careless mistakes in schoolwork, at work, or during other activities (e.g., overlooks or misses details, work is inaccurate).</td>
<td></td>
</tr>
<tr>
<td>b. Often has difficulty sustaining attention in tasks or play activities (e.g., has difficulty remaining focused during lectures, conversations, or lengthy reading).</td>
<td></td>
</tr>
<tr>
<td>c. Often does not seem to listen when spoken to directly (e.g., mind seems elsewhere, even in the absence of any obvious distraction).</td>
<td></td>
</tr>
<tr>
<td>d. Often does not follow through on instructions and fails to finish schoolwork, chores, or duties in the workplace (e.g., starts tasks but quickly loses focus and is easily sidetracked).</td>
<td></td>
</tr>
<tr>
<td>e. Often has difficulty organizing tasks and activities (e.g., difficulty managing sequential tasks; difficulty keeping materials and belongings in order; messy, disorganized work; has poor time management; fails to meet deadlines).</td>
<td></td>
</tr>
<tr>
<td>f. Often avoids, dislikes, or is reluctant to engage in tasks that require sustained mental effort (e.g., schoolwork or homework; for older adolescents and adults, preparing reports, completing forms, reviewing lengthy papers).</td>
<td></td>
</tr>
<tr>
<td>g. Often loses things necessary for tasks or activities (e.g., school materials, pencils, books, tools, wallets, keys, paperwork, eyeglasses, mobile telephones).</td>
<td></td>
</tr>
<tr>
<td>h. Is often easily distracted by extraneous stimuli (for older adolescents and adults, may include unrelated thoughts).</td>
<td></td>
</tr>
<tr>
<td>i. Is often forgetful in daily activities (e.g., doing chores, running errands; for older adolescents and adults, returning calls, paying bills, keeping appointments).</td>
<td></td>
</tr>
<tr>
<td>2. Hyperactivity and impulsivity: Six (or more) of the following symptoms have persisted for at least 6 months to a degree that is inconsistent with developmental level and that negatively impacts directly on social and academic/occupational activities.</td>
<td></td>
</tr>
<tr>
<td>Note: The symptoms are not solely a manifestation of oppositional behavior, defiance, hostility, or a failure to understand tasks or instructions. For older adolescents and adults (age 17 and older), at least five symptoms are required.</td>
<td></td>
</tr>
<tr>
<td>a. Often fidgets with or taps hands or feet or squirms in seat.</td>
<td></td>
</tr>
<tr>
<td>b. Often leaves seat in situations when remaining seated is expected (e.g., leaves his or her place in the classroom, in the office or other workplace, or in other situations that require remaining in place).</td>
<td></td>
</tr>
<tr>
<td>c. Often runs about or climbs in situations where it is inappropriate. (Note: In adolescents or adults, may be limited to feeling restless.)</td>
<td></td>
</tr>
<tr>
<td>d. Often unable to play or engage in leisure activities quietly.</td>
<td></td>
</tr>
<tr>
<td>e. Is often “on the go,” acting as if “driven by a motor” (e.g., is unable to be or uncomfortable being still for extended time, as in restaurants, meetings; may be experienced by others as being restless or difficult to keep up with).</td>
<td></td>
</tr>
<tr>
<td>f. Often talks excessively.</td>
<td></td>
</tr>
<tr>
<td>g. Often blurts out an answer before a question has been completed (e.g., completes people’s sentences; cannot wait for turn in conversation).</td>
<td></td>
</tr>
<tr>
<td>h. Often has difficulty waiting his or her turn (e.g., while waiting in line).</td>
<td></td>
</tr>
<tr>
<td>i. Often interrupts or intrudes on others (e.g., butts into conversations, games, or activities; may start using other people’s things without asking or receiving permission; for adolescents and adults, may intrude into or take over what others are doing).</td>
<td></td>
</tr>
<tr>
<td>B. Several inattentive or hyperactive-impulsive symptoms were present prior to age 12 years.</td>
<td></td>
</tr>
<tr>
<td>C. Several inattentive or hyperactive-impulsive symptoms are present in two or more settings (e.g., at home, school, or work; with friends or relatives; in other activities).</td>
<td></td>
</tr>
<tr>
<td>D. There is clear evidence that the symptoms interfere with, or reduce the quality of, social, academic, or occupational functioning.</td>
<td></td>
</tr>
<tr>
<td>E. The symptoms do not occur exclusively during the course of schizophrenia or another psychotic disorder and are not better explained by another mental disorder (e.g., mood disorder, anxiety disorder, dissociative disorder, personality disorder, substance intoxication or withdrawal).</td>
<td></td>
</tr>
</tbody>
</table>

Management

The treatment of ADHD varies depending on the complexity of the individual case, including comorbid disorders such as anxiety, sleep disorders, and learning disabilities. It is important to educate the family regarding the symptoms of ADHD and to clarify that it is a neurologic disorder which makes the symptoms difficult for the child to control.
CHILD DEVELOPMENT & BEHAVIOR

with ADHD have significant social difficulties, and social skills training can be helpful. Individual counseling is beneficial in alleviating poor self-esteem, oppositional behavior, and conduct problems.

Stimulant medications (methylphenidate, dextroamphetamine, and lisdexamfetamine) are available in short- and long-acting preparations. A recently introduced methylphenidate preparation is delivered transdermally. Alternative medications for the treatment of ADHD include clonidine or guanfacine, which are α2-adrenergic presynaptic agonists that decrease norepinephrine levels. Atomoxetine, which is a norepinephrine reuptake inhibitor, is no longer recommended as a first-line medication. It has been found not to be as effective as the medications noted above, and there are also reports that it is associated with mild liver toxicity. These medications are particularly helpful for individuals who are hyperreactive to sensory stimuli and may decrease motor tics in patients who have Tourette syndrome.

It is most important that, no matter what medication is used, the diagnosis is correct and the correct dosage is prescribed. A recent study has demonstrated that one of the major factors contributing to treatment failure is inadequate dosing or the failure to recognize the presence of comorbid conditions such as learning disability, anxiety disorders, and depression.

Seventy to ninety percent of children with normal intellectual abilities respond well to stimulant medications. Stimulants enhance both dopamine and norepinephrine neurotransmission, which seems to improve impulse control, attention, and hyperactivity. The main side effects of methylphenidate and dextroamphetamine include appetite suppression and resulting weight loss, as well as sleep disturbances. Atomoxetine is a selective inhibitor of the presynaptic norepinephrine transporter, which increases norepinephrine and dopamine, and has a similar side-effect profile to the stimulants as well as side effects associated with antidepressants. Some individuals experience increased anxiety, particularly with higher doses of stimulant medications. Children with autism and developmental disabilities may be at increased risk for side effects with stimulants. Stimulants may exacerbate psychotic symptoms. They may also exacerbate motor tics in 30% of patients, but in 10% motor tics may be improved.

Cardiovascular effects of stimulant medications have undergone significant scrutiny over the past several years. It is unclear whether stimulants increase the risk of sudden death over the risk in the general population, especially in children without any underlying risk. Prior to beginning a stimulant medication, it is recommended that clinicians obtain any history of syncope, palpitations, chest pain, and family history of sudden death prior to age 30 that may predispose a child to sudden death. Stimulant products and atomoxetine should generally not be used in patients with serious heart problems or in those for whom an increase in BP or HR would be problematic. Consultation with the child’s cardiologist would be indicated prior to making a decision about stimulant use. The U.S. Food and Drug Administration (FDA) includes this statement in the labeling of stimulants: “sudden death has been reported in association with CNS stimulant treatment at usual doses in children and adolescents with structural cardiac abnormalities or other serious heart problems.” The FDA has recommended that patients treated with ADHD medications should be monitored for changes in HR or BP.

Children and Adults With Attention Deficit/Hyperactivity Disorder: http://www.chadd.org.

AUTISM SPECTRUM DISORDERS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

Two core deficits:
- Persistent deficits in social communication and social interaction across multiple contexts.
- Restricted, repetitive patterns of behavior, interests, or activities.

Autism spectrum disorder (ASD) is a neurologic disorder characterized by (1) persistent deficits in social communication and social interaction across multiple contexts and (2) restricted, repetitive patterns of behavior, interests, or activities.
Table 3-6. Autism Spectrum Disorder.

<table>
<thead>
<tr>
<th>Diagnostic Criteria</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Persistent deficits in social communication and social interaction across multiple contexts, as manifested by the following, currently or by history (examples are illustrative, not exhaustive; see text):</td>
<td></td>
</tr>
<tr>
<td>1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, or affect; to failure to initiate or respond to social interactions.</td>
<td></td>
</tr>
<tr>
<td>2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, for example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye contact and body language or deficits in understanding and use of gestures; to a total lack of facial expressions and nonverbal communication.</td>
<td></td>
</tr>
<tr>
<td>3. Deficits in developing, maintaining, and understanding relationships, ranging, for example, from difficulties adjusting behavior to suit various social contexts; to difficulties in sharing imaginative play or in making friends; to absence of interest in peers.</td>
<td></td>
</tr>
</tbody>
</table>

Specify current severity:

Severity is based on social communication impairments and restricted, repetitive patterns of behavior.

B. Restricted, repetitive patterns of behavior, interests, or activities, as manifested by at least two of the following, currently or by history (examples are illustrative, not exhaustive; see text):

1. Stereotyped or repetitive motor movements, use of objects, or speech (e.g., simple motor stereotypies, lining up toys or flipping objects, echolalia, idiosyncratic phrases).
2. Insistence on sameness, inflexible adherence to routines, or ritualized patterns of verbal or nonverbal behavior (e.g., extreme distress at small changes, difficulties with transitions, rigid thinking patterns, greeting rituals, need to take same route or eat same food every day).
3. Highly restricted, fixated interests that are abnormal in intensity or focus (e.g., strong attachment to or preoccupation with unusual objects, excessively circumscribed or perseverative interests).
4. Hyper- or hyporeactivity to sensory input or unusual interest in sensory aspects of the environment (e.g., apparent indifference to pain/temperature, adverse response to specific sounds or textures, excessive smelling or touching of objects, visual fascination with lights or movement).

Specify current severity:

Severity is based on social communication impairments and restricted, repetitive patterns of behavior.

C. Symptoms must be present in the early developmental period (but may not become fully manifest until social demands exceed limited capacities, or may be masked by learned strategies in later life).

D. Symptoms cause clinically significant impairment in social, occupational, or other important areas of current functioning.

E. These disturbances are not better explained by intellectual disability (intellectual developmental disorder) or global developmental delay. Intellectual disability and autism spectrum disorder frequently co-occur; to make comorbid diagnoses of autism spectrum disorder and intellectual disability, social communication should be below that expected for general developmental level.

Activities. Autism was grouped under the pervasive developmental disorders in the DSM-IV with Asperger disorder, pervasive developmental disorder not otherwise specified, childhood disintegrative disorder (CDD), and Rett syndrome. Asperger disorder was characterized by impairment in social interaction and restricted interest/repetitive behaviors. Individuals with Asperger disorder could not have significant delays in cognitive, language, or self-help skills. Pervasive developmental disorder not otherwise specified was characterized by impairment in reciprocal social interaction along with impairment in communication skills, or restricted interest or repetitive behaviors. Children with pervasive developmental disorder not otherwise specified did not meet full criteria for autism. CDD was characterized by typical development for at least 2 years followed by a regression in at least two of the following three areas: social interaction, communication, and behavior (characterized by restricted interests or repetitive behaviors). Rett syndrome is a genetic syndrome caused by a mutation on the X chromosome that is characterized by regression in skills in the first year of life. DSM-5 will combine autism, PDD, and Asperger syndrome into one disorder, ASDs. ASDs will be characterized by deficits in two categories: (1) social communication and social interaction, and (2) restricted repetitive behaviors, interests, and activities. Table 3-6 lists the DSM-5 criteria for diagnosis of an ASD. DSM-V will not include Rett syndrome. Severity will also be specified as Level 1—“requiring support,” Level II—“requiring substantial support,” and Level III—“requiring very substantial support.”

ASDs are relatively common, occurring in approximately 1 in 88 children. Males are overrepresented 3–4:1, with reports as high as 9.5:1 (especially when higher functioning individuals are included). No known etiology can be found in 80%–90% of cases. A genetic syndrome such as fragile X syndrome or chromosome 15q duplication is found in 10%–20% of cases. This percentage may increase with newer techniques for diagnosing copy number variation (microarray) and mutations (whole exome sequencing). There is a strong familial component. Parents of one child with autism of unknown etiology have a 2%–15% chance of having a second child with autism. The concordance rate among monozygotic twins is high but not absolute, and there is an increased incidence of speech, language, reading, attention, and affective disorders in family members of children with autism.
Evaluation & Management

Children with autism are often not diagnosed until age 3–4 years, when their disturbances in reciprocal social interaction and communication become more apparent. However, impairments in communication and behavior can often be recognized in the first 12–18 months of life. The most common early characteristics are a consistent failure to orient to one’s name, regard people directly, use gestures, and to develop speech. Even if one of these skills is present, it is often diminished in frequency, inconsistent, or fleeting. Every interaction should be an opportunity to engage socially. Sharing affect or enjoyment is an important precursor to social interaction. By 16–18 months a child should have “joint attention,” which occurs when two people attend to the same thing at the same time. This is usually accomplished by shifting eye gaze, pointing, or saying “look.” Toddlers should point to get needs met (“I want that”) and to show (“look at that”) by 1 year of age and they should do it regularly. By 18 months a toddler should be able to follow a point, imitate others, and engage in functional play (using toys in the way that they are intended to be used, such as rolling a car, throwing a ball, or feeding a baby doll). Restricted interests and repetitive behaviors sometimes do not emerge until after age 2, but usually are present before age 2.

There is mounting evidence that a diagnosis of ASD can be made reliably by age 2 years and is stable over time. Because there is evidence that early intervention is particularly important for children with autism, great interest has arisen in developing a screening instrument that can be used in very young children. The Modified Checklist for Autism in Toddlers (M-CHAT) is designed for children 16–30 months of age (Figure 3–13). It is a parent report measure with 23 yes/no questions. Specificity is greater if parents of children who screen positive on the M-CHAT receive a follow-up phone call asking for specific examples of failed items to confirm accuracy.

An autism-specific screen is recommended at 18 months. A second autism-specific screen has been recommended at 24–30 months. The second screen was recommended because some of the symptoms may be more obvious in an older child and because about 30% of children with ASDs experience a regression or plateau in skills between 12 and 24 months. Screening at 18 months could miss many of these children.

When behaviors raising concern for autism are noted, the child should be referred to a team of specialists experienced in the assessment of ASDs. The child should also be referred to a local early intervention program and to a speech and language pathologist to begin therapy as soon as possible. All children with autism should have a formal audiology evaluation. Laboratory tests such as an array comparative genomic hybridization (aCGH otherwise known as microarray) and a DNA for fragile X syndrome should be considered. Metabolic screening, lead level, and thyroid studies may also be done if indicated by findings in the history and physical examination. A Wood lamp examination for tuberous sclerosis is also recommended. Neuroimaging is not routinely indicated even in the presence of mild/relative macrocephaly because children with autism often have relatively large heads. Neuroimaging should be done if microcephaly or focal neurologic signs are noted.

Approximately 30% of children with autism demonstrate a plateau or loss of skills (usually only language and/or social skills) between 12 and 24 months of age. This regression/plateau in skills has been documented in prospective longitudinal studies of infant siblings of children with ASD. The loss is usually gradual. It can co-occur with atypical development and can be fluctuating. It usually occurs before the child attains a vocabulary of 10 words. If a child presents with regression, he or she should be referred to a child neurologist. An overnight EEG should be considered when there is a history of regression to rule out electrical status epilepticus in sleep. Metabolic testing and a magnetic resonance imaging (MRI) of the brain should also be considered when there is a history of regression.

Early, intensive behavioral intervention for children with ASD is essential. The National Research Council reviewed the available literature in 2001 and recommended entry into treatment as soon as autism is suspected; 25 hours of intervention per week; parent training and involvement in treatment; ongoing assessment, program evaluation, and programmatic adjustment as needed; and intervention that focuses on communication, social interaction, and play skills that can be generalized in a naturalistic setting. Functional use of language leads to better behavioral and medical outcomes. Early detection and early intervention have a positive impact on children with ASDs. The National Research Council states: “A substantial subset of children with autistic spectrum disorders are able to make marked progress during the period that they receive intensive early intervention, and nearly all children with autistic spectrum disorders appear to show some benefit. Children with ASD who begin treatment before age 3–3½ years make the greatest gains with intervention.” Naturalistic training models for children with autism implemented before age 3 result in 90% of children attaining functional use of language compared to 20% who begin intervention after age 5. The Early Start Denver Model (ESDM) is one model for early intervention. In a recent study, 48 children 18–30 months of age were randomly assigned to ESDM for 20 hours per week for 2 years or community intervention. The group that received ESDM improved by a mean of 17.6 standard points on developmental testing (Mullen) versus 7.0 points in the control group. Adaptive function was maintained in the ESDM group and decreased in the control group. There are many models for this type of intervention and much variability in what is available in different areas of the country. Families should be encouraged to find a model that best suits the needs of the child and the family.
Instructions for Use

The M-CHAT-R is validated for screening toddlers between 16 and 30 months of age, to assess risk for autism spectrum disorders (ASD). The M-CHAT-R can be administered and scored as part of a well-child check-up, and also can be used by specialists or other professionals to assess risk for ASD. The primary goal of the M-CHAT-R was to maximize sensitivity, meaning to detect as many cases of ASD as possible. Therefore, there is a high false positive rate, meaning that not all children who score at risk for ASD will be diagnosed with ASD. To address this, we have developed a structured follow-up interview for use in conjunction with the M-CHAT-R; it is available at the two websites listed above. Users should be aware that even with the follow-up questions, a significant number of the children who fail the M-CHAT-R will not be diagnosed with an ASD; however, these children are at risk for other developmental disorders or delays, and therefore, evaluation is warranted for any child who fails the screening.

The M-CHAT-R can be scored in less than two minutes. Scoring instructions can be downloaded from www.mchatscreen.com. We also have developed a scoring template, which is available on these websites; when printed on an overhead transparency and laid over the completed M-CHAT-R, it facilitates scoring. Please note that minor differences in printers may cause your scoring template not to line up exactly with the printed M-CHAT-R.

Children who fail more than 3 items total or 2 critical items (particularly if these scores remain elevated after the follow-up interview) should be referred for diagnostic evaluation by a specialist trained to evaluate ASD in very young children. In addition, children for whom there are physician, parent, or other professional's concerns about ASD should be referred for evaluation, given that it is unlikely for any screening instrument to have 100% sensitivity.

M-CHAT-R Follow-Up™ Scoring Sheet

Please note: Yes/No has been replaced with Pass/Fail

1. If you point at something across the room, does your child look at it? Pass Fail
 (For example, if you point at a toy or an animal, does your child look at the toy or animal?)

2. Have you ever wondered if your child might be deaf? Pass Fail

3. Does your child play pretend or make-believe? Pass Fail
 (For example, pretend to drink from an empty cup, pretend to talk on a phone, or pretend to feed a doll or stuffed animal)

4. Does your child like climbing on things? Pass Fail
 (For example, furniture, playground equipment, or stairs)

5. Does your child make unusual finger movements near his or her eyes? Pass Fail
 (For example, does your child wiggle his or her fingers close to his or her eyes?)

6. Does your child point with one finger ask for something or to get help? Pass Fail
 (For example, pointing to a snack or toy that is out of reach)

7. Does your child point with one finger to show you something interesting? Pass Fail
 (For example, pointing to an airplane in the sky or a big truck in the road)

8. Is your child interested in other children? Pass Fail
 (For example, does your child watch other children, smile at them, or go to them?)

9. Does your child show you things by bringing them to you or holding them up for you to see – not to get help, but just to share? Pass Fail
 (For example, showing you a flower, a stuffed animal, or a toy truck)

10. Does your child respond when you call his or her name? Pass Fail
 (For example, does he or she look up, talk or babble, or stop what he or she is doing when you call his or her name?)

11. When you smile at your child, does he or she smile back at you? Pass Fail

12. Does your child get upset by everyday noises? Pass Fail
 (For example, a vacuum cleaner or loud music)

14. Does your child look you in the eye when you are talking to him or her, playing with him or her, or dressing him or her? Pass Fail

15. Does your child try to copy what you do? Pass Fail
 (For example, wave bye-bye, clap, or make a funny noise when you do)

16. If you turn your head to look at something, does your child look around to see what you are looking at? Pass Fail

17. Does your child try to get you to watch him or her? Pass Fail
 (For example, does your child look at you for praise, or say “look” or “watch me”)

18. Does your child understand when you tell him or her to do something? Pass Fail
 (For example, if you don’t point, can your child understand “put the book on the chair” or “bring me the blanket”)

19. If something new happens, does your child look at your face to see how you feel about it? Pass Fail
 (For example, if he or she hears a strange or funny noise, or sees a new toy, will he or she look at your face?)

20. Does your child like movement activities? Pass Fail
 (For example, being swung or bounced on your knee)

© 2009 Diana Robins, Deborah Fein, & Marianne Barton

Total Score:_________

▲ Figure 3–13. M-CHAT revisions and related materials are available for download at www.mchatscreen.com.
(Reproduced, with permission, from Diana Robins, Deborah Fein, and Marianne Barton.)
One role of the primary care provider is to ensure that medical concerns such as sleep disorders, seizures, or gastrointestinal symptoms are addressed. Any worsening of behavior in a child with autism may be secondary to unrecognized medical issues such as pain from a dental abscess or esophagitis. A practice pathway for the identification, evaluation, and management of insomnia in children and adolescents with ASDs has been developed. The pathway was developed by Malow et al and is referenced as follows. The pathway stresses the importance of screening for sleep issues and interviewing around comorbid medical conditions such as gastroesophageal reflux disease (GERD) or constipation that may impact sleep. Individualizing behavioral/sleep hygiene for the child with ASD is also very important. Psychiatric comorbidities are common and should be addressed by the PCP or a specialist. Psychopharmacologic management is often needed to address issues with attention, hyperactivity, anxiety, aggression, and other behaviors that have a significant impact on daily function. Multiple recent reviews of psychopharmacologic treatments are available. A clinical practice pathway for evaluation and medication choice for ADHD disorder symptoms in children with ASD has also been developed. Mahajan et al published the pathway which is referenced as follows. Children with ASD are less likely to respond to stimulants than children with typical development and are more likely to have side effects. Smaller doses and nonstimulants such as guanfacine should be considered especially in children younger than 5 years, children with IQ less than 50, severe stereotypies, severe anxiety, unstable mood, or low weight/poor appetite. The primary care provider also provides a medical home for children with ASD. This requires coordination of care.

Many complementary and alternative (CAM) treatments for autism have been proposed. As many as 33% of families use special diets and 54% of families use supplements for their child with ASD based on data from the Interactive Autism Network. The review of CAM prepared by the AAP Task Force on Complementary and Alternative Medicine and the Provisional Section on Complementary, Holistic, and Integrative Medicine is particularly valuable.

Autism Speaks: http://www.autismspeaks.org.

Division TEACCH (Treatment and Education of Autistic and Related Communication-handicapped Children): http://teacch.com.

DSM5: www.dsm5.org.

FDA Center for Safety and Applied Nutrition: http://www.cfsan.fda.gov/%7Edms/ds-warn.html.

First Signs (educational site on autism): http://firstsigns.org.

Hanen Centre (information on family-focused early intervention programs): http://www.hanen.org.

Interactive Autism Network (based at Johns Hopkins, families complete questionnaires online regarding their child with autism): https://www.ianexchange.org.

Landa R et al: Social and communication development in toddlers with early and later diagnosis of autism spectrum disorders. Arch Gen Psychiatry 2007;64:853 [PMID: 17606819].

Learn the Signs, Act Early (website with resources and free handouts for families): www.cdc.gov/actearly.

INTELLECTUAL DISABILITY

The field of developmental disabilities has been evolving and redefining the constructs of disability and intellectual disability (ID) and thereby using new terms to reflect that evolution. The term retardation was first used in an educational context to describe educationally compromised students. Indeed, during the early 20th century, educators and psychologists struggled to identify the causes of the problems these students encountered. Interestingly, their “differential diagnoses” included biologic, environmental, and emotional etiologies, not dissimilar to those we deal with in the 21st century. In addition, it was—and continues to be—acknowledged that the term idiocy, feeble-mindedness, and mental deficiency are pejorative, demeaning, and dehumanizing.

DSM-5 will use the diagnosis intellectual disability (ID; intellectual developmental disorder). DSM-5 diagnostic criteria will emphasize the need for evaluation of adaptive function in addition to cognitive testing (IQ). Intellectual disability is the new term for mental retardation. The term disability is used by professionals and advocacy groups. The International Classification of Diseases (ICD) will release ICD-11 in 2015 and will use the word disorder. Disorder will be used in ICD-11 and disability will be used in the International Classification of Functioning, Disability, and Health (ICF).

Recently, a rethinking of the construct of disability has emerged that shifts the focus from limitations in intellectual functioning and adaptive capability (a person-centered trait) to a human phenomenon with its source in biologic or social factors and contexts. The current view is a social-ecological conception of disability that articulates the role of disease or disorder leading to impairments in structure and function, limitations in activities, and restriction in participation in personal and environmental interactions. The term intellectual disability, which is consistent with this broader view, is increasingly being used and reflects an appreciation of the humanness and potential of the individual. The diagnostic criteria currently remain the same; however, the construct and context has changed.

Having noted this, it is important to acknowledge that significant delays in the development of language, motor skills, attention, abstract reasoning, visual-spatial skills, and academic or vocational achievements are associated with ID. Deficits on standardized testing in cognitive and adaptive functioning greater than two standard deviations below the mean for the population are considered to fall in the range of ID (Table 3–7). The most common way of reporting the results of these tests is by using an intelligence quotient. The intelligence quotient is a statistically derived number reflecting the ratio of age-appropriate cognitive function and the child’s actual level of cognitive function. A number of accepted standardized measurement tools, such as the Wechsler Intelligence Scale for Children, third edition, can be used to assess these capacities. To receive a diagnosis of ID a child must not only have an intelligence quotient of less than 70, but also must demonstrate adaptive skills more than two standard deviations below the mean. Adaptive function refers to the child’s ability to function in his or her environment and can be measured by a parent or teacher interview recorded using an instrument such as the Vineland Adaptive Behavior Scales.

The prevalence of ID is approximately 1% in the general population and may vary by age. Some states have reported a prevalence of less than 2%. Mild levels of ID are more common and more likely to have a sociocultural cause than are more severe levels. Poverty, deprivation, or a lack of exposure to a stimulating environment can contribute to developmental delays and poor performance on standardized tests. In addition, physical problems such as hearing loss, blindness, and brain trauma can lead to developmental delays and low intelligence quotient test scores. Great strides in our identification of genetic causes of ID have been made since the 1990s because of the Human Genome Project. More than 750 genetic disorders have been associated with ID, and over 200 of those disorders are carried on the X chromosome alone. In approximately 60% of cases, the cause of the ID can be identified. Table 3–8 summarizes the findings of several studies examining the causes of ID.

Table 3–7. Categories of intellectual disability (ID).

<table>
<thead>
<tr>
<th>Mental ID/MR Range</th>
<th>Intelligence Quotient (IQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild ID</td>
<td>50–69</td>
</tr>
<tr>
<td>Moderate ID</td>
<td>35–49</td>
</tr>
<tr>
<td>Severe ID</td>
<td>20–34</td>
</tr>
<tr>
<td>Profound ID</td>
<td>< 20</td>
</tr>
</tbody>
</table>

MCHAT with Phone Follow-up (free download of the MCHAT available): http://www2.gsu.edu/~wwppsy/faculty/robins.htm.

Table 3–8. Causes of intellectual disability (ID).

<table>
<thead>
<tr>
<th>Cause</th>
<th>Percentage of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosomal abnormalities</td>
<td>4–28</td>
</tr>
<tr>
<td>Fragile X syndrome</td>
<td>2–5</td>
</tr>
<tr>
<td>Monogenetic conditions</td>
<td>4–14</td>
</tr>
<tr>
<td>Structural CNS abnormalities</td>
<td>7–17</td>
</tr>
<tr>
<td>Complications of prematurity</td>
<td>2–10</td>
</tr>
<tr>
<td>Environmental or teratogenic causes</td>
<td>5–13</td>
</tr>
<tr>
<td>“Cultural-familial” ID</td>
<td>3–12</td>
</tr>
<tr>
<td>Metabolic or endocrine causes</td>
<td>1–5</td>
</tr>
<tr>
<td>Unknown</td>
<td>30–50</td>
</tr>
</tbody>
</table>

Evaluation

Children who present with developmental delays should be evaluated by a team of professionals as described at the beginning of this section. For children 0–3½ years of age, the Bayley Scales of Infant Development, second edition, is a well-standardized developmental test. For children older than 3 years standardized cognitive testing, such as the Wechsler Preschool and Primary Scale of Intelligence-Revised; the Wechsler Intelligence Scale for Children, third edition; the Stanford-Binet IV; or the Kaufman Assessment Battery for Children should be administered to assess cognitive function over a broad range of abilities, including verbal and nonverbal scales. For the nonverbal patient, a scale such as the Leiter-R will assess skills that do not involve language.

A full psychological evaluation in school-aged children should include an emotional assessment if psychiatric or emotional problems are suspected. Such problems are common in children with developmental delays or ID. A hearing test and a vision screening or ophthalmologic evaluation are important to determine whether hearing and vision are normal.

Diagnostic testing should be carried out in an effort to find the cause of ID. Because chromosomal abnormalities occur in 4%–28% of patients with ID, cytogenetic testing is important in cases without a known cause. A consensus panel has recommended a high-resolution karyotype so that small deletions or duplications can be visualized. In addition, FISH (fluorescence in situ hybridization) studies are available. These studies use a fluorescent DNA probe that hybridizes to a region of DNA where a deletion or duplication is suspected. Microdeletion syndromes—such as Prader-Willi syndrome or Angelman syndrome, caused by a deletion at 15q; velocardiofacial syndrome, caused by a deletion at 22q; Smith–Magenis syndrome, caused by a deletion at 17p; and Williams syndrome, caused by a 7p deletion—can be assessed with FISH studies. Sometimes the deletion is so small that it may not be visualized through the microscope even with high-resolution cytogenetic studies. If clinical features consistent with any of the microdeletion syndromes are present, FISH studies should be ordered to look for a small deletion in a specific region. In addition, duplications may be present. For example, duplication at 15q has been associated with pervasive developmental disorder or autistic spectrum disorders and with ID. This duplication can be identified by FISH testing.

Structural abnormalities of the brain can occur in many individuals with ID. MRI is superior to computed tomography (CT) in identifying structural and myelination abnormalities. CT is the study of choice in evaluation of intracranial calcifications, such as those seen in congenital infections or tuberous sclerosis. The value of CT and MRI studies in a child with a normal-sized head and no focal neurologic signs is unclear, and they are not routinely carried out. Neuroimaging is important in patients with microcephaly, macrocephaly, seizures, loss of psychomotor skills, or specific neurologic signs such as spasticity, dystonia, ataxia, or abnormal reflexes. Neuroimaging is not routinely carried out in children with known genetic disorders such as Down syndrome, fragile X syndrome, or microdeletion syndromes because the CNS abnormalities have been well described and documentation of the abnormalities usually does not affect management.

Metabolic screening has a relatively low yield (0%–5%) in children who present with developmental delay or ID. Many patients with metabolic disorders such as hypothyroidism, phenylketonuria, and galactosemia are identified through newborn screening. Most patients with metabolic problems will present with specific indications for more focused testing, such as failure to thrive, recurrent unexplained illnesses, plateauing or loss of developmental skills, coarse facial features, cataracts, recurrent coma, abnormal sexual differentiation, arachnodactyly, hepatosplenomegaly, deafness, structural hair abnormalities, muscle tone changes, and skin abnormalities. Thyroid function studies should be carried out in any patient who has a palpably abnormal thyroid or exhibits clinical features associated with hypothyroidism. Serum amino acids, urine organic acid, and mucopolysaccharide screens should be considered in children with developmental delays and a suggestive history. Preliminary laboratory findings such as lactic acidosis, hyperuricemia, hyperammonemia, or a low or high cholesterol level require additional metabolic workup.

Serial follow-up of patients is important as the physical and behavioral phenotype changes over time and diagnostic testing improves with time. Although cytogenetic testing may have been negative 10 years earlier, advances in high-resolution techniques, FISH testing, and fragile X DNA
testing may now reveal an abnormality that was not identified previously. A stepwise approach to diagnostic testing may also be more cost-effective, so that the test most likely to be positive is done first.

Management

Once a diagnosis of ID is made, treatment should include a combination of individual therapies, such as speech and language therapy, occupational therapy or physical therapy, special education support, behavioral therapy or counseling, and medical intervention, which may include psychopharmacology. To illustrate how these interventions work together, two disorders are described in detail in the next section.

SPECIFIC FORMS OF INTELLECTUAL DISABILITY & ASSOCIATED TREATMENT ISSUES

1. **Fragile X Syndrome**

The most common inherited cause of ID is fragile X syndrome, which is caused by a trinucleotide expansion (CGG repeated sequence) within the fragile X mental retardation I (FMR1) gene. Individuals with ID of unknown origin should receive FMR1 DNA testing to look for an expansion of the CGG repeats causing dysfunction of this gene. The CGG sequence at FMR1 in the normal population includes 5–50 repeats. Carriers of the premutation have 54–200 repeats, and they have been considered unaffected. However, there is mounting evidence for a specific phenotype in these individuals. Women with the premutation have a higher incidence of premature ovarian failure, anxiety, and mild facial dysmorphisms. Males with the premutation are at risk for developing fragile X tremor ataxia syndrome (FXTAS). Individuals with the premutation have normal levels of FMR1 protein but increased levels of mRNA. It should be noted that seemingly unaffected females can pass an expansion of the CGG repeat to the next generation. Approximately 1 in 250 women and 1 in 700 men in the general population are premutation carriers. When a premutation of more than 90 repeats is passed on by a female to her offspring, it will expand to a full mutation (> 200 repeats) 100% of the time, which usually causes ID or learning disabilities. The full mutation is associated with methylation of the gene, which turns off transcription, resulting in a deficiency in the FMR1 protein. These deficiencies result in ID or significant learning and emotional issues.

Fragile X syndrome includes a broad range of symptoms. Patients can present with shyness, social anxiety, and learning problems, or they can present with ID. Girls are usually less affected by the syndrome because they have a second X chromosome that is producing FMR1 protein. Approximately 70% of girls with the full mutation have cognitive deficits in addition to emotional problems, such as mood lability, ADHD, anxiety, and shyness. Approximately 85% of males with the syndrome have ID and autistic-like features, such as poor eye contact, hand flapping, hand biting, and tactile defensiveness. About 20% of males with fragile X syndrome meet the criteria for autism.

Children with fragile X syndrome usually present with cognitive and language delays, hyperactivity, and difficult behavior in early childhood. Although prominent ears and hyperextensible finger joints are common, approximately 30% of children with the syndrome may not have these features. The diagnosis must be suspected because of behavioral problems and developmental delays alone. As the boys move into puberty, macroorchidism develops with an average adult volume of 50 mL, or twice the normal volume. The child’s face may become longer during puberty.

Management

A variety of therapies are helpful for individuals with fragile X syndrome. Speech and language therapy can decrease oral hypersensitivity, improve articulation, enhance verbal output and comprehension, and stimulate abstract reasoning skills. Because approximately 10% of boys with the syndrome will be nonverbal at age 5 years, the use of augmentative communication techniques—such as signing; the use of pictures to represent food, toys, or activities; or the use of computers that can be programmed for communication—are helpful. Tantrums and hyperarousal to stimuli, along with hyperactivity, are common. Occupational therapy can be helpful in calming hyperarousal to stimuli and in improving the child’s fine and gross motor coordination and motor planning. If the behavioral problems are severe, it can be helpful to involve a behavioral psychologist who emphasizes positive reinforcement, time-outs, consistency in routine, and the use of both auditory and visual modalities, such as a picture schedule, to help with transitions and new situations.

Psychopharmacology can also be useful to treat ADHD, aggression, anxiety, or severe mood instability. Clonidine or guanfacine may be helpful in low doses, beginning in the
preschool period to treat hyperarousal, tantrums, or severe hyperactivity. Stimulant medications such as methylphenidate and dextroamphetamine are usually beneficial by age 5 years and occasionally earlier. Relatively low doses are used (eg, 0.2–0.3 mg/kg per dose of methylphenidate) because irritability is often a problem with higher doses.

Anxiety may also be a significant problem for boys with fragile X syndrome, and the use of a selective serotonin reuptake inhibitor (SSRI) such as fluoxetine is often helpful. SSRIs may also decrease aggression or moodiness, although in approximately 25% of cases, an increase in agitation or even hypomania may occur. Shyness and social anxiety combined with mild ADHD are commonly seen in girls who have fragile X syndrome. The social anxiety is sometimes so severe that selective mutism (refusal to speak in some environments, especially school) is seen in girls who have the full mutation. The treatment for selective mutism may include an SSRI, language therapy, and counseling.

Aggression may become a significant problem in childhood or adolescence for boys with fragile X syndrome. Counseling can often be helpful, although medication may be needed. Stimulants, clonidine, guanfacine, and an SSRI may decrease aggression, although sometimes an atypical antipsychotic may be needed. Clinical trials have begun in adults and children with Fragile X syndrome to evaluate metabotropic glutamate receptor 5 antagonists and γ-aminobutyric acid (GABA) agonists that have shown promising results in mouse models of fragile X syndrome.

An important component of treatment is genetic counseling. Parents should meet with a genetic counselor after the diagnosis of fragile X syndrome is made because there is a high risk that other family members are carriers or may be affected by the syndrome. A detailed family history is essential. Female carriers have a 50% risk of having a child with the fragile X mutation. Male carriers are at risk for developing FXTAS, a neurodegenerative disorder, as they age.

It is also helpful to refer a newly diagnosed family to a parent support group. Educational materials and parent support information may be obtained by calling the National Fragile X Foundation at 1-800-688-8765.

2. Fetal Alcohol Spectrum Disorders

Alcohol exposure in utero is associated with a broad spectrum of developmental problems, ranging from learning disabilities to severe ID. Fetal alcohol spectrum disorders (FASD) is an umbrella term describing the range of effects that can occur in an individual exposed to alcohol prenatally. The Institute of Medicine in 1996 defined the diagnostic categories in individuals with documented prenatal maternal alcohol exposure as follows.

A. Fetal Alcohol Syndrome

Fetal alcohol syndrome (FAS) refers to the full syndrome associated with prenatal alcohol exposure. The diagnosis of FAS requires the presence of a characteristic pattern of facial abnormalities (short palpebral fissures, thin upper lip, and indistinct or smooth philtrum, for which there are standard measurements), growth deficiency, and evidence of CNS damage and neurodevelopmental abnormalities. This diagnosis can be made with or without confirmed maternal prenatal use of alcohol.

B. Partial Fetal Alcohol Syndrome

The diagnosis of partial FAS requires the presence of at least two of the facial anomalies as well as at least one of the following: growth retardation, CNS neurodevelopmental abnormalities, or behavioral or cognitive abnormalities that are inconsistent with the child’s developmental level and cannot be explained by familial background or environment. This diagnosis can be made with or without confirmed maternal prenatal use of alcohol, although this can be difficult because of the subtle facial anomalies, and the lack of growth retardation in many of these children.

C. Alcohol-Related Neurodevelopmental Disorder

Alcohol-related neurodevelopmental disorder does not require the presence of dysmorphic facial features, but it does require the presence of neurodevelopmental abnormalities or evidence of a pattern of behavioral or cognitive abnormalities. These abnormalities may include learning disabilities; poor impulse control; and problems in memory, attention, and judgment. These characteristics must be inconsistent with the child’s developmental level and cannot be explained by familial background or environment. This diagnosis requires confirmation of prenatal alcohol exposure.

D. Alcohol-Related Birth Defects

The diagnosis of alcohol-related birth defects requires a history of prenatal alcohol exposure, at least two characteristic facial features, and the presence of one or more congenital anomalies, including malformations and dysplasias in cardiac, skeletal, renal, ocular, or auditory areas (ie, sensorineural hearing loss) or two or more minor anomalies (ie, hypoplastic nails, clinodactyly).

Animal and human data support these diagnostic categories. It is not known exactly how many people have an FASD. The Centers for Disease Control and Prevention (CDC) studies have shown that 0.2–1.5 cases of FAS occur for 1000 births. Other
studies have estimated the rate of FAS at 0.5–2.0 per 1000 live births. The prevalence of alcohol-related neurodevelopmental disorder is unclear but not uncommon. Thus, the physician should always ask about alcohol (and other drug) intake during pregnancy. This is particularly true when evaluating a child presenting with developmental delays. The exact amount of alcohol consumption that leads to teratogenesis remains unclear. Thus, it is best to say that in order to avoid an FASD, abstention from all alcoholic drinks during pregnancy is essential.

Evaluation & Management

Essential to the evaluation of a child with FASD, or one suspected of having FASD, is an assessment by a multidisciplinary team. The evaluation should include examination of growth, facial and other dysmorphic features, developmental or cognitive abilities, behavioral function, and the documentation of prenatal alcohol exposure.

Individuals with FASD typically have significant difficulty with complex cognitive tasks and executive function (planning, conceptual set shifting, affective set shifting, response inhibition, and fluency). They process information slowly. They may do well with simple tasks but have difficulty with more complex tasks. They have difficulty with attention and short-term memory. They are also at risk for social difficulties and mood disorders. Functional classroom assessments can be a very helpful part of a complete evaluation. Structure is very important for individuals with FASD. Types of structure that may be helpful are visual structure (color code each content area), environmental structure (keep work area uncluttered, avoid decorations), and task structure (clear beginning, middle, and end). Psychopharmacologic intervention may be needed to address issues such as attention and mood.

REFERENCES

Print Resources

Web Resources

The American Psychiatric Association (APA) has proposed new diagnostic criteria in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) which were released in May 2013: www.psych.org, www.dsm5.org.
Family Voices (website devoted to children and youth with special health care needs): http://www.familyvoices.org.
Hamen Centre (information on family-focused early intervention programs): http://www.hamen.org.
Adolescence is a period of rapid physical, emotional, cognitive, and social development. Generally, adolescence begins at age 11–12 years and ends between ages 18 and 21. Most teenagers complete puberty by age 16–18 years; in Western society, however, for educational and cultural reasons, the adolescent period is prolonged to allow for further psychosocial development before the individual assumes adult status. The developmental passage from childhood to adulthood includes the following steps: (1) completing puberty and somatic growth; (2) developing socially, emotionally, and cognitively, and moving from concrete to abstract thinking; (3) establishing an independent identity and separating from the family; and (4) preparing for a career or vocation.

DEMOGRAPHY

In the United States in 2010, there were 22.0 million adolescents aged 15–19 years and 21.5 million aged 20–24 years. Adolescents and young adults (ages 15–24 years) constitute 14% of the US population. Between 1990 and 2006, the population 10–24 years of age increased from 40.1 to 63.3 million. In the next several decades, the proportion of racial and ethnic minority adolescents is expected to increase. It is projected that by 2040 the percentage of non-Hispanic whites will drop below 50% of the total adolescent population. Hispanics are becoming the second most populous racial and ethnic group of adolescents.

MORTALITY DATA

In 2010, there were 10,887 deaths among adolescents aged 15–19 years, representing a rate of 49.4 per 100,000. Cultural and environmental rather than organic factors pose the greatest threats to life. The three leading causes of death in adolescents aged 15–19 years were unintentional injury (41.7%), homicide (16.8%), and suicide (15.2%). The primary cause of unintentional injury death was motor vehicle crashes (63.8%), followed by poisoning (16.4%), which includes prescription drug overdoses and is the only unintentional injury mechanism to increase over the past decade. Homicide deaths were predominantly attributable to firearms (84.8%), while both firearms and suffocation were leading mechanisms of suicide death (40.3% and 45.3%, respectively). The mortality rate of adolescent males aged 15–19 was more than twice that of females (69.6 vs 28.1 per 100,000, respectively), largely due to higher rates of unintentional injury, homicide, and suicide death among males.

The rate of adolescent mortality declined by 7.7% from the previous year and 26.4% from 2000. This decline may be largely attributable to decreases in unintentional injury. Motor vehicle crashes, the leading cause of death among teenagers in the United States, account for more than one-quarter of deaths in this age group. In 2010, approximately 2700 teenagers in the United States aged 16–19 were killed and almost 282,000 were treated and released from emergency departments (EDs) for injuries suffered in motor-vehicle crashes. Research suggests that the most comprehensive graduated drivers licensing (GDL) programs, designed to delay full licensure while allowing teenagers to get their initial driving experience under low-risk conditions, are associated with reductions of 38% and 40% in fatal and injury crashes, respectively, among 16-year-old drivers.

MORBIDITY DATA

Demographic and economic changes in the American family have had a profound effect on children and adolescents. The percentage of children and adolescents living in two-parent households has decreased significantly, from 79% in 1980 to 66% in 2009 (range: 80% in Asians, 60% in Hispanics, 33% in blacks). In 2010, more than 16 million children younger than 18 years lived in households with incomes below 100% of the U.S. Census Bureau’s poverty threshold, representing 22.0% of all children in the United States and an increase from 20.7% in 2009. Poverty affects many aspects of a child’s life, including living conditions, nutrition, and access to health care, and
significant racial/ethnic disparities exist. Nearly 40% of non-Hispanic black children lived in households with incomes below 100% of the poverty threshold, as did approximately 35% of non-Hispanic American Indian/Alaska Native children and Hispanic children, compared to 12.4% of non-Hispanic white children. Single-parent families are particularly vulnerable to poverty. In 2010, 46.9% of children living in a female-headed household experienced poverty, as did 28.1% of children living in a male-headed household, compared with 11.6% of children living in married-couple families.

The major causes of morbidity during adolescence are psychosocial and often correlate with poverty: unintended pregnancy, sexually transmitted infection (STI), substance abuse, smoking, dropping out of school, depression, running away from home, physical violence, and juvenile delinquency. High-risk behavior in one area is frequently associated with problems in another (Figure 4–1). For example, teenagers who live in a dysfunctional family (eg, drinking, physical, or sexual abuse) are much more likely than other teenagers to be depressed. A depressed teenager is at greater risk for drug and alcohol abuse, academic failure, inappropriate sexual activity, STIs, pregnancy, and suicide.

Early identification of the teenager at risk for these problems is important in preventing immediate complications and future associated morbidities. Early indicators for problems related to depression include:

1. Decline in school performance
2. Excessive school absences or cutting class
3. Frequent or persistent psychosomatic complaints
4. Changes in sleeping or eating habits
5. Difficulty in concentrating or persistent boredom
6. Signs or symptoms of depression, extreme stress, or anxiety
7. Withdrawal from friends or family or change to a new group of friends
8. Severe violent or rebellious behavior or radical personality change
9. Conflict with parents
10. Sexual acting-out
11. Conflicts with the law
12. Suicidal thoughts or preoccupation with themes of death
13. Drug and alcohol abuse
14. Running away from home

▲ Figure 4–1. Interrelation of high-risk adolescent behavior.
How, where, why, and when adolescents seek health care depends on ability to pay, distance to healthcare facilities, availability of transportation, accessibility of services, time away from school, and privacy. Many common teenage health issues, such as unintended pregnancy, contraception, STI, substance abuse, depression, and other emotional problems have moral, ethical, and legal implications. Teenagers are often reluctant to confide in their parents for fear of punishment or disapproval. Recognizing this reality, healthcare providers have established specialized programs such as teenage family planning clinics, drop-in centers, STI clinics, hotlines, and adolescent clinics. Establishing a trusting and confidential relationship with the patient is basic to meeting their healthcare needs. Patients who sense that the physician will inform their parents about a confidential problem may lie or fail to disclose information essential for proper diagnosis and treatment.

DELIVERY OF HEALTH SERVICES

Adolescence is one of the physically healthiest periods in life. The challenge of caring for most adolescents lies not in managing complex organic disease, but in accommodating the cognitive, emotional, and psychosocial changes that influence health behavior. The physician’s initial approach to the adolescent may determine the success or failure of the visit. The physician should behave simply and honestly, without an authoritarian or excessively professional manner. Because the self-esteem of many young adolescents is fragile, the physician must be careful not to overpower and intimidate the patient. To establish a comfortable and trusting relationship, the physician should strive to present the image of an ordinary person who has special training and skills.

Because the onset and termination of puberty vary from child to child, chronologic age may be a poor indicator of physical, physiologic, and emotional maturity. In communicating with an adolescent, the physician must be sensitive to the adolescent’s developmental level, recognizing that outward appearance and chronologic age may not be an accurate reflection of cognitive development.

Working with teenagers can be emotionally draining. Adolescents have a unique ability to identify hidden emotional vulnerabilities. The physician who has a personal need to control patients or foster dependency may be disappointed in caring for teenagers. Because teenagers are consumed with their own emotional needs, they rarely provide the physician with ego rewards as do younger or older patients.

The physician should be sensitive to the issue of countertransference—the emotional reaction elicited in the physician by the adolescent. How the physician relates to the adolescent patient often depends on the physician’s personal characteristics. This is especially true of physicians who treat families that are experiencing parent-adolescent conflicts. It is common for young physicians to overidentify with the teenage patient and for older physicians to see the conflict from the parents’ perspective.

Overidentification with parents is readily sensed by the teenager, who is likely to view the physician as just another authority figure who cannot understand the problems of being a teenager. Assuming a parental-authoritarian role may jeopardize the establishment of a working relationship with the patient. In the case of the young physician, overidentification with the teenager may cause the parents to become defensive about their parenting role and to discount the physician’s experience and ability.

THE SETTING

Adolescents respond positively to settings and services that communicate sensitivity to their age. A pediatric waiting room with toddlers’ toys and infant-sized examination tables...
makes adolescent patients feel they have outgrown the practice. A waiting room filled with geriatric or pregnant patients can also make a teenager feel out of place.

CONFIDENTIALITY

It is not uncommon that a teenage patient is brought to the office against his or her wishes, especially for evaluations of drug and alcohol use, parent-child conflict, school failure, depression, or a suspected eating disorder. Even in cases of acute physical illness, the adolescent may feel anxiety about having a physical examination. If future visits are to be successful, the physician must spend time on the first visit to foster a sense of trust and comfort.

It is helpful at the beginning of the visit to talk with the adolescent and the parents about what to expect. The physician should address the issue of confidentiality, telling the parents that two meetings—one with the teenager alone and one with only the parents—will take place. Adequate time must be spent with both patient and parents or important information may be missed. At the beginning of the interview with the patient, it is useful to say, “I am likely to ask you some personal questions. This is not because I am trying to pry into your personal affairs, but because these questions may be important to your health. I want to assure you that what we talk about is confidential, just between the two of us. If there is something I feel we should discuss with your parents, I will ask your permission first unless I feel it is life-threatening.”

THE STRUCTURE OF THE VISIT

Caring for adolescents is time-intensive. In many adolescent practices, a 40%–50% no-show rate is not unusual. The stated chief complaint often conceals the patient’s real concern. For example, a 15-year-old girl may say she has a sore throat but actually may be worried about being pregnant.

By age 11 or 12 years, patients should be seen alone. This gives them an opportunity to ask questions they may be embarrassed to ask in front of a parent. Because of the physical changes that take place in early puberty, some adolescents are too self-conscious to undress in front of a parent. If an adolescent comes in willingly, for an acute illness or for a routine physical examination, it may be helpful to meet with the adolescent and parent together to obtain the history. For angry adolescents brought in against their will, it is useful to meet with the parents and patient for 3–5 minutes to allow the parents to describe the conflict and voice their concerns. The adolescent should then be seen alone. This approach conveys that the physician is primarily interested in the adolescent patient, yet gives the physician an opportunity to acknowledge parental concerns.

The Interview

The first few minutes may determine whether or not a trusting relationship can be established. A few minutes just getting to know the patient is time well spent. For example, immediately asking “Do you smoke marijuana?” when a teenager is brought in for suspected marijuana use confirms the adolescent’s negative preconceptions about the physician and the purpose of the visit. It is preferable to spend a few minutes asking nonthreatening questions, such as “Tell me a little bit about yourself so I can get to know you,” “What do you like to do most?” “Least?” and “What are your friends like?” Neutral questions help defuse some of the patient’s anger and anxiety. Toward the end of the interview, the physician can ask more directed questions about psychosocial concerns.

Medical history questionnaires for the patient and the parents are useful in collecting historical data (Figure 4–2). The history should include an assessment of progress with psychodevelopmental tasks and of behaviors potentially detrimental to health. The review of systems should include questions about the following:

1. Nutrition: Number and balance of meals; calcium, iron, fiber, and cholesterol intake; body image.
2. Sleep: Number of hours, problems with insomnia or frequent waking.
3. Seat belt or helmet: Regularity of use.
4. Self-care: Knowledge of testicular or breast self-examination, dental hygiene, and exercise.
5. Family relationships: Parents, siblings, relatives.
7. School: Attendance, grades, activities.
10. Substance abuse: Frequency, extent, and history of alcohol and drug use.
11. Sexuality: Sexual activity, contraceptive use, pregnancies, history of STI, number of sexual partners, risk for human immunodeficiency virus (HIV) infection.

The physician’s personal attention and interest is likely to be a new experience for the teenager, who has probably received medical care only through a parent. The teenager should leave the visit with a sense of having a personal physician.

Physical Examination

During early adolescence, teenagers may be shy and modest, especially with a physician of the opposite sex. The examiner should address this concern directly, because it can be allayed by acknowledging the uneasiness verbally and by explaining
CONFIDENTIAL

ADOLESCENT HEALTH HISTORY

This information is CONFIDENTIAL. Its purpose is to help your doctor give you better care. We request that you fill out the form completely, but you may skip any question that you do not wish to answer.

NAME __DATE ________________________________

First Middle Initial Last

BIRTHDATE _______________AGE __________ Name you like to be called ________________________________

1. Why did you come to the clinic today? __
 __

MEDICAL HISTORY

2. Are you allergic to any medicines? ... YES NO
 If Yes: Name of Medicine ___

3. Are you taking any medicines now? ... YES NO
 If Yes: Name of Medicine ___

4. Were you born prematurely or did you have any serious problems as an infant? .. YES NO

5. Do you have any chronic health conditions? .. YES NO
 Condition __

6. Have you ever been hospitalized? .. YES NO
 Have you had any serious or sports related injuries?.. YES NO
 If YES to any of the above: Describe the reason/problem:
 DATE REASON/PROBLEM
 __
 __
 __

7. Have you ever had any of the following infections, illnesses or problems?
 If Yes: Write down your age when the infection, illness or problem started:
 Chickenpox __________ __________ __________ Pneumonia __________ __________ __________
 Epilepsy/Seizures __________ __________ __________ Mononucleosis __________ __________ __________
 Migraines __________ __________ __________ Tuberculosis __________ __________ __________
 Heart Disease __________ __________ __________ Arthritis __________ __________ __________
 Asthma __________ __________ __________ Scoliosis __________ __________ __________
 Acne __________ __________ __________ Anemia __________ __________ __________
 Stomach problems __________ __________ __________ Diabetes __________ __________ __________
 Urine Infections __________ __________ __________ Thyroid Disease __________ __________ __________
 Hepatitis __________ __________ __________ Cancer __________ __________ __________
 Sexually Transmitted __________ __________ __________ Eczema __________ __________ __________
 Diseases __________ __________ __________ Other__

SCHOOL INFORMATION

8. Are you in school? ... YES NO
 If Yes: Name of school ___
 a. What grade are you in, or the highest grade you completed? __ (i.e.: 7th, 8th, 9th, 10th, 11th, 12th, College)
 b. What grade do you usually make in English? ________ (i.e.: A, B, C, D, E, F)
 c. What grade do you usually make in math? __________
 d. How many days were you absent from school last semester? _________
 If No: e. Why did you leave? __

9. Have you ever been suspended or expelled? .. YES NO

▲ Figure 4–2. Adolescent medical history questionnaire. (Continued)
10. Have you ever dropped out of school? YES NO

JOB/CAREER INFORMATION

11. Are you working? YES NO

 If Yes, what is your job?

 How many hours do you work each week?

12. What are your future plans or career goals?

FAMILY INFORMATION

13. Who do you live with? (Check all that apply)

 - Both natural parents
 - Stepmother
 - Stepfather
 - Father
 - Guardian
 - Foster Home
 - Adoptive parents
 - Alone
 - Other: Explain:

14. Were you adopted? YES NO

15. Have there been any changes in your family since your last visit here such as:

 - Marriage
 - Separation
 - Divorce
 - Serious illness
 - Births
 - Loss of job
 - Deaths
 - Move to a new house

 If Checked: Please explain:

16. Father's/stepfather's occupation or job:

17. Mother's/stepmother's occupation or job:

18. How satisfied are you with how well you get along with your family?

 - A lot
 - Somewhat
 - Not much
 - Not at all

19. How much tension or conflict is there in your family?

 - None
 - A little
 - A fair amount
 - A lot

20. Have you ever lived in foster care or an institution? YES NO

SELF-INFORMATION

21. What do you like about yourself?

22. What do you do best?

23. If you could, what would you like to change about your life or yourself?

24. Have you lost or gained any weight in the last year? YES NO

 If Yes: (circle) Gained OR Lost How much?

25. In the past year, have you tried to lose weight or control your weight by vomiting, taking diet pills or laxatives, or starving yourself? YES NO

26. Do you feel you have any friends you can count on? YES NO

27. Have you ever run away from home overnight? YES NO

28. Have you gotten into any trouble because of your anger/temper? YES NO

29. Have you been in a pushing/shoving fight during the past 6 months? YES NO

30. Is there a gun in your house? YES NO

31. Have you ever threatened or been threatened with a knife/gun/or other weapon? YES NO

32. Have you ever used a gun, knife, or other weapon to hurt someone? YES NO

33. Have you ever been physically or sexually abused? YES NO

▲ Figure 4-2. (Continued)
HEALTH CONCERNS
In the past two weeks, how often have you been bothered by each of the following symptoms:

<table>
<thead>
<tr>
<th>PHQ-9</th>
<th>Not At All (0)</th>
<th>Several Days (1)</th>
<th>More Than Half the Days (2)</th>
<th>Nearly Every Day (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Feeling down, depressed, irritable, or hopeless?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Little interest or pleasure in doing things?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Trouble falling asleep, staying asleep, or sleeping too much?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Poor appetite, weight loss, or overeating?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Feeling tired, or having little energy?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Feeling bad about yourself – or feeling that you are a failure, or that you have let yourself or your family down?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Trouble concentrating on things like school work, reading, or watching TV?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Moving or speaking so slowly that other people could have noticed? Or the opposite – being so fidgety or restless that you were moving around a lot more than usual?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Thoughts that you would be better off dead, or of hurting yourself in some way?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

34. Do you have any questions or concerns about any of the following? (Check all that apply)

- ____ Too tall
- ____ Too short
- ____ Overweight
- ____ Underweight
- ____ Blood pressure
- ____ Headaches/migraines
- ____ Dizziness/passing out
- ____ Eyes/vision
- ____ Ears/hearing/earaches
- ____ Bloody nose
- ____ Hay fever
- ____ Frequent colds
- ____ Mouth/teeth
- ____ Neck/back
- ____ Chest pain
- ____ Wheezing

- ____ Cough
- ____ Breasts
- ____ Heart
- ____ Stomach pain
- ____ Nausea/vomiting
- ____ Acne/complexion
- ____ Arms, legs/muscle or joint pain
- ____ Frequent or painful urination
- ____ Wetting the bed
- ____ Sexual organs/genitals
- ____ Trouble sleeping
- ____ Tiredness
- ____ Diet/food/appetite
- ____ Eating disorder

- ____ Smoking, drugs, alcohol
- ____ Future plans/job
- ____ Worried about parent(s)
- ____ Family Violence/physical abuse
- ____ Feeling down or depressed
- ____ Dating
- ____ Sex
- ____ Worried about STD
- ____ Masturbation
- ____ Having children/
- ____ Parenting/adoption
- ____ Cancer or dying
- ____ Other (explain) ____________

HEALTH BEHAVIOR INFORMATION

35. Do you wear a seatbelt every time you ride in a car? ... YES NO
36. Have you ever been the driver in an auto accident? ... YES NO
37. Have you ever driven after drinking alcohol or when high? .. YES NO
38. Do you ever smoke cigarettes or use snuff or chewing tobacco? .. YES NO
39. Do you ever use marijuana? .. YES NO
40. In the past month, did you get drunk or very high on beer, wine, or other alcohol? YES NO

▲ Figure 4–2. (Continued)
Revised 11/28/2011

41. Have you ever used street drugs (speed, cocaine, acid, crack, etc.)? .. YES NO
42. Does anyone in your household smoke? .. YES NO
43. Does anyone in your family have a problem with drugs or alcohol? ... YES NO
44. Have you ever been in trouble with the police or the law? ... YES NO
45. Have you begun dating? .. YES NO
46. Do you currently have a boyfriend or girlfriend? ... YES NO
 If Yes: How old is he/she? __________________
47. Do you think you might be gay, lesbian, bisexual or transgender? ... YES NO
48. Have you ever had sex (sexual intercourse)? ... YES NO
 If Yes: Are you (or your partner) using any birth control to prevent pregnancy? .. YES NO
 Have you ever been treated for gonorrhea or chlamydia or other sexually transmitted diseases? YES NO
 During your life, with how many people have you had sexual intercourse? ...
49. Have you been taught how to use a condom correctly? .. YES NO
50. Do you have any other personal problems that you would like to discuss with the doctor but would rather not write down? ... YES NO

For males only

51. If you have had sex, do you use a condom every time? .. YES NO
52. Have you ever fathered a child? ... YES NO

For females only

53. How old were you when your periods began? ______________________
54. What date did your last period start? ______________________
55. Are your periods regular (once a month)? .. YES NO
56. Do you have painful or excessively heavy periods? .. YES NO
57. Have you ever had a vaginal infection or been treated for a female disorder? ... YES NO
58. Do you think you might be pregnant? .. YES NO
59. Have you ever been pregnant? .. YES NO

FAMILY HISTORY

60. Have any of your relatives (parents, grandparents, uncles, aunts, brothers or sisters), living or deceased, had any of the following problems? If the answer is YES, please state their relationship to you.

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>RELATIONSHIP</th>
<th>YES</th>
<th>RELATIONSHIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD</td>
<td></td>
<td>High Blood Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcoholism</td>
<td></td>
<td>High Cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td>Kidney Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td></td>
<td>Mental Retardation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td></td>
<td>Migraine Headaches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar</td>
<td></td>
<td>Obesity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood Clots</td>
<td></td>
<td>Seizure disorder/Epilepsy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td>Stomach Disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td>Stroke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td>Suicide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Problems</td>
<td></td>
<td>Thyroid Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eating Disorder</td>
<td></td>
<td>Tuberculosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Attack</td>
<td></td>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

▲ Figure 4-2. (Continued)
the purpose of the examination. For example, “Many boys that I see who are your age are embarrassed to have their penis and testes examined. This is an important part of the examination for a couple of reasons. First, I want to make sure that there aren’t any physical problems, and second, it helps me determine if your development is proceeding normally.” This also introduces the subject of sexual development for discussion.

A pictorial chart of sexual development is useful for showing the patient how development is proceeding and what changes to expect. Figure 4-3 shows the relationship between height, penis and testes development, and pubic hair growth in the male, and Figure 4-4 shows the relationship between height, breast development, menstruation, and pubic hair growth in the female. Although teenagers may not admit that they are interested in this subject, they are usually attentive when it is raised. This discussion is particularly useful in counseling teenagers who lag behind their peers in physical development.

Because teenagers are sensitive about their changing bodies, it is useful to comment during the examination: “Your heart sounds fine. I feel a small lump under your right breast. This is very common during puberty in boys. It is called gynecomastia and should disappear in 6 months to a year.”

Figure 4-3. Adolescent male sexual maturation and growth.

Growth & Development

Puberty

Pubertal growth and physical development are a result of activation of the hypothalamic-pituitary-gonadal axis in late childhood. Before puberty, pituitary and gonadal hormone levels are low. At onset of puberty, the inhibition of gonadotropin-releasing hormone in the hypothalamus is removed, allowing pulsatile production and release of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). In early to middle adolescence, pulse frequency and amplitude of LH and FSH secretion increase, stimulating the gonads to produce estrogen or testosterone. In females, FSH stimulates ovarian maturation, granulosa cell function, and
estradiol secretion. LH is important in ovulation and also is involved in corpus luteum formation and progesterone secretion. Initially, estradiol inhibits the release of LH and FSH. Eventually, estradiol becomes stimulatory, and the secretion of LH and FSH becomes cyclic. Estradiol levels progressively increase, resulting in maturation of the female genital tract and breast development.

In males, LH stimulates the interstitial cells of the testes to produce testosterone. FSH stimulates the production of spermatocytes in the presence of testosterone. The testes also produce inhibin, a Sertoli cell protein that inhibits the secretion of FSH. During puberty, circulating testosterone levels increase more than 20-fold. Levels of testosterone correlate with the physical stages of puberty and the degree of skeletal maturation.

PHYSICAL GROWTH

A teenager’s weight almost doubles in adolescence, and height increases by 15%–20%. During puberty, major organs double in size, except for lymphoid tissue, which decreases in mass. Before puberty, there is little difference in the muscular strength of boys and girls. The muscle mass and muscle strength both increase during puberty, with maximal strength lagging behind the increase in mass by many months. Boys attain greater strength and mass, and strength continues to increase into late puberty. Although motor coordination lags behind growth in stature and musculature, it continues to improve as strength increases.

The pubertal growth spurt begins nearly 2 years earlier in girls than in boys. Girls reach peak height velocity between ages 11½ and 12 years, and boys between ages 13½ and 14 years. Linear growth at peak velocity is 9.5 cm/y ± 1.5 cm in boys and 8.3 cm/y ± 1.2 cm in girls. Pubertal growth lasts about 2–4 years and continues longer in boys than in girls. By age 11 years in girls and age 12 years in boys, 83%–89% of ultimate height is attained. An additional 18–23 cm in females and 25–30 cm in males is achieved during late pubertal growth. Following menarche, height rarely increases more than 5–7.5 cm.

In boys, the lean body mass increases from 80% to 85% to approximately 90% at maturity. Muscle mass doubles between 10 and 17 years. By contrast, in girls, the lean body mass
mass decreases from approximately 80% of body weight in early puberty to approximately 75% at maturity.

SEXUAL MATURATION

Sexual maturity rating (SMR) is useful for categorizing genital development. SMR staging includes age ranges of normal development and specific descriptions for each stage of pubic hair growth, penis, and testis development in boys, and breast maturation in girls. Figures 4–3 and 4–4 show this chronologic development. SMR 1 is prepuberty and SMR 5 is adult maturity. In SMR 2 the pubic hair is sparse, fine, nonpigmented, and downy; in SMR 3, the hair becomes pigmented and curly and increases in amount; and in SMR 4, the hair is adult in texture but limited in area. The appearance of pubic hair precedes axillary hair by more than 1 year. Male genital development begins with SMR 2 during which the testes become larger and the scrotal skin reddens and coarsens. In SMR 3, the penis lengthens; and in SMR 4, the penis enlarges in overall size and the scrotal skin becomes pigmented.

Female breast development follows a predictable sequence. Small, raised breast buds appear in SMR 2. In SMR 3, the breast and areolar tissue generally enlarge and become elevated. The areola and nipple form a separate mound from the breast in SMR 4, and in SMR 5 the areola assumes the same contour as the breast.

There is great variability in the timing and onset of puberty and growth, and psychosocial development does not always parallel physical changes. Chronologic age, therefore, may be a poor indicator of physiologic and psychosocial development. Skeletal maturation correlates well with growth and pubertal development.

Teenagers began entering puberty earlier in the last century because of better nutrition and socioeconomic conditions. In the United States, the average age at menarche is 12.53 years, but varies by race and ethnicity; 12.57 for non-Hispanic whites; 12.09 years in non-Hispanic blacks, and 12.09 for Mexican American girls. Among girls reaching menarche, the average weight is 48 kg, and the average height is 158.5 cm. Menarche may be delayed until age 16 years or may begin as early as age 10. Although the first measurable sign of puberty in girls is the beginning of the height spurt, the first conspicuous sign is usually the development of breast buds between 8 and 11 years. Although breast development usually precedes the growth of pubic hair, the sequence may be reversed. A common concern for girls at this time is whether the breasts will be of the right size and shape, especially because initial breast growth is often asymmetrical. The growth spurt starts at about age 9 years in girls and peaks at age 11½ years, usually at SMR 3–4 breast development and SMR 3 pubic hair development. The spurt usually ends by age 14 years. Girls who mature early will reach peak height velocity sooner and attain their final height earlier. Girls who mature late will attain a greater final height because of the longer period of growth before the growth spurt ends. Final height is related to skeletal age at onset of puberty as well as genetic factors. The height spurt correlates more closely with breast developmental stages than with pubic hair stages.

The first sign of puberty in the male, usually between ages 10 and 12 years, is scrotal and testicular growth. Pubic hair usually appears early in puberty but may do so any time between ages 10 and 15 years. The penis begins to grow significantly a year or so after the onset of testicular and pubic hair development, usually between ages 10 and 13½ years. The first ejaculation usually occurs about 1 year after initiation of testicular growth, but its timing is highly variable. About 90% of boys have this experience between ages 11 and 15 years. Gyneecomastia, a hard nodule under the nipple, occurs in a majority of boys, with a peak incidence between ages 14 and 15 years. Gyneecomastia usually disappears within 6 months to 2 years. The height spurt begins at age 11 years but increases rapidly between ages 12 and 13 years, with the peak height velocity reached at age 13½ years. The period of pubertal development lasts much longer in boys and may not be completed until age 18 years. The height velocity is higher in males (8–11 cm/yr) than in females (6.5–9.5 cm/yr). The development of axillary hair, deepening of the voice, and the development of chest hair in boys usually occur in mid-puberty, about 2 years after onset of growth of pubic hair. Facial and body hair begin to increase at age 16–17 years.

PSYCHOSOCIAL DEVELOPMENT

Adolescence is a period of progressive individuation and separation from the family. Adolescents must learn who they are, decide what they want to do, and identify their personal strengths and weaknesses. Because of the rapidity of physical, emotional, cognitive, and social growth during adolescence, it is useful to divide it into three phases. Early adolescence is roughly from 10 to 13 years of age; middle adolescence is from 14 to 16 years; and late adolescence is from 17 years and later.
Early Adolescence

Early adolescence is characterized by rapid growth and development of secondary sex characteristics. Body image, self-concept, and self-esteem fluctuate dramatically. Concerns about how personal growth and development deviate from that of peers may be great, especially in boys with short stature or girls with delayed breast development or delayed menarche. Although there is a certain curiosity about sexuality, young adolescents generally feel more comfortable with members of the same sex. Peer relationships become increasingly important. Young teenagers still think concretely and cannot easily conceptualize about the future. They may have vague and unrealistic professional goals, such as becoming a movie star or a lead singer in a rock group.

Middle Adolescence

During middle adolescence, as rapid pubertal development subsides, teenagers become more comfortable with their new bodies. Intense emotions and wide swings in mood are typical. Although some teenagers go through this experience relatively peacefully, others struggle. Cognitively, the middle adolescent moves from concrete thinking to formal operations and abstract thinking. With this new mental power comes a sense of omnipotence and a belief that the world can be changed by merely thinking about it. Sexually active teenagers may believe they do not need to worry about using contraception because they can’t get pregnant (“it won’t happen to me”). Sixteen-year-old drivers believe they are the best drivers in the world and think the insurance industry is conspiring against them by charging high rates for automobile insurance. With the onset of abstract thinking, teenagers begin to see themselves as others see them and may become extremely self-centered. Because they are establishing their own identities, relationships with peers and others are narcissistic. Experimenting with different self-images is common. As sexuality increases in importance, adolescents may begin dating and experimenting with sex. Relationships tend to be one-sided and narcissistic. Peers determine the standards for identification, behavior, activities, and clothing and provide emotional support, intimacy, empathy, and the sharing of guilt and anxiety during the struggle for autonomy. The struggle for independence and autonomy is often a stressful period for both teenagers and parents.

Late Adolescence

During late adolescence, the young person generally becomes less self-centered and more caring of others. Social relationships shift from the peer group to the individual. Dating becomes much more intimate. By 10th grade, 40.9% of adolescents (41.9% of males and 39.6% of females) have had sexual intercourse, and by 12th grade, this has increased to 62.3% (59.6% of males and 65% of females). Abstract thinking allows older adolescents to think more realistically about their plans for the future. This is a period of idealism; older adolescents have rigid concepts of what is right or wrong.

Sexual Orientation

Sexual orientation develops during early childhood. Gender identity is established by age 2 years, and a sense of masculinity or femininity usually solidifies by age 5 or 6 years. Homosexual adults describe homosexual feelings during late childhood and early adolescence, years before engaging in overt homosexual acts.

Although only 5%–10% of American young people acknowledge having had homosexual experiences and only 5% feel that they are or could be gay, homosexual experimentation is common, especially during early and middle adolescence. Experimentation may include mutual masturbation and fondling the genitals and does not by itself cause or lead to adult homosexuality. Theories about the causes of homosexuality include genetic, hormonal, environmental, and psychological models.

The development of homosexual identity in adolescence commonly progresses through two stages. The adolescent feels different and develops a crush on a person of the same sex without clear self-awareness of a gay identity and then goes through a coming-out phase in which the homosexual identity is defined for the individual and revealed to others. The coming-out phase may be a difficult period for the young person and the family. The young adolescent is afraid of societal bias and seeks to reject homosexual feelings. The struggle with identity may include episodes of both homosexual and heterosexual promiscuity, STI, depression, substance abuse, attempted suicide, school avoidance and failure, running away from home, and other crises.

In a clinical setting, the issue of homosexual identity most often surfaces when the teenager is seen for an STI, family conflict, school problem, attempted suicide, or substance abuse rather than as a result of a consultation about sexual orientation. Pediatricians should be aware of the psychosocial and medical implications of homosexual identity and be sensitive to the possibility of these problems in gay adolescents. Successful management depends on the physician’s ability to gain the trust of the gay adolescent and on the physician’s knowledge of the wide range of medical and psychological problems for which gay adolescents are at risk. Pediatricians must be nonjudgmental in posing sexual questions if they are to be effective in encouraging the teenager to share concerns. Physicians who for religious or other personal reasons cannot be objective must refer the homosexual patient to another professional for treatment and counseling.
BEHAVIOR & PSYCHOLOGICAL HEALTH

It is not unusual for adolescents to seek medical attention for apparently minor complaints. In early adolescence, teenagers may worry about normal developmental changes such as gynecomastia. They may present with vague symptoms, but have a hidden agenda of concerns about pregnancy or an STI. Adolescents with emotional disorders often present with somatic symptoms—abdominal pain, headaches, dizziness, syncope, fatigue, sleep problems, and chest pain—which appear to have no biologic cause. The emotional basis of such complaints may be varied: somatoform disorder, depression, or stress and anxiety.

PSYCHOPHYSIOLOGIC SYMPTOMS & CONVERSION REACTIONS

The most common somatoform disorder of adolescence is conversion disorder or conversion reaction. A conversion reaction is a psychophysiologic process in which unpleasant feelings, especially anxiety, depression, and guilt, are communicated through a physical symptom. Psychophysiologic symptoms result when anxiety activates the autonomic nervous system, causing symptoms such as tachycardia, hyperventilation, and vasoconstriction. The emotional feeling may be threatening or unacceptable to the individual who expresses it as a physical symptom rather than verbally. The process is unconscious, and the anxiety or unpleasant feeling is dissipated by the somatic symptom. The degree to which the conversion symptom lessens anxiety, depression, or the unpleasant feeling is referred to as primary gain. Conversion symptoms not only diminish unpleasant feelings but also release the adolescent from conflict or an uncomfortable situation. This is called secondary gain. Secondary gain may intensify the symptoms, especially with increased attention from concerned parents and friends. Adolescents with conversion symptoms tend to have overprotective parents and become increasingly dependent on their parents as the symptom becomes a major focus of concern in the family.

Clinical Findings

Symptoms may appear at times of stress. Nervous, gastrointestinal, and cardiovascular symptoms are common and include paresthesias, anesthesia, paralysis, dizziness, syncope, hyperventilation, abdominal pain, nausea, and vomiting. Specific symptoms may reflect existing or previous illness (eg, pseudoseizures in adolescents with epilepsy) or modeling of a close relative’s symptom (eg, chest pain in a boy whose grandfather died of a heart attack). Conversion symptoms are more common in girls than in boys. Although they occur in patients from all socioeconomic levels, the complexity of the symptom may vary with the sophistication and cognitive level of the patient.

History and physical findings are usually inconsistent with a physical cause of symptoms. Conversion symptoms occur most frequently during stress and in the presence of individuals meaningful to the patient. The common personality traits of these patients include egocentricity, emotional lability, and dramatic, attention-seeking behaviors.

Differential Diagnosis

Conversion reactions must be differentiated from hypochondriasis, which is a preoccupation with developing or having a serious illness despite medical reassurance that there is no evidence of disease. Over time, the fear of one disease may give way to concern about another. In contrast to patients with conversion symptoms, who seem relieved if an organic cause is considered, patients with hypochondriasis become more anxious when such a cause is considered.

Malingering is uncommon during adolescence. The malingering patient consciously and intentionally fabricates or exaggerates physical or psychological symptoms. Such patients are motivated by external incentives such as avoiding work, evading criminal prosecution, obtaining drugs, or obtaining financial compensation. These patients may be hostile and aloof. Parents of patients with conversion disorders and malingering have a similar reaction to illness. They have an unconscious psychological need to have sick children and reinforce their child’s behavior.

Somatic delusions are physical symptoms, often bizarre, that accompany other signs of mental illness. Examples are visual or auditory hallucinations, delusions, incoherence or loosening of associations, rapid shifts of affect, and confusion.

Treatment

The physician must emphasize from the outset that both physical and emotional causes of the symptom will be considered. The relationship between physical causes of emotional pain...
and emotional causes of physical pain should be described to the family, using examples such as stress causing an ulcer or making a severe headache worse. The patient should be encouraged to understand that the symptom may persist and that at least a short-term goal is to continue normal daily activities. Medication is rarely helpful. If the family will accept it, psychological referral is often a good initial step toward psychotherapy. If the family resists psychiatric or psychological referral, the pediatrician may need to begin to deal with some of the emotional factors responsible for the symptom while building rapport with the patient and family. Regular appointments should be scheduled. During visits, the teenager should be seen first and encouraged to talk about school, friends, the relationship with the parents, and the stresses of life. Discussion of the symptom itself should be minimized; however, the physician should be supportive and must never suggest that the pain is not real. As parents gain insight into the cause of the symptom, they will become less indulgent and facilitate resumption of normal activities. If management is successful, the adolescent will gain coping skills and become more independent, while decreasing secondary gain.

If the symptom continues to interfere with daily activities and if the patient and parents feel that no progress is being made, psychological referral is indicated. A psychotherapist experienced in treating adolescents with conversion reactions is in the best position to establish a strong therapeutic relationship with the patient and family. After referral is made, the pediatrician should continue to follow the patient to ensure compliance with psychotherapy.

DEPRESSION (SEE ALSO CHAPTER 7)

Symptoms of clinical depression (lethargy, loss of interest, sleep disturbances, decreased energy, feelings of worthlessness, and difficulty concentrating) are common during adolescence. The intensity of feelings during adolescence, often in response to seemingly trivial events such as a poor grade on an examination or not being invited to a party, makes it difficult to differentiate severe depression from normal sadness or dejection. In less severe depression, sadness or unhappiness associated with problems of everyday life is generally short-lived. The symptoms usually result in only minor impairment in school performance, social activities, and relationships. Symptoms respond to support and reassurance.

Clinical Findings

The presentation of serious depression in adolescence may be similar to that in adults, with vegetative signs—depressed mood, crying spells, inability to cry, discouragement, irritability, a sense of emptiness and futility, negative expectations of oneself and the environment, low self-esteem, isolation, helplessness, diminished interest or pleasure in activities, weight loss or weight gain, insomnia or hypersomnia, fatigue or loss of energy, feelings of worthlessness, and diminished ability to think or concentrate. In adolescents, it is not unusual for a serious depression to be masked because the teenager cannot tolerate the severe feelings of sadness. Such a teenager may present with recurrent or persistent psychosomatic complaints, such as abdominal pain, chest pain, headache, lethargy, weight loss, dizziness, syncope, or other nonspecific symptoms. Other behavioral manifestations of masked depression include truancy, running away from home, defiance of authorities, self-destructive behavior, vandalism, drug and alcohol abuse, sexual acting-out, and delinquency.

Differential Diagnosis

A complete history and physical examination and review of the past medical and psychosocial history should be performed. The family history should be explored for psychiatric problems. Early onset depression and bipolar illness are more likely to occur in families with a multigenerational history of early onset and chronic depression. The lifetime risk of depressive illness in first-degree relatives of adult depressed patients is between 18% and 30%.

The teenager should be questioned about the symptoms of depression and, specifically, about suicidal ideation or preoccupation with thoughts of death. The history should include an assessment of school performance, looking for signs of academic deterioration, excessive absence, cutting class, changes in work or other outside activities, and changes in the family (eg, separation, divorce, serious illness, loss of employment by a parent, recent move to a new school, increasing quarrels or fights with parents, or death of a close relative). The teenager may have withdrawn from friends or family or switched allegiance to a new group of friends. The physician should inquire about possible physical and sexual abuse, drug and alcohol abuse, conflicts with the police, sexual acting-out, running away from home, unusually violent or rebellious behavior, or radical personality changes. Patients with vague somatic complaints or concerns about having a fatal illness may have an underlying affective disorder.

Adolescents with symptoms of depression require a thorough medical evaluation to rule out contributing or underlying medical illness. Among the medical conditions associated with affective disorders are eating disorders, organic central
nervous system disorders (tumors, vascular lesions, closed head trauma, and subdural hematomas), metabolic and endocrinologic disorders (hypothyroidism, hyperthyroidism, hyperparathyroidism, Cushing syndrome, Addison disease, or premenstrual syndrome), Wilson disease, systemic lupus erythematosus, infections (infectious mononucleosis or syphilis), and mitral valve prolapse. Marijuana use, phencyclidine abuse, amphetamine withdrawal, and excessive caffeine intake can cause symptoms of depression. Common medications, including birth control pills, anticonvulsants, and β-blockers, may cause depressive symptoms.

Some screening laboratory studies for organic disease are indicated, including complete blood count and erythrocyte sedimentation rate, urinalysis, serum electrolytes, blood urea nitrogen, serum calcium, thyroxine and thyroid-stimulating hormone (TSH), Venereal Disease Research Laboratory testing or rapid plasma reagin, and liver enzymes. Although metabolic markers such as abnormal secretion of cortisol, growth hormone, and thyrotropin-releasing hormone have been useful in confirming major depression in adults, these neurobiologic markers are less reliable in adolescents.

Treatment

The primary care physician may be able to counsel adolescents and parents if depression is mild or situational and the patient is not contemplating suicide or other life-threatening behaviors. If there is evidence of a long-standing depressive disorder, suicidal thoughts, or psychotic thinking, or if the physician does not feel prepared to counsel the patient, psychological referral should be made.

Counseling involves establishing and maintaining a positive supportive relationship; following the patient at least weekly; remaining accessible to the patient at all times; encouraging the patient to express emotions openly, defining the problem, and clarifying negative feelings, thoughts, and expectations; setting realistic goals; helping to negotiate interpersonal crises; teaching assertiveness and social skills; reassessing the depression as it is expressed; and staying alert to the possibility of suicide.

Patients with bipolar disease or those with depression that is unresponsive to supportive counseling should be referred to a psychiatrist for evaluation and antidepressant medication. The Food and Drug Administration (FDA) has issued a “black box warning” alerting providers that using antidepressants in children and adolescents may increase the risk of suicidal thoughts and behavior. Adolescents taking these medications should be monitored closely.

impulsive suicidal gesture as a way of getting back at someone or gaining attention by frightening another person. Adolescents with serious psychiatric disease such as acute schizophrenia or psychotic depressive disorder are also at risk for suicide.

Risk Assessment

The physician must determine the extent of the teenager’s depression and the risk that he or she might inflict self-injury. Evaluation should include interviews with both the teenager and the family. The history should include the medical, social, emotional, and academic background. The Patient Health Questionnaire-9 (PHQ-9) is a nine-item standardized depression questionnaire that is incorporated in the Adolescent Health Questionnaire in the section labeled “Health Concerns” (see Figure 4–2.).

Treatment

The primary care physician is often in a unique position to identify an adolescent at risk for suicide because many teenagers who attempt suicide seek medical attention in the weeks preceding the attempt. These visits are often for vague somatic complaints. If the patient shows evidence of depression, the physician must assess the severity of the depression and suicidal risk. The pediatrician should always seek emergency psychological consultation for any teenager who is severely depressed, psychotic, or acutely suicidal. It is the responsibility of the psychologist or psychiatrist to assess the seriousness of suicidal ideation and decide whether hospitalization or outpatient treatment is most appropriate. Adolescents with mild depression and low risk for suicide should be followed closely, and the extent of the depression should be assessed on an ongoing basis. If it appears that the patient is worsening or is not responding to supportive counseling, referral should be made.

SUBSTANCE ABUSE

Substance abuse is a complex problem for adolescents and the broader society. See Chapter 5 for an in-depth look at this issue.

EATING DISORDERS (SEE CHAPTER 6)

OVERWEIGHT & OBESITY (SEE ALSO CHAPTER 11)

Background

The prevalence of obesity (body mass index [BMI] > 95th percentile for age and gender) among adolescents 12–19 years has increased from 5% to 17% in the past 25 years, with higher rates in black and Hispanic youth. Furthermore, an adolescent who is overweight (BMI between 85th and 95th percentiles) has a 70% chance of becoming an obese adult. Figure 4–5 illustrates the multiple morbidities related to overweight and obesity during adolescence and the risk of the additional comorbidities associated with obesity in adulthood. Perhaps the most common short-term morbidities for overweight and obese adolescents are psychosocial, including social marginalization, poor self-esteem, depression, and poor quality of life. Like physical comorbidities, these psychosocial complications can extend into adulthood. Recent data on adolescent dietary and physical activity behaviors that potentiate overweight and obesity indicate that almost 80% of teens have deficient fiber intake, 63% have less than the recommended level of physical activity (60 minutes per day, 5 days per week), 33% watch 3 or more hours of television per average school day, and 25% participate in nonacademic computer activities for more than 3 hours per average school day.

Evaluation

Regular screening for overweight and obesity by measuring BMI during routine visits and providing anticipatory guidance for the adolescent and family regarding healthy nutrition and physical activity are essential for early identification and prevention of overweight and related comorbidities. A family history of obesity, diabetes mellitus, hypertension, hyperlipidemia, and coronary heart disease places the overweight young person...
Table 4–1. Screening tests for overweight and obese adolescents in the primary care setting.

<table>
<thead>
<tr>
<th>BMI</th>
<th>Risk Factors</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>85th–94th percentile</td>
<td>None</td>
<td>Fasting lipid levels</td>
</tr>
<tr>
<td>85th–94th percentile</td>
<td>Family history of obesity-related diseases; elevated blood pressure and/or lipid levels; tobacco use</td>
<td>Fasting lipid levels, AST and ALT, fasting serum glucose</td>
</tr>
<tr>
<td>≥ 95th percentile</td>
<td></td>
<td>Fasting lipid levels, AST and ALT, fasting serum glucose</td>
</tr>
</tbody>
</table>

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index.
of adolescents means that providers must discuss health behaviors directly with them while involving parents in the discussions and encouraging the whole family to make the home environment and family lifestyle a healthy one.

The most current evidence on obesity treatment in the pediatric population recommends a four-stage approach that includes (1) prevention plus (Table 4–2); (2) structured weight management; (3) comprehensive multidisciplinary intervention; and (4) tertiary care intervention. The appropriate weight management stage for each patient is based on age, BMI percentile, comorbid disease, and past obesity treatment.

Providers caring for overweight and obese adolescents should identify comorbidities and treat them as indicated. For example, an overweight teen with daytime somnolence and disruptive snoring may need a sleep study to evaluate for obstructive sleep apnea. A nonpregnant overweight young woman with acanthosis nigricans and oligomenorrhea should be evaluated for polycystic ovary syndrome (PCOS). There are few guidelines regarding pharmacotherapy for obesity in the adolescent. Medication options include sibutramine, a selective serotonin reuptake inhibitor (SSRI) that is approved for patients age 16 and older, and orlistat, a lipase inhibitor approved for patients age 12 and older. In general, obese adolescents who might benefit from medication should be referred to a multidisciplinary weight loss program, as medication should only be used as part of a comprehensive program which includes diet, physical activity, and behavioral modifications. Bariatric surgery is reserved for severely obese adolescents who are physically mature, who have a BMI of 50 kg/m² or more (or ≥ 40 kg/m² with significant comorbidities), who have failed a structured 6-month weight loss program, and who are deemed by psychological assessment to be capable of adhering to the long-term lifestyle changes required after surgery.

Table 4–2. Components of stage 1, “prevention plus” healthy lifestyle approach to weight management for adolescents.

| Recommend ≥ 5 servings of fruits and vegetables per day. |
| No more than 2 h of screen time per day. |
| No television in room where teen sleeps. |
| Minimize or eliminate sugar-sweetened beverages. |
| Address eating behaviors (eg, avoid skipping breakfast). |
| Recommend ≥ 1 h of moderate intensity physical activity per day. a |
| Involve whole family in lifestyle changes and acknowledge cultural differences. |

aOverweight teens will likely need to start with shorter periods of lower-intensity activity and gradually increase the time spent being active as well as the intensity of the activity.

SCHOOL AVOIDANCE

A teenager who has missed more than 1 week of school for a physical illness or symptom and whose clinical picture is inconsistent with serious illness should be suspected of having primary or secondary emotional factors that contribute to the absence. Investigation of absences may show a pattern, such as missing morning classes or missing the same days at the beginning or end of the week.

School avoidance should be suspected in children who are consistently absent in spite of parental and professional attempts to encourage attendance. Adolescents with school avoidance often have a history of excessive school absences or separation difficulties as younger children. They may have a record of recurrent somatic complaints. Parents often feel helpless to compel their adolescent to attend school, may lack the sophistication to distinguish malingering from illness, or may have an underlying need to keep the teenager at home.

A complete history and physical examination should include a review of the patient’s medical, educational, and psychiatric history. Any symptoms of emotional problems should be explored. After obtaining permission from the patient and parents, the physician may find it helpful to speak directly with school officials and some key teachers. The adolescent may be having problems with particular teachers or subjects or experiencing adversity at school (eg, bullying or an intimidating instructor). Some students get so far behind academically that they see no way of catching up and feel overwhelmed. Separation anxiety, sometimes of long duration,
may be manifested in subconscious worries that something may happen to the mother while the teenager is at school.

The school nurse may have useful information on the frequency of nurse visits in past school years. It is important to determine the parent’s typical responses to absences and somatic complaints. The parent(s) may be making subconscious attempts to keep the adolescent at home, which may in turn produce secondary gains for the patient that perpetuate the complaint.

Treatment

Returning to school quickly after a period of avoidance is key to recovery. The pediatrician should facilitate this process by offering to speak with school officials to excuse missed examinations, homework, and papers. The pediatrician should speak directly with teachers who are punitive with the objective of making the transition back to school as easy as possible. The longer adolescents stay out of school, the more anxious they may become about returning. If an illness or symptom becomes so severe that an adolescent cannot go to school, the patient and the parents must be informed that a visit to a medical office is necessary. The physician focuses visits on the parents as much as on the adolescent to alleviate parental guilt about sending the child to school. If the adolescent cannot stay in school, hospitalization should be recommended for in-depth medical and psychiatric evaluation. Parents should be cautioned about the possibility of relapse after school holidays, summer vacation, or an acute illness.

SCHOOL FAILURE

The amount and complexity of course work increase significantly in middle school at the same time as the rapid physical, social, and emotional changes of puberty. To perform well academically, young adolescents must have the necessary cognitive capacity, study habits, concentration, motivation, interest, and emotional focus. Academic failure presenting at adolescence has a broad differential:

1. Limited intellectual ability
2. Learning disabilities
3. Depression or emotional problems
4. Visual or hearing problems; other physical disability
5. Excessive school absenteeism secondary to chronic disease such as asthma or neurologic dysfunction
6. Inability to concentrate

Treatment

Management must be individualized to fit the specific needs and foster the specific strengths of the patient. For children with learning disabilities, an individual prescription for special education courses, teachers, and extracurricular activities is important. Counseling helps these adolescents gain coping skills, raise self-esteem, and develop socialization skills. If the patient has hyperactivity or attention-deficit disorder causing poor ability to concentrate, a trial of stimulant medication (eg, methylphenidate or dextroamphetamine) may be useful. If the teenager is depressed or if other serious emotional problems are uncovered, psychological evaluation should be recommended.

BREAST DISORDERS

The breast examination should be part of the routine physical examination in girls as soon as breast budding occurs. The preadolescent will thus accept breast examination as a routine part of health care, and the procedure can serve as an opportunity to offer reassurance and education. The breast examination begins with inspection of the breasts for symmetry and SMR stage. Asymmetrical breast development is common in young adolescents, and is generally transient, although 25% of women may continue to have asymmetry as adults. Organic causes of breast asymmetry include unilateral breast hypoplasia, amastia, absence of the pectoralis major muscle, and unilateral juvenile hypertrophy, in which there is rapid overgrowth of breast tissue usually immediately after thelarche.

The breast examination is performed with the patient supine and the ipsilateral arm placed behind the head. Using flat finger pads, the examiner palpates the breast tissue in concentric circles starting at the outer borders of the breast tissue along the sternum, clavicle, and axilla and then moving in toward the areola. The areola should be compressed gently to check for nipple discharge. Supraclavicular and infraclavicular and axillary regions should be palpated for lymph nodes.

References

Teaching adolescents to perform breast self-examinations is controversial. In the past, experts have recommended adolescent self-examination as a means of helping them develop comfort with their changing bodies and for future cancer detection. More recently, however, experts have questioned whether self-examination might in fact result in anxiety, increased physician visits, and unnecessary invasive procedures since the vast majority of breast masses in adolescents are benign. The U.S. Preventive Services Task Force found little evidence that teaching or performing routine breast self-examination in adolescents reduces breast cancer mortality. Despite the lack of data for or against teaching or performing breast self-examinations during adolescence, there is some consensus that young women at increased risk of breast cancer—adolescents with a history of malignancy, adolescents who are at least 10 years postradiation therapy to the chest, and adolescents 18–21 years of age whose mothers carry the BRCA 1 or BRCA 2 gene—should perform monthly breast self-examinations after each menstrual period.

BREAST MASSES

The majority of breast masses in adolescents are benign (Table 4–3). The incidence of primary and secondary breast cancers in girls aged 15–19 years during 2000–2009 was 0.15 per 100,000. Rare malignancies of adolescent girls include juvenile secretory carcinoma, intraductal carcinoma, rhabdomyosarcoma, malignant cystosarcoma phylloides, and metastatic tumor. Retrospective studies indicate that biopsies of breast masses in adolescents most commonly show fibroadenoma (67%), fibrocystic change (15%), and abscess or mastitis (3%).

1. Fibroadenoma

Fibroadenomas are the most common breast masses of adolescent girls. These and other breast lesions are listed in Tables 4–3 and 4–4. Fibroadenomas are composed of

<table>
<thead>
<tr>
<th>Table 4–3. Breast masses in adolescent females.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
</tr>
<tr>
<td>Fibroadenoma</td>
</tr>
<tr>
<td>Fibrocystic changes</td>
</tr>
<tr>
<td>Breast cysts (including subareolar cysts)</td>
</tr>
<tr>
<td>Breast abscess or mastitis</td>
</tr>
<tr>
<td>Fat necrosis (after trauma)</td>
</tr>
<tr>
<td>Less common (benign)</td>
</tr>
<tr>
<td>Lymphangiomata</td>
</tr>
<tr>
<td>Hemangioma</td>
</tr>
<tr>
<td>Intraductal papilloma</td>
</tr>
<tr>
<td>Juvenile papillomatosis</td>
</tr>
<tr>
<td>Giant fibroadenoma</td>
</tr>
<tr>
<td>Neurofibromatosis</td>
</tr>
<tr>
<td>Nipple adenoma or keratoma</td>
</tr>
<tr>
<td>Mammary duct ectasia</td>
</tr>
<tr>
<td>Intramammary lymph node</td>
</tr>
<tr>
<td>Lipoma</td>
</tr>
<tr>
<td>Hematoma</td>
</tr>
<tr>
<td>Hamartoma</td>
</tr>
<tr>
<td>Galactocele</td>
</tr>
<tr>
<td>Rare (malignant or malignant potential)</td>
</tr>
<tr>
<td>Juvenile secretory carcinoma</td>
</tr>
<tr>
<td>Intraductal carcinoma</td>
</tr>
<tr>
<td>Cystosarcoma phyllodes</td>
</tr>
<tr>
<td>Sarcomas (fibrosarcoma, malignant fibrous histiocytoma, rhabdomyosarcoma)</td>
</tr>
<tr>
<td>Metastatic cancer (hepatocellular carcinoma, lymphoma, neuroblastoma, rhabdomyosarcoma)</td>
</tr>
<tr>
<td>Table 4–4. Characteristics and management of breast lesions in adolescent females.</td>
</tr>
<tr>
<td>Fibroadenoma</td>
</tr>
<tr>
<td>2- to 3-cm, rubbery, well circumscribed, mobile, nontender. Commonly found in upper outer quadrant of the breast. Management is observation.</td>
</tr>
<tr>
<td>Giant juvenile fibroadenoma</td>
</tr>
<tr>
<td>Large, > 5 cm fibroadenoma with overlying skin stretching and dilated superficial veins. Benign but requires excision for confirmation of diagnosis and for cosmetic reasons.</td>
</tr>
<tr>
<td>Breast cysts</td>
</tr>
<tr>
<td>Usually caused by ductal ectasia or blocked Montgomery tubercles, both of which can have associated nipple discharge. Ultrasound can help differentiate from solid mass. Most resolve spontaneously.</td>
</tr>
<tr>
<td>Fibrocystic changes</td>
</tr>
<tr>
<td>More common with advancing age after adolescence. Mild swelling and palpable nodularity in upper outer quadrants. Associated with cyclic premenstrual mastalgia.</td>
</tr>
<tr>
<td>Abscess</td>
</tr>
<tr>
<td>Often associated with overlying mastitis and/or purulent nipple discharge. Culture abscess material and/or nipple discharge before starting antibiotics.</td>
</tr>
<tr>
<td>Cystosarcoma phyllodes</td>
</tr>
<tr>
<td>Large, rapidly growing tumor associated with overlying skin changes, dilated veins and skin necrosis. Requires excision. Most often benign but can be malignant.</td>
</tr>
<tr>
<td>Intraductal papilloma</td>
</tr>
<tr>
<td>Palpable intraductal tumor, which is often subareolar with associated nipple discharge, but may be in the periphery of the breast in adolescents. Requires surgical excision.</td>
</tr>
<tr>
<td>Juvenile papillomatosis</td>
</tr>
<tr>
<td>Rare breast tumor characterized by a grossly nodular breast mass described as having a “Swiss-cheese” appearance. Requires surgical excision.</td>
</tr>
<tr>
<td>Fat necrosis</td>
</tr>
<tr>
<td>Localized inflammatory process in the breast; typically follows trauma (sports or seat belt injuries). Subsequent scarring may be confused with changes similar to those associated with malignancy.</td>
</tr>
</tbody>
</table>
glandular and fibrous tissue. A fibroadenoma is typically nontender and diagnosed clinically with examination findings of a rubbery, smooth, well-circumscribed, mobile mass most often in the upper outer quadrant of the breast, although fibroadenomas can be found in any quadrant. Ten to twenty-five percent of girls will have multiple or bilateral lesions. Fibroadenomas are typically slow growing with average size 2–3 cm. They may remain static in size for months to years with 10%–40% completely resolving during adolescence. The dense fibroglandular tissue of the adolescent breast may cause false-positive results on standard mammograms. Thus, ultrasonography is the best imaging modality with which to evaluate a breast mass in an adolescent if further evaluation beyond the clinical examination is necessary. Fibroadenomas less than 5 cm can be monitored for growth or regression over 3–4 months. Further evaluation will be dictated by the patient’s course with semianual clinical examinations for a few years followed by annual examinations for a mass that is regressing. Patients with concerning breast masses including fibroadenomas that are larger than 5 cm, undiagnosed breast masses that are enlarging or have overlying skin changes, and any suspicious breast mass in a patient with a history of previous malignancy should be referred to a breast care specialist.

2. Fibrocystic Breast Changes

Fibrocystic breast changes are much more common in adults than adolescents. Symptoms include mild swelling and palpable nodularity most commonly in the upper outer quadrants. Mastalgia is typically cyclic, usually occurring just before menstruation. Reassuring the young woman about the benign nature of the process may be all that is needed. Nonsteroidal anti-inflammatory medications such as ibuprofen or naproxen sodium help alleviate symptoms. Oral contraceptive pills are also beneficial. Supportive bras may provide symptomatic relief. Studies have shown no association between methylyxantheine and fibrocystic breasts; however, some women report reduced symptoms when they discontinue caffeine.

3. Breast Abscess

Although breast feeding is the most common cause of mastitis, shaving or plucking periareolar hair, nipple piercing, and trauma occurring during sexual activity are predisposing factors in teenagers. The most common causative organisms are normal skin flora. The female with a breast abscess usually complains of unilateral breast pain, and examination reveals overlying inflammatory changes. The examination may be misleading in that the infection may extend deeper into the breast than suspected. Staphylococcus aureus is the most common pathogen. β-Hemolytic streptococci, Escherichia coli, and Pseudomonas aeruginosa have also been implicated. Fluctuant abscesses should be incised and drained and fluid cultured. Antimicrobial coverage for S aureus (including methicillin-resistant strains) should be given initially (generally orally, unless infection is severe) and the patient should be monitored closely for response to therapy until culture and sensitivity results are available.

Healing time after nipple piercing is 3–6 months. Health risks associated with nipple piercing, in addition to breast abscess, include allergic reactions to the jewelry, keloid scar formation, and increased risk of hepatitis B and C and HIV. Complications associated with abscess formation secondary to nipple piercing include endocarditis, cardiac valve injury, cardiac prosthesis infection, metal foreign body reaction in the breast tissue, and recurrent infection.

NIPPLE DISCHARGE & GALACTORRHEA

Ductal ectasia is a common cause of nipple discharge in the developing breast and is associated with dilation of the mammary ducts, periductal fibrosis, and inflammation. It can present with bloody, brown, or sticky multicolored nipple discharge and/or a cystic breast mass, which is usually in the subareolar region. Blocked ducts and fluid collections usually resolve spontaneously but can become infected, producing mastitis. Patients should look for erythema, warmth, and tenderness indicating mastitis. Oral antibiotics covering skin flora should be initiated if infection is suspected. Serous or serosanguineous nipple discharge is common and can be associated with fibrocystic breast changes. Montgomery tubercles are small glands located at the outer aspect of the areola that can drain clear or brownish fluid through an ectopic opening on the areola and may be associated with a small subareolar mass. These lesions and discharge typically resolve spontaneously. Intraductal papillomas arising from proliferation of ductal cells projecting into the duct lumen are a rare cause of bloody or serosanguineous nipple discharge and can also present with a subareolar or peripheral mass. These lesions are associated with increased risk of malignancy in adults.

Galactorrhea is distinguishable from other causes of nipple discharge by its milky character and tendency to involve both breasts. It is usually benign. The most common causes include chronic stimulation or irritation of the nipple, medications and illicit drugs (drugs causing galactorrhea are listed in Table 4–5), pregnancy, childbirth, or abortion. Prolactin-secreting tumors (prolactinomas) and hypothyroidism are common pathologic causes of galactorrhea during adolescence. Less common causes of hyperprolactinemia and galactorrhea include diseases in or near the hypothalamus or pituitary that interfere with the secretion of dopamine or its delivery to the hypothalamus. Included are tumors of the hypothalamus and/or pituitary, both benign (eg, craniopharyngiomas) and malignant (eg, metastatic disease), infiltrative diseases of the hypothalamus (eg, sarcoidosis), and pituitary...
Clinical Findings

Breast ultrasonography can be helpful in determining the cause of nipple discharge and breast masses. Depending upon additional findings from the history and examination, evaluation of galactorrhea may include a pregnancy test, prolactin level, and thyroid function studies. If there is a question as to whether the discharge is true galactorrhea, fat staining of the discharge can be confirmatory. Elevated TSH confirms the diagnosis of hypothyroidism. Elevated prolactin and normal TSH, often accompanied by amenorrhea, in the absence of medication known to cause hyperprolactinemia suggests a hypothalamic or pituitary tumor. In such cases, magnetic resonance imaging (MRI) of the brain and consultation with a pediatric endocrinologist are indicated.

Treatment

Observation with serial examination is recommended for nipple discharge associated with breast mass unless a papilloma is suspected by the presence of bloody or serosanguineous nipple discharge with or without a subareolar or peripheral mass. This entity requires further evaluation and excision by a breast surgeon. Treating the underlying cause of galactorrhea is usually effective. Galactorrhea due to hypothyroidism should be treated with thyroid hormone replacement. An alternative medication can be prescribed in cases of medication-induced galactorrhea. Adolescents with galactorrhea without a breast mass who have normal prolactin and TSH levels can be followed clinically and counseled about supportive measures such as avoidance of nipple stimulation, stress reduction, and keeping a menstrual calendar to monitor for oligomenorrhea, which might indicate a systemic hormonal problem such as hyperprolactinemia or thyroid disease. In many cases, symptoms resolve spontaneously and no underlying diagnosis is made. Medical management of prolactinomas with dopamine agonists such as bromocriptine is the favored approach.

GYNECOMASTIA

Gynecomastia, benign subareolar glandular breast enlargement, affects up to 65% of adolescent males. It typically appears at least 6 months after the onset of secondary sex characteristics with peak incidence during SMR stages 3 and 4. Breast tissue enlargement usually regresses within 1–3 years, and persistence beyond age 17 years is uncommon. Approximately half of young men with gynecomastia have a positive family history of gynecomastia. The pathogenesis of pubertal gynecomastia has long been attributed to a transient imbalance between estrogens that stimulate proliferation of breast tissue and androgens which antagonize this effect. Leptin has recently been implicated in the development of gynecomastia as levels are higher in healthy nonobese adolescent males with gynecomastia when compared to controls. There are several proposed mechanisms in which leptin acts biochemically to alter the estrogen-androgen ratio.

Clinical Findings

Palpation of the breasts is necessary to distinguish adipose tissue (pseudogynecomastia) from the glandular tissue found in true gynecomastia, which is palpable as a fibroglandular mass located concentrically beneath the nipple-areolar complex. Gynecomastia is bilateral in almost two-thirds of patients. Findings that indicate more serious disease include hard or firm breast tissue, unilateral breast growth, eccentric masses outside of the nipple-areolar complex, and overlying skin changes. A genitourinary examination is needed to evaluate pubertal SMR, testicular volume and masses, or irregularities of the testes.

In the absence of abnormalities on history or physical examination, clinical monitoring of male gynecomastia for 12–18 months is sufficient. Laboratory evaluation is warranted if the patient with gynecomastia is prepubertal, appears undervirilized, has an eccentric breast mass, has a rapid progression of breast enlargement, has a testicular mass, or has persistence of gynecomastia beyond the usual observation period. The initial laboratory evaluation includes thyroid function tests, testosterone, estradiol, human chorionic gonadotropin (hCG), and luteinizing hormone (LH). Additional studies depending on preliminary findings include karyotype, liver and renal function studies.
dehydroepiandrosterone sulfate, and prolactin. Any patient with a testicular mass or laboratory results suggesting possible tumor, such as high serum testosterone, hCG, or estradiol, should have a testicular ultrasound. Further evaluation includes adrenal or brain imaging if a prolactin-secreting pituitary tumor or adrenal tumor is suspected.

Differential Diagnosis

Gynecomastia may be drug-induced (Table 4–6). Testicular, adrenal, or pituitary tumors, Klinefelter syndrome, secondary hypogonadism, partial or complete androgen insensitivity syndrome, hyperthyroidism, or chronic diseases (eg, cystic fibrosis, ulcerative colitis, liver disease, renal failure, and acquired immunodeficiency syndrome) leading to malnutrition may be associated with gynecomastia. Breast cancer in the adolescent male is extraordinarily rare.

Treatment

If gynecomastia is idiopathic, reassurance about the common and benign nature of the process can be given. Resolution may take up to 2 years. Surgery is reserved for those with persistent severe breast enlargement and/or significant psychological trauma. In cases of drug-induced gynecomastia, the inciting agent should be discontinued if possible. The patient should be referred to an endocrinologist or oncologist if other pathologic etiologies are diagnosed.

Table 4-6. Drugs associated with gynecomastia.

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiandrogens</td>
<td>Cyproterone, finasteride, flutamide, ketoconazole, niulatamide, spironolactone</td>
</tr>
<tr>
<td>Antineoplastic and immunomodulators</td>
<td>Alkylating agents, bleomycin, cisplatin, cyclosporine, imatinib, methotrexate, nitrosourea, vinristine</td>
</tr>
<tr>
<td>Antiulcer drugs</td>
<td>Cimetidine, metoclopramide, omeprazole, ranitidine</td>
</tr>
<tr>
<td>Cardiovascular drugs</td>
<td>Amiodarone, angiotensin-converting enzyme inhibitors, calcium channel blockers, digitoxin, reserpine, spironolactone</td>
</tr>
<tr>
<td>Drugs of abuse</td>
<td>Alcohol, amphetamines, marijuana, opiates</td>
</tr>
<tr>
<td>Hormones</td>
<td>Anabolic androgenic steroids, estrogens, testosterone, choricgonadotropin</td>
</tr>
<tr>
<td>Infectious agents</td>
<td>Antiinfeetials, ketoconazole, isoniazid, metronidazole</td>
</tr>
<tr>
<td>Psychoactive medications</td>
<td>Diazepam, tricyclic antidepressants, haloperidol, atypical antipsychotics, phenothiazines</td>
</tr>
</tbody>
</table>

PELVIC EXAMINATION

Indications for a pelvic examination in an adolescent include abdominal or pelvic pain, intra-abdominal or pelvic mass, abnormal vaginal bleeding or other menstrual disorders, pathologic vaginal discharge, or need for cervical cytology screening. The American College of Obstetricians and Gynecologists advocates starting Papanicolaou (Pap) screening at age 21 years for both sexually experienced and sexually inexperienced women. This is based on the low incidence of cervical cancer in younger women and the potential for adverse effects associated with follow-up of young women with abnormal cytology screening results, regardless of type of test used. Pregnancy during adolescence does not alter screening guidelines. Recommendations for special populations, including sexually active adolescents newly diagnosed with HIV, include performing a Pap test twice in the first year after diagnosis and annually thereafter. In addition, adolescents who have been sexually active and are immunocompromised (eg, organ transplant recipient, long-term steroid use) should have Pap screening after the onset of sexual activity even if younger than 21 years of age. This screening should include Pap tests at 6 month intervals during the first year of screening and then annual Pap tests thereafter. Algorithms for managing abnormal cytology can be found at the American Society for Colposcopy and Cervical Pathology website, http://www.asccp.org/ConsensusGuidelines/tabid/7436/Default.aspx. Guidelines for management of abnormal cytology in HIV positive women can be obtained through the Centers for Disease Control (CDC) at http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5804a1.htm.

The adolescent may be apprehensive about the first pelvic examination. Sensitive counseling and age-appropriate education about the purpose of the examination, pelvic anatomy, and the components of the examination should occur in an unhurried manner. The use of diagrams and models may facilitate discussion. Time should be allotted for the adolescent to ask questions. Ideally, the examination should occur in a controlled and comfortable setting. The adolescent may request to have her mother or family member present during the examination for reassurance; however, in many instances an adolescent will request that the examination occur confidentially. Having another female staff present to support the adolescent in this setting may be helpful. A female staff chaperone should be present with male examiners.

The pelvic examination begins by placing the patient in the dorsal lithotomy position after equipment and supplies are ready (Table 4–7). Patients with orthopedic or other physical disabilities require accommodation for proper positioning and comfort. The examiner inspects the external genitalia, noting sexually maturity rating, estrogenization of the vaginal mucosa (moist, pink, and more elastic mucosa), shape of the hymen, the size of the clitoris (2–5 mm wide is normal), any unusual rashes or lesions on the vulva such as folliculitis from shaving, warts or other skin lesions, and genital piercing or body art. It can be helpful to ask an adolescent if she has any questions about her body during the inspection as she might have concerns that she was too shy to ask (eg, normalcy of labial hypertrophy). In cases of alleged sexual abuse or assault, the presence of any lesions, including lacerations, bruises, scarring, or synechiae about the hymen, vulva, or anus, should be noted.

The patient should be prepared for insertion of the speculum to help her remain relaxed. The speculum should be inserted into the vagina posteriorly with a downward direction to avoid the urethra. A medium Pedersen speculum is most often used in sexually experienced patients; a narrow Huffman is used for virginal patients. In a virginal female prior to the speculum examination, a one-finger examination in the vagina can help the provider identify the position of the cervix and can give the patient an appreciation for the sensation she can expect with placement of the speculum. Warming the speculum with tap water prior to insertion can be more comfortable for the patient and also provide lubrication. Simultaneously touching the inner aspect of the patient’s thigh or applying gentle pressure to the perineum away from the introitus while inserting the speculum helps distract attention from the placement of the speculum. The vaginal walls and cervix are inspected for anatomical abnormalities, inflammation, and lesions and the quantity and quality of discharge adherent to the vaginal walls and pooled in the vagina are noted. The presence of a cervical ectropion is commonly observed in adolescents as erythema surrounding the cervical os. The ectropion is the extension of the endocervical columnar epithelium outside the cervical os onto the face of the cervix.

Specimens are obtained in the following order: vaginal pH, saline and KOH wet preparations, cervical cytology (Pap) screening if indicated, and endocervical swabs for

<table>
<thead>
<tr>
<th>Table 4-7. Items for pelvic examination.</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
</tr>
<tr>
<td>Wet prep of vaginal discharge</td>
</tr>
<tr>
<td>Pap smear</td>
</tr>
<tr>
<td>STI testing</td>
</tr>
<tr>
<td>Bimanual examination</td>
</tr>
</tbody>
</table>
gonorrhea and Chlamydia (Table 4–8). Sexually transmitted infections are discussed in further detail in Chapter 44. The speculum is then removed, and bimanual examination is performed with one or two fingers in the vagina and the other hand on the abdomen to palpate the uterus and adnexa for size, position, and tenderness.

MENSTRUAL DISORDERS

1. Amenorrhea

Primary amenorrhea is defined as having no menstrual periods or secondary sex characteristics by age 13 years or no menses in the presence of secondary sex characteristics by age 15 years. In the adolescent who has achieved menarche, secondary amenorrhea is defined as the absence of menses for three consecutive cycles or for 6 months in a patient with irregular cycles.

A. Evaluation of Primary and Secondary Amenorrhea

In evaluating amenorrhea, it is helpful to consider anatomical levels of possible abnormalities from the hypothalamus to the genital tract (Table 4–9).

Table 4–8. Diagnostic tests and procedures performed during speculum vaginal examination.

<table>
<thead>
<tr>
<th>Test</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal pH</td>
<td>Use applicator swab to sample vaginal discharge adherent to the wall or in the vaginal pool if a speculum is in place, immediately apply it to pH paper for reading.</td>
</tr>
<tr>
<td>Saline and KOH wet preparations</td>
<td>Sample discharge as above with different swabs, smear small sample on glass slide, apply small drop of saline or KOH and immediately cover with coverslip, and evaluate under microscope.</td>
</tr>
<tr>
<td>Pap smeara</td>
<td>Gently remove excessive discharge from surface of cervix. Exocervical cells are sampled with a spatula by applying gentle pressure on the cervix with the spatula while rotating it around the cervical os; endocervical cells are sampled by gently inserting the cytologic brush into the cervical os and rotating it. Both cell types are collected by the broom when it is centered over the cervical os and rotated.</td>
</tr>
<tr>
<td>STI testinga</td>
<td>Insert specific test swabs (eg, Dacron for most Chlamydia test media) into the cervical os to obtain endocervical samples for Chlamydia and gonorrhea.</td>
</tr>
</tbody>
</table>

STI, sexually transmitted infection.

aRefer to manufacturer instructions for sample collection and processing.

Table 4–9. Differential diagnosis of amenorrhea by anatomic site of cause.

<table>
<thead>
<tr>
<th>Hypothalamic-pituitary axis</th>
<th>Hypothalamic suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic disease</td>
<td>Stress</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>Strenuous athletics</td>
</tr>
<tr>
<td>Drugs (haloperidol, phenothiazines, atypical antipsychotics)</td>
<td>Central nervous system lesion</td>
</tr>
<tr>
<td>Pituitary lesion: adenoma, prolactinoma</td>
<td>Craniohypophyseal, brainstem, or parasellar tumors</td>
</tr>
<tr>
<td>Head injury with hypothalamic contusion</td>
<td>Infiltrative process (sarcoidosis)</td>
</tr>
<tr>
<td>Vascular disease (hypothalamic vasculitis)</td>
<td>Congenital conditionsa</td>
</tr>
<tr>
<td>Kallmann syndrome (anosmia)</td>
<td>Ovaries</td>
</tr>
<tr>
<td>Gonadal dysgenesisa</td>
<td>Turner syndrome (XO)</td>
</tr>
<tr>
<td>Mosaic (XX/XX)</td>
<td>Injury to ovary</td>
</tr>
<tr>
<td>Autoimmune disease (oophoritis)</td>
<td>Infection (mumps)</td>
</tr>
<tr>
<td>Toxins (alkylating chemotherapeutic agents)</td>
<td>Irradiation</td>
</tr>
<tr>
<td>Androgen insensitivity syndrome (absent uterus)a</td>
<td>Trauma, torsion (rare)</td>
</tr>
<tr>
<td>Polycystic ovary syndrome</td>
<td>Ovarian failure</td>
</tr>
<tr>
<td>Androgen insensitivity syndrome (absent uterus)a</td>
<td>Asherman syndrome (intrauterine synechiae postcurettage or endometritis)</td>
</tr>
<tr>
<td>Mullerian dysgenesisa</td>
<td>Tuberculosis, brucellosis</td>
</tr>
<tr>
<td>Congenital deformity or absence of uterus, uterine tubes, or vagina</td>
<td>Defect in hormone synthesis or action (virilization may be present)</td>
</tr>
<tr>
<td>Imperforate hymen, transverse vaginal septum, vaginal agenesis, agenesis of the cervixa</td>
<td>Adrenal hyperplasiaa</td>
</tr>
<tr>
<td>Androgen insensitivity syndrome (absent uterus)a</td>
<td>Cushing disease</td>
</tr>
<tr>
<td>Uterine lining defect</td>
<td>Adrenal tumor</td>
</tr>
<tr>
<td>Asherman syndrome (intrauterine synechiae postcurettage or endometritis)</td>
<td>Ovarian tumor (rare)</td>
</tr>
<tr>
<td>Tuberculosis, brucellosis</td>
<td>Drugs (steroids, ACTH)</td>
</tr>
</tbody>
</table>

ACTH, adrenocorticotropic hormone.
aIndicates condition that usually presents as primary amenorrhea.

A stepwise approach, using clinical history, growth charts, physical examination, and appropriate laboratory studies will allow providers to determine the etiology of amenorrhea in most adolescents. Evaluation begins with a thorough developmental and sexual history. Establishing a pubertal timeline including age at thelarche, adrenarche, growth spurt, and menarche is helpful in evaluating pubertal development.
Although there can be variations in the onset, degree, and timing of these stages, the progression of stages is predictable. Adrenal androgens are largely responsible for axillary and pubic hair. Estrogen is responsible for breast development; maturation of the external genitalia, vagina, and uterus; and menstruation. Lack of development suggests pituitary or ovarian failure or gonadal dysgenesis. Determining the patient’s gynecologic age (time in years and months since menarche) is helpful in assessing the maturity of the hypothalamic-pituitary-ovarian axis. A menstrual history includes date of last menstrual period (LMP), frequency and duration of periods, amount of bleeding, and premenstrual symptoms. Irregular menstrual cycles are common in the first 1–2 years after menarche. Two-thirds of adolescents with a gynecologic age more than 2 years have regular menstrual cycles.

Relevant components of the past medical and surgical histories include the neonatal history, treatment for malignancies, presence of autoimmune disorders or endocrinopathies, and current medications (prescribed and over-the-counter). Family history includes age at menarche of maternal relatives, familial gynecologic or fertility problems, autoimmune diseases, or endocrinopathies. A review of systems should focus on symptoms of hypothalamic-pituitary disease such as weight change, headache, visual disturbance, galactorrhea, polyuria, and/or polydipsia. A history of cyclic abdominal and/or pelvic pain in a mature adolescent with amenorrhea may indicate an anatomic abnormality such as an imperforate hymen. Acne and hirsutism are clinical markers of androgen excess. Both hypo- and hyperthyroidism can cause menstrual irregularities. Changes in weight, quality of skin and hair, and stools pattern may indicate a thyroid problem. A confidential social history should include sexual activity, contraceptive use, the possibility of pregnancy, and use of tobacco, drugs, or alcohol. The patient should also be questioned about major stressors, symptoms of depression and anxiety, dietary habits including any disordered eating or weight-loss behaviors, and athletic participation.

A thorough physical examination should include the components listed in Table 4–10. If a patient cannot tolerate a pelvic or bimanual examination, the presence of the uterus can be assessed by rectoabdominal examination or ultrasonography. Ultrasound provides evaluation of pelvic anatomy and possible genital tract obstruction, measurement of the endometrial stripe as an indicator of estrogen stimulation, and identification of ovarian cysts or masses.

Figure 4–6 illustrates an approach to the laboratory and radiologic evaluation of primary or secondary amenorrhea. Initial studies should include a urine pregnancy test, complete blood count, TSH, prolactin, and FSH. If there is evidence of hyperandrogenemia (acne, hirsutism) and PCOS is suspected, total and free testosterone and dehydroepiandrosterone sulfate (DHEAS) should be obtained. If systemic illness is suspected, a urinalysis and a chemistry panel (including renal and liver function tests) and erythrocyte sedimentation rate should be obtained. If short stature and delayed puberty are present, a bone age and karyotype should be done.

If pelvic examination or ultrasonography reveals normal female external genitalia and pelvic organs and the patient is not pregnant, the patient should be given a challenge of oral medroxyprogesterone, 10 mg daily for 10 days. Positive response to the progestin challenge with withdrawal bleeding is suggestive of the presence of a normal, estrogen-primed uterus.

Elevated serum prolactin indicates a possible prolactin secreting tumor. Prolactin testing is sensitive and can be elevated with stress, eating, or sexual intercourse. A mildly elevated test should be repeated prior to MRI of the brain for a prolactinoma. Elevated FSH indicates ovarian insufficiency or gonadal dysgenesis and a karyotype for Turner syndrome or Turner mosaic should be obtained. Autoimmune oophoritis should be assessed by antiovarian antibodies if the chromosome analysis is normal. Normal or low serum gonadotropins indicate hypothalamic suppression and functional amenorrhea if the patient’s weight is normal and there is a reasonable explanation such as vigorous exercise. Functional amenorrhea, although relatively common, is a diagnosis of exclusion. Low serum gonadotropin concentration can also be caused by malnutrition as in anorexia nervosa, endocrinopathies, and chronic diseases or by a central nervous system tumor.

Table 4–10. Components of the physical examination for amenorrhea.

<table>
<thead>
<tr>
<th>Component</th>
<th>Syndrome features (e.g., Turner syndrome with webbed neck, shield chest, widely spaced nipples, increased carrying angle of the arms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General appearance</td>
<td>Syndrome features (e.g., Turner syndrome with webbed neck, shield chest, widely spaced nipples, increased carrying angle of the arms)</td>
</tr>
<tr>
<td>Anthropometrics</td>
<td>Height, weight, BMI and percentiles for age, vital signs (HR, BP)</td>
</tr>
<tr>
<td>Ophthalmologic</td>
<td>Visual field cuts, papilledema</td>
</tr>
<tr>
<td>Neck</td>
<td>Thyromegaly</td>
</tr>
<tr>
<td>Breast</td>
<td>SMR staging, galactorrhea</td>
</tr>
<tr>
<td>Abdomen</td>
<td>Masses</td>
</tr>
<tr>
<td>Genital</td>
<td>SMR staging, estrogenization of vaginal mucosa (pink and moist vs thin red mucosa of hypoestrogenization), hymenal patency, clitoromegaly (width > 5 mm)</td>
</tr>
<tr>
<td>Pelvic and bimanual</td>
<td>Vaginal depth by insertion of a saline moistened applicator swab into the vagina or by bimanual examination (normal > 2 cm); palpation of the uterus and ovaries by bimanual examination</td>
</tr>
<tr>
<td>Skin</td>
<td>Acne, hirsutism, acanthosis nigricans</td>
</tr>
</tbody>
</table>

BMI, body mass index; BP, blood pressure; HR, heart rate; SMR, sexual maturity rating.
Patients with amenorrhea

A History

B Physical examination

C Pregnancy test

Identify:
Pregnancy
Genetic syndrome
Constitutional delayed puberty
External genital anatomic abnormality

H Normal female with androgen excess

Normal female

TSH, prolactin, FSH

DHEAS
Consider
17 hydroxyprogesterone

Abnormal TSH

Identify:
Polycystic ovary syndrome
Late onset adrenal hyperplasia
Ovarian, adrenal tumors

E Normal labs

Elevated prolactin

Identify:
Idiopathic hyperprolactinoma
Prolactinoma
Other CNS tumor

Medroxyprogesterone challenge

Normal response

No withdrawal bleed

Identify:
Functional hypothalamic amenorrhea
Pituitary/CNS lesion
Chronic disease

UA, chemistries (including renal and liver function, celiac panel.)
Consider neurological, endocrine, gastroenterology consultations.

Identify:
Functional hypothalamic amenorrhea
Pituitary/CNS lesion
Chronic disease

I Absent uterus

Karyotype

Testosterone

G Elevated FSH

Karyotype

Identify:
Müllerian dysgenesis
Identify:
Androgen insensitivity

XY Elevated testosterone

Identify:
Premature ovarian failure

Normal Abnormal

Medroxyprogesterone challenge

Turner Syndrome/ mosaic
Gonadal dysgenesis

UA, chemistries (including renal and liver function, celiac panel.)
Consider neurological, endocrine, gastroenterology consultations.

Identify:
Premature ovarian failure

▲ Figure 4–6. Evaluation of primary amenorrhea and secondary amenorrhea. CNS, central nervous system; DHEAS, dehydroepiandrosterone sulfate; FSH, follicle-stimulating hormone; TSH, thyroid-stimulating hormone; UA, urine analysis.
If the physical examination or ultrasound reveals an absent uterus, chromosomal analysis and serum testosterone should be obtained to differentiate between Mullerian dysgenesis and androgen insensitivity. Mullerian dysgenesis or Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is the congenital absence of the vagina with variable uterine development. These women have normal serum testosterone levels. Pelvic MRI is helpful to clarify the nature of the vaginal agenesis and to differentiate it from low-lying transverse vaginal septum, agenesis of the uterus and vagina, and imperforate hymen. Individuals with androgen insensitivity are phenotypically female but have an absent upper vagina, uterus, and fallopian tubes; a male karyotype; and an elevated serum testosterone (normal range for males).

The management of primary or secondary amenorrhea depends on the underlying pathology. Hormonal treatment is used in patients with hypothalamic, pituitary, and ovarian causes. Surgical repair may be required in patients with outflow tract anomalies.

B. Polycystic Ovary Syndrome

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of reproductive-aged women. It occurs in up to 6% of adolescents and 12% of adult women. PCOS is characterized by ovarian dysfunction, disordered gonadotropin secretion, and hyperandrogenism, which cause amenorrhea, hirsutism, and acne. Many adolescents with PCOS are overweight and the association of PCOS with insulin resistance is well established. Adolescents with PCOS are at increased risk for obesity-related morbidities including type 2 diabetes mellitus, dyslipidemia, and cardiovascular disease; low self-esteem; and adult reproductive health problems including infertility and endometrial cancer.

The adolescent with PCOS usually presents with overweight, oligomenorrhea or secondary amenorrhea, acne, and hirsutism. The most recent set of diagnostic criteria for PCOS from the Androgen Excess and Polycystic Ovary Syndrome Society include: (1) presence of hyperandrogenism (hirsutism and/or biochemical hyperandrogenemia), (2) ovarian dysfunction (oligo-anovulation and/or presence of polycystic ovaries by ultrasound), and (3) the exclusion of other androgen excess or related disorders.

Table 4–11 outlines a standard laboratory evaluation for PCOS. If other etiologies of virilization such as late-onset congenital adrenal hyperplasia (history of premature pubarche, high DHEAS, clitoromegaly) are suspected, a first morning 17-hydroxyprogesterone should be collected to look for 21-hydroxylase deficiency. Urine cortisol or a dexamethasone suppression test is performed if Cushing syndrome is suspected. If the patient is overweight and/or has acanthosis nigricans, a fasting insulin, lipid panel, and 2-hour oral glucose challenge test are recommended. A simple fasting glucose is not sufficient, as women with PCOS can have normal fasting glucose but impaired postprandial tests. Consultation with a pediatric endocrinologist can assist in further evaluation and management of significantly elevated androgens and endocrinopathies.

Encouraging lifestyle changes that will promote weight loss is a primary goal of therapy for PCOS in adolescence. Weight loss is associated with improved menstrual regulation and decreased symptoms of hyperandrogenemia, obesity-related comorbidities, and infertility. Combination of estrogen/progestosterone oral contraceptives may improve menstrual regularity, decrease ovarian and adrenal androgen production, and increase sex hormone-binding globulin (SHBG). There are no current guidelines for the use of insulin-sensitizing medications such as metformin to treat PCOS in adolescents.

2. Dysmenorrhea

Dysmenorrhea, or pain with menstrual periods is the most common gynecologic complaint of adolescent girls, with up to 90% of adolescent girls reporting some symptoms. Fifteen percent of adolescent women describe their symptoms as severe. The prevalence of dysmenorrhea increases with gynecologic age due to its association with ovulatory cycles. Dysmenorrhea can be designated as primary or secondary depending upon the absence or presence of underlying pelvic pathology (Table 4–12). Potent prostaglandins are the mediators of dysmenorrhea, producing uterine contractions, tissue ischemia, and hypersensitivity of pain fibers in the uterus.

In addition to taking a gynecologic and sexual history, an accurate characterization of the pain (timing with menses, intensity, duration, use of pain medications) is important in determining functional impairment. The pelvic examination can usually be deferred in nonsexually active adolescents with probable primary dysmenorrhea. Adolescents should...
Table 4-12. Dysmenorrhea in the adolescent.

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Onset and Duration</th>
<th>Symptoms</th>
<th>Pelvic Examination</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Dysmenorrhea<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>Excessive amount of prostaglandin F<sub>2α</sub>, which attaches to myometrium, causing uterine contractions, hypoxia, and ischemia. Also, directly sensitizes pain receptors.</td>
<td>Begins just prior to or with the onset of menstrual flow and lasts 1–2 days. Typically does not start until 1–2 y after menarche, when cycles are more regularly ovulatory.</td>
<td>Lower abdominal cramps radiating to lower back and thighs. Associated nausea, vomiting, and diarrhea due to excess prostaglandins.</td>
<td>Normal. May wait to examine if never sexually active and history is consistent with primary dysmenorrhea. Mild—menstrual calendar, start NSAIDs day before bleeding or at the onset of bleeding or pain if timing of cycle is difficult to predict. Moderate to severe—NSAIDs and OCPs or other birth control product to suppress ovulation.</td>
</tr>
<tr>
<td>Secondary Dysmenorrhea<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>Most often due to an STI such as Chlamydia or gonorrhea.</td>
<td>Recent onset of pelvic pain. Can also have chronic pain with prolonged untreated infection.</td>
<td>Pelvic pain, excessive or irregular menstrual bleeding, unusual vaginal discharge.</td>
<td>Mucopurulent or purulent discharge from cervical os, cervical friability, cervical motion, uterine or adnexal tenderness, positive wet prep for bacterial vaginosis, positive test for STI. Appropriate antibiotics.</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>Ectopic implants of endometrial tissue in pelvis or abdomen; may result from retrograde menstruation. Definitive diagnosis requires laparoscopy.</td>
<td>Generally starts more than 2 y after menarche, is not significantly responsive to standard NSAID and suppression of ovulation therapies, and worsens through time.</td>
<td>Cyclic or acyclic chronic pelvic pain.</td>
<td>Mild to moderate tenderness typically in the posterior vaginal fornix or along the uterosacral ligaments. Suppression of ovulation with combined hormonal contraceptive methods. Continuous use may provide additional control. If pain persists, refer to a gynecologist for further evaluation of chronic pelvic pain and consideration of gonadotropin-releasing hormone agonists.</td>
</tr>
<tr>
<td>Complication of pregnancy</td>
<td>Spontaneous abortion, ectopic pregnancy.</td>
<td>Acute onset.</td>
<td>Pelvic or abdominal pain associated with vaginal bleeding following missed menstrual period.</td>
<td>Positive hCG, enlarged uterus, or adnexal mass. Pelvic US if hemodynamically stable to evaluate for intrauterine pregnancy. Immediate obstetric or surgical consult with concern for ectopic pregnancy.</td>
</tr>
<tr>
<td>Congenital anomalies</td>
<td>Outflow tract anomalies: imperforate hymen, transverse or longitudinal vaginal septum, septate uterus.</td>
<td>Onset at menarche.</td>
<td>Cyclic pelvic or abdominal pain which can become chronic.</td>
<td>Imperforate hymen may be visible on external examination. Pelvic US for general anatomy. Pelvic MRI is most sensitive and specific test for septums. Gynecology consult for further evaluation and management.</td>
</tr>
<tr>
<td>Pelvic adhesions</td>
<td>Previous abdominal surgery or pelvic inflammatory disease.</td>
<td>Delayed onset after surgery or PID.</td>
<td>Abdominal pain, may or may not be associated with menstrual cycles; possible alteration in bowel pattern.</td>
<td>Variable. Gynecology consult for possible lysis of adhesion.</td>
</tr>
</tbody>
</table>

DMPA, depot medroxyprogesterone acetate; hCG, human chorionic gonadotropin; MRI, magnetic resonance imaging; NSAID, nonsteroidal anti-inflammatory drug; OCP, oral contraceptive pill; PID, pelvic inflammatory disease; STI, sexually transmitted infection, US, ultrasound.

^aNo pelvic pathology.

^bUnderlying pathology present.
be encouraged to keep track of their menstrual cycles using a calendar to predict when a period is imminent, thereby allowing for more proactive use of nonsteroidal anti-inflammatory drugs (NSAIDs) 1–2 days before the start of the anticipated period or with the first indication of discomfort. NSAIDs are typically continued for an additional 2–3 days after onset of pain. Recommended medications are ibuprofen 400–600 mg every 6 hours, or naproxen 500 mg twice a day. If the patient does not respond to NSAIDs, suppression of ovulation with oral contraceptive pills or other combined hormonal contraceptives such as the transdermal patch or intravaginal ring can be effective. These products can also be used continuously by skipping placebo pills or the fourth week off with the patch or ring when the menstrual period is expected to decrease the frequency of menstrual periods. Progestin-only medications such as depot medroxyprogesterone acetate (DMPA) are also options. If patients do not respond to these products and NSAIDs, further evaluation for secondary dysmenorrhea is indicated. A pelvic examination, pelvic imaging with ultrasonography or MRI, and diagnostic laparoscopy may be necessary for diagnosis. Secondary dysmenorrhea is more likely to be associated with chronic pelvic pain, midcycle pain, dyspareunia, and metrorrhagia.

3. Dysfunctional Uterine Bleeding

Dysfunctional uterine bleeding (DUB) results from irregular endometrial sloughing accompanying anovulatory cycles. It may be characterized by menorrhagia (prolonged bleeding that occurs at regular intervals) or menometrorrhagia (heavy prolonged bleeding that occurs irregularly and more frequently than normal). The differential diagnosis of common and less common etiologies in adolescents are listed in Table 4–13.

Table 4–13. Differential diagnosis of dysfunctional uterine bleeding in adolescents.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anovulation</td>
<td></td>
</tr>
<tr>
<td>Sexually transmitted infections</td>
<td>Cervicitis, pelvic inflammatory disease</td>
</tr>
<tr>
<td>Pregnancy complications</td>
<td>Ectopic, miscarriage</td>
</tr>
<tr>
<td>Bleeding disorders</td>
<td>von Willebrand disease, platelet function abnormalities, thrombocytopenia, coagulopathy</td>
</tr>
<tr>
<td>Endocrine disorders</td>
<td>Hypo-/hyperthyroidism, hyperprolactinemia, adrenal insufficiency, PCOS</td>
</tr>
<tr>
<td>Anatomic abnormalities</td>
<td>Congenital anomalies, ovarian cysts or tumors, cervical polyps</td>
</tr>
<tr>
<td>Trauma</td>
<td>Vaginal laceration</td>
</tr>
<tr>
<td>Foreign body</td>
<td>Retained tampon</td>
</tr>
<tr>
<td>Chronic illness</td>
<td>Liver, renal, inflammatory bowel, lupus</td>
</tr>
<tr>
<td>Malignancy</td>
<td>Leukemia</td>
</tr>
<tr>
<td>Drugs</td>
<td>Contraception, anticoagulants</td>
</tr>
</tbody>
</table>

PCOS, polycystic ovary syndrome.

evaluation

In addition to a menstrual and sexual history, the bleeding pattern should be characterized by cycle length, duration, and quantity of bleeding (eg, number of soaked pads or tampons in 24 hours, number of menstrual accidents). Bleeding for more than 10 days is usually considered abnormal. The patient should be assessed for symptoms of anemia including fatigue, lightheadedness, syncope, tachycardia, and for other abnormal bleeding (gingivae, stool, easy bruisings). The physical examination includes an assessment of hemodynamic stability with orthostatic heart rate and blood pressure measurements. Mucous membranes and skin should be evaluated for pallor; the heart for tachycardia and murmurs; the abdomen for organomegaly; and the external genitalia for signs of trauma or congenital anomalies. If the patient has never been sexually active, a pelvic and bimanual examination to examine the vagina, cervix, and adnexa may be helpful to elucidate the diagnosis. Laboratory studies should include a complete blood cell count, pregnancy test, reticulocyte count, prothrombin time, partial thromboplastin time, TSH, and iron studies. A von Willebrand panel and a platelet function analysis should be considered with a history of heavy menstrual bleeding from menarche and/or bleeding from other sources. For patients suspected of having PCOS, total and free testosterone and dehydroepiandrosterone sulfate should be obtained. For sexually experienced females, cervical or urine-based testing for Chlamydia and gonorrhea should be obtained.

Treatment

The severity of DUB is determined by hemodynamic status and degree of anemia and classified as mild, moderate, or severe (Table 4–14). The goals of treatment include (1) establishment and/or maintenance of hemodynamic stability, (2) correction of acute or chronic anemia, (3) resumption of normal menstrual cycles, (4) prevention of recurrence, and (5) prevention of long-term consequences of anovulation. Management depends on the severity of the problem and its specific etiology (see Table 4–14). Monophasic oral contraceptive pills containing a potent progestin such as norgestrel 0.3 mg with ethinyl estradiol 30 μg or levonorgestrel 0.15 mg with ethinyl estradiol...
Table 4–14. Management of dysfunctional uterine bleeding.

<table>
<thead>
<tr>
<th>Hgb value</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hgb > 12 g/dL</td>
<td>Hgb 9–12 g/dL</td>
<td>Hgb < 9 g/dL</td>
<td></td>
</tr>
<tr>
<td>Acute treatment</td>
<td>Menstrual calendar; iron supplementation. NSAID with menses may help reduce flow. Consider OCPs if patient is sexually active and desires contraception.</td>
<td>OCP BID until bleeding stops, continue active pill QD for 21 days followed by 1 week of placebo pills.</td>
<td>Admit to hospital if Hgb < 7 g/dL or patient is hemodynamically unstable. Transfusion based on degree of hemodynamic instability and ability to control bleeding. OCP every 4 h until bleeding slows (usually 24–36 h). Antiemetic 2 h prior to OCPs as needed for nausea. Gynecology consultation for further evaluation and possible dilation and curettage. then OCP QID for 2–4 d. then OCP TID for 3 d. then OCP BID for total 21 d or until HCT > 30%. (Conjugated estrogens, 25 mg IV every 4 h for 2–3 doses can be used as an alternative to the PO q4h regimen.)</td>
</tr>
</tbody>
</table>

BID, twice daily; HCT, hematocrit; NSAID, nonsteroidal anti-inflammatory drug; OCP, oral contraceptive pill; Hgb, hemoglobin; PO, by mouth; QD, daily; QID, four times per day; TID, three times per day.

30 μg are frequently used for patients without medical contraindications to exogenous estrogens. The active pills in monophasic formulations contain the same concentration of progestins and estrogen and are preferred over multiphasic formulations which contain variable concentrations of estrogen which could potentially increase the risk of breakthrough bleeding. It is important to remind adolescents and their families that compliance with medications to control bleeding and treat anemia is imperative. Adolescents should be treated until the anemia is resolved and often for an additional 6 months or longer if there is an underlying problem such as platelet function abnormality or von Willebrand disease.

4. Mittelschmerz

Mittelschmerz is midcycle discomfort resulting from ovulation. The cause of the pain is unknown but irritation of the peritoneum due to spillage of fluid from the ruptured follicular cyst at the time of ovulation has been suggested. The patient presents with a history of midcycle, unilateral dull or aching abdominal pain lasting a few minutes to as long as 8 hours. Rarely, the pain mimics that of acute appendicitis, torsion or rupture of an ovarian cyst, or ectopic pregnancy. The patient should be reassured and treated symptomatically.

5. Premenstrual Syndrome & Premenstrual Dysphoric Disorder

It is estimated that 51%–86% of adolescent women experience some premenstrual symptoms. Premenstrual syndrome (PMS) is a cluster of physical and psychological symptoms that occur during the luteal phase of the menstrual cycle and resolve with menstruation. Physical symptoms include bloating, breast tenderness, fatigue, headache, myalgia, increased appetite, and food craving. Premenstrual emotional symptoms may include fatigue, mood lability, anxiety, depression, irritability, hostility, sleep dysfunction, and impaired social function. PMS can be diagnosed when at least one disabling physical or psychological symptom is documented prospectively for at least two consecutive menstrual cycles, is restricted to the luteal phase of the menstrual cycle, resolves by the end of menses, results in functional impairment, and is not an exacerbation of another underlying disorder. Severe PMS with functional impairment affects 3%–5% of women of reproductive age and is classified in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision as premenstrual dysphoric disorder (PMDD). The clinical diagnosis of PMDD requires five physical symptoms with at least one affective symptom occurring in the majority of cycles during the preceding year.
The pathophysiology of PMS is not well understood; however, there is some evidence of dysregulation of serotonergic activity and/or of GABAergic receptor functioning during the luteal phase of the menstrual cycle with heightened sensitivity to circulating progesterone metabolites. PMS and PMDD are highly associated with unipolar depressive disorder and anxiety disorders, such as obsessive-compulsive disorder, panic disorder, and generalized anxiety disorder. During adolescence, it may be difficult to determine if the affective symptoms represent a mood or anxiety disorder, a premenstrual exacerbation of a psychiatric disorder, or simple PMS.

Current treatment for PMS in adolescence is based on findings from adult studies and includes lifestyle changes and pharmacologic agents that suppress the rise and fall of ovarian steroids or augment serotonin. SSRIs are increasingly used as first-line therapy for PMS and PMDD in adults, and a recent Cochrane review of SSRIs in severe adult PMS determined that SSRIs administered continuously or during the luteal phase were effective in reducing premenstrual symptoms. Once a diagnosis is made, proven effective interventions including education about pathophysiology, lifestyle changes (eg, increasing physical activity and smoking cessation), stress reduction, cognitive behavioral therapy, and nutritional counseling to improve calcium intake and/or calcium supplementation should be attempted. If contraception or cycle control is important, a combined hormonal contraceptive pill may be beneficial. The pill containing 20 μg ethinyl estradiol and 3 mg drospirenone with a 24/4 formulation has been shown to be therapeutic in studies of adult women with PMDD. If these interventions do not adequately control symptoms, luteal phase or continuous administration of SSRIs can be considered. Case reports indicate that adolescents with PMDD respond well to luteal phase dosing of fluoxetine at the standard adult dosage of 20 mg/d. SSRIs are not formally approved by the FDA for treatment of PMS or PMDD in adolescents.

6. Ovarian Cysts

Functional cysts account for the majority of benign ovarian tumors in postpubertal adolescents and are a result of the normal process of ovulation. They may be asymptomatic or may cause menstrual irregularities or pelvic pain. Large cysts can cause constipation or urinary frequency. Follicular cysts are the most common functional cysts. They are usually unilateral, less than 3 cm in diameter, and resolve spontaneously in 1–2 months. Cyst pain occurs as the diameter of the cyst increases, stretching the overlying ovarian cortex and capsule. If the patient’s discomfort is tolerable, she can be reexamined monthly and observed for resolution. Hormonal contraceptive products that suppress ovulation can be started to prevent additional cysts from forming. Patients with cysts should be counseled about the signs and symptoms of ovarian and/or tubal torsion, which are serious complications. Adnexal torsion presents with the sudden onset of pain, nausea, and vomiting. Low-grade fever, leukocytosis, and the development of peritoneal signs with rebound and guarding can be found. Torsion is a surgical emergency due to the risk of ischemia and death of the ovary. Patients should be referred to a gynecologist for potential laparoscopy if the cyst has a solid component and measures more than 6 cm by ultrasonography, if there are symptoms or signs of hemorrhage or torsion, or if the cyst fails to regress within 2 months. Corpus luteum cysts occur less commonly and may be large, 5–10 cm in diameter. The patient may have associated amenorrhea, or as the cyst becomes atretic, heavy vaginal bleeding. There may be bleeding into the cyst or rupture with intraperitoneal hemorrhage. To determine whether the bleeding is self-limited, serial hematocrit measurements and ultrasounds can be used. If the patient is stable, hormonal contraception that suppresses ovulation can be started to prevent additional cyst formation and the patient may be monitored for 3 months for resolution. Laparoscopy may be indicated if the cyst is larger than 6 cm or if there is severe pain or hemorrhage.

CONTRACEPTION

According to the CDC 2011 Youth Risk Behavior Survey, almost half of high school students (47%) reported having had sexual experience and 34% reported being currently sexually active. Sixty percent reported using a condom at their latest intercourse. Most young people have sex for the first time at about the age of 17, but do not marry until their middle or late twenties. This means that young adults are at risk of unwanted pregnancy and STIs for nearly a decade. A sexually active female who does not use contraceptives has almost a 90% chance of becoming pregnant within a year.

Abstinence & Decision Making

Talking with teenagers about sexual intercourse and its implications can help teens make informed decisions regarding engaging in sexual activity. The American Academy of Pediatrics endorses a comprehensive approach to sexuality education that incorporates encouraging abstinence while providing appropriate risk reduction counseling regarding sexual behaviors. Counseling should include discussions about STI prevention and contraceptive methods including emergency contraception (Table 4–15). Encouraging adolescents to use contraception when they do engage in sexual intercourse does not lead to higher rates of sexual activity. Adolescents often delay seeing a clinician for contraceptive services after initiating sexual activity. Concern about lack of confidentiality is an important reason for this delay.

Methods Counseling

The goals of counseling adolescents about contraception include promoting safe and responsible sexual behavior through delaying the initiation of sexual activity, reinforcing consistent condom use for those who are sexually active, and discussing other contraceptive options to provide protection from unwanted pregnancy. Providers should familiarize themselves with their state policies regarding the ability of minors to consent for sexual and reproductive healthcare services. These data are accessible on the Internet from the Guttmacher Institute (http://www.guttmacher.org) and the Center for Adolescent Health and the Law (http://www.adolescenthealthlaw.org).

Providers should consider the adolescent’s lifestyle, potential challenges to compliance, the patient’s need for confidentiality around the use of contraception, previous experiences with contraception and reasons for discontinuation, and any misconceptions regarding contraceptive options. Barriers to healthcare access including transportation and financial limitations should be identified. Prescribing contraception for other medical reasons (eg, management of dysmenorrhea) can create opportunities for providers and adolescent patients to make parents aware of the use of the medication while maintaining confidentiality around the sexual behaviors.

Mechanism of Action

The primary mechanism of action for combined hormonal contraceptives containing estrogen and progestin (oral contraceptive pills [OCPs], transdermal patch, intravaginal ring) and the progestin-only methods (pills, DMPA, and the etonogestrel implant) is inhibition of ovulation. Thickening of the cervical mucus also makes sperm penetration more difficult, and atrophy of the endometrium diminishes the chance of implantation. The mechanisms of action for intrauterine systems and devices are discussed later in this chapter in the section “Intrauterine Systems & Devices.”

Starting all birth control methods during the menstrual period (either first day of bleeding or first Sunday of bleeding) produces the most reliable suppression of ovulation. Conventional OCPs, transdermal patches, and intravaginal rings typically require that the adolescent wait for her

Table 4–15. Contraceptive efficacy.

<table>
<thead>
<tr>
<th>Method</th>
<th>Percentage of Women Experiencing an Unintended Pregnancy Within the First Year of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typical Use</td>
</tr>
<tr>
<td>No method</td>
<td>85</td>
</tr>
<tr>
<td>Spermicides only</td>
<td>28</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>22</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>16</td>
</tr>
<tr>
<td>Condom</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>21</td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
</tr>
<tr>
<td>Oral contraceptive pill</td>
<td>9</td>
</tr>
<tr>
<td>Eva Patch</td>
<td>9</td>
</tr>
<tr>
<td>NuvaRing</td>
<td>9</td>
</tr>
<tr>
<td>Depo-Provera</td>
<td>6</td>
</tr>
<tr>
<td>IUD</td>
<td></td>
</tr>
<tr>
<td>ParaGard</td>
<td>0.8</td>
</tr>
<tr>
<td>Mirena</td>
<td>0.2</td>
</tr>
<tr>
<td>Implanon</td>
<td>0.05</td>
</tr>
</tbody>
</table>

IUD, intrauterine device.

next period to begin before starting. Data show that many women who receive prescriptions or even samples of medication never begin the prescribed method. Furthermore, these women could become pregnant while waiting to start. “Quick start” is an alternative approach to starting contraception that allows the patient to begin contraception on the day of the appointment regardless of menstrual cycle day, following a negative pregnancy test. This approach has been studied in adolescent women and increases adherence with the method of choice. Unfortunately, these studies also highlight the generally poor long-term compliance with contraceptive treatment in this age group.

Medical Considerations

Evaluation of an adolescent female requesting contraception should include a review of current and past medical conditions, current medications and allergies, menstrual history, confidential social history including sexual history, and family medical history. Important components of a sexual history include age at first intercourse, number of partners in lifetime, history of STIs and pelvic inflammatory disease (PID), condom use, current and past use of other contraceptives and reasons for discontinuation, and pregnancy history and outcomes. It is helpful to have a baseline weight, height, BMI, and blood pressure. A pelvic examination is not necessary before initiating contraception. However, if the woman is sexually active and has missed menstrual periods or has symptoms of pregnancy, a pregnancy test is warranted. Screening for STIs should be offered if a sexually experienced woman is asymptomatic and testing for STIs is indicated if she is symptomatic.

The World Health Organization’s publication, *Improving Access to Quality Care in Family Planning: Medical Eligibility Criteria for Contraceptive Use* is an evidence-based guide providing criteria for initiating and continuing contraceptive methods based on a risk assessment of an individual’s characteristics or known preexisting medical condition. Table 4–16 lists absolute (a condition which represents an unacceptable health risk if the contraceptive method is used) and relative (a condition where the theoretical or proven unacceptable health risk if the contraceptive method is used) contraindications to using combined hormonal birth control pills. These contraindications can be extended to other combined hormonal products that contain estrogen and progestins including the transdermal patch and intravaginal ring. The CDC has also published the *US Medical Eligibility Criteria for Contraceptive Use* which was adapted from the WHO publication and allows the consideration of use of combined hormonal contraceptive products for women who are currently receiving anticoagulation therapy.

It is important to assess patients for possible risk factors for venous thromboembolic events (VTE) prior to initiating any contraceptive product containing estrogen. The risk of VTE for reproductive-aged women is extremely low (4 per 100,000 women per year for nonpregnant women not using contraceptive product containing estrogen). The use of estrogen increases the risk of VTE for nonpregnant women (10–30 per 100,000 women per year); however, pregnancy itself markedly increases the risk of VTE (60 per 100,000 women per year). In light of the low population risk of VTE, it is not cost-effective to screen all reproductive-aged women for inherited thrombophilia (factor V Leiden, prothrombin mutation, protein S, protein C, and antithrombin deficiencies). Table 4–17 shows helpful screening questions for personal and family history of VTE. If a close relative had a VTE, determine whether testing for inherited thrombophilia was conducted. If a specific defect was identified, testing the patient for that defect prior to initiating a product containing estrogen is warranted. If testing is unknown but the family history is highly suggested of inherited thrombophilia, testing for all of the inherited thrombophilic disorders prior to initiating estrogen should be considered. Additionally, if testing is indicated but not possible, providers should consider alternative contraceptive products that do not contain estrogen.

Table 4–16. Contraindications to combined oral contraceptive (COC) pills.

<table>
<thead>
<tr>
<th>Absolute contraindications</th>
<th>Relative contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnancy</td>
<td>Postpartum (first 3 wk)</td>
</tr>
<tr>
<td>Breast feeding (within 6 wk of childbirth)</td>
<td>Breastfeeding (6 wk-6 mo following childbirth)</td>
</tr>
<tr>
<td>Hypertension SBP > 160 mm Hg or DBP > 100 mm Hg</td>
<td>Hypertension (adequately controlled HTN; any history of HTN</td>
</tr>
<tr>
<td>History of thrombophilias; current thromboembolic disorder,</td>
<td></td>
</tr>
<tr>
<td>cerebrovascular disease, or ischemic heart disease</td>
<td>where BP cannot be evaluated; SBP 140-159 mm Hg or</td>
</tr>
<tr>
<td>Known thrombogenic mutations (factor V Leiden, prothrombin</td>
<td></td>
</tr>
<tr>
<td>mutation; protein S, protein C, and antithrombin deficiencies)</td>
<td></td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>Migraine headache without aura (for continuation of COC)</td>
</tr>
<tr>
<td>Complicated valvular heart disease (with pulmonary hypertension;</td>
<td></td>
</tr>
<tr>
<td>atrial fibrillation; history of bacterial endocarditis)</td>
<td>Breast cancer history with remission for 5 y</td>
</tr>
<tr>
<td>Diabetes with nephropathy; retinopathy; neuropathy</td>
<td>Active gallbladder disease or history of COC-induced cholestasis</td>
</tr>
<tr>
<td>Liver disease: active viral hepatitis; severe cirrhosis; tumor (hepatocellular adenoma or hepatoma)</td>
<td>Use of drugs that affect liver enzymes (rifampin, phenytoin,</td>
</tr>
<tr>
<td></td>
<td>carbamazepine, barbiturates, primidone, topiramate,</td>
</tr>
<tr>
<td></td>
<td>oxcarbazepine, lamotrigine, ritonavir-boosted protease inhibitors)</td>
</tr>
</tbody>
</table>

BP, blood pressure; DBP, diastolic blood pressure; HTN, hypertension; SBP, systolic blood pressure.
Table 4–17. Screening questions for inherited thrombophilia.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have you or a first-degree relative...</td>
<td>...ever had blood clots in the legs or lungs?</td>
</tr>
<tr>
<td></td>
<td>... ever been hospitalized for blood clots in the legs or lungs?</td>
</tr>
<tr>
<td>What were the circumstances in which the blood clot took place?</td>
<td>Cancer, air travel, obesity, immobility, postpartum</td>
</tr>
<tr>
<td>Did you or a family member require blood thinning medication?</td>
<td></td>
</tr>
</tbody>
</table>

Tips for Prescribing & Monitoring Contraceptive Use

It is important to thoroughly review the advantages, disadvantages, potential side effects, and instructions for use of contraceptive methods in a concise and age-appropriate manner with adolescent patients. Written instructions that are clear and at an appropriate educational level can also be helpful (www.youngwomenshealth.org is a useful source for instructions). Some offices utilize consent forms to further ensure that the adolescent has a full understanding of the chosen contraceptive method. Teens need to be reminded that hormonal contraception will not protect them from STI transmission (including HIV infection) and condoms need to be used consistently. Encouraging teens to be creative about personal reminders such as setting a cell phone alarm to take a pill can help with compliance. Teens often discontinue birth control for nonmedical reasons or minor side effects and should be encouraged to contact their providers if any questions or concerns about the chosen method arise to avoid unintentional pregnancy. Frequent follow-up visits every few months with a provider may also improve adherence. These visits also provide opportunities for further reproductive health education and STI screening.

Barrier Methods

Male condoms have been used more widely in the last several decades as a result of educational and marketing efforts driven by the AIDS epidemic. All sexually active adolescents should be counseled to use condoms correctly and consistently with all intimate behaviors (oral, vaginal, and anal intercourse). Condoms offer protection against STIs by providing a mechanical barrier. Polyurethane condoms can be used by adolescents with an allergy to latex. Spermicides containing nonoxynol-9 are no longer recommended, as exposure to spermicide can cause genital irritation which may facilitate the acquisition of STIs including HIV. Patients should be counseled to use water-based lubricants with condoms.

Vaginal barrier methods include the female condom, diaphragm, and cervical cap. The female condom is a polyurethane vaginal pouch that can be used as an alternative to the male condom. Female condoms have lower efficacy in preventing pregnancy and STIs and are more expensive than male condoms. Diaphragms and cervical caps may not be feasible for adolescents as they require prescription, professional fitting, and skill with insertion.

Combined Hormonal Methods

Oral Contraceptive Pills, Transdermal Patch, & Intravaginal Ring

Combined oral contraceptive pills (COCs) are the most commonly used contraceptive method in the adolescent age group. COCs are also utilized for noncontraceptive indications (Table 4–18). All COCs contain estrogen (ethinyl estradiol or EE). “Low-dose” COCs contain 20–35 mcg of ethinyl estradiol per pill. There are a variety of progestins used in COCs, most made from testosterone with differing androgenic profiles. Drospirenone is a newer progestin derived from spironolactone that possesses antiandrogenic and antimineralocorticoid activity. This formulation has appeal for use with patients who have PCOS but should not be prescribed for patients with risk of hyperkalemia (those who have renal, hepatic, or adrenal insufficiency or taking certain medications including angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists). Extended cycle regimens are available which allow women to decrease menstrual frequency from four menstrual cycles per year to formulations that provide hormonal pills daily for the whole year, eliminating menstrual periods altogether. New formulations with fewer placebo pills (4 vs the standard 7) decrease the duration of the menstrual period. There is also a chewable COC for those who cannot swallow pills.

In general, contraceptive side effects are mild and improve or lessen during the first 3 months of use. Table 4–19 shows the more common estrogenic, progestogenic, and combined...
Table 4-19. Estrogenic, progestenic, and combined effects of COCs by system.

<table>
<thead>
<tr>
<th>System</th>
<th>Estrogen Effects</th>
<th>Progestin Effects</th>
<th>Estrogen and Progestin Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Bloating</td>
<td>Cyclic weight gain due to fluid retention</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Nausea; hepatocellular adenomas</td>
<td>Increased appetite and weight gain; increased LDL cholesterol levels; decreased HDL cholesterol levels; decreased carbohydrate tolerance; increased insulin resistance</td>
<td>Hypertension</td>
</tr>
<tr>
<td>Breast</td>
<td>Increased breast size</td>
<td>Increased breast tenderness or breast size</td>
<td>Breast tenderness</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>Leukorrhea; cervical eversion or ectopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematologic</td>
<td>Thromboembolic complications, including pulmonary emboli (rare), deep venous thrombosis, cerebrovascular accident, or myocardial infarction (rare)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurological</td>
<td>Telangiectasia, melasma</td>
<td>Acne, oily skin</td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>Telangiectasia, melasma</td>
<td>Acne, oily skin</td>
<td>Headaches</td>
</tr>
<tr>
<td>Psychological</td>
<td>Telangiectasia, melasma</td>
<td>Acne, oily skin</td>
<td></td>
</tr>
</tbody>
</table>

COC, combined oral contraceptive pill; HDL, high-density lipoprotein; LDL, low-density lipoprotein.

(estrogenic and progestogenic) effects of COCs. In general, these symptoms can also be extended to the other combined hormonal methods. If a patient taking contraceptive pills has persistent minor side effects for more than 3 months, a different type of COC can be tried to achieve the hormonal effects desired (eg, decreasing the estrogen content or changing progestin). Breakthrough bleeding is a common side effect in the first few months of COC use and generally resolves without intervention. If breakthrough bleeding is persistent, the provider should rule out other possible etiologies such as missed pills, pregnancy, infection, or interaction with other medications. For women who have spotting or bleeding before completing the active hormonal pills, increasing the progestin content will provide more endometrial support. For those with continued spotting or bleeding after the period, increasing the estrogen content will provide more endometrial support.

Transdermal Patch

The transdermal patch, Ortho Evra, releases 20 mcg of ethinyl estradiol and 150 mcg of norelgestromin daily. One patch is worn for 7 days and changed weekly for 3 consecutive weeks. The patch is an attractive alternative to COCs for adolescents who have difficulty remembering to take a pill every day; however, the higher bioavailability of estrogens delivered transdermally (60% higher than with 35 mcg COCs) has raised concern that the patch might increase the risk of VTE over other estrogen-containing contraceptive products. Studies evaluating this risk have shown conflicting results. The FDA updated the safety labeling for Ortho Evra in September 2009 to include its interpretation of these studies showing a zero to twofold increase in the risk of thromboembolic events. The FDA maintains that Ortho Evra is a well-tolerated and effective contraceptive for women with low-risk profile for VTE. As with other estrogen-containing contraceptive products, patients should be advised to avoid smoking and consider planned discontinuation of these methods around major surgery and prolonged immobilization. In clinical trials, the most common side effects included breast disorders (pain and swelling), headache, nausea, and skin irritation. The patch may be less effective in women weighing more than 90 kg and those with skin conditions preventing absorption.

Intravaginal Ring

The NuvaRing is a vaginal ring that releases 15 mcg of ethinyl estradiol and 120 mcg of etonogestrel per day. The patient places the ring inside the vagina for 3 weeks, and removes it the first day of the fourth week to allow for withdrawal bleeding. A new ring is inserted each month. In clinical trials, the most common side effects included vaginitis and vaginal discharge, headache, weight gain, and nausea.
Progestin-Only Methods

Oral Contraceptive Pills

Progestin-only pills (POPs) do not contain estrogen. They are used in women with contraindications to estrogen-containing products such as the presence of inherited risk factors for thrombophilia or unacceptable estrogen-related side effects with COCs. The efficacy of POPs in preventing pregnancy is slightly less than COCs. They require strict compliance and regular dosing schedule due to the shorter half-life of the progestin. A patient must take POPs daily at the same time (within 3 hours). The primary mechanisms by which pregnancy is prevented includes thickening cervical mucous and thinning the endometrial lining. Ovulation is inhibited in approximately 50% of women. The main side effect of POPs is unpredictable menstrual patterns. The need for strict compliance and the possibility of breakthrough bleeding may make POPs a less desirable method for teens.

Injectable Hormonal Contraception

Depot medroxyprogesterone acetate (DMPA), or DepoProvera, is a long-acting injectable progestin contraceptive. It is injected into the gluteal or deltoid muscle every 12 weeks at a dose of 150 mg. The first injection should be given during the first 5 days of the menstrual cycle to ensure immediate contraceptive protection. The quick-start method may also be used with DMPA following a negative pregnancy test. Adolescents who have been sexually active within the previous 2 weeks of administration of DMPA using the quick-start method should be informed of the chance of pregnancy and instructed to return for a repeat pregnancy test 2 weeks after receiving DMPA. With a failure rate of less than 0.3%, long-acting nature reducing compliance issues, reversibility, and lack of estrogen-related side effects, it is an attractive contraceptive option for many adolescents. The hypoestrogenic state that results from DMPA suppression of the hypothalamic-pituitary-ovarian axis reduces the normal effect of estrogen to inhibit bone resorption. The FDA issued a black box warning in 2004 that long-term (>2 years) use of DMPA was a cause of decreased bone density. This factor is of particular concern as adolescence is the critical time of peak bone accretion. Current recommendations are that long-term use of DMPA should be limited to situations where other contraceptive methods are inadequate. Although DMPA use is associated with decreased bone density, there are studies showing that bone mineral density recovers after stopping DMPA. There are no studies to date that can answer the question of whether decreased bone density from adolescent DMPA use increases the risk of osteoporosis and fractures in adulthood. The consensus of experts in the field at this time is that the advantages of using DMPA generally outweigh the theoretical risks of fractures later in life. As with every other contraceptive method, providers need to help their patients weigh the pros and cons of initiating and continuing with this method of contraception. Adolescents using DMPA should be counseled to take adequate dietary calcium (1300 mg/d) and vitamin D (400 IU/d), to avoid tobacco smoking and to have regular weight-bearing physical activity for overall bone health. Other adverse effects of DMPA include unpredictable menstrual patterns, weight gain (typically 5 lb per year for the first 2 years of use), and mood changes.

Contraceptive Implants

Adolescents most commonly use short-acting hormonal contraceptive methods described previously. Unfortunately, these methods have relatively high typical use failure rates (see Table 4–15) and low continuation rates. Higher failure rates combined with poor continuation rates decrease the efficacy of short-acting contraceptive methods in adolescents. Long acting reversible contraceptives (LARCs), which include contraceptive implants and intrauterine systems and devices, have lower rates of failure and discontinuation. In one study comparing 1-year continuation rates for short-acting contraceptives versus LARCs, the continuation rate for short-acting methods was 55% versus 86% for LARCs. The pregnancy rate associated with use of short-acting contraceptives was 22 times higher than the rate of unintended pregnancy associated with the use of LARCs. Adolescents should be encouraged to consider LARCs as the best reversible methods for preventing unintended pregnancy, rapid repeat pregnancy, and abortion.

Implanon and Nexplanon are single-rod implant LARCs that contain the progestin etonogestrel, a metabolite of desogestrel. Nexplanon also contains barium sulfate which makes it radiopaque. Etonogestrel implants are placed subdermally and provide highly effective contraception for 3 years, with failure rates less than 1%. Implanon and Nexplanon suppress ovulation and thicken cervical mucous like DMPA, but do not suppress ovarian estradiol production or induce a hypoestrogenic state. The risk of decreased bone density is less than that associated with DMPA. Placement should occur during the first 5 days of the menstrual period or at any time if a woman is correctly using a different hormonal contraceptive method. Proper timing minimizes the likelihood that the implant is placed during an early pregnancy or in a nonpregnant woman too late to inhibit ovulation in the first cycle of use. Irregular menstrual bleeding is the single most common reason for stopping use in clinical trials. On average the volume of bleeding is similar to the woman’s typical menstrual periods but the schedule of bleeding is irregular and unpredictable. Other side effects include headache, weight gain, acne, breast pain, and emotional lability. Return to fertility is rapid following removal. Implanon and Nexplanon have not been tested in women with a BMI greater than 130% ideal and could have decreased efficacy in...
these women. Etonogestrel implants are not recommended for women who chronically take medications that are potent hepatic enzyme inducers because etonogestrel levels may be substantially reduced in these women.

Intrauterine Systems & Devices

Intrauterine systems (IUS) and devices (IUD) are LARCs approved for use in nulliparous as well as parous teens and have high efficacy with failure rates < 1%. There are two forms of IUS that release the progestin levonorgestrel: Mirena, which releases 20 mcg of levonorgestrel per day and is approved for contraception for up to 5 years; and Skyla, which releases an average of 6 mcg per day and is approved for contraception for up to 3 years. The levonorgestrel IUSs have many contraceptive actions including thickening of cervical mucous, inhibiting sperm capacitation and survival, suppressing the endometrium, and suppression of ovulation in some women. Given that the contraceptive effect of levonorgestrel in the IUS devices is mainly due to its local effect versus systemic absorption, ovulation is not always suppressed and cysts related to normal ovulation can occur. Irregular bleeding is common in the first few months following insertion because endometrial suppression takes several months to evolve. Bleeding is then markedly decreased and secondary amenorrhea can occur. Other side effects include abdominal and/or pelvic pain, acne, ovarian cysts, and headache. In addition to pregnancy prevention, women with the IUS report reduced symptoms of dysmenorrhea and reduced pain from endometriosis. Cramping is common during insertion and spontaneous expulsion can occur. Uterine perforation during insertion is an uncommon risk.

The copper T 380A IUD, ParaGard, does not contain hormones and can provide contraception for up to 10 years. Its contraceptive actions include the release of copper ions which inhibit sperm migration and development of a sterile inflammatory reaction which is toxic to sperm and ova and prevents implantation. Menstrual pain and heavy bleeding are the most common reasons for discontinuation.

A common misconception about IUS and IUD use is that they increase the risk of PID. Current research shows that the risk of PID is increased above baseline only for the first 20 days after insertion. IUS and IUD have also not been shown to increase the risk of tubal infertility or ectopic pregnancy. Contraindications for placement of IUS/IUD include pregnancy, PID, or postabortion sepsis within the past 3 months, current STI, purulent cervicitis, undiagnosed abnormal vaginal bleeding, malignancy of the genital tract, uterine anomalies, or leiomyomata distorting the uterine cavity making insertion incompatible. Allergy to any component of the IUS/IUD is a contraindication. Patients with disorders of copper metabolism (Wilson disease) should not use the copper-containing IUD. Adolescents should be screened for STIs prior to insertion of an IUS or IUD.

Emergency Contraception

Emergency contraception (EC) is the only contraceptive method designed to prevent pregnancy after unprotected or underprotected intercourse (Table 4–20). Indications for EC include unprotected vaginal intercourse, failure of contraceptive methods (broken condoms, missing three or more active COC pills, detached contraceptive patch, removed vaginal ring, or late DMPA injection), and sexual assault. EC medications include products labeled and approved for use as EC by the FDA (levonorgestrel and ulipristal acetate) and the “off-label” use of COCs (the Yuzpe method).

Levonorgestrel EC, marketed as Plan B and Next Choice, consists of two pills containing 0.75 mg of levonorgestrel per pill. These products were originally prescribed with instructions to take one pill immediately after unprotected intercourse, followed by a second pill 12 hours later. Recent studies have shown that taking two pills simultaneously within 72 hours of unprotected intercourse has the same efficacy. Plan B One-Step is a one-pill regimen that contains 1.5 mg of levonorgestrel, taken immediately after unprotected intercourse. The exact mechanism of levonorgestrel EC is unknown but is thought to inhibit ovulation, disrupt follicular development, or interfere with the maturation of the corpus luteum. EC is not teratogenic and does not interrupt a pregnancy that has

<table>
<thead>
<tr>
<th>Table 4–20. Emergency contraception regimens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progestin-Only</td>
</tr>
<tr>
<td>Plan B or Next Choice</td>
</tr>
<tr>
<td>Plan B One-Step</td>
</tr>
<tr>
<td>Ulipristal Acetate</td>
</tr>
<tr>
<td>Ella</td>
</tr>
<tr>
<td>Estrogen and Progestin</td>
</tr>
<tr>
<td>Ovral, Ogestrel</td>
</tr>
<tr>
<td>Levlen, NorDette</td>
</tr>
<tr>
<td>Lo/Ovral, Low-oestrel, Levora, Quasence,</td>
</tr>
<tr>
<td>Cryselle</td>
</tr>
<tr>
<td>Jolessa, Portia, Seasonale, Trivora</td>
</tr>
<tr>
<td>Triphasil, Tri-levan</td>
</tr>
<tr>
<td>Seasonique</td>
</tr>
<tr>
<td>Empresse</td>
</tr>
<tr>
<td>Alesse, Lessina, Levitre</td>
</tr>
<tr>
<td>Aviane</td>
</tr>
<tr>
<td>Lutera</td>
</tr>
</tbody>
</table>
already implanted in the uterine lining. Therefore, pregnancy testing before use is not required. It is recommended that patients take these products within 72 hours of unprotected intercourse. EC has been studied up to 120 hours following unprotected intercourse; however, its efficacy diminishes with time from the event. EC is 90% effective if used within 24 hours, 75% effective if used within 72 hours, and approximately 60% effective if used within 120 hours. It is therefore important to counsel patients to take the medication as soon as possible following unprotected intercourse or contraception failure. EC could potentially prevent approximately 80% of unintended pregnancies and should be part of anticipatory guidance given to sexually active adolescents of both genders. Although these products have been available over the counter in recent years only for patients older than age 17 years (prompting consideration of advanced prescriptions for sexually active adolescents younger than age 17 years), regulations regarding the lower age limit for over-the-counter availability are in flux. A follow-up appointment should be conducted in 10–14 days after administration of EC for pregnancy testing, STI screening, and counseling regarding reproductive health and contraceptive use.

If an approved EC medication is not available, certain COCs containing levonorgestrel or norgestrel can also be used for EC in a two-dose regimen separated by 12 hours; this approach is known as the Yuzpe method (see Table 4–20). An antiemetic drug takes 30 minutes prior to pills containing estrogen may help control nausea. A pregnancy test is not required prior to prescription and administration of EC.

Ulipristal, marketed as ella, is a single pill containing 30 mg of ulipristal acetate that is available by prescription only and can be used within 120 hours after unprotected intercourse. Ulipristal binds to the human progesterone receptor and prevents binding of progesterone. Unlike levonorgestrel EC, a pregnancy test must be performed to exclude existing pregnancy before taking ulipristal because of the risk of fetal loss if used in the first trimester. Patients should also be counseled that a pregnancy test is indicated if their period is more than 7 days later than expected after taking ulipristal. Patients should be instructed to return for evaluation of the rare occurrence of ectopic pregnancy if severe abdominal pain occurs 3–5 weeks after use.

Providers should also be aware that insertion of ParaGard (copper IUD) within 5 days of unprotected intercourse is an additional method of emergency contraception available in the United States.
Presentation
Pregnancy is the most common cause of secondary amenorrhea and should be considered as a cause of even one missed period. The level of denial about the possibility of pregnancy is high and adolescents with undiagnosed pregnancies may present with abdominal pain, nausea or vomiting, breast tenderness, urinary frequency, dizziness, or other nonspecific symptoms. In addition to denial, difficult social situations can delay diagnosis and contribute to delay in seeking prenatal care. Young newly pregnant adolescents may fear violence from their partner or abandonment by their family. Clinicians should have a low threshold for suspecting pregnancy and obtaining pregnancy tests.

Diagnosis
Pregnancies are dated from the first day of the LMP. The estimated due date can be calculated by adding 7 days to the LMP, subtracting 3 months and adding 1 year. Pregnancy dating calendars are widely available on the Internet. A speculum examination is not mandatory at the time of pregnancy diagnosis for an asymptomatic adolescent. If there is vaginal spotting or bleeding, unusual vaginal discharge, symptoms of STI, pelvic pain, or abdominal pain, a speculum examination is required. The differential diagnostic possibilities include infection, miscarriage, ectopic pregnancy, and other disorders of early pregnancy. An 8-week gestational age uterus is about the size of an orange and a 12-week uterus is about the size of a grapefruit on bimanual examination. The uterine fundus is just palpable at the symphysis pubis at 12 weeks’ gestational age, midway between the symphysis and umbilicus at 16 weeks and typically at the umbilicus at 20 weeks. If the uterus is smaller than expected for pregnancy dates, possible diagnoses include inaccurate dates, false-positive test, ectopic pregnancy, or incomplete or missed abortion. A uterus that is larger than expected may be caused by inaccurate dates, twin gestation, molar pregnancy, or a corpus luteum cyst of pregnancy. Enzyme-linked immunosorbent assay test kits specific for the β-hCG subunit and sensitive to less than 50 mIU/mL of serum hCG can be performed on urine (preferably the day’s first voided specimen, because it is more concentrated) in less than 5 minutes and are accurate by the expected date of the missed period in almost all patients. Serum radioimmunoassay, also specific for the β-hCG subunit, is accurate within 7 days after fertilization and is helpful in ruling out ectopic pregnancy or threatened abortion. Serum hCG doubles approximately every 2 days in the first 6–7 weeks of the pregnancy and a gestational sac is identifiable using transvaginal ultrasonography at hCG levels of 1000–2000 mIU/mL. In the absence of an accurate LMP, ultrasonography for confirmation of the presence of an intrauterine pregnancy and accurate dating can be obtained.

Management
A. Counseling at the Time of Pregnancy Testing
When an adolescent presents for pregnancy testing, it is helpful, before performing the test, to find out what she hopes the result will be and what she thinks she will do if the test is positive. The diagnosis of pregnancy may be met with shock, fear, anxiety, happiness, or most likely a combination of emotions. The clinician must discuss all pregnancy options with the patient including termination or continuing with the pregnancy and either placing the infant for adoption or raising the infant. Patients should be informed of the gestational age and time frames required for the different options. If providers are not comfortable discussing the option of termination, the adolescent should be referred to a provider who is comfortable with comprehensive options counseling. Many teenagers need help in telling and involving their parents. It is also important to ascertain the teen’s safety and make appropriate referral to social services if there are legitimate concerns. If the patient knows what she wants to do, she should be referred to the appropriate resources. If a teenager is ambivalent about her plans, it is helpful to follow up in 1 week to be certain that a decision has been made. Avoiding a decision reduces the adolescent’s options and may result in poor pregnancy outcomes. Providers can help ensure that the patient obtains prenatal care if she has chosen to continue the pregnancy. In addition, counseling about healthful diet; folic acid supplementation (400 mcg/d); and avoiding alcohol, tobacco, and other drugs is important.

B. Pregnancy Outcomes
Young maternal age, low maternal prepregnancy weight, poor weight gain, delay in prenatal care, maternal depression, exposure to domestic violence, and low socioeconomic status contribute to low birth weight and increased neonatal mortality. The poor nutritional status of some teenagers, substance abuse, and high incidence of STIs also play a role in poor outcomes. Teenagers are at greater risk than adults for preeclampsia, eclampsia, iron-deficiency anemia, cephalopelvic disproportion, prolonged labor, premature labor, and maternal death.

Good family support, early prenatal care, and good nutrition can make a difference with several of these problems. The psychosocial consequences for the teenage mother and her infant are listed in Table 4–21. Teenagers who are pregnant require additional support from their caregivers. Multidisciplinary clinics for young mothers, if available, may be the best providers for pregnant adolescents. Adolescent mothers tend to be more negative and authoritative when disciplining their children. They may have inadequate knowledge of normal behavior and development. Providers can help by educating the adolescent mother during routine visits regarding appropriate discipline and expectations of her child’s behavior.

Postpartum contraceptive counseling and follow-up may help prevent additional pregnancies. In untreated girls, the
Table 4–21. Psychosocial consequences of pregnancy for the adolescent mother and her infant.

<table>
<thead>
<tr>
<th>Mother</th>
<th>Infant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased morbidity related to pregnancy</td>
<td>Greater health risks</td>
</tr>
<tr>
<td>Greater risk of eclampsia, anemia, prolonged labor, premature labor</td>
<td>Increased chance of low birth weight or prematurity</td>
</tr>
<tr>
<td>Increased chance of miscarriages, stillbirths</td>
<td>Increased risk of infant death</td>
</tr>
<tr>
<td>Increased chance of maternal mortality</td>
<td>Increased risk of injury and hospitalization by age 5 y</td>
</tr>
<tr>
<td>Decreased academic achievement</td>
<td>Decreased educational attainment</td>
</tr>
<tr>
<td>Less likely to get high school diploma, go to college, or graduate</td>
<td>Lower cognitive scores</td>
</tr>
<tr>
<td>Delayed education (average 2 y)</td>
<td>Decreased development</td>
</tr>
<tr>
<td>Lower occupational attainment and prestige</td>
<td>Greater chance of being behind grade or needing remedial help</td>
</tr>
<tr>
<td>Lower chance of stable employment (some resolution over time)</td>
<td>Lower chance of advanced academics</td>
</tr>
<tr>
<td>Lower job satisfaction</td>
<td>Lower academic aptitude as a teenager and perhaps a higher probability of dropping out of school</td>
</tr>
<tr>
<td>Lower income and wages</td>
<td>Psychosocial consequences</td>
</tr>
<tr>
<td>Greater dependence on public assistance</td>
<td>Greater risk of behavior problems</td>
</tr>
<tr>
<td>Less stable marital relationships</td>
<td>Poverty</td>
</tr>
<tr>
<td>Higher rates of single parenthood</td>
<td>Higher probability of living in a nonintact home while in high school</td>
</tr>
<tr>
<td>Earlier marriage (though less common than in the past)</td>
<td>Greater risk of adolescent pregnancy</td>
</tr>
<tr>
<td>Accelerated pace of marriage, separation, divorce, and remarriage</td>
<td></td>
</tr>
<tr>
<td>Faster pace of subsequent childbearing</td>
<td></td>
</tr>
<tr>
<td>High rate of repeat unintended pregnancy</td>
<td></td>
</tr>
<tr>
<td>More births out of marriage</td>
<td></td>
</tr>
<tr>
<td>Closer spacing of births</td>
<td></td>
</tr>
<tr>
<td>Larger families</td>
<td></td>
</tr>
</tbody>
</table>

risk of a second unintended pregnancy within the next 2 years is approximately 30%. Combined hormonal contraceptive options can be started 6 weeks after delivery in non-breast-feeding adolescents; progestin-only methods can be started immediately postpartum, even in breast-feeding adolescents.

Ectopic Pregnancy

In the United States, approximately 1%–2% of pregnancies are ectopic. Adolescents have the highest mortality rate from ectopic pregnancy, most likely related to delayed diagnosis. Risk factors include history of PID or STIs. Repeat infections with *Chlamydia* increase risk for ectopic pregnancy, as does cigarette smoking. Conception while on progestin-only methods of contraception also increases the risk of ectopic pregnancy, because of the progestin-mediated decrease in tubal motility. The classic presentation is missed menstrual period, abdominal pain, and vaginal bleeding. A urine pregnancy test is usually positive by the time of presentation. The patient may have abdominal or pelvic tenderness, adnexal tenderness, and/or an adnexal mass on examination. The uterus is typically either normal sized or slightly enlarged. Diagnosis is based on serial serum quantitative hCG levels and transvaginal ultrasound. Patients should be referred urgently to an obstetrician gynecologist for management to avoid a ruptured ectopic pregnancy which is a surgical emergency. These patients often present in shock with an acute surgical abdomen.

Substance abuse tends to be a chronic, progressive disease. The first or initiation stage—from nonuser to user—is such a common feature of becoming an American adult that many authorities call it normative behavior. At this stage, substance use is typically limited to experimentation with tobacco or alcohol (so-called gateway substances). During adolescence, young people are expected to establish an independent, autonomous identity. They try out a variety of behaviors within the safety of families and peer groups. This process often involves experimentation with psychoactive substances, usually in culturally acceptable settings. Progression to the second or continuation stage of substance abuse is a nonnormative risk behavior with the potential to compromise adolescent development. The American Psychiatric Association has outlined criteria to judge the severity of substance use that progresses beyond the experimentation stage to substance abuse or dependency. Progression within a class of substances (eg, from beer to liquor) and progression across classes of substances (eg, from alcohol to heroin) are the third and fourth stages of substance abuse. Individuals at these stages are polysubstance abusers, and most manifest one or more symptoms of dependency, such as tolerance or withdrawal. The transition from one stage to the next is often a cyclic process of regression, cessation, and relapse. Common physiologic effects and symptoms of intoxication (which can occur at any stage) and withdrawal (a symptom of dependency) for the major classes of substances are shown in Tables 5–1 and 5–2.

SCAPE OF THE PROBLEM

The best current source of information on the prevalence of substance abuse among American adolescents is the Monitoring the Future study (2013), which tracks health-related behaviors in a sample of over 45,000 8th, 10th, and 12th graders in the United States. This study probably understates the magnitude of the problem of substance abuse because it excludes high-risk adolescent groups—school dropouts, runaways, and those in the juvenile justice system. Substance abuse among American youth rose in the 1960s and 1970s, declined in the 1980s, peaked in the 1990s, and declined in the early 2000s. There was a decrease in substance use initiation between 1999 and 2008, but this trend reversed between 2008 and 2010 and substance use in adolescents continues to be a significant problem. The lifetime use of any illicit drug was 49% in 2012. The use of alcohol, tobacco, and illicit drugs doubled from 8th to 12th grade. The use of alcohol and cigarettes more than tripled from adolescence (12–17 years) to young adulthood (18–25 years). Initiation of substance abuse is rare after age 20 years.

The Monitoring the Future survey and others show that alcohol is the most frequently abused substance in the United States. Experimentation with alcohol typically begins in or before middle school. It is more common among boys than girls. It is most common among whites, less common among Hispanics and Native Americans, and least common among blacks and Asians. Almost three-fourths (69%) of adolescents consume alcohol before graduating from high school. Approximately one-sixth (16%) of eighth graders and 54% of high school students report being drunk at least once in their life. Marijuana is the most commonly used illicit drug in the United States. First experiences with marijuana and the substances listed in Table 5–2 typically occur during middle or early high school. Marijuana use continued to rise in 2011 and leveled off in 2012 among all students. The lifetime prevalence of marijuana use among 12th graders in 2012 was 45.2% and daily use of marijuana continued
Table 5–1. Physiologic effects of commonly abused mood-altering substances by organ/system.

<table>
<thead>
<tr>
<th>Eyes/pupils</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mydriasis</td>
<td>Amphetamines, MDMA, or other stimulants; cocaine; glutethimide; jimson weed; LSD. Withdrawal from alcohol and opioids</td>
</tr>
<tr>
<td>Miosis</td>
<td>Alcohol, barbiturates, benzodiazepines, opioids, PCP</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>Alcohol, barbiturates, benzodiazepines, inhalants, PCP</td>
</tr>
<tr>
<td>Conjunctival injection</td>
<td>LSD, marijuana</td>
</tr>
<tr>
<td>Lacrimation</td>
<td>Inhalants, LSD. Withdrawal from opioids</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardiovascular</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachycardia</td>
<td>Amphetamines, MDMA, or other stimulants; cocaine; LSD; marijuana; PCP. Withdrawal from alcohol, barbiturates, benzodiazepines</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Amphetamines, MDMA, or other stimulants; cocaine; LSD; marijuana; PCP. Withdrawal from alcohol, barbiturates, benzodiazepines</td>
</tr>
<tr>
<td>Hypotension</td>
<td>Barbiturates, opioids. Orthostatic: marijuana. Withdrawal from depressants</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>Amphetamines, MDMA, or other stimulants; cocaine; inhalants; opioids; PCP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression</td>
<td>Opioids, depressants, GHB</td>
</tr>
<tr>
<td>Pulmonary edema</td>
<td>Opioids, stimulants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core body temperature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated</td>
<td>Amphetamines, MDMA, or other stimulants; cocaine; PCP. Withdrawal from alcohol, barbiturates, benzodiazepines, opioids</td>
</tr>
<tr>
<td>Decreased</td>
<td>Alcohol, barbiturates, benzodiazepines, opioids, GHB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peripheral nervous system response</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperreflexia</td>
<td>Amphetamines, MDMA, or other stimulants; cocaine; LSD; marijuana; methaqualone; PCP. Withdrawal from alcohol, barbiturates, benzodiazepines</td>
</tr>
<tr>
<td>Hyporeflexia</td>
<td>Alcohol, barbiturates, benzodiazepines, inhalants, opioids</td>
</tr>
<tr>
<td>Tremor</td>
<td>Amphetamines or other stimulants, cocaine, LSD. Withdrawal from alcohol, barbiturates, benzodiazepines, cocaine</td>
</tr>
<tr>
<td>Ataxia</td>
<td>Alcohol, amphetamines, MDMA, or other stimulants; barbiturates; benzodiazepines; inhalants; LSD; PCP; GHB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Central nervous system response</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperalertness</td>
<td>Amphetamines, MDMA, or other stimulants; cocaine</td>
</tr>
<tr>
<td>Sedation, somnolence</td>
<td>Alcohol, barbiturates, benzodiazepines, inhalants, marijuana, opioids, GHB</td>
</tr>
<tr>
<td>Seizures</td>
<td>Alcohol, amphetamines, MDMA, or other stimulants; cocaine; inhalants; methaqualone; opioids (particularly meperidine, propoxyphene). Withdrawal from alcohol, barbiturates, benzodiazepines</td>
</tr>
<tr>
<td>Hallucinations</td>
<td>Amphetamines, MDMA, or other stimulants; cocaine; inhalants; LSD; marijuana; PCP. Withdrawal from alcohol, barbiturates, benzodiazepines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gastrointestinal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea, vomiting</td>
<td>Alcohol, amphetamines or other stimulants, cocaine, inhalants, LSD, opioids, peyote, GHB. Withdrawal from alcohol, barbiturates, benzodiazepines, cocaine, opioids</td>
</tr>
</tbody>
</table>

Table 5-2. Effects of commonly abused mood-altering substances by agent.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Pharmacology</th>
<th>Intoxication</th>
<th>Withdrawal</th>
<th>Chronic Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol (ethanol)</td>
<td>Depressant; 10 g/drink Drink: 12-oz beer, 4-oz wine, 1½-oz liquor; one drink increases blood level by approximately 0.025 g/dL (varies by weight)</td>
<td>Legal: 0.05-0.1 g/dL (varies by state) Mild (< 0.1 g/dL): disinhibition, euphoria, mild sedation, and impaired coordination Moderate (0.1-0.2 g/dL): impaired mentation and judgment, slurred speech, ataxia Severe: > 0.3 g/dL: confusion, stupor >0.4 g/dL coma, depressed respiration</td>
<td>Mild: headache, tremors, nausea and vomiting ("hangover") Severe: fever, sweaty, seizure, agitation, hallucination, hypertension, tachycardia Delirium tremens (chronic use)</td>
<td>Hepatitis, cirrhosis, cardiac disease, Wernicke encephalopathy, Korsakoff syndrome</td>
</tr>
<tr>
<td>Marijuana (cannabis)</td>
<td>δ-9-Tetrahydrocannabinol (THC); 4-6% in marijuana; 20-30% in hashish</td>
<td>Low: euphoria, relaxation, impaired thinking. High: mood changes, depersonalization, hallucinations Toxic: panic, delusions, paranoia, psychosis</td>
<td>Irritability, disturbed sleep, tremor, nystagmus, anorexia, diarrhea, vomiting</td>
<td>Cough, gynecomastia, low sperm count, infertility, amotivational syndrome, apathy</td>
</tr>
<tr>
<td>Cocaine</td>
<td>Stimulant; releases biogenic amines; concentration varies with preparation and route of administration</td>
<td>Hyperalert, increased energy, confident, insomnia, anxiety, paranoia, dilated pupils, tremors, seizures, hypertension, arhythmia, tachycardia, fever, dry mouth Toxic: coma, psychosis, seizure, myocardial infarction, stroke, hyperthermia, rhabdomyolysis</td>
<td>Drug craving, depression, dysphoria, irritability, lethargy, tremors, nausea, hunger</td>
<td>Nasal septum ulceration, tremor, nystagmus, anorexia, diarrhea, vomiting</td>
</tr>
<tr>
<td>Opioids (heroin, morphine, codeine, methadone, opium, fentanyl, meperidine, propoxyphene)</td>
<td>Depressant; binds central opioid receptor; variable concentrations with substance</td>
<td>Euphoria, sedation, impaired thinking, low blood pressure, pinpoint pupil, urinary retention Toxic: hypotension, arhythmia, depressed respiration, stupor, coma, seizure, death</td>
<td>Only after > 3 wk of regular use: drug craving, rhinorrhea, lacrimation, muscle aches, diarrhea, anxiety, tremors, hypertension, tachycardia</td>
<td>Intravenous drug use: cellulitis, endocarditis, embolisms, HIV</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>Stimulant; sympathomimetic</td>
<td>Euphoria, hyperalert state, hyperactive, hypertension, arhythmia, fever, flushing, dilated pupils, tremor, ataxia, dry mouth</td>
<td>Lethargy, fatigue, depression, anxiety, nightmares, muscle cramps, abdominal pain, hunger</td>
<td>Paranoia, psychosis</td>
</tr>
<tr>
<td>MDMA (ecstasy)</td>
<td>Stimulant, psychedelic; releases serotonin, dopamine, and norepinephrine; inhibits reuptake of neurotransmitters; increases dopamine synthesis; inhibits MAO</td>
<td>Enhanced empathy, euphoria, increased energy and self-esteem, tachycardia, hypertension, increased psychomotor drive, sensory enhancement, illusions, difficulty concentrating and retaining information, headaches, palpitations, flushing, hyperthermia Toxic: frank psychosis, coma, seizures, intracranial hemorrhage, cerebral infarction, asystole, pulmonary edema, multisystem organ failure, acute renal or hepatic failure, ARDS, DIC, SIADH, death</td>
<td>None</td>
<td>Paranoid psychosis</td>
</tr>
</tbody>
</table>

(Continued)
Table 5-2. Effects of commonly abused mood-altering substances by agent. (Continued)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Pharmacology</th>
<th>Intoxication</th>
<th>Withdrawal</th>
<th>Chronic Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHB (liquid ecstasy)</td>
<td>Depressant, endogenous CNS transmitter; influences dopaminergic activity, higher levels of GABA-B activity</td>
<td>10 mg/kg: sleep 30 mg/kg: memory loss 50 mg/kg: general anesthesia</td>
<td>Only after chronic use with dosing every 3 h. Early: mild tremor, tachycardia, hypertension, diaphoresis, moderate anxiety, insomnia, nausea, vomiting Progressive: confusion, delirium, hallucinations, autonomic instability, death</td>
<td>Wernicke-Korsakoff syndrome</td>
</tr>
<tr>
<td>Sedative-hypnotics (barbiturates, benzodiazepines, methaqualone)</td>
<td></td>
<td>Toxic: CNS and respiratory depression, aggressiveness, seizures, bradycardia, apnea</td>
<td>Only after chronic use with dosing every 3 h. Early: mild tremor, tachycardia, hypertension, diaphoresis, moderate anxiety, insomnia, nausea, vomiting Progressive: confusion, delirium, hallucinations, autonomic instability, death</td>
<td>Paranoia</td>
</tr>
<tr>
<td>Hallucinogens (LSD, peyote, mescaline, mushrooms, nutmeg, jimson weed)</td>
<td>Inhibition of serotonin release</td>
<td>Illusions, depersonalization, hallucination, anxiety, paranoia, ataxia, dilated pupils, hypertension, dry mouth Toxic: coma, terror, panic, “crazy feeling”</td>
<td>None</td>
<td>Flashbacks</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td>Dissociative anesthetic</td>
<td>Low dose (< 5 mg): illusions, hallucinations, ataxia, hypertension, flushing Moderate dose (5-10 mg): hyperthermia, salivation, myoclonus High dose (> 10 mg): rigidity, seizure, arrhythmia, coma, death</td>
<td>None</td>
<td>Flashbacks</td>
</tr>
<tr>
<td>Inhalants (toluene, benzene, hydrocarbons, and fluorocarbons)</td>
<td>Stimulation progressing to depression</td>
<td>Euphoria, giddiness, impaired judgment, ataxia, rhinorrhea, salivation, hallucination Toxic: respiratory depression, arrhythmia, coma, stupor, delirium, sudden death</td>
<td>None</td>
<td>Permanent damage to nerves, liver, heart, kidney, brain</td>
</tr>
<tr>
<td>Nicotine</td>
<td>Releases dopamine, 1 mg nicotine per cigarette</td>
<td>Relaxation, tachycardia, vertigo, anorexia</td>
<td>Drug craving, irritability, anxiety, hunger, impaired concentration</td>
<td>Permanent damage to lung, heart, cardiovascular system</td>
</tr>
<tr>
<td>Anabolic steroids*</td>
<td>Bind steroid receptor Stacking: use many types simultaneously Pyramiding: increase dosage</td>
<td>Increased muscle bulk, strength, endurance, increased drive, hypogonadism, low sperm count, gynecomastia, decreased libido, virilization, irregular menses, hepatitis, early epiphyseal closure, aggressiveness</td>
<td>Drug craving, dysphoria, irritability, depression</td>
<td>Tendon rupture, cardiomyopathy, atherosclerosis, peliosis hepatitis (orally active C17 derivatives of testosterone are especially hepatotoxic)</td>
</tr>
</tbody>
</table>

ARDS, acute respiratory distress syndrome; CNS, central nervous system; DIC, disseminated intravascular coagulation; GABA, γ-aminobutyric acid; GHB, γ-hydroxybutyrate; HIV, human immunodeficiency virus; LSD, lysergic acid diethylamide; MAO, monoamine oxidase; MDMA, methylenedioxymethamphetamine; SIADH, syndrome of inappropriate secretion of antidiuretic hormone.

*Despite conventional assumptions, scientific studies show that anabolic steroids do not improve aerobic athletic performance and improve strength only in athletes trained in weight lifting before they begin using steroids and who continue to train and consume a high-protein diet.
to increase, with 1 in 16 (6.5%) high school seniors a daily or near daily user. Synthetic marijuana, often called spice and K-2, was scheduled by the Drug Enforcement Agency in 2011. Over 1 in 10 (11.4%) of 12 graders had used it in the past year. In the past decade, LSD, and methamphetamine use has decreased, while cocaine use has increased. Recently, ecstasy use has increased after a steady decline of several years. In the past 10 years, there has also been an increase in the recreational use of prescription medications and over-the-counter (OTC) cough and cold medications among adolescents. In one study, 1 in 10 high school seniors reported nonmedical use of prescription opioids, and almost half (45%) used opioids to “relieve physical symptoms” in the past year. Vicodin use decreased among 12th graders to 8% in 2010, but it remains one of the most widely used illicit drugs. Overall, the psychotherapeutic drugs (amphetamine, sedatives, tranquilizers, and narcotics other than heroin) make up a large part of the overall US drug problem. Medication used in the management of chronic pain, depression, anxiety, and attention-deficit/hyperactivity disorder can all be drugs of abuse.

Studies indicate that variations in the popularity of a substance of abuse are influenced by changes in the perceived risks and benefits of the substance among adolescent users. For example, the use of inhalants was rising until 2006, when both experience and educational efforts resulted in a perception of these substances as being “dangerous.” As the perception of danger decreases, old drugs may reappear in common use. This process is called “generational forgetting.” Currently, use of LSD, inhalants, and ecstasy all reflect the effects of generational forgetting. Legalization of marijuana in certain states in the United States may increase the scope and breadth of the substance abuse problem. A recent study has shown an increase of medical marijuana use among adolescents in substance abuse programs.

Supplement Use & Abuse

Use of supplements or special diets to enhance athletic performance dates to antiquity. Today, many elite and casual athletes use ergogenic (performance-enhancing) supplements in an attempt to improve performance. The most popular products used by adolescents are anabolic-androgenic steroids, steroid hormone precursors, creatine, human growth hormone, diuretics, and protein supplements. Anabolic-androgenic steroids increase strength and lean body mass and lessen muscle breakdown. However, they are associated with side effects including acne, liver tumors, hypertension, premature closure of the epiphysis, ligamentous injury, and precocious puberty. In females, they can cause hirsutism, male pattern baldness, and virilization; in boys, they can cause gynecomastia and testicular atrophy. Creatine increases strength and improves performance but can cause dehydration, muscle cramps, and has potential for renal toxicity. Human growth hormone has no proven effects on performance although it decreases subcutaneous fat. Potential risks include coarsening of facial features and cardiovascular disease. Strength athletes (ie, weight lifters) use protein powders and shakes to enhance muscle repair and mass. The amount of protein consumed often greatly exceeds the recommended daily allowance for weight lifters and other resistance-training athletes (1.6–1.7 g/kg/d). Excess consumption of protein provides no added strength or muscle mass and can provoke renal failure in the presence of underlying renal dysfunction. The American Academy of Pediatrics (AAP) cautions against the use of performance-enhancing substances.

As the use of supplements and herbs increases, it is increasingly important for pediatric care providers to be familiar with their common side effects. The Internet has become a source for information about and distribution of these products. The easy accessibility, perceived low risk, and low cost of these products significantly increase the likelihood that they will become substances of abuse by adolescents.

Bath Salts

Since 2010, there has been an increase in the use of a newer drug of abuse called “bath salts.” These products, which are not related to hygienic products, are also known as Vanilla Sky or Ivory Wave. The main ingredient is 4-methylenedioxypyrovalerone, a central nervous stimulant that acts by inhibiting norepinephrine-dopaminergic reuptake. The effects of these substances are similar to those of stimulants like PCP, ecstasy, and LSD (see Tables 5–1 and 5–2). Overdoses can potentially be severe and lethal. Their use increased rapidly in 2010, peaked in the first half of 2011, and declined by half in 2012. The recent decrease in use occurred due to efforts of drug enforcement agencies and media dissemination of messages about the dangers of bath salts, resulting in increased perception of risk. Additionally, they are now less easily available via the Internet. These substances cannot be detected by routine drug screen, which may complicate management in the emergency department. The 2012 Monitoring the Future survey found annual prevalence rate of use to be 1.3% among grade 12 adolescents.

MORBIDITY DATA

Use and abuse of alcohol or other mood-altering substances in adolescents in the United States are tightly linked to adolescents’ leading causes of death, i.e., motor vehicle accidents, unintentional injury, homicide, and suicide. Substance abuse is also associated with physical and sexual abuse. Drug use and abuse contribute to other high-risk behaviors, such as unsafe sexual activity, unintended pregnancy, and sexually transmitted disease. Adolescents may also be involved with selling of drugs.

Risks associated with tobacco, alcohol, and cocaine are listed in Table 5–2. Less well known are the long- and short-term adolescent morbidities connected with the currently most popular illicit drugs, marijuana, and ecstasy. The active ingredient in marijuana, Δ9-tetrahydrocannabinol (THC), transiently causes tachycardia, mild hypertension, and bronchodilation. Regular use can cause lung changes similar to those seen in tobacco smokers. Heavy use decreases fertility in both sexes and impairs immunocompetence. It is also associated with abnormalities of cognition, learning, coordination, and memory. It is possible that heavy marijuana use is the cause of the so-called amotivational syndrome, characterized by inattention to environmental stimuli and impaired goal-directed thinking and behavior. Analysis of confiscated marijuana recently has shown increasing THC concentration and adulteration with other substances.

The popularity and accessibility of ecstasy is again increasing among adolescents. Chronic use is associated with progressive decline of immediate and delayed memory, and with alterations in mood, sleep, and appetite that may be permanent. Even first-time users may develop frank psychosis indistinguishable from schizophrenia. Irreversible cardiomyopathy, noncardiogenic pulmonary edema, and pulmonary hypertension may occur with long-term use. Acute overdose can cause hyperthermia and multiorgan system failure.

Prenatal and environmental exposure to abused substances also carries health risks. Parental tobacco smoking is associated with low birth weight in newborns, sudden infant death syndrome, bronchiolitis, asthma, otitis media, and fire-related injuries. Maternal use of marijuana during pregnancy is associated with an increased risk of sudden infant death syndrome. In-utero exposure to alcohol may produce fetal malformations, intrauterine growth restriction, and brain injury.

PREDICTING THE PROGRESSION FROM USE TO ABUSE

Initially, most adolescents use mood-altering substances intermittently or experimentally. The challenge to pediatric healthcare providers is to recognize warning signs, identify potential abusers early, and intervene in an effective fashion before acute or chronic use produces morbidity. The prediction of progression from use to abuse is best viewed within the biopsychosocial model. Substance abuse is a symptom of personal and social maladjustment as often as it is a cause. Because there is a direct relationship between the number of risk factors listed in Table 5–3 and the frequency of substance abuse, a combination of risk factors is the best indicator of risk. Even so, most teenagers with multiple risk characteristics never progress to substance abuse. It is unclear why only a minority of young people exhibiting the high-risk characteristics listed in Table 5–3 go on to abuse substances, but presumably the protective factors listed in Table 5–3 give most adolescents the resilience to cope with stress in more socially adaptive ways. Being aware of the risk domains in Table 5–3 will help physicians identify youngsters most apt to need counseling about substance abuse.

Table 5–3. Factors that influence the progression from substance use to substance abuse.

<table>
<thead>
<tr>
<th>Enabling Risk Factors</th>
<th>Potentially Protective Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Societal and community</td>
<td></td>
</tr>
<tr>
<td>Experimentation encouraged by media</td>
<td>Regular involvement in church activities</td>
</tr>
<tr>
<td>Illicit substances available</td>
<td>Support for norms and values of society</td>
</tr>
<tr>
<td>Extreme economic deprivation</td>
<td>Strict enforcement of laws prohibiting substance use among minors</td>
</tr>
<tr>
<td>Neighborhood disorganization, crowding</td>
<td>and abuse among adults</td>
</tr>
<tr>
<td>Tolerance of licit and illicit substance use</td>
<td>Neighborhood resources, supportive adults</td>
</tr>
<tr>
<td>School</td>
<td></td>
</tr>
<tr>
<td>Lack of commitment to school or education</td>
<td>Strong commitment to school or education</td>
</tr>
<tr>
<td>Truancy</td>
<td>Future-oriented goals</td>
</tr>
<tr>
<td>Academic failure</td>
<td>Achievement oriented</td>
</tr>
<tr>
<td>Early, persistent behavior problems</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td></td>
</tr>
<tr>
<td>Models of substance abuse and other unconventional behavior</td>
<td>Models of conventional behavior</td>
</tr>
<tr>
<td>Dysfunctional parenting styles; excessive authority or permissiveness</td>
<td>Attachment to parents</td>
</tr>
<tr>
<td>High family conflict; low bonding</td>
<td>Cohesive family</td>
</tr>
<tr>
<td>Peers</td>
<td></td>
</tr>
<tr>
<td>Peer rejection in elementary grades</td>
<td>Popular with peers</td>
</tr>
<tr>
<td>Substance use prevalent among peers</td>
<td>Abstinent friends</td>
</tr>
<tr>
<td>Peer attitudes favorable to substance abuse and unconventional behavior</td>
<td>Peer attitudes favor conventional behavior</td>
</tr>
<tr>
<td>Individual</td>
<td></td>
</tr>
<tr>
<td>Genetic predisposition</td>
<td>Positive self-concept, good self-esteem</td>
</tr>
<tr>
<td>Psychological diagnoses (attention-deficit/hyperactivity disorder; antisocial personality)</td>
<td>Intolerance of deviance</td>
</tr>
<tr>
<td>Depression and low self-esteem</td>
<td>Internally motivated, takes charge of problems</td>
</tr>
<tr>
<td>Alienation and rebelliousness</td>
<td></td>
</tr>
<tr>
<td>Sexual or physical abuse</td>
<td></td>
</tr>
<tr>
<td>Early onset of deviant behavior or delinquency</td>
<td></td>
</tr>
<tr>
<td>Early onset of sexual behavior</td>
<td></td>
</tr>
<tr>
<td>Aggressive</td>
<td></td>
</tr>
</tbody>
</table>
Office Screening

The AAP Committee on Substance Abuse recommends that pediatricians include discussions of substance abuse as part of their anticipatory care. This should include screening for substance abuse with parents at the first prenatal visit. Given the high incidence of substance abuse and the subtlety of its early signs and symptoms, a general psychosocial assessment is the best way to screen for substance abuse among adolescents. The universal screening approach outlined in the American Medical Association (AMA) Guidelines for Adolescent Preventive Services (GAPS) is a good guide for routine screening and diagnosis. Interviewing and counseling techniques and methods for taking a psychosocial history are discussed in Chapter 4. In an atmosphere of trust and confidentiality, physicians should ask routine screening questions of all patients and be alert for addictive diseases, recognizing the high level of denial often present in addicted patients. Clues to possible substance abuse include truancy, failing grades, problems with interpersonal relationships, delinquency, depressive affect, chronic fatigue, recurrent abdominal pain, chest pains or palpitations, headache, chronic cough, persistent nasal discharge, and recurrent complaints of sore throat. Substance abuse should be included in the differential diagnosis of all behavioral, family, psychosocial, and medical problems. A family history of drug addiction or abuse should raise the level of concern about drug abuse in the pediatric patient. Possession of promotional products such as T-shirts and caps with cigarette or alcohol logos should also be a red flag because teenagers who own these items are more likely to use the products they advertise. Pediatricians seeing patients in emergency departments, trauma units, or prison should have an especially high index of suspicion.

In the primary care setting, insufficient time and lack of training are the greatest barriers to screening adolescents for substance abuse. Brief questionnaires can be used if time does not allow for more detailed investigation. A screening instrument that has been rigorously studied in primary care settings is the CAGE questionnaire. CAGE is a mnemonic derived from the first four questions that asks the patient questions regarding their substance use. These are their need to reduce it, annoyance if asked about it, feeling guilty about the use, and the need of the drug/alcohol as an eye opener. A score of 2 or more is highly suggestive of substance abuse. Although constructed as a screening tool for alcohol abuse in adults, the CAGE questionnaire can be adapted to elicit information about use of other mood-altering substances by pediatric patients and their close contacts (eg, parents and older siblings). Clinicians may find it helpful to use such questionnaires to stimulate discussion of the patient’s self-perception of his or her substance use. For example, if an adolescent admits to a previous attempt to cut down on drinking, this provides an opportunity to inquire about events that may have led to the attempt. Unfortunately, despite guidance to screen adolescents for substance abuse, recent studies demonstrate that clinicians do not regularly ask/advice adolescents about substance use.

EVALUATION OF SUBSTANCE ABUSE

Diagnosis

When the psychosocial history suggests the possibility of substance use, the primary tasks of the diagnostic interview are the same as for the evaluation of other medical problems (Table 5–4).
Table 5–4. Evaluation of positive psychosocial screens for substance abuse.

I. Define the extent of the problem by determining:
 - Age at onset of substance use
 - Which substances are being used
 - Circumstances of use
 - Where?
 - When?
 - With whom?
 - To what extent substances are being used
 - How frequently?
 - How much (quantity)?
 - With what associated symptoms (eg, tolerance, withdrawal)?
 - With what result?
 - What does the patient gain from becoming high?
 - Does the patient get into risky situations while high?
 - Does the patient engage in behaviors while high that are later regretted?

II. Define the cause of the problem

First, specific information about the extent and circumstances of the problem is gathered. Eliciting information through multiple-choice questions is a useful technique. For example, “Has anything really good ever happened to you when you are high? Some of my patients like to get high because they feel good; others find it helps them relax and be sociable with friends; and some find it helps them forget their problems. Are any of these things true for you?”

Second, the provider should determine why the patient has progressed from initiation to the continuation or maintenance phase of substance abuse. The cause may be different at different periods of development. Although peer group characteristics are one of the best predictors of substance use among early and middle adolescents, this is not so among older adolescents and young adults.

Although few children and adolescents will have been abusing substances long enough to have developed overt signs and symptoms, it is important to look for them on physical examination. Positive physical findings can be a tool to penetrate a patient’s denial and convince him or her of the significance of alcohol or drug use.

Table 5–5. Common comorbid conditions associated with adolescent substance abuse.

1. Attention-deficit/hyperactivity disorder
2. Bipolar disorder
3. Depression disorder
4. Anxiety disorders (often with depressive disorders)

Affective disorder, anxiety disorder, and mania are most strongly associated with alcohol and drug dependence. Attention-deficit/hyperactivity has also been closely linked with adolescent substance abuse. Adolescents with depression are likely to use drugs in an attempt to feel pleasure, but this type of self-medication may exacerbate their underlying condition. Although it is often difficult to determine which diagnosis is primary, it is important for pediatric healthcare providers to recognize the possibility of a comorbid condition and provide appropriate treatment. Finally, in addition to identifying psychiatric comorbidities, it is imperative that providers look for medical conditions that mimic symptoms of drug withdrawal or intoxication.

Comorbidity

Comorbidities, especially other psychiatric disorders, are common among substance-abusing patients (Table 5–5).

Pharmacologic Screening

The use of urine and blood testing for detecting substance abuse is controversial. The consensus is that pharmacologic screening should be reserved for situations in which behavioral dysfunction is of sufficient concern to outweigh the practical and ethical drawbacks of testing. The AAP recommends testing under certain circumstances (eg, an inexplicably obtunded patient in the emergency department), but discourages routine screening for the following reasons: (1) voluntary screening is rarely truly voluntary owing to the negative consequences for those who decline to participate; (2) infrequent users or individuals who have not used substances recently may be missed; (3) confronting substance-abusing individuals with objective evidence of their use has little or no effect on behavior; and (4) the role of healthcare...
providers is to provide counseling and treatment, not law enforcement, so drug testing should not be done for the purpose of detecting illegal use. If testing is to be performed, the provider should discuss the plan for screening with the patient, explain the reasons for it, and obtain informed consent. The AAP does not consider parental request and permission sufficient justification for involuntary screening of mentally competent minors.

If testing is to be performed, it is imperative that it be done accurately and that the limitations of testing be understood. Tests range from inexpensive chromatographic spot tests, which can be performed in the office, to gas chromatography and mass spectrometry, which require specialized laboratory equipment and are usually reserved for forensic investigations. Most commercial medical laboratories use the enzyme multiplication immunoassay technique, in which a sample of the fluid to be tested is added to a test reagent containing a known quantity of radiolabeled index drug. If the index drug is present in the patient’s urine or serum, it competes with the radiolabeled drug for binding sites on the test kit antibody. The unbound or excess drug can then be quantified with a spectrophotometer. Most of the commonly abused mood-altering substances, with the exception of solvents and inhalants, can be detected by this method.

Interpretation of results is complicated by false-positives resulting from antibody cross-reactions with some medications and substances (Table 5–6) or from a patient’s passive exposure to illicit substances. The most common cause of false-negative tests is infrequent use. Table 5–7 shows the duration of detectability in the urine after last use by class of substance and duration of use. Detectability ranges from a few hours for alcohol to several weeks for regular marijuana use. False-negative results can also occur if the patient alters or adulterates the test specimen. Some of the commercial products used to adulterate samples include glutaraldehyde, nitrite, pyridinium chlorochromate, peroxidase, and peroxide (stealth). Household products such as bleach, vinegar, Visine® eye drops (for marijuana), strong alkali drain cleaners, and detergents are also used. Teenagers should be advised that, despite street lore, ingesting these compounds is an ineffective and potentially dangerous way to prevent drug detection in the urine. Close observation during collection and testing the temperature, specific gravity, and pH of urine samples may detect attempts at deception.

Home drug-testing products are available for parents and can be procured via the Internet; however, these products have limitations and potential risks. The AAP recommends that home and school-based drug testing not be implemented until the safety and efficacy of these procedures can be established. It further recommends that parents be encouraged to consult the adolescent’s primary care provider rather than relying on home drug-testing products.

<table>
<thead>
<tr>
<th>Causes of false-positive drug screens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioids</td>
</tr>
<tr>
<td>Poppy seeds</td>
</tr>
<tr>
<td>Dextromethorphan</td>
</tr>
<tr>
<td>Chlorpromazine</td>
</tr>
<tr>
<td>Diphenoxylate</td>
</tr>
<tr>
<td>Amphetamines</td>
</tr>
<tr>
<td>Ephedrine</td>
</tr>
<tr>
<td>Phenylephrine</td>
</tr>
<tr>
<td>Pseudoephedrine</td>
</tr>
<tr>
<td>N-acetylpromamine</td>
</tr>
<tr>
<td>Chloroquine</td>
</tr>
<tr>
<td>Procainamide</td>
</tr>
<tr>
<td>Phencyclidines</td>
</tr>
<tr>
<td>Dextromethorphan</td>
</tr>
<tr>
<td>Diphenhydramine</td>
</tr>
<tr>
<td>Chlorpromazine</td>
</tr>
<tr>
<td>Doxylamine</td>
</tr>
<tr>
<td>Thioridazine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5–7. Duration of urine positivity for selected drugs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug Class</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Amphetamines</td>
</tr>
<tr>
<td>Barbiturates</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Benzodiazepines</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cocaine metabolites</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
</tr>
<tr>
<td>Methadone</td>
</tr>
<tr>
<td>Opioids</td>
</tr>
<tr>
<td>Propoxyphene</td>
</tr>
<tr>
<td>Cannabinoid</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Methaqualone</td>
</tr>
<tr>
<td>Phencyclidine</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Anabolic steroids</td>
</tr>
</tbody>
</table>

CHAPTER 5

Office-Based Treatment

The AMA and the AAP recommend that all children and adolescents receive counseling about the dangers of substance use and abuse from their primary care providers. By offering confidential healthcare services and routinely counseling about the risks associated with drug abuse, primary care providers can help most patients avoid the adverse consequences of experimentation with mood-altering substances. However, more intervention is required for youngsters in environments where substance abuse is regarded as acceptable recreational behavior. Counseling strategies appropriate for patients who wish to change their behavior may be ineffective for patients who do not consider use of mood-altering substances to be a problem. It may therefore be preferable to begin discussions about treatment by helping youngsters consider alternative ways of meeting the needs that substance use is currently addressing. The clinician in this way may help the patient devise alternatives that are more attractive than substance use. Brief interventions for adolescents have yielded some improvement among high-risk youth. However, few substance-abusing teenagers will choose to quit because of a single conversation, even with a highly respected healthcare provider. The message is most effective when offered repeatedly from many sources—family, peers, guidance counselors, and teachers. Motivational interviewing and computer-facilitated screening and brief advice for substance-abusing teens have shown promise.

Assessment of the patient’s readiness to change is a critical first step in office-based intervention. Clinicians should consider the construct presented in Table 5–8. In theory, individuals pass through this series of stages in the course of changing problem behaviors. To be maximally effective, providers should tailor their counseling messages to the patient’s stage of readiness to change.

Once it has been established that a patient is prepared to act on information about treatment, the next step is to select the program that best fits his or her individual needs. Most drug treatment programs are not designed to recognize and act on the individual vulnerabilities that have predisposed the patient to substance abuse. When programs are individualized, even brief (5- to 10-minute) counseling sessions may promote reductions in cigarette smoking and drinking. This strategy appears to be most effective when the healthcare provider’s message is part of an office-wide program so that the entire staff reinforces the cessation message with every patient.

Table 5–9. “Five A’s” for tobacco cessation.

| Ask about tobacco use from all patients |
| Advise all tobacco users to quit |
| Assess willingness and motivation for tobacco user to make a quit attempt |
| Assist in the quit attempt |
| Arrange for follow-up |

Smoking Cessation in Pediatrics

Although more than half of adolescents who smoke regularly say they want to quit and have tried to quit, only a minority report that they have been advised or helped to do so by a healthcare provider. Practitioners unfamiliar with approaches to smoking cessation may feel that smoking cessation interventions are time consuming, not reimbursable, and impractical in a busy office. An easy guideline for healthcare providers is the “five A’s” for tobacco cessation (Table 5–9), published by the Public Health Service and endorsed by the AAP.

Smoking cessation is a process that takes time. Relapse must be regarded as a normal part of quitting rather than evidence of personal failure or a reason to forgo further attempts. Patients can actually benefit from relapses if they are helped to identify the circumstances that led to the relapse and to devise strategies to prevent subsequent relapses or respond to predisposing circumstances in a different manner.

Nicotine is a physically and psychologically addictive substance. Providers should be aware that adolescents may not exhibit the same symptoms of nicotine dependence as adults and that dependence may be established within as little as 4 weeks. Replacement therapy improves smoking cessation rates and may relieve withdrawal symptoms. Both nicotine gum and transdermal nicotine patch replacement therapies are recommended for teens. Those who are not comfortable prescribing and monitoring nicotine-replacement therapies should limit their involvement with patients who smoke to those who do not exhibit signs of nicotine dependency (eg, patients who smoke less than a pack of cigarettes a day or do not feel a craving to smoke their first cigarette within 30 minutes after waking). Patients who exhibit nicotine dependency can be referred to community smoking cessation programs, including “smoking quit lines.” In addition to nicotine-replacement therapies, sustained-release forms of the antidepressants bupropion, clonidine, and nortriptyline have been shown in randomized trials to help smokers quit and to decrease relapse rates fivefold.

Referral

There is no consensus about which substance-abusing patients can be adequately treated in the office, which require referral, and which require hospitalization. Factors to be considered prior to referral are summarized in Table 5–10. When doubt exists about the seriousness of the problem or the advisability of office management, consultation with a specialist should be sought.

Although most primary pediatric providers will not assume responsibility for the treatment of substance-abusing youngsters, clinicians can be instrumental in motivating patients to seek treatment and in guiding them to appropriate treatment resources. Substance-abusing teenagers are best treated in teen-oriented treatment facilities. Despite the similarities between

Table 5–10. Factors to consider prior to referral for substance abuse.

| Duration and frequency of substance use |
| The type of substances being used |
| **Presence of other psychological disorders** |
| Attention-deficit/hyperactivity disorder |
| Depression |
| Antisocial personality disorder |
| **Presence of other social morbidities** |
| School failure |
| Delinquency |
| Homelessness |
| Ongoing or past physical or sexual abuse |
| **Program evaluation** |
| View on substance abuse as primary disorder vs symptom |
| Offers comprehensive evaluation of patient and can manage associated problems identified in initial assessment (eg, comorbid conditions) |
| Adherence to abstinence philosophy |
| Patient-staff ratios |
| Separate adolescent and adult treatment programs |
| Follow-up and continuing care |
adult and adolescent substance abuse, adult programs are usually developmentally inappropriate and ineffective for adolescents. Many adolescents are concrete thinkers and their inability to reason deductively, especially about emotionally charged issues, makes it difficult for them to understand the abstract concepts (such as denial) that are an integral component of most adult-oriented programs. This invariably frustrates counselors who misinterpret lack of comprehension as resistance to therapy and concrete responses as evidence of deceit.

Treatment programs range from low-intensity, outpatient, school-based student-assistance programs, which rely heavily on peers and nonprofessionals, to residential, hospital-based programs staffed by psychiatrists and other professionals. Outpatient counseling programs are most appropriate for motivated patients who do not have significant mental health or behavioral problems and are not at risk for withdrawal. Some investigators have raised the concern that in pediatric settings, users who lack significant mental health or behavioral comorbidities may actually experience a strengthening of the drug subculture by associating in group therapy with users who have a greater burden of comorbidities. More intensive day treatment programs are available for those who require a structured environment. Inpatient treatment should be considered for patients who need medical care and detoxification in addition to counseling, education, and family therapy.

Finally, special dual-diagnosis facilities are available for substance-abusing patients who also have other psychological conditions. These patients are difficult to diagnose and treat because it is often unclear whether their symptoms are a consequence of substance use or a symptom of a comorbid psychological disorder. Recognition of such disorders is critical because they must be treated in programs that include psychiatric expertise.

Approaches to the treatment of substance abuse in children and adolescents are typically modeled after adult treatment programs. Key elements of an effective adolescent drug treatment program include: assessment and treatment matching, a comprehensive and integrated treatment approach, family involvement, a developmentally appropriate program, engagement and retention of teens, qualified staff, gender and cultural competence, continuing care, and satisfactory treatment outcomes. Several studies of adolescent substance abuse treatment programs have shown that many do not adequately address all of the important components of therapy.

PREVENTION

Prevention of substance abuse has been a public health priority since the 1980s. Pediatric healthcare providers are important advocates and educators of the community and government on developmentally appropriate programs. **Primary level** programs focus on preventing the initiation of substance use. The Drug Awareness and Resistance Education (DARE) program is a familiar example of a primary prevention program that attempts to educate elementary and middle school students about the adverse consequences of substance abuse and enable them to resist peer pressures.

Secondary level programs target populations at increased risk for substance use. Their aim is to prevent progression from initiation to continuance and maintenance, relying on individualized intervention to reduce the risk and enhance protective factors listed in Table 5–3. This approach enables the provider to focus scarce resources on those who are most likely to benefit from them. Alateen, which supports the children of alcoholic parents, typifies secondary level prevention.

Tertiary level prevention programs target young people who have been identified as substance abusers. Their aim is to prevent the morbid consequences of substance use. One example is the identification of adolescents who misuse alcohol and drugs at parties and providing them with a safe ride home. Because prevention is more effective when targeted at reducing the initiation of substance use than at decreasing use or associated morbidity, tertiary prevention is the least effective approach.

Very few population-based programs undergo rigorous scientific evaluation, and few programs have been shown to be effective. Although tertiary prevention programs are the least effective approach, it is the consensus among drug educators that primary prevention programs, such as D.A.R.E., also have limited effect. Parents and others should understand that most
adolescents who abuse alcohol and drugs do not do so just for the high. Rather, these behaviors are often purposeful, developmentally appropriate coping strategies. To the extent that these behaviors meet young peoples’ developmental needs, they are not apt to be abandoned unless equally attractive alternatives are available. For example, even though many teenagers cite stress and anxiety as reasons for smoking, teen-oriented smoking cessation programs rarely address the young smoker’s need for alternative coping strategies by offering stress management training. Similarly, for the youngster growing up in an impoverished urban environment, the real costs of substance abuse may be too low and the rewards too high to be influenced by talk and knowledge alone. It is unreasonable to expect a talk-based intervention to change attitudes and behaviors in a direction that is opposite to that of the child’s own social milieu. The efficacy of the most promising prevention models and interventions is apt to decay over time unless changes in the social environment provide substance-abusing children and adolescents with realistic alternative ways to meet their developmental needs.

REFERENCES

Web Resources

American Lung Association (site for and by teens): http://www.lungusa.org/smokefreeclass
Monitoring the Future Study (detailed information and longitudinal data): http://www.monitoringthefuture.org
National Clearinghouse Drug and Alcohol Abuse (information and resources, including free publications for providers, parents, and adolescents): http://www.health.org
Substance Use and Mental Health Services Administration (SAMSA; resources for both substance use and mental health services): http://www.samhsa.gov
Adolescents as well as younger children engage in disordered eating behavior at an alarming rate, and many develop partial or full-blown eating disorders (EDs). The spectrum of eating disorders includes anorexia nervosa (AN), bulimia nervosa (BN), binge-eating disorder (BED), avoidant/restrictive food intake disorder (ARFID). These disorders are best defined in a biopsychosocial context. New diagnostic categories and criteria for EDs will be available upon release of DSM-V in 2013.

ETIOLOGY

There is strong evidence for a genetic basis for eating disorders. The incidence of AN is 7% in first-degree relatives of anorexic patients compared with 1%–2% in the general population. The concordance rate in monozygotic twins is 55% compared with 7% in dizygotic twins. Twin studies estimate the heritability of AN as 33%–84% and BN as 28%–83%. First-degree female relatives of males with AN have a 20-fold relative risk of AN. Most studies also find a higher incidence of eating disorders among first-degree relatives of bulimic patients. The family of neurotrophin proteins has been shown to be involved in the regulation of eating behavior and energy metabolism and has been intensively studied to assess their potential role in the genetic susceptibility to EDs. In a study of European families with EDs, Mercader and associates found a strong association between rs7180942, a neurotrophin protein encoded by the *NTRK3* gene and the presence of EDs, with an under-transmission of the heterozygous genotype and an over-transmission of the homozygous genotype associated with increased phenotypic expression of EDs.

There is evidence of altered serotonergic and dopaminergic function and alterations in neuropeptides and gut peptides in AN and BN. It remains unclear whether abnormalities of neurotransmitters contribute to the development of EDs or are a consequence of the physiologic changes associated with the disorders. Patients with BN or BED appear to have a blunted serotonin response to eating and satiety. With a decreased satiety response, patients continue to eat, leading to a binge. Treatment with selective serotonin reuptake inhibitors (SSRIs) tends to equilibrate satiety regulation. An alteration in dopamine has also been recognized, although its significance is not clear. Adiponectin is elevated in AN, although it is unclear whether this is merely secondary to the malnourished state. Cholecystokinin is decreased in BN, perhaps contributing to the lack of post-ingestion satiety that perpetuates a binge. Ghrelin, a gut peptide, is elevated in patients with AN, and it does not decrease normally after a meal in these patients. Obestatin, a gut peptide that inhibits appetite, is elevated in AN as well.

Leptin physiology is deranged in patients with AN. Abnormalities of leptin may mediate energy changes that affect the hypothalamic-pituitary axis and play a role in perpetuating AN. Leptin levels increase excessively as individuals with AN regain weight. The abnormally high levels of leptin may contribute to the difficulty AN patients have when trying to regain weight, as higher leptin levels signal the body to decrease energy intake. Leptin also plays a significant role in some of the sequelae of AN, with low levels signaling the hypothalamus to inhibit reproductive hormone production.

Some experts have hypothesized that the intrauterine hormonal milieu may explain the differences in prevalence of ED between females and males. Procopio and Marriott have studied the risk of developing AN in the same sex and opposite sex twin pairs when one twin has AN. There was approximately an eightfold risk of developing AN in males with a female twin with AN compared to the risk of developing AN in males who had a male twin with AN. Though the study could not separate environmental influences, evidence from animal models suggests that increased exposure to estrogen and/or decreased exposure to androgens influence brain development and may play a role in determining...
which individuals are at risk for AN. One study determined that season of birth actually influenced the rate of developing AN, with an excess in those born from March to June (OR 1.15, \(p = .01 \)) and a deficit in those born September to October (OR 0.8, \(p < .001 \)), suggesting an additional environmental effect.

Traditional psychological theory has suggested many environmental factors that might promote the development of eating disorders. Enmeshment of mother with daughter to the point that the teenager cannot develop her own identity (a key developmental marker of adolescence) may be a predisposing factor. The teenager may cope by asserting control over food, as she senses her lack of control in the developmental realm. A second theory involves father-daughter distancing. As puberty progresses and a girl’s sexuality blossoms, a father may experience difficulty in dealing with his daughter as a sexual being and may respond by withdrawing emotionally and physically. The teenage girl may intuitively recognize this and subconsciously decrease her food intake in order to become prepubertal again. A third theory is related to puberty itself. Some teenagers may fear or dislike their changing bodies. By restricting food intake they lose weight, stop menstruating, and effectively reverse pubertal development.

Society has promoted the message that being thin or muscular is necessary for attractiveness and success. The ease of access to diet products—foods and diet pills—as well as Internet instructions (proanorexia sites) makes it simple for adolescents to embark on a quest for thinness or muscularity.

Genetic predisposition, environmental factors, and psychological factors likely combine to create a milieu that promotes development of eating disorders.

INCIDENCE

AN is the third most common chronic illness of adolescent girls in the United States. The incidence has been increasing steadily in the United States since the 1930s. Although ascertaining exact incidence is difficult, most studies show that 1%–2% of teenagers develop AN and 2%–4% develop BN. Adolescents outnumber adults 5 to 1, although the number of adults with eating disorders is rising. Incidence is also increasing among younger children. Prepubertal patients often have associated psychiatric diagnoses. Males comprise about 10% of patients with EDs, though this prevalence appears to be increasing as well, associated with the increased media emphasis on muscular, chiseled appearance as the male ideal.

Literature on preadolescents with EDs suggests that patients younger than 13 years are more likely to be male compared to teenagers and more likely to have EDNOS. Younger patients are less likely to engage in behaviors characteristic of BN. They present with more rapid weight loss and lower percentile body weight than adolescents.

Teenagers’ self-reported prevalence of ED behavior is much higher than the official incidence of AN or BN. In the most recent Youth Risk Behavior Survey of US teenagers (2011), 61% of females and 32% of males had attempted to lose weight during the preceding 30 days. Twelve percent had fasted for more than 24 hours to lose weight, and 5% had used medications to lose weight (5.9% of girls and 4.2% of boys). Self-induced vomiting or laxative use was reported by 6% of females and 2.5% of males. Forty-six percent of females and 30% of males reported at least one binge episode during their lifetime. Although the number of youth with full-spectrum eating disorders is low, it is alarming that so many youth experiment with unhealthy weight control habits. These behaviors may be precursors to the development of eating disorders, and clinicians should explore these practices with all adolescent patients.

REFERENCES

PREDISPOISING FACTORS & CLINICAL PROFILES

Children involved in gymnastics, figure skating, and ballet—activities that emphasize thin bodies—are at higher risk for AN than are children in sports that do not emphasize body image. Adolescents who believe that being thin represents the ideal frame for a female, those who are dissatisfied with their bodies, and those with a history of dieting are at increased risk for eating disorders. Sudden changes in dietary habits, such as becoming vegetarian, may be a first sign of anorexia, especially if the change is abrupt and without good reason.

The typical bulimic patient tends to be impulsive and to engage in risk-taking behavior such as alcohol use, drug use, and sexual experimentation. Bulimic patients are often an appropriate weight for height or slightly overweight. They have average academic performance. Youth with diabetes have an increased risk of BN. In males, wrestling predisposes to BN, and homosexual orientation is associated with binge eating.

ANOREXIA NERVOSA

Table 6–1 lists the diagnostic criteria for AN, according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). The new DSM-V contains significant changes to the diagnosis of AN, including the elimination of amenorrhea as a criterion as well as specific weight criteria, which used to be 85% of expected weight based on 50th percentile body mass index (BMI). These changes will significantly increase the number of youth receiving AN as a diagnosis.

There are two forms of AN. In the restricting type, patients do not regularly engage in binge eating or purging. In the binge-purge type, AN is combined with binge eating or purging behavior, or both. Distinguishing between the two is important as they carry different implications for prognosis and treatment. Although patients may not demonstrate all features of AN, they may still exhibit the deleterious symptoms associated with AN.

Clinical Findings

A. Symptoms and Signs

Clinicians should recognize the early symptoms and signs of AN because early intervention may prevent the full-blown syndrome from developing. Patients may show some of the behaviors and psychology of AN, such as reduction in dietary fat and intense concern with body image, even before weight loss or amenorrhea occurs.

Making the diagnosis of AN can be challenging because adolescents may try to conceal their illness. Assessing the patient’s body image is essential to determining the diagnosis. Table 6–2 lists screening questions that help tease out a teenager’s perceptions of body image. Other diagnostic questions are listed in Table 6–1.

Table 6–1. Diagnostic criteria for anorexia nervosa.

<table>
<thead>
<tr>
<th>Diagnostic criteria for anorexia nervosa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Restriction of energy intake relative to requirements, leading to a significantly low body weight in the context of age, sex, development trajectory, and physical health. Significantly low weight is defined as a weight that is less than minimally normal or, for children and adolescents, less than that minimally expected.</td>
</tr>
<tr>
<td>2. Intense fear of gaining weight or of becoming fat, or persistent behavior that interferes with weight gain, even though at a significantly low weight.</td>
</tr>
<tr>
<td>3. Disturbance in the way in which one’s body weight or shape is experienced, undue influence of body weight or shape on self-evaluation, or persistent lack of recognition of the seriousness of the current low body weight.</td>
</tr>
</tbody>
</table>

Specify whether:

Restricting type: During the last 3 months, the individual has not engaged in recurrent episodes of binge eating or purging behavior (ie, self-induced vomiting or the misuse of laxatives, diuretics, or enemas). This subtype describes presentations in which weight loss is accomplished primarily through dieting, fasting, and/or excessive exercise. Binge-eating/purging type: During the last 3 months, the individual has engaged in recurrent episodes of binge eating or purging behavior (ie, self-induced vomiting or the misuse of laxatives, diuretics, or enemas).

Table 6–2. Screening questions to help diagnose anorexia and bulimia nervosa.

<table>
<thead>
<tr>
<th>Screening questions to help diagnose anorexia and bulimia nervosa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>How do you feel about your body?</td>
</tr>
<tr>
<td>Are there parts of your body you might change?</td>
</tr>
<tr>
<td>When you look at yourself in the mirror, do you see yourself as overweight, underweight, or satisfactory?</td>
</tr>
<tr>
<td>If overweight, how much do you want to weigh?</td>
</tr>
<tr>
<td>If your weight is satisfactory, has there been a time when you were worried about being overweight?</td>
</tr>
<tr>
<td>If over (underweight), what would you change?</td>
</tr>
<tr>
<td>Have you ever been on a diet?</td>
</tr>
<tr>
<td>What have you done to help yourself lose weight?</td>
</tr>
<tr>
<td>Do you count calories or fat grams?</td>
</tr>
<tr>
<td>Do you keep your intake to a certain number of calories?</td>
</tr>
<tr>
<td>Have you ever used nutritional supplements, diet pills, or laxatives to help you lose weight?</td>
</tr>
<tr>
<td>Have you ever made yourself vomit to get rid of food or lose weight?</td>
</tr>
</tbody>
</table>
screening tools (eg, Eating Disorders Inventory) assess a range of eating and dieting behaviors. Parental observations are critical in determining whether a patient has expressed dissatisfaction over body habitus and which weight loss techniques the child has used. If the teenager is unwilling to share his or her concerns about body image, the clinician may find clues to the diagnosis by carefully considering other presenting symptoms or signs. Weight loss from a baseline of normal body weight is an obvious red flag for the presence of an eating disorder. Additionally, AN should be considered in any girl with secondary amenorrhea who has lost weight.

Physical symptoms and signs are usually secondary to weight loss and proportional to the degree of malnutrition. The body effectively goes into hibernation, becoming functionally hypothyroid (euthyroid sick) to save energy. Body temperature decreases, and patients report being cold. Bradycardia develops, especially in the supine position. Dizziness, light-headedness, and syncope may occur as a result of orthostasis and hypotension secondary to impaired cardiac function. Left ventricular mass is decreased (as is the mass of all striated muscle), stroke volume is compromised, and peripheral resistance is increased, contributing to left ventricular systolic dysfunction. Patients can develop prolonged QTc syndrome and increased QT dispersion (irregular QT intervals), putting them at risk for cardiac arrhythmias. Peripheral circulation is reduced. Hands and feet may be blue and cool. Hair thins, nails become brittle, and skin becomes dry. Lanugo develops as a primitive response to starvation. The gastrointestinal (GI) tract may be affected; inability to take in normal quantities of food, early satiety, and gastroesophageal reflux can develop as the body adapts to reduced intake. The normal gastroduodenal reflex may be lost due to lack of stimulation by food, causing bloating and constipation. Delayed gastric emptying may be present in restricting type and purging type AN. Nutritional rehabilitation improves gastric emptying and dyspeptic symptoms in AN restricting type, but not in those who vomit. Neurologically, patients may experience decreased cognition, inability to concentrate, increased irritability, and depression, which may be related to structural brain changes and decreased cerebral blood flow.

Nutritional assessment is vital. Often, patients eliminate fat from their diets and may eat as few as 100–200 kcal/d. A gown-only weight after urination is the most accurate way to assess weight. Patients tend to wear bulky clothes and may hide weights in their pockets or drink excessive fluid (water-loading) to trick the practitioner. Assessing BMI is the standard approach to interpreting the degree of malnutrition. BMI below the 25th percentile indicates risk for malnutrition, and below 5th percentile indicates significant malnutrition. Median body weight (MBW) should be calculated as it serves both as the denominator in determining what percent weight an individual is, as well as to provide a general goal weight during recovery. MBW for height is calculated by using the 50th percentile of BMI for age.

A combination of malnutrition and stress causes hypothalamic hypogonadism. The hypothalamic-pituitary-gonadal axis shuts down as the body struggles to survive, directing finite energy resources to vital functions. This may be mediated by the effect of low serum leptin levels on the hypothalamic-pituitary axis. Pubertal development and skeletal growth may be interrupted, and adolescents may experience decreased libido.

Amenorrhea will continue to be an important clinical sign that the body is malnourished. Amenorrhea occurs for two reasons. The hypothalamic-pituitary-ovarian axis shuts down under stress, causing hypothalamic amenorrhea. In addition, adipose tissue is needed to convert estrogen to its activated form. When weight loss is significant, there is not enough substrate to activate estrogen. Resumption of menses occurs only when both body weight and body fat increase. Approximately, 73% of postmenarchal girls resume menstruating if they reach 90% of MBW. An adolescent female needs about 17% body fat to restart menses and 22% body fat to initiate menses if she has primary amenorrhea. Some evidence suggests that target weight gain for return of menses is approximately 1 kg higher than the weight at which menses ceased.

B. Laboratory Findings

All organ systems may suffer some degree of damage in the anorexic patient, related both to severity and duration of illness (Table 6–3). Initial screening should include complete

<table>
<thead>
<tr>
<th>Table 6–3. Laboratory findings: anorexia nervosa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased blood urea nitrogen and creatinine secondary to renal insufficiency</td>
</tr>
<tr>
<td>Decreased white blood cells, platelets, and less commonly red blood cells and hematocrit secondary to bone marrow suppression or fat atrophy of the bone marrow</td>
</tr>
<tr>
<td>Increased AST and ALT secondary to malnutrition</td>
</tr>
<tr>
<td>Increased cholesterol, thought to be related to altered fatty acid metabolism</td>
</tr>
<tr>
<td>Decreased alkaline phosphatase secondary to zinc deficiency</td>
</tr>
<tr>
<td>Low- to low-normal thyroid-stimulating hormone and thyroxine</td>
</tr>
<tr>
<td>Decreased follicle-stimulating hormone, luteinizing hormone, estradiol, and testosterone secondary to shutdown of hypothalamic-pituitary-gonadal axis</td>
</tr>
<tr>
<td>Abnormal electrolytes related to hydration status</td>
</tr>
<tr>
<td>Decreased phosphorus</td>
</tr>
<tr>
<td>Decreased insulin-like growth factor</td>
</tr>
<tr>
<td>Increased cortisol</td>
</tr>
<tr>
<td>Decreased urine specific gravity in cases of intentional water intoxication</td>
</tr>
</tbody>
</table>

ALT, alanine aminotransferase; AST, aspartate aminotransferase.
blood count with differential; serum levels of electrolytes, blood urea nitrogen, creatinine, phosphorus, calcium, magnesium, and thyroid-stimulating hormone; liver function tests; and urinalysis. Increase in lipids, likely due to abnormal liver function, is seen in 18% of those with AN, with subsequent return to normal once weight is restored. An electrocardiogram (ECG) should be performed, because significant electrocardiographic abnormalities may be present, most importantly prolonged QTc syndrome. Bone densitometry should be done if illness persists for 6 months, as patients begin to accumulate risk for osteoporosis.

Differential Diagnosis

If the diagnosis is unclear (ie, the patient has lost a significant amount of weight but does not have typical body image distortion or fat phobia), the clinician must consider the differential diagnosis for weight loss in adolescents. This includes inflammatory bowel disease, diabetes, hyperthyroidism, malignancy, depression, and chronic infectious disease such as human immunodeficiency virus (HIV). Less common diagnoses include adrenal insufficiency and malabsorption syndromes such as celiac disease. The history and physical examination should direct specific laboratory and radiologic evaluation.

Complications (Table 6–4)

A. Short-Term Complications

1. **Early satiety**—Patients may have difficulty tolerating even modest quantities of food when intake increases; this usually resolves after the patients adjust to larger meals. Gastric emptying is poor. Pancreatic and biliary secretion is diminished.

2. **Superior mesenteric artery syndrome**—As patients become malnourished, the fat pad between the superior mesenteric artery and the duodenum shrinks and compression of the transverse duodenum may cause obstruction and vomiting.

Table 6-4. Complications of anorexia and bulimia nervosa, by mechanism.

<table>
<thead>
<tr>
<th>Cardiovascular</th>
<th>Hematologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bradycardia (WL/MN)</td>
<td>Leukopenia (WL/MN)</td>
</tr>
<tr>
<td>Postural hypotension (WL/MN, SIV, LX)</td>
<td>Anemia (WL/MN)</td>
</tr>
<tr>
<td>Arrhythmia, sudden death (WL/MN, SIV, LX)</td>
<td>Thrombocytopenia (WL/MN)</td>
</tr>
<tr>
<td>Congestive heart failure (during refeeding) (WL/MN)</td>
<td>↓ ESR (WL/MN)</td>
</tr>
<tr>
<td>Pericardial effusion (WL/MN)</td>
<td>Impaired cell-mediated immunity (WL/MN)</td>
</tr>
<tr>
<td>Mitral valve prolapse (WL/MN)</td>
<td>Endocrine</td>
</tr>
<tr>
<td>ECG abnormalities (prolonged QT, low voltage, T-wave abnormalities, conduction defects) (WL/MN)</td>
<td>↓ LH, FSH (WL/MN)</td>
</tr>
<tr>
<td>Endocrine</td>
<td>↑ T₃, ↑ rT₃, ↓ T₄, TSH (WL/MN)</td>
</tr>
<tr>
<td>↓ T₉, ↑ T₄, ↑ TSH (WL/MN)</td>
<td>Irregular menses (WL/MN, B/P)</td>
</tr>
<tr>
<td>Irregular menses (WL/MN, B/P)</td>
<td>Amenorrhea (WL/MN)</td>
</tr>
<tr>
<td>Amenorrhea (WL/MN)</td>
<td>Hypercortisolism (WL/MN)</td>
</tr>
<tr>
<td>Growth retardation (WL/MN)</td>
<td>Growth retardation (WL/MN)</td>
</tr>
<tr>
<td>Delayed puberty (WL/MN)</td>
<td>Delayed puberty (WL/MN)</td>
</tr>
<tr>
<td>Decreased libido (WL/MN)</td>
<td>Decreased libido (WL/MN)</td>
</tr>
</tbody>
</table>

Gastrointestinal

Dental erosion (SIV)	**Hemolytic**
Parotid swelling (SIV)	Leukopenia (WL/MN)
Esophageal, esophageal tears (SIV)	Anemia (WL/MN)
Delayed gastric emptying (WL/MN, SIV)	Thrombocytopenia (WL/MN)
Gastric dilation (rarely rupture) (SIV)	↓ ESR (WL/MN)
Pancreatitis (WL/MN)	**Impaired cell-mediated immunity (WL/MN)**
Constipation (WL/MN, LXA)	**Metabolic**
Diarrhea (LXA)	Dehydration (WL/MN, SIV, LXA, DU)
Superior mesenteric artery syndrome (WL/MN)	Acidosis (LXA)
Hypercholesterolemia (WL/MN)	Alkalosis (SIV)
↑ Liver function tests (fatty infiltration of the liver) (WL/MN)	Hypokalemia (SIV, LXA, DU)

B/P, binge-purge; DU, diuretic abuse; ECG, electrocardiogram; ESR, erythrocyte sedimentation rate; FSH, follicle-stimulating hormone; LH, luteinizing hormone; LXA, laxative abuse; REM, rapid eye movement; rT₃, resin triiodothyronine uptake; SIV, self-induced vomiting; T₄, triiodothyronine; T₉, thyroxine; TSH, thyroid-stimulating hormone; WL/MN, weight loss/malnutrition.
especially with solid foods. The upper GI series shows to-and-fro movement of barium in the descending and transverse duodenum proximal to the obstruction. Treatment involves a liquid diet or nasoduodenal feedings until restoration of the fat pad has occurred, coincident with weight gain.

3. Constipation—Patients may be very constipated. Two mechanisms contribute—loss of the gastrocolic reflex and loss of colonic muscle tone. Typically stool softeners are not effective because the colon has decreased peristaltic amplitude. Agents that induce peristalsis, such as bisacodyl, as well as osmotic agents, such as polyethylene glycol-electrolyte solution (MiraLax), are helpful. Constipation can persist for up to 6–8 weeks after refeeding. Occasionally enemas are required.

4. Refeeding syndrome—This syndrome is described in the Treatment section.

5. Pericardial effusion—The degree of malnutrition correlates with increasing prevalence of pericardial effusion. One study demonstrated that 22% of those with AN had silent pericardial effusions, with 88% of effusions resolving after weight restoration.

B. Long-Term Complications

1. Osteoporosis—Approximately 50% of females with AN have reduced bone mass at one or more sites. The lumbar spine has the most rapid turnover and is the area likely to be affected first. Teenagers are particularly at risk as they accrue 40% of their bone mineral during adolescence. Low body weight is most predictive of bone loss. The causes of osteopenia and osteoporosis are multiple. Estrogen and testosterone are essential to potentiate bone development. Bone minerals begin to resorb without estrogen. Elevated cortisol levels and decreased insulin-like growth factor-1 also contribute to bone resorption. Amenorrhea is highly correlated with osteoporosis. Studies show that as few as 6 months of amenorrhea is associated with osteopenia or osteoporosis. Males may also develop osteoporosis due to decreased testosterone and elevated cortisol.

Until recently, the only proven treatment for bone loss in girls with AN has been regaining sufficient weight and body fat to restart the menstrual cycle. Studies did not support use of hormone replacement therapy delivered orally to improve bone recovery; however, a recent randomized controlled trial demonstrated that physiologic doses of estrogen, delivered transdermally, over 18 months did improve bone density. Clinicians may consider transdermal estrogen treatment if fat to restart the menstrual cycle. Studies did not support use of hormone replacement therapy delivered orally to improve bone recovery; however, a recent randomized controlled trial demonstrated that physiologic doses of estrogen, delivered transdermally, over 18 months did improve bone density. Clinicians may consider transdermal estrogen treatment if amenorrhea is associated with osteopenia or osteoporosis. Males may also develop osteoporosis due to decreased testosterone and elevated cortisol.

C. Mortality

Patients with eating disorders are at a higher risk of death than the general population and those with AN have the highest risk of dying among those with eating disorders. Meta-analysis estimates the standardized mortality ratio associated with AN to be 5.9. Death in anorexic patients is due to suicide, abnormal electrolytes, and cardiac arrhythmias.

Treatment

A. General Approach

Factors that determine treatment interventions are severity of illness, duration of illness, specific manifestations of disease, previous treatment approaches and outcomes, program availability, financial resources, and insurance coverage. Treatment options include outpatient management, day treatment hospitalization, inpatient medical or psychiatric hospitalization, and residential treatment. The key to determining level of intervention is the degree of malnutrition, the rapidity of weight loss, the degree of medical compromise, and the presence of life-threatening electrolyte abnormalities. No absolute criteria determine level of intervention. The practitioner must examine the degree of medical compromise and consider immediate risks and the potential for an individual to reverse the situation on his or her own. Day treatment programs are a good intervention for patients who do not yet need inpatient care but who are not improving with outpatient management. Treatment is costly. Many patients do not have insurance benefits that adequately cover the cost of treatment, leaving parents and practitioners with profound dilemmas as to how to best provide treatment in the face of financial constraints. Legally, however, eating disorders are now recognized as a parity mental health diagnosis similar to the other biologically based mental health illnesses in many states, which has increased the ease of obtaining insurance coverage.

A multidisciplinary approach is most effective and should include medical monitoring, nutrition therapy, and individual and family psychotherapy by experienced practitioners. Family therapy is an important means of helping families understand the development of the disease and addressing issues that may be barriers to recovery. Both types of psychotherapy are encouraged in most treatment programs, and recovery without psychotherapy is unusual. The average length of psychotherapy is roughly 6–9 months, although some individuals continue therapy for extended periods. Adjunctive modalities include art and horticulture therapy, therapeutic recreation, and massage therapy.

Manualized family therapy, developed in Britain by Maudsley and adapted by Lock and LeGrange, has shifted the therapeutic approach to adolescents with AN. Traditional therapy allowed the adolescent to control his or her eating and the parents to remain uninvolved with the food portion of recovery. The manualized approach gives power and control back to parents. Treatment is prescribed for 20 weekly sessions. The first 10 weeks are devoted to empowering parents, putting them in control of their child’s nutrition and exercise. Parents are educated about the dangers of malnutrition and are instructed to supervise each meal. The next phase, sessions 11–16, returns control over eating to the adolescent once he or she accepts the demands of the parents. The last phase of treatment, sessions 17–20, occurs when the patient is maintaining a healthy weight and shifts the focus away from the eating disorder, examining instead the impact that the eating disorder has had on establishing a healthy adolescent identity. This approach is reported to result in good or intermediate outcomes in 90% of treated adolescents.

Careful instruction in nutrition helps the teenager and family dispel misconceptions about nutrition, identify realistic nutritional goals, and normalize eating. Initially, nutrition education may be the most important intervention as the teenager slowly works through his or her fears of fat-containing foods and weight gain. The teenager begins to trust the nutrition therapist and restore body weight, eventually eating in a well-balanced, healthy manner.

B. Inpatient Treatment

Table 6–5 lists the criteria for hospital admission generally used in the medical community. It is usually quite difficult for a patient who is losing weight rapidly (> 2 lb/wk) to reverse the weight loss because the body is in a catabolic state.

Goals of hospitalization include arresting weight loss and stabilizing hemodynamics. Nutrition is the most vital inpatient medicine. Clinicians can safely begin with a meal plan containing approximately 250 kcal more than the patient has been routinely eating, which can usually be accomplished orally. Recent studies suggest that meal plans can begin with as high as 1750 kcal regardless of baseline intake. Meal plans should be well balanced with appropriate proportions of carbohydrate, protein, and fat. Oral meals are usually tolerated, although it is important to be supervised by medical staff. If the patient resists, nasogastric or intravenous alimentation can be used. Aside from caloric needs, the clinician needs to consider the patient’s hydration and include the

<table>
<thead>
<tr>
<th>Table 6-5. Criteria for inpatient treatment of anorexia nervosa.</th>
</tr>
</thead>
</table>
| ```
| Body weight < 75% of ideal body weight |
| Supine heart rate < 45 beats/min |
| Symptomatic hypotension or syncope |
| Hypokalemia: K⁺ < 2.5 mEq/L |
| Rapid weight loss that cannot be interrupted as outpatient |
| Failure of outpatient management |
| Acute food refusal |
```
appropriate amount of fluid with the meal plan. Dehydration should be corrected slowly. The oral route is usually adequate. Aggressive intravenous fluid administration should be avoided because left ventricular mass is compromised and a rapid increase in volume may not be tolerated. Regulating fluid intake is important, because water intoxication can contribute to abnormal electrolytes and falsified weights.

During the initial introduction of food, the clinician should monitor the patient for refeeding syndrome, a phenomenon that occurs if caloric intake is increased too rapidly. Signs of refeeding syndrome are decreased serum phosphorus (as the body resumes synthesis of adenosine triphosphate), decreased serum potassium (as increased insulin causes K⁺ to shift from extracellular fluid into K⁺-depleted cells), and, rarely, edema related to fluid shifts or congestive heart failure.

Although specific guidelines do not exist, many practitioners begin phosphorus supplementation if patients are severely malnourished (< 70% MBW) or their intake has been consistently less than 500 kcal/d.

Caloric intake can be increased 250 kcal/d as long as refeeding syndrome does not occur. Weight goals vary depending on programmatic approach. Typically, intake is adjusted to reach a goal of 0.1–0.25 kg/d weight gain. Overnight monitoring for bradycardia is helpful in assessing degree of metabolic compromise. Usually the more rapid and severe the weight loss, the worse the bradycardia. Improving bradycardia correlates with weight recovery. Orthostatic hypotension is most severe around hospital day 4, improving steadily and correcting by the third week of nutritional rehabilitation. An ECG should be obtained because the patient is at risk for prolonged QTc syndrome and junctional arrhythmias related to the severity of bradycardia.

It usually takes 2–3 weeks to reach the initial goals of hospitalization—steady weight gain, tolerance of oral diet without signs of refeeding syndrome, corrected bradycardia (heart rate > 45 beats/min for three consecutive nights), and correction of orthostasis. Specific weight criteria are used by many programs when considering discharge. This depends partly on admission weight. Ideally a patient gains at least 5% of his or her MBW. Some programs set discharge at 80%, 85%, or 90% MBW. Patient outcomes are improved with discharge at a higher body weight. Some evidence exists that patients do better if discharged at 95% MBW. In many practitioners’ experience, relapse rates are high if patients are discharged at less than 75% MBW. Frequently, insurance companies do not pay for hospital stays beyond strict medical stabilization (normal vital signs and normal electrolytes).

C. Pharmacotherapy

Practitioners frequently use psychotropic medications for treatment of AN, despite the lack of evidence supporting efficacy. Several open label trials suggest that atypical antipsychotics (risperidone, olanzapine, quetiapine) may be helpful. One review found that olanzapine (2.5–15 mg/d) was associated with improved body weight, decreased delusional thinking, improvement in body image, and decreased agitation and premeal anxiety. However, a recent randomized controlled trial did not show any difference in outcomes between risperidone and placebo.

SSRIs repeatedly have been shown to not be helpful in the initial therapy of AN. However, once the patient has achieved approximately 85% MBW, SSRIs (fluoxetine, citalopram, or sertraline) may help prevent relapse.

Zinc deficiency is common in AN, and several studies support its use as a supplement during the initial phases of treatment. Because zinc deficiency adversely affects neurotransmitters, administering zinc helps restore neurotransmitter action to baseline. Additionally zinc may restore appetite and improve depressive mood. Zinc should be administered for approximately 2 months from the beginning of therapy, with at least 14 mg of elemental zinc daily.

Because of global nutritional deficits, a multivitamin with iron is also recommended daily. Symptomatic treatment for constipation and reflux should be used appropriately until symptoms resolve.

D. Outpatient Treatment

Not all patients with AN require inpatient treatment, especially if parents and clinicians recognize the warning signs early. These patients can receive treatment as outpatients, employing the same multidisciplinary team approach. Manualized family-based treatment is ideal for the outpatient setting if a trained therapist is available. Appropriate nutrition counseling is vital in guiding a patient and family through the initial stages of recovery. As the nutrition therapist is working at increasing the patient’s caloric intake, a practitioner needs to monitor the patient’s weight and vital signs. Often, activity level needs to be decreased to help reverse the catabolic state. A reasonable weight gain goal may be 0.2–0.5 kg/wk. If weight loss persists, careful monitoring of vital signs, including supine heart rate, is important in determining whether an increased level of care is needed. Concomitantly, the patient should be referred to a psychotherapist and, if indicated, assessed by a psychiatrist.

Table 6-6. Diagnostic criteria for bulimia nervosa.

1. Recurrent episodes of binge eating. An episode of binge eating is characterized by both of the following:
   a. Eating, in a discrete period of time (e.g., within any 2-h period), an amount of food that is definitely larger than most people would eat during a similar period of time and under similar circumstances.
   b. A sense of lack of control over eating during the episode (e.g., a feeling that one cannot stop eating or control what or how much one is eating).
2. Recurrent inappropriate compensatory behaviors in order to prevent weight gain, such as self-induced vomiting; misuse of laxatives, diuretics, or other medications, fasting; or excessive exercise.
3. The binge eating and inappropriate compensatory behaviors both occur, on average, at least once a week for 3 mo.
4. Self-evaluation is unduly influenced by body shape and weight.
5. The disturbance does not occur exclusively during episodes of anorexia nervosa.

Specify if:
- In partial remission: After full criteria for bulimia nervosa were previously met, some, but not all, of the criteria have been met for a sustained period of time.
- In full remission: After full criteria for bulimia nervosa were previously met, none of the criteria have been met for a sustained period of time.

Specify current severity:
The minimum level of severity is based on the frequency of inappropriate compensatory behaviors (see as follows). The level of severity may increase to reflect other symptoms and the degree of functional disability.
- Mild: An average of 1-3 episodes of inappropriate compensatory behaviors per week.
- Moderate: An average of 4-7 episodes of inappropriate compensatory behaviors per week.
- Severe: An average of 8-13 episodes of inappropriate compensatory behaviors per week.
- Extreme: An average of ≥ 14 episodes of inappropriate compensatory behaviors per week.


BULIMIA NERVOSA

Table 6–6 lists the diagnostic criteria for BN. Binge eating is either eating excessive amounts of food during a normal mealtime or having a meal that lasts longer than usual. Bulimic individuals feel out of control while eating, unable or unwilling to recognize satiety signals. Any type of food may be eaten in a binge, although typically it includes carbohydrates or junk food. Extreme guilt is often associated with the episode. At some point, either prior to or during a binge, bulimic individuals often decide to purge as a means of preventing weight gain. The most common ways to purge are self-induced vomiting, exercise, and laxative use. Some individuals will vomit multiple times during a purge episode, after using large amounts of water to cleanse their system. This can induce significant electrolyte abnormalities such as hyponatremia and hypokalemia, which may put the patient at acute risk for arrhythmia or seizure. Other methods of purging include diuretics, diet pills, cathartics, and nutritional supplements that promote weight loss, such as Metabolife or Sensa.

Diagnosing BN can be difficult unless the teenager is forthcoming or parents or caregivers can supply direct observations. Bulimic patients are usually average or slightly above average in body weight and have no physical abnormalities. Screening all teenagers for body image concerns is crucial. If the teenager expresses concern about being overweight, the clinician needs to screen the patient about dieting methods. Asking whether patients have binged, feel out of control while eating, or whether they cannot stop eating can clarify the diagnosis. Parents may report that significant amounts of food are missing or disappearing more quickly than normal. If the physician is suspicious, direct questioning about all the ways to purge should follow. Indicating first that the behavior is not unusual can make questioning less threatening and more likely to elicit a truthful response. For example, the clinician might say, “Some teenagers who try to lose weight make themselves vomit after eating. Have you ever considered or done that yourself?” (See Table 6–2 for additional screening questions.)

Clinical Findings

A. Symptoms and Signs

Symptoms are related to the mechanism of purging. GI problems are most prominent. Abdominal pain is common. Gastroesophageal reflux occurs as the lower esophageal sphincter becomes compromised due to repetitive vomiting. Frequent vomiting may also cause esophagitis or gastritis, as the mucosa is irritated by acid exposure. Early satiety, involuntary vomiting, and complaints that food is “coming up” on its own are frequent. Hematemesis and esophageal rupture have been reported. Patients may report diarrhea or constipation, especially if laxatives have been used.
Sialadenitis (parotid pain and enlargement) may be caused by frequent vomiting. Erosion of dental enamel results from increased oral acid exposure during vomiting. Because comorbid depression is common in BN, patients may report difficulty sleeping, decreased energy, decreased motivation, and headaches. Light-headedness or syncope may develop secondary to dehydration.

It is important to note that most purging methods are ineffective. When patients binge, they may consume thousands of calories. Digestion begins rapidly. Although the patient may be able to vomit some of the food, much is actually digested and absorbed. Laxatives work in the large intestine, leading to fluid and electrolyte loss, but consumed calories are still absorbed from the small intestine. Use of diuretics may result in decreased fluid weight and electrolyte imbalance.

On physical examination, bulimic patients may be dehydrated and have orthostatic hypotension. Sialadenitis, tooth enamel loss, dental caries, and abdominal tenderness are the most common findings. Abrasion of the proximal interphalangeal joints may occur secondary to scraping the fingers against teeth while inducing vomiting. Rarely, a heart murmur is heard which may be due to mitral valve prolapse. Irreversible cardiomyopathy can develop secondary to ipecac use. Tachycardia and hypertension may occur secondary to caffeine and diet pill use.

B. Laboratory Findings
Electrolyte disturbances are common in bulimic patients. The method of purging results in specific abnormalities. Vomiting causes metabolic alkalosis, hypokalemia, and hypochloremia. If laxatives are used, a metabolic acidosis develops with hypokalemia and hypochloremia. Diuretic use may lead to hypokalemia, hyponatremia, hypocalcemia, and metabolic alkalosis. Amylase may be increased secondary to chronic parotid stimulation.

Complications

A. Short-Term Complications
Complications in normal-weight bulimic patients are related to the mechanisms of purging, and many of these complications are listed under Symptoms and Signs. If the bulimic patient is significantly malnourished, complications may be the same as those encountered in the anorexic patient. Other complications of bulimia include esophageal rupture, acute or chronic esophagitis, and, rarely, Barrett esophagitis. Chronic vomiting can lead to metabolic alkalosis, and laxative abuse may cause metabolic acidosis. Patients may develop aspiration pneumonia from vomiting. Diet pill use can cause insomnia, hypertension, tachycardia, palpitations, seizures, and sudden death.

Patients who stop taking laxatives can have severe constipation. Treating constipation can be difficult psychologically, because the practitioner may need to prescribe agents similar to the drugs of abuse used during the eating disorder.

B. Mortality
The mortality rate in bulimic patients is similar to that in anorexic patients. Death usually results from suicide or electrolyte derangements.

Treatment
Treatment of BN depends on the frequency of bingeing and purging and the severity of biochemical and psychiatric derangement. If K⁺ is less than 3.0 mEq/L, inpatient medical admission is warranted. Typically extracellular K⁺ is spared at the expense of intracellular K⁺, so a patient may become hypokalemic several days after the serum K⁺ concentration appears to be corrected. Usually cessation of purging is sufficient to correct K⁺ concentration and is the recommended intervention for K⁺ above 3.0 mEq/L. If K⁺ is 2.5–2.9 mEq/L, oral supplementation is suggested. If K⁺ is less than 2.5 mEq/L, intravenous therapy is recommended. Supplements can be stopped once K⁺ levels are more than 3.5 mEq/L. Total body K⁺ can be assumed to be normal when serum K⁺ corrects and remains normal 2 days after supplements are stopped. Continued hospitalization depends on the patient’s psychological status.

Some bulimic patients who abuse laxatives may become chronically dehydrated. The renin-angiotensin-aldosterone axis is activated, and the antidiuretic hormone level may be elevated to compensate. These systems do not shut down automatically when laxatives are stopped, and fluid retention of up to 10 kg/wk may result. This puts patients at risk for congestive heart failure and can scare them as their weight increases dramatically. Diuresis often occurs after 7–10 days. Parents and patients should be advised of this possible complication of initial therapy to help maintain their confidence in the care plan.

Hospitalization of bulimic patients is also recommended if there has been failure of outpatient management. The binge-purge cycle is addictive and can be difficult for patients to interrupt on their own. Hospitalization can offer a forced break from the cycle, allowing patients to normalize their eating, interrupt the addictive behavior, and regain the ability to recognize satiety signals.

Outpatient management can be pursued if patients are medically stable. Cognitive-behavioral therapy is crucial to help bulimic patients understand their disease and to offer suggestions for decreasing bingeing and purging. Nutrition therapy offers patients ways to regulate eating patterns so that they can avoid the need to binge. Medical monitoring should be done to check electrolytes periodically, depending on the purging method used.
SSRIs are generally helpful in treating the binge-purge cycle. Fluoxetine has been studied most extensively; a dose of 60 mg/d is most efficacious in teenagers. Other SSRIs appear to be effective as well and may be used in patients experiencing side effects of fluoxetine. Treatment for gastroesophageal reflux and gastritis should be used when appropriate. The pain and swelling of enlarged parotid glands can be helped by sucking on tart candy and by the application of heat.


**BINGE-EATING DISORDER**

Binge-eating disorder (BED) is now an official diagnosis described in the DSM-V. Studies show that most adults who have BED (a prevalence of 2%–4%) develop symptoms during adolescence. Table 6–7 lists the diagnostic criteria.

---

**Clinical Findings**

**A. Symptoms and Signs**

BED most often occurs in overweight or obese individuals. Eighteen percent of such patients report binging at least once in the past year. Patients with BED have an increased incidence of depression and substance abuse. The possibility of BED should be raised for any significantly overweight patient. Specific questionnaires are available for evaluating patients suspected of BED.

**B. Laboratory Findings**

The clinician should assess causes and complications of obesity, and laboratory evaluation should include thyroid function tests and measurement of cholesterol and triglyceride levels.

---

**Table 6-7. Diagnostic criteria for binge-eating disorder.**

<table>
<thead>
<tr>
<th>1. Recurrent episodes of binge eating. An episode of binge eating is characterized by both of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Eating, in a discrete period of time (eg, within any 2-hour period), an amount of food that is definitely larger than what most people would eat in a similar period of time under similar circumstances.</td>
</tr>
<tr>
<td>b. A sense of lack of control over eating during the episode (eg, a feeling that one cannot stop eating or control what or how much one is eating).</td>
</tr>
<tr>
<td>2. The binge-eating episodes are associated with three (or more) of the following:</td>
</tr>
<tr>
<td>a. Eating much more rapidly than normal.</td>
</tr>
<tr>
<td>b. Eating until feeling uncomfortably full.</td>
</tr>
<tr>
<td>c. Eating large amounts of food when not feeling physically hungry.</td>
</tr>
<tr>
<td>d. Eating alone because of feeling embarrassed by how much one is eating.</td>
</tr>
<tr>
<td>e. Feeling disgusted with oneself, depressed, or very guilty afterward.</td>
</tr>
<tr>
<td>3. Marked distress regarding binge eating is present.</td>
</tr>
<tr>
<td>4. The binge eating occurs, on average, at least once a week for 3 months.</td>
</tr>
<tr>
<td>5. The binge eating is not associated with the recurrent use of inappropriate compensatory behavior as in bulimia nervosa and does not occur exclusively during the course of bulimia nervosa and anorexia nervosa.</td>
</tr>
</tbody>
</table>

Specify if:

- **In partial remission:** After full criteria for binge-eating disorder were previously met, binge eating occurs at an average frequency of less than one episode per week for a sustained period of time.
- **In full remission:** After full criteria for binge-eating disorder were previously met, none of the criteria have been met for a sustained period of time.


---

**Treatment**

A combination of cognitive-behavioral therapy and antidepressant medication has been helpful in treating BED in adults. Use of SSRIs for BED in adolescents has not been studied, but in adults fluoxetine and citalopram help decrease binge episodes, improve depressive symptoms, and possibly decrease appetite. This evidence suggests that SSRIs in adolescents with BED may be helpful as well. BED has been recognized only recently, and outcomes have not been studied. Little is known regarding long-term prognosis.

EATING DISORDERS NOT MEETING CRITERIA FOR CATEGORIZATION

Historically, eating disorder not otherwise specified (EDNOS) was the most common eating disorder diagnosis, assigned to individuals who did not meet full criteria for AN or BN. The DSM-V has eliminated EDNOS as a diagnostic category and created a diagnosis of “other specified feeding disorder” or eating disorder.” The majority of youth who previously were diagnosed with EDNOS will be categorized as having AN or avoidant/restrictive food intake disorder (ARFID). However, youth can be categorized as having atypical AN if they display characteristics of AN, but are at a normal weight, or as having BN of low frequency if they binge-eat less than once per week.

Regardless of specific diagnostic criteria, it is imperative for clinicians to pay careful attention to patient concerns about body weight and dieting behaviors to facilitate recognition of eating disorder behavior. Symptoms and sequelae depend on specific behaviors. Some patients with eating disorders that do not meet criteria for categorization will go on to develop full-blown AN or BN, and early recognition and treatment may decrease further complications.

AVOIDANT/RESTRICTIVE FOOD INTAKE DISORDER

ARFID is a new diagnosis in the DSM-V that extends the DSM-IV diagnosis of feeding disorder of infancy or early childhood. Studies show that about 10%-15% of those currently diagnosed with EDNOS will be reclassified as ARFID. The hallmark feature is avoidance or restriction of oral food intake, in the absence of criteria for AN (body image disturbance, fear of weight gain/body fat). For teenagers, food avoidance may be associated with more generalized emotional difficulties that do not meet diagnostic criteria for anxiety or depression. Diagnostic criteria for ARFID (Table 6–8) include the following:

1. Eating or feeding disturbance (including, but not limited, to apparent lack of interest in eating or food; avoidance based on the sensory characteristics of food; or concern about aversive consequences of eating) as manifested by persistent failure to meet appropriate nutritional and/or energy needs is associated with one or more of the following:
   a. Significant weight loss (or failure to gain weight or faltering growth in children)
   b. Significant nutritional deficiency
   c. Dependence on enteral feeding or oral nutritional supplements.
   d. Marked interference with psychosocial functioning.

Specify it:

In remission: After full criteria for avoidant/restrictive food intake disorder were previously met, the criteria have not been met for a sustained period of time.

Note: Text will include description of three main subtypes: individuals who do not eat enough/show little interest in eating; individuals who only accept a limited diet in relation to sensory features; and individuals whose food refusal is related to aversive experience.

Table 6–8. Diagnostic criteria for avoidant/restrictive food intake disorder.

<table>
<thead>
<tr>
<th>Diagnostic Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eating or feeding disturbance (including, but not limited, to apparent lack of interest in eating or food; avoidance based on the sensory characteristics of food; or concern about aversive consequences of eating) as manifested by persistent failure to meet appropriate nutritional and/or energy needs is associated with one or more of the following:</td>
</tr>
<tr>
<td>a. Significant weight loss (or failure to achieve expected weight gain or faltering growth in children)</td>
</tr>
<tr>
<td>b. Significant nutritional deficiency</td>
</tr>
<tr>
<td>c. Dependence on enteral feeding or oral nutritional supplements.</td>
</tr>
<tr>
<td>d. Marked interference with psychosocial functioning.</td>
</tr>
</tbody>
</table>

4. If the eating disturbance occurs in the context of a medical condition or another mental disorder, it is sufficiently severe to warrant independent clinical attention.


PROGNOSIS

Outcome in eating disorders, especially AN, has been studied extensively. Unfortunately, most studies have focused on specific inpatient treatment programs, and few have evaluated less ill patients who do not need hospitalization. About 40%–50% of patients receiving treatment recover; 20%–30% have intermittent relapses; and 20% have chronic, unremitting illness. As time from initial onset lengthens, the recovery rate decreases and mortality associated with AN and BN increases.

The course of AN often includes significant weight fluctuations over time, and it may be a matter of years until recovery is certain. The course of BN often includes relapses of bingeing and purging, although bulimic patients initially recover faster than do anorexic patients. Up to 50% of anorexic patients may develop bulimia, as well as major psychological complications, including depression, anxiety, and substance abuse disorders. Bulimic patients also develop similar psychological illness but rarely develop anorexia. Long-term medical sequelae, aside from low body weight and amenorrhea, have not been systematically studied, although AN is known to have multiple medical consequences, including osteoporosis and structural brain changes.

It is unclear whether age at onset affects outcome, but shorter length of time between symptom onset and therapy tends to improve outcome. Various treatment modalities can prove effective. Favorable outcomes have been found with brief medical hospitalization and long psychiatric or residential hospitalization. Higher discharge weight, as well as more rapid weight gain during inpatient treatment (> 0.8 kg/wk), seems to improve the initial outcome. It is difficult to compare treatment regimens, because numbers are small and the type of patient and illness varies among studies. No existing studies compare outpatient to inpatient treatment or the effects of day treatment on recovery.


RESOURCES FOR PRACTITIONERS AND FAMILIES

Web Resources

National Eating Disorders Association: (Information available to help individuals/families locate resources and treatment for eating disorders around the world) http://www.nationaleating-disorders.org/.
Academy for Eating Disorders: (The Academy for Eating Disorders [AED] is a global, multidisciplinary professional organization that provides cutting-edge professional training and education; inspires new developments in eating disorders research, prevention, and clinical treatments; and is the international source for state-of-the-art information in the field of eating disorders.) www.aedweb.org.
Mental illness affects between 14% and 20% of children and adolescents. The prevalence is higher for those juveniles living in poor socioeconomic circumstances. Unfortunately, the shortage of mental health providers, stigma attached to receiving mental health services, chronic underfunding, institutional barriers of the public mental health system, and disparate insurance benefits have contributed to the fact that only 2% of these children are actually seen by mental health specialists. About 75% of children with psychiatric disturbances are seen in primary care settings, and half of all pediatric office visits involve behavioral, psychosocial, or educational concerns. Parents and children often prefer discussing these issues with someone they already know and trust. As a result, pediatric primary care providers are compelled to play an important role in the prevention, identification, initiation, management, and coordination of mental health care in children and adolescents.

Despite being strategically positioned as the gatekeeper for identifying these concerns, primary care providers identify fewer than 20% of children with emotional and behavioral problems during health supervision visits when these concerns are also present. In addition, these problems are not identified when they begin (and are more readily amenable to treatment). This gatekeeper role has become more important over the past decade as advances in mental health awareness and treatment have improved opportunities for early identification and intervention. This role is especially critical since child psychiatry remains an underserved medical specialty, with only 7400 board-certified child and adolescent psychiatrists in the United States. In contrast, the more than 50,000 board-certified pediatricians and innumerable midlevel pediatric providers in the United States are in a unique position to identify issues affecting the emotional health of children and to initiate treatment or referrals to other providers.

Emotional problems that develop during childhood and adolescence can have a significant impact on development and may continue into adulthood; in fact, most “adult” psychiatric disorders have their onset during childhood. Most disorders do not present as an “all-or-none” phenomenon; rather, they progress from adjustment concerns to perturbations in functioning to significant disturbances and severe disorders. Pediatricians have the capacity to manage emotional problems and behavioral conditions early on, when improvement can be achieved with less intensive interventions. If pediatricians and schools do not appropriately identify mental health problems, provide education about the benefits of intervention, and encourage and initiate intervention, childhood-onset disorders are more likely to persist, cause worsening impairment, and lead to a downward spiral of school and social difficulties, poor employment opportunities, and poverty in adulthood, as well as increased health care utilization and costs as adults.

Pediatricians and other pediatric care providers may be the first or sometimes only medical professional in a position to identify a mental health problem. This chapter reviews prevention, surveillance, and screening for mental illness; situations that may arise in the context of such assessments; illnesses that are often diagnosed during childhood or adolescence; current recommendations for interventions and use of psychotropic medications; and indications for referral to mental health professionals.
MODELS OF CARE ENCOMPASSING MENTAL HEALTH IN THE PRIMARY CARE SETTING

Given the many barriers to receiving mental health care, new approaches to identifying concerns and providing mental health professional services have been recently explored.

**Usual or typical pediatric care** of emotional and behavioral problems is related to the comfort level of the individual pediatric provider and available resources. The efficacy of surveillance in the form of developmentally appropriate anticipatory guidance and counseling is variable; the average time spent on surveillance is 2.5 minutes. However, as stated earlier, the majority of emotional and behavioral problems are not identified in this model of care. In addition, when they are identified, the logistics of referral can be problematic. Although pediatricians often refer to mental health providers, only 50% of families will actually attend an appointment and the average number of appointments attended is only slightly greater than one. Based on level of comfort and training, the primary clinician in this model is more likely to be responsible for psychiatric medications if prescribed.

Among the technological interventions that can enhance identification of problems and target specific symptoms for assessment is the Child Health & Development Interactive System (CHADIS) (http://www.childhealthcare.org). In this system, parents use a computer kiosk to note their level of concern about various behaviors, which triggers algorithmic interviews for each concern based on psychiatric diagnostic criteria. The CHADIS system provides an electronic worksheet of analyzed results, school communication tools, as well as other resources.

**Enhanced care** is a model of care in which a pediatric developmental or behavioral specialist is embedded in the clinic, thus making for improved referral and communication and management. This “colocation” creates easier access for patients and improved communication with mental health professionals.

**Telephonic consultation** or telepsychiatry with mental health consultation teams in a stepped care approach allows enhanced access to mental health providers, especially for children in rural communities. The provision of consultation to pediatric care providers also allows pediatric providers ongoing education with the eventual goal of psychiatric providers learning to manage these concerns on their own.

**Collaborative care** provides high-quality, multidisciplinary, and collaborative care through the colocation of educators, consultants, or direct service mental health providers in the clinic. Successful collaborative care results in greater specialist involvement by negating identification and referral and other system-of-care barriers. Successful components include a leadership team, primary clinicians, mental health and developmental specialists, administrators, clinical informatics specialists, and care managers. Collaborative care implies that nearly all visits are done jointly and that mental health professionals are always available for consultation, in contrast to the approach in the enhanced care model, which requires the scheduling of an appointment with a mental health specialist in the practice. These interventions can be accomplished through collaboration among mental health and primary care providers, mental health systems and primary care practices, and in academic settings with interdepartmental collaboration. Typically, philanthropic or other foundation grants are necessary to start a collaborative program so that reimbursement and sustainability concerns can be identified and remedied.


EARLY IDENTIFICATION & PREVENTION OF DEVELOPMENTAL & SOCIOEMOTIONAL PROBLEMS

The role of the primary care pediatrician continues to expand to include public health, mental health, and community concerns. The American Academy of Pediatrics (AAP) policy statement on community pediatrics addresses the fact that today’s children and families live in a period of rapid social change and declining economic circumstances. In addition, the economic organization of the healthcare and social service systems in the United States is undergoing profound
changes. For many pediatric providers, efforts to promote the health of children have been directed at attending to the needs of particular children in a practice setting, on an individual basis, and providing them with a medical home. This approach, in combination with pediatricians’ own personal community interests and commitments, has been dramatically successful. Increasingly, however, the major threats to the health of US children—the new morbidity—arise from problems that cannot be adequately addressed by the practice model alone. These problems include unacceptably high infant mortality rates in certain communities, extraordinary levels of intentional and unintentional injuries, chemical dependency, behavioral and developmental consequences of inappropriate care and experience, family dysfunction, sexually transmitted diseases, unplanned pregnancies and out-of-wedlock births, and lack of a medical home. The policy statement concludes, “We must become partners with others, or we will become increasingly irrelevant to the health of children.”

Today’s community pediatrician seeks to provide a far more realistic and complete clinical picture by taking responsibility for all children in a community, providing preventive and curative services, and understanding the determinants and consequences of child health and illness, as well as the effectiveness of services provided.

**Bright Futures**

**Bright Futures** is a national health promotion and disease prevention initiative that addresses children’s health needs in the context of family and community. In addition to use in pediatric practice, many states implement Bright Futures principles, guidelines, and tools to strengthen the connections between state and local programs, pediatric primary care, families, and local communities. The **Bright Futures Guidelines**, now in its third edition, was developed to provide comprehensive health supervision guidelines, including recommendations on immunizations, routine health screenings, and anticipatory guidance. In addition, Bright Futures for Mental Health provides numerous guidelines, tools, and strategies for improving mental health identification, assessment, initiation, management, and coordination.

**Surgeon General’s National Action Plan**

The Office of the Surgeon General (OSG) also recommends that pediatrics continue to evolve and include lifestyle, health system, and other psychosocial areas. The OSG’s National Action Agenda on Mental Health includes several calls to primary care pediatricians, including the following: engage other professional organizations in educating new frontline providers in various systems (eg, teachers, physicians, nurses, hospital emergency personnel, day care providers, probation officers, and other child healthcare providers) in child development; equip them with skills to address and enhance children’s mental health; and train them to recognize early symptoms of emotional or behavioral problems for proactive intervention. Such training must focus on developmental and cultural differences in cognitive, social, emotional, and behavioral functioning, and understanding these issues in familial and ecological context.

**Partnership Access Line**

In this chapter, various clinical tools from the Partnership Access Line (PAL) Washington website (www.palforkids.org) are used to assist the primary care provider in diagnosis and treatment of the more common psychiatric conditions. The PAL algorithms are useful for treatment of specific diagnoses, considering alternative diagnoses in the differential, and reviewing medication treatment tables for specific information regarding psychopharmacologic treatments.

**Summary of the Pediatrician’s Role**

Given these calls for a new pediatric role as the gatekeeper for socioemotional health, the expanding role of the primary care pediatric provider encompasses the following broad categories: prevention, identification, assessment, initiation, management, coordination, and collaboration (Table 7–1).

**IDEN**

**SYNTHESIS & ASSESSMENT DURING HEALTH MAINTENANCE VISITS**

Most families seek help from their primary care providers when they are concerned about a child’s health, growth, or development. Historically, the most efficient indicator in eliciting psychosocial problems is the history provided by
Table 7–1. The pediatric primary care provider’s role in mental health.

<table>
<thead>
<tr>
<th>Role</th>
<th>Specific Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention</td>
<td>Screen and address social risk factors on intake</td>
</tr>
<tr>
<td>Identification</td>
<td>Shared family concern</td>
</tr>
<tr>
<td>Assessment</td>
<td>Interview and Physical Assessment tools</td>
</tr>
<tr>
<td>Initiation</td>
<td>Psychoeducation about condition and treatment options</td>
</tr>
<tr>
<td>Management</td>
<td>Monitor condition for improvement</td>
</tr>
<tr>
<td>Coordination</td>
<td>With social work, therapist, psychologist, or psychiatrist</td>
</tr>
<tr>
<td>Collaboration</td>
<td>With mental health service providers</td>
</tr>
</tbody>
</table>

parents or guardians and interview and observation of the child. The possible approaches to identification of problems include surveillance, screening, and assessment.

Surveillance consists of the following elements: checking in, eliciting concerns, asking open-ended questions, watching and waiting, listening for red flags, identifying risk factors, and monitoring closely over time. Like vital signs, which represent an essential component of the physical evaluation, the essential components of the primary care surveillance for mental health concerns should generally include a review of the youth’s general functioning in different aspects of their life. Five questions forming the mnemonic PSYCH can be addressed to parents and youth as a surveillance means of uncovering areas of concern.

1. Parent-child interaction: How are things going with you and your parents? Or you and your infant (or toddler)?
2. School: How are things going in school (or child care; academically, behaviorally, and socially)?
3. Youth: How are things going with peer relationships/friendships (how does child get along with same-aged peers)?
4. Casa: How are things going at home (including siblings, family stresses, and relationship with parents)?
5. Happiness: How would you describe your mood? How would you describe your child’s mood?

Many pediatric practices are hampered by lack of continuity and not enough time for in-depth surveillance. In addition, surveillance is notoriously tied to office and provider characteristics. Given current time constraints for current pediatric visits, and the fact that only 18% of parents reporting elevated behavior problems in children actually told their providers about it, surveillance is currently considered nonoptimal. Although part of the clinical interview with families, surveillance is not a separate and billable service under current Medicaid and insurance reimbursement plans, whereas formal screening is.

Screening is the process of using standardized instruments to identify areas of risk, delay, or concern. Newborn hearing, vision, and developmental screenings are common in today’s pediatric practice. However, the morbidity associated with developmental, emotional, and psychosocial problems requires that socioemotional screening also be performed to identify the presence of symptoms of emotional, behavioral, or relationship disorders. Screening tools are brief, easy to use, and can be administered as a questionnaire or using an interview format. A positive screen warrants a more complete assessment. The use of screening tools can also lead to early identification and interrupt the adjustment-perturbation-disturbance-disorder pathway. Newer methods of eliciting socioemotional and behavior concerns have been developed (see section below on Tools). Helpful information can also be obtained from broad screening checklists and symptom-specific questionnaires (such as depression or anxiety self-report inventories). Questions can be incorporated into the general pediatric office screening forms, or specific questionnaires can be used.

Tools for Mental Health Screening in the Office Setting

Given the low rates of identification of psychosocial problems by pediatric surveillance, the use of standardized screening tools has become standard practice. Typically, broad screens that elicit information regarding multiple domains are employed first and are followed by targeted screens to address symptomatology, severity, impairment, and context of specific psychosocial problems.

Multiple Screening Tools:
http://www.mcpap.com/tools_index.asp.
http://www.wpic.pitt.edu/research.
A. General or Broad Screening Tools

1. Strengths and Difficulties Questionnaires (SDQs)—The SDQs are brief behavioral screening questionnaires targeting patients 3–16 years old with parent, teacher, and child self-report versions available. Several versions are available and can readily be used by researchers, clinicians, and educators. They have been well validated and are available on the Internet without cost. The SDQs are available in over 40 languages. The domains assessed include: emotional problems, conduct problems, hyperactivity/inattention, peer-relationship problems, and prosocial behaviors. For further information, refer to the following web site: http://www.sdqinfo.org.


2. Pediatric Symptoms Checklist (PSC)—The PSC is a one-page questionnaire listing a broad range of children’s emotional and behavioral problems that reflects parents’ impressions of their children’s psychosocial functioning. An adolescent self-report version is also available for children ages 11 and older. The PSC was developed initially for children older than age 5, but cutoff scores for preschool and school-aged children indicating clinical levels of dysfunction have been empirically derived. The questionnaire is easy to score, is free of charge, and is available in English and Spanish from the following web sites: http://www.brightfutures.org/mentalhealth/pdf/professionals/ped_intake_form.pdf. Form adapted, with permission, from Kemper KJ, Kelleher KJ: Family psychosocial screening: Instruments and techniques. Ambulatory Child Health 1996;1:325–339.

3. Parents’ Evaluation of Developmental Status (PEDS)—The PEDS is a validated screener for socioemotional, developmental, and behavioral concerns in children aged 1 month to 8 years. Parents answer yes/no about their concerns in various areas of their child’s development. Scoring the PEDS is more labor intensive than other general screeners and the instrument must be purchased. Its benefits include extensive validity data and useful pathways for level of concern and referral. It is available in English, Vietnamese, and Spanish. For further information, see the following web site: http://www.pedstest.com.


4. Ages and Stages, Socioemotional (ASQ: SE)—The Ages and Stages, SE is a companion to the Ages and Stages Developmental Screen. It is an easy-to-use tool with a deep, exclusive focus on infant, toddlers, and younger children’s social and emotional behavior. After a one-time cost, the instrument is reproducible, making it cost-effective. It is culturally sensitive for use across diverse pediatric populations. Screens are available for the 6-, 12-, 18-, 24-, 36-, 48-, and 60-month visits, and in English, French, Spanish, and Korean.


Assessment of Behavioral & Emotional Signs & Symptoms

When an emotional problem or mental illness is mentioned by the patient or parents, elicited by an interview, or identified by a screening instrument, a thorough evaluation is indicated. At least 30 minutes should be scheduled, and additional appointments may be necessary to gather information or perform tests to determine a mental health diagnosis. Examples of more thorough questions and observation are given in Table 7–2. Targeted assessment screening tools are also useful in determining severity, comorbidity, and context of impairment.

It is useful to see both parents and the child first together, then the parents alone, and then the child alone (for school-aged children and adolescents). This sequence enables the provider to observe interactions among family members, allows the child to feel more comfortable with the provider, and offers the parents and the child an opportunity to talk confidentially about their concerns. Parents and children often feel shame and guilt about some personal inadequacy they perceive to be causing the problem. The provider can facilitate the assessment by acknowledging that the family is trying to cope and that the ultimate task of assessment is to seek solutions and not to assign blame. An attitude of nonjudgmental inquiry can be communicated with supportive
A. History of the Presenting Problem

First, obtain a detailed description of the problem.

- When did it start?
- Where and with whom does it occur?
- Were there unusual stresses, changes, or life events at that time?
- How is the child’s life and the family’s functioning affected?

Stressors and Stressful Life Events

- Family history of mental health problems and treatment
- Parenting history
- Financial problems
- Traumatic events
- Changes of residence or household composition
- Interference with discipline from outside the family
- Whether the parents inappropriately answer questions addressed to the child
- Do the parents show concern about the child’s feelings?
- Is the child uncooperative or antagonistic about the assessment?
- Are the parents uncooperative or antagonistic about the child’s assessment?
- Do the parents accept some responsibility for the child’s problems, or do they blame forces outside the family and beyond their control?
- Do they appear burdened with guilt about the child’s problem?
- Are they uncooperative or antagonistic about the evaluation?
- Do they appear depressed or overwhelmed? (reactions to stressors and stress)

4. Obtain details of past mental health problems and their treatment

5. Obtain details of past mental health problems and their treatment

Table 7–2. Assessment of psychosocial problems.

<table>
<thead>
<tr>
<th>Developmental history</th>
<th>Family history</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Review the landmarks of psychosocial development</td>
<td>1. Marital/relationship history</td>
</tr>
<tr>
<td>2. Summarize the child’s temperamental traits</td>
<td>a. Overall satisfaction with the marriage/partnership</td>
</tr>
<tr>
<td>3. Review stressful life events and the child’s reactions to them</td>
<td>b. Conflicts or disagreements within the relationship</td>
</tr>
<tr>
<td>a. Separations from primary caregivers or close family members</td>
<td>c. Quantity and quality of time together away from children</td>
</tr>
<tr>
<td>b. Losses</td>
<td>d. Whether the child comes between or is a source of conflict between the parents</td>
</tr>
<tr>
<td>c. Marital conflict, family violence, divorce</td>
<td>e. Marital history prior to having children</td>
</tr>
<tr>
<td>d. Illnesses, injuries, and hospitalizations</td>
<td>2. Parenting history</td>
</tr>
<tr>
<td>e. Moves, household changes</td>
<td>a. Feelings about parenthood</td>
</tr>
<tr>
<td>f. School transitions</td>
<td>b. Whether parents feel united in dealing with the child</td>
</tr>
<tr>
<td>g. Traumatic events</td>
<td>c. “Division of labor” in parenting</td>
</tr>
<tr>
<td>h. Financial changes that impact daily living environment</td>
<td>d. Parental energy or stress level</td>
</tr>
<tr>
<td>4. Obtain details of past mental health problems and their treatment</td>
<td>e. Sleeping arrangements</td>
</tr>
</tbody>
</table>

Observation of the parents

1. Do they agree on the existence of the problem or concern?
2. Are they uncooperative or antagonistic about the evaluation?
3. Do the parents appear depressed or overwhelmed? (reactions to stressors and stress)
4. Can the parents present a coherent picture of the problem and their family life?
5. Do the parents accept some responsibility for the child’s problems, or do they blame forces outside the family and beyond their control?
6. Do they appear burdened with guilt about the child’s problem?

Observation of the child

1. Does the child acknowledge the existence of a problem or concern?
2. Does the child want help?
3. Is the child uncooperative or antagonistic about the assessment?
4. What is the child’s predominant mood or attitude?
5. What does the child wish could be different (eg, “three wishes”)?
6. Does the child display unusual behavior (activity level, mannerisms, fearfulness)?
7. What is the child’s apparent cognitive level?

Observation of parent-child interaction

1. Do the parents show concern about the child’s feelings?
2. Does the child control or disrupt the joint interview?
3. Does the child respond to parental limits and control?
4. Do the parents inappropriately answer questions addressed to the child?
5. Is there obvious tension between family members?

Data from other sources

1. Waiting room observations by office staff
2. School (teacher, nurse, social worker, counselor, day care provider)
3. Department of social services
4. Other caregivers: grandparents, etc

- What does the child say about the problem?
- What attempts have been made to alleviate the problem?
- Do the parents have any opinions about the cause of the problem?
figures, animals, or puppets, and crayons and paper available that the child can use to express him- or herself. After hearing the history from the parents and observing and talking with the child, the provider can begin to develop an impression about the problem and formulate a treatment plan to discuss with the family.

2. Interviewing the school-aged child—Most school-aged children have mastered separation anxiety sufficiently to tolerate at least a brief interview alone with the provider. In addition, they may have important information to share about their own worries. The child should be told beforehand by the parents or provider (or both) that the doctor will want to talk to the child about his or her feelings. School-aged children understand and even appreciate parental concern about unhappiness, worries, and difficulty in getting along with people. At the outset, it is useful to explore the child’s thoughts about certain issues raised by the parents and ask whether the child thinks that a problem exists (eg, unhappiness, anxiety, or sleep disturbance) and any other concerns the child may have. The provider should ask the child to describe the problem in his or her own words and ask what he or she thinks is causing the problem. It is important to ask the child how the problem affects the child and the family. At the end of the interview with the child, it is important to share or reiterate the central points derived from the interview and to state that the next step is to talk with the parents about ways to make things better for the child. At that time, it is good to discuss any concerns or misgivings the child might have about sharing information with parents so that the child’s right to privacy is not arbitrarily violated. Most children want to make things better and thus will allow the provider to share appropriate concerns with the parents.

3. Interviewing the adolescent—The provider usually begins by meeting briefly with the parents and adolescent together to define the concerns. Because the central developmental task of adolescence is to create an identity separate from that of the parents, the provider must show respect for the teen’s point of view. The provider should then meet alone with the adolescent or, at least, give the teen the option. After the provider has interviewed the adolescent and talked further with the parents, he or she should formulate thoughts and recommendations. Whenever possible, it is helpful to discuss these with the adolescent before presenting them to the parents and teen together. The issue of confidentiality must be discussed early in the interview: “What we talk about today is between you and me unless we decide together that someone should know or unless it appears to me that you might be in a potentially dangerous situation.”

The interview with the adolescent alone might start with a restatement of the parents’ concerns. The teen should be encouraged to describe the situation in his or her own words and say what he or she would like to be different. The provider should ask questions about the adolescent’s primary concerns, predominant mood state, relationships with family members, level of satisfaction with school and peer relationships, plans for the future, drug and alcohol use, and sexual activity.

In concluding the interview, the provider should summarize his or her thoughts and develop a plan with the teenager to present to the parents. If teenagers participate in the solution, they are more likely to work with the family to improve the situation. This should include a plan either for further investigation or for ways of dealing with the problem and arranging subsequent appointments with the provider or an appropriate referral to a mental healthcare provider.

C. Targeted Screening Tools and Assessment Measures

As with broad screening tools, targeted screening tools or assessment instruments can be very valuable in the clinic since they are standardized and allow for the assessment of current symptoms and severity. They can also be useful for following or reassessing a patient’s progress after initiation of treatment.


3. Self-Report for Childhood Anxiety-Related Emotional Disorders (SCARED)—Available at: http://www.wpic.pitt.edu/research/


5. Other Tools

A. BRIGHT FUTURES—The Bright Futures Tool Kit has numerous guidelines, tools, and other resources for identifying mental health concerns. Available at: http://www.brightfutures.org/mentalhealth/pdf/tools.html.

B. CHADIS—See earlier discussion of models of health care.

C. DISORDER-SPECIFIC SCREENING TOOLS—Useful tools for evaluating other mental health concerns, such as obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and pervasive developmental disorder (PDD), can be found at the following websites: http://www.schoolpsychiatry.org and http://www.mcpap.com/.
The Mental Status Examination

The mental status examination (MSE) is a tool equivalent to the physical examination. It includes some standard aspects to help evaluate an individual including observation of an individual’s overall cognitive, emotional, and behavioral presentation. Through observations, interaction, and questions, the MSE identifies current behavioral presentation and areas of clinical concern (e.g., suicidal thinking, hallucinations). A well-documented MSE details the patient’s behavioral and clinical presentation. Please refer to standard elements of MSE (Table 7–3).

Table 7–3. Standard elements of mental status examination.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Questions to Ask/Observations to Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>General appearance</td>
<td>Physical presentation, attitude and how someone carries themselves. (observation, interaction)</td>
<td>Does the child look their stated age? Document physical size compared to peers, dysmorphic features, grooming, cooperation, level of distress, and quality of interaction.</td>
</tr>
<tr>
<td>Eye contact</td>
<td>Quality of eye contact in context. (observation, interaction)</td>
<td>Observe and document quality of eye contact, for example good, fair or poor. Is gaze fixed?</td>
</tr>
<tr>
<td>Psychomotor activity</td>
<td>Overall energy and physical movement. (observation)</td>
<td>Document whether activity level is normal, slowed, or increased.</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>Gait, range of motion (extremities), abnormal movements. (observation and directed tasks)</td>
<td>Document gait and the presence of any rigidity, ataxia, tics, or other abnormal movements.</td>
</tr>
<tr>
<td>Speech/language</td>
<td>Rate, volume, tone, articulation, coherence and spontaneity; appropriate naming and word usage. (observation)</td>
<td>Observe and document pattern and quality of speech.</td>
</tr>
<tr>
<td>Mood/Affect</td>
<td>Subjective (patient’s stated mood); objective (clinician’s observation of affect) and how well the two correspond. (observation, directed questioning, and optional self report questionnaire)</td>
<td>Is the child able to identify their mood, happy, sad, angry, anxious? Is the child’s affect congruent with mood? What is the observed range of affect?</td>
</tr>
<tr>
<td>Thought process; associations</td>
<td>Rate, relevance and reasoning. (observation)</td>
<td>Are the child’s thoughts goal directed, logical, tangential, or circumferential? How does the child reason and problem solve? Is thought process concrete or does the child demonstrate abstract reasoning?</td>
</tr>
<tr>
<td>Thought content</td>
<td>Content of what the person is actually saying. (observation)</td>
<td>Does the child express suicidal or homicidal ideation, and if so, is there intent and a plan? Does the child experience obsessions? Does the child experience perceptual abnormalities such as, hallucinations or illusions.</td>
</tr>
<tr>
<td>Attention span</td>
<td>Patient’s ability to stay on task, focus, and concentrate. (observation)</td>
<td>Does the child have an age-appropriate attention span? Is the child able to stay on task or are they easily distracted?</td>
</tr>
<tr>
<td>Insight; judgment</td>
<td>Person’s psychological understanding of his/her situation; ability to make safe and appropriate choices based on situation. (observation and response to directed questions.)</td>
<td>What is the child’s capacity for insight into his/her situation (intact, poor, impaired)?</td>
</tr>
<tr>
<td>Orientation</td>
<td>Awareness of oneself, location, date and reason for care. (observation and response to directed questions.)</td>
<td>Does the child know where they are, the date, who they are, who their parents are?</td>
</tr>
<tr>
<td>Fund of knowledge; memory</td>
<td>Intellectual ability, common knowledge, ability to recall long term events and recent details. (observation and response to directed questions.)</td>
<td>Assessment of intellectual capacity based on interaction, average, below average, above average (for age and level of education). Response to direct questions regarding memory.</td>
</tr>
</tbody>
</table>
learning, peer relationships, family relationships, authority relationships, and recreation, or when a substantial deviation from the trajectory of normal developmental tasks occurs, a differential diagnosis should be sought based on the symptom profile. The provider then develops an etiologic hypothesis based on the information gathered:

1. The behavior falls within the range of normal given the child’s developmental level.
2. The behavior is a temperamental variation.
3. The behavior is related to central nervous system impairment (eg, prematurity, exposure to toxins in utero, seizure disorder, or genetic disorders).
4. The behavior is a normal reaction to stressful circumstances (eg, medical illness, change in family structure, or loss of a loved one).
5. The problem is primarily a reflection of family dysfunction (eg, the child is the symptom bearer, scapegoat, or the identified patient for the family).
6. The problem indicates a possible psychiatric disorder.
7. The problem is complicated by an underlying medical condition.
8. Some combination of the above.

Sharing of the diagnosis is also the beginning of initiating treatment. The provider’s interpretation of the complaint and diagnosis is then presented to the family. The interpretive process includes the following components:

1. Psychoeducation: An explanation of how the presenting problem or symptom is a reflection of a suspected cause and typical outcomes both with and without intervention.
2. A discussion of possible interventions, including the following options:
   a. Close monitoring
   b. Counseling provided by the primary care provider
   c. Referral to a mental health professional
   d. Initiation of medication
   e. Some combination of the above
3. A discussion of the parent’s and adolescent’s response to the diagnosis and potential interventions.

A joint plan involving the provider, parents, and child is then negotiated to address the child’s symptoms and developmental needs in light of the family structure and stresses. If an appropriate plan cannot be developed, or if the provider feels that further diagnostic assessment is required, referral to a mental health practitioner should be recommended.


**Situations Requiring Emergent or More Extensive Psychiatric Assessment**

If there is any concern about the child’s safety, the provider must also evaluate the risk of danger to self (suicidal attempts or ideation), danger to others (assault, aggression, or homicidal ideation), and screen for other factors that could heighten the risk of danger to self or others, such as physical or sexual abuse or illicit substance use or abuse. The presence of drug or alcohol abuse in adolescent patients may require referral to community resources specializing in the treatment of these addictive disorders.

The following questions should be asked of the youth. The parents should be asked similar questions about what they have observed. Specific details about the circumstances should be asked if any question below is answered with “yes.”

1. Have you ever been sad for more than a few days at a time such that it affected your sleep or appetite?
2. Have you ever been so sad that you wished you weren’t alive?
3. Have you ever thought of ways of killing yourself or made a suicide attempt?
4. Have you ever thought about killing someone else, or tried to kill someone?
5. Has anyone ever hit you and left marks? (If yes, ask who, when, and under what circumstances, and if it was reported.)
6. Has anyone ever touched your private areas when they weren’t supposed to, or in a way that made you feel uncomfortable? (If yes, ask who, when, and under what circumstances, and if it was reported.)
7. Do you use alcohol, tobacco, or illicit drugs? (If yes, ask what, when, with whom, and how much.)

**A. Civil Commitment and Involuntary Mental Health “Holds”**

If further assessment indicates a need for inpatient hospitalization, it is optimal if the patient and guardian give consent for this care. In a situation in which the guardian is unwilling or unable to give consent for emergency department (ED)–based assessment or inpatient hospitalization of a child or adolescent, an involuntary mental health “hold” may become necessary.

The term involuntary mental health “hold” refers to a legal process that can be initiated by providers, police officers, and certified mental health professionals, which
allows the individual to be prevented from leaving the ED or hospital for up to 72 hours. This allows the provider to establish a safe environment and prevent the individual from harming themselves or others, and allows sufficient time to determine if the individual is a risk to him- or herself or others due to mental illness. Each state has laws specifying rules and regulations that must be followed as part of this process. A specific form must be completed and the patient and family informed of their rights. As this involves revoking the civil rights of a patient or their guardian, it is critical to implement the procedure correctly. All providers should be familiar with their state laws regulating this process.

Although the precise wording and conditions of involuntary mental health holds may vary slightly from state to state, they are generally quite similar. A 72-hour involuntary mental health hold is obtained for the purpose of acute evaluation and determination of the patient’s safety when the evaluator elicits sufficient information to confirm a significant risk exists of danger to self or others. Additional criteria for involuntary psychiatric admission include a determination that the patient is “gravely disabled” by virtue of impaired judgment, which renders the patient unable to provide food, clothing, or shelter for him- or herself, or in the case of a child or adolescent, that he or she is unable to eat and perform normal activities of daily living. In addition, patients that have a medical condition(s) requiring urgent or emergent treatment do not require a mental health hold. In this case, the primary team/provider should conduct a capacity evaluation.

B. Mandatory Reporting of Abuse or Neglect or Threat to Others

Mandatory reporting by a provider of suspicion of physical or sexual abuse or neglect to the local human services agency is discussed in greater detail in Chapter 8. The “Tarasoff Rule” refers to a California legal case that led to a “duty to warn”: Providers are mandated to warn potential victims of harm when plans are disclosed to them about serious threats to harm specific individuals. Documentation of a phone call and registered letter to the individual being threatened are mandated. Under such circumstances, arrangement for the involuntary civil commitment of the potential perpetrator of harm is likely to be in order as well.

C. Referral of Patients to Mental Healthcare Professionals

Primary care providers often refer patients to a child and adolescent psychiatrist or other qualified child mental health professional when the diagnosis or treatment plan is uncertain, or when medication is indicated and the pediatrician prefers that a specialist initiate or manage treatment of the mental illness (Table 7–4). For academic difficulties not associated with behavioral difficulties, a child educational psychologist may be most helpful in assessing patients for learning disorders and potential remediation. For cognitive difficulties associated with head trauma, epilepsy, or brain tumors, a referral to a pediatric neuropsychologist may be indicated.

Patients with private mental health insurance need to contact their insurance company for a list of local mental health professionals trained in the assessment and treatment of children and adolescents who are on their insurance panel. Patients with Medicaid or without mental health insurance coverage can usually be assessed and treated at their local mental healthcare center. The referring pediatrician or staff should assist the family by providing information to put them in touch with the appropriate services. Personal relationships with community mental health administrators and clinicians improve the success of referrals. Additionally, new delivery systems in which mental health professionals are “colocated” in the clinic remove barriers and improve access and care (see earlier discussion). In addition, the distant poles of involuntary inpatient psychiatric hospitalization

Table 7–4. When to consider consultation or referral to a child and adolescent psychiatrist.

<table>
<thead>
<tr>
<th>Diagnosis or Treatment Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>The diagnosis is not clear</td>
</tr>
<tr>
<td>The pediatrician feels that further assessment is needed</td>
</tr>
<tr>
<td>The pediatrician believes medication may be needed, but will not be prescribing it</td>
</tr>
<tr>
<td>The pediatrician has started medications and needs further psychopharmacologic consultation</td>
</tr>
<tr>
<td>Individual, family, or group psychotherapy is needed</td>
</tr>
<tr>
<td>Psychotic symptoms (hallucinations, paranoia) are present</td>
</tr>
<tr>
<td>Bipolar affective disorder is suspected</td>
</tr>
<tr>
<td>Chronic medical regimen nonadherence has a risk of lethality</td>
</tr>
<tr>
<td>Delirium is suspected</td>
</tr>
</tbody>
</table>
and outpatient treatment have been filled in by other levels of treatment to provide a spectrum of care and include the following: inpatient psychiatric hospitalization, day treatment hospitalization, residential treatment, home-based care, intensive outpatient, outpatient treatment, primary care management.

Pediatricians who feel comfortable implementing the recommendations of a mental health professional with whom they have a collaborative relationship should consider remaining involved in the management and coordination of treatment of mental illness in their patients. The local branches of the American Academy of Child and Adolescent Psychiatry and the American Psychological Association should be able to provide a list of mental health professionals who are trained in the evaluation and treatment of children and adolescents.

**CONSULTATION-LIAISON PSYCHIATRY**

The field of consultation-liaison psychiatry was developed to address the need for mental health assessment and intervention of medically hospitalized pediatric patients. Psychiatric consultation on the medical floor and in the intensive care units can be complex and often requires assessment and intervention beyond the individual patient. The psychiatric consultation, in addition to evaluating the patient’s symptom presentation, should also include assessment of family dynamics as related to the patient, and may include evaluation of how the medical team is addressing care of the patient and family. The psychiatric consultation focuses on the various hierarchies related to the interaction of the patient and staff, or staff and staff, in addition to the patient per se; this evaluation can be quite enlightening and may lead to more productive interventions.

When requesting a psychiatric consultation, as with any medical specialty, it is critical that the concern and focus of the consultation request be as specific as possible. The liaison role of the psychiatrist is to often assist in clarifying or formulating the specific reason for the consult. Psychiatric consultation on the medical floor is often requested when the patient’s emotional state is affecting his or her response to medical care, or when an underlying mental illness may be contributing to the presenting symptoms. Patients admitted to the intensive care unit or a medical floor after a suicide attempt or supposed unintentional overdose should be evaluated by a psychiatric consultant before discharge.

Another common reason for requesting a psychiatric consultation on the medical floor is change in mental status. Be alert to the likelihood that acute mental status changes in the medical setting can represent delirium, as this has significant assessment and treatment implications. Delirium is defined as an acute and fluctuating disturbance of one’s alertness and orientation. Delirium can be manifested by a variety of psychiatric symptoms including paranoia, hallucinations, anxiety, and mood disturbances. However, aside from dementia and possibly dissociation and malingering, primary psychiatric presentations do not typically involve disturbances of alertness and orientation that are, by definition, always present in delirium.

**THE CHRONICALLY ILL CHILD**

Advances in the treatment of pediatric and adolescent illness have transformed several previously fatal conditions into life-threatening but potentially survivable conditions. These include advances in the fields of neonatal medicine, cardiac surgery, pulmonology, and hematology-oncology, including bone marrow transplantation. Additionally, solid organ transplantation, including heart, liver, kidney, and lung, among others, has revolutionized the potential treatment options for a whole host of once-fatal illnesses.

However, the intensity of treatment can in itself be highly stressful and even traumatic physically, financially, and psychologically, for children as well as their parents and siblings. Survivors are at risk of long-term medical and psychological sequelae. Those who are fortunate enough to survive the initial treatment of a potentially life-threatening condition often exchange a life-threatening biologic illness for a chronic emotional condition and physical disability.

**Phase-Oriented Intervention**

Psychosocial interventions should vary, depending on the developmental level of the patient, siblings, and family, and the phase of the illness. A first crisis is dealt with differently than interventions made during a long course of illness, or a period of stabilization or remission. With this in mind, the Organ Procurement and Transplantation Network/United Network for Organ Sharing established new bylaws in August 2004 which set minimum requirements for the psychosocial services available as part of an accredited solid organ transplant program. These guidelines include: (1) the establishment of a team comprising a transplantation psychiatrist, psychologist, nurse practitioner, and psychiatric social worker; (2) a formal psychiatric and substance abuse evaluation of prospective transplantation candidates; (3) evaluation of any potential renal or hepatic living donors; and (4) the availability of individual supportive counseling, crisis intervention, support groups, and death, dying, and bereavement counseling to transplantation patients and their families.
Reactions to Chronic Physical or Mental Illness & Disability

Between 5% and 10% of individuals experience a prolonged period of medical illness or disability during childhood and another 5%–10% experience the onset of mental illness in childhood. The psychosocial effects for the child and the family are often profound. Although the specific effect of illness on children and their families depends on the characteristics of the illness, the age of the child, and premorbid functioning, it can be expected that both the child and the parents will go through stages toward eventual acceptance of the disease state. It may take months for a family to accept the diagnosis, to cope with the stresses, and to resume normal life to the extent possible. These stages resemble those that follow the loss of a loved one. If anxiety and guilt remain prominent within the family, a pattern of overprotection can evolve. Likewise, when the illness is not accepted as a reality to be dealt with, a pattern of denial may become prominent. The clinical manifestations of these patterns of behavior are presented in Table 7–5.

Children are very observant and intuitive when it comes to understanding their illness and its general prognosis. At the same time, their primary concerns usually are the effects of the illness on everyday life (eg, routines), feeling sick, and limitations on normal, age-appropriate activities. Children are also keenly aware of the family’s reactions and may be reluctant to bring up issues they know are upsetting to their parents. Whenever possible, parents should be encouraged to discuss the child’s illness and to answer questions openly and honestly, including exploration of the child’s fears and fantasies. Such interactions promote closeness and relieve the child’s sense of isolation. Even with these active attempts to promote effective sharing between the child and the family, ill children frequently experience fear, anxiety, irritability, and anger over their illness, and guilt over causing family distress. Sleep disturbances, tears, and clinging, dependent behavior are not infrequent or abnormal. Parents frequently need support in an individual or group format to help them cope with the diagnosis and stress caused by the disease, its treatments, and its affect on the afflicted child and other family members.

The Psychosocial Impact of Living With Illness

Chronic disease and long-term illnesses disrupt family cycles, routines, and daily living. Children and families face numerous challenges including extended contact with the medical system; painful procedures and painful conditions; feelings of fear, worry, and grief; and significant lifestyle disruptions. Discussions and interventions that take into account both emotional and medical symptoms will help the child and family better understand their experiences and attitude toward illness and life. The family and child will benefit from discussions about such questions as “What is the real nature of this illness? How has it affected us? What will be our future? What does the treatment do to me?” Such discussions can be quite enlightening and empowering, as they encourage open discussion for the child and parents and an active role in treatment.

Patient- and parent-reported outcome tools, known either as health status or health-related quality of life (HRQOL) measures, can also be routinely used in pediatric specialty clinics. These measures adopt the World Health Organization’s definition of health as “a state of complete physical, mental, and social well-being and not merely the absence of disease.” Health-related quality of life refers to the subjective and objective impact of dysfunction associated with an illness or injury and is multidimensional, including four core domains: (1) disease state and physical symptoms, (2) functional status, (3) psychological functioning, and (4) social functioning. A team approach is often necessary when providing care to complex and chronically ill children. Including these measures during annual visits and incorporating a mental health professional on the team can improve overall adjustment and quality of care.

---

**Table 7–5. Patterns of coping with chronic illness.**

<table>
<thead>
<tr>
<th>Overprotection</th>
<th>Persistent anxiety or guilt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Few friends and peer activities</td>
</tr>
<tr>
<td></td>
<td>Poor school attendance</td>
</tr>
<tr>
<td></td>
<td>Overconcern with somatic symptoms</td>
</tr>
<tr>
<td></td>
<td>Secondary gain from the illness</td>
</tr>
<tr>
<td>Effective coping</td>
<td>Realistic acceptance of limits imposed by illness</td>
</tr>
<tr>
<td></td>
<td>Normalization of daily activities with peers, play, and school</td>
</tr>
<tr>
<td>Denial</td>
<td>Lack of acceptance of the illness</td>
</tr>
<tr>
<td></td>
<td>Poor medical compliance</td>
</tr>
<tr>
<td></td>
<td>Risk-taking behaviors</td>
</tr>
<tr>
<td></td>
<td>Lack of parental follow-through with medical instructions</td>
</tr>
<tr>
<td></td>
<td>General pattern of acting-out behavior</td>
</tr>
</tbody>
</table>


---

**THE TERMINALLY ILL CHILD**

The diagnosis of a potentially fatal illness in a child is a severe blow even to families who have reason to suspect that outcome. The discussion with parents and the child about terminal illness is one of the most difficult tasks for a provider working with children and adolescents. Although
parents want and need to know the truth, they are best told in stepwise fashion beginning with temporizing phrases such as “The news is not good” and “This is a life-threatening illness.” The parents’ reactions and questions can then be observed for clues about how much they want to be told at any one time. The provider must also attempt to gauge how much of the information the parents are able to comprehend during the initial discussion and consider involvement of appropriate support services. Some parents may dissociate during the sharing of frightening and overwhelming news, and crucial information may need to be addressed again when the parents are less shocked or traumatized and in a more receptive state. Parents may prefer to discuss difficult news when supportive people in their lives are present for the conversation as these supportive others can often retain information, ask clarifying questions, and review it with parents at a later point in time. Parents’ reactions may follow a grief sequence, including initial shock and disbelief lasting days to weeks, followed by anger, despair, and guilt over weeks to months, and ending in acceptance of the reality of the situation. These responses vary in their expression, intensity, and duration for each member of the family. Even when the illness is cured, some parents may continue to suffer from post-traumatic stress symptoms related to the diagnosis and treatment.

Developmental and phase-oriented perspectives of patients, siblings, parents, and caretakers are reviewed in Table 7–6. Although most children do not fully understand the permanency of death until about age 8, most ill children experience a sense of danger and doom that is associated with death before that age. Even so, the question of whether to tell a child about the fatal nature of a disease should in most cases be answered in the affirmative unless the parents object. When the parents object, this should alert the provider to involve the unit social worker, who can work with the family to ensure their decision is in the best interest of the child. Refusal of the adults to tell the child, especially when the adults themselves are very sad, leads to a conspiracy of silence that increases fear of the unknown in the child and leads to feelings of loneliness and isolation at the time of greatest need. In fact, children who are able to discuss their illness with family members are less depressed, have fewer behavior problems, have higher self-esteem, feel closer to their families, and adapt better to the challenges of their disease and its treatment.

The siblings of dying children are also significantly affected. They may feel neglected and deprived because of the time their parents must spend with the sick child. Anger and jealousy may then give rise to feelings of guilt over having such feelings about their sick sibling. Awareness of the emotional responses, coping abilities, and available resources for support of other family members can diminish these feelings and make a significant difference in the family’s overall ability to cope with the illness.

After the child dies, the period of bereavement may last indefinitely. Family members may need help in dealing with their grief through supportive counseling services or peer-support groups. Bereavement usually does not substantially interfere with overall life functioning for more than 2–3 months. Most parents and siblings are able to return to work and school within a month, although their emotional state and thoughts may continue to be dominated by the loss for some time. Grief responses may resurface around anniversaries (eg, of the diagnosis, medical procedure, death) or birthdays of the deceased child. When the individual is unable to function in his or her societal and family role beyond this time frame, a diagnosis of complicated bereavement, major depression, PTSD, or adjustment disorder should be considered and appropriate interventions recommended, such as referral for counseling or psychotherapy and possibly antidepressant medication. For additional information on this topic, please refer to Chapter 32.

Long-Term Coping

The process of coping with a chronic or terminal illness is complex and varies with the dynamics of each individual child and family. Each change in the course of illness and each new developmental stage may present different challenges for the child and family. It is important for healthcare providers to continually assess the family’s and child’s needs and coping abilities over time and to provide appropriate support, information, and access to interventions.

Assistance From Healthcare Providers

A. Educate the Patient and Family

Children and their families should be given information about the illness, including its course and treatment, at frequent intervals. Factual, open discussions minimize anxiety. The explanation should be comprehensible to all, and time should be set aside for questions and answers. The setting can be created with an invitation such as “Let’s take some time together to review the situation again.”

B. Prepare the Child for Changes and Procedures

The provider should explain, in an age-appropriate manner, what is expected with a new turn in the illness or with upcoming medical procedures. This explanation enables the child to anticipate and in turn to master the new development and promotes trust between the patient and the healthcare providers.

C. Encourage Normal Activities

The child should attend school and play with peers as much as the illness allows. Individual education plans should be
Table 7–6. Children’s response to death.

<table>
<thead>
<tr>
<th></th>
<th>Before Developmental Concerns</th>
<th>Acute</th>
<th>Chronic</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Child</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–5 y</td>
<td>Ideas on death</td>
<td>Death stage anxieties</td>
<td>Avoidance of pain; need for love</td>
<td>Withdrawal; separation anxiety</td>
</tr>
<tr>
<td></td>
<td>Abandonment; punishment</td>
<td>Fear of loss of love</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–10 y</td>
<td>Concepts of inevitability; confusion</td>
<td>Castration anxiety</td>
<td>Guilt (bad), regression, denial</td>
<td>Guilt (religious), regression, denial</td>
</tr>
<tr>
<td>10–15 y</td>
<td>Reality</td>
<td>Control of body and other developmental tasks</td>
<td>Depression; despair for future</td>
<td>Depression; despair, anxiety, anger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Acute</th>
<th>Chronic</th>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Parents</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anxiety; concern; hopefulness</td>
<td>Premature mourning guilt, anticipatory grief, reaction formation and displacements, need for information</td>
<td>Disbelief; displaced rage; accelerate grief; prolonged numbness</td>
<td>Desperate concern; denial; guilt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Premature mourning guilt, anticipatory grief, reaction formation and displacements, need for information</td>
<td>Denial; remorse; resurgence of love</td>
<td>Anger at doctors; need for follow-up, overidealizing, fantasy loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Remorse; relief and guilt</td>
<td></td>
</tr>
</tbody>
</table>

**Siblings**				
0–5 y		Reactions to changes in parents (sense of loss of love and withdrawal)		
5–10 y	Concern about their implications; fearful for themselves			
10–15 y	Generally supportive			

**Staff**	Anxiety; conspiracy of silence	Reaction: withdraw Tasks:		
		1. Correct distortions (eg, “Am I safe?”; “Will someone be with me?”; “Will I be helped to feel better?”)		
		2. Comfort parents		
		3. Allow hope and promote feeling of actively coping		
		4. Protect dignity of patient		


requested from the school if accommodation beyond the regular classroom is necessary. At the same time, parents should be encouraged to apply the same rules of discipline and behavior to the ill child as to the siblings.

D. Encourage Compensatory Activities, Interests, and Skill Development

Children who experience disability or interruption of their usual activities and interests should be encouraged to explore
new interests, and the family should be supported in adapting the child’s interests for their situation, and in presenting new opportunities.

**E. Promote Self-Reliance**

Children often feel helpless when others must do things for them, or assist with their daily needs. The healthcare provider should guide and encourage parents in helping ill children assume responsibility for some aspects of their medical care and continue to experience age-appropriate independence and skills whenever possible.

**F. Periodically Review Family Coping**

Families are often so immersed in the crisis of their child’s illness that they neglect their own needs or the needs of other family members. From time to time, the provider should ask “How is everyone doing?” The feelings of the patient, the parents, and other children in the family are explored. Parents should be encouraged to stay in touch with people in their support system, and to encourage their children in such efforts as well. Feelings of fear, guilt, anger, and grief should be monitored and discussed as normal reactions to difficult circumstances. If these experiences are interfering with the family’s functioning, involvement of the pediatric social worker or a therapist can be helpful.

Appropriate lay support groups for the patient and family should be recommended. Many hospitals have such groups, and hospital social workers can facilitate participation for the patient and family.

Psychiatric disorders have their origins in neurobiologic, genetic, psychological (life experience), or environmental sources. The neurobiology of childhood psychiatry is one of the most active areas of investigation in child and adolescent psychiatry. Although much remains to be clarified, data from genetic studies point to heritable transmission of attention-deficit/hyperactivity disorder (ADHD), schizophrenia, mood and anxiety disorders, eating disorders, pervasive developmental disorders, learning disorders, and tic disorders, among others. About 3%–5% of children and 10%–15% of adolescents will experience psychiatric disorders.

The *Diagnostic and Statistical Manual of Mental Disorders*, Fourth Edition, Text Revision (DSM-IV-TR) is the formal reference text for psychiatric disorders and includes the criteria for each of the mental illnesses, including those that begin in childhood and adolescence. Psychiatric diagnoses are given on five axes to allow the provider to address the developmental, medical, psychosocial, and overall adaptive issues that contribute to the primary diagnosis on axis I or II.

**Axis I:** Clinical disorders

**Axis II:** Personality disorders, mental retardation, learning disabilities

**Axis III:** General medical conditions

**Axis IV:** Psychosocial and environmental problems

**Axis V:** Global assessment of functioning (on a scale of 0–100, with 100% being the highest level of functioning)

Unfortunately, available mental health classification systems are infrequently used in pediatric primary care settings since they address the more severe and extensive conditions. As previously stated, primary care providers frequently see a spectrum of disturbances in their clinical practice, many not achieving full DSM-IV-TR criteria. In order to combat the fact that current nosologies do not provide enough detail about common problems and situations that primary care pediatric providers come across, the AAP and the American Psychiatric Association (APA) collaboratively developed the DSM-IV Primary Care (DSM-PC), including a child and adolescent version (C&A). The key assumptions of the DSM-PC (C&A) are based on the fact that children’s environments have an impact on their mental health, and that children demonstrate a continuum of symptoms from those seen in typical children to those in children with severe disorders. The DSM-PC is compatible with the DSM-IV-TR, is clear and concise, and is available for research testing and subsequent refinement. It is organized into sections covering environmental situations, child manifestations, and severity (Table 7–7). Categories of the major environmental factors that may affect a child, ranging from economic issues to family violence, are described and given V codes. Specific behavioral manifestations are listed under broad groupings and include complaints, definitions, symptoms, differential diagnosis, developmental variation, and etiology. Severity,
the DSM-PC, has several dimensions, including symptoms, functioning, burden of suffering, and risk and protective factors. The DSM-PC has a great deal of promise, not only as a mechanism to classify the complexities of children’s behavior problems, but also as a mechanism for the future to facilitate financial reimbursement for early identification of and intervention for children’s behavioral problems. Pediatricians should find this manual to be a valuable tool in the care of children and their families. A revised DSM-PC is being developed.

Unfortunately, the current knowledge base regarding disorders described by the DSM-PC is limited. The descriptions of disorders in this chapter therefore follow the DSM-IV-TR nosology in order to reference current knowledge regarding epidemiology, course, and treatment of specific disorders. The DSM-IV-TR has been revised, and the DSM-V was released in May 2013. Major changes in diagnostic criteria include updates to autism spectrum disorders, attention-deficit hyperactivity disorder, and tic disorders. Newly added diagnoses include social communication disorder, which describes children who have language and communication deficits. Specific learning disorders, also a new category, has modifiers in reading, written expression, and/or mathematics. Three new communication disorders—language disorder, childhood-onset fluency disorder (ie, stuttering), and speech sounds disorder—have replaced expressive language disorder, stuttering, and phonologic disorder, respectively. Lastly, intellectual disability replaces “mental retardation” and requires both adaptive-functioning assessments and IQ scores for diagnosis.

### Table 7-7. Areas of focus in the Diagnostic and Statistical Manual, Primary Care (DSM-PC).

<table>
<thead>
<tr>
<th>DSM-PC Section</th>
<th>Area of Focus</th>
</tr>
</thead>
</table>
| Environmental situations | Challenges to primary support group  
Changes in caregiving  
Community or social changes  
Educational challenges  
Parent or adolescent occupational challenges  
Housing challenges  
Economic challenges  
Inadequate access to health or mental health services  
Legal system or crime problem  
Other environmental situations  
Health-related situations |
| Child manifestations | Developmental competencies  
Impulsive, hyperactive, and inattentive behaviors  
Negative and antisocial behaviors  
Substance use and abuse  
Emotions and moods, and emotional behaviors  
Somatic behaviors  
Feeding, eating, and elimination  
Illness-related behaviors  
Sexual behaviors  
Atypical behaviors |
| Severity of Disorder | Clinical Implications |
| Mild | Unlikely to cause serious developmental difficulties or impairment in functioning |
| Moderate | May cause, or is causing, some developmental difficulties or impairment. Further evaluation and intervention planning are warranted |
| Severe | Is causing serious developmental difficulties and dysfunction in one or more key areas of the child’s life. Mental health referral and comprehensive treatment planning are often indicated, possibly on an urgent basis |

### PEDIATRIC PRIMARY CARE BEHAVIORAL HEALTH SERVICES

Delivering mental health and behavioral services in the context of pediatric primary care provides a mechanism for improving access, quality, and effectiveness of services (Guevara & Forrest, 2006; Trupin, 2011) within a medical home for children. In the ideal, medical homes provide children and families with comprehensive, coordinated, individualized, strength-based, culturally sensitive, and family centered care that is inclusive of physical, mental, and oral health (Strickland et al, 2011). Mental health and behavioral services span the continuum from colocating a behavioral health provider within a primary care setting and offering traditional outpatient mental health services in isolation of primary care services but at the same clinic to integrating of behavioral health clinicians into the routine practice of a pediatric primary care clinic. Behavioral health services include direct clinical interventions, consultation to pediatric providers on challenging cases, joint visits, and trainings (Strohm et al, 2009). Colocated services primarily target children and families while integrated services target children, families, pediatric providers, and systems of care in which services are being delivered.

Behavioral health providers working in pediatric primary care settings must be prepared to address a wide range of presenting problems, health conditions, and family circumstances. Difficulties span daily routine disruptions (eg, eating and sleeping), developmental delays, management of chronic illness (eg, asthma, obesity), adjustment to life events and stressors (eg, moving, divorce), acute traumas (eg, accidents, episodes of abuse), chronic family circumstances (eg, family violence, financial hardship, parental mental illness), academic challenges, relationship disruptions, and mental health disorders. Consequently, behavioral health providers utilize numerous strategies to address the varied and often complex presentations.
First and foremost, behavioral health providers strive to establish a relationship with the child and family. Rapport and relationship building are essential to engaging families in treatment and, importantly, to having families return to the primary care setting for ongoing treatment and support. Once a strong relationship is established, behavioral health providers strive to identify challenges and concerns through screening and assessment, diagnose and treat those issues that can be managed in primary care, triage and refer families to external resources, and ultimately, improve child and family outcomes. In integrated models, behavioral health providers work collaboratively with pediatric primary care providers to develop and implement care plans.

Interventions that have successfully addressed developmental, psychosocial factors, and to a more limited extent, mental health and behavioral issues in pediatric primary care settings, have typically targeted specific behavioral concerns including sleep disruptions, discipline techniques, obesity, and pain (Allen, Elliott, & Arndorfer, 2002) with the goals of symptom reduction, improved adaptive behaviors and functioning, decreased family distress, and increased adherence to medical regimens. Behavioral health clinicians frequently manage prevalent mental health disorders including anxiety (Saklosky & Birmaher, 2008), depression, and attention-deficit/hyperactivity by adapting outpatient treatments for use in primary care. Exposures, relaxation techniques, and cognitive skills are among the many that can be readily taught. Educational interventions including counseling sessions, written information, and videotapes have been used to enhance parent-child interactions and bolster parental confidence (Pinilla & Birch, 1993; Wolfson, Lacks & Futterman, 1992). Behavioral health clinicians often coordinate screening and identification efforts (Simonian, 2006; Weitzman & Leventhal, 2006) by implementing procedures and developing protocols for successful screening, identification, referral, and feedback.

The Healthy Steps for Young Children Program incorporated developmental specialists and enhanced developmental services into pediatric primary care settings. Findings from an evaluation of the program suggest that participating families received more developmental services, were more satisfied with the quality of care provided, were more likely to attend well-child visits and receive vaccinations on time, and were less likely to use severe discipline techniques with their children (Minkovitz et al, 2003). Participation in the program also increased the likelihood that mothers at risk for depression would discuss their sadness with someone in the pediatric setting.

In reviewing the literature, Regalado and Halfon (2001) found that methods of identifying children with developmental difficulties in primary care settings were not adequate and assessment approaches for behavioral problems in the first 3 years of life were particularly lacking. This review also noted that physicians underestimate the extent of psychosocial challenges faced by families and their impact on behavior problems in children. Although a compelling case can be made for providing access to behavioral health services in pediatric primary care, particularly in infancy and early childhood (Talmi et al, 2009; Zeanah & Gleason, 2009), further studies are needed to assess whether early access to behavioral services can prevent mental health issues and long-term developmental sequelae. Importantly, without behavioral health supports in pediatric primary care settings, the burden of addressing mental health, developmental, and behavioral issues falls on the pediatric provider who has neither adequate time (Cooper et al, 2006) nor the ability to bill and receive reimbursement for such services (Meadows et al, 2011). Moreover, despite the recognition that clinical skills are needed to identify and address children’s and parent’s complex behavioral health needs, developmental and psychosocial issues have only recently become more central in pediatric training (American Academy of Pediatrics, 2009).

Special Considerations in Prescribing Psychotropic Medications

As mentioned previously, pediatricians will likely be managing mental health issues in the primary care setting. A large portion of the management will likely consist of medication treatment. Each primary care provider must establish their comfort level in prescribing psychotropic medications. Table 7–8 may be helpful in guiding prescribing psychotropic medications within the primary care setting. More complete information regarding medication is detailed throughout the chapter. In addition, a list of FDA-approved medication for various psychiatric disorders is included in Table 7–18. For a current alphabetical listing of FDA-approved psychotropic medications, please refer to the NIMH website at http://www.nimh.nih.gov/health/publications/mental-health-medications/nimh-mental-health-medications.pdf.
**ANXIETY DISORDERS**

1. **Anxiety-Based School Refusal (School Avoidance)**

   - A persistent pattern of school avoidance related to symptoms of anxiety.
   - Somatic symptoms on school mornings, with symptoms resolving if the child is allowed to remain at home.
   - No organic medical disorder that accounts for the symptoms.
   - High levels of parental anxiety are commonly observed.

**General Considerations**

Anxiety-based school refusal should be considered if a child presents with a medically unexplained absence from school for more than 2 weeks. Anxiety-based school refusal is a persistent behavioral symptom rather than a diagnostic entity. It refers to a pattern of school nonattendance resulting from anxiety, which may be related to a dread of leaving home (separation anxiety), a fear of some aspect of school, or a fear of feeling exposed or embarrassed at school (social phobia). In all cases, a realistic cause of the fear (e.g., an intimidating teacher or a playground bully) should be ruled out. In most cases, anxiety-based school refusal is related to...
developmentally inappropriate separation anxiety. The incidence between males and females is about equal, and there are peaks of incidence at ages 6–7 years, again at ages 10–11 years, and in early adolescence.

**Clinical Findings**

In the preadolescent years, school refusal often begins after some precipitating stress in the family. The child’s anxiety is then manifested either as somatic symptoms or in displacement of anxiety onto some aspect of the school environment. The somatic manifestations of anxiety include dizziness, nausea, and stomach distress. Characteristically, the symptoms become more severe as the time to leave for school approaches and then remit if the child is allowed to remain at home for the day. In older children, the onset is more insidious and often associated with social withdrawal and depression. The incidence of anxiety and mood disorders is increased in these families.

**Differential Diagnosis**

The differential diagnosis of school nonattendance is presented in Table 7–9. Medical disorders that may be causing the somatic symptoms must be ruled out. Children with learning disorders may wish to stay home to avoid the sense of failure they experience at school. Children may also have transient episodes of wanting to stay at home during times of significant family stress or loss. The onset of school avoidance in middle or late adolescence may be related to the onset of schizophrenia. Children who are avoiding school for reasons related to oppositional defiant disorder or conduct disorder can be differentiated on the basis of their chronic noncompliance with adult authority and their preference for being with peers rather than at home.

**Complications**

The longer a child remains out of school, the more difficult it is to return and the more strained the relationship between child and parent becomes. Many parents of nonattending children feel tyrannized by their defiant, clinging child. Children often feel accused of making up their symptoms, leading to further antagonism between the child, parents, and medical caregivers.

**Treatment**

Once the comorbid diagnoses and situations related to school avoidance or refusal have been identified and interventions begun (ie, educational assessment if learning disabilities are suspected, medication if necessary for depression or anxiety, or addressing problems in the home), the goal of treatment is to help the child confront anxiety and overcome it by returning to school. This requires a strong alliance between the parents and the healthcare provider. The parent must understand that no underlying medical disorder exists, that the child’s symptoms are a manifestation of anxiety, and that the basic problem is anxiety that must be faced to be overcome. Parents must be reminded that being good parents in this case means helping a child cope with a distressing experience. Children must be reassured that their symptoms are caused by worry and that they will be overcome on return to school.

A plan for returning the child to school is then developed with parents and school personnel. Firm insistence on full compliance with this plan is essential. The child is brought to school by someone not likely to give in, such as the father or an older sibling. If symptoms develop at school, the child should be checked by the school nurse and then returned to class after a brief rest. The parents must be reassured that school staff will handle the situation at school and that school personnel can reach the primary healthcare provider if any questions arise.

If these interventions are ineffective, increased involvement of a therapist and consideration of a day treatment program may be necessary. For children with persistent symptoms of separation that do not improve with behavioral interventions, medications such as selective serotonin reuptake inhibitors (SSRIs) should be considered. Comorbid diagnoses of panic disorder, generalized anxiety disorder,
or major depression should be carefully screened for, and if identified, treated appropriately.

## Prognosis

The vast majority of preadolescent children improves significantly with behavioral interventions and return to school. The prognosis is worsened by the length of time the child remains out of school. Long-term outcomes are influenced by comorbid diagnoses and responsiveness to behavioral or medication interventions. A history of school refusal is more common in adults with panic and anxiety disorders and agoraphobia than in the general population.

### General Considerations

Anxiety can be manifested either directly or indirectly, as shown in Table 7–10. The characteristics of anxiety disorders in childhood are listed in Table 7–11. Community-based studies of school-aged children and adolescents suggest that nearly 10% of children have some type of anxiety disorder. The differential diagnosis of symptoms of anxiety is presented in Table 7–12.

### Table 7–10. Signs and symptoms of anxiety in children.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Major Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychological</td>
<td></td>
</tr>
<tr>
<td>Fears and worries</td>
<td>Increased dependence on home and parents</td>
</tr>
<tr>
<td>Increased dependence on home and parents</td>
<td></td>
</tr>
<tr>
<td>Avoidance of anxiety-producing stimuli</td>
<td></td>
</tr>
<tr>
<td>Decreased school performance</td>
<td>Increased self-doubt and irritability</td>
</tr>
<tr>
<td>Increased self-doubt and irritability</td>
<td></td>
</tr>
<tr>
<td>Frightening themes in play and fantasy</td>
<td></td>
</tr>
<tr>
<td>Psychomotor</td>
<td></td>
</tr>
<tr>
<td>Motoric restlessness and hyperactivity</td>
<td></td>
</tr>
<tr>
<td>Sleep disturbances</td>
<td>Decreased concentration</td>
</tr>
<tr>
<td>Decreased concentration</td>
<td></td>
</tr>
<tr>
<td>Motoric restlessness and hyperactivity</td>
<td></td>
</tr>
<tr>
<td>Psychological</td>
<td></td>
</tr>
<tr>
<td>Autonomic hyperarousal</td>
<td></td>
</tr>
<tr>
<td>Dizziness and lightheadedness</td>
<td></td>
</tr>
<tr>
<td>Palpitations</td>
<td></td>
</tr>
<tr>
<td>Shortness of breath</td>
<td></td>
</tr>
<tr>
<td>Flushing, sweating, dry mouth</td>
<td></td>
</tr>
<tr>
<td>Nausea and vomiting</td>
<td></td>
</tr>
<tr>
<td>Panic</td>
<td></td>
</tr>
<tr>
<td>Headaches and stomach aches</td>
<td></td>
</tr>
</tbody>
</table>

The evaluation of anxiety symptoms in children must consider the age of the child, the developmental fears that can normally be expected at that age, the form of the symptoms and their duration, and the degree to which the symptoms disrupt the child’s life. The family and school environment should be evaluated for potential stressors, marital discord, family violence, harsh or inappropriate

### Table 7–11. Anxiety disorders in children and adolescents.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Major Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalized anxiety disorder</td>
<td>Intense, disproportionate, or irrational worry, often about future events</td>
</tr>
<tr>
<td>Panic disorder</td>
<td>Unprovoked, intense fear with sympathetic hyperarousal, and often palpitations or hyper-ventilation</td>
</tr>
<tr>
<td>Post-traumatic stress disorder</td>
<td>Fear of a recurrence of an intense, anxiety-provoking traumatic experience, causing sympathetic hyperarousal, avoidance of reminders, and the reexperiencing of aspects of the traumatic event</td>
</tr>
<tr>
<td>Separation anxiety disorder</td>
<td>Developmentally inappropriate wish to maintain proximity with caregivers; morbid worry of threats to family integrity or integrity of self upon separation; intense homesickness</td>
</tr>
<tr>
<td>Social phobia</td>
<td>Painful shyness or self-consciousness; fear of humiliation with public scrutiny</td>
</tr>
<tr>
<td>Specific phobia</td>
<td>Avoidance of specific feared stimuli</td>
</tr>
</tbody>
</table>

2. Generalized Anxiety Disorder & Panic Disorder

### General Considerations

Anxiety can be manifested either directly or indirectly, as shown in Table 7–10. The characteristics of anxiety disorders in childhood are listed in Table 7–11. Community-based studies of school-aged children and adolescents suggest that nearly 10% of children have some type of anxiety disorder. The differential diagnosis of symptoms of anxiety is presented in Table 7–12.
discursive methods, sexual abuse, neglect, and emotional overstimulation. The child’s experience of anxiety and its relationship to life events should be explored. Please refer to treatment algorithm for anxiety disorders (Figure 7–1).

Complications

Some adolescents with panic disorder can develop agoraphobia, a subsequent fear that a panic attack may occur in public or other places where help or escape may not be available.

Treatment

Therapy to incorporate specific cognitive and behavioral techniques to diminish anxiety should be recommended for children and adolescents struggling with both generalized anxiety as well as panic disorder. Cognitive, behavioral, environmental, and virtual treatments are typically available in both the privately insured as well as in community mental health settings. Parent-child and family interventions are also very useful techniques in treating the anxious child. When panic attacks or anxiety symptoms do not remit with cognitive, behavioral, and environmental interventions, and they significantly affect life functioning, psychopharmacologic agents may be helpful. SSRIs may be effective across a broad spectrum of anxiety symptoms including panic and generalized anxiety, although no SSRIs are approved for this indication. Occasionally, short-term use of benzodiazepines can be helpful for severe impairment and for treatment relief while waiting for the SSRI to achieve benefit (usually within 3–4 weeks). Alternatively, alpha agonists can be used in place of benzodiazepines, on a scheduled or as-needed based, and usually are better tolerated without concern for physiologic dependence. Please refer to medication used for treatment of anxiety disorders (Table 7–13).

Prognosis

The average age of onset for an anxiety disorder is 5 years of age. In addition, there is continuity between high levels of childhood anxiety and anxiety disorders in adulthood. Anxiety disorders are thus likely to be lifelong conditions, yet with effective interventions, individuals can minimize their influence on overall life functioning.

Table 7–12. Differential diagnosis of symptoms of anxiety.

<table>
<thead>
<tr>
<th>I. Normal developmental anxiety</th>
<th>II. “Appropriate” anxiety</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Stranger anxiety (5 mo–2½ years, with a peak at 6–12 mo)</td>
<td>A. Anticipating a painful or frightening experience</td>
</tr>
<tr>
<td>B. Separation anxiety (7 mo–4 y, with a peak at 18–36 mo)</td>
<td>B. Avoidance of a reminder of a painful or frightening experience</td>
</tr>
<tr>
<td>C. The child is fearful or even phobic of the dark and monsters (3–6 y)</td>
<td>C. Child abuse</td>
</tr>
<tr>
<td>III. Anxiety disorder (see Table 7–11), with or without comorbid psychiatric disorders</td>
<td>III. Anxiety disorder (see Table 7–11), with or without comorbid psychiatric disorders</td>
</tr>
<tr>
<td>IV. Substance abuse</td>
<td>IV. Substance abuse</td>
</tr>
<tr>
<td>V. Medications and recreational drugs</td>
<td>V. Medications and recreational drugs</td>
</tr>
<tr>
<td>A. Caffeinism (including colas and chocolate)</td>
<td>A. Caffeinism (including colas and chocolate)</td>
</tr>
<tr>
<td>B. Sympathomimetic agents</td>
<td>B. Sympathomimetic agents</td>
</tr>
<tr>
<td>C. Idiosyncratic drug reactions</td>
<td>C. Idiosyncratic drug reactions</td>
</tr>
<tr>
<td>VI. Hypermetabolic or hyperarousal states</td>
<td>VI. Hypermetabolic or hyperarousal states</td>
</tr>
<tr>
<td>A. Hyperthyroidism</td>
<td>A. Hyperthyroidium</td>
</tr>
<tr>
<td>B. Pheochromocytoma</td>
<td>B. Pheochromocytoma</td>
</tr>
<tr>
<td>C. Anemia</td>
<td>C. Anemia</td>
</tr>
<tr>
<td>D. Hypoglycemia</td>
<td>D. Hypoglycemia</td>
</tr>
<tr>
<td>E. Hypoxemia</td>
<td>E. Hypoxemia</td>
</tr>
<tr>
<td>VII. Cardiac abnormality</td>
<td>VII. Cardiac abnormality</td>
</tr>
<tr>
<td>A. Dysrhythmia</td>
<td>A. Dysrhythmia</td>
</tr>
<tr>
<td>B. High-output state</td>
<td>B. High-output state</td>
</tr>
<tr>
<td>C. Mitral valve prolapsed</td>
<td>C. Mitral valve prolapsed</td>
</tr>
</tbody>
</table>

3. Social Anxiety Disorder

General Considerations

Social Anxiety Disorder is characterized by significant, persistent fear in social settings or performance situations. The disorder results in overwhelming anxiety and inability to function when exposed to unfamiliar people and/or scrutiny. As at least one-third of children with anxiety disorders meet criteria for two or more anxiety disorders, it is important to evaluate the other possible causes of anxiety. Overall, this is usually a complication of older children and adolescents.

Anxiety symptoms in children with social anxiety disorder are related specifically to the social setting and not better accounted for any other anxiety disorder. Common
Can problem be managed in primary care?

Anxiety Problem?
Unexplained somatic complaints?

Safety check:
Neglect/Abuse?
Drug abuse?
Medical cause? (ie, medication effects, asthma)

Think about comorbidity: Depression and ADHD are common. ~50% of kids with anxiety have 2 or more anxiety diagnoses

Diagnosis:
DSM-IV-TR diagnostic criteria
SCARED rating scale (or others for a fee)
If obsessions/compulsions, think of OCD
If nightmares/flashbacks, think of PTSD
Label as “Anxiety Disorder, NOS” if the type is unclear

Can problem be managed in primary care? 

Mild Problem
(noticeable, but basically functioning OK)

Discuss their concerns
Reassure that “many kids feel this way”
Correct any distorted thoughts (eg, “If I don’t get an ‘A,’ I’ll die”)
Reduce stressors, but will still have to face a fear to conquer it
Offer tip sheet on relaxation techniques to help child tolerate exposure to their fears
Offer parent/child further reading resources on anxiety, as self-help is possible

Moderate/Severe Problem
(significant impairment in one setting or at least moderate impairment in multiple settings)

Recommend Individual psychotherapy
(CBT is preferred; key element is a gradual exposure to fears)
Also offer advice on the left pathway as per a “mild problem”
Most children should have a trial of therapy before medications.
Consider starting SSRI if therapy not helping or anxiety very severe.
Low-dose fluoxetine or sertraline are first line choices
Wait four weeks between SSRI increases, use full-dose range if no SE.
Check for agitation/suicidal thought side effect by phone or in person in 1–2 weeks, and stop medicine if agitation or increased anxiety.
Try a second SSRI if first is not helpful

Sources:

▲ Figure 7-1. Treatment algorithm for children and adolescents with anxiety. (Reproduced with permission from Hilt R: Primary Care Principles for Child Mental Health, summer 2013. version 4.1).
manifestations of this disorder include ongoing avoidance of social functions, and persistent somatic complaints which occur in a social setting and resolve in the absence of social exposure. The symptoms significantly disrupt the child’s—and frequently the family’s—life, and parents often describe a pattern of overly accommodating their child’s avoidance and/or incentivizing their child to attend routine social, extracurricular, or family functions.

Complications

Children with social anxiety disorder are at increased risk for depression and school avoidance. Children with social anxiety disorder can also experience panic attacks, and furthermore it is important to be aware of the high comorbidity between substance use disorders and anxiety disorders, especially social anxiety disorder.

Treatment

Similar to the other anxiety categories, the mainstay of treatment for social anxiety disorder is therapy. The goal is to modify behavior and diminish the anxiety in social settings through the use of specific cognitive and behavioral techniques. As with other anxiety disorders, if ongoing therapy is not effective at mitigating the anxiety, then psychopharmacologic agents may be helpful. SSRIs are the only class of medication to have demonstrated efficacy for children with social anxiety disorder.

Prognosis

As previously mentioned, since there is continuity between high levels of childhood anxiety and anxiety disorders in adulthood, anxiety disorders are likely to persist for years. However, with effective interventions, individuals can significantly lessen the impact of the disorder and improve overall functioning.


<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Dosage Form</th>
<th>Usual Starting Dose for Adolescents</th>
<th>Increase increment (After ~4 wk)</th>
<th>RCT Anxiety Treatment Benefit in Kids</th>
<th>FDA anxiety Approved for Children?</th>
<th>Editorial Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoxetine</td>
<td>10, 20, 40 mg</td>
<td>5–10 mg/d (60 mg max)</td>
<td>10–20 mg^2^</td>
<td>Yes</td>
<td>Yes (for OCD &gt; 7 yr)</td>
<td>Long ½ life, no SE from a missed dose</td>
</tr>
<tr>
<td>(Prozac)</td>
<td>20 mg/5 mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sertraline</td>
<td>25, 50, 100 mg</td>
<td>25 mg/d (200 mg max)</td>
<td>25–50 mg^2^</td>
<td>Yes</td>
<td>Yes (for OCD &gt; 6 y)</td>
<td>May be prone to SE from weaning off</td>
</tr>
<tr>
<td>(Zoloft)</td>
<td>20 mg/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>25, 50, 100 mg</td>
<td>25 mg/d (300 mg max)</td>
<td>50 mg^2^</td>
<td>Yes</td>
<td>Yes (for OCD &gt; 8 y)</td>
<td>Often more side effect than other SSRIs, has many drug interactions</td>
</tr>
<tr>
<td>(Luvox)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroxetine</td>
<td>10, 20, 30, and 40 mg</td>
<td>5–10 mg/d (60 mg max)</td>
<td>10–20 mg^2^</td>
<td>Yes</td>
<td>No</td>
<td>Not preferred if child also has depression. Can have short ½ life</td>
</tr>
<tr>
<td>(Paxil)</td>
<td>10 mg/5 mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citalopram</td>
<td>10, 20, 40 mg</td>
<td>5–10 mg/d (40 mg max)</td>
<td>10–20 mg^2^</td>
<td>No</td>
<td>No</td>
<td>Very few drug interactions</td>
</tr>
<tr>
<td>(Celexa)</td>
<td>10 mg/5 mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escitalopram</td>
<td>5, 10, 20 mg</td>
<td>2.5–5 mg/d (20 mg max)</td>
<td>5–10 mg^2^</td>
<td>No</td>
<td>No</td>
<td>No generic form, Active isomer of citalopram</td>
</tr>
<tr>
<td>(Lexapro)</td>
<td>5 mg/5 mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aSertraline and fluoxetine are both first-line medications for child anxiety disorders, per the evidence base. OCD, obsessive-compulsive disorder; SE, side effects.
^bRecommend decrease maximum dosage by at least 1/3 for prepubertal children.
^cRecommend using the lower dose increase increments for younger children.

Notes:
1. Starting at a very low dose of SSRI for the first week or two with anxiety disorders is especially essential to reduce the child’s experience of side effects (augmented by associated somatic anxieties).
2. Successful medication trials should continue for 6–12 mo.
4. Specific Phobias

General Considerations

Specific phobia is an intense fear of a particular thing, experience, or situation. This object or situation is a cause of great distress. To handle the distress, the child avoids the object or situation, therefore reinforcing the anxiety. The perceived harm or threat is well out of proportion to the actual stimulus. A specific fear can develop into a specific phobia if symptoms are significant enough to result in extreme distress or impairment related to the fear. While children commonly experience more than one specific phobia, this alone does not constitute the diagnosis of generalized anxiety disorder.

Treatment

The mainstay of treatment for specific phobias is psychotherapy. Again, cognitive behavioral therapy is the most effective approach, with a major emphasis on the development of stress reduction techniques, coping skills, and exposure-response therapy.

Prognosis

While some specific phobias usually lessen in severity over time, others may require more active and continual interventions. Overall, the purpose is to minimize the distress and improve functioning.

5. Obsessive-Compulsive Disorder

Essentials of Diagnosis & Typical Features

- Recurrent obsessive thoughts, impulses, or images that are not simply excessive worries about real-life problems.
- Obsessions and compulsions cause marked distress, are time-consuming, and interfere with normal routines.

General Considerations

Obsessive-compulsive disorder (OCD) is an anxiety disorder that often begins in early childhood but may not be diagnosed until the teenage or even young adult years. The essential features of OCD are recurrent obsessions or compulsions that are severe enough to be time-consuming or cause marked distress and functional impairment. Obsessions are persistent ideas, thoughts, or impulses that are intrusive and often inappropriate. Children may have obsessions about contamination or cleanliness; ordering and compulsive behaviors will follow, such as frequent hand washing, counting, or ordering objects. The goal of the compulsive behavior for the individual with OCD is to reduce anxiety and distress. There may be significant avoidance of situations due to obsessive thoughts or fears of contamination. OCD is often associated with major depressive disorder. OCD is a biologically based disease and has a strong genetic/familial component. Pediatric autoimmune disorders associated with group B streptococci have also been implicated in the development of OCD for some children. The prevalence of OCD is estimated to be around 2%, and the rates are equal between males and females.

Trichotillomania, while technically classified as an impulse disorder, is also thought to be related to OCD. It involves the recurrent pulling out of hair, often to the point of bald patches, and can also involve pulling out eyelashes, eyebrows, and hair from any part of the body. Trichotillomania should be considered in the differential diagnosis for any patient with alopecia. Treatment often includes the same medications used to treat OCD, and behavior therapy to decrease hair pulling and restore normal social functioning.

Treatment

OCD is best treated with a combination of cognitive-behavioral therapy specific to OCD and medications in more severe cases. SSRIs are effective in diminishing OCD symptoms. Fluvoxamine and sertraline have FDA approval for the treatment of pediatric OCD. The tricyclic antidepressant (TCA) clomipramine has FDA approval for the treatment of OCD in adults.

Prognosis

Although OCD is usually a lifelong condition, most individuals can achieve significant remission of symptoms with
the combination of cognitive-behavioral therapy and medications. A minority of individuals with OCD are completely disabled by their symptoms.


6. Post-Traumatic Stress Disorder

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Signs and symptoms of autonomic hyperarousal such as easy startle, increased heart rate, and hypervigilance.
- Avoidant behaviors and numbing of responsiveness.
- Flashbacks to a traumatic event such as nightmares and intrusive thoughts.
- Follows traumatic events such as exposure to violence, physical or sexual abuse, natural disasters, car accidents, dog bites, and unexpected personal tragedies.

**General Considerations**

Factors that predispose individuals to the development of post-traumatic stress disorder (PTSD) include proximity to the traumatic event or loss, a history of exposure to trauma, preexisting depression or anxiety disorder, and lack of an adequate support system. PTSD can develop in response to natural disasters, terrorism, motor vehicle crashes, and significant personal injury, in addition to physical, sexual, and emotional abuse. Natural disasters such as hurricanes, fires, flooding, and earthquakes, for example, can create situations in which large numbers of affected individuals are at heightened risk for PTSD. Individuals who have a previous history of trauma, or an unstable social situation are at greatest risk of PTSD.

Long overdue, attention is now being paid to the substantial effects of family and community violence on the psychological development of children and adolescents. Abused children are most likely to develop PTSD and to suffer wide-ranging symptoms and impaired functioning. As many as 25% of young people exposed to violence develop symptoms of PTSD.

Heightened concern about terrorism in the United States has created increased awareness of PTSD and community-based interventions to decrease the risk of PTSD. Studies after the terrorist attacks of September 11, 2001, and the Oklahoma City bombing reported up to 40% of children and adolescents who experienced PTSD symptoms. Studies after Hurricane Katrina also identified PTSD rates up to 60% in young children after the disaster.

**Clinical Findings**

Children and adolescents with PTSD show persistent evidence of fear, anxiety, and hypervigilance. They may regress developmentally and experience fears of strangers, the dark, and being alone, and avoid reminders of the traumatic event. Children also frequently reexperience elements of the events in nightmares and flashbacks. In their symbolic play, one can often notice a monotonous repetition of some aspect of the traumatic event. Children with a history of traumatic experiences or neglect in infancy and early childhood are likely to show signs of reactive attachment disorder and have difficulty forming relationships with caregivers.

**Treatment**

The cornerstone of treatment for PTSD is education of the child and family regarding the nature of the disorder so that the child’s emotional reactions and regressive behavior are not mistakenly viewed as manipulative. Support, reassurance, and repeated explanations and understanding are needed. It is critical for the child’s recovery, that the child is living in a safe environment, and if caregivers have been abusive, concerns must be reported to social services. Efforts should be made to establish or maintain daily routines as much as possible, especially after a trauma or disaster that interrupts the family’s environment. In the case of media coverage of a disaster or event, children’s viewing should be avoided or limited. Interventions to maintain safety of the child are imperative. Individual and family psychotherapy are central features of treatment interventions. Specific fears usually wane with time, and behavioral desensitization may help. Cognitive-behavioral therapy is considered first-line treatment for PTSD, and there is some preliminary evidence that eye movement desensitization and reprocessing (EMDR) may also be useful.

A supportive relationship with a caregiving adult is essential. Frequently caregivers also have PTSD and need referral for treatment so that they can also assist in their child’s recovery.
For children with more severe and persistent symptoms, assessment for treatment with medication is indicated. Sertraline has approval for the treatment of PTSD in adults. Target symptoms (e.g., anxiety, depression, nightmares, and aggression) should be clearly identified and appropriate medication trials initiated with close monitoring. Some of the medications used to treat children with PTSD include clonidine or guanfacine (Tenex), mood stabilizers, antidepressants, and neuroleptics. Children who have lived for an extended time in abusive environments or who have been exposed to multiple traumas are more likely to require treatment with medications. Occupational therapy for sensory integration can also be effective in decreasing reactivity to stimuli and helping the child and caregivers develop and implement self-soothing skills. Individuals who have suffered single-episode traumas usually benefit significantly from psychotherapy and may require limited treatment with medication to address symptoms of anxiety, nightmares, and sleep disturbance.

**Prognosis**

At 4- to 5-year follow-up investigations, many children who have been through a traumatic life experience continue to have vivid and frightening memories and dreams and a pessimistic view of the future. The effects of traumatic experiences can be far-reaching. The ability of caregivers to provide a safe, supportive, stable, empathic environment enhances the prognosis for individuals with PTSD. Timely access to therapy and use of therapy over time to work through symptoms also enhance prognosis. Evidence is growing to support a connection between victimization in childhood and unstable personality and mood disorders in later life.

**7. Selective Mutism**

**General Considerations**

This disorder is most common in early childhood, with high levels of stress. Time of onset usually coincides with a child leaving home for the first time, either to preschool, kindergarten, or first grade.

**Clinical Findings**

Children and adolescents with selective mutism do not speak in one or more settings despite the ability to comprehend spoken language and speak in other settings. Many of these children have comorbid disorders, including elimination disorders, OCD, school phobia, and depression.

**Treatment**

The mainstay for treatment of selective mutism is cognitive behavioral therapy. If the condition is severe, use of SSRI is indicated.

**Prognosis**

The prognosis is usually very good, especially with therapy and/or use of medication.

**ATTENTION-DEFICIT HYPERACTIVITY DISORDER**

**Inattentive, Hyperactive, & Combined Type**

**General Considerations**

ADHD is one of the most commonly seen and treated psychiatric conditions in children and adolescents. Although there is no definitive cause or cure for this disorder, with adequate screening and monitoring, it can be identified and effectively treated.

**Clinical Findings**

Symptoms of ADHD fall into two categories: hyperactive and impulsive or inattentive. If a child has a significant number of symptoms in both categories, a diagnosis of ADHD, combined type is given. There is growing controversy about the diagnosis and treatment of ADHD. As with all psychiatric diagnoses, functional impairment is a required feature, as is presentation across multiple settings and relationships (e.g., home and school). It is important to keep in mind that intermittent symptoms of hyperactivity and/or inattention without functional impairment does not warrant a diagnosis of ADHD.
Differential Diagnosis

As discussed later in this chapter, not all hyperactivity and/or inattention can be attributed to ADHD. Some of the most common psychiatric conditions that have similar presenting problems to ADHD include mood disorder (ie, bipolar and depression), anxiety disorders, oppositional defiant disorder, adjustment disorder, PTSD, and learning disorders. There are also a number of medical diagnoses with presenting problems similar to ADHD, including head injury, hyperthyroidism, fetal alcohol syndrome, and lead toxicity. Inadequate nutrition and sleep deprivation including poor quality of sleep can also manifest with symptoms of inattention. It is important to have the correct diagnosis prior to initiating treatment for ADHD. Refer to the algorithm in this section on diagnosis, evaluating conditions on the differential and selecting treatment for ADHD (Figure 7–2).

Complications

ADHD comorbidities are common and include cooccurring anxiety disorders, mood disorders, oppositional defiant disorder, and conduct disorder. While stimulant medication, the first-line treatment for ADHD, has the potential for abuse, literature indicates that individuals who are treated for ADHD are significantly less likely to abuse substances compared to those who have not been treated. Also, a large majority of children and adolescents with ADHD are not formally diagnosed, and of those who are diagnosed, only 55% actually receive ongoing treatment.

Treatment

Medication is a primary treatment for ADHD. Stimulants are the most effective and most commonly prescribed medications. Approximately 75% of children with ADHD experience improved attention span, decreased hyperactivity, and decreased impulsivity when given stimulant medications. Children with ADHD who do not respond favorably to one stimulant may respond well to another. Children and adolescents with ADHD without prominent hyperactivity (ADHD, predominantly inattentive type) are also likely to be responsive to stimulant medications. When stimulants are not well tolerated or effective, nonstimulants may be used as an alternative. Among nonstimulant medications, atomoxetine, a selective noradrenergic reuptake inhibitor and guanfacine ER, a central alpha-2A-adrenergic receptor agonist, both have FDA approval for the treatment of ADHD in children. Please refer to table of stimulants and nonstimulants when considering which medication to use (Tables 7–14 and 7–15).

Special considerations regarding the use of stimulant medication

For general considerations on the use of stimulant medications, refer to Table 7–14.

Common adverse events include anorexia, weight loss, abdominal distress, headache, insomnia, dysphoria and tearfulness, irritability, lethargy, mild tachycardia, and mild elevation in blood pressure. Less common side effects include interdose rebound of ADHD symptoms, emergence of motor tics or Tourette’s syndrome, behavioral stereotypy, tachycardia or hypertension, depression, mania, and psychotic symptoms. Reduced growth velocity can occur, however, for individual patient’s ultimate height is not usually noticeably compromised. Treatment with stimulant medications does not predispose to future substance abuse. Young children are at increased risk for side effects from stimulant medications.

Reports in the medical literature and to the FDA of sudden death and of serious cardiovascular adverse events among children taking stimulant medication raised concerns about the safety of these medications. In fact, the labels for methylphenidate and amphetamine medications were changed in 2006 to note reports of stimulant-related deaths in patients with heart problems and advised against using these products in individuals with known serious structural abnormalities of the heart, cardiomyopathy, or serious heart rhythm abnormalities. There continues to be, however, insufficient data to confirm whether taking stimulant medication causes cardiac problems or sudden death. The FDA is advising providers and other providers to conduct a thorough physical examination, paying close attention to the cardiovascular system, and to collect information about the patient’s history and any family history of cardiac problems. If these examinations indicate a potential problem, providers may want to consider a screening electrocardiogram (ECG) or an echocardiogram. In addition, stimulants should also be used cautiously in individuals with a personal or family history of motor tics or Tourette’s syndrome, as these medications may cause or worsen motor tics. Caution should also be taken if there is a personal or family history of substance abuse or addictive disorders, as these medications can be abused or sold as drugs of abuse. Students attending college/university may be at increased risk to divert their stimulants to peers. Stimulants are also contraindicated for individuals with psychotic disorders, as they can significantly worsen psychotic symptoms. Stimulants should be used with caution in individuals with comorbid bipolar affective disorder and ADHD and consideration of concurrent mood stabilization is critical. Providers should be aware that addictive stimulant effects are seen with sympathomimetic amines (ephedrine and pseudoephedrine).

Considering ADHD diagnosis?  
Problem from inattention/hyperactivity?

Consider comorbidity or other diagnosis:
- Oppositional defiant disorder
- Conduct disorder
- Substance abuse
- Language or learning disability
- Anxiety disorder
- Mood disorder
- Autistic spectrum disorder
- Low cognitive ability/mental retardation

Diagnosis:
Preschoolers have some normal hyperactivity/impulsivity: recommend skepticism if diagnosing ADHD in this group. (Note that medicaid may require a medication review if prescribing and child age < 5) if rapid onset symptoms, note this is not typical of ADHD

Use DSM-IV-TR criteria:
- Must have symptoms present in more than one setting
- Symptom rating scale strongly recommended from home and school
  + Vanderbilt ADHD scale (many others available, for a fee)
- If unremarkable medical history, neuro image and lab tests not indicated
- If significant concern for cognitive impairment, get neuropsychological testing

Treatment: If diagnose ADHD

Mild impairment, or no medication per family preference

Psychosocial treatment:
- Behavior therapy
- Behavior management training (essentially more effective time outs and rewarding positive behavior)
- Social skills training
- Classroom support/communication
  - Give parent our resource list to explain the above treatments (the parent handout in this guide)

Significant impairment, or psychosocial treatments not helping

Treat substance abuse, consider atomoxetine trial

Yes
- Active substance abuse?
  - No
  - Monotherapy with methylphenidate or amphetamine preparation
    - Titrate up every week until maximum benefit (follow-up rating scales help)
    - If problem side effects or not improving, switch to other stimulant class

If significant concern for cognitive impairment, get neuropsychological testing

If no improvement, reconsider diagnosis, Medication combinations like alpha-2 agonist plus stimulant may be reasonable at this stage.

Sources:

▲ Figure 7–2. Treatment algorithm for children and adolescents with ADHD. (Reproduced with permission from Hilt R: Primary Care Principles for Child Mental Health, summer 2013. version 4.1).
### Table 7–14. Stimulant medication used for treatment of ADHD. (Reproduced with permission from Hilt R: Primary Care Principles for Child Mental Health, summer 2013. version 4.1).

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Duration</th>
<th>Dosages</th>
<th>Stimulant Class</th>
<th>Usual Starting Dose</th>
<th>FDA Max Daily Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Short-Acting Stimulants</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylphenidate (Ritalin, Methylin)</td>
<td>4–6 h</td>
<td>5, 10, 20 mg</td>
<td>Methyl</td>
<td>5 mg BID ½ dose if 3-5 y</td>
<td>60 mg</td>
</tr>
<tr>
<td>Dextmethylphenidate (Focalin)</td>
<td>4–6 h</td>
<td>2.5, 5, 10 mg</td>
<td>Methyl</td>
<td>2.5 mg BID</td>
<td>20 mg</td>
</tr>
<tr>
<td>Dextroamphetamine (Dexedrine, Dextro-Stat, Dextedrine SA)</td>
<td>4–6 h</td>
<td>5, 10 mg tabs</td>
<td>Dextro</td>
<td>5 mg QD-BID ½ dose if 3-5 y</td>
<td>40 mg</td>
</tr>
<tr>
<td>Amphetamine salt combo (Adderall)</td>
<td>4–6 h</td>
<td>5, 7.5, 10, 12.5, 15, 20, 30 mg</td>
<td>Dextro</td>
<td>5 mg QD-BID ½ dose if 3-5 y</td>
<td>40 mg</td>
</tr>
<tr>
<td><strong>Extended-Release Stimulants</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylin ER</td>
<td>4-8 h</td>
<td>10, 20 mg tab</td>
<td>Methyl</td>
<td>10 mg QAM</td>
<td>60 mg</td>
</tr>
<tr>
<td>Methylphenidate SR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metadate ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concerta</td>
<td>10–12 h</td>
<td>18, 27, 36, 54 mg</td>
<td>Methyl</td>
<td>18 mg QAM</td>
<td>72 mg</td>
</tr>
<tr>
<td>Adderall XR</td>
<td>8–12 h</td>
<td>5, 10, 15, 20, 25, 30 mg</td>
<td>Dextro</td>
<td>5 mg QD</td>
<td>30 mg</td>
</tr>
<tr>
<td>Metadate CD (30% IR)</td>
<td>~8 h</td>
<td>10, 20, 30, 40, 50, 60 mg capsules</td>
<td>Methyl</td>
<td>10 mg QAM</td>
<td>60 mg</td>
</tr>
<tr>
<td>Ritalin LA (50% IR)</td>
<td>~8 h</td>
<td>10, 20, 30, 40 mg capsules</td>
<td>Methyl</td>
<td>10 mg QAM</td>
<td>60 mg</td>
</tr>
<tr>
<td>Focalin XR</td>
<td>10–12 h</td>
<td>5 to 40 mg in 5 mg steps</td>
<td>Methyl</td>
<td>5 mg QAM</td>
<td>30 mg</td>
</tr>
<tr>
<td>Daytrana patch</td>
<td>Until 3-5 h after patch removal</td>
<td>10, 15, 20, 30 mg Max 30 mg/9 h</td>
<td>Methyl</td>
<td>10 mg QAM</td>
<td>30 mg</td>
</tr>
<tr>
<td>Lisdexamfetamine (Vyvanse)</td>
<td>~10 h</td>
<td>20, 30, 40, 50, 60, 70 mg</td>
<td>Dextro</td>
<td>30 mg QD</td>
<td>70 mg</td>
</tr>
<tr>
<td>Dextedrine Spansule</td>
<td>8–10 h</td>
<td>5, 10, 15 mg</td>
<td>Dextro</td>
<td>5 mg QAM</td>
<td>40 mg</td>
</tr>
</tbody>
</table>

**Initial medical screening**—should include observation for involuntary movements and measurement of height, weight, pulse, and blood pressure. (See also Chapter 3.) Pulse, blood pressure, height, and weight should be recorded every 3–4 months and at times of dosage increases and abnormal movements such as motor tics should be assessed at each visit.

**Prognosis**

Research indicates that 60%–85% of those diagnosed with ADHD in childhood continue to carry the diagnosis into adolescence. The literature varies greatly about progression of ADHD into adulthood. Most studies show that in adulthood, a majority of adolescents diagnosed with ADHD
in adolescence continue to have functional impairment, whether or not they meet full criteria for the disorder. While many have devised ways to cope with their symptoms in a manner that does not require medication, about one-third of adults previously diagnosed with ADHD in childhood require ongoing medication management.

**Table 7-15. Nonstimulant medication used for treatment of ADHD. (Reproduced with permission from Hilt R: Primary Care Principles for Child Mental Health, summer 2013. Version 4.1).**

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Duration</th>
<th>Dosages</th>
<th>Usual Starting Dose</th>
<th>FDA Max Daily Dose</th>
<th>Editorial Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomoxetine</td>
<td>All day</td>
<td>10, 18, 25, 40, 60, 80, 100 mg</td>
<td>0.5 mg/kg/d (1–1.2 mg/kg/d usual full dosage)</td>
<td>Lesser of 1.4 mg/kg/day or 100 mg (DSHS limit is 120 mg/d)</td>
<td>Usually lower effectiveness than stimulants; has GI side effects, takes weeks to see full benefit</td>
</tr>
<tr>
<td>Clonidine</td>
<td>12 h ½ life</td>
<td>0.1, 0.2, 0.3 mg</td>
<td>0.05 mg QHS if &lt; 45 kg, otherwise 0.1 mg QHS Caution if &lt; 5 y.</td>
<td>(Not per FDA) 27–40 kg 0.2 mg 40–45 kg 0.3 mg &gt; 45 kg 0.4 mg</td>
<td>Often given to help sleep, also treats tics, can have rebound BP effects</td>
</tr>
<tr>
<td>Clonidine XR</td>
<td>12–16 h</td>
<td>0.1, 0.2 mg</td>
<td>0.1 mg QHS</td>
<td>0.4 mg daily</td>
<td>Lower peak blood level, then acts like regular clonidine (similar 1/2 life). Still is sedating. Approved for combo with stimulants</td>
</tr>
<tr>
<td>Guanfacine</td>
<td>14 h ½ life</td>
<td>1, 2 mg</td>
<td>0.5 mg QHS if &lt; 45 kg, otherwise 1 mg QHS Caution if &lt; 5 y.</td>
<td>(Not per FDA) 27–40 kg 2 mg 40–45 kg 3 mg &gt; 45 kg 4 mg</td>
<td>Often given to help sleep, also treats tics, can have rebound BP effects</td>
</tr>
<tr>
<td>Guanfacine XR</td>
<td>16 h ½ life</td>
<td>1, 2, 3, 4 mg</td>
<td>1 mg QD if over 6 y old (full dosage 0.05–0.12 mg/kg)</td>
<td>4 mg daily</td>
<td>Lower peak blood level, then acts like regular Tenex (similar 1/2 life). Still is sedating. Approved for combo with stimulants</td>
</tr>
</tbody>
</table>


Notes:
- **Effect size of all stimulants** 1.0
- **Effect size of atomoxetine** 0.7
- **Effect size of guanfacine** 0.65
MOOD DISORDERS

1. Depression in Children & Adolescents

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Dysphoric mood, mood lability, irritability, or depressed appearance, persisting for days to months at a time.
- Characteristic neurovegetative signs and symptoms (changes in sleep, appetite, concentration, and activity levels).
- Suicidal ideation, feeling of hopelessness.

**General Considerations**

The incidence of depression in children increases with age, from 1% to 3% before puberty to around 8% for adolescents. The rate of depression in females approaches adult levels by age 15. The lifetime risk of depression ranges from 10% to 25% for women and 5% to 12% for men. The incidence of depression in children is higher when other family members have been affected by depressive disorders. The sex incidence is equal in childhood, but with the onset of puberty the rates of depression for females begin to exceed those for males by 5:1.

**Clinical Findings**

Clinical depression can be defined as a persistent state of unhappiness or misery that interferes with pleasure or productivity. The symptom of depression in children and adolescents is as likely to be an irritable mood state accompanied by tantrums or verbal outbursts as it is to be a sad mood. Typically, a child or adolescent with depression begins to look unhappy and may make comments such as “I have no friends,” “Life is boring,” “There is nothing I can do to make things better,” or “I wish I were dead.” A change in behavior patterns usually takes place that includes social isolation, deterioration in schoolwork, loss of interest in usual activities, anger, and irritability. Sleep and appetite patterns commonly change, and the child may complain of tiredness and nonspecific pain such as headaches or stomach aches (Table 7–16).

**Differential Diagnosis**

Clinical depression can usually be identified by asking about the symptoms. Children are often more accurate than their caregivers in describing their own mood state. When several depressive symptoms cluster together over time, are persistent (2 weeks or more), and cause impairment, a major depressive disorder may be present. When depressive symptoms are of lesser severity but have persisted for 1 year or more, a diagnosis of dysthymic disorder should be considered. Milder symptoms of short duration in response to some stressful life event may be consistent with a diagnosis of adjustment disorder with depressed mood.

The American Academy of Pediatrics recommends annual screening for depression in children age 12 and older using a standardized measure. The Center for Epidemiologic Study of Depression–Child Version (CESD-C), Child Depression Inventory (CDI), Beck Depression Rating Scale, and Reynolds Adolescent Depression Scale and Patient Health Questionnaire-9 modified for teens (PHQ-9) are self-report rating scales that are easily used in primary care to assist in assessment and monitoring response to treatment. Depression often coexists with other mental illnesses such as ADHD, conduct disorders, anxiety disorders, eating disorders, and substance abuse disorders. Medically ill patients also have an increased incidence of depression. Every child and adolescent with a depressed mood state should be asked directly about suicidal ideation and physical and sexual abuse. Depressed adolescents should also be screened for hypothyroidism and substance abuse. Please refer to treatment algorithm on depression regarding diagnosis and treatment recommendations (Figure 7–3).

**Complications**

The risk of suicide is the most significant risk associated with depressive episodes. In addition, adolescents are likely to self-medicate their feelings through substance abuse, or indulge in self-injurious behaviors such as cutting or

<table>
<thead>
<tr>
<th>Depressive Symptom</th>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhedonia</td>
<td>Loss of interest and enthusiasm in play, socializing, school, and usual activities; boredom; loss of pleasure</td>
</tr>
<tr>
<td>Dysphoric mood</td>
<td>Tearfulness; sad, downturned expression; unhappiness; slumped posture; quick temper; irritability; anger</td>
</tr>
<tr>
<td>Fatigability</td>
<td>Lethargy and tiredness; no play after school</td>
</tr>
<tr>
<td>Morbid ideation</td>
<td>Self-deprecating thoughts, statements; thoughts of disaster, abandonment, death, suicide, or hopelessness</td>
</tr>
<tr>
<td>Somatic symptoms</td>
<td>Changes in sleep or appetite patterns; difficulty in concentrating; bodily complaints, particularly headache and stomach ache</td>
</tr>
</tbody>
</table>
Depressive Symptoms?
Unexplained Somatic Complaints?

Safety screen:
Neglect/abuse?
Medical condition (ie, anemia, thyroid problem?)
Thoughts of hurting oneself?
--if yes, are there plans and means available?

Think about comorbidity: Anxiety, ODD, conduct disorder, ADHD, dysthymia, substance abuse

Diagnosis:
DSM-IV-TR Diagnostic Criteria
Rating scale: SMFQ or PHQ-9 (or others for a fee)
Label as “depression, NOS” if significant symptoms but not clear if major depression

Can problem be managed in primary care?

YES
Mild Problem
(noticeable, but basically functioning OK)

Educate patient and family
Support increased peer interactions
Behavior activation, exercise
Encourage good sleep hygiene
Reduce stressors, if possible
Remove any guns from home
Offer parent/child further reading resources

Follow-up appointment in 2–4 weeks to check if situation is getting worse
Repeating rating scale helps comparison
Those not improving on their own may become referral candidates for counseling

Moderate/Severe Problem
(significant impairment in one setting, or at least moderate impairment in multiple settings)

Individual psychotherapy referral
• CBT and IPT are preferred, where available
• Psychoeducation, coping skills, and problem solving focus are all helpful in therapy
• Educate patient and family (as per mild problem on left)
• Consider family therapy referral

Consider starting SSRI, especially if severe
• Fluoxetine first line
• Citalopram/sertaline second line
• Third-line agents are other SSRIs, bupropriion, mirtazapine
• Wait 4 weeks between dose increases to see changes
• Check for side effects every 1–2 weeks in first month of use (by phone or in person)
• Stop SSRI if getting agitation, anxiety or suicidal thoughts
• Consult MH specialist if monotherapy is not helping

Monitor progress with repeat use of rating scale

NO
Referral

Judgment Call

Sources:

▲ Figure 7–3. Treatment algorithm for child and adolescents with depression. (Reproduced with permission from Hilt R: Primary Care Principles for Child Mental Health, summer 2013. version 4.1).
burning themselves (without suicidal intent). School performance usually suffers during a depressive episode, as children are unable to concentrate or motivate themselves to complete homework or projects. The irritability, isolation, and withdrawal that often result from the depressive episode can lead to loss of peer relationships and tense dynamics within the family. Please refer to section on identifying and addressing suicide risk for additional information.

**Treatment**

Treatment includes developing a comprehensive plan to treat the depressive episode and help the family to respond more effectively to the patient’s emotional needs. Referrals should be considered for individual and possibly adjunctive family therapy. Cognitive-behavioral therapy has been shown to effectively improve depressive symptoms in children and adolescents. Cognitive-behavioral therapy includes a focus on building coping skills to change negative thought patterns that predominate in depressive conditions. It also helps the young person to identify, label, and verbalize feelings and misperceptions. In therapy, efforts are also made to resolve conflicts between family members and improve communication skills within the family.

When the symptoms of depression are moderate to severe and persistent, and have begun to interfere with relationships and school performance, antidepressant medications may be indicated (Table 7–19). Mild depressive symptoms often do not require antidepressant medications and may improve with psychotherapy alone. A positive family history of depression increases the risk of early-onset depression in children and adolescents and the chances of a positive response to antidepressant medication. Depression in toddlers and young children is best approached with parent-child relational therapies.

It is important to be cognizant of evidence-based medical practice when prescribing for any indication. A major source of clinic guidelines regarding the treatment of depression in child and adolescents stems from the carefully conducted Treatment of Adolescent Depression Study (TADS). The authors of this study found that cognitive-behavioral therapy combined with fluoxetine led to the best outcomes in the treatment of pediatric depression during the first 12 weeks of treatment. Although our knowledge is still evolving, these findings suggest that when recommending or prescribing an antidepressant, the provider should consider concurrently recommending cognitive-behavioral or interpersonal therapy. Providers should discuss the options for medication treatment, including which medications have FDA approval for pediatric indications (Table 7–18). Target symptoms should be carefully monitored for improvement or worsening, and it is important to ask and document the responses about any suicidal thinking and self-injurious behaviors.

In 2005, the FDA issued a “black box warning” regarding suicidal thinking and behavior for all antidepressants prescribed for children and adolescents. The FDA compiled data from 24 short term trials of 4–16 weeks that included the use of antidepressants for major depressive disorder and obsessive compulsive disorder. Across these studies, the average risk of suicidal thinking and behavior during the first few months of treatment was 4% or twice the placebo risk of 2%. No suicides occurred in these trials. Although children face an initial increased risk of increased suicidal thinking and behaviors during the first few months of treatment, there is now substantial evidence that antidepressant treatment, over time, is protective against suicide. For example, following the addition of the “black box warning” for all antidepressants in October 2005, a 20% decrease in prescriptions for those younger than age 20 occurred. During the same time period, there was an 18% increase in suicides. Furthermore, the suicide rates in children and adolescents were lowest in areas of the country that had the highest rate of selective serotonin reuptake inhibitor (SSRI) prescriptions. This suggests best practice is to educate the family regarding both the risks and benefits of antidepressant treatment and monitor carefully for any increase in suicidal ideation or self-injurious urges, as well as improvement in target symptoms of depression, especially in the first 4 weeks and subsequent 3 months.

### Table 7–17. Interventions for the treatment of depression.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment disorder with depressed mood</td>
<td>Refer for psychotherapy</td>
</tr>
<tr>
<td>Mild depression</td>
<td>Refer for psychotherapy</td>
</tr>
<tr>
<td>Moderate depression</td>
<td>Refer for psychotherapy</td>
</tr>
<tr>
<td>Severe depression</td>
<td>Refer for psychotherapy</td>
</tr>
</tbody>
</table>

### Special Considerations Regarding the Use of Antidepressant Medication

#### A. Selective Serotonin Reuptake Inhibitors

There are some special considerations when prescribing the various classes of antidepressant medication. Table 7–19 outlines the distinct differences between some of the most commonly used antidepressant medications. In addition to the information provided in the table, providers should be aware that each SSRI has different FDA indications.
Providers can choose to treat with an SSRI that has not received FDA approval for a specific indication or age group, most typically in consideration of side effect profile, or familial response to a specific medication, but should inform the patient and family that they are using a medication off-label.

The therapeutic response for SSRIs should be expected 4–6 weeks after a therapeutic dose has been reached. The starting dose for a child younger than 12 years old is generally half the starting dose for an adolescent. SSRIs are usually given once a day, in the morning with breakfast. One in ten individuals may experience sedation and prefer to take the medication at bedtime. Caution should be used in cases of known liver disease or chronic or severe illness where multiple medications may be prescribed, because all SSRIs are metabolized in the liver. In addition, caution should be used when prescribing for an individual with a family history of bipolar disorder, or when the differential diagnosis includes bipolar disorder, because antidepressants can induce manic or hypomanic symptoms.

Adverse effects of SSRIs are often dose-related and time-limited: gastrointestinal (GI) distress and nausea (can be minimized by taking medication with food), headache, tremulousness, decreased appetite, weight loss, insomnia, sedation (10%), and sexual dysfunction (25%). Irritability, social disinhibition, restlessness, and emotional excitability can occur in approximately 20% of children taking SSRIs. It is important to systematically monitor for side effects. SSRIs other than fluoxetine should be discontinued slowly to minimize withdrawal symptoms including flulike symptoms, dizziness, headaches, paresthesias, and emotional lability.

All SSRIs inhibit the efficiency of the hepatic microsomal enzyme system. The order of inhibition is: fluoxetine > fluvoxamine > paroxetine > sertraline > citalopram > escitalopram. This can lead to higher-than-expected blood levels of other drugs, including antidepressants, antiarhythmics, antipsychotics, β-blockers, opioids, and antihistamines. Taking tryptophan while on an SSRI may result in a serotonergic syndrome of psychomotor agitation and GI distress. A potentially fatal interaction that clinically resembles neuroleptic malignant syndrome may occur when SSRIs are administered concomitantly with monoamine oxidase inhibitors. Fluoxetine has the longest half-life of the SSRIs and should not be initiated within 14 days of the discontinuation of a monoamine oxidase inhibitor, or a monoamine oxidase inhibitor initiated within at least 5 weeks of the discontinuation of fluoxetine. One should be cautious of fluoxetine and ibuprofen and other NSAIDs for concerns of GI bleeding.

### B. Serotonin Norepinephrine Reuptake Inhibitors

Serotonin norepinephrine reuptake inhibitors (SNRIs), which include venlafaxine, duloxetine, desvenlafaxine, and milnacipran, are antidepressants that primarily inhibit

---

**Table 7-18. Psychoactive medications approved by the FDA for use in children and adolescents.**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Age for Which Approved (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed amphetamine salts (Adderall)</td>
<td>ADHD</td>
<td>3 and older</td>
</tr>
<tr>
<td>Dextroamphetamine (Dexedrine, Dextrostat)</td>
<td>ADHD</td>
<td>3 and older</td>
</tr>
<tr>
<td>Methylphenidate (Concerta, Ritalin, others)</td>
<td>ADHD</td>
<td>6 and older</td>
</tr>
<tr>
<td>Atomoxetine (Strattera)</td>
<td>ADHD</td>
<td>6 and older</td>
</tr>
<tr>
<td>Guanfacine ER (Intuniv)</td>
<td>ADHD</td>
<td>6 and older</td>
</tr>
<tr>
<td>Clomipramine (Anafranil)</td>
<td>OCD</td>
<td>10 and older</td>
</tr>
<tr>
<td>Fluvoxamine (Luvox)</td>
<td>OCD</td>
<td>8 and older</td>
</tr>
<tr>
<td>Sertraline (Zoloft)</td>
<td>OCD, Aggression and autism, Schizophrenia and mania</td>
<td>6 and older 5 and older 10 and older</td>
</tr>
<tr>
<td>Pimozide (Orap)</td>
<td>Tourette syndrome</td>
<td>12 and older</td>
</tr>
<tr>
<td>Lithium (Eskalith, Lithobid, Lithotabs)</td>
<td>Bipolar disorder</td>
<td>12 and older</td>
</tr>
<tr>
<td>Fluoxetine (Prozac)</td>
<td>Depression, OCD</td>
<td>12 and older 6 and older</td>
</tr>
<tr>
<td>Escitalopram (Lexapro)</td>
<td>Depression</td>
<td>12 and older</td>
</tr>
<tr>
<td>Imipramine (Norpramin)</td>
<td>Enuresis</td>
<td>6 and older</td>
</tr>
<tr>
<td>Aripiprazole (Abilify)</td>
<td>Bipolar disorder, Schizophrenia, Aggression and autism</td>
<td>10 and older 13 and older 6 and older</td>
</tr>
<tr>
<td>Risepridone (Risperdal)</td>
<td>Bipolar disorder, Schizophrenia, Aggression and autism</td>
<td>10 and older 13 and older 6 and older</td>
</tr>
<tr>
<td>Quetiapine (Seroquel, XR)</td>
<td>Bipolar disorder, Schizophrenia</td>
<td>10 and older 13 and older</td>
</tr>
<tr>
<td>Ziprasidone (Geodon)</td>
<td>Bipolar disorder, Schizophrenia</td>
<td>10 and older 13 and older</td>
</tr>
<tr>
<td>Olanzapine (Zyprexa)</td>
<td>Bipolar disorder, Schizophrenia</td>
<td>10 and older 13 and older</td>
</tr>
</tbody>
</table>

ADHD, attention-deficit/hyperactivity disorder; FDA, Food and Drug Administration; OCD, obsessive-compulsive disorder.

*Haloperidol and chlorpromazine have an indication for use in psychotic disorders. Their use in children, however, is not currently recommended.

*Use of pimozide in the treatment of movement disorders is discussed in Chapter 25.
Table 7–19. Common medications used for the treatment of depression in children and adolescents.

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Dosage Form</th>
<th>Usual Starting Dose for Adolescent</th>
<th>Increase Increment (After ∼4 wk)</th>
<th>RCT evidence in Kids</th>
<th>FDA Depression Approved for Children?</th>
<th>Editorial Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoxetine (Prozac)</td>
<td>10, 20, 40 mg 20 mg/5 mL</td>
<td>10 mg/d (60 mg max)(^{a})</td>
<td>10-20 mg(^{b})</td>
<td>Yes</td>
<td>Yes (over age 8)</td>
<td>Long ½ life, no side effect from a missed dose</td>
</tr>
<tr>
<td>Citalopram (Celexa)</td>
<td>10, 20, 40 mg 10 mg/5 mL</td>
<td>10 mg/d (40 mg max)(^{a})</td>
<td>10-20 mg(^{b})</td>
<td>Yes</td>
<td>No</td>
<td>Few drug interactions</td>
</tr>
<tr>
<td>Sertraline (Zoloft)</td>
<td>25, 50, 100 mg 20 mg/mL</td>
<td>25 mg/d (200 mg max)(^{a})</td>
<td>25-50 mg(^{b})</td>
<td>Yes</td>
<td>No</td>
<td>May be prone to side effects when stopping</td>
</tr>
<tr>
<td>Escitalopram (Lexapro)</td>
<td>5, 10, 20 mg 5 mg/5 mL</td>
<td>5 mg/d (20 mg max)(^{a})</td>
<td>5-10 mg(^{b})</td>
<td>Yes (for adolescents)</td>
<td>Yes</td>
<td>No generic form. The active isomer of citalopram.</td>
</tr>
<tr>
<td>Bupropion (Wellbutrin)</td>
<td>75, 100 mg 100, 150, 200 mg SR forms</td>
<td>75 mg/day (later dose this BID) (400 mg max)(^{a})</td>
<td>75-100 mg(^{b})</td>
<td>No</td>
<td>No</td>
<td>Can have more agitation risk. Avoid if eat d/o. Also has use for ADHD treatment</td>
</tr>
<tr>
<td>Mirtazapine (Remeron)</td>
<td>15, 30, 45 mg</td>
<td>15 mg/d (45 mg max)(^{a})</td>
<td>15 mg(^{b})</td>
<td>No</td>
<td>No</td>
<td>Sedating, increases appetite</td>
</tr>
<tr>
<td>Venlafaxine (Effexor)</td>
<td>25, 37.5, 50, 75, 100 mg 37.5, 75, 150 mg ER forms</td>
<td>37.5 mg/d (225 mg max)(^{b})</td>
<td>37.5-75 mg(^{b})</td>
<td>No (May have higher SI risk than others for children)</td>
<td>No</td>
<td>Only recommended for older adolescents Withdrawal symptoms can be severe</td>
</tr>
</tbody>
</table>

\(^{a}\)Recommend decrease maximum dosage by around 1/3 for prepubertal children.
\(^{b}\)Recommend using the lower dose increase increments for younger children.

Notes:
1. Starting doses in children younger than 13 may need to be lowered using liquid forms.
2. Successful medication trials should continue for 6-12 months.
3. Fluoxetine is considered first line due to stronger evidence base in children. Citalopram (escitalopram) and sertraline are considered second line per the evidence base in children. Others are considered third-line treatments per the evidence base in children.

Reuptake of serotonin and norepinephrine. Desvenlafaxine is the major active metabolite of the antidepressant venlafaxine. It is approved for the treatment of major depression in adults. Contraindications for this class of medication include hypertension. The most common adverse effects are nausea, nervousness, and sweating. Hypertension is typically a dose-related response. SNRIs should be discontinued slowly to minimize withdrawal symptoms: including flulike symptoms, dizziness, headaches, paresthesias, and emotional lability.

**C. Other Antidepressants**

Bupropion is an antidepressant that inhibits reuptake of primarily serotonin, but also norepinephrine and dopamine. It is approved for treatment of major depression in adults. Like the SSRIs, bupropion has very few anticholinergic or cardiotoxic effects. The medication has three different formulations, and consideration for use is based on tolerability and compliance. Bupropion can interfere with sleep, so dosing earlier in the day is paramount to adherence and decreasing side effects. Contraindications of this medication include history of seizure disorder or bulimia nervosa. The most common adverse effects include psychomotor activation (agitation or restlessness), headache, GI distress, nausea, anorexia with weight loss, insomnia, tremulousness, precipitation of mania, and induction of seizures with doses above 450 mg/d.

Mirtazapine is an α₂-antagonist that enhances central noradrenergic and serotonergic activity. It is approved for the treatment of major depression in adults. Mirtazapine should not be given in combination with monoamine oxidase inhibitors. Very rare side effects are acute liver failure (1 case per 250,000–300,000), neutropenia, and agranulocytosis. More common adverse effects include dry mouth, increased appetite, constipation, weight gain, and increased sedation.
Tricyclic antidepressants (TCAs) are an older class of antidepressants, which include imipramine, desipramine, clomipramine, nortriptyline, and amitriptyline. With the introduction of the SSRIs and alternative antidepressants, use of the TCAs has become uncommon for the treatment of depression and anxiety disorders. The TCAs have more significant side-effect profiles and require more substantial medical monitoring, including the possibility of cardiac arrhythmias. Overdose can be lethal. For these reasons, in general, SSRIs or alternative antidepressants should be considered before recommending a TCA. In some countries, where access to newer and more costly medications is difficult, TCAs are still frequently employed for certain behavioral, emotional, and functional conditions. TCAs are still to treat individuals with medical and psychiatric issues, for example, chronic pain syndromes, migraines, headache, or enuresis as well as depression, anxiety, bulimia nervosa, OCD, and PTSD. Imipramine and desipramine are FDA approved for the treatment of major depression in adults and for enuresis in children age 6 years and older. Contraindications include known cardiac disease or arrhythmia, undiagnosed syncope, known seizure disorder, family history of sudden cardiac death or cardiomyopathy, and known electrolyte abnormality (with binging and purging). Initial medical screening includes taking a thorough family history for sudden cardiac death and the patient’s history for cardiac disease, arrhythmias, syncope, seizure disorder, or congenital hearing loss (associated with prolonged QT interval). Other screening procedures include serum electrolytes and blood urea nitrogen in patients who have eating disorders, cardiac examination, and a baseline ECG. Ongoing medical follow-up includes monitoring pulse and blood pressure (ie, screening for tachycardia and orthostatic hypotension) with each dosage increase, and obtaining an ECG to monitor for arteriovenous block with each dosage increase; after reaching steady state, record pulse, blood pressure, and ECG every 3–4 months. Note: TCAs may potentiate the effects of central nervous system depressants and stimulants; barbiturates and cigarette smoking may decrease plasma levels while phenothiazines, methylphenidate, and oral contraceptives may increase plasma levels. SSRIs given in combination with TCAs will result in higher TCA blood levels due to inhibition of TCA metabolism by cytochrome P-450 isoenzymes. Please refer to Table 7–20 on upper limits of cardiovascular parameters with tricyclic antidepressants.

**Prognosis**

A comprehensive treatment intervention, including psychoeducation for the family, individual and family psychotherapy, medication assessment, and evaluation of school and home environments, often leads to complete remission of depressive symptoms over a 1- to 2-month period. If medications are started and prove effective, they should be continued for 6–12 months after remission of symptoms to prevent relapse. Early-onset depression (before age 15) is associated with increased risk of recurrent episodes and the potential need for longer-term treatment with antidepressants. Education of the family and child/adolescent will help them identify depressive symptoms sooner and decrease the severity of future episodes with earlier interventions. Some studies suggest that up to 30% of preadolescents with major depression manifest bipolar disorder at 2-year follow-up. It is important to reassess the child or adolescent with depressive symptoms regularly for at least 6 months and to maintain awareness of the depressive episode in the course of well-child care.

**Table 7–20. Upper limits of cardiovascular parameters with tricyclic antidepressants.**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>130/min</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>130 mm Hg</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>85 mm Hg</td>
</tr>
<tr>
<td>PR interval</td>
<td>0.2 s</td>
</tr>
<tr>
<td>QRS interval</td>
<td>0.12 s, or no more than 30% over baseline</td>
</tr>
<tr>
<td>QT corrected</td>
<td>0.45 s</td>
</tr>
</tbody>
</table>


Clinical Findings

In about 70% of patients, the first symptoms are primarily those of depression. In the remainder, manic, hypomanic, or mixed states dominate the presentation. Patients with mania display a variable pattern of elevated, expansive, or irritable mood along with rapid speech, high energy levels, difficulty in sustaining concentration, and a decreased need for sleep. The child or adolescent may also have hypersexual behavior, usually in the absence of a history of sexual abuse. It is critical to rule out abuse, or be aware of abuse factors contributing to the clinical presentation. Patients often do not acknowledge any problem with their mood or behavior. The clinical picture can be quite dramatic, with florid psychotic symptoms of delusions and hallucinations accompanying extreme hyperactivity and impulsivity. Other illnesses on the bipolar spectrum are bipolar type II, which is characterized by recurrent major depressive episodes alternating with hypomanic episodes (lower intensity manic episodes that do not cause social impairment and do not typically last as long as manic episodes) and cyclothymic disorder, which is diagnosed when the child or adolescent has had 1 year of hypomanic symptoms alternating with depressive symptoms that do not meet criteria for major depression.

It is also common for individuals diagnosed with bipolar spectrum disorders to have a history of inattention and hyperactivity problems in childhood, with some having a comorbid diagnosis of ADHD. While ADHD and bipolar disorder are highly comorbid, inattention and hyperactivity symptoms accompanied by mood swings can be an early sign of bipolar disorder before full criteria for the disorder have emerged and clustered together in a specific pattern.

2. Bipolar Disorder

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

▶ Periods of abnormally and persistently elevated, expansive, or irritable mood, and heightened levels of energy and activity.
▶ Associated symptoms: grandiosity, diminished need for sleep, pressured speech, racing thoughts, impaired judgment.
▶ Not caused by prescribed or illicit drugs.

General Considerations

Bipolar disorder (previously referred to as manic-depressive disorder) is an episodic mood disorder manifested by alternating periods of mania and major depressive episodes or, less commonly, manic episodes alone. Children and adolescents often exhibit a variable course of mood instability combined with aggressive behavior and impulsivity. At least 20% of bipolar adults experience onset of symptoms before age 20 years. Onset of bipolar disorder before puberty is uncommon; however, symptoms often begin to develop and may be initially diagnosed as ADHD or other disruptive behavior disorders. The lifetime prevalence of bipolar disorder in middle to late adolescence approaches 1%.

Clinical Findings

In about 70% of patients, the first symptoms are primarily those of depression. In the remainder, manic, hypomanic, or mixed states dominate the presentation. Patients with mania display a variable pattern of elevated, expansive, or irritable mood along with rapid speech, high energy levels, difficulty in sustaining concentration, and a decreased need for sleep. The child or adolescent may also have hypersexual behavior, usually in the absence of a history of sexual abuse. It is critical to rule out abuse, or be aware of abuse factors contributing to the clinical presentation. Patients often do not acknowledge any problem with their mood or behavior. The clinical picture can be quite dramatic, with florid psychotic symptoms of delusions and hallucinations accompanying extreme hyperactivity and impulsivity. Other illnesses on the bipolar spectrum are bipolar type II, which is characterized by recurrent major depressive episodes alternating with hypomanic episodes (lower intensity manic episodes that do not cause social impairment and do not typically last as long as manic episodes) and cyclothymic disorder, which is diagnosed when the child or adolescent has had 1 year of hypomanic symptoms alternating with depressive symptoms that do not meet criteria for major depression.

It is also common for individuals diagnosed with bipolar spectrum disorders to have a history of inattention and hyperactivity problems in childhood, with some having a comorbid diagnosis of ADHD. While ADHD and bipolar disorder are highly comorbid, inattention and hyperactivity symptoms accompanied by mood swings can be an early sign of bipolar disorder before full criteria for the disorder have emerged and clustered together in a specific pattern.

Differential Diagnosis

Differentiating ADHD, bipolar disorder, and major depressive disorder can be a challenge even for the seasoned clinician, and confusion about the validity of the disorder in younger children still exists. The situation is further complicated by the potential for the coexistence of ADHD and mood disorders in the same patient.

A history of the temporal course of symptoms can be most helpful. ADHD is typically a chronic disorder of lifelong duration. However, it may not be a problem until the patient enters the classroom setting. Mood disorders are typically characterized by a normal baseline followed by an acute onset of symptoms usually associated with acute sleep, appetite, and behavior changes. If inattentive, hyperactive, or impulsive behavior was not a problem a year ago, it is unlikely to be ADHD. Typically, all of these disorders are quite heritable, so a positive family history for other affected individuals can be informative in formulating a diagnosis. Successful treatment of relatives can offer guidance for appropriate treatment.

In prepubescent children, mania may be difficult to differentiate from ADHD and other disruptive behavior disorders. In both children and adolescents, preoccupation with violence, decreased need for sleep, impulsivity, poor judgment, intense and prolonged rages or dysphoria, hypersexuality, and some cycling of symptoms suggest bipolar disorder. Table 7–21 further defines points of differentiation between ADHD, conduct disorder, and bipolar disorder.

Physical or sexual abuse and exposure to domestic violence can also cause children to appear mood labile, hyperactive, and aggressive, and PTSD should be considered by reviewing the history for traumatic life events in children with these symptoms. Diagnostic considerations should also include substance abuse disorders, and an
Table 7–21. Differentiating behavior disorders.

<table>
<thead>
<tr>
<th></th>
<th>ADHD</th>
<th>Conduct Disorder</th>
<th>Bipolar Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>School problems</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Behavior problems</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Defiant attitude</td>
<td>Occasional</td>
<td>Constant</td>
<td>Episodic</td>
</tr>
<tr>
<td>Motor restlessness</td>
<td>Constant</td>
<td>May be present</td>
<td>May wax and wane</td>
</tr>
<tr>
<td>Impulsivity</td>
<td>Constant</td>
<td>May be present</td>
<td>May wax and wane</td>
</tr>
<tr>
<td>Distractibility</td>
<td>Constant</td>
<td>May be present</td>
<td>May wax and wane</td>
</tr>
<tr>
<td>Anger expression</td>
<td>Short-lived (minutes)</td>
<td>Plans revenge</td>
<td>Intense rages (minutes to hours)</td>
</tr>
<tr>
<td>Thought content</td>
<td>May be immature</td>
<td>Blames others</td>
<td>Morbid or grandiose ideas</td>
</tr>
<tr>
<td>Sleep disturbance</td>
<td>May be present</td>
<td>No</td>
<td>May wax and wane</td>
</tr>
<tr>
<td>Self-deprecation</td>
<td>Briefly, with criticism</td>
<td>No</td>
<td>Prolonged, with or without suicidal ideation</td>
</tr>
<tr>
<td>Obsessed with ideas</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Hallucinations</td>
<td>No</td>
<td>No</td>
<td>Diagnostic, if present</td>
</tr>
<tr>
<td>Family history</td>
<td>May be a history of school problems</td>
<td>May be a history of antisocial behavior</td>
<td>May be a history of mood disorders</td>
</tr>
</tbody>
</table>

ADHD, attention-deficit/hyperactivity disorder.

Acute organic process, especially if the change in personality has been relatively sudden, or is accompanied by other neurologic changes. Individuals with manic psychosis may resemble those with schizophrenia. Psychotic symptoms associated with bipolar disorder should clear with resolution of the mood symptoms, which should also be prominent. Hyperthyroidism should be ruled out. The Young Mania Rating Scale and The Child Mania Rating Scale may be helpful in eliciting concerning symptoms and educating families and patients, and in aiding timely referral to local mental health resources. Please refer to treatment algorithm for bipolar mood disorder (Figure 7–4).

Complications

Children and adolescents with bipolar disorder are more likely to be inappropriate or aggressive toward peers and family members. Their symptoms almost always create significant interference with academic learning and peer relationships. The poor judgment associated with manic episodes predisposes individuals to dangerous, impulsive, and sometimes criminal activity. Legal difficulties can arise from impulsive acts, such as excessive spending, and acts of vandalism, theft, or aggression, that are associated with grandiose thoughts. Affective disorders are associated with a 30-fold greater incidence of successful suicide. Substance abuse may be a further complication, often representing an attempt at self-medication for the mood problem.

Treatment

Most patients with bipolar disorder respond to pharmacotherapy with either mood stabilizers, such as lithium, or atypical antipsychotics. The recent data on the mood stabilizers carbamazepine and valproate have been less promising. Lithium, risperidone, aripiprazole, quetiapine, and olanzapine have all been approved by the FDA for the treatment of acute and mixed manic episodes in adolescents. In addition, lithium and aripiprazole have been approved for preventing recurrence. In cases of severe impairment, hospitalization is required to maintain safety and initiate treatment. Supportive psychotherapy for the patient and family and education about the recurrent nature of the illness are critical. Family therapy should also include improving skills for conflict management and appropriate expression of emotion.

Please refer to table listing common medication used in treating bipolar mood disorder (Table 7–22).

Specific Considerations: Medication for Treating Bipolar Mood Disorder

In addition to prescribing medications that have FDA approval for use in children with bipolar disorder (lithium and the atypical antipsychotic medications), providers may choose to use other medications off label after nonresponse to first-line treatment or side effect profiles.
Considering Bipolar Disorder?

**Strongly consider other reasons for the symptoms such as:**
- ADHD
- Conduct disorder
- Oppositional defiant disorder
- Major depression
- Early abuse or neglect in dysregulation syndromes
- "Difficult" temperament of child plus interpersonal conflicts
- Asperger disorder, especially with oppositionality
- OCD, separation anxiety, or other anxiety, disorder
- Medical causes or mania (including fetal alcohol syndrome)

**Safety check:**
- Suicidality?
- Drug abuse?
- Current neglect/abuse?

**Diagnosis:**
- Does child have history of clear manic episode for > 4 days?
- History of hospitalization for mania?
- History of psychosis or severe suicidality?
- Symptom of inappropriate euphoria/grandiosity?

**Is this bipolar disorder NOS?**
- This is label used for bipolar symptoms that cause impairment, but severity or duration criteria for bipolar I or II not met.
- Diagnosis is controversial.
- Most irritable, moody, irrational, hyperactive kids do NOT have a bipolar disorder.

**Treatment:**
1. Consider consultation with a mental health specialist, especially if safety concerns
2. Consider medical causes of manic symptoms like hyperthyroidism, neurologic dysfunction
3. Psychosocial/behavioral intervention tailored to family, including:
   - Family psychoeducation
   - Child/family focused CBT
   - Enhancing school and community supports
   - Individual or family psychotherapy
   - Behavior management training
4. Medication trial, single agent preferred, choose among:
   - Atypical antipsychotic
   - Lithium
   - Lamotrigine (especially if bipolar depression)
   - Divalproex, carbamazepine also options, though have less evidence basis
5. Be cautious of prescribing antidepressants
6. Follow up frequently, perhaps weekly until stabilizing
7. Ensure adequate sleep hygiene.

**If yes to any, child should see a mental health specialist at RSN to evaluate/treat Bipolar I or II (also called "narrow phenotype" bipolar).**

**Less likely bipolar disorder NOS if:**
- Younger age (such as < 10)
- Rages only after frustrations
- Symptoms only in 1 setting (ie, home)
- High expressed emotion in household (think ODD)

**More likely Bipolar Disorder NOS if:**
- Episodic patterns of mood changes including elation, hyperactivity, grandiosity, hypersexuality, decreased sleep that are a departure from baseline function (and not fully explained by child’s response to stressors)
- Have 1st degree relative with bipolar

**Sources:**

▲ Figure 7-4. Treatment algorithm for child and adolescents with bipolar mood disorder. (Reproduced with permission from Hilt R: Primary Care Principles for Child Mental Health, summer 2013. version 4.1).
### Table 7-22. Medication used for treatment of bipolar mood disorder in children and adolescents.

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Dosage Form</th>
<th>Usual Starting Dose</th>
<th>Sedation</th>
<th>Weight Gain</th>
<th>EPS (Stiff Muscles)</th>
<th>Bipolar (+) Child RCT Evidence?</th>
<th>FDA Bipolar Approved?</th>
<th>Editorial Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risperidone</td>
<td>0.25, 0.5, 1, 2, 3, 4 mg 1 mg/mL</td>
<td>0.25 mg QHS</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Yes</td>
<td>Yes (Age &gt; 10)</td>
<td>Generic forms. More dystonia risk than rest</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>2, 5, 10, 15, 25, 30 mg 1 mg/mL</td>
<td>2 mg QD</td>
<td>+</td>
<td>+</td>
<td>+/−</td>
<td>Yes</td>
<td>Yes (Age &gt; 10)</td>
<td>Long ½ life, can take weeks to build effect, more weight gain than for adults</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>25, 50, 100, 200, 300, 400 mg</td>
<td>25 mg BID</td>
<td>++</td>
<td>+</td>
<td>+/−</td>
<td>Yes</td>
<td>Yes (Age &gt; 10)</td>
<td>Generic forms. Pills larger, could be hard for kids to swallow</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>20, 40, 60, 80 mg</td>
<td>20 mg BID</td>
<td>+</td>
<td>+</td>
<td>+/−</td>
<td>No</td>
<td>No</td>
<td>Generic forms. Greater risk of QT lengthen, ECG check</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>2.5, 5, 7.5, 10, 15, 20 mg</td>
<td>2.5 mg QHS</td>
<td>++</td>
<td>++</td>
<td>+/−</td>
<td>Yes</td>
<td>Yes (Age &gt; 13)</td>
<td>Generic forms. Greatest risk of weight gain, ↑cholesterol</td>
</tr>
</tbody>
</table>

Notes:
1. Evidence based on bipolar medications is for narrow phenotype, or classic Bipolar I or II. Broad phenotype or Bipolar NEC has not been well researched in children.
2. **Monitoring for all atypical antipsychotics**
   1. Weight checks and fasting glucose/lipid panel roughly every q6mo.
   2. If weight gain is severe, will need to change treatments.
   3. AIMS exam at baseline and q6mo due to risk of tardive dyskinesia that increases with duration of use.
   4. Review neuroleptic malignant syndrome risk (ie, severe allergic reaction) before starting medication.
   5. Discuss dystonia risk, and explain the use of diphenhydramine if needed as antidote.

These medications include valproic acid, carbamazepine and oxcarbazepine, lamotrigine, topiramate, and gabapentin.

A. Lithium and Antiepileptics

Lithium remains a frontline drug in the treatment of bipolar disorder and has been shown to have an augmenting effect when combined with SSRIs for treatment-resistant depression and OCD. Lithium is contraindicated in patients with known renal, thyroid, or cardiac disease; those at high risk for dehydration and electrolyte imbalance (eg, vomiting and purging); and those who may become pregnant (teratogenic effects). Initial medical screening includes general medical screening with pulse, blood pressure, height, and weight; complete blood cell count (CBC); serum electrolytes, blood urea nitrogen, and creatinine; and thyroid function tests, including thyroid-stimulating hormone levels. For children the starting dose is usually 150 mg once or twice a day, with titration in 150- to 300-mg increments. Dose may vary with the brand of lithium used; consult a psychopharmacology textbook for medication-specific information. Oral doses of lithium should be titrated to maintain therapeutic blood levels of 0.8–1.2 mEq/L. The drug is generally given in two doses. Blood samples should be drawn 12 hours after the last dose (ie, trough).

Lithium has a narrow therapeutic index. Blood levels required for therapeutic effects are close to those associated with toxic symptoms. Mild toxicity may be indicated by increased tremor, GI distress, neuromuscular irritability, and altered mental status (confusion), and can occur when blood levels exceed 1.5 mEq/L. Moderate to severe symptoms of lithium toxicity are associated with blood levels above 2 mEq/L. Acute renal failure can occur at levels over 2.5–3 mEq/L. Given its low therapeutic index, a provider should be cautious in patients with a known overdose history or current risk. Lithium toxicity is a medical emergency and hemodialysis may be indicated for supertoxic levels.

Common side effects of lithium include intention tremor, GI distress (including nausea and vomiting and sometimes diarrhea), hypothyroidism, polyuria and polydipsia, drowsiness, malaise, weight gain, acne, and agranulocytosis. Individuals should maintain adequate hydration and excessive salt intake or salt restriction should be avoided. Thiazide diuretics and nonsteroidal anti-inflammatory agents (except aspirin and acetaminophen) can lead to increased lithium levels. Ibuprofen should be avoided by individuals who take lithium due to combined renal toxicity. Precautions against dehydration are required in hot weather and during vigorous exercise.

The ongoing monitoring of lithium includes measuring serum lithium levels 5–7 days following a change in dosage and then quarterly at steady state. In addition, serum creatinine and thyroid-stimulating hormone concentrations should be monitored every 3–4 months.

Valproate has FDA approval for the treatment of bipolar disorder in adults. Its efficacy in acute mania equals that of lithium, but it is generally better tolerated. Valproate is more effective than lithium in patients with rapid-cycling bipolar disorder (more than four cycles per year) and in patients with mixed states (coexisting symptoms of depression and mania). Valproate may be more effective than lithium in adolescents with bipolar disorder because they often have rapid cycling and mixed states.

The primary contraindication is known liver dysfunction. Initial medical screening consists of baseline CBC and liver function tests (LFTs). Ongoing monitoring includes checking LFTs monthly for 3–4 months; subsequently, LFTs, a CBC, and trough valproate levels should be obtained every 3–4 months.

The starting dose of valproate is usually 15 mg/kg/d. Doses are usually increased in increments of 5–10 mg/kg/d every 1–2 weeks to a range of 500–1500 mg/d in two or three divided doses. Trough levels in the range of 80–120 mg/mL are thought to be therapeutic.

Between 10% and 20% of patients on valproate experience sedation or anorexia, especially early in treatment or if the dose is increased too rapidly. GI upset occurs in 25% of patients, and when severe, can usually be treated with cimetidine. Increased appetite and weight gain can be troublesome for children and adolescents. Blurred vision, headache, hair loss, and tremor occur occasionally. Slight elevations in aminotransferases are frequent. Severe idiosyncratic hepatitis, pancreatitis, thrombocytopenia, and agranulocytosis occur only rarely.

Carbamazepine. Similar to lithium and valproate, carbamazepine may be effective for treating bipolar disorder or for the target symptoms of mood instability, irritability, or behavioral dyscontrol. Some data suggest that it is more effective than valproate for the depressive phases of bipolar disorder. A new form of carbamazepine—oxcarbazepine (Trileptal)—is also rarely being used for pediatric mood disorders; however, its efficacy has not been established. Reportedly, oxcarbazepine does not have the worrisome side effects of bone marrow suppression and liver enzyme induction. Blood levels cannot be monitored, and the dose range is similar to that of carbamazepine.

Both of these medications should be avoided in individuals with a history of previous bone marrow depression or adverse hematologic reaction to another drug; history of sensitivity to a TCA.

Initial medical screening includes getting a baseline CBC with platelets, reticulocytes, serum iron, and blood urea nitrogen; LFTs; urinalysis.

The drug is usually started at 10–20 mg/kg/d, in two divided doses, in children younger than 6 years; 100 mg twice daily in children aged 6–12 years; and 200 mg twice daily in children older than 12 years. Doses may be increased weekly until there is effective symptom control. Total daily
doses should not exceed 35 mg/kg/d in children younger than 6 years; 1000 mg/d in children aged 6–15 years; and 1200 mg/d in adolescents older than 15 years. Plasma levels in the range of 4–12 mg/mL are thought to be therapeutic.

Some of the more common adverse effects include nausea, dizziness, sedation, headache, dry mouth, diplopia, and constipation, which reflect the drug’s mild anticholinergic properties. Rash is more common with carbamazepine than with other mood stabilizers. Aplastic anemia and agranulocytosis are rare. Leukopenia and thrombocytopenia are more common, and if present, should be monitored closely for evidence of bone marrow depression. These effects usually occur early and transiently and then spontaneously revert toward normal. Liver enzyme induction may significantly change the efficacy of medications given concurrently.

Medical follow-up includes hematologic, hepatic, and renal parameters should be followed at least every 3 months for the first year. White blood cell counts (WBCs) below 3000/mL and absolute neutrophil counts below 1000/mL call for discontinuation of the drug and referral for hematology consultation.

Lamotrigine is approved for the treatment of bipolar depression in adults. The most concerning side effects of this medication are serious rashes that can require hospitalization and can include Stevens-Johnson syndrome (0.8% incidence). The starting dose is 25 mg, with a slow titration of increasing the dose by 25 mg/wk to a target dose (as clinically indicated) of 300 mg/d.

Gabapentin. Like valproate and carbamazepine, gabapentin is an anticonvulsant that has been used as a mood stabilizer in some adult populations. It may be used along with either valproate or carbamazepine in individuals with treatment-resistant disorders. The usual adult dose range for seizure disorders is 900–1800 mg/d in three divided doses and may need to be adjusted downward in individuals with renal impairment. Although its use among adolescents and even children is increasing, gabapentin is not approved for this indication, and reports of its efficacy remain largely anecdotal. Some reports suggest it may worsen behavioral parameters in children with underlying ADHD.

For additional information on mood stabilizer medications, please refer to section on psychotic disorders (ie, atypical antipsychotics and neuroleptics).

**Prognosis**

It is not uncommon for the patient to need lifelong medication. In its adult form, bipolar disorder is an illness with a remitting course of alternating depressive and manic episodes. The time span between episodes can be years or months depending on the severity of illness and ability to comply with medication interventions. In childhood, the symptoms may be more pervasive and not fall into the intermittent episodic pattern until after puberty.

---

**SUICIDE IN CHILDREN & ADOLESCENTS**

The suicide rate in young people has remained high for several decades. In 2007, suicide was the third leading cause of death among children and adolescents aged 10–24 years in the United States. The suicide rate among adolescents aged 15–19 years quadrupled from approximately 2.7 to 11.3 per 100,000 since the 1960s. It is estimated that each year, approximately 2 million US adolescents attempt suicide, yet only 700,000 receive medical attention for their attempt. Suicide and homicide rates for children in the United States are two to five times higher than those for the other 25 industrialized countries combined, primarily due to the prevalence of firearms in the United States. For children younger than 10 years, the rate of completed suicide is low, but from 1980 to 1992, it increased by 120%, from 0.8 to 1.7 per 100,000.

Adolescent girls make three to four times as many suicide attempts as boys of the same age, but the number of completed suicides is three to four times greater in boys. Firearms are the most commonly used method in successful suicides, accounting for 40%–60% of cases; hanging, carbon monoxide poisoning, and drug overdoses each account for approximately 10%–15% of cases.

Suicide is almost always associated with a psychiatric disorder and should not be viewed as a philosophic choice about life or death or as a predictable response to overwhelming stress. Most commonly it is associated with a mood disorder and the hopelessness that accompanies a severe depressive episode. Suicide rates are higher for Native American and Native Alaskan populations than for white, black, and Latinos/Hispanic populations. Although suicide attempts are more common in individuals with a history of behavior problems and academic difficulties, other suicide...
Assessment of Suicide Risk

Any clinical assessment for depression must include direct questions about suicidal ideation. If a child or adolescent expresses suicidal thinking, the treating provider must ask if he or she has an active plan, intends to complete that plan, and has made previous attempts. Suicidal ideation accompanied by any plan warrants immediate referral for a psychiatric crisis assessment. This can usually be accomplished at the nearest emergency department (ED).

Assessment of suicide risk calls for a high index of suspicion and a direct interview with the patient and his or her parents or guardians. The highest risk of suicide is among white, adolescent boys. High-risk factors include previous suicide attempts, a suicide note, and a viable plan for suicide with the availability of lethal means, close personal exposure to suicide, conduct disorder, and substance abuse. Other risk factors are signs and symptoms of major depression or dysthymia, a family history of suicide, a recent death in the family, and a view of death as a relief from the pain in the patient’s life.

Intervention

Suicidal ideation and any suicide attempt must be considered a serious matter. The patient should not be left alone, and the treating provider should express concern and convey a desire to help. The provider should meet with the patient and the family, both alone and together, and listen carefully to their problems and perceptions. It is helpful to explicitly state that with the assistance of mental health professionals, solutions can be found.

The majority of patients who express suicidal ideation and all who have made a suicide attempt should be referred for psychiatric evaluation and possible hospitalization. Most providers feel uncomfortable and have little experience in evaluating suicidality and risk. In addition, this evaluation frequently takes considerable time and requires contact with multiple informants for information gathering and treatment planning. The provider should err on the side of caution as referral for further assessment is always appropriate when there is concern about suicidal thinking and behavior.

An evaluation in a psychiatrist’s office or the ED will help determine level of risk and disposition. If the patient has suicidal ideation without a plan, has a therapist he or she can see the same or next day, is able to “contract for safety,” and the family is able to provide supervision and support, then the evaluating provider can consider sending the patient and family home that day from the office or ED without need for immediate hospitalization. If there appears to be potential for suicide as determined by suicidal ideation with a plan, there are no available resources for therapy, and the patient is not able to cooperate with a plan to ensure safety; if the patient is severely depressed or intoxicated; if the family does not appear to be appropriately concerned; or if there are practical limitations on providing supervision and support to ensure safety, the individual should be hospitalized on an inpatient psychiatric unit. Any decision to send the patient home from the ED without hospitalization should be made only after consultation with a mental health professional. The decision should be based on lessening of the risk of suicide and assurance of the family’s ability to follow through with outpatient therapy and provide appropriate support and supervision. As part of safety planning for discharge, guns, knives, and razor blades should be removed from the home, and, to the extent possible, access to them outside the home should be prohibited. Medications and over-the-counter drugs should be kept locked in a safe place with all efforts made to minimize the risk of the patient having access (eg, key kept with a parent, or use of combination lock on the medicine chest). The patient should be restricted from driving for at least the first 24 hours and likely longer to lessen the chance of impulsive motor vehicle crashes. Instructions and phone numbers for crisis services should be given, and the family must be committed to a plan for mental health treatment.

Suicide prevention efforts include heightened awareness in the community and schools to promote identification of at-risk individuals and increasing access to services, including hotlines and counseling services. Restricting young people’s access to firearms is also a critical factor, as firearms are responsible for 85% of deaths due to suicide or homicide in youth in the United States.

Finally, the treating provider should be aware of his or her own emotional reactions to dealing with suicidal adolescents and their families. Because the assessment can require considerable time and energy, the provider should be on
guard against becoming tired, irritable, or angry. Although understandable, provider fears about precipitating suicide by direct and frank discussions of suicidal risk are unfounded. Reviewing difficult cases with colleagues, developing formal or informal relationships with psychiatrists, and attending workshops on assessment and management of depression and suicidal ideation can decrease the anxiety and improve competence for primary care providers.

**CONDUCT DISORDERS**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- A persistent pattern of behavior that includes the following:
  - Defiance of authority.
  - Violating the rights of others or society’s norms.

**Clinical Findings**

The typical child with conduct disorder is a boy with a turbulent home life and academic difficulties. Defiance of authority, fighting, tantrums, running away, school failure, and destruction of property are common symptoms. With increasing age, fire-setting and theft may occur, followed in adolescence by truancy, vandalism, and substance abuse. Sexual promiscuity, sexual perpetration, and other criminal behaviors may develop. Hyperactive, aggressive, and uncooperative behavior patterns in the preschool and early school years tend to predict conduct disorder in adolescence with a high degree of accuracy, especially when ADHD goes untreated. A history of reactive attachment disorder is an additional childhood risk factor. The risk for conduct disorder increases with inconsistent and severe parental disciplinary techniques, parental alcoholism, and parental antisocial behavior.

**Differential Diagnosis**

Young people with conduct disorders, especially those with more violent histories, have an increased incidence of neurologic signs and symptoms, psychomotor seizures, psychotic symptoms, mood disorders, ADHD, and learning disabilities. Efforts should be made to identify these associated disorders because they may suggest specific therapeutic interventions. Conduct disorder is best conceptualized as a final common pathway emerging from a variety of underlying psychosocial, genetic, environmental, and neuropsychiatric conditions.

**Treatment**

Effective treatment can be complicated by the psychosocial problems often found in the lives of children and adolescents with conduct disorders, with related difficulty
achieving compliance with treatment recommendations. Efforts should be made to stabilize the environment and improve functioning within the home, particularly as it relates to parental functioning and disciplinary techniques. Identification of learning disabilities and placement in an optimal school environment is also critical. Any associated neurologic and psychiatric disorders should be addressed.

Residential treatment may be necessary for individuals whose symptoms do not respond to lower level interventions, or whose environment is not able to meet their needs for supervision and structure. Juvenile justice system involvement is common in cases where conduct disorder behaviors lead to illegal activities, theft, or assault.

Medications such as mood stabilizers, neuroleptics, stimulants, and antidepressants have all been studied in youth with conduct disorders, yet none has been found to be consistently effective in this population. Refer to the treatment algorithm (Figure 7–5) and list of suggested medication for additional information (Table 7–23). Early involvement in programs such as Big Brothers, Big Sisters, scouts, and team sports in which consistent adult mentors and role models interact with youth decreases the chances that the youth with conduct disorders will develop antisocial personality disorder. Multisystemic therapy (MST) is being used increasingly as an intervention for youth with conduct disorders and involvement with the legal system. Multisystemic therapy is an intensive home-based model of care that seeks to stabilize and improve the home environment and to strengthen the support system and coping skills of the individual and family.

**Prognosis**

The prognosis is based on the ability of the child’s support system to mount an effective treatment intervention consistently over time. The prognosis is generally worse for children in whom the disorder presents before age 10 years; those who display a diversity of antisocial behaviors across multiple settings; and those who are raised in an environment characterized by parental antisocial behavior, alcoholism or other substance abuse, and conflict. Nearly half of individuals with a childhood diagnosis of conduct disorder develop antisocial personality disorder as adults.

1. **Oppositional Defiant Disorder**

   > A pattern of negativistic, hostile, and defiant behavior lasting at least 6 months.
   > Loses temper, argues with adults, defies rules.
   > Blames others for own mistakes and misbehavior.

   - Angry, easily annoyed, vindictive.
   - Does not meet criteria for conduct disorder.

   Oppositional defiant disorder usually is evident before 8 years of age and may be an antecedent to the development of conduct disorder. The symptoms usually first emerge at home, but then extend to school and peer relationships. The disruptive behaviors of oppositional defiant disorder are generally less severe than those associated with conduct disorder and do not include hurting other individuals or animals, destruction of property, or theft.

   Oppositional defiant disorder is more common in families where caregiver dysfunction (eg, substance abuse, parental psychopathology, significant psychosocial stress) is present. It is also more prevalent in children with a history of multiple changes in caregivers, inconsistent, harsh, or neglectful parenting, or serious marital discord.

   Interventions include careful assessment of the psychosocial situation and recommendations to support parenting skills and optimal caregiver functioning. Assessment for comorbid psychiatric diagnoses such as learning disabilities, depression, and ADHD should be pursued and appropriate interventions recommended.

2. **Aggression & Violent Behavior in Youth**

   The tragic increase in teenage violence, including school shootings, is of particular concern to health professionals, as well as to society at large. There is strong evidence that screening and initiation of interventions by primary care providers can make a significant difference in violent behavior in youth. Although the prediction of violent behavior remains a difficult and imprecise endeavor, providers can support and encourage several important prevention efforts.

   The vast majority of the increase in youth violence including suicides and homicides involves the use of firearms. Thus, the presence of firearms in the home, the method of storage and safety measures taken when present, and access to firearms outside the home should be explored regularly with all adolescents as part of their routine medical care.

   It is important to note that violent behavior is often associated with suicidal impulses. In the process of screening for violent behavior, suicidal ideation should not be overlooked. Any comment about wishes to be dead or hopelessness should be taken seriously and assessed immediately.

   Interventions for parents include encouraging parents and guardians to be aware of their child’s school attendance and performance. Parents should be encouraged to take an active role and learn about their children’s friends, be aware of who they are going out with, where they will be, what they will be doing, and when they will be home. Most students involved in school violence might have been identified
Disruptive Behavior or Aggression? Suspect Conduct Disorder or Oppositional Defiant Disorder?

Safety check: Neglect/abuse? Drug abuse? Specific plan to hurt someone?

If acute danger, have duty to protect. Consider consultation

Think about comorbidity: ADHD MDD (irritable mood type) Bipolar disorder Anxiety disorder

Diagnosis:
See DSM-IV-TR criteria
ODD: Pattern of negative, hostile, defiant behavior of > 6 months
CD: Pattern of behavior violating rights of others/societal norms > 1 year
Rating scale screen: Vanderbilt ADHD scale

Can problem be managed in primary care?

YES NO Referral

Child

Individual psychotherapy focused on problem solving skills, and helping identify and institute tangible rewards for desired behavior. (Avoid group therapy as may reinforce negative behaviors)

Parent involvement/training is essential to get positive results.
Encourage “special time” interactions between parent and child

If ADHD present, strongly consider use of stimulant medication

If very severe symptoms (ie, frequent suspensions from school) or if unable to make progress with child/parent counseling after a reasonable counseling effort over a few months, consider medication as symptomatic trial

Note planned, purposeful aggression is not helped by medication

Parent

Parent creates some regular positive time with their child (“special time”) which helps discipline like “time outs” be more effective

Younger children: recommend behavior management training such as Parent Child Interaction Training (PCIT) or 1-2-3 Magic

Older children: recommend parent/family therapy or training such as functional family therapy (FFT) or multisystemic therapy (MST)

Encourage parent try using our bibliotherapy/video references

If use medicine, stop any failed medication treatments before beginning another (avoiding polypharmacy). Identify child specific treatment goals which can be monitored to measure treatment effects, like the frequency/severity of violent incidents.

Medication options include divalproex sodium, lithium, atypical antipsychotics, stimulants, and α-2 agonists

Sources:

▲ Figure 7-5. Treatment algorithm for disruptive behavior and aggression in children and adolescents. (Reproduced with permission from Hilt R: Primary Care Principles for Child Mental Health, summer 2013. version 4.1).
Table 7-23. Medication for the treatment of disruptive behavior and aggression in children and adolescents. (Reproduced with permission from Hilt R: Primary Care Principles for Child Mental Health, summer 2013. version 4.1).

### Nonspecific Medications for Disruptive Behavior and Aggression

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Dosage Form</th>
<th>Start Dose</th>
<th>Sedation</th>
<th>Weight Gain</th>
<th>Extra-Pyramidal Symptoms</th>
<th>(+) RCT Evidence in Kidsa</th>
<th>Editorial Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risperidone (Risperdal)</td>
<td>0.25, 0.5, 1, 2, 3, 4 mg 1 mg/mL</td>
<td>0.25 mg QHS</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Yes</td>
<td>Most child research support of the meds in this group</td>
</tr>
<tr>
<td>Aripiprazole (Abilify)</td>
<td>2, 5, 10, 15, 25, 30 mg 1 mg/mL</td>
<td>2 mg QD</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>No</td>
<td>Long ½ life, takes weeks to build effect. No generic formulation</td>
</tr>
<tr>
<td>Quetiapine (Seroquel)</td>
<td>25, 50, 100, 200, 300, 400 mg</td>
<td>25 mg QHS</td>
<td>++</td>
<td>+</td>
<td>+/-</td>
<td>No</td>
<td>Pills larger, could be hard for kids to swallow</td>
</tr>
<tr>
<td>Ziprasidone (Geodon)</td>
<td>20, 40, 60, 80 mg</td>
<td>20 mg QHS</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>No</td>
<td>Greater risk of QT lengthen, ECG check</td>
</tr>
<tr>
<td>Olanzapine (Zyprexa)</td>
<td>2.5, 5, 7.5, 10, 15, 20 mg</td>
<td>2.5 mg QHS</td>
<td>++</td>
<td>++</td>
<td>+/-</td>
<td>No</td>
<td>Greatest risk of weight gain, Tcholesterol</td>
</tr>
</tbody>
</table>

Notes:
1. If used, choosing a single medication is strongly recommended over polypharmacy.
2. Establish a specific target to treat, and measure the response over time (such as anger explosion frequency, duration).
3. Aggression is not a diagnosis—continue to look for and treat what may be the cause, usually prescribing psychotherapy and behavior management training as the treatments of choice.
4. Monitoring for all atypical antipsychotics: AIMS exam at baseline and q6mo due to risk of tardive dyskinesia. Warn of dystonia and NMS risks. Weight checks, fasting glucose/lipid panel q6mo at minimum.
5. AIMS exam at baseline and q6mo due to risk of tardive dyskinesia. Warn of dystonia and NMS risks. Weight checks, fasting glucose/lipid panel q6mo at minimum.

Table + and − from Fedorowicz VJ. Fombonne E. (2005), Lublin, H; et al (2005), and Correll CU et al (2009)

### Other Medication Options

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Description</th>
<th>(+) RCT Evidence in Kidsa</th>
<th>Monitoring</th>
<th>Editorial Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium</td>
<td>A salt, is renally excreted</td>
<td>Yes</td>
<td>Baseline ECG, BUN/creat, TSH, CBC. Lithium level after 5 d. q3mo Li. q6mo TSH, BUN/crt</td>
<td>Sedating, weight gain, renal and thyroid toxicity. If dehydration can get acute toxicity. Reduces suicide risks, though an overdose can be fatal</td>
</tr>
<tr>
<td>Valproate</td>
<td>Antiseizure</td>
<td>Yes</td>
<td>CBC, LFT at baseline, in 3 mo, then q6mo. VPA level checks needed</td>
<td>Sedating, weight gain, rare severe toxicity of liver, ↓ platelets</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Antiseizure</td>
<td>No</td>
<td>CBC, LFT at baseline, then every 3-6 mo. CBZ level checks needed</td>
<td>Aplasia and rash risk. Note a negative result trial with kids and oxcarbazepine and bipolar disorder</td>
</tr>
<tr>
<td>Clonidine, Guanfacine</td>
<td>α-2 agonists</td>
<td>Yes</td>
<td>Pulse, BP</td>
<td>Orthostasis, sedation sign of excess dose, avoid high doses, rebound hypertension if quick stop</td>
</tr>
</tbody>
</table>

Note:
None of the medications on this page are FDA approved for aggression treatment, with the exception of risperidone and aripiprazole which are approved for irritability/aggression treatment in autism.

aPappadopulos E et al. (2006) and lit. review.
earlier and potentially may have benefited from interventions to address problems in social and educational functioning in the school environment. Communities and school districts nationwide have increased their efforts to identify and intervene with students whom teachers, peers, or parents recognize as having difficulty.

### HIGH-RISK PATIENTS AND HOMICIDE

#### Threats & Warning Signs Requiring Immediate Consultation

Any and all threats that children make can be alarming. However, it is important to be aware of some of the more serious and potentially lethal threats. These threats should be taken with the utmost seriousness and parents/guardians should see a mental health provider immediately. Such threats include threats/warnings about hurting or killing someone or oneself, threats to run away from home and/or threats to damage or destroy property.

#### Factors Associated With Increased Risk of Violent and/or Dangerous Behavior

Not all threats signify imminent danger, and there are several factors to consider when assessing the dangers of a child or adolescent. A past history of violence or aggressive behavior, including uncontrollable angry outbursts, access to guns or other weapons, history of getting caught with a weapon in school and family history of violent behaviors are likely predictors of future violent behavior. In addition, children who witness abuse and violence at home and/or have a preoccupation with themes and acts of violence (e.g., TV shows, movies, music, violent video games, etc.) are also at high risk of such behavior. Victims of abuse (i.e., physical, sexual, and/or emotional) are more susceptible to feeling shame, loss, and rejection. The difficulty of dealing with abuse can further exacerbate an underlying mood, anxiety, or conduct disorder. Children who have been abused are more likely to be perpetrators of bullying and engage in verbal and physical intimidation toward peers. They also may be much more prone to blame others and are unwilling to accept responsibility for their own actions. Substance use is another major factor frequently associated with violent, aggressive, and/or dangerous behavior, particularly because it impacts judgment and is often associated with decreased inhibition and increased impulsivity. Socially isolated children also carry a high risk for violent and dangerous behavior. These include children with little to no adult supervision, poor connection with peers, and little to no involvement in extracurricular activities. These individuals may be more likely to seek out deviant peer groups for a sense of belonging.

### How Providers and Parents Can Respond to Concerns of Violence and/or Dangerous Behavior

If a provider or parent suspects that a child is at risk for violent and/or dangerous behavior, the most important intervention is to talk with the child immediately about alleged threat and/or behavior. One should consider the child’s past behavior, personality, and current stressors when evaluating the seriousness and likelihood of them engaging in a destructive or dangerous behavior. If the child already has a mental health provider, he/she should be contacted immediately. If they are not reachable, the parent(s)/guardian(s) should take the child to the closest ED for a crisis evaluation. It is always acceptable to contact local police for assistance, especially if harm to others is suspected. Another indication that warrants a crisis evaluation is if a child refuses to talk, is argumentative, responds defensively, or continues to express violent or dangerous thoughts/plans. Continuous, face-to-face adult supervision is essential while awaiting professional intervention. After evaluation, it is imperative to follow up with recommendations from mental health provider(s) to ensure safety and ongoing management.


SOMATOFORM DISORDERS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- A symptom suggesting physical dysfunction.
- No physical disorder accounting for the symptom.
- Symptoms causing distress, dysfunction, or both.
- Symptoms not voluntarily created or maintained, as in malingering.

Clinical Findings

Hypochondriasis, somatization, and conversion disorders involve an unhealthy overemphasis and preoccupation with somatic experiences and symptoms. Somatoform disorders are defined by the presence of physical illness or disability for which no organic cause can be identified, although neither the patient nor the caregiver is consciously fabricating the symptoms. The category includes body dysmorphic disorder, conversion disorder, hypochondriasis, somatization disorder, and somatoform pain disorder (Table 7–24).

Conversion symptoms most often occur in school-aged children and adolescents. The exact incidence is unclear, but in pediatric practice they are probably seen more often as transient symptoms than as chronic disorders requiring help from mental health practitioners. A conversion symptom is thought to be an expression of underlying psychological conflict. The specific symptom may be symbolically determined by the underlying conflict; the symptom may resolve the dilemma created by the underlying wish or fear (eg, a seemingly paralyzed child need not fear expressing his or her underlying rage or aggressive retaliatory impulses). Although children can present with a variety of symptoms, the most common include neurologic and gastrointestinal complaints. Children with conversion disorder may be surprisingly unconcerned about the substantial disability deriving from their symptoms. Symptoms include unusual sensory phenomena, paralysis, vomiting, abdominal pain, intractable headaches, and movement or seizure-like disorders.

In the classic case of conversion disorder, the child’s symptoms and examination findings are not consistent with the clinical manifestations of any organic disease process. The physical symptoms often begin within the context of a family experiencing stress, such as serious illness, a death, or family discord. On closer examination, the child’s symptoms are often found to resemble symptoms present in other family members. Children with conversion disorder may have some secondary gain associated with their symptoms. Several reports have pointed to the increased association of conversion disorder with sexual overstimulation or sexual abuse. As with other emotional and behavioral problems, healthcare providers should always screen for physical and sexual abuse.

Differential Diagnosis

It is sometimes not possible to rule out medical disease as a source of the symptoms. Medical follow-up is required to monitor for changes in symptoms and response to recommended interventions.

Somatic symptoms are often associated with anxiety and depressive disorders (see Tables 7–7 and 7–11). Occasionally, psychotic children have somatic preoccupations and even somatic delusions.

Treatment

In most cases, conversion symptoms resolve quickly when the child and family are reassured that the symptom is a way of reacting to stress. The child is encouraged to continue with normal daily activities, knowing that the symptom will
abate when the stress is resolved. Treatment of conversion disorders includes acknowledging the symptom rather than telling the child that the symptom is not medically justified and responding with noninvasive interventions such as physical therapy while continuing to encourage normalization of the symptoms. If the symptom does not resolve with reassurance, further investigation by a mental health professional is indicated. Comorbid diagnoses such as depression and anxiety disorders should be addressed, and treatment with psychopharmacologic agents may be helpful.

Somatoform disorder is not associated with the increased morbidity and mortality associated with other psychiatric disorders such as mood disorders or psychotic illness. Somatoform patients are best treated with regular, short, scheduled medical appointments to address the complaints at hand. In this way they do not need to precipitate emergencies to elicit medical attention. The medical provider should avoid invasive procedures unless clearly indicated and offer sincere concern and reassurance. The provider should also avoid telling the patient “it’s all in your head” and should not abandon or avoid the patient, as somatoform patients are at great risk of seeking multiple alternative treatment providers and potentially unnecessary treatments.

**Prognosis**

Patients presenting with somatoform disorders are often resistant to mental health treatment, in part fearing that any distraction from their vigilance will put them at greater risk of succumbing to a medical illness. Psychiatric consultation is often helpful, and for severely incapacitated patients, referral psychiatric consultation is always indicated.

**Differential Diagnosis**

When symptoms emerge in reaction to an identifiable stressor but are severe, persistent, or disabling, depressive disorder, anxiety disorder, and conduct disorders must be considered.

**Treatment**

The most common and most disturbing stressors in the lives of children and adolescents are the death of a loved one, marital discord, separation and divorce, family illness, a change of residence or school setting, experiencing a traumatic event, and, for adolescents, peer-relationship problems. When faced with stress, children can experience many different symptoms, including changes in mood, changes in behavior, anxiety symptoms, and physical complaints. Key findings for the diagnosis of an adjustment disorder include the following:

- The precipitating event or circumstance is identifiable.
- The symptoms have appeared within 3 months after the occurrence of the stressful event.
- Although the child experiences distress or some functional impairment, the reaction is not severe or disabling.
- The reaction does not persist more than 6 months after the stressor has terminated.

**ADJUSTMENT DISORDERS**

The most common and most disturbing stressors in the lives of children and adolescents are the death of a loved one, marital discord, separation and divorce, family illness, a change of residence or school setting, experiencing a traumatic event, and, for adolescents, peer-relationship problems. When faced with stress, children can experience many different symptoms, including changes in mood, changes in behavior, anxiety symptoms, and physical complaints. Key findings for the diagnosis of an adjustment disorder include the following:

- The precipitating event or circumstance is identifiable.
- The symptoms have appeared within 3 months after the occurrence of the stressful event.
- Although the child experiences distress or some functional impairment, the reaction is not severe or disabling.
- The reaction does not persist more than 6 months after the stressor has terminated.

**Prognosis**

Patients presenting with somatoform disorders are often resistant to mental health treatment, in part fearing that any distraction from their vigilance will put them at greater risk of succumbing to a medical illness. Psychiatric consultation is often helpful, and for severely incapacitated patients, referral psychiatric consultation is always indicated.

**Differential Diagnosis**

When symptoms emerge in reaction to an identifiable stressor but are severe, persistent, or disabling, depressive disorder, anxiety disorder, and conduct disorders must be considered.

**Treatment**

The most common and most disturbing stressors in the lives of children and adolescents are the death of a loved one, marital discord, separation and divorce, family illness, a change of residence or school setting, experiencing a traumatic event, and, for adolescents, peer-relationship problems. When faced with stress, children can experience many different symptoms, including changes in mood, changes in behavior, anxiety symptoms, and physical complaints. Key findings for the diagnosis of an adjustment disorder include the following:

- The precipitating event or circumstance is identifiable.
- The symptoms have appeared within 3 months after the occurrence of the stressful event.
- Although the child experiences distress or some functional impairment, the reaction is not severe or disabling.
- The reaction does not persist more than 6 months after the stressor has terminated.

**Prognosis**

Patients presenting with somatoform disorders are often resistant to mental health treatment, in part fearing that any distraction from their vigilance will put them at greater risk of succumbing to a medical illness. Psychiatric consultation is often helpful, and for severely incapacitated patients, referral psychiatric consultation is always indicated.
circumstances by increasing predictability and decreasing distress about the unknown.

**Prognosis**

The duration of symptoms in adjustment reactions depends on the severity of the stress; the child’s personal sensitivity to stress and vulnerability to anxiety, depression, and other psychiatric disorders; and the available support system.

**PSYCHOTIC DISORDERS**

The incidence of schizophrenia is about 1 per 10,000 per year. The onset of schizophrenia is typically between the middle to late teenage and early thirties, with onset before puberty being relatively rare. Symptoms usually begin after puberty, although a full “psychotic break” may not occur until the young adult years. Childhood onset (before puberty) of psychotic symptoms due to schizophrenia is uncommon and usually indicates a more severe form of the spectrum of schizophrenic disorders. Childhood-onset schizophrenia is more likely to be found in boys.

Schizophrenia is a biologically based disease with a strong genetic component. Other psychotic disorders that may be encountered in childhood or adolescence include schizoaffective disorder and psychosis not otherwise specified (psychosis NOS). Psychosis NOS may be used as a differential diagnosis when psychotic symptoms are present, but the cluster of symptoms is not consistent with a schizophrenia diagnosis.

**Clinical Findings**

Children and adolescents display many of the symptoms of adult schizophrenia. Hallucinations or delusions, bizarre and morbid thought content, and rambling and illogical speech are typical. Affected individuals tend to withdraw into an internal world of fantasy and may then equate fantasy with external reality. They generally have difficulty with schoolwork and with family and peer relationships. Adolescents may have a prodromal period of depression prior to the onset of psychotic symptoms. The majority of patients with childhood-onset schizophrenia have had nonspecific psychiatric symptoms or symptoms of delayed development for months or years prior to the onset of their overtly psychotic symptoms.

**Differential Diagnosis**

Obtaining the family history of mental illness is critical when assessing children and adolescents with psychotic symptoms. Psychological testing, particularly the use of projective measures, is often helpful in identifying or ruling out psychotic thought processes. Psychotic symptoms in children younger than age 8 years must be differentiated from manifestations of normal vivid fantasy life or abuse-related symptoms. Children with psychotic disorders often have learning disabilities and attention difficulties in addition to disorganized thoughts, delusions, and hallucinations. In psychotic adolescents, mania is differentiated by high levels of energy, excitement, and irritability. Any child or adolescent exhibiting new psychotic symptoms requires a medical evaluation that includes physical and neurologic examinations (including consideration of magnetic resonance imaging and electroencephalogram), drug screening, and metabolic screening for endocrinopathies, Wilson disease, and delirium.

**Treatment**

The treatment of childhood and adolescent schizophrenia focuses on four main areas: (1) decreasing active psychotic symptoms, (2) supporting development of social and cognitive skills, (3) reducing the risk of relapse of psychotic symptoms, and (4) providing support and education to parents and family members. Antipsychotic medications (neuroleptics) are the primary psychopharmacologic intervention. In addition, a supportive, reality-oriented focus in relationships can help to reduce hallucinations, delusions, and frightening thoughts. A special school or day treatment environment may be necessary, depending on the child’s or adolescent’s ability to tolerate the school day and classroom activities. Support for the family emphasizes the importance of clear, focused communication and an emotionally calm climate in preventing recurrences of overtly psychotic symptoms.

The antipsychotics, formerly known as neuroleptics, are indicated for psychotic symptoms in patients with schizophrenia. They are also used for acute mania and as adjuncts to antidepressants in the treatment of psychotic depression (with delusions or hallucinations). The antipsychotics may be used cautiously in refractory PTSD, in refractory OCD, and in individuals with markedly aggressive behavioral problems unresponsive to other interventions. They may also be useful for the body image distortion and irrational fears about food and weight gain associated with anorexia nervosa.
The “atypical antipsychotics” differ from conventional antipsychotics in their receptor specificity and effect on serotonin receptors. Conventional antipsychotics are associated with a higher incidence of movement disorders and extrapyramidal symptoms (EPS) due to their wider effect on dopamine receptors. The introduction of the atypical antipsychotics has significantly changed neuroleptic prescribing patterns. The atypical antipsychotics have a better side-effect profile for most individuals and comparable efficacy for the treatment of psychotic symptoms and aggression. Atypical antipsychotics have a decreased incidence of EPS and tardive dyskinesia (TD). Significant side effects can include substantial weight gain and sedation. Because of their increased use over conventional antipsychotics, this section focuses primarily on the atypical antipsychotics.

The following adverse effects of antipsychotics apply to both typical and atypical antipsychotics, but are thought to have a significantly lower incidence with the atypical antipsychotics.

### 1. Initial medical screening
Providers should obtain baseline height, weight, and waist circumference observe and examine for tremors and other abnormal involuntary movements and establish baseline values for CBC and LFTs, lipid profile and cholesterol. Obtain an ECG if there is a history of cardiac disease or arrhythmia, and to establish a baseline QT interval (cardiac repolarization) prior to initiation of the antipsychotics that have a greater effect on the QT interval (eg, ziprasidone and thioridazine). Antipsychotics can cause QT prolongation leading to ventricular arrhythmias, such as torsades de pointes. Medications that affect the cytochrome P-450 isoenzyme pathway (including SSRIs) may increase the neuroleptic plasma concentration and increase risk of QTc prolongation.

### 2. Adverse effects
The most troublesome adverse effects of the atypical antipsychotics are cognitive slowing, sedation, orthostasis, and weight gain. The conventional antipsychotics have an increased incidence of EPS and TD. Sedation, cognitive slowing, and EPS all tend to be dose-related. Because of the risk of side effects, neuroleptic medications should be used with caution and monitored regularly. The risk-benefit ratio of the medication for the identified target symptom should be carefully considered and reviewed with the parent or guardian.

#### A. Weight gain, hyperglycemia, hyperlipidemia, and diabetes mellitus
In postmarketing clinical use, there have been significant reports of weight gain, hyperglycemia, and diabetes mellitus. This led to a consensus statement by concerned professional societies about how best to monitor and manage these significant side effects. Table 7–25 presents the currently recommended monitoring calendar. Baseline and ongoing evaluations of significant markers are considered standard clinical practice.

#### B. Extrapyramidal side effects
EPS and acute dystonic reactions are tonic muscle spasms, often of the tongue, jaw, or neck. EPS symptoms can be mildly uncomfortable or may result in such dramatically distressing symptoms as oculogyric crisis, torticollis, and even opisthotonos. Onset is usually within days after a dosage change and symptoms may occur in up to 25% of children treated with conventional antipsychotics. Acute neuroleptic-induced dystonias are quickly relieved by anticholinergics such as benztropine (Cogentin) and diphenhydramine.

#### C. Tardive dyskinesias
Tardive dyskinesias (TDs) are involuntary movement disorders that are often irreversible and may appear after long-term use of neuroleptic medications. Choreaathetoid movements of the tongue and mouth are most common, but the extremities and trunk may also be involved. The risk of TD is small in patients on atypical antipsychotics, and those on conventional antipsychotics for less than 6 months. There is no universally effective treatment.

#### D. Pseudoparkinsonism
Pseudoparkinsonism is usually manifested 1–4 weeks after the start of treatment. It presents as muscle stiffness, cogwheel rigidity, masklike facial expression, bradykinesia, drooling, and occasionally pill-rolling tremor. Anticholinergic medications or dosage reductions are helpful.

#### E. Akathisia
Akathisia is usually manifested after 1–6 weeks of treatment. It presents as an unpleasant feeling of driven motor restlessness that ranges from vague muscular discomfort to a markedly dysphoric agitation with frantic pacing. Anticholinergic agents or β-blockers are sometimes helpful.
F. Neuroleptic Malignant Syndrome—Neuroleptic malignant syndrome is a very rare medical emergency associated primarily with the conventional antipsychotics, although it has also been reported with atypical antipsychotics. It is manifested by severe muscular rigidity, mental status changes, fever, autonomic lability, and myoglobinemia. Neuroleptic malignant syndrome can occur without muscle rigidity in patients taking atypical antipsychotics and should be considered in the differential diagnosis of any patient on antipsychotics who presents with high fever and altered mental status. Mortality as high as 30% has been reported. Treatment includes immediate medical assessment and withdrawal of the neuroleptic and may require transfer to an intensive care unit.

G. Withdrawal Dyskinesias—Withdrawal dyskinesias are reversible movement disorders that appear following withdrawal of neuroleptic medications. Dyskinetic movements develop within 1–4 weeks after withdrawal of the drug and may persist for months.

H. Other Adverse Effects—These include cardiac arrhythmias, irregular menses, gynecomastia, and galactorrhea due to increased prolactin, sexual dysfunction, photosensitivity, rashes, lowered seizure threshold, hepatic dysfunction, and blood dyscrasias.

3. Drug interactions—Potentiation of central nervous system depressant effects or the anticholinergic effects of other drugs may occur, as well as increased plasma levels of antidepressants.

4. Medical follow-up—The patient should be examined at least every 3 months for signs of the side effects listed. An Abnormal Involuntary Movement Scale can be used to monitor for TD in patients taking antipsychotics. Most antipsychotic treatments seem to be associated with relevant weight gain, which increases the risk of the development of metabolic syndrome and future cardiovascular morbidity and mortality. New recommendations include quarterly monitoring of blood pressure, weight gain, abdominal circumference, dietary and exercise habits, and, if indicated, fasting blood glucose and lipid panels. In cases of significant weight gain or abnormal laboratory values, patients should either be switched to an agent with a decreased risk for these adverse events or should receive additional treatments to reduce specific adverse events in cases in which discontinuation of the offending agent is clinically contraindicated or unfeasible.

A. Atypical Antipsychotics
Aripiprazole (Abilify), a partial dopamine blocker and a serotonin agonist, has FDA approval for treating acute mania or mixed mania in children and adolescents with bipolar I disorder. (see Table 7–18 for other indications). It also has approval for maintenance therapy in adults. Side effects include nausea and vomiting and fatigue. It is associated with less weight gain than other atypical antipsychotic medications, although for some individuals, weight gain from treatment with aripiprazole can still be substantial. Doses over 30 mg are more likely to be associated with EPS. The dose range is 5–30 mg, and pills can be split.

Olanzapine (Zyprexa) is FDA approved as a second-line treatment for mania and mixed mania in adolescents with bipolar I disorder. This is due to the increased risk of weight gain and hyperlipidemia with olanzapine. It has greater affinity for type 2 serotonin receptors than dopamine-2 receptors and also has an effect on muscarinic, histaminic, and α-adrenergic receptors. The starting dose for children is usually 2.5 mg with a goal of 10 mg/day. Doses over 20 mg have not been studied.

Quetiapine (Seroquel) also has FDA approval for acute manic and mixed episodes in children and adolescents with bipolar I disorder and also has approval for maintenance therapy in adults with bipolar I disorder. It is an antagonist at multiple receptor sites, including serotonin (5-HT₁A and 5-HT₂), dopamine (D₁ and D₂), histamine, and adrenergic receptors. Quetiapine is given in 25- to 50-mg increments up to 600 mg. It is thought to be a weight-neutral medication, and the primary side effect is sedation, especially at lower doses. It also comes in an extended-release preparation (XR).

Risperidone (Risperdal) has FDA approval for acute manic and mixed episodes in children and adolescents with bipolar I disorder also has approval for maintenance therapy in adults with bipolar I disorder as well as other indications; see Table 7–18. It blocks type 2 dopamine receptors (similar to haloperidol) and type 2 serotonin receptors. The initial dose is 0.5 mg/d. It is typically titrated up in 0.5- to 1-mg increments to a maximum dose of 6 mg. Side effects include weight gain and sedation. A dissolvable tablet (m-tab) and a long-acting OROS version of the major active metabolite of risperidone is also available (paliperidone). An intramuscular injectable form (Consta) is available for long-term management of bipolar disorder and schizophrenia in adults and is given every 2 weeks.

Ziprasidone (Geodon) does not have FDA approval for use in children or adolescents. It has affinity for multiple serotonin receptors (5-HT₁A, 5-HT₁D, 5-HT₂A, 5-HT₂C) and dopamine-2 receptors, and it moderately inhibits norepinephrine and serotonin reuptake. It also has moderate affinity for H₁ and α₁ receptors. Ziprasidone has a greater effect on cardiac QT intervals and requires a baseline ECG and ECG monitoring when a dose of 80 mg is reached and with each dose change above 80 mg to monitor for QT prolongation. Ziprasidone is reported to cause minimal weight gain. The initial dose is 20 mg, with dose changes in 20-mg increments to a total daily dose of 140 mg for the treatment of psychotic symptoms in adults.
B. Conventional Neuroleptics

Conventional or “typical” antipsychotics have been used successfully for decades and are notable for the first category of antipsychotic medication to be used for individuals with severe mood and psychotic disorders. Some of neuroleptics still used today include Haldol, Thorazine, and Perphenazine. This medication class has largely fell out of favor in common practice due to the significant difference and concern for adverse effects. Specifically, these medications—while effective—are notorious for causing previously described adverse effects to include akathisia, dystonia, EPS, and tardive dyskinesia. Occasionally, these medications are used in an acute setting, as needed, for treatment of out-of-control, aggressive, and/or manic behavior.

Clozapine (Clozaril) is usually reserved for individuals who have not responded to multiple other antipsychotics due to its side effect of agranulocytosis. Clozapine blocks type 2 dopamine receptors weakly and is virtually free of EPS, apparently including TD. It was very effective in about 40% of adult patients with chronic schizophrenia who did not respond to conventional antipsychotics.

Non-dose-related agranulocytosis occurs in 0.5%–2% of subjects. Some case reports note benefit from clozapine in child and adolescent schizophrenic patients who were resistant to other treatment. Contraindications are concurrent treatment with carbamazepine and any history of leukopenia. Initial medical screening should include a CBC and LFTs. The daily dose is 200–600 mg in two divided doses. Because of the risk of neutropenia, patients taking clozapine must be registered with the Clozapine Registry and a WBC must be obtained biweekly before a 2-week supply of the drug is dispensed. If the white count falls below 3000/mL, clozapine is usually discontinued. Other side effects include sedation, weight gain, and increased salivation. The incidence of seizures increases with doses above 600 mg/d.

Prognosis

Schizophrenia is a chronic disorder with exacerbations and remissions of psychotic symptoms. Generally, earlier onset (prior to age 13 years), poor premorbid functioning (oddness or eccentricity), and predominance of negative symptoms (withdrawal, apathy, or flat affect) over positive symptoms (hallucinations or paranoia) predict more severe disability, while later age of onset, normal social and school functioning prior to onset, and predominance of positive symptoms are associated with better outcomes and life adjustment to the illness.

There is a handout for monitoring the side effects of atypical antipsychotics available at: http://webspace.psychiatry.wisc.edu/walaszek/geropsych/docs/atypical-antipsychotic.doc.


OTHER PSYCHIATRIC CONDITIONS

Several psychiatric conditions are covered elsewhere in this book. Refer to the following chapters for detailed discussion:

- Attention-deficit/hyperactivity disorder (ADHD): see Chapter 3.
- Autism and pervasive developmental disorders: see Chapter 3.
- Enuresis and encopresis: see Chapter 3.
- Eating disorders: see Chapter 6.
- Intellectual disability/mental retardation: see Chapter 3.
- Substance abuse: see Chapter 5.
- Sleep disorders: see Chapter 3.
- Tourette’s syndrome and tic disorders: see Chapter 25.
ESSENTIALS OF DIAGNOSIS

- Forms of maltreatment:
  - Physical abuse
  - Sexual abuse
  - Emotional abuse and neglect
  - Physical neglect
  - Medical care neglect
  - Medical child abuse (Munchausen syndrome by proxy)

- Common historical features in child abuse cases:
  - Implausible mechanism provided for an injury
  - Discrepant, evolving, or absent history
  - Delay in seeking care
  - Event or behavior by a child that triggers a loss of control by the caregiver
  - History of abuse in the caregiver’s childhood
  - Inappropriate affect of the caregiver
  - Pattern of increasing severity or number of injuries if no intervention
  - Social or physical isolation of the child or the caregiver
  - Stress or crisis in the family or the caregiver
  - Unrealistic expectations of caregiver for the child
  - Behavior changes of child

In 2011, an estimated 3.4 million referrals were made to child protective service agencies, involving the alleged maltreatment of approximately 6.2 million children. Children 3 years of age and younger have the highest rates of maltreatment. The total number of children confirmed as maltreated by child protective services was 676,569 in 2011, yielding an abuse victimization rate of 9.1 per 1000 American children. (This statistic is referred to as the “unique count” where a child is counted only once regardless of the number of times the child is substantiated as a victim.) This is the lowest victimization rate over the previous 5-year period. This reflects a drop in rates for physical and sexual abuse, as neglect rates have remained fairly steady. Neglect was substantiated in 78.5% of cases, while 17.6% of cases involved physical abuse, and 9.1% involved sexual abuse. These declines correlate with overall decreases in crime. Additional factors such as improvements in education, reporting, and system responses have also likely played a role in the reduction.

There were 1545 victims of fatal child abuse in 2011 from 51 states, resulting in a rate of 2.1 child abuse deaths per 100,000 children, the same rate as the year prior. Unlike physical and sexual abuse rates, fatality rates have varied over the last 5 years. Based on this information, it is estimated that nationally 1570 children died from abuse and neglect.

Substance abuse, poverty and economic strains, parental capacity and skills, and domestic violence are cited as the most common presenting problems in abusive families. Abuse and neglect of children are best considered in an ecological perspective, which recognizes the individual, family, social, and psychological influences that come together to contribute to the problem. Kempe and Helfer termed this the abusive pattern, in which the child, the crisis, and the caregiver’s potential to abuse are components in the event of maltreatment. This chapter focuses on the knowledge necessary for the recognition, intervention, and follow-up of the more common forms of child maltreatment and highlights the role of pediatric professionals in prevention.

PREVENTION

Physical abuse is preventable in many cases. Extensive experience with and evaluation of high-risk families has shown that the home visitor services to families at risk can prevent abuse and neglect of children. These services can be provided by public health nurses or trained paraprofessionals, although more data are available describing public health nurse intervention. The availability of these services could make it as easy for a family to pick up the telephone and ask for help before they abuse a child as it is for a neighbor or physician to report an episode of abuse after it has occurred. Parent education and anticipatory guidance are also helpful, with attention to handling situations that stress parents (eg, colic, crying behavior, and toilet training), age-appropriate discipline, and general developmental issues. Prevention of abusive injuries perpetrated by nonparent caregivers (eg, babysitters, nannies, and unrelated adults in the home) may be addressed by education and counseling of mothers about safe child care arrangements and choosing safe life partners. Hospital-based prevention programs that teach parents about the dangers of shaking an infant and how to respond to a crying infant have demonstrated some positive results; however, no one effort has been shown to be completely effective. Primary care providers still play an important role in the delivery of anticipatory guidance about abuse prevention.

The prevention of sexual abuse is more difficult. Most efforts in this area involve teaching children to protect themselves and their “private parts” from harm or interference. The age of toilet training is a good time to provide anticipatory guidance to encourage parents to begin this discussion. The most rational approach is to place the burden of responsibility of prevention on the adults who supervise the child and the medical providers rather than on the children themselves. Knowing the parents’ own history of any victimization is important, as the ability to engage in this anticipatory guidance discussion with a provider and their child may be affected by that history. Promoting internet and social media safety and limiting exposure to sexualized materials and media should be part of this anticipatory guidance. Finally, many resource books on this topic for parents can be found in the parenting and health sections of most bookstores.

Efforts to prevent emotional abuse of children have been undertaken through extensive media campaigns. No data are available to assess the effectiveness of this approach. The primary care physician can promote positive, nurturing, and nonviolent behavior in parents. The message that they are role models for a child’s behavior is important. Screening for domestic violence during discussions on discipline and home safety can be effective in identifying parents and children at risk. Societal factors can influence a family’s capacity to parent and care for a child. Issues of crime and safety within a community, the educational system and even the economy may indirectly affect family functioning.

CLINICAL FINDINGS

Child maltreatment may occur either within or outside the family. The proportion of intrafamilial to extrafamilial cases varies with the type of abuse as well as the gender and age of the child. Each of the following conditions may exist as separate or concurrent diagnoses. Neglect is the most commonly reported and substantiated form of child maltreatment annually.

Recognition of any form of abuse and neglect of children can occur only if child abuse is considered in the differential diagnosis of the child’s presenting medical condition. The advent of electronic medical records can make documenting concerns and patterns of maltreatment more accessible for all care team members. The approach to the family should be supportive, nonaccusatory, and empathetic. The individual who brings the child in for care may not have any involvement in the abuse. Approximately one-third of child abuse incidents occur in extramural settings. Nevertheless, the assumption that the caregiver is “nice,” combined with the failure to consider the possibility of abuse, can be costly and even fatal. Raising the possibility that a child has been abused is not the same as accusing the caregiver of being the abuser. The health professional who is examining the child can explain to the family that several possibilities might explain the child’s injuries or abuse-related symptoms. If the family or presenting caregiver is not involved in the child’s maltreatment, they may actually welcome the necessary report and investigation.

In all cases of abuse and neglect, a detailed psychosocial history is important because psychosocial factors may indicate risk for or confirm child maltreatment. This history should include information on who lives in the home, other caregivers, domestic violence, substance abuse, and prior family history of physical or sexual abuse. Inquiring about any previous involvement with social services or law enforcement can help to determine risk.

Physical Abuse

Physical abuse of children is most often inflicted by a caregiver or family member but occasionally by a stranger. The
most common manifestations include bruises, burns, fractures, head trauma, and abdominal injuries. A small but significant number of unexpected pediatric deaths, particularly in infants and very young children (eg, sudden unexpected infant death), are related to physical abuse.

A. History

The medical diagnosis of physical abuse is based on the presence of a discrepant history, in which the history offered by the caregiver is not consistent with the clinical findings. The discrepancy may exist because the history is absent, partial, changing over time, or simply illogical or improbable. A careful past medical, birth, and family history should also be obtained in order to assess for any other medical condition that might affect the clinical presentation. The presence of a discrepant history should prompt a request for consultation with a multidisciplinary child protection team or a report to the child protective services agency. This agency is mandated by state law to investigate reports of suspected child abuse and neglect. Investigation by social services and possibly law enforcement officers, as well as a home visit, may be required to sort out the circumstances of the child’s injuries.

B. Physical Findings

The findings on examination of physically abused children may include abrasions, alopecia (from hair pulling), bites, bruises, burns, dental trauma, fractures, lacerations, ligature marks, or scars. Injuries may be in multiple stages of healing. Bruises in physically abused children are sometimes patterned (eg, belt marks, looped cord marks, or grab or pinch marks) and are typically found over the soft tissue areas of the body. Toddlers or older children typically sustain accidental bruises over bony prominences such as shins and elbows. Any unexplained bruise in an infant not developmentally mobile should be viewed with concern. Of note, the dating of bruises is not reliable and should be approached cautiously. (Child abuse emergencies are listed in Table 8–1.)

C. Radiologic and Laboratory Findings

Certain radiologic findings are strong indicators of physical abuse. Examples are metaphyseal “corner” or “bucket handle” fractures of the long bones in infants, spiral fracture of the extremities in nonambulatory infants, rib fractures, spinous process fractures, and fractures in multiple stages of healing. Skeletal surveys in children aged 3 years or younger should be performed when a suspicious fracture is diagnosed. Computed tomography or magnetic resonance imaging findings of subdural hemorrhage in infants—in the absence of a clear accidental history—are highly correlated with abusive head trauma. Abdominal computed tomography is the preferred test in suspected abdominal trauma. Any infant or very young child with suspected abuse-related head or abdominal trauma should be evaluated immediately by an emergency physician or trauma surgeon.

Coagulation studies and a complete blood cell count with platelets are useful in children who present with multiple or severe bruising in different stages of healing. Coagulopathy conditions may confuse the diagnostic picture but can be excluded with a careful history, examination, laboratory screens, and hematologic consultation, if necessary.

---

**Table 8–1. Potential child abuse medical emergencies.**

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any infant with bruises (especially head, facial, or abdominal), burns, or fractures</td>
<td></td>
</tr>
<tr>
<td>Any infant or child younger than age 2 years with a history of suspected “shaken baby” head trauma or other inflicted head injury</td>
<td></td>
</tr>
<tr>
<td>Any child who has sustained suspicious or known inflicted abdominal trauma</td>
<td></td>
</tr>
<tr>
<td>Any child with burns in stocking or glove distribution or in other unusual patterns, burns to the genitalia, and any unexplained burn injury</td>
<td></td>
</tr>
<tr>
<td>Any child with disclosure or sign of sexual assault within 48–72 h after the alleged event if the possibility of acute injury is present or if forensic evidence exists</td>
<td></td>
</tr>
</tbody>
</table>

---


Sexual Abuse

Sexual abuse is defined as the engaging of dependent, developmentally immature children in sexual activities that they do not fully comprehend and to which they cannot give consent, or activities that violate the laws and taboos of a society. It includes all forms of incest, sexual assault or rape, and pedophilia. This includes fondling, oral-genital-anal contact, all forms of intercourse or penetration, exhibitionism, voyeurism, exploitation, or prostitution, and the involvement of children in the production of pornography. Although over the past decade, there has been a small downward trend nationally in total reports of sexual abuse cases, exploitation and enticement of children and adolescents via the Internet and social media remains a growing trend.

A. History

Sexual abuse may come to the clinician’s attention in different ways: (1) The child may be brought in for routine care or for an acute problem, and sexual abuse may be suspected by the medical professional as a result of the history or the physical examination. (2) The parent or caregiver, suspecting that the child may have been sexually abused, may bring the child to the health care provider and request an examination to rule in or rule out abuse. (3) The child may be referred by child protective services or the police for an evidentiary examination following either disclosure of sexual abuse by the child or an allegation of abuse by a parent or third party. Table 8–2 lists the common presentations of child sexual abuse. It should be emphasized that with the exception of acute trauma, certain sexually transmitted infections (STIs), or forensic laboratory evidence, none of these presentations is specific. The presentations listed should arouse suspicion of the possibility of sexual abuse and lead the practitioner to ask the appropriate questions—again, in a compassionate and nonaccusatory manner. Asking the child nonleading, age-appropriate questions is important and is often best handled by the most experienced interviewer after a report is made. Community agency protocols may exist for child advocacy centers that help in the investigation of these reports. Concerns expressed about sexual abuse in the context of divorce and custody disputes should be handled in the same manner, with the same objective, nonjudgmental documentation. The American Academy of Pediatrics has published guidelines for the evaluation of child sexual abuse as well as others relating to child maltreatment.

B. Physical Findings

The genital and anal findings of sexually abused children, as well as the normal developmental changes and variations in prepubertal female hymens, have been described in journal articles and visual diagnosis guides. To maintain a sense of comfort and routine for the patient, the genital examination should be conducted in the context of a full body checkup. For nonsexually active, prepubertal girls, an internal speculum examination is rarely necessary unless there is suspicion of internal injury. The external female genital structures can be well visualized using labial separation and traction with the child in the supine frog leg or knee-chest position. The majority of victims of sexual abuse exhibit no physical findings. The reasons for this include delay in disclosure by the child, abuse that may not cause physical trauma (eg, fondling, oral-genital contact, or exploitation by pornographic photography), or rapid healing of minor injuries such as labial, hymenal, or anal abrasions, contusions, or lacerations. Nonspecific abnormalities of the genital and rectal regions such as erythema, rashes, and irritation may not suggest sexual abuse in the absence of a corroborating history, disclosure, or behavioral changes.

Certain STIs should strongly suggest sexual abuse. *Neisseria gonorrhoeae* infection or syphilis beyond the
perinatal period is diagnostic of sexual abuse. *Chlamydia trachomatis*, herpes simplex virus, trichomoniasis, and human papillomavirus are all sexually transmitted, although the course of these potentially perinatally acquired infections may be protracted. Herpes simplex can be transmitted by other means; however, the presence of an infection should prompt a careful assessment for sexual abuse. Risk is higher in children older than five with isolated genital lesions or with herpes simplex type 2 infections. In the case of human papillomavirus, an initial appearance of venereal warts beyond the toddler age should prompt a discussion regarding concerns of sexual abuse. Human papillomavirus is a ubiquitous virus and can be spread innocently by caregivers with hand lesions; biopsy and viral typing is rarely indicated and often of limited availability. Finally, sexual abuse must be considered with the diagnosis of *Chlamydia trachomatis* or human immunodeficiency virus (HIV) infections when other modes of transmission (eg, transfusion or perinatal acquisition) have been ruled out. Postexposure prophylaxis medications for HIV in cases of acute sexual assault should be considered only after assessment of risk of transmission and consultation with an infectious disease expert.

Although sensitivity and specificity of nonculture tests such as nucleic acid amplification tests (NAATs) have improved, they have not yet been approved for the screening of STIs in sexual abuse victims or for children younger than 12 years of age. For prepubertal children, NAATs can be used for vaginal specimens or urine from girls. If an NAAT is positive, a second confirmatory NAAT test that analyzes an alternate target of the genetic material in the sample or a standard culture is needed. For boys and for extragenital specimens, culture is still the preferred method. Finally, the Centers for Disease Control and Prevention and many sexual abuse atlases list guidelines for the screening and treatment of STIs in the context of sexual abuse.

### C. Examination, Evaluation, and Management

The forensic evaluation of sexually abused children should be performed in a setting that prevents further emotional distress. All practitioners should have access to a rape kit, which guides the practitioner through a stepwise collection of evidence and cultures. This should occur in an emergency department or clinic where chain of custody for specimens can be ensured. The most experienced examiner (pediatrician, nurse examiner, or child advocacy center) is preferable. For cases of adolescent assault or rape that occurred in the preceding 120 hours, most states require for legal purposes that a rape kit be used. If the history indicates that the adolescent may have had contact with the ejaculate of a perpetrator within 120 hours, a cervical examination to look for semen or its markers (eg, acid phosphatase) should be performed according to established protocols. Prior to any speculum exam of an assault victim, it is important to consider the child’s physiologic and emotional maturation, and whether she has been sexually active or had a speculum exam in the past. A speculum exam in a prepubertal child is rarely indicated unless there is concern for internal injury and in those cases, it is generally advised to perform the exam under anesthesia and with the assistance of gynecology. More important, if there is a history of possible sexual abuse of any child within the past several days, and the child reports a physical complaint or a physical sign is observed (eg, genital or anal bleeding or discharge), the child should be examined for evidence of trauma. Colposcopic examination may be critical for determining the extent of the trauma and providing documentation for the legal system.

All the components of a forensic evidence collection kit may not be indicated in the setting of child sexual abuse (as opposed to adult rape cases); the clinical history and exposure risk should guide what specimens are collected. Beyond 120 hours, evaluation is tailored to the history provided. The involved orifices should be tested for *N gonorrhoeae* and *C trachomatis*, and vaginal secretions evaluated for *Trichomonas*. These infections and bacterial vaginosis are the most frequently diagnosed infections among older girls who have been sexually assaulted. RPR, hepatitis B, and HIV serology should be drawn at baseline and repeated in 3 months. Pregnancy testing should be done as indicated.

Acute sexual assault cases that involve trauma or transmission of body fluid should have STI prophylaxis. Using adult doses of ceftriaxone (250 mg IM in a single dose), metronidazole (2 g orally in a single dose), and either azithromycin (1 g orally in a single dose) or doxycycline (100 mg orally twice a day for 7 days) should be offered when older or adolescent patients present for evaluation. (Pediatric dosing is calculated by weight and can be found in standard references.) Hepatitis B vaccination should be administered to patients if they have not been previously vaccinated. No effective prophylaxis is available for hepatitis C. Evaluating the perpetrator for a sexually transmitted infection, if possible, can help determine risk exposure and guide prophylaxis. HIV prophylaxis should be considered in certain circumstances (see Chapter 44). For postpubertal girls, contraception should be given if rape abuse occurred within 120 hours.

Although it is often difficult for persons to comply with follow-up examinations weeks after an assault, such examinations are essential to detect new infections, complete immunization with hepatitis B vaccination if needed, and continue psychological support.

Berkoff MC et al: Has this prepubertal girl been sexually abused? *JAMA* 2008;300:2779 [PMID: 19088355].

Emotional Abuse & Neglect

Emotional or psychological abuse has been defined as the rejection, ignoring, criticizing, isolation, or terrorizing of children, all of which have the effect of eroding their self-esteem. The most common form is verbal abuse or denigration. Children who witness domestic violence should be considered emotionally abused, as a growing body of literature has shown the negative effects of intimate partner violence on child development.

The most common feature of emotional neglect is the absence of normal parent-child attachment and a subsequent inability to recognize and respond to an infant’s or child’s needs. A common manifestation of emotional neglect in infancy is nutritional (nonorganic) failure to thrive. Emotionally neglectful parents appear to have an inability, intentionally or otherwise, to recognize and respond to an infant’s or child’s needs. A common manifestation of emotional neglect in infancy is nutritional (nonorganic) failure to thrive. Emotionally neglectful parents appear to have an inability, intentionally or otherwise, to recognize and respond to an infant’s or child’s needs. A common manifestation of emotional neglect in infancy is nutritional (nonorganic) failure to thrive.

Physical Neglect & Failure to Thrive

Physical neglect is the failure to provide the necessary food, clothing, and shelter and a safe environment in which children can grow and develop. Although often associated with poverty or ignorance, physical neglect involves a more serious problem than just lack of resources. There is often a component of emotional neglect and either a failure or an inability, intentionally or otherwise, to recognize and respond to the needs of the child.

A. History

Even though in 2011 neglect was confirmed for in over three-quarters of all victims, neglect is not easily documented on history. Given that neglect is the most common form of abuse, providers should be proactive in their approach to recognition and treatment. Physical neglect—which must be differentiated from the deprivations of poverty—will be present even after adequate social services have been provided to families in need. The clinician must evaluate the psychosocial history and family dynamics when neglect is a consideration, and is in a unique position to intervene when warning signs first emerge. A careful social services evaluation of the home and entire family may be required. The primary care provider must work closely with a social service agency and explain the known medical information to help guide their investigation and decision making.

The history offered in cases of growth failure (failure to thrive) is often discrepant with the physical findings. Infants who have experienced a significant deceleration in growth are probably not receiving adequate amounts or appropriate types of food despite the dietary history provided. Medical conditions causing poor growth in infancy and early childhood can be ruled out with a detailed history and physical examination with minimal laboratory tests. A psychosocial history may reveal maternal depression, family chaos or dysfunction, or other previously unknown social risk factors (eg, substance abuse, violence, poverty, or psychiatric illness). Placement of the child with another caregiver is usually followed by a dramatic weight gain. Hospitalization of the severely malnourished patient is sometimes required, but most cases are managed on an outpatient basis.

B. Physical Findings

Infants and children with nonorganic failure to thrive have a relative absence of subcutaneous fat in the cheeks, buttocks, and extremities. Other conditions associated with poor nutrient and vitamin intake may be present. If the condition has persisted for some time, these patients may also appear and act depressed. Older children who have been chronically emotionally neglected may also have short stature (ie, deprivation dwarfism). The head circumference is usually normal in cases of nonorganic failure to thrive. Microcephaly may indicate a prenatal condition, congenital disease, or chronic nutritional deprivation and increases the likelihood of more serious and possibly permanent developmental delay.
C. Radiologic and Laboratory Findings

Children with failure to thrive or malnutrition may not require an extensive workup. Assessment of the patient’s growth curve, as well as careful plotting of subsequent growth parameters after treatment, is critical. Complete blood cell count, urinalysis, electrolyte panel, and thyroid and liver function tests are sufficient screening. Newborn screening should be documented as usual. Other tests should be guided by any aspect of the clinical history that points to a previously undiagnosed condition. A skeletal survey and head computed tomography scan may be helpful if concurrent physical abuse is suspected. The best screening method, however, is placement in a setting in which the child can be fed and monitored. Hospital or foster care placement may be required. Weight gain may not occur for several days to a week in severe cases.

Medical Care Neglect

Medical care neglect is failure to provide the needed treatment to infants or children with life-threatening illness or other serious or chronic medical conditions. Many states have repealed laws that supported religious exemptions as reason for not seeking medical care for sick children.

Medical Child Abuse

Previously referred to as Munchausen syndrome by proxy, medical child abuse is the preferred term for a relatively unusual clinical scenario in which a caregiver seeks inappropriate and unnecessary medical care for a child. Oftentimes, the caregiver either simulates or creates the symptoms or signs of illness in a child. However, the use of the term medical child abuse emphasizes harm caused to the child as opposed to the psychopathology or motivation of the caregiver. Cases can be complicated and a detailed review of all medical documentation and a multidisciplinary approach is required. Fatal cases have been reported.

A. History

Children may present with the signs and symptoms of whatever illness is factiously produced or simulated. The child can present with a long list of medical problems or often bizarre, recurrent complaints. Persistent doctor shopping and enforced invalidism (eg, not accepting that the child is healthy and reinforcing that the child is somehow ill) are also described in the original definition of Munchausen syndrome by proxy.

B. Physical Findings

They may be actually ill or, more often, are reported to be ill and have a normal clinical appearance. Among the most common reported presentations are recurrent apnea, dehydration from induced vomiting or diarrhea, sepsis when contaminants are injected into a child, change in mental status, fever, gastrointestinal bleeding, and seizures.

C. Radiologic and Laboratory Findings

Recurrent polymicrobial sepsis (especially in children with indwelling catheters), recurrent apnea, chronic dehydration of unknown cause, or other highly unusual unexplained laboratory findings should raise the suspicion of Munchausen syndrome by proxy. Toxicological testing may also be useful.

DIFFERENTIAL DIAGNOSIS

The differential diagnosis for abuse and neglect may be straightforward (ie, traumatic vs nontraumatic injury). It can also be more elusive as in the case of multiple injuries that may raise concern for an underlying medical condition or situations where complex, but nonspecific behavior changes or physical symptoms reflect the emotional impact of maltreatment.

The differential diagnosis of all forms of physical abuse can be considered in the context of a detailed trauma history, family medical history, radiographic findings, and laboratory testing. The diagnosis of osteogenesis imperfecta or other collagen disorders, for example, may be considered in the child with skin and joint findings or multiple fractures with or without the classic radiographic presentation and is best made in consultation with a geneticist, an orthopedic surgeon, and a radiologist. Trauma—accidental or inflicted—leads the differential diagnosis list for subdural hematomas. Coagulopathy; disorders of copper, amino acid, or organic acid metabolism (eg, Menkes syndrome and glutaric acidemia type 1); chronic or previous central nervous system infection; birth trauma; or congenital central nervous system malformation (eg, arteriovenous malformations or cerebrospinal fluid collections) may need to be ruled out in some cases. It should be recognized, however, that children with these rare disorders can also be victims of abuse or neglect.
There are medical conditions that may be misdiagnosed as sexual abuse. When abnormal physical examination findings are noted, knowledge of these conditions is imperative to avoid misinterpretation. The differential diagnosis includes vulvovaginitis, lichen sclerosus, dermatitis, labial adhesions, congenital urethral or vulvar disorders, Crohn disease, and accidental straddle injuries to the labia. In most circumstances, these can be ruled out by careful history and examination.


**TREATMENT**

**A. Management**

Physical abuse injuries, STIs, and medical sequelae of neglect should be treated immediately. Children with failure to thrive related to emotional and physical neglect need to be placed in a setting in which they can be fed and cared for. Likewise, the child in danger of recurrent abuse or neglect needs to be placed in a safe environment. Cases can be complicated and psychosocial difficulties are common; therefore, a multidisciplinary approach which works with the family to engage in solving their own problems is helpful. Cooperation and coordination with social work and mental health colleagues are crucial. Given the developmental and emotional implications, prompt referral to mental health resources for any patient with a history of child abuse or neglect is crucial; although not every child with a history of maltreatment will need long-term mental health treatment. There has been significant progress made in identifying, researching, and implementing effective, evidence-based treatment of child maltreatment, especially in the area of treatment for emotional trauma. Pediatricians should be aware of community partners and resources to help families in need of services.

**B. Reporting**

In the United States, clinicians and many other professionals who come in contact with or care for children are mandated reporters. If abuse or neglect is suspected, a report must be made to the local or state agency designated to investigate such matters. In most cases, this will be the child protective services agency. Law enforcement agencies may also receive such reports. The purpose of the report is to permit professionals to gather the information needed to determine whether the child’s environment (eg, home, school, day care setting, or foster home) is safe. Recent studies document physician barriers to reporting, but providers should be mindful that good faith reporting is a legal requirement for any suspicion of abuse. Failure to report concerns may have legal ramifications for the provider or serious health and safety consequences for the patient. Many hospitals and communities make child protection teams or consultants available when there are questions about the diagnosis and management in a child abuse case. A listing of pediatric consultants in child abuse is available from the American Academy of Pediatrics.

Except in extreme cases, the reporting of emotional abuse is not likely to generate an immediate response from child protection agencies. This should not deter reporting, especially if there is also concern for domestic violence or other forms of abuse or neglect. Practitioners can encourage parents to become involved with parent effectiveness training programs (eg, Healthy Families America or Parents Anonymous) or to seek mental health consultation. Support for the child may also include mental health counseling or age-appropriate peer and mentoring activities in school or the community. Finally, communication with social services, case management, and careful follow-up by primary care providers is crucial to ensuring ongoing safety of child.


**PROGNOSIS**

Depending on the extent of injury resulting from physical or sexual abuse, the prognosis for complete recovery varies. Serious physical abuse that involves head injury, multisystem trauma, severe burns, or abdominal trauma carries significant morbidity and mortality risk. Hospitalized children with a diagnosis of child abuse or neglect have longer stays and are more likely to die. Long-term medical and developmental consequences are common. For example, children who suffer brain damage related to abusive head injury can have significant neurologic impairment, such as cerebral palsy, vision problems, epilepsy, microcephaly, and learning disorders. Other injuries like minor bruises or burns, fractures,
and even injuries resulting from penetrating genital trauma can heal well and with no sequelae.

The emotional and psychological outcomes for child victims are often more detrimental than the physical injuries. Research demonstrates that there are clear neurobiologic effects of child maltreatment and other types of early childhood stress. Physiologic changes to the brain can adversely affect the mental and physical health development of children for decades. Long-standing concerns have been validated; victims have increased rates of childhood and adult health problems, adolescent suicide, alcoholism and drug abuse, anxiety and depression, criminality and violence, and learning problems. Some children just need extra help addressing emotional regulation, coping skills and rebuilding trust. Once identified, intervention strategies can be successful and new treatment modalities are being evaluated. The primary care provider plays an important role in assuring appropriate medical and mental health care for maltreated children and families, advocating for victims across the child and young adult lifespan.


Pediatric ambulatory outpatient services provide children and adolescents with preventive health care and acute and chronic care management services and consultations. In this chapter, special attention is given to the pediatric history and physical examination, normal developmental stages, screening laboratories, and a number of common pediatric issues.

The development of a physician-patient-parent relationship is crucially important if the patient and parent are to effectively confide their concerns. This relationship develops over time, with increasing numbers of visits, and is facilitated by the continuity of clinicians and other staff members. This clinical relationship is based on trust that develops as a result of several experiences in the context of the office visit. Perhaps the greatest factor facilitating the relationship is for patients or parents to experience advice as valid and effective. Anticipatory guidance should be age-appropriate and timely in order to be most helpful. Important skills include choosing vocabulary that communicates understanding and competence, demonstrating commitment of time and attention to the concern, and showing respect for areas that the patient or parent does not wish to address (assuming that there are no concerns relating to physical or sexual abuse or neglect). Parents and patients expect that their concerns will be managed confidentially and that the clinician understands and sympathizes with those concerns. The effective physician-patient-parent relationship is one of the most satisfying aspects of ambulatory pediatrics.


PEDIATRIC HISTORY

A unique feature of pediatrics is that the history represents an amalgam of parents’ objective reporting of facts (eg, fever for 4 days), parents’ subjective interpretation of their child’s symptoms (eg, infant crying interpreted by parents as abdominal pain), and for older children their own history of events. Parents and patients may provide a specific and detailed history, or a vague history that necessitates more focused probing. Parents may or may not be able to distinguish whether symptoms are caused by organic illness or a psychological concern. Understanding the family and its hopes for and concerns about the child can help in the process of distinguishing organic, emotional, and/or behavioral conditions, thus minimizing unnecessary testing and intervention.

Although the parents’ concerns need to be understood, it is essential also to obtain as much of the history as possible directly from the patient. Direct histories not only provide firsthand information but also give the child a degree of control over a potentially threatening situation and may reveal important information about the family.

Obtaining a comprehensive pediatric history is time consuming. Many offices provide questionnaires for parents to complete before the clinician sees the child. Data from questionnaires can make an outpatient visit more productive, allowing the physician to address problems in detail while more quickly reviewing areas that are not of concern. Questionnaires may be more productive than face-to-face interviews in revealing sensitive parts of the history. Developmental and mental health screening saves provider time and the results when reviewed with the parent or family member can yield critical information. However, failure to review and assimilate this information prior to the interview may cause a parent or patient to feel that the time and effort have been wasted.

Elements of the history that will be useful over time should be readily accessible in the medical record. In absence of an electronic medical record, such information can be accumulated on a summary sheet, as illustrated in Figure 9–1. Demographic data; a problem list; information about chronic medications, allergies, and previous hospitalizations; and
the names of other physicians providing care for the patient are commonly included. Documentation of immunizations, including all data required by the National Childhood Vaccine Injury Act, should be kept on a second page.

The components of a comprehensive pediatric history are listed in Table 9–1. The information should, ideally, be obtained at the first office visit. The first seven items may be included on a summary sheet at the front of the medical record. Items 8 and 9, and a focused review of systems, are dealt with at each acute or chronic care visit. The entire list should be reviewed and augmented with relevant updates at each health supervision visit.

**PEDIATRIC PHYSICAL EXAMINATION**

During the pediatric physical examination, time must be taken to allow the patient to become familiar with the examiner. Interactions and instructions help the child understand
| Table 9–1. Components of the pediatric historical database.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demographic data</td>
</tr>
<tr>
<td>2. Problem list</td>
</tr>
<tr>
<td>3. Allergies</td>
</tr>
<tr>
<td>4. Chronic medications</td>
</tr>
<tr>
<td>5. Birth history</td>
</tr>
<tr>
<td>6. Screening procedures</td>
</tr>
<tr>
<td>7. Immunizations</td>
</tr>
<tr>
<td>8. Reasons for visit</td>
</tr>
<tr>
<td>9. Present illness</td>
</tr>
<tr>
<td>10. Medical history</td>
</tr>
<tr>
<td>11. Diet</td>
</tr>
<tr>
<td>12. Family history</td>
</tr>
<tr>
<td>13. Social history</td>
</tr>
<tr>
<td>14. Development</td>
</tr>
<tr>
<td>15. Sexual history</td>
</tr>
<tr>
<td>16. Review of systems (ROS)</td>
</tr>
</tbody>
</table>

The components of this table should be included in a child’s medical record and structured to allow easy review and modification. The practice name and address should appear on all pages.

what is occurring and what is expected. A gentle, friendly manner and a quiet voice help establish a setting that yields a nonthreatening physical examination. The examiner should take into consideration the need for a quiet child, the extent of trust established, and the possibility of an emotional response (crying!) when deciding the order in which the child’s organ systems are examined. Painful or unpleasant procedures (eg, otoscopic examination) should be deferred until the end of the examination. Whether or not the physician can establish rapport with the child, the process should proceed efficiently and systematically.

Because young children may fear the examination and become fussy, simple inspection is important. For example, during an acute-care visit for fever, the examiner should observe the child’s skin color and work of breathing prior to beginning the examination. During a health supervision visit, observation will provide the examiner with an opportunity to assess parent-child interactions.

Clothing should be removed slowly and gently to avoid threatening the child. A parent or the child is usually the best person to do this. Modesty should always be respected, and gown or drapes should be provided. Examinations of adolescents should be chaperoned whenever a pelvic examination or a stressful or painful procedure is performed.

Examination tables are convenient, but a parent’s lap is a comfortable location for a young child. For most purposes,
an adequate examination can be conducted on a “table” formed by the parent’s and examiner’s legs as they sit facing each other.

Although a thorough physical examination is important at every age, certain components of the examination may change based on the age of the patient. An astute clinician can detect signs of important clinical conditions in an asymptomatic child. In infancy, for example, physical examination can reveal the presence of craniosynostosis, congenital heart disease, or developmental dysplasia of the hip. Similarly, examination of a toddler may reveal pallor (possible iron-deficiency anemia) or strabismus. The routine examination of an older child or adolescent may reveal scoliosis or acanthosis nigricans (a finding associated with insulin resistance).

**HEALTH SUPERVISION VISITS**

One of several timetables for recommended health supervision visits is illustrated in Figure 9–2. (Note: A PDF printable format of this figure is available from the American Academy of Pediatrics [AAP].) The federal Maternal and Child Health Bureau has developed comprehensive health supervision guidelines through their Bright Futures program. In areas where evidence-based information is lacking, expert opinion has been used as the basis for these plans. Recently revised Bright Futures Guidelines emphasizes working collaboratively with families, recognizing the need for attention toward children with special healthcare needs, gaining cultural competence, and addressing complementary and alternative care, as well as integrating mental health care into the primary care setting. Practitioners should remember that guidelines are not meant to be rigid; services should be individualized according to the child’s needs.

During health supervision visits, the practitioner should review child development and acute and chronic problems, conduct a complete physical examination, order appropriate screening tests, and anticipate future developments. New historical information should be elicited through an interval history. For example, “Since your last visit have there been any changes in your child and family’s life that I should be aware of?” Development should be assessed by parental report, clinician observation, and a formal screening tool at each visit. Developmental surveillance with systematic use of parent-directed questionnaires or screening tools such as the Ages and Stages Questionnaire (ASQ) or the Parents’ Evaluation of Developmental Status (PEDS) is a growing trend. Growth parameters should be carefully recorded, and weight, length or height, head circumference (up to age 3), and body mass index (BMI) (for > 2 years) should be plotted and evaluated using established growth charts (see Chapter 3). Vision and hearing should be assessed subjectively at each visit, with objective assessments at intervals beginning after the child is old enough to cooperate with the screening test, usually at 3–4 years of age. Various laboratory screening tests may also be part of the visit.

Because fewer than 4% of asymptomatic children have physical findings on routine health maintenance visits, a major portion of the health supervision visit is devoted to anticipatory guidance. This portion of the visit enables the healthcare provider to address behavioral, developmental, injury prevention, and nutritional issues; school problems; and other age-appropriate issues that will arise before the next well-child visit.

**DEVELOPMENTAL & BEHAVIORAL ASSESSMENT**

Addressing developmental and behavioral problems is one of the central features of pediatric primary care. The term developmental delay refers to the circumstance in which a child has not demonstrated a developmental skill (such as walking independently) by an age at which the vast majority of normally developing children have accomplished this task. Developmental delays are, in fact, quite common: approximately 18% of children younger than 18 years either have developmental delays or have conditions that place them at risk of developmental delays.

Pediatric practitioners are in a unique position to assess the development of their patients. This developmental assessment should ideally take the form of developmental surveillance, in which a skilled individual monitors development in multiple domains (gross motor, fine motor, language, and personal/social) over time as part of providing routine care. Developmental surveillance includes several key elements: listening to parent concerns; obtaining a developmental history; making careful observations during office visits; periodically screening all infants and children for delays using validated screening tools; recognizing conditions and circumstances that place children at increased risk of delays; and referring children who fail screening tests for further evaluation and intervention.

The prompt recognition of children with developmental delays is important for several reasons. Children with delays can be referred for a wide range of developmental therapies,
Recommendations for Preventive Pediatric Health Care

Developmental, psychosocial, and chronic disease issues for children and adolescents may require frequent counseling and treatment visits separate from preventive care visits. These guidelines represent a consensus by the American Academy of Pediatrics (AAP) and Bright Futures. The AAP continues to emphasize the great importance of continuity of care in comprehensive health supervision and the need to avoid fragmentation of care.

Each child and family is unique; therefore, these Recommendations for Preventive Pediatric Health Care are designed for the care of children who are receiving competent parenting, have no manifestations of any important health problems, and are growing and developing in satisfactory fashion. Additional visits may become necessary if circumstances suggest variations from normal.

The recommendations in this statement do not indicate an exclusive course of treatment or standard of medical care. Variations, taking into account individual circumstances, may be appropriate.

Copyright © 2008 by the American Academy of Pediatrics.

---

**Figure 9–2. Recommendations for preventive health care.** (Hagen JF, Shaw JS, Duncan PM, eds. *Bright Futures: Guidelines for Health Supervision of Infants, Children, and Adolescents*, 3rd ed. American Academy of Pediatrics; 2008.)
a If a child comes under care for the first time at any point on the schedule, or if any items are not accomplished at the suggested age, the schedule should be brought up to date at the earliest possible time.


c Every infant should have a newborn evaluation after birth, breast feeding encouraged, and instruction and support offered.

d Every infant should have an evaluation within 3–5 days of birth and within 48–72 hours after discharge from the hospital, to include evaluation for feeding and jaundice. Breast feeding infants should receive formal breast-feeding evaluation, encouragement, and instruction as recommended in AAP statement “Breast feeding and the Use of Human Milk” (2005) [URL: http://aappolicy.aappublications.org/cgi/content/full/pediatrics;115/2/496]. For newborns discharged in less than 48 hours after delivery, the infant must be examined within 48 hours of discharge per AAP statement “Hospital Stay for Healthy Term Newborns” (2004) [URL: http://aappolicy.aappublications.org/cgi/content/full/pediatrics;113/5/143].

e Blood pressure measurement in infants and children with specific risk conditions should be performed at visits before age 3 years.

f If the patient is uncooperative, rescreen within 6 months per AAP statement “Eye Examination and Vision Screening in Infants, Children, and Young Adults” (1996) [URL: http://aappolicy.aappublications.org/cgi/reprint/pediatrics;98/1/153.pdf].


j At each visit, age-appropriate physical examination is essential, with infant totally unclothed, older child undressed and suitably draped.

k These may be modified, depending on entry point into schedule and individual need.

l Newborn metabolic and hemoglobinopathy screening should be done according to state law. Results should be reviewed at visits and appropriate retesting or referral done as needed.

m Schedules per the Committee on Infectious Diseases, published annually in the January issue of Pediatrics. Every visit should be an opportunity to update and complete a child’s immunizations.


o For children at risk of lead exposure, consult the AAP statement “Lead Exposure in Children: Prevention, Detection, and Management” (2005) [URL: http://aappolicy.aappublications.org/cgi/content/full/pediatrics;116/4/1036]. Additionally, screening should be done in accordance with state law where applicable.

p Perform risk assessments or screens as appropriate, based on universal screening requirements for patients with Medicaid or high prevalence areas.

q Tuberculosis testing per recommendations of the Committee on Infectious Diseases, published in the current edition of Red Book: Report of the Committee on Infectious Diseases. Testing should be done in recognition of high-risk factors.


s All sexually active patients should be screened for sexually transmitted infections (STIs).

t All sexually active girls should have screening for cervical dysplasia as part of a pelvic examination beginning within 3 years of onset of sexual activity or age 21 (whichever comes first).

u Referral to dental home, if available. Otherwise, administer oral health assessment. If the primary water source is deficient in fluoride, consider oral fluoride supplementation.

v At the visits for 3 years and 6 years of age, it should be determined whether the patient has a dental home. If the patient does not have a dental home, a referral should be made to one. If the primary water source is deficient in fluoride, consider oral fluoride supplementation.

w Refer to the specific guidance by age as listed in Bright Futures Guidelines. (Hagan JF, Shaw JS, Duncan PM, eds. Bright Futures: Guidelines for Health Supervision of Infants, Children, and Adolescents, 3rd ed. Elk Grove Village, IL: American Academy of Pediatrics: 2008.)

▲ Figure 9-2. (Continued)
such as those provided by physical, speech/language, and/or educational therapists. Children with delays, regardless of the cause, make better developmental progress if they receive appropriate developmental therapies than if they do not. Many infants and toddlers younger than 3 years with delays are eligible to receive a range of therapies and other services, often provided in the home, at no cost to families. Children aged 3 years and older with delays are eligible for developmental services through the local school system.

Although the benefits of early detection of developmental delays are clear, it is often difficult to incorporate developmental surveillance into busy outpatient practice. Many pediatric practitioners do not use a formal screening tool but rely on their own clinical judgment. However, when screening tests are not used, delays are often not detected until school age, particularly when the delays are not severe. There are several practical barriers to performing routine surveillance using standardized screening tools: perceived lack of time to screen all children at every well-child visit, lack of familiarity with the various screening tools, not wanting to concern parents by identifying a possible delay, and not knowing where in the community to refer patients with suspected delays. There are some solutions to these barriers, such as using parent developmental questionnaires rather than provider-administered tests to save time, become familiar with one or two screening tests, and making use of Internet-based resources. For example, the National Dissemination Center for Children With Disabilities maintains a website with links to a wide variety of resources in each state (http://www.nichcy.org).

Several parent- and physician-administered developmental screening tools are available. The PEDS, ASQ, and the Child Development Inventories (CDI) are screening tests that rely on parent report. Other screening tools, such as the Denver II screening test (reproduced in Chapter 3, Figure 3–12), the Early Language Milestone Scale (see Chapter 3, Figure 3–11), and the Bayley Infant Neurodevelopmental Screener, involve the direct observation of a child’s skills by a care provider. All developmental screening tests have their strengths and weaknesses. The Denver II is familiar to many pediatric providers and is widely used. However, whereas the Denver II has relatively high sensitivity for detecting possible developmental delays, the specificity is poorer, and this may lead to the overreferral of normal children for further developmental testing.

In addition to general developmental screening, autism-specific screens (such as the Modified Checklist for Autism in Toddlers [MCHAT]) should be administered at the 18- and 24-month health supervision visits.

Regardless of the approach taken to developmental screening, there are a number of important considerations: (1) The range of normal childhood development is broad, and therefore a child with a single missing skill in a single developmental area is less likely to have a significant developmental problem than a child showing multiple delays in several developmental areas (eg, gross motor and language delays); (2) continuity of care is important, because development is best assessed over time; (3) it is beneficial to routinely use formal screening tests to assess development; (4) if developmental delays are detected in primary care, these patients need referral for further testing and likely will benefit from receiving developmentally focused therapies; and (5) parents appreciate when attention is paid to their child’s development and generally react positively to referrals for appropriate developmental therapies.

Several developmental charts with age-based expectations for normal development are presented in Chapter 3 (see Tables 3–1 through 3–3), as well as a discussion of the recommended medical and neurodevelopmental evaluation of a child with a suspected developmental disorder.

In addition to developmental issues, pediatric providers are an important source of information and counseling for parents regarding a broad range of behavioral issues. The nature of the behavioral problems, of course, varies with the child’s age. Some common issues raised by parents, discussed in detail in Chapter 3, include colic, feeding disorders, sleep problems, temper tantrums, breath-holding spells, and noncompliance. Behavioral issues in adolescents are discussed in Chapter 4.


GROWTH PARAMETERS

Monitoring appropriate growth is pivotal in ambulatory pediatric practice.

Height, weight, and head circumference are carefully measured at each well-child examination and plotted on age- and sex-specific charts. The Centers for Disease Control and Prevention (CDC) recently recommended use of the World Health Organization (WHO) growth standards to monitor growth for infants and children ages 0–2 in the United States, in lieu of its own growth charts. The WHO standards are based on a sample of 8500 babies (from Brazil, Ghana, India, Norway, Oman, and the United States) who were predominantly breast-fed for at least 4 months, still nursing at 1 year and living in nonsmoking households. The methods used to create the CDC growth charts and the WHO growth charts are similar for children aged 2 years and older.
To ensure accurate weight measurements for longitudinal comparisons, infants should be undressed completely and young children should be wearing underpants only. Recumbent length is plotted on the chart until approximately 2 years of age. When the child is old enough to be measured upright, height should be plotted on the charts for ages 2–20 years. Routine measurements of head circumference may cease if circumferential head growth has been steady for the first 2 years of life. However, if a central nervous system (CNS) problem exists or develops, or if the child has growth deficiency, this measurement continues to be useful. Tracking the growth velocity for each of these parameters allows early recognition of deviations from normal.

It is useful to note that in the first year of life, it is common for height and weight measurements to cross over a percentile line. After approximately 18 months, most healthy children tend to follow the curve within one growth channel.

Determination of whether or not a child’s weight falls within a healthy range also relies on growth charts. For children younger than 2 years, the weight-for-length chart is used. For children 2 to 18 years, a BMI chart is used, which is a measure that correlates well with adiposity- and obesity-related comorbidities. The BMI is calculated as the weight (in kilograms) divided by the squared height (in meters). The BMI is useful for determining obesity (BMI ≥ 95% percentile for age) and at risk for overweight (BMI between 85th and 95th percentiles), as well as underweight status (BMI ≤ 5th percentile for age). It must be emphasized that “eyeballing” overweight/underweight is frequently inaccurate and should not substitute for careful evaluation of the data on growth charts.

Blood pressure screening at well-child visits starts at age 3 years. There are some conditions that warrant blood pressure monitoring at an earlier age:

- History of prematurity, very low birthweight, or other neonatal complication requiring intensive care
- Congenital heart disease (repaired or nonrepaired)
- Recurrent urinary tract infections, hematuria, or proteinuria
- Known renal disease or urologic malformations
- Family history of congenital renal disease
- Solid organ transplant
- Malignancy or bone marrow transplant
- Treatment with drugs known to raise blood pressure (steroids, oral contraceptives)
- Other systemic illnesses associated with hypertension (neurofibromatosis, tuberous sclerosis, etc)
- Evidence of elevated intracranial pressure

Accurate determination of blood pressure requires proper equipment (stethoscope, manometer and inflation cuff, or an automated system) and a cooperative, seated subject in a quiet room. Although automated blood pressure instruments are widely available and easy to use, blood pressure readings from these devices are typically 5 mm Hg higher for diastolic and 10 mm Hg higher for systolic blood pressure compared with auscultatory techniques. Therefore, the diagnosis of hypertension should not be made on the basis of automated readings alone. Additionally, blood pressure varies somewhat by the height and weight of the individual. Consequently, hypertension is diagnosed as a systolic or diastolic blood pressure greater than the 95th percentile based on the age and height (or weight) percentile of the patient.

The width of the inflatable portion of the cuff should be 40%–50% of the circumference of the limb. Obese children need a larger cuff size to avoid a falsely elevated blood pressure reading. Cuffs that are too narrow will overestimate and those that are too wide will underestimate the true blood pressure. Hypertension should not be diagnosed based on readings at one visit, but rather three separate occasions of documented hypertension are required. Repeated measurements at different visits over time should be tracked using flow charts in an electronic medical record or equivalent in a paper chart. Children with repeated blood pressure readings from the 90th to the 95th percentile may be classified as having prehypertension. Those with greater than between the 95th and 99th percentile plus 5 mm of Hg are classified as Stage 1 hypertension, and those greater than the 99th percentile plus 5 mm of Hg are termed Stage 2 hypertension. National High Blood Pressure Education Program recommends that all children with blood pressure of greater than or equal to 95% should have a complete blood count (CBC), serum nitrogen, creatinine, electrolytes, fasting lipid panel, glucose, urinalysis, urine culture, renal ultrasound, echocardiogram, and retinal examination. Nonpharmacologic interventions include diet, exercise, and weight management. Indications for pharmacologic therapy may include the following:

- Symptomatic hypertension
- Secondary hypertension
- Hypertensive target-organ damage

BLOOD PRESSURE

Blood pressure screening at well-child visits starts at age 3 years. There are some conditions that warrant blood pressure monitoring at an earlier age:

- History of prematurity, very low birthweight, or other neonatal complication requiring intensive care
- Congenital heart disease (repaired or nonrepaired)
- Recurrent urinary tract infections, hematuria, or proteinuria
- Known renal disease or urologic malformations
- Family history of congenital renal disease
- Solid organ transplant
- Malignancy or bone marrow transplant
- Treatment with drugs known to raise blood pressure (steroids, oral contraceptives)
- Other systemic illnesses associated with hypertension (neurofibromatosis, tuberous sclerosis, etc)
- Evidence of elevated intracranial pressure
• Diabetes (types 1 and 2)
• Persistent hypertension despite nonpharmacologic measures

Based on a recent systematic review for US Preventive Services Task Force, it is unclear whether screening for hypertension in children and teens reduces adverse outcomes in adults.


VISION & HEARING SCREENING

Examination of the eyes and an assessment of vision should be performed at every health supervision visit. Eye problems are relatively common in children: refractive errors (including myopia, hyperopia, and astigmatism), amblyopia (loss of visual acuity from cortical suppression of the vision of the eye), and/or strabismus (misalignment of the eyes) occur in 5%–10% of preschoolers. Assessment of vision should include visual inspection of the eyes and eyelids, alignment of eyes, and visual acuity.

From birth to 3 years of age, the movement and alignment of the eyes should be assessed and the pupils and red reflexes examined. The red reflex, performed on each pupil individually and then on both eyes simultaneously, is used to detect eye opacities (eg, cataracts or corneal clouding) and retinal abnormalities (eg, retinal detachment or retinoblastoma). By 3 months of age, an infant should be able to track or visually follow a moving object, with both eyes.

Starting at age 3, formal testing of visual acuity should be done. This can be performed in the office with a variety of tests, including the tumbling E chart or picture tests such as Allen cards. In these tests, each eye is tested separately, with the nontested eye completely covered. Credit is given for any line on which the child gets more than 50% correct. Children 4 years of age and older who are unable to cooperate should be retested, ideally within 1 month, and those who cannot cooperate with repeated attempts should be referred to an ophthalmologist. Because visual acuity improves with age, results of the test are interpreted using the cutoff values in Table 9–2. However, any two-line discrepancy between the two eyes, even within the passing range (eg, 20/20 in one eye, 20/30 in the other in a child aged ≥ 6 years) should be referred to an ophthalmologist.

Throughout childhood, clinicians should screen for undetected strabismus (ocular misalignment). The corneal light reflex test can be used starting at 3 months and the cover test can be used beginning at 6 months to assess for strabismus. The random dot E test may also be used for detecting strabismus. The corneal light reflex test, the cover test, and visual acuity test are described further in Chapter 16.

Recommendations for vision screening and indications for referral are listed in Table 9–3. Referral to an ophthalmologist

<table>
<thead>
<tr>
<th>Test</th>
<th>Age for Screening</th>
<th>Indication(s) for Referral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection of eyes and lids</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Red reflex</td>
<td>Birth until child can read eye chart</td>
<td>Abnormal red reflex, asymmetry of the red reflexes, or partially obscured red reflex</td>
</tr>
<tr>
<td>Assessment of fixation and following</td>
<td>Starting at 2 mo</td>
<td>Poor fixation/ following by 3 mo</td>
</tr>
<tr>
<td>Corneal light reflex for assessing strabismus</td>
<td>3 mo to 5 y</td>
<td>Asymmetry of light reflex (in relation to iris and pupil)</td>
</tr>
<tr>
<td>Cover testing for assessing strabismus</td>
<td>6 mo to 5 y</td>
<td>Presence of refixation movement</td>
</tr>
<tr>
<td>Fundoscopic examination</td>
<td>Starting at 3 y</td>
<td></td>
</tr>
<tr>
<td>Preliterate eye chart testing</td>
<td>Starting at 3-4 y</td>
<td>Unable to pass 20/40 for ages 3-5 or 20/30 for 6 and older. Also refer if there is a difference of two or more lines between the eyes.</td>
</tr>
</tbody>
</table>

Table 9–2 Age-appropriate visual acuity.a

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Minimal Acceptable Acuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>20/40</td>
</tr>
<tr>
<td>≥ 6</td>
<td>20/30</td>
</tr>
</tbody>
</table>

aRefer to an ophthalmologist if minimal acuity is not met at a given age or if there is a difference in scores of two or more lines between the eyes.
is also recommended for preterm infants for evaluation of retinopathy of prematurity (ROP), as well as children with a family history of amblyopia, strabismus, retinoblastoma, or retinal degeneration. Children with Down syndrome should be referred to an ophthalmologist at 6 months of age given their increased risk for refractive error, strabismus, and cataracts.

Hearing loss, if undetected, can lead to substantial impairments in speech, language, and cognitive development. Because significant bilateral hearing loss is one of the more common major anomalies found at birth, and early detection and intervention of hearing loss leads to better outcomes for children, universal hearing screening is provided to newborns in most parts of the United States. Hearing in infants is assessed using either evoked otoacoustic emissions or auditory brain stem-evoked responses. Because universal newborn hearing screening is sometimes associated with false-positive test results, confirmatory audiology testing is required for abnormal tests.

Informal behavioral testing of hearing, such as observing an infant’s response to a shaken rattle, may be unreliable. In fact, parental concerns about hearing are of greater predictive value than the results of informal tests, and such concerns should be taken seriously. Prior to age 4, infants should be referred to an audiologist for testing if a concern arises. Conventional screening audiometry, in which a child raises her hand when a sound is heard, can be performed starting at age 4. Each ear should be tested at 500, 1000, 2000, and 400 Hz and referred at threshold levels of greater than 20 dB at any of these frequencies. Any evidence of hearing loss should be substantiated by repeated testing, and if still abnormal, a referral for a formal hearing evaluation should be made.

The AAP periodicity schedule recommends routine hearing screening at 4, 5, 6, 8, and 10 years of age. Children with any risk factors for hearing loss should be closely followed and receive more frequent screening. A number of inherited or acquired conditions increase the risk of hearing loss. Sometimes hearing loss can be mistaken for inattention, and or acquired conditions increase the risk of hearing loss. Sometimes hearing loss can be mistaken for inattention, and
cal services can help reduce this distress.

Newborn Screening

Newborn screening involves population-wide testing for metabolic and genetic diseases. It has become an essential component in a public health program that screens over 4 million newborns every year. Blood samples are collected by heelstick from newborns before hospital discharge, and results are usually available within 1 week. Some states routinely repeat blood testing between 7 and 14 days of life, while others recommend it if the child is discharged in less than 24 hours. The state-to-state variation seen in newborn screen panels has begun to diminish as a result of national recommendations. In 2010, the Secretary Advisory Committee on Heritable Disorders in Newborns and Children recommended screening for 30 core conditions with another 26 detectable through differential diagnosis. Most states have adopted these guidelines.

Infants with a positive screening result should receive close follow-up, with additional confirmatory studies performed at a center with experience in doing these tests. Screening tests are usually accurate, but the sensitivity and specificity of a particular screening test must be carefully considered. If symptoms of a disease are present despite a negative result on a screening test, the infant should be tested further. Newborn screening has benefited thousands of infants and their families, preventing and diminishing the morbidity of many diseases. At the same time, the emotional cost of false-positive screening is a continuing challenge. Parents report high levels of stress during the evaluation process. Recommendations for useful resources, given the variability of information on the Internet, and prompt clinical services can help reduce this distress.


Lead Screening

The developing infant and child are at risk of lead poisoning or toxicity because of their propensity to place objects in the mouth and their efficient absorption of this metal. Children with lead toxicity are typically asymptomatic. High blood levels (> 70 mcg/dL) can cause severe health problems such as seizures and coma. Numerous neuropsychological deficits have been associated with increased lead levels. Blood lead levels less than 10 mcg/dL have been correlated with lower intelligence quotients. The primary source of lead exposure in this country remains lead-based paint, even though most of its uses have been banned since 1977. Lead levels have declined nationally from a mean of 16 mcg/dL in 1976 to 2 mcg/dL in 2001. However, considerable variation in lead levels exists in different regions of the United States, and a majority of children at risk of lead toxicity are not currently screened. Despite the wide variation in the prevalence of lead toxicity, the CDC recommends universal lead screening for children at ages 1 and 2 and targeted screening for older children living in communities with a high percentage of old housing (> 27% of houses built before 1950) or a high percentage of children with elevated blood lead levels (> 12% of children with levels > 10 mcg/dL). Previously, all Medicaid-enrolled children were screened, but now the recommendation is to screen those at risk because of local variations in lead exposure.

Communities with inadequate data regarding local blood lead levels should also undergo universal screening. Caregivers of children between 6 months and 6 years of age may be interviewed by questionnaire about environmental risk factors for lead exposure (Table 9–4), although the data to support the use of this screening are inconclusive. If risk factors are present, a blood lead level should be obtained. A venous blood sample is preferred over a capillary specimen. An elevated capillary (fingerstick) blood sample should always be confirmed by a venous sample. CDC now states that reference level of 5 mcg/dL should be used to identify children with blood lead levels that are much higher than most levels in children. This new recommendation is based on the US children ages 1–5 years who are in the highest 2.5% of children when tested for lead in their blood.

The cognitive development of children with confirmed high blood levels should be evaluated and attempts made to identify the environmental source. Iron deficiency should be treated if present. Chelation of lead is indicated for levels of 45 mcg/dL and higher and is urgently required for levels above 70 mcg/dL. All families should receive education to decrease the risk of lead exposure. With any elevated lead level (> 5 mcg/dL), rescreening should be performed at recommended intervals.

Iron Deficiency

Iron deficiency is the most common nutritional deficiency in the United States. Severe iron deficiency causes anemia, behavioral problems, and cognitive effects, but recent evidence suggests that even iron deficiency without anemia may cause behavioral and cognitive difficulties. Some effects, such as the development of abnormal sleep cycles, may persist even if iron deficiency is corrected in infancy.

Risk factors for iron deficiency include preterm or low-birth-weight births, multiple pregnancy, iron deficiency in the mother, use of nonfortified formula or cow's milk before age 12 months, and an infant diet that is low in iron-containing foods. Infants and toddlers consuming more than 24 oz/d of cow's milk are at risk, as are children with chronic illness, restricted diet, or extensive blood loss.

Primary prevention of iron deficiency should be achieved through dietary means, including feeding iron-containing cereals by age 6 months, avoiding low-iron formula during infancy, and limiting cow's milk to 24 oz/d in children aged 1–5 years.

Universal screening for anemia should occur at approximately 12 months of age by obtaining a hemoglobin or hematocrit. Premature and low-birth-weight infants may need testing before 6 months of age.

---

Table 9–4. Elements of a lead risk questionnaire.

<table>
<thead>
<tr>
<th>Recommended questions</th>
<th>Questions that may be considered by region or locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Does your child live in or regularly visit a house built before 1950?</td>
<td>1. Does your child live with an adult whose job (eg, at a brass/copper foundry, firing range, automotive or boat repair shop, or furniture refinishing shop) or hobby (eg, electronics, fishing, stained-glass making, pottery making) involves exposure to lead?</td>
</tr>
<tr>
<td>2. Does your child live in or regularly visit a house built before 1978 with recent, ongoing, or planned renovation or remodeling?</td>
<td>2. Does your child live near a work or industrial site (eg, smelter, battery recycling plant) that involves the use of lead?</td>
</tr>
<tr>
<td>3. Does your child have a sister or brother, housemate, or playmate being followed for lead poisoning?</td>
<td>3. Does your child use pottery or ingest medications that are suspected of having a high lead content?</td>
</tr>
<tr>
<td>4. Does your child have exposure to old, nonbrand-type toys or burning lead-painted wood?</td>
<td>4. Does your child have exposure to old, nonbrand-type toys or burning lead-painted wood?</td>
</tr>
<tr>
<td>5. Does your child play on an athletic field with artificial turf?</td>
<td>5. Does your child play on an athletic field with artificial turf?</td>
</tr>
</tbody>
</table>

---


---

A full CBC to look at mean corpuscular volume (MCV) can aid in the evaluation. Serum ferritin is a useful test to evaluate iron-deficiency anemia, but it can also pick up iron deficiency in the absence of anemia. Because ferritin is an acute-phase reactant and can be falsely reassuring in the presence of inflammation, infection, or malignancy, some experts recommend obtaining a concurrent C-reactive protein (CRP) for accurate interpretation of the ferritin level. Lead poisoning can cause iron-deficiency anemia and should be explored as a cause for at-risk infants and children.

Management of iron deficiency with or without anemia includes treatment doses of iron, which is different than the supplementation dose found in multivitamins. The treatment dose is 3–6 mg/kg body weight of elemental iron.

Hypercholesterolemia & Hyperlipidemia

Cardiovascular disease is the leading cause of death in the United States, and research has documented that the atherosclerotic process begins in childhood. Genetic factors, diet, and physical activity all play a role in the disease process. Fasting lipid screening is recommended for children between the ages of 2 and 10 if certain risk factors are present: family history of dyslipidemia, family history of early cardiovascular heart disease, obesity (95th > BMI ≥ 85th percentile), overweight (BMI ≥ 85th < 95th percentile), hypertension, or diabetes mellitus. Diet and weight management strategies are the primary interventions. However, for severe dyslipidemia (LDL ≥ 190 mg/dL), pharmacologic therapy should be considered. Consideration of pharmacotherapy should be made at 160 mg/dL if there is a family history of heart disease or there are two or more risk factors present. The presence of diabetes should lower the threshold for pharmacotherapy to 130 mg/dL. Patients who screen negative should be retested in 3–5 years.

Tuberculosis

According to the CDC, 10,528 cases of tuberculosis (TB) were reported in the United States in 2011. Risk of TB should be assessed at well-child visits, and screening should be based on high-risk status. High risk is defined as contact with a person with known or suspected TB; having symptoms or radiographic findings suggesting TB; birth, residence, or travel to a region with high TB prevalence (Asia, Middle East, Africa, Latin America); contact with a person with AIDS or HIV; or contact with a prisoner, migrant farm worker, illicit drug user, or a person who is or has been recently homeless. The Mantoux test (5 tuberculin units of purified protein derivative) is the only recommended screening test. It can be done as early as 3 months of age and should be repeated annually if the risk persists. The tine test should not be used. Previous vaccination with bacille Calmette-Guérin (BCG) is not a contraindication to tuberculosis skin testing.

Targeted screening for latent TB that utilizes tuberculin skin testing (TST) for high-risk individuals is the recommended approach based on available evidence. Risk of TB should be assessed at well-child visits, and screening should be based on high-risk status. The following screening questions have been validated to determine high-risk status:

1. Was your child born outside the United States? If yes, this question would be followed by: Where was your child born? If the child was born in Africa, Asia, Latin America, or Eastern Europe, a TST should be placed.
2. Has your child traveled outside the United States? If yes, this question would be followed by: Where did the child travel, with whom did the child stay, and how long did the child travel? If the child stayed with friends or family members in Africa, Asia, Latin America, or Eastern Europe for greater than 1 week cumulatively, a TST should be placed.
3. Has your child been exposed to anyone with TB disease? If yes, this question should be followed by questions to determine if the person had TB disease or latent TB infection (LTBI), when the exposure occurred, and what the nature of the contact was. If confirmed that the child has been exposed to someone with suspected or known TB disease, a TST should be placed. If it is determined that a child had contact with a person with TB disease, notify the local health department per local reporting guidelines.
4. Does your child have close contact with a person who has a positive TB skin test? If yes, go to question 3.


Screening of Adolescent Patients

Adolescents may present with chief complaints that are not the true concern for the visit. Repeating the question “Is there anything else you would like to discuss?” should be
of each health supervision visit and can be reinforced during
deaths. In every age category, males are at higher risk than
teenagers after the first year of life. For young people aged
Injuries are the leading cause of death in children and ado-
sential part of the health supervision visit is anticipa-
tory guidance. During this counseling, the clinician directs
the parent’s or the older child’s attention to issues that may
rise in the future. Guidance must be appropriate to age,
focus on concerns expressed by the parent and patient, and
address issues in depth rather than run through a number of
issues superficially. Both oral and printed materials are
used. When selecting written materials, providers should be
sensitive to issues of literacy and primary language spoken
by the family members. Areas of concern include diet, injury
prevention, developmental and behavioral issues, and health
promotion.

Injury Prevention

Injuries are the leading cause of death in children and ado-
lescents after the first year of life. For young people aged
15–19 years, injuries are responsible for more than half of all
deaths. In every age category, males are at higher risk than
females for unintentional injury.

Injury prevention counseling is an important component
of each health supervision visit and can be reinforced during
vehicle accidents. Texting while driving poses an even greater danger. Parents and teenage drivers should avoid these risks.

B. Bicycle Injuries

Each year, an average of nearly 400 children die from bicycle crashes, and over 450,000 are treated for bicycle-riding injuries. Over 150,000 children are treated annually in emergency departments for head injuries sustained while riding a bicycle. Many observational studies have shown a decreased risk of head injury with the use of bicycle helmets. Community-based interventions, especially those that provide free helmets, have been shown to increase observed bike helmet wearing. Counseling by physicians in various settings has also been shown to increase bike helmet use. While there is no federal law mandating bicycle helmets, some states have passed legislation requiring bicycle helmets, though most laws are limited to children younger than 18 years. Proponents point out that studies show increased use of helmets, but others have raised concern that bike helmet laws may discourage bike riding and its beneficial effects on weight control.

C. Skiing and Snowboarding Injuries

Recent studies have suggested that the burden of skiing injuries is high among children, and that children have the highest rate of injury of any age group: approximately three injuries per 1000 skier days. Traumatic brain injuries are the leading cause of death for pediatric age skiers. Case control studies have shown a decrease in head injuries associated with helmet use. Appropriate counseling of helmet use is a reasonable strategy to increase helmet use in children.

D. Firearm Injuries and Violence Prevention

The United States has a higher rate of firearm-related death than any other industrialized country. For children younger than 15, the death rate from firearm-related injuries is nearly 12 times greater than that of 25 other industrialized nations. Some gun deaths may be accidental, but most are the result of homicide or suicide. A gun in the home doubles the likelihood of a lethal suicide attempt. Although handguns are often kept in homes for protection, a gun is more likely to kill a family member or a friend than an intruder. Adolescents with a history of depression or violence are at higher risk with a gun in the home. The most effective way to prevent firearm injuries is to remove guns from the home. Families who keep firearms at home should lock them in a cabinet or drawer and store ammunition in a separate locked location.

E. Drowning and Near Drowning

Drowning is the second leading cause of injury-related death in children, and those aged 1–3 years have the highest rate of drowning. For every death by drowning, six children are hospitalized for near drowning, and up to 10% of survivors experience severe brain damage. Children younger than 1 year are most likely to drown in the bathtub. Buckets filled with water also present a risk of drowning to the older infant or toddler. For children aged 1–4 years, drowning or near drowning occurs most often in home swimming pools; and for school-aged children and teens, drowning occurs most often in large bodies of water (eg, swimming pools or open water). Parents should be cautioned that inflatable swimming devices are not a substitution for approved live vests or close supervision and can give a false sense of security. School-aged children should be taught to swim, and recreational swimming should always be supervised. Home pools must be fenced securely, and parents should know how to perform cardiopulmonary resuscitation.

F. Fire and Burn Injuries

Fires and burns are the leading cause of injury-related deaths in the home. Categories of burn injury include smoke inhalation; flame contact; scalding; and electrical, chemical, and ultraviolet burns. Scalding is the most common type of burn in children. Most scalds involve foods and beverages, but nearly one-fourth of scalds are with tap water, and for that reason it is recommended that hot water heaters be set to a maximum of 120°F. Most fire-related deaths result from smoke inhalation. Smoke detectors can prevent 85% of the injuries and deaths caused by fires in the home. Families should discuss a fire plan with children and practice emergency evacuation from the home.

Sunburn is a common thermal injury, perhaps because symptoms of excessive sun exposure do not begin until after the skin has been damaged. Sunburn and excessive sun exposure are associated with skin cancers. Prevention of sunburn is best achieved by sun avoidance, particularly during the midday hours of 10 AM to 4 PM. A sunscreen with a minimum sun protection factor (SPF) of 15 that protects against UVA and UVB rays should be used on sunny and cloudy days to help protect against sunburn. Hats and sunglasses are also important aspects of safe sun exposure. The safety of sunscreen is not established for infants younger than 6 months; thus sun avoidance, appropriate clothing, and hats are recommended for this age group. In extreme circumstances in which shade is not available, a minimal amount of sunscreen can be applied to small areas, including the face and back of the hands.

G. Choking

Choking is a leading cause of injury and death in young children. Choking hazards include food and small objects. Children younger than 3 are particularly at risk because they do not have fully coordinated chewing and swallowing, and they are more apt to put small objects in their mouths. Foods
that are commonly associated with choking include hot dogs, hard candy, nuts, popcorn, raw vegetables, and chunks of meat, fruit, or cheese. Common nonfood items that pose a risk for choking include coins, latex balloons, button batteries, marbles, small toys, and small toy parts. While being mindful of choking hazards is important, accidents can still occur. Parents and caregivers should be trained in CPR and choking first aid.


NUTRITION COUNSELING

Screening for nutritional problems and guidance for age-appropriate dietary choices should be part of every health supervision visit. Overnutrition, undernutrition, and eating disorders can be detected by a careful analysis of dietary and activity patterns interpreted in the context of a child’s growth pattern.

Human milk feeding is species-specific and is the preferred method for infant feeding for the first year of life. Pediatricians should assist mother-infant dyads with latch and help manage breastfeeding difficulties in the early newborn period. For exclusively breast-fed infants, vitamin D supplementation should be given. Iron-fortified formula should be used in situations when breastfeeding is contraindicated such as HIV, illicit drug use in the mother, active untreated TB, galactosemia, and certain medications. After the first year, breast-feeding may continue or whole cow’s milk can be given because of continued rapid growth and high energy needs. After 2 years of life, milk with 2% fat or lower may be offered. Baby foods are generally introduced at about 6 months of age and self-feeding with finger foods encouraged at 7–8 months of age. Fruit juice or water is unnecessary in children younger than 1 year.

When obtaining a dietary history, it is helpful to assess the following: who purchases and prepares food; who feeds the child; whether meals and snacks occur at consistent times and in a consistent setting; whether children are allowed to snack or “graze” between meals; the types and portion sizes of food and drinks provided; the frequency of eating meals in restaurants or eating take-out food; and whether the child eats while watching television.

For children 2 years of age and older, a prudent diet consists of diverse food sources, encourages high-fiber foods (eg, fruits, vegetables, grain products), and limits sodium and fat intake. Since obesity is becoming increasingly prevalent, foods to be avoided or limited include processed foods, sugar-sweetened drinks or soda, and candy. Parents should be gently reminded that they are modeling for a lifetime of eating behaviors in their children, both in terms of the types of foods they provide and the structure of meals (eg, the importance of the family eating together). For additional information on nutritional guidelines, undernutrition, and obesity, see Chapter 11; for eating disorders, see Chapter 6; for adolescent obesity, see Chapter 4.

As of 2009, the revised new Women, Infants, and Children (WIC) food packages will reflect the recommendations above and include provision of more fruits and vegetables, whole grains, yogurt and soy products, low-fat milk, and limitations on juice. Breast-feeding mothers will receive more food as part of their package, less formula supplementation, and breast-fed infants will receive baby food meats as a first food (because of more iron and zinc).

COUNSELING ABOUT TELEVISION & OTHER MEDIA

Media has a significant influence on children and adolescents.

The average child in the United States watches approximately 3–5 hours of television per day, and this does not include time spent watching videotapes or DVDs, playing video games, playing on computers/Internet, or using cell phones. Taking into account these other forms of media,
current estimates are around 7.5 hours of media exposure per day for average youth.

Having a television set in the bedroom increases daily media exposure and is also associated with sleep disturbances. According to the Kaiser Family Foundation, over 70% of 8- to 19-year-olds have a television in the bedroom.

Watching television may have both positive and negative effects. Programs directed toward early childhood may increase knowledge and imaginativeness, and may also teach empathy and acceptance of diversity. However, excessive television viewing of programs with inappropriate content has been shown to have negative effects with respect to violence, sexuality, substance abuse, nutrition, social skills, and body self-image. More recent data suggest that excessive viewing in childhood may have a long-lasting negative effect on cognitive development and academic achievement. Clinicians should assess media exposure in their patients and offer parents concrete advice. Screen time for all media, including television, movies, DVDs, video games, computer activities, the Internet, and cell phones, should be limited. The AAP recommends that children younger than 2 years should not have any screen time, and that children 2 years and older be limited to 2 hours total screen time each day. The television should not be on during mealtimes, night, or naptimes. Parents should themselves watch sensibly, monitor the program content to which their children are exposed, watch programs and discuss interesting content with children, remove television sets from all bedrooms, and encourage alternative activities. Research consistently shows that exposure to media correlates with childhood aggression.

Social networking sites are becoming increasingly popular, and clinicians need to encourage parents to monitor participation and be aware of potential problems with cyber bullying. “Facebook depression,” sexting, and exposure to inappropriate content on sites such as YouTube.


Other Types of General Pediatric Service

ACUTE-CARE VISITS

Acute-care visits account for 30% or more of the general pediatrician’s office visits. These visits are conducted in an efficient, structured way. Office personnel should determine the reason for the visit and whether it is an emergent situation, obtain a brief synopsis of the child’s symptoms, carefully document vital signs, and list known drug allergies. The pediatrician should document the events related to the presenting problem and carefully describe them in the medical record. The record should include supporting laboratory data and a diagnosis. Treatments and follow-up instructions must be recorded, including when to return to the office if the problem is not ameliorated. Immunization status should be screened, as previously discussed. Depending on the severity of illness, this may also be an opportunity for
age-appropriate health maintenance screenings and anticipatory guidance. This may be particularly true with older school-aged children or adolescents who may be seen more rarely for routine health maintenance visits.

**Prenatal Visits**

Ideally, a couple’s first trip to a physician’s office should take place before the birth of their baby. A prenatal visit goes a long way toward establishing trust and enables a pediatric provider to learn about a family’s expectations, concerns, and fears regarding the anticipated birth. If the infant develops a problem during the newborn period, a provider who has already met the family is in a better position to maintain rapport and communication with the new parents.

In addition to helping establish a relationship between parents and pediatric providers, the prenatal visit can be used to gather information about the parents and the pregnancy, provide information and advice, and identify high-risk situations. A range of information can be provided to parents regarding feeding choices and the benefits of breastfeeding; injury prevention, including sleeping position and the appropriate use of car seats; and techniques for managing colic. Potential high-risk situations that may be identified include mental health issues in the parents, a history of domestic violence, or maternal medical problems that may affect the infant.


**Sports Physicals**

In 2010, the fourth edition of the Preparticipation Physical Examination (PPE) Evaluation monograph was published. The multisociety panel made a new recommendation to make the PPE part of every routine well-child and adolescent care visit. Physicians should be recommending exercise and activity to every child, not just those participating in organized sports.

The goal of the sports physical is to identify medical conditions that would make sports participation unsafe, screen for underlying illness through a traditional history and physical, and recognize preexisting injuries or medical problems that have affected previous sports seasons. As part of the history, the particular sport being played or specific exercise activity should be discussed. Different sports have different potentials for injury and prevention methods will differ. All patients should be asked about previous cardiac, respiratory, musculoskeletal, or neurologic problems associated with activity. Particular attention should be drawn to any suspicion of cardiac syncope, asthma symptoms, past concussions, or history of unilateral organs, such as kidneys or testicles. Anabolic steroid and nutritional supplement discussion should be detailed and explored. Any relevant family history of cardiac death younger than age 50 is important to document.

The physical examination obviously starts with vital signs, including accurate blood pressure screening and examination for obesity. Highlights of the examination include a careful respiratory and cardiac examination, looking for evidence of exercise-induced bronchospasm or anatomic heart disease. Electrocardiogram (ECG) or pulmonary function tests can be considered for suspected abnormalities. The skin examination should look for evidence of potentially contagious skin infections like impetigo or molluscum. The musculoskeletal examination should include all major muscle groups, as well as range of motion and stability testing of the neck, back, shoulder, hips, knees, and ankles. Any pain or limitation should prompt consideration of further investigation or therapy.

A few specific conditions bear mentioning during the counseling phase of the sports participation. A review of cardiac, respiratory, or musculoskeletal complaints that should prompt a return visit should be reviewed. The risks and danger of concussions and performance-enhancing drugs should be highlighted. Appropriate protective equipment should be encouraged.


**Chronic Disease Management**

Chronic disease in pediatrics is defined as illness that has been present for more than 3 months. Twenty-five percent of children and 35% of adolescents have illnesses that meet the definition of a chronic illness. The most common chronic conditions in pediatric practice include asthma, obesity/overweight, attention-deficit/hyperactivity disorder (ADHD), and allergic diseases, but also include congenital anomalies and other conditions. Many patients with chronic conditions are cared for only by a primary care provider. However, when subspecialist care is required, the primary care provider plays an integral part of the care to deal with the complexity of these conditions, which also includes understanding the child’s growth and development, routine health promotion and anticipatory guidance, evaluating for social issues, advocating for children and their families, and care coordination.

The goal of chronic disease management is to optimize quality of life while minimizing the side effects of treatment interventions. The child and family’s emotional responses to chronic illness should be addressed, and referrals to counselors should be offered if needed. Nutrition and the management of medical devices (eg, catheters, gastrostomy tubes) may need to be addressed, and care coordinated with appropriate specialists. Pediatric subspecialty referrals need to be
arranged and monitored and results recorded in the chart in an organized manner. Problem lists in the chart should be used to document the chronic problems and monitor associated medications. A care plan should be created that includes basic health information and recommendations. Specific care plans have been developed for some diagnoses (such as the Asthma Action Plan). An example of a general healthcare plan can be downloaded from the AAP at www.aap.org/advocacy/blankform.pdf.

As a child with a chronic condition reaches 18–21 years of age, coordination of transition from child- to adult-oriented health care needs to occur. This transition should be specific to the individual patient and their family and should be planned well in advance. In children with special healthcare needs, discussions about transition should be initiated when the patient turns 12.


MEDICAL HOME

The medical home is a concept in which children and their families have an identified, easily accessible primary care provider or group of primary care providers within an office. The American Academy of Pediatrics has identified seven characteristics of a medical home. The medical home must be (1) accessible, meaning that it must be within the child’s community, physically accessible, and all insurers accepted; (2) family centered, with mutual responsibility and decision making between the patient/family and medical provider, and the family is recognized as an expert of the child; (3) continuous, in that the same medical professionals provide the continuity of care; (4) comprehensive, with provisions made such that ambulatory and inpatient care are available 24 hours per day, 7 days a week, for 52 weeks of the year; (5) coordinated, with a plan of care developed by the physician and family that is communicated to other providers and agencies as needed; (6) compassionate, meaning that concern is expressed and efforts are made to understand the patient’s and family’s perspective; and (7) culturally effective, in that the cultural background of the patient and family is respected and incorporated into care, and services are provided in the family’s primary language or through a trained medical interpreter.

All children should have a medical home, but it is particularly crucial for children with special healthcare needs, or those with one or more chronic health condition expected to last more than a year. A primary care provider through a medical home should be available for children to assist families with the coordination of consultant recommendations and development of a care plan to implement recommendations.


MENTAL & BEHAVIORAL HEALTH

Parents frequently consult their pediatrician on a large variety of parenting and behavioral health issues. Common topics on which the pediatrician must be comfortable counseling include discipline, temper tantrums, toilet training, biting, and sleep problems.

In addition, there are mental health issues that pediatricians will commonly address in the primary care setting, including ADHD, anxiety, some cases of depression, school problems, or family upheavals (such as separation, divorce, or remarriage). After assessing the situation, the primary care physician must decide whether the child’s and family’s needs are within his or her area of expertise or whether referral to another professional such as a psychologist or an education specialist would be appropriate.

Other conditions are usually referred. The pediatrician should know the warning signs of childhood depression and bipolar disorder and have a low threshold for referral of these concerns to the appropriate mental health professional. Ideally, mental health services not provided by the clinician are available in the same setting where physical health services are obtained (see as follows).

Integrated Mental & Behavioral Health in the Primary Care Setting

In the United States, approximately 20% of school-age children suffer from a diagnosable emotional impairment. Prevalence is higher for children living in poor socioeconomic circumstances. About 75% of all children with psychosocial disturbances are seen in primary care settings, and half of all pediatric office visits involve behavioral, psychosocial, or educational concerns.

Child and family concerns routinely manifest in the context of visits with pediatric primary care providers. However, many pediatric providers in community settings do not feel equipped to address the growing mental health and behavioral needs of the populations they serve due to lack of training and perceived lack of support from mental health providers and systems. Parents are most likely to turn to their healthcare provider for information regarding parenting and child development than to another specialist.

Recent studies have shown that improved detection of mental health conditions is best done when there is a true partnership between clinical providers and families. A small number of clinic settings have moved forward with providing
integrated behavior, development, and mental health training for physicians. The Healthy Steps for Young Children Program provides an example of training pediatric providers and delivering enhanced developmental services in pediatric primary care settings. Families participating in Healthy Steps received more developmental services, were more satisfied with the quality of care provided, were more likely to attend well-child visits and receive vaccinations on time, and were less likely to use severe discipline techniques with their children. Participation in the program also increased the likelihood that mothers at risk for depression would discuss their sadness with someone in the pediatric setting.

The primary care medical home is the ideal setting to engage families in efforts to address mental health care. Mental health has been brought to the forefront as a priority of the AAP in their April 2009 Call for Action “encourage the integration of mental health care into the primary medical home.” Moreover, improved detection of mental health conditions is best done when there is a true partnership between clinical providers and families.


CONSULTATIONS

Physicians, other professionals, and parents may initiate consultations with a general pediatrician. Parents, subspecialists, family physicians, or professionals such as school officials, psychologists, or social workers may all seek medical consultation. Finally, an insurance company representative may want a second opinion before authorizing a set of services.

The types of consultations the general pediatrician may be asked to do include an evaluation only, an evaluation and interpretation, or an evaluation and treatment of an isolated problem. The type of consultation being requested should be clearly determined at the time of referral of the patient. This understanding should be clarified with the patient’s insurance company so that appropriate authorization and reimbursement for the visit can occur.

TELEPHONE MANAGEMENT & WEB-BASED INFORMATION

Providing appropriate, efficient, and timely clinical advice over the telephone is a critical element of pediatric primary care in the office setting. An estimated 20%–30% of all clinical care delivered by general pediatric offices is provided by telephone. Telephone calls to and from patients occur both during regular office hours and after the office has closed (termed after-hours), and the personnel and systems in place to handle office-hours versus before- and after-hours calls may differ. In either circumstance, several principles are important: (1) advice is given only by clinicians or other staff with formal medical education (eg, nurse, medical assistant), (2) staff is given additional training in providing telephone care, (3) documentation is made of all pertinent information from calls, (4) standardized protocols covering the most common pediatric symptoms are used, and (5) a physician is always available to handle urgent or difficult calls.

During routine office hours, approximately 20%–25% of all telephone calls to pediatric offices involve clinical matters. Many of these calls, however, are routine in nature, and an experienced nurse within the office can screen calls and provide appropriate advice by telephone. Calls from inexperienced or anxious parents about simple concerns should be answered with understanding and respect. Certain types of calls received during office hours should be promptly transferred to a physician: (1) true emergencies, (2) calls regarding hospitalized patients, (3) calls from other medical professionals, and (4) calls from parents who demand to speak with a physician. Nurses should also seek help from a clinician whenever they are uncertain about how to handle a particular call. When in doubt about the diagnosis or necessary treatment, nurses giving telephone advice should err on the side of having the patient seen in the office.

After-hours telephone answering services are available to many clinicians. Pediatric call centers, although not available in all communities, have certain benefits. Calls are managed using standardized protocols, the call centers are typically staffed by nurses with abundant pediatric experience, the calls are well-documented, and call centers often perform ongoing quality assurance. Extensive research on pediatric call centers has revealed a high degree of appropriate referrals to emergency departments, safety in terms of outcomes, parent satisfaction with the process, and savings to the healthcare system.

In general, after-hours pediatric telephone calls tend to be more serious than calls made during regular office hours. Deciding which patients need to be seen, and how urgently, is the most important aspect of these after-hours telephone “encounters.” Several factors influence this final patient disposition: (1) the age of the patient, (2) the duration and type of symptom, (3) the presence of any underlying chronic condition, (4) whether the child appears “very sick” to the caller, and (5) the anxiety level of the caller. Once all the pertinent medical information is gathered, a decision is made about whether the child should be seen immediately (by ambulance versus car), seen in the office later (today vs tomorrow), or whether the illness can be safely cared for at home. At the end of the call, it should be confirmed that parents understand and feel comfortable with the plan for their child.
Community pediatrics is “a perspective that enlarges the pediatrician’s focus from one child to all children in the community.” Pediatricians have historically been very involved in supporting and developing services for vulnerable children in their communities. As a group, pediatricians recognize that communities are integral determinants of a child’s health and that the synthesis of public health and personal health principles and practices is important in the practice of community pediatrics. As well, pediatricians have long been committed to working with other professionals in the community and advocating for the needs of all children. For example, pediatricians have been instrumental in the passage of laws requiring car seats and bicycle helmets, as well as expanded healthcare coverage through State Children’s Health Insurance Program (SCHIP) working with legislators on both local and federal levels.

Advocacy refers to the act of representing or pleading a cause on behalf of another. Physicians have a unique position to champion the rights of their patients. Pediatricians and other providers who care for children have an added responsibility to be a voice for a population who cannot vote or advocate for themselves very effectively. Advocacy can be broken down into three categories: individual (patient-based), community, and legislative (policy-based).

Pediatricians in practice are frequently instrumental in one-on-one advocacy, which may take the form of writing a letter of medical necessity or referring children and families to valuable services and resources. Pediatricians must be familiar with programs in the community. For example, children with special healthcare needs may be eligible for services typically funded through state health departments and through programs such as those provided based on the Individuals with Disabilities Education Act (IDEA). A variety of community-based immunization programs can provide access to needed immunizations for eligible children. Food and nutrition programs such as the federally funded WIC program provide sources of food at no cost to eligible families. Finally, subsidized preschool and child care services such as the federally funded Head Start program provide preschool programs for qualifying children.

Community advocacy goes beyond the walls of the office or hospital. Pediatricians can become involved with local organizations that help children in the community. Pediatricians and other child advocates can work with community partners to address issues that influence child health. Community advocacy might focus on a particular condition (such as obesity) or environmental factors (such as exposure to violence) or improving health prevention (such as promoting programs to incorporate oral health into well-child visits). Finally, pediatricians can learn about issues that affect children and work to affect change at a local, state, or national level. Physician advocates may write or call their legislators, educate the public and disseminate information by writing letters or opinion pieces, provide expert testimony for legislative committees, or even help draft laws.


Febrile illness is one of the most common reasons for pediatric office visits, emergency department encounters, and after-hours telephone calls. Several different definitions of fever exist, but most experts define fever as a rectal temperature of 38°C or above. Temperature in pediatric patients can be measured in a variety of manners: rectal (using a mercury or digital thermometer), oral (mercury or digital), axillary (mercury, digital, or liquid crystal strip), forehead (liquid crystal strip), or tympanic (using a device that measures thermal infrared energy from the tympanic membrane). Tympanic measurement of temperature is quick and requires little patient cooperation. Several cautions apply to the use of this technique: tympanic temperatures have been shown to be less accurate in infants younger than 3 months and are subject to false readings if the instrument is not positioned properly or the external ear canal is occluded by wax.

Causes

Fever occurs when there is a rise in the hypothalamic set point in response to endogenously produced pyrogens. Among the broad range of conditions that cause fever are infections, malignancies, autoimmune diseases, metabolic diseases, chronic inflammatory conditions, medications (including immunizations), CNS abnormalities, and exposure to excessive environmental heat. In most settings, the majority of fevers in pediatric patients are caused by self-limiting viral infections. Teething does not cause fever over 38.4°C.

Clinical Findings

A. Initial Evaluation

When evaluating a child with fever, one should elicit from the parents information about the duration of fever, how the temperature was taken, the maximum height of fever documented at home, all associated symptoms, any chronic medical conditions, any medications taken, medication allergies, fluid intake, urine output, exposures and travel, and any additional features of the illness that concern the parents (Table 9–5). In the office, temperature, heart rate, respiratory rate, and blood pressure should be documented, as well as an oxygen saturation if the child has any increased work of breathing. A complete physical examination, including a neurologic examination, should then be performed, with particular attention paid to the child’s degree of toxicity and hydration status. A well-appearing, well-hydrated child with evidence of a routine viral infection can be safely sent home with symptomatic treatment and careful return precautions.

Depending on patient age, presence of underlying conditions, type of infection, and the provider’s assessment of toxicity and hydration, many children with focal bacterial infections can also be treated as outpatients, with appropriate oral antibiotics as discussed in Chapter 42.

B. Fever Without a Focus of Infection

Children who present with fever but without any symptoms or signs of a focal infection are often a diagnostic and management challenge. When assessing a child with fever but no apparent source of infection on examination, the provider needs to carefully consider the likelihood of a serious but “hidden” or occult bacterial infection. With the widespread use of effective vaccines against Haemophilus influenzae type b and Streptococcus pneumoniae, two of the most common causes of invasive bacterial infections in unimmunized children, the incidence of occult bacterial infections has declined. However, vaccines are not 100% effective, and other organisms cause serious occult infections in children; therefore, febrile children will always demand careful evaluation and observation. Appropriate choices for empiric antibiotic therapy of children with fever without focus are discussed in Chapter 39.

Febrile infants 28 days old or younger, because of their likelihood of serious disease, including sepsis, should always be treated conservatively. Hospitalization and parenteral antibiotics should be strongly considered in all circumstances. An initial diagnostic evaluation should include CBC; blood culture; urinalysis; urine culture; and Gram stain, cerebrospinal fluid protein and glucose tests, as well as culture of the cerebrospinal fluid. Consideration should also be given to the possibility of a perinatal herpes simplex virus infection (neonatal herpes is described in more detail in Chapter 40). A chest radiograph should be obtained for any infant with increased work of breathing.

Infants aged 29–90 days are at risk of developing a variety of invasive bacterial infections. Febrile infants without a focus of infection can be divided into those who appear toxic versus nontoxic, and those at low risk versus higher risk of invasive bacterial disease. As with febrile neonates, toxic children in this age group should be admitted to the hospital for parenteral antibiotics and close observation. Viral illness is the most common cause of fever in this age group; if there is evidence of viral disease (upper respiratory infection, bronchiolitis), further workup may not be necessary. Urinary tract infection is the most common bacterial cause of infection in this age group. In nontoxic infants, low risk has been defined as previously healthy; no focal infection on examination; peripheral white blood cell (WBC) count between 5000 and 15,000/mm³; band cells less than 1500/mm³; normal urinalysis; and, when diarrhea is present, less than 5 WBCs per high-power field and negative Gram

---

Table 9–5. Guidelines for evaluating children with fever.

A. See immediately if:	
-------------------------	
1. Child is < age 3 mo with fever > 38°C	
2. Fever is > 40.6°C	
3. Child is crying incoherently or whimpering	
4. Child is crying when moved or even touched	
5. Child is difficult to awaken	
6. Child’s neck is stiff	
7. Purple spots or dots are present on the skin	
8. Child’s breathing is difficult and not better after nasal passages are cleared	
9. Child is drooling saliva and is unable to swallow anything	
10. A convulsion has occurred	
11. Child has sickle cell disease, splenectomy, human immunodeficiency virus (HIV), chemotherapy, organ transplant, chronic steroids	
12. Child acts or looks “very sick”	

B. See within 24 h if:	
------------------------	
1. Child is 3–6 mo old (unless fever occurs within 48 h after a diphtheria-tetanus-pertussis vaccination and infant has no other serious symptoms)	
2. Fever exceeds 40°C (especially if child is < age 3 y)	
3. Burning or pain occurs with urination	
4. Fever has been present for > 24 h without an obvious cause or identified site of infection	
5. Fever has subsided for > 24 h and then returned	
6. Fever has been present > 72 h	
stain on stool sample. Nontoxic low-risk infants in this age group are typically treated as outpatients with close follow-up. Clinicians should be confident that lumbar puncture is unnecessary if they decide not to perform this procedure.

In an era of increasing immunization coverage against the most commonly invasive pneumococcal serotypes, it is difficult to estimate the risk of occult bacteremia in febrile 3- to 36-month-olds with no focus of infection. Nevertheless, when assessing children aged 3–36 months with temperatures of 39°C or higher, urine cultures should be considered in all male children younger than 6 months and in all females younger than 2 years. Chest radiographs should be performed in any child with increased work of breathing and should also be considered in children with high (20,000/mm³) WBC counts but no respiratory symptoms. Depending on the child’s appearance, underlying medical condition, and height of fever, blood cultures should also be obtained. Empiric antibiotic therapy may be considered, particularly for children with temperature of 39°C and WBC count of 15,000/mm³. However, in previously healthy, well-appearing, fully immunized children with reassuring laboratory studies, observation without antibiotics is appropriate.

**Treatment**

*Fever phobia* is a term that describes parents’ anxious response to the fevers that all children experience. In a recent study, 91% of caregivers thought that a fever could cause harmful effects. Seven percent of parents thought that if they did not treat the fever, it would keep going higher. Parents need to be reassured that fevers lower than 41.7°C do not cause brain damage. They should be counseled that, although fevers can occasionally cause seizures—in which case their child needs to be seen—febrile seizures are generally harmless and likewise do not cause brain damage.

Several safe and effective medications are available for the treatment of fever. Acetaminophen is indicated in children older than 2 months who have fever of 39°C or are uncomfortable. Acetaminophen is given in a dosage of 15 mg/kg of body weight per dose and can be given every 4–6 hours. The other widely used antipyretic is ibuprofen, which can be used in children 6 months and older. Ibuprofen is given in a dosage of 10 mg/kg of body weight per dose and can be given every 6–8 hours. Ibuprofen and acetaminophen are similar in safety and their ability to reduce fever; however, ibuprofen is longer lasting. Aspirin should not be used for treating fever in any child or adolescent, because of its association with the development of Reye syndrome (particularly during infections with varicella and influenza). With all antipyretics, parents should be counseled to be very careful with dosing and frequency of administration as poisoning can be dangerous.


**GROWTH DEFICIENCY**

Growth deficiency—formerly termed *failure to thrive*—is deceleration of growth velocity, resulting in crossing two major percentile lines on the growth chart. The diagnosis also is warranted if a child younger than 6 months has not grown for 2 consecutive months or if a child older than 6 months has not grown for 3 consecutive months. Growth deficiency occurs in about 8% of children.

Patterns of growth deficiency suggest but are not specific for, different causes. In type I growth deficiency, the head circumference is preserved and the weight is depressed more than the height. This most common type results from inadequate caloric intake, excessive loss of calories, or inability to use calories peripherally. Most cases of type I deficiencies are the result of poverty, lack of caregiver understanding, poor caregiver-child interaction, abnormal feeding patterns, or a combination of factors. Type II growth deficiency, which is associated with genetically determined short stature, endocrinopathies, constitutional growth delay, heart or renal disease, or various forms of skeletal dysplasias, is characterized by normal head circumference and proportionate diminution of height and weight. In type III growth deficiency, all three parameters of growth—head circumference, weight, and height—are lower than normal. This pattern is associated with CNS abnormalities, chromosomal defects, and in utero or perinatal insults.

Just because an infant crosses a growth percentile does not mean an infant necessarily has a problem. Infants can cross growth curves normally, either “lagging down” or “shooting up.” This crossing of growth percentiles is usually normal if it meets the following criteria: change in body weight and length are symmetrical, the size of the infant parallels the midparental weight and stature, the development remains normal, and a new growth curve is subsequently established, usually around 15 months of age; this also can be seen in the exclusively breastfed infants at 4–6 months. WHO growth curves are now the standard and are based on children from various countries who were exclusively or primarily breastfed in the first 4 months of life.

**Clinical Findings**

A. **Initial Evaluation**

The history and physical examination will identify the cause of growth reduction in the vast majority of cases (Table 9–6). The physical examination should focus on signs of organic


disease or evidence of abuse or neglect: dysmorphic features, skin lesions, neck masses, adventitial breath sounds, heart murmurs, abdominal masses, and neuromuscular tone and strength. Throughout the evaluation, the physician should observe the caregiver-child interaction and the level of family functioning. Developmental screening and laboratory screening tests (CBC, blood urea nitrogen, creatinine, electrolytes, urinalysis, and urine culture) complete the initial office evaluation.

B. Further Evaluation

A prospective 3-day diet record should be a standard part of the evaluation. Occasionally an infant or child may need to be hospitalized to obtain an accurate assessment of intake. This is useful in assessing undernutrition even when organic disease is present. The diet history is evaluated by a pediatric dietitian for calories, protein, and micronutrients as well as for the pattern of eating. Additional laboratory tests should be ordered based on the history and physical examination. For example, stool collection for fat determination is indicated if a history of diarrhea suggests malabsorption. Moderate or high amounts of proteinuria should prompt workup for nephrotic syndrome. Vomiting should suggest a gastrointestinal, metabolic, neurologic, infectious, or renal cause. The tempo of evaluation should be based on the severity of symptoms and the magnitude of growth failure.

Treatment

A successful treatment plan addresses the child’s diet and eating patterns, the child’s development, caregiver skills, and any organic disease. High-calorie diets in the form of higher-calorie formula or liquid supplement and frequent monitoring (every 1 or 2 weeks initially) are essential. Acceptable weight gain varies by age (Table 9–7).

Table 9–7. Acceptable weight gain by age.

<table>
<thead>
<tr>
<th>Age (mo)</th>
<th>Weight Gain (g/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth to 3</td>
<td>20–30</td>
</tr>
<tr>
<td>3–6</td>
<td>15–20</td>
</tr>
<tr>
<td>6–9</td>
<td>10–15</td>
</tr>
<tr>
<td>9–12</td>
<td>6–11</td>
</tr>
<tr>
<td>12–18</td>
<td>5–8</td>
</tr>
<tr>
<td>18–24</td>
<td>3–7</td>
</tr>
</tbody>
</table>

The child with growth deficiency may also be developmentally delayed because of living in an environment that fails to promote development or from the effect on the brain of nutrient deprivation. Restoring nutrition does not fully reverse the deficit but does reduce the long-term consequences.

Education in nutrition, child development, and behavioral management as well as psychosocial support of the primary caregiver is essential. If family dysfunction is mild, behavior modification and counseling will be useful. Day care may benefit the child by providing a structured environment for all activities, including eating. If family dysfunction is severe, the local department of social services can help provide structure and assistance to the family. Rarely, the child may need to be temporarily or permanently removed from the home. Hospitalization is reserved for management of dehydration, for cases in which home therapy has failed to result in expected growth, for children who show evidence of abuse or willful neglect, for management of an illness that compromises a child’s ability to eat, or for care pending foster home placement.

Web Resources

Immunization is widely recognized as one of the greatest public health achievements of modern times. Largely as a consequence of immunization, the annual incidences of diphtheria, paralytic poliomyelitis, measles, mumps, rubella, and *Haemophilus influenzae* type b (Hib) in the United States have fallen by more than 99% compared with the average annual incidences of these diseases in the 20th century. Invasive pneumococcal disease in children less than 5 years of age has declined steeply since routine pneumococcal vaccination began in 2000. Similarly, rotavirus vaccination has been associated with substantial declines in hospitalizations and emergency department visits for diarrheal illnesses in young children. Childhood immunization has also led, through herd immunity, to significant decreases in several infectious illnesses in adults, including pneumococcal, rotavirus, and varicella disease. Through routine vaccination, children and adolescents can now receive protection against at least 16 different diseases, and many new vaccines are under development.

Every year, roughly 4 million children are born in the United States, and successful immunization of each birth cohort requires the concerted effort of healthcare providers, public health officials, vaccine manufacturers, and the public. Public perceptions about immunizations, particularly routine childhood immunizations, are generally positive. However, parent concerns about the safety of vaccines have risen in recent years, in part fueled by unfounded speculation about an association between various vaccines or vaccine components and autism. Modern vaccines have a high degree of safety, and serious adverse events following vaccination are rare. Nonetheless, healthcare providers need to be prepared to discuss the benefits and risks of vaccination with uncertain parents, providing factual information in a clear and empathic fashion.

This chapter starts with general principles regarding immunizations and the recommended pediatric and adolescent vaccination schedules, followed by a discussion of vaccine safety. Each routinely recommended vaccine is then discussed further. Vaccines that are only given in special circumstances are discussed in the final section. Several abbreviations that are commonly used in this and other vaccine-related publications are summarized in Table 10–1.

Because the field of immunizations is rapidly changing, it is important for healthcare providers to seek the most up-to-date information available. The immunization recommendations outlined in this chapter are current but will change as technology evolves and our understanding of the epidemiology of vaccine-preventable diseases changes. The most useful sources for regularly updated information about immunization are the following:

1. National Center for Immunization and Respiratory Diseases at the Centers for Disease Control and Prevention (CDC). Maintains a website with extensive vaccine-related resources, including the recommendations of the Advisory Committee on Immunization Practices (ACIP), vaccination schedules, Vaccine Information Statements, information for the public and providers, and links to other vaccine materials. Available at: http://www.cdc.gov/vaccines.

2. CDC Contact Center. The CDC-INFO contact center provides services to the public and healthcare professionals regarding a variety of health-related issues, including immunizations; available 24 hours a day, 7 days a week, at 1-800-232-4636 (English and Spanish).


4. Immunization Action Coalition. This nonprofit organization creates and distributes educational materials for healthcare providers and the public related to vaccines.
5. More childhood diseases. In 2011, immunization coverage of vaccine by age 18 months to be protected against 14 or more childhood diseases. In 2011, immunization coverage rates for children aged 19–35 months were more than 90% for poliovirus, measles-mumps-rubella, varicella, and hepatitis B vaccines, and were steadily increasing for more recently recommended vaccines such as pneumococcal conjugate, rotavirus, and hepatitis A vaccines. However, achieving and maintaining high immunization coverage rates remains challenging. The CDC recommends the following specific proven strategies to increase vaccination coverage rates: (1) assessing and providing feedback on practice/provider immunization rates; (2) keeping accurate immunization records; (3) recommending vaccination to parents, and reinforcing when to return for vaccination; (4) sending reminder messages to parents; (5) sending reminder messages to providers; (6) reducing missed opportunities to vaccinate; and (7) reducing barriers to immunize within the practice.

The National Childhood Vaccine Injury Act of 1986 requires that for each vaccine covered under the Vaccine Injury Compensation Program, caretakers should be advised about the risks and benefits of vaccination in a standard manner, using Vaccine Information Statements (VIS) produced by the CDC. Each time a Vaccine Injury Compensation Program–covered vaccine is administered, the current version of the VIS must be provided to the nonminor patient or legal caretaker. Vaccination documentation that is required in the medical record includes the vaccine manufacturer, lot number, and date of administration and expiration. The VIS version and date, and site and route of administration should also be recorded.

Needles used for vaccination should be sterile and disposable to minimize the opportunity for contamination. A 70% solution of alcohol is appropriate for disinfection of the stopper of the vaccine container and of the skin at the injection site. A 5% topical emulsion of lidocaine-prilocaine applied to the site of vaccination for 30–60 minutes prior to the injection minimizes the pain, especially when multiple vaccines are administered.

Compliance with the manufacturer’s recommendations for route and site of administration of injectable vaccines are critical for safety and efficacy. With few exceptions (intradermal influenza vaccine and Bacillus Calmette-Guérin [BCG] vaccine), all vaccines are given either intramuscularly or subcutaneously. All vaccines containing an adjuvant must be administered intramuscularly to avoid granuloma formation or necrosis. Intramuscular injections are given at a 90-degree angle to the skin, using a needle that is sufficiently long to reach the muscle tissue, but not so long as to injure underlying nerves, blood vessels, or bones. The anterolateral thigh is the preferred site of vaccination in newborns and children up to 2 years of age, and the deltoid muscle of the arm is the preferred site for children aged 3–18 years. Needle length and location should be as follows: ½ inch in newborn infants in the thigh; 1 inch in infants 1- to 12-month-olds (thigh), 1–1 ¾ inches in 1- to 18-year-olds (thigh), and ½–1 inch in 1- to 18-year-olds (deltoid). Subcutaneous injections should be administered at

<table>
<thead>
<tr>
<th>Table 10–1. Vaccine-related abbreviations.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ACIP</strong></td>
</tr>
<tr>
<td><strong>BCG</strong></td>
</tr>
<tr>
<td><strong>CDC</strong></td>
</tr>
<tr>
<td><strong>CI</strong></td>
</tr>
<tr>
<td><strong>CISA</strong></td>
</tr>
<tr>
<td><strong>DT</strong></td>
</tr>
<tr>
<td><strong>DTaP</strong></td>
</tr>
<tr>
<td><strong>DTP</strong></td>
</tr>
<tr>
<td><strong>HBIG</strong></td>
</tr>
<tr>
<td><strong>HBsAg</strong></td>
</tr>
<tr>
<td><strong>HepA</strong></td>
</tr>
<tr>
<td><strong>HepB</strong></td>
</tr>
<tr>
<td>** Hib**</td>
</tr>
<tr>
<td><strong>Hib-MenCY-TT</strong></td>
</tr>
<tr>
<td><strong>HIV</strong></td>
</tr>
<tr>
<td><strong>HPV</strong></td>
</tr>
<tr>
<td><strong>HPV2</strong></td>
</tr>
<tr>
<td><strong>HPV4</strong></td>
</tr>
<tr>
<td><strong>Ig</strong></td>
</tr>
<tr>
<td><strong>IPV</strong></td>
</tr>
<tr>
<td><strong>LAIV</strong></td>
</tr>
<tr>
<td><strong>MCV4</strong></td>
</tr>
<tr>
<td><strong>MMR</strong></td>
</tr>
<tr>
<td><strong>MMRV</strong></td>
</tr>
<tr>
<td><strong>MPSV4</strong></td>
</tr>
<tr>
<td><strong>OPV</strong></td>
</tr>
<tr>
<td><strong>PCV</strong></td>
</tr>
<tr>
<td><strong>PCV7</strong></td>
</tr>
<tr>
<td><strong>PCV13</strong></td>
</tr>
<tr>
<td><strong>PPSV23</strong></td>
</tr>
<tr>
<td><strong>RV1</strong></td>
</tr>
<tr>
<td><strong>RV5</strong></td>
</tr>
<tr>
<td><strong>TB</strong></td>
</tr>
<tr>
<td><strong>Td</strong></td>
</tr>
<tr>
<td><strong>Tdap</strong></td>
</tr>
<tr>
<td><strong>VAERS</strong></td>
</tr>
<tr>
<td><strong>VarIZIG</strong></td>
</tr>
<tr>
<td><strong>VIS</strong></td>
</tr>
<tr>
<td><strong>VSD</strong></td>
</tr>
<tr>
<td><strong>VZV</strong></td>
</tr>
</tbody>
</table>

All materials are provided free of charge and can be accessed at http://www.immunize.org.


**STANDARDS FOR PEDIATRIC IMMUNIZATION PRACTICES**

In the United States, every infant requires more than 25 doses of vaccine by age 18 months to be protected against 14 or more childhood diseases. In 2011, immunization coverage
a 45-degree angle into the anterolateral aspect of the thigh (for infants younger than 12 months) or the upper outer triceps area (for children 12 months and older) using a 23- or 25-gauge, ½-inch needle. Pulling back on the syringe prior to vaccine injection (aspiration) is not required in CDC recommendations. A separate syringe and needle should be used for each vaccine.

Many combinations of vaccines can be administered simultaneously without increasing the risk of adverse effects or compromising immune response. Inactivated vaccines can be given simultaneously with, or at any time after, a different vaccine. Injectable or intranasal live-virus vaccines, if not administered on the same day, should be given at least 4 weeks apart (eg, measles-mumps-rubella [MMR] and varicella [VAR]). Extra doses of hepatitis B (HepB), Hib, MMR, and VAR are not harmful, but repetitive exposure to tetanus vaccine beyond the recommended intervals can result in hypersensitivity reactions and should be avoided. If an immunoglobulin (Ig) or blood product has been administered, live-virus vaccination should be delayed 3 to 11 months, depending on the product, to avoid interference with the immune response (eg, 3 months for tetanus Ig, hepatitis B Ig, and pooled Ig for hepatitis A; 5–6 months for measles Ig or cytomegalovirus Ig; and 11 months for intravenous Ig for Kawasaki disease).

With the large number of vaccine preparations available, interchangeability of vaccines is an issue. All brands of Hib conjugate, HepB, and hepatitis A (HepA) vaccines are interchangeable. For vaccines containing acellular pertussis antigens, it is recommended that the same brand be used, but when the brand is unknown or the same brand is unavailable, any vaccine with diphtheria and tetanus toxoids and acellular pertussis should be used to continue vaccination. Longer than recommended intervals between vaccinations does not reduce final antibody titers, and lapsed schedules do not require restarting the series.

The numerous vaccines and other immunologic products used in routine practice vary in the storage temperatures required. The majority of vaccines should never be subjected to freezing temperatures. Varicella-containing vaccines (MMRV, VAR, and herpes zoster) should be stored frozen. Product package inserts should be consulted for detailed information on vaccine storage conditions and shelf life.

Vaccines very rarely cause acute anaphylactic-type reactions. All vaccine providers should have the equipment, medications, staff, established protocols, and training to manage emergencies that may occur following vaccination.
Table 10–2. Recommended immunization schedule for persons aged 0 through 18 years – United States, 2014. (For those who fall behind or start late, see the catch-up schedule [Table 10–3].)

These recommendations must be read with the footnotes that follow. For those who fall behind or start late, provide catch-up vaccination at the earliest opportunity as indicated by the green bars in Table 10–2. To determine minimum intervals between doses, see the catch-up schedule (Table 10–3). School entry and adolescent vaccine age groups are in bold.

Table 10–3. Catch-up immunization schedule for persons aged 4 months through 18 years who start late or who are more than 1 month behind—United States, 2014.

The table below provides catch-up schedules and minimum intervals between doses for children whose vaccinations have been delayed. A vaccine series does not need to be restarted, regardless of the time that has elapsed between doses. Use the section appropriate for the child’s age. Always use this table in conjunction with Table 10–2 and the footnotes that follow.

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Minimum Interval Between Doses</th>
<th>Range of recommended ages for catch-up immunization</th>
<th>Range of recommended ages for certain high-risk groups</th>
<th>Range of recommended ages during which catch-up is encouraged and for certain high-risk groups</th>
<th>Not routinely recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hib</td>
<td>Dose 2 to dose 3</td>
<td>6 weeks</td>
<td>6 weeks</td>
<td>6 weeks</td>
<td></td>
</tr>
<tr>
<td>Hemophilus influenza type B (HIB)</td>
<td>Dose 2 to dose 3</td>
<td>6 weeks</td>
<td>6 weeks</td>
<td>6 weeks</td>
<td></td>
</tr>
<tr>
<td>Menegococcus C荚膜多糖菌 (MCV4b)</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>Menegococcus A荚膜多糖菌 (MENACRAM)</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>Diphtheria, tetanus, and acellular pertussis</td>
<td>6 weeks (as last dose)</td>
<td>6 weeks</td>
<td>6 weeks</td>
<td>6 weeks</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 10–3. Catch-up immunization schedule for persons aged 4 months through 18 years who start late or who are more than 1 month behind —United States, 2014. (Continued)

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Age Group</th>
<th>Immunization Schedule</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varicella</td>
<td>12 months</td>
<td>Routine</td>
<td>Use during the catch-up period if varicella vaccine was not given at the appropriate age or during earlier catch-up periods. Varicella vaccine is recommended for persons aged 12 through 23 months who have not received the MMR vaccine.</td>
</tr>
<tr>
<td>Meningococcal</td>
<td>6 weeks</td>
<td>8 weeks (and at least 16 weeks after first dose)</td>
<td>For persons aged 4 through 6 years who have not received meningococcal vaccine.</td>
</tr>
<tr>
<td>Haemophilus b conjugate</td>
<td>6 months</td>
<td>4 weeks</td>
<td>For persons aged 4 months through 6 years who have not received Haemophilus b conjugate vaccine.</td>
</tr>
<tr>
<td>Tetanus and diphtheria toxoids and acellular pertussis (Tdap)</td>
<td>7 years</td>
<td>4 weeks</td>
<td>For persons aged 7 through 11 years who have not received Tdap vaccine.</td>
</tr>
<tr>
<td>Diphtheria and tetanus toxoids and acellular pertussis (DTaP)</td>
<td>3 years</td>
<td>4 weeks</td>
<td>For persons aged 3 through 6 years who have not received DTaP vaccine.</td>
</tr>
</tbody>
</table>

NOTE: The above recommendations must be read along with the footnotes of this schedule.

Footnotes — Recommended immunization schedule for persons aged 0 through 18 years—United States, 2014.

For further guidance on the use of the vaccines mentioned, see: http://www.cdc.gov/vaccines/hcp/acip-recs/index.html.

For vaccine recommendations for persons 19 years of age and older, see the adult immunization schedule.

Additional Information:
- For contraindications and precautions to use of a vaccine and for additional information regarding that vaccine, vaccination providers should consult the relevant ACP statement available online at http://www.cdc.gov/vaccines/hcp/acip-recs/index.html.
- For purposes of calculating intervals between doses, 4 weeks is 28 days. Intervals of 4 months or greater are determined by calendar months.
- Vaccine doses administered 4 days or less before the minimum interval are considered valid. Doses of any vaccine administered 5 days earlier than the minimum interval or minimum age should not be counted as valid doses when calculating the recommendation interval. For further details, see MMWR, General recommendations on immunization and Reports /Vol 61 /No. 2, Table 1. Recommended and minimum ages and intervals between vaccine doses available online at http://www.cdc.gov/mmwr/pdf/rr/rr6102.pdf.
- For travel vaccine requirements and recommendations to be available at http://www.cdc.gov/travel/destinations/list.
276



Chapter 10

Reproduced from CDC, Recommended immunization schedules for persons aged 0-18 years, United States, 2012. MMWR 2012;61(5).


Vaccine Risk-Benefit Communication

Most parents in the United States choose to vaccinate their children: in 2011, less than 1% of young children had received no vaccines. However, parents’ concerns about vaccines are on the rise, and an increasing number of parents are choosing to delay or decline vaccination for their children. While there are myriad reasons why some parents may not vaccinate, several themes recur. Some parents do not believe their children are at risk for diseases such as poliomyelitis, measles, and tetanus. Other parents do not believe that certain vaccine-preventable diseases, such as varicella and pertussis, are particularly serious. There are also widespread concerns about the safety of vaccines. In a recent survey of more than 1500 parents, one-quarter believed that vaccines can cause autism in healthy children (despite no scientific evidence to support this claim), and more than one in 10 parents had refused at least one recommended vaccine. Healthcare providers have a critically important role in discussing the known risks and benefits of vaccination with parents. In this context, it is important that providers recognize that parent decisions are often based on inaccurate information about vaccine risk provided by the media or Internet sources. Parents with questions about vaccine safety should be directed to trusted websites, such as those of the AAP, the American Academy of Family Physicians (AAFP), the CDC (http://www.cdc.gov/vaccines), and the Immunization Action Coalition (http://www.immunize.org).

Vaccine Contraindications and Precautions

All vaccines have certain contraindications and precautions that guide their administration. A contraindication indicates that the potential vaccine recipient is at increased risk of a serious adverse event. A vaccine should not be given when a contraindication to that vaccine is present, whereas a precaution indicates a circumstance that might increase the risk of adverse events or diminish the effectiveness of the vaccine. In the setting of precautions, the risks and benefits of vaccination must be carefully weighed prior to a decision regarding vaccination. Precautions are often temporary, in which case vaccination can resume once the precaution no longer applies. Contraindications and precautions are listed below with each vaccine. Additional, more detailed, information is available from the CDC (http://www.cdc.gov/vaccines), in the AAP’s Red Book, and in vaccine package inserts.

Minor Acute Illnesses

Minor acute illnesses, with or without low-grade fever, are not contraindications to vaccination, because there is no evidence that vaccination under these conditions increases the rate of adverse effects or decreases efficacy. A moderate to severe febrile illness may be a reason to postpone vaccination. Routine physical examination and temperature assessment are not necessary before vaccinating healthy infants and children.

Children with Chronic Illnesses

Most chronic diseases are not contraindications to vaccination; in fact, children with chronic diseases may be at greater risk of complications from vaccine-preventable diseases, such as influenza and pneumococcal infections. Premature infants are a good example. They should be immunized according to their chronologic, not gestational, age. Vaccine doses should not be reduced for preterm or low-birth-weight infants. One exception to this rule is children with progressive central nervous system disorders. Vaccination with DTaP should be deferred until the child’s neurologic status has been clarified and is stable.

Immunodeficient Children

Congenitally immunodeficient children should not be immunized with live-virus vaccines (oral polio vaccine [OPV, available only in developing countries], rotavirus, MMR, VAR, MMRV, yellow fever, or live-attenuated influenza vaccine [LAIV]) or live-bacteria vaccines (BCG or live-typhoid fever vaccine). Depending on the nature of the immunodeficiency, other vaccines are safe, but may fail to evoke an immune response. Children with cancer and children receiving high-dose corticosteroids or other immunosuppressive agents should not be vaccinated with live-virus or live-bacteria vaccines. This contraindication does not apply if the malignancy is in remission and chemotherapy has not been administered for at least 90 days. Live-virus vaccines may also be administered to previously healthy children receiving low to moderate doses of corticosteroids (defined as up to 2 mg/kg/d of prednisone or prednisone equivalent, with a 20 mg/d maximum) for less than 14 days; children receiving short-acting...
alternate-day corticosteroids; children being maintained on physiologic corticosteroid therapy without other immunodeficiency; and children receiving only topical, inhaled, or intra-articular corticosteroids.

Contraindication of live-pathogen vaccines also applies to children with HIV infection who are severely immunosuppressed. In general, those who receive MMR should have at least 15% CD4 cells, a CD4 lymphocyte count equivalent to CDC immunologic class 2, and be asymptomatic from their HIV. MMR for these children is recommended at 12 months of age (after 6 months during an epidemic). For HIV-infected children, a booster MMR dose may be given at least 1 month after the initial dose; in fact, giving this booster dose earlier than at 4–6 years of age is often encouraged. The booster dose may be given as early as 1 month later, but doses given before 1 year of age should not be considered part of a complete series. VAR vaccination is also recommended for HIV-infected children with CD4 cells preserved as listed above. The ACIP recommends only IPV vaccination for all children. Thus, immunodeficient children should no longer be exposed to OPV through household contacts. MMR and VAR are not contraindicated in household contacts of immunocompromised children. The recommended immunization schedule for immunocompromised children is available at http://www.cdc.gov/vaccines/pubs/pinkbook/.

**Allergic or Hypersensitive Children**

Hypersensitivity reactions are rare following vaccination (1.53 cases per 1 million doses). They are generally attributable to a trace component of the vaccine other than to the antigen itself; for example, MMR, IPV, and VAR contain microgram quantities of neomycin, and IPV also contains trace amounts of streptomycin and polymyxin B. Children with known anaphylactic responses to these antibiotics should not be given these vaccines. Trace quantities of egg antigens may be present in both inactivated and live influenza and yellow fever vaccines. Guidelines for influenza vaccination in children with egg allergies have recently changed. Children with only hives following exposure to egg can be vaccinated, as long as injectable influenza vaccine is used as opposed to LAIV, vaccination is by a healthcare provider experienced in recognizing allergic reactions, and the child is observed for 30 minutes following vaccination. Children with more serious allergic reactions to egg, such as angioedema, respiratory symptoms, or anaphylaxis, may be eligible for injectable influenza vaccine, but should be referred to an allergist for an assessment of vaccination risk. Some vaccines (MMR, MMRV, and VAR) contain gelatin, a substance to which persons with known food allergy may develop an anaphylactic reaction. For any persons with a known history of anaphylactic reaction to any component contained in a vaccine, the vaccine package insert should be reviewed and additional consultation sought, such as from a pediatric allergist. Some tips and rubber plungers of vaccine syringes contain latex. These vaccines should not be administered to individuals with a history of severe anaphylactic allergy to latex, but may be administered to people with less severe allergies. Thimerosal is an organic mercurial compound used as a preservative in vaccines since the 1930s. While there is no evidence that thimerosal has caused serious allergic reactions or autism, all routinely recommended vaccines for infants have been manufactured without thimerosal since mid-2001. Thimerosal-free formulations of injectable influenza vaccine are available, and LAIV does not contain thimerosal.

**Other Circumstances**

Detailed recommendations for preterm low-birth-weight infants; pediatric transplant recipients; Alaskan Natives/American Indians; children in residential institutions or military communities; or refugees, new immigrants, or travelers are available from the CDC (at http://www.cdc.gov/vaccines) and from the AAP’s Red Book.

**HEPATITIS B VACCINATION**

The incidence of reported cases of acute hepatitis B has declined dramatically in the United States, largely attributable to vaccination. Based on surveillance data from 2007, acute hepatitis B incidence has declined by 82% since 1990, to the lowest rate ever measured. The greatest declines have been seen in children younger than 15 years of age, in whom rates have decreased by 98%.

Success in reducing the burden of hepatitis B in the United States is due, in large part, to a comprehensive hepatitis B prevention strategy initiated in 1991. The four central elements of this approach are (1) immunization of all infants beginning at birth; (2) routine screening of all pregnant women for hepatitis B infection, and provision of hepatitis B immune globulin (HBIG) to all infants born to infected mothers; (3) routine vaccination of previously unvaccinated children and adolescents; and (4) vaccination of adults at increased risk of hepatitis B infection.

While high immunization rates have been achieved in young children (more than 91% were fully immunized in 2011), there has been less success in identifying hepatitis B–infected mothers and at immunizing high-risk adults. Of the estimated 23,000 mothers who deliver each year who are hepatitis B surface antigen (HBsAg) positive, only 9000 are identified through prenatal screening. While there
is an average of 90 cases of perinatally acquired hepatitis B infection reported to the CDC every year, the actual number of perinatal HBV infections is estimated to be 10–20 times higher than the number currently detected and reported. This circumstance represents a significant missed opportunity for prevention, given that administration of hepatitis B vaccine (HepB) in conjunction with HB Ig is 95% effective at preventing mother-to-infant transmission of the virus. Further, many hospitals do not routinely offer HepB to all newborns, despite ACIP recommendations for universal newborn HepB vaccination. Similarly, while HepB alone is 90%–95% effective at preventing hepatitis B infection, only 45% of high-risk adults have been vaccinated.

All pregnant women should be routinely screened for HBsAg. Infants born to HBsAg-positive mothers should receive both HepB and HB Ig immediately after birth. Infants for whom the maternal HBsAg status is unknown should receive vaccine (but not HB Ig) within 12 hours of birth. In such circumstances, the mother’s HBsAg status should be determined as soon as possible during her hospitalization, and the infant given HB Ig if the mother is found to be HBsAg positive. For all infants, the hepatitis B immunization series should be started at birth, with the first dose given prior to discharge from the hospital. The ACIP has recommended that any decision to defer the birth dose require an explanation in the medical record, accompanied by a copy of the mother’s negative HBsAg test during the current pregnancy. In 2011, 69% of infants nationally received HepB within 3 days after birth, with wide variation by state (23%–84%).

Routine immunization with three doses of HepB is recommended for all infants and all previously unvaccinated children aged 0–18 years. A two-dose schedule is available for adolescents as well. In addition, persons 19 years and older with an increased risk of exposure to hepatitis B virus should be vaccinated. This includes men who have sex with men, persons with multiple sexual partners, intravenous and injection drug users, recipients of clotting factor concentrates, hemodialysis patients, household contacts and sexual contacts of persons with chronic hepatitis B infection, long-term international travelers to endemic areas, all adults 19 through 59 years of age with type 1 or 2 diabetes mellitus, and all healthcare personnel. HepB is also recommended for persons with chronic liver disease or HIV. Screening for markers of past infection before vaccinating is not indicated for children and adolescents, but may be considered for high-risk adults. Because HepB vaccines consist of an inactivated subunit of the virus, the vaccines are not infectious and are not contraindicated in immunosuppressed individuals or pregnant women.

**Vaccines Available**

1. Hepatitis B vaccine (Recombivax HB, Merck) contains recombinant HepB only.
2. Hepatitis B vaccine (Engerix-B, GlaxoSmithKline) contains recombinant HepB only.
3. Hepatitis B-Hib (Comvax, Merck) contains vaccines against hepatitis B and Hib.
4. DTaP-HepB-IPV (Pediarix, GlaxoSmithKline) contains vaccines against diphtheria, tetanus, pertussis, hepatitis B, and poliovirus.

Only the noncombination vaccines (Recombivax HB and Engerix-B) can be given between birth and 6 weeks of age. Any single or combination vaccine listed above can be used to complete the hepatitis B vaccination series. Thimerosal has been removed from all pediatric HepB formulations. A combination vaccine against hepatitis A and hepatitis B (Twinrix, GlaxoSmithKline) is available, but is only licensed in the United States for persons 18 years and older.

**Dosage Schedule of Administration**

HepB is recommended for all infants and children in the United States. Table 10–4 presents the vaccination schedule for newborn infants, dependent on maternal HBsAg status. Infants born to mothers with positive or unknown HBsAg status should receive HepB vaccine within 12 hours of birth. Infants born to HBsAg-negative mothers should receive the vaccine prior to hospital discharge.

For children younger than 11 years of age not previously immunized, three intramuscular doses of HepB are needed. Adolescents aged 11–15 years have two options: the standard pediatric three-dose schedule or two doses of adult Recombivax HB (1.0 mL dose), with the second dose administered 4–6 months after the first dose. The vaccine should be given intramuscularly in either the anterolateral thigh or deltoid, depending on the age and size of the patient.

Certain patients may have reduced immune response to HepB vaccination, including preterm infants weighing less than 2000 g at birth, the elderly, immunosuppressed patients, and those receiving dialysis. Preterm infants whose mothers are HBsAg-positive or with unknown HBsAg status should receive both HepB and HB Ig within 12 hours of birth. For preterm infants whose mothers are known to be HBsAg-negative, initiation of the vaccination series should be delayed until 30 days of chronologic age if the infant is medically stable or prior to hospital discharge if the infant is discharged before 30 days of age. Pediatric hemodialysis patients and immunocompromised persons may require larger doses or an increased number of doses, with dose amounts and schedules available in the most recent CDC hepatitis B recommendations (see references).

**Contraindications & Precautions**

HepB should not be given to persons with a serious allergic reaction to yeast or to any vaccine components. Individuals with a history of serious adverse events, such as anaphylaxis, after receiving HepB should not receive additional doses. Vaccination is not contraindicated in persons with a history...
of Guillain-Barré syndrome, multiple sclerosis, autoimmune disease, other chronic conditions, or in pregnancy.

## Adverse Effects

The overall rate of adverse events following vaccination is low. Those reported are minor, including fever (1%–6%) and pain at the injection site (3%–29%). There is no evidence of an association between vaccination and sudden infant death syndrome, multiple sclerosis, autoimmune disease, or chronic fatigue syndrome.

## Postexposure Prophylaxis

Postexposure prophylaxis is indicated for unvaccinated persons with perinatal, sexual, household, percutaneous, or mucosal exposure to hepatitis B virus. When prophylaxis is indicated, unvaccinated individuals should receive HBIG (0.06 mL/kg) and the first dose of HepB at a separate anatomic site. For sexual contact or household blood exposure to an acute case of hepatitis B, HBIG and HepB should be given. Sexual and household contacts of someone with chronic infection should receive HepB (but not HBIG). For individuals with percutaneous or permcusal exposure to blood, HepB should be given, and HBIG considered depending on the HBsAg status of the person who was the source of the blood and on the vaccination response status of the exposed person. All previously vaccinated persons exposed to hepatitis B should be retested for anti-HBs. If antibody levels are adequate (≥ 10 mIU/mL), no treatment is necessary. If levels are inadequate and the exposure was to HBsAg-positive blood, HBIG and vaccination are required.

## Antibody Preparations

HBIG is prepared from HIV-negative and hepatitis C virus-negative donors with high titers of hepatitis B surface antibody. The process used to prepare this product inactivates or eliminates any undetected HIV and hepatitis C virus.
ROTAVIRUS VACCINATION

Rotavirus is the leading cause of hospitalization and death from acute gastroenteritis in young children worldwide. The burden of rotavirus is particularly severe in the developing world, where as many as 500,000 children die each year from rotavirus-associated dehydration and other complications. While deaths from rotavirus were uncommon in the United States (20–60 deaths per year), prior to the introduction of rotavirus vaccine, rotavirus infections caused substantial morbidity annually with an estimated 2.7 million diarrheal illnesses, 410,000 office visits, and 55,000–70,000 hospitalizations.

A rhesus-based rotavirus vaccine (Rotashield, Wyeth-Lederle) was licensed by the FDA and recommended for routine use by the ACIP in 1998 but was withdrawn from the market within one year after it was noted that there was an increased risk of intussusception after the first dose. Two other rotavirus vaccines were in development at the time, and underwent extensive prelicensure testing. No association with intussusception was found in prelicensure studies for either new rotavirus vaccine. The ACIP made a recommendation to include pentavalent rotavirus vaccine (RV5; RotaTeq) in the routine infant series in February 2006, a recommendation that was updated in June 2008 to include the monovalent rotavirus vaccine (RV1; Rotarix).

Since the introduction of these vaccines, their use has increased steadily. Vaccination coverage in 2011 in the United States for ≥ 2 doses of rotavirus vaccine was 67%, up from 44% just two years earlier. The impact of the vaccines has been substantial, reducing both hospitalizations and outpatient visits. Death from rotavirus disease was a rare occurrence in the United States prior to licensure, but rotavirus vaccine has had a profound impact on deaths in the developing countries where it has been introduced.

However, there were two recent findings that raised concern about the safety of the newer rotavirus vaccines. In March 2010, the FDA recommended temporarily suspending use of RV1 due to the detection of porcine circovirus, a nonhuman pathogen, in the vaccine. This recommendation was lifted 2 months later after investigations showed that there was likely no threat to human health. Shortly thereafter, in August 2010, the Global Advisory Committee on Vaccine Safety of the World Health Organization reviewed preliminary data from postmarketing studies that showed a possible increased risk of intussusception for RV1 in Mexico. On September 22, 2010, the FDA recommended a label change for RV1 advising providers of the new data.

Vaccines Available

1. RV5 (Rotateq, Merck) is a pentavalent, live, oral, human-bovine reassortant rotavirus vaccine. The vaccine is a liquid, does not require any reconstitution, and does not contain any preservatives. The dosing tube is latex-free.

2. RV1 (Rotarix, GlaxoSmithKline) is a monovalent, live, oral, attenuated human rotavirus vaccine. The vaccine needs to be reconstituted with 1 mL of diluent using a prefilled oral applicator. The vaccine does not contain any preservatives. The oral applicator contains latex.

Dosage & Schedule of Administration

Either RV5 or RV1 can be used to prevent rotavirus gastroenteritis. RV5 should be administered orally, as a three-dose series, at 2, 4, and 6 months of age. RV1 should be administered orally, as a two-dose series, at 2 and 4 months of age. For both rotavirus vaccines, the minimum age for dose 1 is 6 weeks, and the maximum age for dose 1 is 14 weeks and 6 days. The vaccination series should not be started at 15 weeks of age or older, because of the lack of safety data around administering dose 1 to older infants. The minimum interval between doses is 4 weeks. All doses should be administered by 8 months and 0 days of age. While the ACIP recommends that the vaccine series be completed with the same product (RV5 or RV1) used for the initial dose, if this is not possible, providers should complete the series with whichever product is available.

Either rotavirus vaccine can be given simultaneously with all other recommended infant vaccines. Rotavirus vaccine can be given to infants with minor acute illness. No restrictions are placed on infant feeding before or after receiving rotavirus vaccine. Infants readily swallow the vaccine in most circumstances; however, if an infant spits up or vomits after a dose is administered, the dose should not be readministered; the infant can receive the remaining doses at the normal intervals.

Contraindications & Precautions

Rotavirus vaccine should not be given to infants with a severe hypersensitivity to any components of the vaccine, to infants who had a serious allergic reaction to a previous dose of the vaccine, or to infants with a history of intussusception from any cause. Because the RV1 oral applicator contains latex rubber, RV1 should not be given to infants with a severe latex allergy; RV5 is latex-free. Both vaccines are
contraindicated in infants with severe combined immunodeficiency (SCID). Vaccination should be deferred in infants with acute moderate or severe gastroenteritis. Limited data suggest that rotavirus vaccination is safe and effective in premature infants. A small trial in South Africa also demonstrated that RV1 was well tolerated and immunogenic in HIV-infected children. However, vaccine safety and efficacy in infants with immunocompromising conditions other than SCID, preexisting chronic gastrointestinal conditions (eg, Hirschsprung disease or short-gut syndrome), or a prior episode of intussusception, has not been established. Clinicians should weigh the potential risks and benefits of vaccination in such circumstances. Infants living in households with pregnant women or immunocompromised persons can be vaccinated.

### Adverse Effects

Because of new information regarding a possible increased risk of intussusception after the first dose from postmarketing surveillance done in Mexico, the FDA recently recommended a change to the labeling of RV1 (Rotarix), but not RV5 (Rotateq), informing providers of the possible increased risk.

Data from a large study in Mexico and Brazil found that there may be a small increase in the risk of intussusception in the 1–7 day time frame after the first dose of RV1 in Mexico (incident rate ratio 5.3, 95% confidence interval [CI] 3.0–9.3), but not in Brazil (incident rate ratio 1:1, 95% CI 0.3–3.3). A possible explanation for the discrepancy is that live oral poliovirus vaccine is given in Brazil, but not in Mexico, where inactivated poliovirus vaccine is given. It is important to note that the same study showed that the benefits of rotavirus vaccination far exceeded any possible risk, and recommendations for use of RV1 have not changed in Mexico or elsewhere. Also, the background rate of intussusception in Mexico, between 60 and 90 per 100,000 children per year, is higher than in the United States. Active surveillance conducted in the United States has not shown an increased risk of intussusception following RV5 vaccination; comparable data are not yet available for RV1 vaccination.

---

**DIPHTHERIA-TETANUS-ACELLULAR PERTUSSIS VACCINATION**

Diphtheria, tetanus, and pertussis (DTP) vaccines have been given in a combined vaccine for many decades, and have dramatically reduced each of these diseases. The efficacy with antigens in the combined vaccine is similar to that with antigens in single component vaccines. The pertussis component of DTP vaccines contains whole-cell pertussis antigens. Although these vaccines are used widely in the world, DTP vaccines have been entirely replaced in the United States with DTap vaccines, which are acellular pertussis vaccines made with purified, inactivated components of the bacterium.

Diphtheria is caused by a gram-positive bacillus, *Corynebacterium diphtheriae*. It is a toxin-mediated disease, with diphtheria toxin causing local tissue destruction, as in pharyngeal and tonsillar diphtheria, as well as systemic disease, particularly myocarditis and neuritis. The overall case fatality rate is between 5% and 10%, with higher death rates in persons younger than 5 years, or older than 40 years of age. As many as 200,000 cases of diphtheria occurred each year in the 1920s in the United States. Largely because of successful vaccination programs, only five cases of diphtheria have been reported in the United States since 2000, and a confirmed case has not been reported since 2003. In the last several decades, the majority of diphtheria cases in the United States have been in unimmunized or inadequately immunized persons. The clinical efficacy of diphtheria vaccine is not precisely known, but has been estimated to be greater than 95%.

The anaerobic gram-positive rod *Clostridium tetani* causes tetanus, usually through infection of a contaminated wound. When *C. tetani* colonizes devitalized tissue, the exotoxin tetanospasmin is disseminated to inhibitory motor neurons, resulting in generalized rigidity and spasms of skeletal muscles. Tetanus-prone wounds include (1) puncture wounds, including those acquired due to body piercing, tattooing, and intravenous drug abuse; (2) animal bites; (3) lacerations and abrasions; and (4) wounds resulting from nonsterile neonatal delivery and umbilical cord care (neonatal tetanus). In persons who have completed the primary vaccination series and have received a booster dose within the past 10 years, vaccination is virtually 100% protective. In 2010, 26 cases of tetanus occurred in the United States with almost all cases in persons who have had inadequate, distant (> 10 years) or no tetanus immunization.

Pertussis is also primarily a toxin-mediated disease. Called whooping cough because of the high-pitched inspiratory whoop that can follow intense paroxysms of cough, pertussis is caused by the bacterium *Bordetella pertussis*. Complications from pertussis include death, often from associated pneumonia, seizures, and encephalopathy. Prior to the widespread use of pertussis vaccines in the 1940s, roughly 1 million pertussis cases were reported over a 6-year period. Pertussis incidence in the United States declined...
dramatically between the 1940s and 1980s, but beginning in the early 1980s, incidence has been slowly increasing, with adolescents and adults accounting for a greater proportion of reported cases. Reasons for increased incidence include improved detection of cases with better laboratory testing methodology (polymerase chain reaction, serology), improved recognition of cases in adolescents and adults, and waning protection from childhood vaccination or prior infection. Infants less than 6 months of age have the highest rate of pertussis infection (143 cases per 100,000) and greater than 90% of pertussis deaths occur in neonates and infants less than 3 months of age.

In 2010, 27,550 cases of pertussis were reported in the United States with many localized outbreaks necessitating enhanced vaccination programs. California had the highest reported incidence since 1958 with a rate of 26.0 cases/100,000; over 9143 cases; and 10 infant deaths. A single booster dose of a different formulation, Tdap, is now recommended for all adolescents and adults, as is discussed in more detail later in this chapter. Providing a booster dose of pertussis-containing vaccine may prevent adolescent and adult pertussis cases, and also has the potential to reduce the spread of pertussis to infants, who are most susceptible to complications from the disease. Currently the ACIP is considering expanding recommendations to include regular booster doses of Tdap in an attempt to protect infants and mitigate current pertussis outbreaks.

Vaccines Available

**Diphtheria, Tetanus, and Acellular Pertussis Combinations**

1. **DTaP** (Daptacel, sanofi pasteur; Infanrix, GlaxoSmithKline) contains tetanus toxoid, diphtheria toxoid, and acellular pertussis vaccine. This DTaP is licensed for ages 6 weeks through 6 years and can be used for doses 1 through 5.

2. **Tdap** (Boostrix, GlaxoSmithKline) is a tetanus-reduced dose diphtheria-acellular pertussis vaccine formulated for persons 10 years of age and older, including adults and the elderly.

3. **Tdap** (Adacel, sanofi pasteur) is a tetanus-diphtheria-acellular pertussis vaccine approved for persons 11 through 64 years of age.

**DTaP Combined With Other Vaccines**

1. **DTaP-IPV-Hepatitis B** (Pediarix, GlaxoSmithKline) contains DTaP combined with poliovirus and HepB vaccines. It is approved for the first three doses of the DTaP and IPV series, given at 2, 4, and 6 months of age. Although it is approved for use through age 6 years, it is not licensed for booster doses. It cannot be used, for example, as the fourth dose of DTaP (the dose typically given at 15–18 months of age).

2. **DTaP-IPV-Hib** (Pentacel, sanofi pasteur) contains DTaP, IPV, and Hib vaccines. The Hib component is Hib capsular polysaccharide bound to tetanus toxoid. This vaccine is approved for use as doses 1 through 4 of the DTaP series among children 6 weeks to 4 years of age. It is typically given at 2, 4, 6, and 15–18 months of age, and should not be used as the fifth dose in the DTaP series.

3. **DTaP-IPV** (Kinrix, GlaxoSmithKline) contains DTaP and IPV vaccines. The vaccine is licensed for children 4–6 years of age, for use as the fifth dose of the DTaP vaccine series and the fourth dose of the IPV series. Using this vaccine would reduce by one the number of injections a 4- to 6-year-old child would receive.

**Diphtheria and Tetanus Combinations**

1. **DT** (generic, sanofi pasteur) contains tetanus toxoid and diphtheria toxoid to be used only in children younger than age 7 years with a contraindication to pertussis vaccination.

2. **Td** (Decavac, sanofi pasteur; generic, Massachusetts Biological Labs) contains tetanus toxoid and a reduced quantity of diphtheria toxoid, which is typically used for adults requiring tetanus prophylaxis.

**Tetanus Only**

**TT** (generic, sanofi pasteur) contains tetanus toxoid only, and can be used for adults or children. However, the use of this single-antigen vaccine is generally not recommended, because of the need for periodic boosting for both diphtheria and tetanus.

**Dosage & Schedule of Administration**

Although several different vaccines are available, a few general considerations can help guide their use in specific circumstances. DTaP (alone or combined with other vaccines) is used for infants and children between 6 weeks and 6 years of age. Children 7–10 years of age not fully immunized against pertussis (meaning those who have not received five prior doses of DTaP, or four doses of DTaP if the fourth dose was given on or after the fourth birthday), who have no contraindications to pertussis immunization, should receive a single dose of Tdap for pertussis protection. For adolescents and adults, a single dose of Tdap is used, followed by booster doses of Td every 10 years; a detailed description of Tdap use is provided later in this chapter.

The primary series of DTaP vaccination should consist of four doses, given at 2, 4, 6, and 15–18 months of age. The fourth dose may be given as early as 12 months of age if 6 months have elapsed since the third dose. Giving the fourth dose between 12 and 15 months of age is indicated if the provider thinks the child is unlikely to return for a clinic visit between 15 and 18 months of age. Children should
receive a fifth dose of DTaP at 4–6 years of age. However, a fifth dose of DTaP is not needed if the fourth dose was given after the child’s fourth birthday. The same brand of DTaP should be used for all doses if feasible.

**Contraindications & Precautions**

DTaP vaccines should not be used in individuals who have had an anaphylactic-type reaction to a previous vaccine dose or to a vaccine component. DTaP should not be given to children who developed encephalopathy, not attributable to another identified cause, within 7 days of a previous dose of DTaP or DTP. DTaP vaccination should also be deferred in individuals with progressive neurologic disorders, such as infantile spasms, uncontrolled epilepsy, or progressive encephalopathy, until their neurologic status is clarified and stabilized.

Precautions to DTaP vaccination include: high fever (≥ 40.5°C), persistent inconsolable crying, or shock-like state within 48 hours of a previous dose of DTP or DTaP; seizures within 3 days of a previous dose of DTP or DTaP; Guillain-Barré syndrome less than 6 weeks after a previous tetanus-containing vaccine; or incident moderate or severe acute illness with or without a fever.

**Adverse Effects**

Local reactions, fever, and other mild systemic effects occur with acellular pertussis vaccines at one-fourth to two-thirds the frequency noted following whole-cell DTP vaccination. Moderate to severe systemic effects, including fever of 40.5°C, persistent inconsolable crying lasting 3 hours or more, and hypotonic-hyporesponsive episodes, are less frequent than with whole-cell DTP. These are without sequelae.

Severe neurologic effects have not been temporally associated with DTaP vaccines in use in the United States. A recent study from Canada showed no evidence of encephalopathy related to pertussis vaccine (< 1 case per 3 million doses of DTP and < 1 per 3.5 million doses of DTaP). Data are limited regarding differences in reactogenicity among currently licensed DTaP vaccines. With all currently licensed DTaP vaccines, reports of substantial local reactions at injection sites have increased with increasing dose number (including swelling of the thigh or entire upper arm after receipt of the fourth and fifth doses).

**Diphtheria Antibody Preparations**

Diphtheria antitoxin is manufactured in horses. Dosage depends on the size and location of the diphtheritic membrane and an estimate of the patient’s level of intoxication. Sensitivity to diphtheria antitoxin must be tested before it is given. Consultation on the use of diphtheria antitoxin is available from the CDC’s National Center for Immunization and Respiratory Diseases. Diphtheria antitoxin is not commercially available in the United States and must be obtained from the CDC.

**Tetanus Antibody Preparations**

Human tetanus immune globulin (TIg) is indicated in the management of tetanus-prone wounds in individuals who have had an uncertain number or fewer than three tetanus immunizations. Persons fully immunized with at least three doses do not require TIg, regardless of the nature of their wounds (Table 10–5). The optimal dose of TIg has not been established, but some sources recommend 3000–6000 units

<table>
<thead>
<tr>
<th>History of Adsorbed Tetanus Toxoid (Doses)</th>
<th>Clean, Minor Wounds</th>
<th>All Other Woundsa</th>
<th>DTaP, Tdap, or Tdbb</th>
<th>TIGc</th>
<th>DTaP, Tdap, or Tdbb</th>
<th>TIGc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fewer than 3 or unknown</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3 or more</td>
<td>No if &lt;10 y since last tetanus-containing vaccine dose</td>
<td>Yes if ≥10 y since last tetanus-containing vaccine dose</td>
<td>No</td>
<td>No if &lt;5 y since last tetanus-containing vaccine dose</td>
<td>Yes if ≥5 y since last tetanus-containing vaccine dose</td>
<td>No</td>
</tr>
</tbody>
</table>

Tdap indicates booster tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine; DTaP, diphtheria and tetanus toxoids and acellular pertussis vaccine; Tdap indicates booster tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine; DTaP, diphtheria and tetanus toxoids and acellular pertussis vaccine; Td, adult-type diphtheria and tetanus toxoids vaccine; tig, tetanus immune globulin (human).

a Such as, but not limited to, wounds contaminated with dirt, feces, soil, and saliva; puncture wounds, avulsions, and wounds resulting from missiles, crushing, burns, and frostbite.

b DTaP is used for children younger than 7 years of age. Tdap is preferred over Td for underimmunized children 7 years of age and older who have not received Tdap previously.

c Immune globulin intravenous should be used when TIG is not available.

d More frequent boosters are not needed and can accentuate adverse effects.

Source: Centers for Disease Control and Prevention.
as a single dose, with part of the dose infiltrated around the wound.

**HAEMOPHILUS INFLUENZAE**

_H influenzae_ type b (Hib) causes a wide spectrum of serious bacterial illnesses, particularly in young children, including meningitis, epiglottitis, pneumonia, septic arthritis, and cellulitis. Before the introduction of effective vaccines, Hib was the leading cause of invasive bacterial disease in children younger than 5 years of age in the United States with two-thirds of cases occurring in children younger than 18 months of age.

Hib is surrounded by a polysaccharide capsule (polyribosylribitol phosphate [PRP]) that contributes to virulence, and antibodies to this polysaccharide confer immunity to the disease. When Hib polysaccharide is chemically bonded (conjugated) to certain protein carriers, the conjugate vaccine induces long-term T-cell dependent immune memory that is highly effective in young children. Importantly, polysaccharide-protein conjugate vaccines also prevent carriage of the bacterium, and therefore limit spread from asymptomatic carriers to others in the community. All current Hib vaccines are based on this polysaccharide-protein conjugate technology.

Bacterial serotyping is required to differentiate Hib caused infections from those caused by other encapsulated and nonencapsulated _H influenzae_ species. In the early 1980s, roughly 20,000 cases of invasive Hib disease occurred each year in the United States. Since the introduction of protein conjugate Hib vaccines, disease incidence has declined by more than 99% to less than one case per 100,000. In the United States in 2010, 23 cases of invasive Hib disease occurred in children younger than age 5 years. An additional 423 cases were caused by _H influenzae_ species, which were not serotype b or the serotype was not reported.

**Vaccines Available**

Six vaccines against Hib disease are available in the United States; three are Hib-only vaccines, and three are combination vaccines. Each vaccine contains Hib polysaccharide conjugated to a protein carrier, but different protein carriers are used. The Hib conjugate vaccine that uses a meningococcal outer membrane protein carrier is abbreviated PRP-OMP; and PRP-T vaccine uses a tetanus toxoid carrier.

**Hib-Only Vaccines**

1. Hib (PedvaxHIB, Merck, uses PRP-OMP), for use at 2, 4, and 12–15 months of age.
2. Hib (ActHIB, sanofi pasteur, uses PRP-T), for use at 2, 4, 6, and 12–15 months of age.
3. Hib (Hiberix, GlaxoSmithKline, uses PRP-T), for use as the booster (final) dose in the Hib vaccine series for children 15 months of age and older; it is not licensed for the primary series.

**Hib Combined With Other Vaccines**

1. Hepatitis B-Hib (Comvax, uses PRP-OMP, Merck), for use at 2, 4, and 12–15 months of age. It should not be given prior to 6 weeks of age.
2. DTaP-IPV-Hib (Pentacel, sanofi pasteur, uses PRP-T) contains DTaP, IPV, and Hib vaccines. This vaccine is approved for use in children 6 weeks to 4 years of age.
3. Hib-MenCY-TT (MenHibrix, GlaxoSmithKline Biologicals): A single 0.5 mL dose contains 5 mcg of _Neisseria meningitidis_ C capsular polysaccharide conjugated to approximately 5 mcg of tetanus toxoid, 5 mcg of _Neisseria meningitidis_ Y capsular polysaccharide conjugated to approximately 6.5 mcg of tetanus toxoid, and 2.5 mcg of Hib capsular polysaccharide conjugated to approximately 6.25 mcg of tetanus toxoid.

**Dosage & Schedule of Administration**

Hib vaccination is recommended for all infants in the United States. The vaccine dose is 0.5 mL given intramuscularly. As shown in Table 10–6, the vaccination schedule depends on which type of Hib vaccine is used. The recommended interval between doses in the primary series is 8 weeks, but a minimal interval of 4 weeks is permitted. For infants who missed the primary vaccination series, a catch-up schedule is used (see Table 10–3). Hib-MenCY-TT is recommended for infants at increased risk of meningococcal disease (see meningococcal section of this chapter). Hib vaccine is not generally recommended for children 5 years of age or older.

**Contraindications & Precautions**

Hib vaccine should not be given to anyone who has had a severe allergic reaction to a prior Hib vaccine dose or to any vaccine components. Hib vaccine should not be given to infants before 6 weeks of age.
Adverse Effects

Adverse reactions following Hib vaccination are uncommon. Between 5% and 30% of vaccine recipients experience swelling, redness, or pain at the vaccination site. Systemic reactions such as fever and irritability are rare.


PNEUMOCOCCAL VACCINATION

Before the routine use of pneumococcal conjugate vaccines in infants, Streptococcus pneumoniae (pneumococcus) was the leading cause of invasive bacterial disease in children. Pneumococcus remains a leading cause of febrile bacteremia, bacterial sepsis, meningitis, and pneumonia in children and adults in the United States and worldwide. It is also a common cause of otitis media and sinusitis. At least 90 different serotypes of pneumococcus have been identified, and immunity to one serotype does not confer immunity to other serotypes.

A conjugate vaccine against seven pneumococcal serotypes (PCV7) was first licensed in the United States in 2000. The routine use of PCV7 led to a dramatic decrease in pneumococcal disease in the United States. However, as disease from PCV7 serotypes has declined greatly, disease caused by pneumococcal serotypes not included in this vaccine, particularly serotype 19A, increased.

In 2010, a 13-valent pneumococcal conjugate vaccine (PCV13) was licensed for use in the United States. Made by the same manufacturer and using the same processes as for PCV7 development, the vaccine contains the seven serotypes included in PCV7 as well as six additional pneumococcal serotypes (including serotype 19A). PCV13 has replaced PCV7 in the United States, and PCV7 is no longer available. PCV13 contains the capsular polysaccharide antigens of 13 serotypes, each individually conjugated to a nontoxic diphtheria carrier protein.

An older, 23-valent pneumococcal vaccine (PPSV23) is also available in the United States, but its use in children is limited to those with certain chronic medical conditions. PPSV23 is a polysaccharide vaccine that protects against 23 serotypes, and provides protection against approximately 25% of pneumococcal infections not prevented by pneumococcal conjugate vaccines. However, the vaccine does not produce long-lasting immune response and does not reduce nasopharyngeal carriage.

While all children and adults are at risk of pneumococcal disease, certain children are at particularly high risk of invasive pneumococcal disease. As seen in Table 10–7, these include children with congenital or acquired immunodeficiency, those without a functioning spleen, and immunocompetent children with certain chronic conditions. These children need enhanced protection against pneumococcal disease, with a more extensive vaccination schedule than healthy children, including the use of PPSV23.

Vaccines Available

1. PCV13 (Prevnar13, Wyeth). The vaccine contains an aluminum phosphate adjuvant, and does not contain thimerosal preservative. It is licensed for use in children 6 weeks through 17 years of age, and in adults 50 years of age and older.
2. PPSV23 (Pneumovax23, Merck). It contains the capsular polysaccharide antigens of 23 pneumococcal serotypes. It contains phenol as a preservative. It is licensed for children 2 years of age and older, and for adults.

Dosage & Schedule of Administration

PCV13 is given as a 0.5-mL intramuscular dose. PPSV23 is given as a 0.5-mL dose by either the intramuscular or subcutaneous route.

The recommended immunization schedule for infants and children is complicated by several factors, including the age at first vaccination, the transition from PCV7 to PCV13, and the need to provide enhanced protection to children
Table 10–7. Chronic medical conditions that are indications for enhanced pneumococcal vaccination among children, by risk group.

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunocompetent children</td>
<td>Chronic heart disease&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>Chronic lung disease&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td></td>
<td>Cerebrospinal fluid leaks</td>
</tr>
<tr>
<td></td>
<td>Cochlear implant</td>
</tr>
<tr>
<td>Children with functional or anatomic asplenia</td>
<td>Sickel cell disease and other hemoglobinopathies</td>
</tr>
<tr>
<td></td>
<td>Congenital or acquired asplenia, or splenic dysfunction</td>
</tr>
<tr>
<td>Children with immunocompromising conditions</td>
<td>HIV infection</td>
</tr>
<tr>
<td></td>
<td>Chronic renal failure and nephrotic syndrome</td>
</tr>
<tr>
<td></td>
<td>Diseases associated with treatment with immunosuppressive drugs or radiation therapy, including malignant neoplasms, leukemias, lymphomas, and Hodgkin disease; or solid organ transplantation</td>
</tr>
<tr>
<td></td>
<td>Congenital immunodeficiency&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>a</sup>Particularly cyanotic congenital heart disease and cardiac failure.
<sup>b</sup>Including asthma if treated with high-dose oral corticosteroid therapy.
<sup>c</sup>Includes B- (humoral) or T-lymphocyte deficiency, complement deficiencies, particularly C1, C2, C3, and C4 deficiency; and phagocytic disorders (excluding chronic granulomatous disease).

*Source: Advisory Committee on Immunization Practices, 2010.*

Table 10–8. Recommended schedule for administering doses of 13-valent pneumococcal conjugate vaccine (PCV13) to children aged ≥ 24 months by PCV vaccination history and age.

<table>
<thead>
<tr>
<th>Age at This Visit (mo)</th>
<th>Vaccination History: Total Number of PCV7 and/or PCV13 Doses Received Previously Before Age 24 mo</th>
<th>Recommended PCV13 Regimen&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>24–59 mo in healthy children</td>
<td>Unvaccinated or any incomplete schedule 4 doses of PCV7 or other age-appropriate, complete PCV7 schedule</td>
<td>1 dose, ≥ 8 wks after the most recent dose 1 supplemental dose, ≥ 8 wks after the most recent dose</td>
</tr>
<tr>
<td>24–71 mo in children with underlying medical conditions&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Unvaccinated or any incomplete schedule of &lt; 3 doses Any incomplete schedule of 3 doses 4 doses of PCV7 or other age-appropriate complete PCV7 schedule</td>
<td>2 doses, the first dose ≥ 8 wks after the most recent dose and a second dose ≥ 8 wks later 1 dose, ≥ 8 wks after the most recent dose 1 supplemental dose, ≥ 8 wks after the most recent dose</td>
</tr>
</tbody>
</table>

<sup>a</sup>Minimum interval between doses is 8 weeks.
<sup>b</sup>For list of conditions, see Table 10–7.

*Source: Advisory Committee on Immunization Practices, 2010.*

at an increased risk of pneumococcal disease (Tables 10–7 and 10–8). Updated and detailed schedule information is available from the CDC (at [http://www.cdc.gov/vaccines](http://www.cdc.gov/vaccines)) and the Immunization Action Coalition (at [http://www.immunize.org](http://www.immunize.org)).

PCV13 is routinely recommended for infants at 2, 4, 6, and 12–15 months of age. The dosing schedule for children 24–71 months of age is shown in Table 10–8. These tables highlight several important features of pneumococcal vaccination recommendations. Healthy children 24–59 months of age who completed a 4-dose PCV7 series should nonetheless receive a single dose of PCV13, to provide them with protection against additional serotypes contained in PCV13. Children 24–71 months of age with certain underlying medical conditions (see Table 10–7) should also receive additional PCV13 doses.

Children with certain chronic medical conditions (see Table 10–7) should receive PPSV23 in addition to PCV13. The rationale for this recommendation is that, while less immunogenic than PCV13, PPSV23 covers additional serotypes that may cause significant disease in this population. For children ≥ 2 years of age with chronic medical conditions, one dose of PPSV23 should be given at least 8 weeks after the most recent PCV13 dose. Children 24–71 months of age with chronic medical conditions with any incomplete PCV7 series should receive PCV13 (see Table 10–8), followed ≥ 8 weeks later by PPSV23 vaccination. A second dose of PPSV23 is recommended 5 years after the first dose of PPSV23 for children with anatomic or functional asplenia, HIV infection, or immunocompromising conditions. Immunocompetent children with chronic illness should receive the first dose of PPSV23, but are not recommended for PPSV23 revaccination after 5 years.
**Contraindications & Precautions**

For both PCV13 and PPSV23, vaccination is contraindicated in individuals who suffered a severe allergic reaction such as anaphylaxis after a previous vaccine dose or to a vaccine component (including to any diphtheria toxoid-containing vaccine). PCV13 and PPV23 vaccination should be deferred during moderate or severe acute illness, with or without fever. A history of invasive pneumococcal disease is not a contraindication to vaccination.

**Adverse Effects**

The most common adverse effects associated with PCV13 administration are fever, injection site reactions, irritability, and increased or decreased sleep. Although not definitely proven, PCV13 administered simultaneously with inactivated influenza vaccine may lead to a small increased risk of febrile seizures. With PPSV23, 50% of vaccine recipients develop pain and redness at the injection site. Fewer than 1% develop systemic side effects such as fever and myalgia. Anaphylaxis is rare. PPSV23 appears to be safe and immunogenic during pregnancy, although safety data are lacking regarding vaccination during the first trimester of pregnancy.

---

**Vaccines Available**

1. IPV (IPOL, sanofi pasteur) is given intramuscularly or subcutaneously.
2. DTaP-HepB-IPV (Pediarix, GlaxoSmithKline) contains diphtheria and tetanus toxoids and acellular pertussis adsorbed, hepatitis B, and inactivated poliovirus vaccine. Approved for use at 2, 4, and 6 months of age; not approved for use as the fourth dose of IPV or the fourth or fifth doses of DTaP; given intramuscularly.
3. DTaP-IPV-Hib (Pentacel, sanofi pasteur) contains DTaP, IPV, and Hib vaccines. Approved for use at 2, 4, 6, and 15–18 months of age; not approved for use as the final 4- to 6-year-old booster dose of IPV; given intramuscularly.
4. DTaP-IPV (Kinrix, GlaxoSmithKline) contains DTaP and IPV vaccines. The vaccine is licensed for children 4–6 years of age, for use as a final booster dose of IPV; given intramuscularly.

**Dosage & Schedule of Administration**

In the United States, all children without contraindications should receive an IPV-containing vaccine at 2 months, 4 months, 6–18 months, and 4–6 years of age. A dose of IPV
should be given at 4 years of age or older, regardless of the number of prior doses of IPV. For example, if four doses of DTaP-IPV-Hib are given prior to 4 years of age, a fifth dose of IPV (in the form of IPV-only or DTaP-IPV) is still needed at 4–6 years of age.

### Contraindications & Precautions

IPV vaccination is contraindicated in individuals who suffered a severe allergic reaction such as anaphylaxis after a previous vaccine dose or to a vaccine component. IPV vaccination should be deferred during moderate or severe acute illness with or without fever. Pregnancy is also a precaution to IPV vaccination. Receipt of previous doses of OPV is not a contraindication to IPV.

### Adverse Effects

Minor local reactions, such as pain or redness at the injection site, may occur following IPV vaccination. No serious adverse reactions following IPV vaccination have been described.

**Adverse Effects**

*Minor local reactions, such as pain or redness at the injection site, may occur following IPV vaccination. No serious adverse reactions following IPV vaccination have been described.*

**Influenza occurs each winter-early spring period, often associated with significant morbidity and mortality in certain high-risk persons. Up to 36,000 deaths per year in the United States are attributable to influenza, and global epidemics (pandemics) can occur. The most recent pandemic H1N1 strain began circulation in the spring of 2009 and infected millions throughout the world with varying degrees of morbidity and mortality. In the United States, there were estimated more than 60 million illnesses, more than 270,000 hospitalizations, and 12,500 deaths. This H1N1 strain is now incorporated into the seasonal trivalent vaccine. Each year, recommendations are formulated in the spring regarding the constituents of influenza vaccine for the coming season. These recommendations are based on the results of surveillance in Asia and the southern hemisphere during the preceding 6 months. Previous influenza vaccines have contained three strains (two influenza A strains, and one of the two lineages of influenza B that may commonly circulate in any given year). However, a quadrivalent vaccine will be available in limited supply for the 2013–2014 influenza season. The new quadrivalent vaccine contains antigens from two strains of influenza A that are chosen as being likely to circulate in the United States during the upcoming season, and both lineages of influenza B. Children at high risk of seasonal influenza-related complications include those with hemoglobinopathies or with chronic cardiac, pulmonary (including asthma), metabolic, renal, and immunosuppressive diseases (including immunosuppression caused by medications or by HIV); and those with any condition (eg, cognitive dysfunction, spinal cord injuries, seizure disorders, or other neuromuscular disorders) that can compromise respiratory function or the handling of respiratory secretions, or that can increase the risk of aspiration. Children and adolescents receiving long-term aspirin therapy are also at risk of influenza-related Reye syndrome. Healthy children aged 6–23 months are at substantially increased risk of influenza-related hospitalizations, and children aged 24–59 months (ie, 2–4 years) remain at increased risk of influenza-related clinic and emergency department visits and hospitalizations, but less so than younger children.

Annual influenza vaccination is routinely recommended for all persons older than 6 months of age. Multiple studies have shown increased efficacy of LAIV over inactivated influenza vaccine in the pediatric population with equal efficacy noted in the adult population. Physicians should identify high-risk children in their practices and encourage parents to seek influenza vaccination for them as soon as influenza vaccine is available. Influenza prevention will help prevent lower respiratory tract disease or other secondary complications in high-risk groups, thereby decreasing hospitalizations and deaths.

**Vaccines Available**

The inactivated influenza vaccine virus is grown in eggs, formalin-inactivated, and may contain trace quantities of thimerosal as a preservative. Only split-virus or purified surface antigen preparations are available in the United States. Several manufacturers produce similar vaccines each year. Fluzone split-virus (sanofi pasteur) is approved for children 6 months and older; Fluvirin (Novartis) is approved only for children 4 years and older, Fluarix (GlaxoSmithKline) is approved for children 3 years and older, and Afluria (CSL Biotherapies) is recommended for children 9 years and older. Additional manufacturers (ID Biomedical Corporation) produce influenza vaccines approved for adults.

To eliminate the need for injections, and potentially to enhance mucosal and systemic immune response to vaccination, a live attenuated intranasal vaccine has been developed. This vaccine consists of cold-adapted and temperature-sensitive viruses that replicate poorly in the lower respiratory tract, but well in the nasal mucosa (thereby producing immunity). The intranasal live attenuated influenza virus
vaccine (LAIV [FluMist, MedImmune]) formulation uses the virus strains present in the inactivated vaccine. It is also made in eggs and comes in a single-use prefilled sprayer that should be stored refrigerated at 2°C–8°C.

Dosage & Schedule of Administration

Inactivated Influenza Virus Vaccine

Because influenza can circulate yearly from November through early March in the United States, the optimal time to initiate vaccination is as soon as vaccine is available in the late summer/early fall. However, providers should continue vaccinating individuals as long as vaccine is available and there is still influenza activity in the community. Children younger than age 6 months should not be immunized. Two doses are recommended for children younger than age 9 years who did not receive a vaccine in the recent season. Older children receiving vaccine for the first time require only a single dose. The dose for children aged 6–35 months is 0.25 mL given intramuscularly; for older children the dose is 0.5 mL given intramuscularly. The recommended site of vaccination is the anterolateral aspect of the thigh for younger children and the deltoid for older children. Pregnancy is not a contraindication to use of inactivated vaccine, and vaccine is recommended for all pregnant women and those contemplating pregnancy during the influenza season. Simultaneous administration with other routine vaccines is acceptable.

Live Attenuated Influenza Virus Vaccine

This vaccine is supplied in a prefilled single-use sprayer containing 0.2 mL of the vaccine, approximately half of which is sprayed into each nostril. A dose divider clip is provided to assist in dividing the dose. If the patient sneezes during administration, the dose should not be repeated. It can be administered to children with minor illnesses, but should not be given if significant nasal congestion is present. Because it is a live vaccine it should be administered 48 hours after cessation of therapy in children receiving anti-influenza antiviral drugs, and these should not be given for 2 weeks after vaccination. Two doses are recommended for children younger than age 9 years who did not receive influenza vaccine in the recent season. One dose is recommended for individuals 9–49 years of age.

Contraindications & Precautions

Inactivated Influenza Virus Vaccine

Inactivated influenza vaccine is contraindicated in individuals with a severe allergic reaction, such as anaphylaxis, to a previous dose of an inactivated influenza vaccine component. However, guidelines for influenza vaccination in children with egg allergies have recently changed. Children with only hives following exposure to egg can be vaccinated, as long as inactivated influenza vaccine is used as opposed to LAIV, vaccination is by a healthcare provider experienced in recognizing and treating allergic reactions, and the child is observed for 30 minutes following vaccination. Children with more serious allergic reactions to egg, such as angioedema, respiratory symptoms, or anaphylaxis, may be eligible for inactivated influenza vaccine but should be referred to an allergist for an assessment of vaccination risk.

Live Attenuated Influenza Virus Vaccine

LAIV is contraindicated in individuals with history of hypersensitivity to eggs, egg proteins, gentamicin, gelatin, or arginine, or with life-threatening reactions to previous influenza vaccinations, and in children and adolescents receiving concomitant aspirin or aspirin-containing therapy. LAIV should not be administered to the following persons: (1) children younger than 24 months of age, because of an increased risk of hospitalization and wheezing that was observed in clinical trials; (2) any individual with asthma or children younger than age 5 years with recurrent wheezing unless the potential benefit outweighs the potential risk; (3) individuals with severe asthma or active wheezing; or (4) within 48 hours of influenza antiviral therapy. Healthcare providers should wait 2 weeks after antiviral therapy to administer LAIV unless medically necessary.

All healthcare workers, including those with asthma and other underlying health conditions (except severe immune compromise), can administer LAIV. Healthcare workers who are vaccinated with LAIV can safely provide care to patients within a hospital or clinic, except for severely immunosuppressed patients that require a protected environment (ie, bone marrow transplant patients). In this instance, there should be a 7-day interval between receiving LAIV and care for these patients.

Adverse Effects

Inactivated Influenza Virus Vaccine

Injection site reactions are the most common adverse events after inactivated influenza vaccine administration. A small proportion of children will experience some systemic toxicity, consisting of fever, malaise, and myalgia. These symptoms generally begin 6–12 hours after vaccination and may last 24–48 hours. Cases of Guillain-Barré syndrome followed the swine influenza vaccination program in 1976–1977, but careful study by the Institute of Medicine showed no association with that vaccine in children and young adults – nor in any age group that received vaccines in subsequent years.

Live Attenuated Influenza Virus Vaccine

The most common adverse reactions (occurring at < 10% in individuals receiving LAIV and at least 5% greater than in
placebo) are runny nose or nasal congestion in recipients of all ages and fever higher than 37.7°C in children 2–6 years of age. These reactions were reported more frequently with the first dose and were all self-limited.


MEASLES, MUMPS, & RUBELLA VACCINATION

Due to an effective vaccination program beginning in 1963, measles was declared eliminated from the United States in the year 2000. From 2000 to 2008, there were sporadic importations of measles from countries with lower vaccination rates. However, because measles is one of the first diseases to reappear when vaccination coverage falls, since 2008 there have been numerous outbreaks of measles, primarily from viral transmission within the United States after initial exposure to imported cases. In 2011, there were 222 cases and 17 outbreaks of measles confirmed in the United States, the highest number reported since 1996. Of these cases, 86% were unvaccinated and 90% were associated with United States residents traveling internationally. The increasing number of outbreaks and cases of measles demonstrates the ongoing risk of measles and emphasizes the importance of vaccination.

In the United States, after the introduction of mumps vaccine in 1967 and the recommendation for its use in 1977, there was a 99% decline in mumps from 185,691 cases reported in 1968 to fewer than 300 cases each year between 2001 and 2003. However, between 2005 and 2006, there was a large multistate outbreak of mumps with almost 6000 confirmed or probable mumps cases reported to the CDC. Six states—Iowa, Kansas, Wisconsin, Illinois, Nebraska, and South Dakota—recorded 85% of the cases. This outbreak occurred mostly on college campuses, but also involved high schools and middle schools. Several factors may have contributed to the outbreaks: conditions on college and high school campuses may be conducive to spread of respiratory infections; two doses of MMR vaccine may not be 100% effective in preventing mumps and even less effective in preventing asymptomatic infection; and waning immunity may have occurred in young adults who had last received mumps-containing vaccine 6–17 years earlier.

The rubella vaccine is not primarily intended to protect individuals from rubella infection, but rather to prevent the serious consequences of rubella infection in pregnant women: miscarriage, fetal demise, and congenital rubella syndrome. Congenital rubella syndrome is a group of birth defects including deafness, cataracts, heart defects, and mental retardation. In the United States and the United Kingdom, the approach has been to vaccinate young children and thereby reduce transmission to susceptible women of childbearing age via a herd immunity effect. With the use of rubella vaccines since 1970, rubella incidence rates have declined more than 99% and rubella is now essentially eliminated in the United States with less than 10 cases per year. However, approximately 10% of persons older than 5 years remain susceptible to rubella. Currently most cases of rubella are seen in foreign-born adults, and outbreaks have occurred in poultry- and meat-processing plants that employ many foreign-born workers. There were only four cases of congenital rubella syndrome in the United States between 2008 and 2012.

Despite many reports in the lay press and on the Internet of a link between MMR and autism, there is overwhelming scientific evidence that there is no causal association between the two. There is also no evidence that separation of MMR into its individual component vaccines lessens the risk of any vaccine adverse event, and such practice is not recommended.

It has been known for some time that there is a small but increased risk of febrile seizures after MMR. A recent study found that in 12- to 23-month-old children, the risk for febrile seizures with the MMRV preparation appears to be twice that of MMR and VAR given separately, resulting in one additional febrile seizure per 2300–2600 children vaccinated with MMRV at this age.

Vaccines Available

1. Measles-mumps-rubella (MMR II, Merck): MMR II is a lyophilized preparation of measles, mumps, and rubella vaccines. The measles and mumps portions are prepared using chick embryo tissue cultures and rubella is grown in human diploid cells. There is no adjuvant and no preservative. It does contain small amounts of gelatin, sorbitol, and neomycin. The individual components of MMR II are no longer available.

2. MMRV: In September 2005, the FDA licensed a combined live attenuated measles, mumps, rubella, and varicella vaccine (ProQuad, Merck) for use in children 1–12 years of age. The measles, mumps, and rubella components are identical to MMR II. The varicella component has a higher varicella zoster virus titer than the varicella-only (VAR) vaccine.
Dosage & Schedule of Administration

Routine Vaccination

Measles, mumps, and rubella vaccinations should be given as MMR or MMRV at 12–15 months and again at 4–6 years of age. Both MMR and MMRV can cause febrile seizures, although uncommonly. Because febrile seizures following MMRV occur at a rate twice that of MMR (see "Adverse Effects"), the ACIP recommends that after a discussion of the benefits and risks of both vaccination options with the parents or caregivers, either MMR or MMRV may be given at 12–15 months of age. MMRV is the preferred vaccine at 4–6 years of age if no; no excess risk of febrile seizures following MMRV vaccination has been observed at 4–6 years of age. A personal or family history of febrile seizures in an infant is considered a precaution for the use of MMRV, and MMR and VAR given separately is preferred. A dose of 0.5 mL should be given subcutaneously. The second dose of MMR or MMRV is recommended at school entry to help prevent school-based measles and mumps outbreaks. Children not reimmunized at school entry should receive their second dose by age 11–12 years. If an infant receives the vaccine before 12 months of age, two doses are required to complete the series, the first after at least 12 months of age and the second at least 1 month later. Ig interferes with the immune response to the attenuated vaccine strains of MMR and MMRV. Therefore, after Ig administration MMR and MMRV immunization should be deferred by 3–11 months, depending on the type of Ig product received. Consult the AAP's 2012 Red Book for specific recommendations.

For measles, mumps, and rubella, a person can be considered immune if they were born before 1957, or if there is laboratory evidence of serologic immunity or disease. Otherwise, all persons should be vaccinated according to the recommended schedule. A clinical diagnosis of any of these diseases is not acceptable evidence of immunity. For rubella, susceptible pubertal girls and postpubertal women identified by prenatal screening should be immunized after delivery. Whenever rubella vaccination is offered to a woman of childbearing age, pregnancy should be ruled out and the woman advised to prevent conception for 3 months following vaccination. If a pregnant woman is vaccinated or becomes pregnant within 3 weeks of vaccination, she should be counseled regarding the risk to her fetus, although no cases of rubella vaccine-related fetal anomalies have been reported. The risk of congenital rubella syndrome after wild-type maternal infection in the first trimester of pregnancy is 20%–85%. All susceptible adults in institutional settings (including colleges), day care center personnel, military personnel, and hospital and healthcare personnel should be immunized.

Vaccination of Travelers

People traveling abroad should be immune to measles and mumps. Infants 6–11 months of age traveling to high-risk areas should receive one dose of MMR prior to travel followed by either MMR or MMRV at 12–15 months of age (given at least 4 weeks after the initial dose) and either MMR or MMRV at 4–6 years of age to complete the series. Children over 12 months of age who are traveling to high-risk areas should receive two doses separated by at least 4 weeks. Children traveling internationally to lower-risk areas should be immunized as soon as possible after their first birthday and complete the series at 4–6 years of age in the usual fashion.

Revaccination Under Other Circumstances

Persons entering college and other institutions for education beyond high school, medical personnel beginning employment, and persons traveling abroad should have documentation of immunity to measles and mumps, defined as receipt of two doses of measles vaccine after their first birthday, birth before 1957, or a laboratory documented measles or mumps history.

Outbreak Control of Measles

A community outbreak is defined as a single documented case of measles. Control depends on immediate protection of all susceptible persons (defined as persons who have no documented immunity to measles in the affected community). In the case of unvaccinated individuals, the following recommendations hold: (1) age 6–11 months, give MMR if cases are occurring in children younger than age 1 year, followed by two doses of MMR or MMRV at age 12–15 months and again at age 4–6 years; and (2) age 12 months or older, give MMR or MMRV followed by revaccination at age 4–6 years. A child with an unclear or unknown vaccination history should be reimmunized with MMR or MMRV. Anyone with a known exposure who is not certain of having previously received two doses of MMR should receive an additional dose. Unimmunized persons who are not immunized within 72 hours of exposure, which is the acceptable interval for active postexposure prophylaxis, should be excluded from contact with potentially infected persons until at least 2 weeks after the onset of rash of the last case of measles.

Contraindications & Precautions

MMR and MMRV vaccines are contraindicated in pregnant women, women intending to become pregnant within the next 28 days, immunocompromised persons, and persons with anaphylactic egg or neomycin allergy. It is also contraindicated in children receiving high-dose corticosteroid therapy (≥ 2 mg/kg/d, or 20 mg/d total, for longer than 14 days) with the exception of those receiving physiologic replacement doses. In these patients, an interval of 1 month between cessation of steroid therapy and vaccination is sufficient. Leukemic patients who have been in remission and off chemotherapy for at least 3 months can receive MMR.
and MMRV safely. Persons with HIV infection should receive two doses of MMR vaccine according to the recommended schedule if they do not have evidence of current severe immunosuppression (for persons aged ≤ 5 years, they must have CD4 percentages ≥ 15% for ≥ 6 months; and for persons aged > 5 years, they must have CD4 percentages ≥ 15% and CD4 ≥ 200 lymphocytes/mm³ for ≥ 6 months). Children with minor acute illnesses (including febrile illnesses), egg allergy whether severe or mild, or a history of tuberculosis should be immunized. MMR and MMRV may be safely administered simultaneously with other routine pediatric immunizations. A personal or family history of febrile seizures in an infant is considered a precaution for the use of MMRV, and MMR and VAR separately is preferred.

### Adverse Effects

Between 5% and 15% of vaccinees receiving MMR become febrile to 39.5°C or higher about 6–12 days following vaccination, lasting approximately 1–2 days, and 5% may develop a transient morbilliform rash. Transient thrombocytopenia occurs at a rate of 1 per 40,000 vaccine recipients. Encephalitis and other central nervous system conditions, such as aseptic meningitis and Guillain-Barré syndrome, are reported to occur at a frequency of 1 case per 3 million doses in the United States. This rate is lower than the rate of these conditions in unvaccinated children, implying that the relationship between them and MMR vaccination is not causal. Reactions after mumps vaccination are rare and include parotitis, low-grade fever, and orchitis. In children, adverse effects from rubella vaccination are very unusual. Between 5% and 15% of vaccinees develop rash, fever, or lymphadenopathy 5–12 days after rubella vaccination. Rash also occurs alone or as a mild rubella illness in 2%–4% of adults. Arthralgia and arthritis occur in 10%–25% of adult vaccinees, as opposed to only 0%–2% of 6- to 16-year-old vaccinees. Chronic arthritis, which may be causally related to rubella vaccination, occurs more often in women aged 45 or older, starting 10–11 days after vaccination and lasting for up to 1 year. Possible rare complications include peripheral neuritis and neuropathy, transverse myelitis, and diffuse myelitis.

MMR vaccination is associated with an increased risk of febrile seizures 8–14 days after vaccination with the first dose, but no subsequent long-term complications have been seen. The risk associated for febrile seizures in children 12–23 months old with MMRV appears to be twice that of MMR and VAR given separately, resulting in one additional febrile seizure per 2300–2600 children vaccinated with MMRV.

### Antibody Preparations Against Measles

If administered within 6 days of exposure, Ig can prevent or modify measles in a nonimmune person. However, the immunity conferred should be considered temporary. Infants under 12 months of age who have been exposed to measles should receive 0.5 mL/kg of Ig, given intramuscularly (maximum dose is 15 mL). MMR vaccine should also be used, as appropriate, for infants aged 6–11 months. Pregnant women without evidence of measles immunity and severely immune-compromised persons (regardless of evidence of measles immunity) who are exposed to measles should receive 400 mg/kg of Ig given intravenously. Ig given intramuscularly (0.5 mL/kg, maximum dose, 15 mL) may be given to more immune competent exposed persons without evidence of immunity, with priority for those with the most intense contact to a case.

**VARICELLA VACCINATION**

Prior to the availability of vaccine, about 4 million cases of varicella-zoster virus (VZV) infection occurred annually in the United States, mostly in children younger than 10 years old. This resulted in 11,000 hospitalizations and 100 deaths per year due to severe complications such as secondary bacterial infections, pneumonia, encephalitis, hepatitis, and Reye syndrome.

A live, attenuated varicella vaccine (VAR) was licensed in the United States in 1995 and routine immunization of children 12 months of age and older has been recommended since then. The vaccine is almost 100% effective at preventing severe disease. The morbidity, mortality, and medical costs associated with varicella infection have significantly declined since VAR was first licensed. Vaccination prevents an estimated 3.5 million cases of varicella, 9000 hospitalizations, and 100 deaths from varicella in the United States each year. Once the routine use of VAR was achieved, it became apparent that there is “breakthrough” (usually very mild) varicella occurring in about 15% of immunized patients. Outbreaks of wild-type infectious VZV have been reported in schools with high one-dose VAR vaccination coverage (96%–100%). The vaccine efficacy in those outbreaks against any disease was similar (72%–85%) to that previously observed. Varicella attack rates among these children varied between 11% and 17% and thus, it was concluded that a single VAR dose could not prevent varicella outbreaks completely.

A second dose of VAR in children, when given 3 months or 4–6 years after the initial dose, greatly increased the magnitude of the anti-VZV antibody response, which is
a correlate of vaccine efficacy. A combination MMRV vaccine has also been shown to be immunologically noninferior to the individual components administered concomitantly, either as primary immunization or as a booster administered to children age 4–6 years. The two-dose regimen is almost 100% effective against severe varicella, and the risk of breakthrough varicella is threefold less than the risk with a one-dose regimen. Therefore, ACIP and the AAP recommend two doses of VAR for children older than 12 months of age, and for adolescents and adults without evidence of immunity.

Data from the United States and Japan suggest that the vaccine is also effective in preventing or modifying VZV severity in susceptible individuals exposed to VZV if used within 3 days (and possibly up to 5 days) of exposure. A study in the United States suggests that the efficacy of postexposure vaccination is 95% for prevention of any disease and 100% for prevention of moderate or severe disease. There is no evidence that postexposure prophylaxis will increase the risk of vaccine-related adverse events or interfere with development of immunity.

### Vaccines Available

1. A cell-free preparation of Oka strain VZV is produced and marketed in the United States as Varivax (Merck). Each dose of VAR contains not less than 1350 plaque-forming units of VZV and trace amounts of neomycin, fetal bovine serum, and gelatin. There is no preservative.

2. MMRV (measles-mumps-rubella-varicella, ProQuad, Merck) is licensed for use in children 1–12 years of age. MMRV is well-tolerated and provides adequate immune response to all of the antigens it contains. In MMRV, the varicella component is present in higher titer than in the VAR. Concomitant administration of MMRV with DTaP, Hib, and HepB vaccines is acceptable.

### Dosage & Schedule of Administration

Two doses (0.5 mL) of VAR are recommended for immunization of all healthy children aged 12 months and older, and for adolescents and adults without evidence of immunity. For children aged 12 months to 12 years the immunization interval is 3 months, and for persons 13 years or older it is 4 weeks. MMRV is approved only for healthy children aged 12 months to 12 years. A second dose of catch-up vaccination is required for children, adolescents, and adults who previously received one dose of VAR vaccine. All children should have received two doses of VAR before prekindergarten or school. HIV-infected children (≥ 15% CD4+ cells) should receive two doses of the single-antigen vaccine (with a 3-month interval between doses).

VAR may be given simultaneously with MMR at separate sites. If not given simultaneously, the interval between administration of VAR and MMR must be greater than 28 days. Simultaneous VAR administration does not appear to affect the immune response to other childhood vaccines. VAR should be delayed 5 months after receiving intravenous immune globulin, blood, or plasma. In addition, persons who received VAR should not be administered an antibody-containing product for at least two weeks or an antiviral medication active against varicella for at least 3 weeks, and if needed in that interval, the individual may need to be tested for immunity or revaccinated. After a discussion of the benefits and risks of both vaccination options with the parents or caregivers (see below, “Adverse Effects”), either MMR or MMRV may be given at 12–15 months. MMRV is the preferred vaccine if available at 4–6 years of age.

### Contraindications & Precautions

Contraindications to VAR vaccination include a severe allergic reaction after a previous vaccine dose or to a vaccine component. Because VAR and MMRV are live-virus vaccines, they are also contraindicated in children who have cellular immunodeficiencies, including those with leukemia, lymphoma, other malignancies affecting the bone marrow or lymphatic systems, and congenital T-cell abnormalities (although VAR vaccine administration to children with acute lymphocytic leukemia is under investigation). The exception to this rule is the recommendation that VAR be administered to HIV-infected children who are not severely immunosuppressed. Children receiving immunosuppressive therapy, including high-dose steroids, should not receive VAR or MMRV. Household contacts of immunodeficient patients should be immunized. VAR should not be given to pregnant women; however, the presence of a pregnant mother in the household is not a contraindication to immunization of a child within that household. A personal or family history of febrile seizures in an infant is considered a precaution for the use of MMRV; administration of MMR and VAR separately is preferred for the first dose.

### Adverse Events

The most commonly recognized adverse reactions, occurring in approximately 20% of vaccinees, are minor injection site reactions. Additionally, 3%–5% of patients will develop a rash at the injection site, and an additional 3%–5% will develop a sparse varicelliform rash outside of the injection site. These rashes typically consist of two to five lesions and may appear 5–26 days after immunization. The two-dose vaccine regimen is generally well tolerated with a safety profile comparable to that of the one-dose regimen. The incidence of fever and varicelliform rash is lower after the second dose than the first. Although VAR is contraindicated in pregnancy, there have now been several hundred inadvertent administrations of vaccine to pregnant women tracked
by the “Pregnancy Registry for Varivax” with no known cases of congenital varicella syndrome.

Studies comparing MMRV to MMR and VAR administered concomitantly showed more systemic adverse events following MMRV (fever 21.5% vs 14.9% and measles-like rash 3% vs 2.1%, respectively). The risk of febrile seizures in children 12–23 months old with the MMRV preparation is twice that of MMR and VAR given separately, resulting in one additional febrile seizure per 2300–2600 children vaccinated with MMRV.

Transmission of vaccine virus from healthy vaccinees to other healthy persons is very rare; has never been documented in the absence of a rash in the index case; and has only resulted in mild disease. Herpes zoster infection has occurred in recipients of VAR in immunocompetent and immunocompromised persons within 25–722 days after immunization. Many of these cases were thought to be due to unappreciated latent wild-type virus. Vaccine-strain varicella does cause herpes zoster in children, but the age-specific risk of herpes zoster infection seems much lower in children following VAR immunization than after natural infection, and it also tends to be milder.

**Antibody Preparations**

In the event of an exposure to varicella, there are currently two antibody preparations potentially available in the United States for postexposure prophylaxis, VariZIG and intravenous Ig. Exposure is defined as a household contact or playmate contact (>1 h/d), hospital contact (in the same or contiguous room or ward), intimate contact with a person with herpes zoster deemed contagious, or a newborn contact. Susceptibility is defined as the absence of a reliable history of varicella or varicella vaccination. Uncertainty in this diagnosis can be resolved with an appropriate test for anti-VZV antibody.

A Canadian preparation (VariZIG, Cangene Corporation) is FDA-approved. VariZIG should be administered as soon as possible after exposure but may be given within 10 days post-exposure. In the past, the interval for passive prophylaxis was limited to 96 hours postexposure. If VariZIG is not available, it is recommended that intravenous Ig be used in its place. The dose is 400 mg/kg administered once. A subsequent exposure does not require additional prophylaxis if this occurs within 3 weeks of intravenous Ig administration.

**HEPATITIS A VACCINATION**

The incidence of hepatitis A in the United States has decreased dramatically in recent years. An average of 28,000 cases was reported annually in the years prior to availability of a hepatitis A vaccine. Hepatitis A infection rates are now at historical lows, with fewer than 2000 reported cases annually.

Hepatitis A vaccines first became available in the United States in 1995. Initially, vaccination was recommended for certain high-risk groups, such as international travelers, users of illegal drugs, and men who have sex with men. Children, who are more likely than adults to be asymptomatic while infected, have often contributed to the spread of hepatitis A through households and communities. Therefore, since 2006 hepatitis A vaccination has been routinely recommended for all children 12–23 months of age. As a consequence of vaccination, the epidemiology of hepatitis A infection has changed substantially; in a recent investigation, more than 40% of reported cases were associated with international travel, often in foreign-born persons returning to their countries of origin.

In addition to routine immunization of all children 12–23 months of age, hepatitis A vaccination is indicated for the following groups: (1) travelers to countries with moderate to high rates of hepatitis A, (2) children with chronic hepatitis B or hepatitis C infections or other chronic liver disease, (3) children with clotting factor disorders, (4) adolescent and adult males who have sex with men, (5) persons with an occupational exposure to hepatitis A, (6) illegal drug users, and (7) all previously unvaccinated persons who anticipate close personal contact with an international adoptee from countries with moderate to high rates of hepatitis A. Vaccination should also be considered in previously unimmunized children 2–18 years old, even if none of the above risk factors are present.

**Vaccines Available**

2. HepA (Vaqta, Merck): An inactivated vaccine against hepatitis A. Contains an aluminum adjuvant; does not contain a preservative. Approved for use in children 12 months of age and older and adults.

---

**References**


CDC: Use of combination measles, mumps, rubella, and varicella vaccine: recommendations of the Advisory Committee on Immunization Practices. MMWR 2010;59:1 [PMID: 20448530].


Dosage & Schedule of Administration

The two HepA vaccines given in childhood (Havrix and Vaqta) are given as a 2-dose series. The first dose is recommended at 12–23 months of age; the second dose is recommended 6–18 months following the initial dose. For individuals 12 months through 18 years of age, these vaccines are administered intramuscularly in a dose of 0.5 mL. Adults 19 years of age and older can receive Havrix (two doses of 1.0 mL each, separated by at least 6 months), Vaqta (two doses of 1.0 mL each, separated by at least 6 months), or Twinrix (for adults 18 years and older, 1.0 mL per dose, in a 3- or 4-dose series).

Contraindications & Precautions

Hepatitis A vaccine should not be given to anyone with a prior severe allergic reaction, such as anaphylaxis, after a previous vaccine dose or to a vaccine component. Precautions to vaccination include pregnancy and moderate or severe acute illness. The vaccine should not be administered to children with hypersensitivity to neomycin (in the case of Havrix) or alum (for Havrix and Vaqta).

Adverse Effects

Adverse reactions, which are uncommon and mild, consist of pain, swelling, and induration at the injection site (10%–15%), headache, and loss of appetite. There have been no reports of serious adverse events attributed definitively to hepatitis A vaccine.

Postexposure Prophylaxis

Postexposure prophylaxis is recommended for household or sexual contacts of persons with serologically confirmed hepatitis A, and for daycare staff and attendees in outbreak situations. Postexposure prophylaxis may also be recommended in food-borne outbreaks, depending on the extent and timing of exposure. Postexposure prophylaxis of unimmunized persons who are exposed to hepatitis A should consist of either a single dose of hepatitis A vaccine or Ig (0.02 mL/kg), given as soon as possible after exposure. The efficacy of Ig when given more than 2 weeks after exposure has not been established. For healthy people 12 months through 40 years of age, hepatitis A vaccine is preferred to Ig for postexposure prophylaxis because of the advantages of vaccination, including long-term protection and ease of administration. For those over 40 years of age, Ig is preferred, although the vaccine should be used if Ig is not available. Ig should also be used for children <12 months of age, immunocompromised persons, those with chronic liver disease, and anyone for whom vaccination is contraindicated. People who are given Ig, and for whom hepatitis A vaccine is recommended for other reasons, should receive a dose of vaccine simultaneously with Ig. If given at the same time, the vaccine and Ig should be administered at different anatomic injection sites.

Antibody Preparations

Ig can be used as preexposure as well as postexposure prophylaxis. Ig is indicated as preexposure prophylaxis in children younger than age 12 months at increased risk of hepatitis A infection (eg, those traveling to endemic areas, or those with clotting factor disorders). For preexposure prophylaxis, recommended dosages are 0.02 mL/kg in a single intramuscular dose if the duration of exposure is likely to be less than 3 months and 0.06 mL/kg if exposure is likely to be more than 3 months. For long-term prophylaxis of persons not eligible for vaccination, prophylactic doses can be repeated every 5 months.

Meningococcal Vaccination

Infections with Neisseria meningitidis cause significant morbidity and mortality, with an estimated 1400–2800 cases of meningococcal disease occurring in the United States annually. Even with appropriate treatment, meningococcal disease has an estimated case-fatality rate of 10%–14%, and up to 19% of survivors are left with serious disabilities, such as neurologic deficits, loss of limbs or limb function, or hearing loss. Five serogroups of meningococcus (A, B, C, W-135, and Y) cause the vast majority of disease worldwide. Serogroups B, C, and Y are the predominant causes of invasive meningococcal disease in the United States, while serogroups A and C cause most disease in developing countries. Intensive research efforts have been made to develop an effective vaccine against serogroup B, which causes more than 50% of cases among children younger than 1 year of age. However, the bacterial capsule proteins of serogroup B are poorly immunogenic in humans, presenting a significant obstacle to vaccine development.

There are two tetravalent meningococcal polysaccharide-protein conjugate vaccines (MCV4) available, Menactra, licensed in 2005, and Menveo, licensed in 2010. Both vaccines are recommended by the ACIP and are indicated for use in persons 2–55 years of age, with Menactra also licensed for use in children aged 9–23 months. MCV4 is recommended for all persons 11–18 years of age, as well as...
for persons 2–55 years who are at increased risk of meningococcal disease. Persons at increased risk include college freshmen living in dormitories, microbiologists who are routinely exposed to isolates of Neisseria meningitidis, military recruits, persons who travel to or reside in countries where meningococcal disease is hyperendemic or epidemic, persons with persistent complement component deficiencies, and persons with anatomic or functional asplenia.

Because of mounting evidence of waning immunity by 5 years postvaccination, a booster dose is now recommended for adolescents aged 16 years and older who received their first dose at ages 11–15 years. A booster dose is not recommended for persons who received their first dose at age 16 years or older. A two-dose primary series administered 2 months apart is indicated for persons age 2 through 55 years with persistent complement component deficiency, functional or anatomic asplenia, and for adolescents 11–18 years with human immunodeficiency virus (HIV) infection. Whenever meningococcal vaccination is indicated, MCV4 is preferred for persons 2–55 years old, while tetravalent meningococcal polysaccharide vaccine (MPSV4, Menomune) should be used for persons older than 55 years. If MCV4 is not available, MPSV4 is an appropriate alternative for persons 2–55 years old for the initial dose. For a booster dose, MPSV4 is not recommended and either MCV4 product may be used (Menactra or Menveo). There are limited data available on the interchangeability of MCV4 products, and whenever feasible the same brand of vaccine should be used for all doses of the vaccine series. However, providers should use every opportunity to provide the booster dose when indicated, regardless of the vaccine brand used (Menactra or Menveo) for previous doses.

In October 2012, the ACIP voted to recommend vaccination against meningococcal serogroups C and Y for high risk children from 6 weeks to 18 months of age. Meningococcal groups C and Y and Hib tetanus toxoid conjugate vaccine (Hib-MenCY-TT [MenHibrix, GlaxoSmithKline Biologicals]) is available and licensed for use in this age group. Infants at high risk include those with recognized persistent complement pathway deficiencies and also those with functional or anatomic asplenia, including sickle cell disease. The recommended four-dose schedule is the same as for other Hib-containing vaccines at 2, 4, 6, and 12–15 months of age.

**Vaccines Available**

1. **MCV4 (Menactra, sanofi pasteur):** A single 0.5-mL dose contains 4 mcg each of capsular polysaccharide from serogroups A, C, Y, and W-135 conjugated to 48 mcg of diphtheria toxoid. Available in single-dose vials only.
2. **MCV4 (Menveo, Novartis):** A single 0.5-mL dose contains 10 mcg of serogroup A capsular polysaccharide and 5 mcg each of serogroups C, Y, and W-135 capsular polysaccharide, all of which is conjugated to CRM\(_{197}\), a nontoxic mutant of diphtheria toxoid.
3. **Hib-MenCY-TT (MenHibrix, GlaxoSmithKline Biologicals):** A single 0.5-mL dose contains 5 mcg of serogroup C capsular polysaccharide conjugated to approximately 5 mcg of tetanus toxoid, 5 mcg of serogroup Y capsular polysaccharide conjugated to approximately 6.5 mcg of tetanus toxoid, and 2.5 mcg of Hib capsular polysaccharide conjugated to approximately 6.25 mcg of tetanus toxoid.

**Dosage & Schedule of Administration**

MCV4 is given as a single intramuscular dose of 0.5 mL. If a dose is inadvertently administered subcutaneously, it does not need to be repeated. Hib-MenCY-TT is given as a single intramuscular dose of 0.5 mL. MPSV4 is administered as a single subcutaneous dose of 0.5 mL. MCV4, Hib-MenCY-TT, and MPSV4 can be given at the same time as other vaccines, at a different anatomic site. If a 4-dose schedule of Hib-MenCY-TT is given, no additional Hib doses are needed. Protective antibody levels are typically achieved within 10 days of vaccination. The schedule of administration of meningococcal vaccines is described above.

**Contraindications & Precautions**

MCV4 and MPSV4 are contraindicated in anyone with a known severe allergic reaction to any component of the vaccine, including diphtheria toxoid (for MCV4) and rubber latex. Although MCV4 vaccination is not contraindicated in someone with a prior history of Guillain-Barré syndrome, providers should discuss the possible risks and benefits of vaccination in anyone with a history of Guillain-Barré syndrome. Both MCV4 and MPSV4 can be given to individuals who are immunosuppressed. MPSV4 is thought to be safe during pregnancy; no information is available regarding the safety of MCV4 during pregnancy.

**Adverse Effects**

Both MCV4 products and MPSV4 are generally well tolerated in adolescent patients. Local vaccination reactions (redness, swelling, or induration) occur in 11%–16% of persons 11–18 years old receiving MCV4 and in 4%–6% of persons the same age receiving MPSV4. The most common solicited complaints among children aged 2–10 years were injection site pain and irritability. More severe systemic reactions (presence of any of the following: fever of 39.5°C or above;
headache, fatigue, malaise, chills, or arthralgias requiring bed rest; anorexia; multiple episodes of vomiting or diarrhea; rash; or seizures) occur in 4.3% of MCV4 recipients and 2.6% of MPSV4 recipients. Although cases of Guillain-Barré syndrome have been reported after MCV4, the current data does not suggest that the rate is above that which would be expected in the absence of vaccination. Any cases of suspected Guillain-Barré syndrome after vaccination should be reported to VAERS.

CDC: Licensure of a meningococcal conjugate vaccine (Menveo) and guidance for use—Advisory Committee on Immunization Practices (ACIP), 2010. MMWR 2010;59(9):273 [PMID: 20224545].

CDC: Licensure of a meningococcal conjugate vaccine for children aged 2 through 10 years and updated booster dose guidance for adolescents and other persons at increased risk for meningococcal disease—Advisory Committee on Immunization Practices (ACIP), 2011. MMWR 2011;60:1018 [PMID: 21814165].


CDC: Updated recommendations for use of meningococcal conjugate vaccines—Advisory Committee on Immunization Practices (ACIP), 2010. MMWR 2011;60:72 [PMID: 21270745].


TETANUS-REDUCED DIPHTHERIA-ACELLULAR PERTUSSIS VACCINATION (adolescents & adults)

Pertussis is increasingly recognized as a disease affecting older children and adults, including fully vaccinated persons with waning immunity. In the United States, the most dramatic increases in pertussis incidence are among adolescents and young adults, prompting development of booster pertussis vaccines for this population. FDA approval in 2005 of the tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine was based on comparable seroresponse to pertussis antigens and a safety profile similar to control Td. Adolescent, adult, and elderly immunization not only has the capacity to protect adolescents from pertussis, but also should limit spread of pertussis from adults to infants and decrease overall pertussis endemicity. Because pertussis incidence has been rising nationally, and waning immunity may be contributing, studies are being conducted to evaluate whether additional booster doses of pertussis-containing vaccines are needed.

Vaccines Available

1. Tdap (Boostrix, GlaxoSmithKline) contains tetanus toxoid, diphtheria toxoid, and three acellular pertussis antigens (detoxified pertussis toxin [PT], filamentous hemagglutinin [FHA], and pertactin) and is licensed for use in persons aged 10 years and older; this vaccine can be used in adults and the elderly.

2. Tdap (Adacel, sanofi pasteur) contains tetanus toxoid, diphtheria toxoid, and five acellular pertussis antigens (PT, FHA, pertactin, and fimbriae types 2 and 3) and is licensed for use in persons aged 11–64 years.

Dosage & Schedule of Administration

Adolescents 11–18 years of age should receive a 0.5-mL dose of Tdap intramuscularly in the deltoid, instead of the tetanus and diphtheria toxoids (Td) vaccine for booster immunization. The preferred age for Tdap immunization is 11–12 years. Adults 19–64 years of age should receive a single dose of Tdap. Adults 65 years of age and older should receive a single dose of Tdap if they have not previously received Tdap and if they anticipate close contact with an infant less than 12 months of age. Women who are pregnant should receive a Tdap booster with each pregnancy. Tdap can be administered regardless of the interval since the last tetanus- or diphtheria-toxoid containing vaccine. Tdap and MCV4 should be administered during the same visit if both vaccines are indicated. If not administered at the same time, a minimum interval of 1 month between vaccines is suggested.

Contraindications & Precautions

Contraindications to Tdap include severe allergic reaction to any vaccine component and encephalopathy (eg, coma, prolonged seizures) not attributable to an identifiable cause within 7 days of administration of a vaccine with pertussis components. Precautions for Tdap administration include Guillain-Barré syndrome occurring within 6 weeks of a previous dose of a tetanus toxoid-containing vaccine, a progressive neurologic disorder, uncontrolled epilepsy, or progressive encephalopathy until the condition has stabilized. If there is a history of a severe Arthus reaction after a previous tetanus toxoid-containing or diphtheria toxoid-containing vaccine, Tdap should be deferred for at least 10 years.

Adverse Effects

Pain at the injection site was the most frequently reported local adverse event among adolescents. Headache and fatigue were the most frequently reported systemic adverse events.

AAP, Committee on Infectious Diseases: Additional recommendations for use of tetanus toxoid, reduced-content diphtheria toxoid, and acellular pertussis vaccine (Tdap). Pediatrics 2011; 128:809 [PMID: 21949151].

CDC: Updated recommendations for the use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis (Tdap) vaccine from the Advisory Committee on Immunization Practices, 2010. MMWR 2011;60:13 [PMID: 21228763].

Misegades LK et al: Association of childhood pertussis with receipt of 5 doses of pertussis vaccine by time since last vaccine dose, California, 2010. JAMA 2012;308:2126 [PMID: 23188029].
HUMAN PAPILLOMAVIRUS VACCINATION

Genital human papillomavirus (HPV) is the most common sexually transmitted infection in the United States. Most of the estimated 6.2 million persons newly infected every year have no symptoms. Up to 75% of new infections occur among persons 15–24 years of age. Over 40% of the 100 HPV types identified can infect the genital area. Approximately 70% of cervical cancers are caused by the high cancer risk types 16 and 18. Over 90% of genital warts are caused by low cancer risk types 6 and 11.

Two HPV vaccines are currently licensed in the United States. Quadrivalent HPV vaccine (HPV4) types 6, 11, 16, and 18 (Gardasil, Merck) is approved for females and males 9 through 26 years of age. Bivalent HPV (HPV2) types 16 and 18 vaccine (Cervarix, GlaxoSmithKline) is approved for females 10 through 25 years of age. Routine vaccination of females and males aged 11–12 years is recommended. Catch-up vaccination for females aged 13–26 years and males aged 13–21 years who were not previously vaccinated or have not completed the full vaccine series is also recommended. Females who might have been exposed to HPV, test positive for high-risk HPV types, or have an abnormal Pap test, should be vaccinated and are still likely to benefit from HPV vaccine. Immunization of males prevents genital warts and anal cancer but may also benefit females through herd immunity by decreasing the overall prevalence of HPV infection.

Vaccines Available

1. Quadrivalent HPV vaccine (Gardasil, Merck), a nonlive vaccine; a 0.5-mL dose contains 20 mcg each of HPV-6 and HPV-18 L1 proteins, and 40 mcg each of HPV-11 and HPV-16 L1 proteins. Licensed for use in females and males.

2. Bivalent HPV vaccine (Cervarix, GlaxoSmithKline), a nonlive vaccine is a 0.5-mL dose that contains 40 mcg HPV-16 L1 protein and 20 mcg HPV-18 L1 protein. Licensed for use in females only.

Dosage & Schedule of Administration

HPV vaccine is administered intramuscularly as three separate 0.5-mL doses. The second dose should be administered 1–2 months after the first dose and the third dose 6 months after the first dose. The minimum interval between the first and second dose is 4 weeks; the minimum recommended interval between the second and third doses of vaccine is 12 weeks. HPV vaccine may be administered with other vaccines. If the vaccine schedule is interrupted, the series need not be restarted. When feasible, the same HPV vaccine should be used for the complete series. However, if the HPV vaccine previously administered is unknown or not available, either HPV vaccine can be used to complete the series to protect against HPV types 16 and 18.

HPV vaccine is contraindicated in persons with a history of anaphylaxis to any vaccine component. HPV vaccine is not recommended for use in pregnancy. The vaccine can be administered to persons with minor acute illnesses and to immunocompromised persons.

Adverse Effects

Injection site pain (83.9%) and mild to moderate swelling and erythema were the most common adverse events reported by vaccine recipients. Fever (10.3%), nausea (4.2%), and dizziness (2.8%) were reported as systemic adverse events. Postmarketing reports of syncope, which were reported after vaccination with HPV vaccine, may follow any vaccination, so vaccine recipients should be observed for 15 minutes after vaccination.

VACCINATIONS FOR SPECIAL SITUATIONS

RABIES VACCINATION

After symptoms of infection develop, rabies is almost invariably fatal in humans. Only eight persons are known to have recovered from rabies infection, five of whom had either been vaccinated prior to infection or received some form of postexposure prophylaxis. While animal rabies in the United States is common, the incidence of human rabies is very low, with fewer than three cases per year. Although dogs represent the most important vector for human rabies worldwide, in the United States, because of widespread vaccination of dogs and cats the most common rabies virus variants responsible for human rabies are bat-related. Rabies is also common in skunks, raccoons, and foxes; it is uncommon in rodents.

Human rabies is preventable with appropriate and timely postexposure prophylaxis. Postexposure care consists of
local wound care, passive immunization, and active immunization. Immediately after an animal bite, all wounds should be flushed and aggressively cleaned with soap and water. If possible, the wound should not be sutured. Passive immunization after high-risk exposure consists of the injection of human rabies immune globulin (RIG) near the wound, as described later. Active immunization is accomplished by completing a schedule of immunization with one of the two available rabies vaccines licensed in the United States. Because bites from bats are often unrecognized, prophylaxis should be given if a bat is found indoors even if there is no history of contact, especially if found in the same room with a sleeping or unattended child or with an intoxicated or otherwise incapacitated individual.

Local public health officials should be consulted before postexposure rabies prophylaxis is started to avoid unnecessary vaccination and to assist in the proper handling of the animal (if confinement or testing of the animal is appropriate). To facilitate consultation, the healthcare provider should know the species of animal, its availability for testing, and the nature of the exposure (bite, scratch, lick, or aerosol of saliva). Preexposure prophylaxis is indicated for veterinarians, animal handlers, and any persons whose work or home environment potentially places them in close contact with animal species in which rabies is endemic. Rabies immunization should also be considered for children traveling to countries where rabies is endemic; this is particularly important for travelers to rural areas where there is no prompt access to medical care should an exposure occur.

**Vaccines Available**

Rabies vaccines stimulate immunity after 7–10 days, and the immunity persists for 2 years or more postvaccination. Two inactivated preparations are licensed in the United States.

1. Imovax Rabies (sanofi pasteur)human diploid cell vaccine (HDCV)
2. RabAvert (Novartis) purified chick embryo cell vaccine (PCEC)

**Dosage & Schedule of Administration**

The two rabies vaccines available in the United States are equally safe and efficacious for both preexposure and postexposure prophylaxis. For each vaccine, 1 mL is given intramuscularly in the deltoid (for adults and older children) or anterolateral thigh (for infants and young children). The volume of the dose is not reduced for children. Vaccine should not be given in the gluteal region.

**Primary Preexposure Vaccination**

Preexposure rabies immunization should be considered for individuals at high risk of exposure to rabies (eg, veterinarians, animal handlers, spelunkers, and people moving to or extensively traveling in areas with endemic rabies). Three intramuscular injections in the deltoid area of 1 mL of any vaccine are given on days 0, 7, and 21 or 28.

**Postexposure Prophylaxis**

After an individual has possibly been exposed to rabies, decisions about whether to initiate postexposure prophylaxis need to be made urgently, in consultation with local public health officials.

In previously unvaccinated individuals—After prompt and thorough wound cleansing, an individual exposed to rabies should receive rabies vaccination and RIG. Vaccination is given on the day of exposure (day 0) and on days 3, 7, and 14 following exposure. Immune suppressed individuals should receive five doses of vaccine, on days 0, 3, 7, 14, and 28. RIG should also be given as soon as possible after exposure, ideally on the day of exposure, in a recommended dose of 20 IU/kg. If anatomically possible, the entire dose of RIG should be infiltrated into and around the wound. Any remaining RIG should be administered intramuscularly at an anatomic site distant from the location used for rabies vaccination. If RIG was not administered when vaccination was begun, it can be administered up to 7 days after the first dose of vaccine. Postexposure failures have occurred only when some deviation from the approved protocol occurred (eg, no cleansing of the wound, less than usual amount of RIG, no RIG at the wound site, or vaccination in the gluteal area).

In previously vaccinated individuals—RIG should not be administered, and only two doses of vaccine on days 0 and 3 after exposure are needed.

**Booster Vaccination**

Previously vaccinated individuals with potential continued exposure to rabies should have a serum sample tested for rabies antibody every 2 years. If the titer is less than 1:5 for virus neutralization, a booster dose of rabies vaccine should be administered.

**Adverse Effects**

The rabies vaccines are relatively free of serious reactions and rates of adverse reactions may differ between the vaccines. Local reactions at the injection site such as pain, swelling, induration, or erythema range in frequency from 11% to 89% of vaccinees. These are more common than mild systemic reactions, such as headache, nausea, muscle aches, and dizziness, which range from 6% to 55% of vaccinees. An immune complex-like reaction occurs in about 6% of adults 2–21 days after receiving booster doses of the rabies vaccine; symptoms may include generalized urticaria, arthralgias, arthritis, and angioedema.
Travelers to countries where rabies is endemic may need immediate postexposure prophylaxis and may have to use locally available vaccines and RIG. In many developing countries, the only vaccines readily available may be nerve tissue vaccines derived from the brains of adult animals or sucking mice, and the RIG may be of equine origin. Although adverse reactions to RIG are uncommon and typically mild, the nervous tissue vaccines may induce neuropaletic reactions in 1:200–1:8000 vaccinees; this is a significant risk and is another justification for preexposure vaccination prior to travel in areas where exposure to potentially rabid animals is likely.

**Antibody Preparations**

In the United States, RIG is prepared from the plasma of human volunteers hyperimmunized with rabies vaccine. The recommended dose is 20 IU/kg body weight. The rabies-neutralizing antibody content is 150 IU/mL, supplied in 2- or 10-mL vials. It is very safe.

**TYPHOID FEVER VACCINATION**

Globally, the burden of typhoid fever is substantial, causing an estimated 21 million illnesses and 200,000 deaths each year. In the United States, typhoid fever is relatively uncommon, with approximately 400 laboratory-confirmed cases each year. In a review of typhoid fever cases reported to the CDC, 79% of patients reported recent travel outside the United States, only 5% of whom had received typhoid vaccination.

Two vaccines against *Salmonella enterica typhi*, the bacterium that causes typhoid fever, are available in the United States: a live attenuated vaccine given orally (Ty21a), and an inactivated vaccine composed of purified capsular polysaccharide (ViCPS) given parenterally. Both vaccines protect 50%–80% of vaccine recipients. The oral vaccine is most commonly used because of its ease of administration. However, noncompliance with the oral vaccine dosing schedule occurs frequently, and correct usage should be stressed or the parenteral ViCPS vaccine used.

Routine typhoid vaccination is recommended only for children who are traveling to typhoid-endemic areas or who reside in households with a documented typhoid carrier. While CDC recommendations emphasize typhoid vaccination for travelers expected to have long-term exposure to potentially contaminated food and drink, vaccination should also be considered for short-term travel to high-risk countries. Although typhoid fever occurs throughout the world, areas of highest incidence include southern Asia and southern Africa. Travelers should be advised that because the typhoid vaccines are not fully protective, and because of the potential for other food- and waterborne illnesses, careful selection of food and drink and appropriate hygiene remain necessary when traveling internationally.

**Vaccines Available**

1. Parenteral ViCPS (Typhim Vi, sanofi pasteur) is for intramuscular use.
2. Oral live attenuated Ty21a vaccine (Vivotif Berna Vaccine, Swiss Serum and Vaccine Institute) is supplied as enteric-coated capsules.

**Dosage & Schedule of Administration**

ViCPS is administered as a single intramuscular dose (0.5 mL) in the deltoid muscle, with boosters needed every 2 years if exposure continues. It is approved for children aged 2 years and older.

The dose of the oral preparation is one capsule every 2 days for a total of four capsules, taken 1 hour before meals. The capsules should be taken with cool liquids and should be kept refrigerated. All doses should be administered at least 1 week prior to potential exposure. A full course of four capsules is recommended every 5 years if exposure continues. Mefloquine and chloroquine may be given at the same time as the oral vaccine although proguanil should be administered only if 10 days have lapsed since the last dose of oral vaccine. This vaccine is not approved for children younger than age 6 years. As with all live attenuated vaccines, Ty21a should not be given to immunocompromised patients.

**Adverse Reactions**

Both the oral and parenteral vaccines are well tolerated, and adverse reactions are uncommon and usually self-limited. The oral vaccine may cause gastroenteritis-like illness, fatigue, and myalgia, whereas the parenteral vaccine may cause injection site pain, abdominal pain, dizziness, and pruritus.
infected. It is endemic in parts of Asia, although the risk to most travelers to Asia is low. Travel to rural areas and extended travel in endemic areas may increase the risk. Only one safe and effective vaccine is available in the United States. This is not yet licensed for use in children. Healthcare providers may choose to administer the vaccine off-label to children or refer children to Travelers Health Clinics in Asia (see CDC link below). Travelers to JE-endemic countries should be advised of risks of JE and the importance of measures to reduce mosquito bites. Vaccination is recommended for travelers who plan to spend more than 1 month in endemic areas during the JE transmission season. Vaccination should be considered for short-term travelers to endemic areas during the JE transmission season if they will travel outside of an urban area and their activities will increase the risk of JE exposure. It should also be considered for travelers to an area with an ongoing JE outbreak. Vaccination is not recommended for short-term travelers whose visit will be restricted to urban areas or outside of a well-defined JE transmission season. If the primary series of JE-VC was administered > 1 year previously, a booster dose may be given before potential JE virus exposure.

**Vaccines Available and Schedule of Administration**

1. JE-VAX (sanofi pasteur) is an inactivated mouse brain-derived JE vaccine first licensed in the United States in 1992. It was the only JE vaccine FDA licensed for use in children in the United States but is no longer available.

2. Ixiaro (JE-VC) (Novartis) is an inactivated Vero cell-derived JE vaccine. It contains aluminum hydroxide as an adjuvant and has no preservative. It is given intramuscularly in a two-dose series at 0 and 28 days. It is licensed for persons aged 17 or older, but three pediatric clinical trials with JE-VC have been conducted, and a healthcare provider may choose to administer the vaccine off-label in children < 17 years of age. The manufacturer has completed studies using a 6-mcg per 0.5 mL dose (regular adult dose) for children ≥ 3 years of age and a 3-mcg per 0.25 mL dose (half adult dose) for children aged 2 months through 2 years. Additional information about the use of JE-VC is available from Novartis Medical Communications by telephone (877-683-4732) or e-mail (vaccineinfo.us@novartis.com).


**TUBERCULOSIS VACCINATION**

Approximately one-third of the world’s population is infected with *Mycobacterium tuberculosis*, which is a leading cause of death in low- and middle-income nations, killing approximately 1.4 million people annually. It is relatively uncommon in the United States, and most cases occur in persons born abroad or their close contacts. Bacille Calmette-Guérin vaccine (BCG) consists of live attenuated *Mycobacterium bovis*. BCG is the most widely used vaccine in the world and has been administered to over 3 billion people, with a low incidence of adverse events following immunization. BCG vaccine is inexpensive, can be given any time after birth, sensitizes the vaccinated individual for 5–50 years, and stimulates both B-cell and T-cell immune responses. BCG reduces the risk of tuberculous meningitis and disseminated TB in pediatric populations by 50%–100% when administered in the first month of life. Efficacy against pulmonary tuberculosis has been variable (0%–80%) depending on the study setting and other factors.

BCG is indicated for use in the United States in two circumstances: (1) in tuberculin-negative infants or older children residing in households with untreated or poorly treated individuals with active infection with isoniazid- and rifampin-resistant *M tuberculosis*, and (2) in infants or children that live under constant exposure without the possibility of removal or access to prophylaxis and treatment. It is not recommended for travel.

The two currently licensed BCG vaccines in the United States are produced by Organon Teknika Corporation (Tice BCG) and sanofi pasteur (Mycobax). They are given intradermally in a dose of 0.05 mL for newborns and 0.1 mL for all other children. Tuberculin skin testing (TST) is advised 2–3 months later, and revaccination is advised if the TST result is negative. Adverse effects occur in 1%–10% of healthy individuals, including local ulceration, regional lymph node enlargement, and very rarely lupus vulgaris. The vaccine is contraindicated in pregnant women and those with HIV infection, because it has caused extensive local adenitis and disseminated or fatal infection.

BCG almost invariably causes its recipients to be tuberculin-positive (5–7 mm), but the reaction often becomes negative after 3–5 years. Thus, a positive TST test in a child with a history of BCG vaccination who is being investigated for TB as a case contact should be interpreted as indicating infection with *M tuberculosis*. 


YELLOW FEVER VACCINATION

A live, attenuated vaccine against yellow fever is available for use in the United States. However, the vaccine is available only at official yellow fever vaccination locations (typically public health departments), and should only be given after consultation with travel medicine specialists or public health officials. Immunization against yellow fever is indicated for children age 9 months and older traveling to endemic areas or to countries that require it for entry. Yellow fever vaccine is made from the 17D yellow fever attenuated virus strain grown in chick embryos. It is contraindicated in infants younger than age 6 months, in persons with anaphylactic egg allergy, and in immunocompromised individuals or individuals with a history of thymus disease. In children 6–8 months of age, the vaccine risks and benefits should be weighed on an individual basis. When yellow fever vaccine is indicated, a single subcutaneous injection of 0.5 mL of reconstituted vaccine is administered. International health regulations may require revaccination at 10-year intervals, although immunity following vaccination may be long-lasting. Adverse reactions are generally mild, consisting of low-grade fever, mild headache, and myalgia 5–10 days after vaccination, occurring in fewer than 25% of vaccinees. Although relatively uncommon, several types of severe adverse reactions can occur following vaccination. Serious allergic reactions occur in roughly 1 case per every 55,000 vaccine recipients. The risk of vaccine-associated neurotropic disease within 30 days following vaccination has been estimated to be 1 case per every 125,000 vaccine recipients. The risk of severe multiple organ system failure following vaccination has been estimated at 1 case per every 250,000 vaccine recipients. Healthcare providers should be careful to administer yellow fever vaccine only to persons truly at risk of exposure to yellow fever. There is no contraindication to giving other live-virus vaccines simultaneously with yellow fever vaccine.


PASSIVE PROPHYLAXIS

1. Intramuscular & Specific Intravenous Immune Globulin

Ig may prevent or modify infection with hepatitis A virus if administered in a dose of 0.02 mL/kg within 14 days after exposure. Measles infection may be prevented or modified in a susceptible person if Ig is given in a dose of 0.5 mL/kg within 6 days after exposure. Pathogen-specific preparations of Ig include tetanus Ig (TIg), hepatitis B Ig (HB Ig), rabies Ig (RIg), rubella Ig, CMV Ig (IV), botulism Ig (IV), and varicella-zoster Ig (VarIZig). These are obtained from donors known to have high titers of antibody against the organism in question. Ig must be given only by the route (IV or IM) for which it is recommended. The dose varies depending on the clinical indication. Adverse reactions include pain at the injection site, headache, chills, dyspnea, nausea, and anaphylaxis, although all but the first are rare.

Prophylaxis to prevent respiratory syncytial virus (RSV) in infants and children at increased risk of severe disease is available as an intramuscular immune globulin. Palivizumab (Synagis, MedImmune) is a humanized monoclonal antibody against RSV that is used to prevent RSV infection in high-risk populations with monthly doses during RSV season. Palivizumab should be considered for (1) infants and children younger than age 2 years with chronic lung disease who have required medical therapy (supplemental oxygen, bronchodilator, diuretic, or corticosteroid therapy) for their disease within 6 months before the anticipated RSV season; (2) infants born between 32 weeks 0 days and 34 weeks 6 days gestation or earlier without chronic lung disease with at least one out of two of the following risk factors: child care attendance or siblings under age 5 years (this recommendation is for those infants who are born during or within 3 months of the onset of RSV season); prophylaxis for these infants should be discontinued once they reach 3 months of age; (3) infants with congenital airway abnormalities or severe neuromuscular disease up to age 12 months; (4) infants born at less than 32 weeks’ gestation; and (5) infants and children who are 24 months old or younger with hemodynamically significant cyanotic or acyanotic congenital heart disease.

Palivizumab is administered in a dose of 15 mg/kg once a month beginning with the onset of the RSV season and continuing until the end of the season, regardless of breakthrough RSV illness during that RSV season. The maximum
number of doses recommended in any one season is five (the maximum is three doses for 32- to 35-week premature infants without chronic lung disease). Palivizumab is packaged in 50- and 100-mg vials. Palivizumab does not interfere with response to routine childhood vaccinations.

Environmental tobacco smoke is no longer considered a specific risk factor when considering RSV prophylaxis. Due to a lack of data, there are no specific recommendations for palivizumab prophylaxis in infants with immune deficiencies or cystic fibrosis. However, prophylaxis may be considered in these patients in certain circumstances (severe immune compromise such as severe combined immunodeficiency syndrome).

2. Intravenous Immune Globulin

The primary indications for IVIg are for replacement therapy in antibody-deficient individuals; for the treatment of Kawasaki disease, immune thrombocytopenic purpura, Guillain-Barré syndrome, and other autoimmune diseases; and replacement therapy in chronic B-cell lymphocytic leukemia. IVIg may be beneficial in some children with HIV infection, toxic shock syndrome, and for anemia caused by parvovirus B19. It may also be used as postexposure prophylaxis for varicella in at-risk persons when VariZIG is not available.

Normal Childhood Nutrition & Its Disorders

Matthew A. Haemer, MD, MPH
Laura E. Primak, RD, CNSD, CSP
Nancy F. Krebs, MD, MS

NUTRITIONAL REQUIREMENTS

NUTRITION & GROWTH

The nutrient requirements of children are influenced by (1) growth rate, (2) body composition, and (3) composition of new growth. These factors vary with age and are especially important during early postnatal life. Growth rates are higher in early infancy than at any other time, including the adolescent growth spurt (Table 11–1). Growth rates should normally decline rapidly starting in the second month of postnatal life (proportionately later in the premature infant).

Nutrient requirements also depend on body composition. In the adult, the brain, which accounts for only 2% of body weight, contributes 19% to the total basal energy expenditure. In contrast, in a full-term neonate, the brain accounts for 10% of body weight and for 44% of total energy needs under basal conditions. Thus, in the young infant, total basal energy expenditure and the energy requirement of the brain are relatively high.

Composition of new tissue is a third factor influencing nutrient requirements. For example, fat should account for about 40% of weight gain between birth and 4 months but for only 3% between 24 and 36 months. The corresponding figures for protein are 11% and 21%; for water, 45% and 68%. The high rate of fat deposition in early infancy has implications not only for energy requirements but also for the optimal composition of infant feedings.

Because of the high nutrient requirements for growth and the body composition, the young infant is especially vulnerable to undernutrition. Slowed physical growth rate is an early and prominent sign of undernutrition in the young infant. The limited fat stores of the very young infant mean that energy reserves are modest. The relatively large size and continued growth of the brain render the central nervous system (CNS) especially vulnerable to the effects of malnutrition in early postnatal life.

ENERGY

The major determinants of energy expenditure are (1) basal metabolism, (2) metabolic response to food, (3) physical activity, and (4) growth. The efficiency of energy use may be a significant factor, and thermoregulation may contribute in extremes of ambient temperature if the body is inadequately clothed. Because adequate data on requirements for physical activity in infants and children are unavailable and because individual growth requirements vary, recommendations have been based on calculations of actual intakes by healthy subjects. Suggested guidelines for energy intake of infants and young children are given in Table 11–2. Also included in this table are calculated energy intakes of infants who are exclusively breast-fed, which have been verified in a number of centers. Growth velocity of breast-fed infants during the first 3 months equals and may exceed that of formula-fed infants, but from 6 to 12 months breast-fed infants typically weigh less than formula-fed babies and may show a decrease in growth velocity. The World Health Organization has developed growth standards derived from an international sample of healthy breast-fed infants and young children raised in environments that do not constrain growth. These are considered to represent physiologic growth for infants and young children. (See also section Pediatric Undernutrition.)

After the first 4 years, energy requirements expressed on a body weight basis decline progressively. The estimated daily energy requirement is about 40 kcal/kg/d at the end of adolescence. Approximate daily energy requirements can be calculated by adding 100 kcal/y to the base of 1000 kcal/d at age 1 year. Appetite and growth are reliable indices of caloric needs in most healthy children, but intake also depends to some extent on the energy density of the food offered. Individual energy requirements of healthy infants and children vary considerably, and malnutrition and disease increase the variability. Premature infant energy requirements
can exceed 120 kcal/kg/d, especially during illness or when catch-up growth is desired.

One method of calculating requirements for malnourished patients is to base the calculations on the ideal body weight (ie, 50th percentile weight for the patient’s length-age, 50th percentile weight-for-length, or weight determined from current height and the 50th percentile body mass index [BMI] for age), rather than actual weight.

Table 11–1. Changes in growth rate, energy required for growth, and body composition in infants and young children.

<table>
<thead>
<tr>
<th>Age (mo)</th>
<th>Growth Rate (g/d)</th>
<th>Energy Requirements for Growth (kcal/kg/d)</th>
<th>Body Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Both</td>
<td>Female</td>
</tr>
<tr>
<td>0-0.25</td>
<td></td>
<td>0a</td>
<td></td>
</tr>
<tr>
<td>0.25-1</td>
<td>40</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>1-2</td>
<td>35</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>2-3</td>
<td>28</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>3-6</td>
<td></td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>6-9</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>12-18</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>18-36</td>
<td></td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

*Birth weight is regained by 10 days. Weight loss of more than 10% of birth weight indicates dehydration or malnutrition; this applies to both formula- and breast-fed infants.


Table 11–2. Recommendations for energy and protein intake.

<table>
<thead>
<tr>
<th>Age</th>
<th>Energy (kcal/kg/d)</th>
<th>Protein (g/kg/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on Measurements of Energy Expenditure</td>
<td>Intake from Human Milk</td>
<td>Guidelines for Average Requirements</td>
</tr>
<tr>
<td>10 d–1 mo</td>
<td>—</td>
<td>105</td>
</tr>
<tr>
<td>1–2 mo</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>2–3 mo</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>3–4 mo</td>
<td>95</td>
<td>75–85</td>
</tr>
<tr>
<td>4–6 mo</td>
<td>95</td>
<td>75–85</td>
</tr>
<tr>
<td>6–12 mo</td>
<td>85</td>
<td>70</td>
</tr>
<tr>
<td>1–2 y</td>
<td>85</td>
<td>—</td>
</tr>
<tr>
<td>2–3 y</td>
<td>85</td>
<td>—</td>
</tr>
<tr>
<td>3–5 y</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

PROTEIN

Only amino acids and ammonium compounds are usable as sources of nitrogen in humans. Amino acids are provided through the digestion of dietary protein. Nitrogen is absorbed from the intestine as amino acids and short peptides. Absorption of nitrogen is more efficient from synthetic diets that contain peptides in addition to amino acids. Some intact proteins are absorbed in early postnatal life, a process that may be important in the development of protein tolerance or allergy.

Because there are no major stores of body protein, a regular dietary supply of protein is essential. In infants and children, optimal growth depends on an adequate dietary protein supply. Relatively subtle effects of protein deficiency are now recognized, especially those affecting tissues with rapid protein turnover rates, such as the immune system and the gastrointestinal (GI) mucosa.

Relative to body weight, rates of protein synthesis and turnover and accretion of body protein are exceptionally high in the infant, especially the premature infant. Eighty percent of the dietary protein requirement of a premature infant is used for growth, compared with only 20% in a 1-year-old child. Protein requirements per unit of body weight decline rapidly during infancy as growth velocity decreases. The recommendations in Table 11–2 are derived chiefly from the Joint FAO/WHO/UNO Expert Committee and are similar to the Recommended Dietary Allowances (RDAs). They deliver a protein intake above the quantity (approximately 0.2 g of protein per gram of new tissue deposited). Young infants experiencing rapid recovery may need as much as 1–2 g/kg/d of extra protein. By age 1 year, the extra protein requirement is unlikely to be more than 0.5 g/kg/d.

The quality of protein depends on its amino acid composition. Infants require 43% of protein as essential amino acids, and children require 36%. Adults cannot synthesize nine essential amino acids: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. Cysteine and tyrosine are considered partially essential because their rates of synthesis from methionine and phenylalanine, respectively, are limited and may be inadequate in infants, the elderly, and those with malabsorption. In young infants, synthetic rates for cysteine, tyrosine, and, perhaps, taurine are insufficient for needs. Taurine, an amino acid used to conjugate bile acids, may also be conditionally essential in infancy. Lack of an essential amino acid leads to weight loss within 1–2 weeks. Wheat and rice are deficient in lysine, and legumes are deficient in methionine. Appropriate mixtures of vegetable protein are therefore necessary to achieve high protein quality.

Because the mechanisms for removal of excess nitrogen are efficient, moderate excesses of protein are not harmful and may help to ensure an adequate supply of certain micronutrients. Adverse effects of excessive protein intake may include increased calcium losses in urine and, over a life span, increased loss of renal mass. Excessive protein intake of more than 4 g/kg/day in older children and adolescents may also cause elevated blood urea nitrogen, acidosis, hyperammonemia, and, in the premature infant more than 6 g/kg/day has caused failure to thrive, lethargy, and fever. Impaired capacity to deaminate proteins from liver insufficiency or to excrete excess nitrogen as urea from renal insufficiency can further limit tolerable protein intake.


LIPIDS

Fats are the main dietary energy source for infants and account for up to 50% of the energy in human milk. Over 98% of breast milk fat is triglyceride (TG), which has an energy density of 9 kcal/g. Fats can be stored efficiently in adipose tissue with a minimal energy cost of storage. This is especially important in the young infant. Fats are required for the absorption of fat-soluble vitamins and for myelination of the central nervous system. Fat also provides essential fatty acids (EFAs) necessary for brain development, for phospholipids in cell membranes, and for the synthesis of prostaglandins and leukotrienes. The EFAs are polynsaturated fatty acids, linoleic acid (18:2ω6) and linolenic acid (18:3ω3). Arachidonic acid (20:4ω6) is derived from dietary linoleic acid and is present primarily in membrane phospholipids. Important derivatives of linolenic acid are eicosapentaenoic acid (20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3) found in human milk and brain lipids. Visual acuity and possibly psychomotor development of formula-fed premature infants is improved in formulas supplemented with DHA (22:6ω3) and ARA (20:4ω6). The benefits of long-chain polynsaturated fatty acid supplementation in formulas for healthy term infants are unclear (though safety has been established).

Clinical features of EFA omega-6 deficiency include growth failure, erythematous and scaly dermatitis, capillary fragility, increased fragility of erythrocytes, thrombocytopenia, poor wound healing, and susceptibility to infection. The clinical features of deficiency of omega-3 fatty acids are less well defined, but dermatitis and neurologic abnormalities including blurred vision, peripheral neuropathy, and weakness have been reported. Fatty fish are the best dietary source.
of omega-3 fatty acids. A high intake of fatty fish is associated with decreased platelet adhesiveness and decreased inflammatory response.

Up to 5%-10% of fatty acids in human milk are polyunsaturated, with the specific fatty acid profile reflective of maternal dietary intake. Most of these are omega-6 series with smaller amounts of long-chain omega-3 fatty acids. About 40% of breast milk fatty acids are monounsaturates, primarily oleic acid (18:1), and up to 10% of total fatty acids are medium-chain triglycerides (MCTs) (C₈ and C₁₀) with a calorie density of 7.6 kcal/g. In general, the percentage of calories derived from fat is a little lower in infant formulas than in human milk.

The American Academy of Pediatrics recommends that infants receive at least 30% of calories from fat, with at least 2.7% of total fat as linoleic acid, and 1.75% of total fatty acids as linolenic. It is appropriate that 40%-50% of energy requirements be provided as fat during at least the first year of life. Children older than 2 years should be switched gradually to a diet containing approximately 30% of total calories from fat, with no more than 10% of calories either from saturated fats or polyunsaturated fats.

β-Oxidation of fatty acids occurs in the mitochondria of muscle and liver. Carnitine is necessary for oxidation of the fatty acids, which must cross the mitochondrial membranes as acylcarnitine. Carnitine is synthesized in the human liver and kidneys from lysine and methionine. Carnitine needs of infants are met by breast milk or infant formulas. In the liver, substantial quantities of fatty acids are converted to ketone bodies, which are then released into the circulation as an important fuel for the brain of the young infant.

MCTs are sufficiently soluble that micelle formation is not required for transport across the intestinal mucosa. They are transported directly to the liver via the portal circulation. MCTs are rapidly metabolized in the liver, undergoing β-oxidation or ketogenesis. They do not require carnitine to enter the mitochondria. MCTs are useful for patients with luminal phase defects, absorptive defects, and chronic inflammatory bowel disease. The potential side effects of MCT administration include diarrhea when given in large quantities; high octanoic acid levels in patients with cirrhosis; and, if they are the only source of lipids, deficiency of EFA.


CARBOHYDRATES

The energy density of carbohydrate is 4 kcal/g. Approximately 40% of caloric intake in human milk is in the form of lactose, or milk sugar. Lactose supplies 20% of the total energy in cow’s milk. The percent of total energy in infant formulas from carbohydrate is similar to that of human milk.

The rate at which lactase hydrolyzes lactose to glucose and galactose in the intestinal brush border determines how quickly milk carbohydrates are absorbed. Lactase levels are highest in young infants, and decline with age depending on genetic factors. About 20% of nonwhite Hispanic and black children younger than 5 years of age have lactase deficiency. White children typically do not develop symptoms of lactase intolerance until they are at least 4 or 5 years of age, while nonwhite Hispanic, Asian American, and black children may develop these symptoms by 2 or 3 years of age. Lactose-intolerant children have varying symptoms depending on the specific activity of their intestinal lactase and the amount of lactose consumed. Galactose is preferentially converted to glycogen in the liver prior to conversion to glucose for subsequent oxidation. Infants with galactosemia, an inborn metabolic disease caused by deficient galactose-1-phosphate uridylyltransferase, require a lactose-free diet starting in the neonatal period.

After the first 2 years of life, 50%-60% of energy requirements should be derived from carbohydrates, with no more than 10% from simple sugars. These dietary guidelines are, unfortunately, not reflected in the diets of North American children, who typically derive 25% of their energy intake from sucrose and less than 20% from complex carbohydrates.

Children and adolescents in North America consume large quantities of sucrose and high-fructose corn syrup in soft drinks and other sweetened beverages, candy, syrups, and sweetened breakfast cereals. A maximum intake of 10% of daily energy from sucrose has been recommended by the World Health Organization, but typical intakes have been reported to far exceed this recommended level. A high intake of these sugars, especially in the form of sweetened beverages, may predispose to obesity and insulin resistance, is a major risk factor for dental caries, and may be associated with an overall poorer quality diet, including high intake of saturated fat. Sucrase hydrolyzes sucrose to glucose and fructose in the brush border of the small intestine. Fructose absorption through facilitated diffusion occurs more slowly than glucose absorption through active transport. Fructose does not stimulate insulin secretion or enhance leptin production. Since both insulin and leptin play a role in regulation of food intake, consumption of fructose (eg, as high-fructose corn syrup) may contribute to increased energy intake and weight gain. Fructose is also easily converted to hepatic triglycerides, which may be undesirable in patients with insulin resistance/metabolic syndrome and cardiovascular disease risk.

Dietary fiber can be classified in two major types: nondigested carbohydrate (β(1–4 linkages) and noncarbohydrate (lignin). Insoluble fibers (cellulose, hemicellulose, and lignin) increase stool bulk and water content and decrease gut transit time. Soluble fibers (pectins, mucilages, oat bran) bind bile acids and reduce lipid and cholesterol absorption. Pectins also slow gastric emptying and the rate of nutrient absorption. Few data regarding the fiber needs of children are available. The Dietary Reference Intakes recommend 14 g
of fiber per 1000 kcal consumed. The American Academy of Pediatrics recommends that children older than 2 years consume in grams per day an amount of fiber equal to 5 plus the age in years. Fiber intakes are often low in North America. Children who have higher dietary fiber intakes have been found to consume more nutrient-dense diets than children with low-fiber intakes. In general, higher fiber diets are associated with lower risk of chronic diseases such as obesity, cardiovascular disease, and diabetes.


**MAJOR MINERALS**

Dietary sources, absorption, metabolism, and deficiency of the major minerals are summarized in Table 11–3. Recommended intakes are provided in Table 11–4.

**TRACE ELEMENTS**

Trace elements with a recognized role in human nutrition are iron, iodine, zinc, copper, selenium, manganese, molybdenum, chromium, cobalt (as a component of vitamin B₁₂), and fluoride. Information on food sources, functions, and deficiencies of the trace elements is summarized in Table 11–5. Supplemental fluoride recommendations are listed in Table 11–6. Dietary Reference Intakes of trace elements are summarized in Table 11–4. Iron deficiency is discussed in Chapter 30.


**VITAMINS**

**Fat-Soluble Vitamins**

Because they are insoluble in water, the fat-soluble vitamins require digestion and absorption of dietary fat and a carrier system for transport in the blood. Deficiencies in these vitamins develop more slowly than deficiencies in water-soluble vitamins because the body accumulates stores of fat-soluble vitamins; but prematurity and some childhood conditions can place infants and children at risk (Table 11–7). Excessive intakes carry a considerable potential for toxicity (Table 11–8). A summary of reference intakes for select vitamins is found in Table 11–9. Dietary sources of the fat-soluble vitamins, absorption/metabolism, and causes and clinical features of deficiency are summarized in Table 11–10, and vitamin deficiency and related diagnostic laboratory findings and treatment are detailed in Table 11–11.

Recent recognition of low levels of 25-OH-vitamin D in a relatively large percentage of the population and the broad range of functions beyond calcium absorption have led many experts including the American Academy of Pediatrics to recommend a daily intake of at least 400 IU (10 mcg)/d for all infants, including those who are breast-fed, beginning shortly after birth.


**Water-Soluble Vitamins**

Deficiencies of water-soluble vitamins are generally uncommon in the United States because of the abundant food supply and fortification of prepared foods. Cases of deficiencies (eg, scurvy) in children with special needs have been reported in the context of sharply restricted diets. Most bread and wheat products are fortified with B vitamins, including the mandatory addition of folic acid to enriched grain products since January 1998. There is conclusive evidence that folic acid supplements (400 mcg/d) during the periconceptional period protect against neural tube defects. Dietary intakes of folic acid from natural foods and enriched products also are protective. Biological roles of water-soluble vitamins are listed in Table 11–12.

The risk of toxicity from water-soluble vitamins is not as great as that associated with fat-soluble vitamins because excesses are excreted in the urine. However, deficiencies of these vitamins develop more quickly than deficiencies in fat-soluble vitamins because of limited stores, with the exception of Vitamin B₁₂.

Major dietary sources of the water-soluble vitamins are listed in Table 11–13. Additional salient details are summarized in Tables 11–7, 11–14, and 11–15.
Table 11–3. Summary of major minerals.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Absorption/Metabolism</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Calcium</strong>&lt;br&gt;Dietary sources: dairy products, legumes, broccoli, green leafy vegetables.</td>
<td>20%–30% from diet; 60% from HM. Enhanced by lactose, glucose, protein; impaired by phytate, fiber, oxalate, unabsorbed fat. Absorption is regulated by serum calcitriol, which increases when PTH is secreted in response to low plasma-ionized calcium. PTH also promotes release of calcium from bone. Renal excretion.</td>
<td>Can occur in premature infants without adequate supplementation and in lactating adolescents with limited calcium intake or in patients with steatorrhea.</td>
</tr>
<tr>
<td><strong>Phosphorus</strong>&lt;br&gt;Dietary sources: meats, eggs, dairy products, grains, legumes, and nuts; high in processed foods and sodas.</td>
<td>80% from diet. PTH decreases tubular resorption of phosphorus in kidneys; homeostasis is maintained by GI tract and kidneys.</td>
<td>Rare, but can occur in premature infants fed unfortified HM (results in osteoporosis and rickets, sometimes hypercalcemia). Also seen in patients with protein-energy malnutrition.</td>
</tr>
<tr>
<td><strong>Magnesium</strong>&lt;br&gt;Dietary sources: vegetables, cereals, nuts.</td>
<td>Kidneys regulate homeostasis by decreasing excretion when intake is low.</td>
<td>Occurs as part of refeeding syndrome with protein-energy malnutrition. Renal disease, malabsorption, or magnesium wasting medications may lead to depletion. May cause secondary hypocalemia.</td>
</tr>
<tr>
<td><strong>Sodium</strong>&lt;br&gt;Dietary sources: processed foods, table salt.</td>
<td>Hypo- and hypernatremic dehydration are discussed in Chapter 23. Kidneys are primary site of homeostatic regulation.</td>
<td>Results from excess losses associated with diarrhea and vomiting.</td>
</tr>
<tr>
<td><strong>Chloride</strong>&lt;br&gt;Dietary sources: table salt or sea salt, seaweed, many vegetables.</td>
<td>Homeostasis is closely linked to sodium. Plays an important role in physiologic mechanisms of kidneys and gut.</td>
<td>Can occur in infants fed low chloride-containing diets, or in children with cystic fibrosis, vomiting, diarrhea, chronic diuretic therapy, or Bartter syndrome.</td>
</tr>
<tr>
<td><strong>Potassium</strong>&lt;br&gt;Dietary sources: nuts, whole grains, meats, fish, beans, fruits and vegetables, especially bananas, orange juice.</td>
<td>Kidneys control potassium homeostasis via the aldosterone-angiotensin endocrine system. Amount of total body potassium depends on lean body mass.</td>
<td>Occurs in protein-energy malnutrition (eg, refeeding syndrome) and can cause cardiac failure and sudden death if not treated aggressively. With loss of lean body mass, excessive potassium is excreted in urine in any catabolic state. Can also occur during acidosis, from diarrhea, and from diuretic use. Hyperkalemia may result from renal insufficiency.</td>
</tr>
</tbody>
</table>

ECG, electrocardiogram; GI, gastrointestinal; HM, human milk; PTH, parathyroid hormone.
Carnitine is synthesized in the liver and kidneys from lysine and methionine. In certain circumstances (see Table 11–14), synthesis is inadequate, and carnitine can then be considered a vitamin. A dietary supply of other organic compounds, such as inositol, may also be required in certain circumstances.

Table 11–4. Summary of Dietary Reference Intakes for selected minerals and trace elements.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>0–6 mo</th>
<th>7–12 mo</th>
<th>1–3 y</th>
<th>4–8 y</th>
<th>9–13 y</th>
<th>14–18 y Male</th>
<th>14–18 y Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (mg/d)</td>
<td>210a</td>
<td>270a</td>
<td>500a</td>
<td>800a</td>
<td>1300a</td>
<td>1300a</td>
<td>1300a</td>
</tr>
<tr>
<td>Phosphorus (mg/d)</td>
<td>100a</td>
<td>275a</td>
<td>460a</td>
<td>500</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
</tr>
<tr>
<td>Magnesium (mg/d)</td>
<td>30a</td>
<td>75a</td>
<td>80</td>
<td>130</td>
<td>240</td>
<td>410</td>
<td>360</td>
</tr>
<tr>
<td>Iron (mg/d)</td>
<td>0.27a</td>
<td>11</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Zinc (mg/d)</td>
<td>2a</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Copper (mcg/d)</td>
<td>200a</td>
<td>220a</td>
<td>340</td>
<td>440</td>
<td>700</td>
<td>890</td>
<td>890</td>
</tr>
<tr>
<td>Selenium (mcg/d)</td>
<td>15a</td>
<td>20a</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

aAdequate Intakes (AI). All other values represent the Recommended Dietary Allowances (RDAs). Both the RDA and AI may be used as goals for individual intakes.

Breast-feeding provides optimal nutrition for the normal infant during the early months of life. The World Health Organization recommends exclusive breast-feeding for approximately the first 6 months of life, with continued breast-feeding along with appropriate complementary foods through the first 2 years of life. Numerous immunologic factors in breast milk (including secretory immunoglobulin A [IgA], lysozyme, lactoferrin, bifidus factor, and macrophages) provide protection against GI and upper respiratory infections.

In developing countries, lack of refrigeration and contaminated water supplies make formula feeding hazardous. Although formulas have improved progressively and are made to resemble breast milk as closely as possible, it is impossible to replicate the nutritional or immune composition of human milk. Additional differences of physiologic importance continue to be identified. Furthermore, the relationship developed through breast-feeding can be an important part of early maternal interactions with the infant and provides a source of security and comfort to the infant.

Breast-feeding has been reestablished as the predominant initial mode of feeding young infants in the United States. Unfortunately, breast-feeding rates remain low among several subpopulations, including low-income, minority, and young mothers. Many mothers face obstacles in maintaining lactation once they return to work, and rates of breast-feeding at 6 months are considerably less than the goal of 50%. Skilled use of a breast pump, particularly an electric one, can help to maintain lactation in these circumstances.

Absolute contraindications to breast-feeding are rare. They include tuberculosis (in the mother) and galactosemia (in the infant). Breast-feeding is associated with maternal-to-child transmission of human immunodeficiency virus (HIV), but the risk is influenced by duration and pattern of breast-feeding and maternal factors, including immunologic status and presence of mastitis. Complete avoidance of breast-feeding by HIV-infected women is presently the only mechanism to ensure prevention of maternal–infant transmission. Current recommendations are that HIV-infected mothers in developed countries refrain from breast-feeding if safe alternatives are available. In developing countries, the benefits of breast-feeding, especially the protection of the child against diarrheal illness and malnutrition, outweigh the risk of HIV infection via breast milk. In such circumstances, mixed feeding should be avoided because of the increased risk of HIV transmission with mixed feeds.

In newborns less than 1750 g, human milk should be fortified to increase protein, calcium, phosphorus, and micronutrient content, as well as caloric density. Breast-fed infants with cystic fibrosis can be breast-fed successfully if exogenous pancreatic enzymes are provided. If normal growth rates are not achieved in breast-fed infants with cystic fibrosis, energy or specific macronutrient supplements may be necessary. All infants with cystic fibrosis should receive supplemental vitamins A, D, E, K, and sodium chloride.
<table>
<thead>
<tr>
<th>Mineral</th>
<th>Causes</th>
<th>Deficiency</th>
<th>Clinical Features</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Zinc</strong></td>
<td>Diets low in available zinc (high phytate), unfortified synthetic diets; malabsorptive diseases (enteritis, celiac disease, cystic fibrosis); excessive losses (chronic diarrhea); inborn errors of zinc metabolism (acrodermatitis enteropathica, mammary gland zinc secretion defect). Inadequate intake in breast-fed infants after age 6 mo. Prematurity and low birth weight are risk factors.</td>
<td>Mild: impaired growth, poor appetite, impaired immunity. Moderate to severe: mood changes, irritability, lethargy, impaired immune function, increased susceptibility to infection; acroorificial skin rash, diarrhea, alopecia. Response to zinc supplement is gold standard for diagnosis of deficiency; plasma zinc levels are lowered by acute phase response.</td>
<td>1 mg/kg/d of elemental zinc for 3 mo (eg, 4.5 mg/kg/d of zinc sulfate salt), given separately from meals and iron supplements. With acrodermatitis enteropathica, 30–50 mg Zn²⁺ per day (or more) sustains remission.</td>
<td></td>
</tr>
<tr>
<td><strong>Copper</strong></td>
<td>Generalized malnutrition, prolonged PN without supplemental copper, malabsorption, or prolonged diarrhea. Prematurity is a risk factor.</td>
<td>Osteoporosis, enlargement of costochondral cartilages, cupping and flaring of long bone metaphyses, spontaneous rib fractures. Neutropenia and hypochromic anemia resistant to iron therapy. Defect of copper metabolism (Menkes kinky hair syndrome) results in severe CNS disease. Low plasma levels help to confirm deficiency; levels are normally very low in young infants. Age-matched normal data are necessary for comparison. Plasma levels are raised by acute phase response.</td>
<td>1% copper sulfate solution (2 mg of salt) or 500 mcg/d elemental copper for infants.</td>
<td></td>
</tr>
<tr>
<td><strong>Selenium</strong></td>
<td>Inadequate dietary intake; can occur with selenium-deficient PN. Renal disease.</td>
<td>Skeletal muscle pain and tenderness, macrocytosis, loss of hair pigment. Keshan disease, an often fatal cardiomyopathy in infants and children.</td>
<td>Minimum recommended selenium content for full-term infant formulas is 1.5 mcg/100 kcal, and for preterm formulas, 1.8 mcg/100 kcal. PN should be supplemented.</td>
<td></td>
</tr>
<tr>
<td><strong>Iodine</strong></td>
<td>Maternal iodine deficiency causes endemic neonatal hypothyroidism in 5%-16% of neonates who may have goiter at birth. Neurologic endemic cretinism (severe mental retardation, deaf mutism, spastic diplegia, and strabismus) occurs with severe deficiency. Myxedematosus endemic cretinism occurs in some central African countries where signs of congenital hypothyroidism are present. Use of iodized salt is effective in preventing goiter. Injections of iodized oil can also be used for prevention.</td>
<td>Neurologic endemic cretinism (severe mental retardation, deaf mutism, spastic diplegia, and strabismus) occurs with severe deficiency. Myxedematosus endemic cretinism occurs in some central African countries where signs of congenital hypothyroidism are present. Use of iodized salt is effective in preventing goiter. Injections of iodized oil can also be used for prevention.</td>
<td>Use of iodized salt is effective in preventing goiter. Injections of iodized oil can also be used for prevention.</td>
<td></td>
</tr>
<tr>
<td><strong>Fluoride</strong></td>
<td>Inadequate intake (unfluoridated water supply). Low intake increases incidence of dental caries.</td>
<td>See Table 11–6 for supplementation guidelines. Excess fluoride intake results in fluorosis.</td>
<td>See Table 11–6 for supplementation guidelines. Excess fluoride intake results in fluorosis.</td>
<td></td>
</tr>
</tbody>
</table>

CNS, central nervous system; PN, parenteral nutrition.
Table 11-8. Effects of vitamin toxicity.

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>ToxicityREACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyridoxine</td>
<td>Sensory neuropathy at doses &gt; 500 mg/d</td>
</tr>
<tr>
<td>Niacin</td>
<td>Histamine release → cutaneous vasodilation; cardiac arrhythmias; cholestatic jaundice; gastrointestinal disturbance; hyperuricemia; glucose intolerance</td>
</tr>
<tr>
<td>Folic acid</td>
<td>May mask B12 deficiency, hypersensitivity</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Diarrhea; increased oxalic acid excretion; renal stones</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>(≥ 20,000 IU/d): Vomiting, increased intracranial pressure (pseudotumor cerebri); irritability; headaches; insomnia; emotional lability; dry, desquamating skin; myalgia and arthralgia; abdominal pain; hepatosplenomegaly; cortical thickening of bones of hands and feet</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>(&gt; 50,000 IU/d): Hypercalcemia; vomiting; constipation; nephrocalcinosis</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>(&gt; 25–100 mg/kg/d intravenously): Necrotizing enterocolitis and liver toxicity (but probably due to polysorbate 80 used as a solubilizer)</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>Lipid-soluble vitamin K: Very low order of toxicity</td>
</tr>
<tr>
<td>Water-soluble, synthetic vitamin K: Vomiting; porphyrinuria; albuminuria; hemolytic anemia; hemoglobinuria; hyperbilirubinemia (do not give to neonates)</td>
<td></td>
</tr>
</tbody>
</table>

Support of Breast-Feeding

In developed countries, health professionals are now playing roles of greater importance in supporting and promoting breast-feeding. Organizations such as the American Academy of Pediatrics and La Leche League have initiated programs to promote breast-feeding and provide education for health professionals and mothers.

Perinatal hospital routines and early pediatric care have a great influence on the successful initiation of breast-feeding by promoting prenatal and postpartum education, frequent mother-baby contact after delivery, one-on-one advice about breast-feeding technique, demand feeding, rooming-in, avoidance of bottle supplements, early follow-up after delivery, maternal confidence, family support, adequate maternity leave, and advice about common problems such as sore nipples. A 2011 CDC Morbidity and Mortality Report found that most US hospitals do not have policies that optimally support breast-feeding. Medical providers can modify their own practice patterns and advocate for hospital policies that support breast-feeding.

Very few women are unable to nurse their babies. The newborn is generally fed ad libitum every 2–3 hours, with longer intervals (4–5 hours) at night. Thus, a newborn infant

---

Table 11-6. Supplemental fluoride recommendations (mg/d).

<table>
<thead>
<tr>
<th>Age</th>
<th>Concentration of Fluoride in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt; 0.3 ppm</td>
</tr>
<tr>
<td>6 mo–3 y</td>
<td>0.25</td>
</tr>
<tr>
<td>3–6 y</td>
<td>0.5</td>
</tr>
<tr>
<td>6–16 y</td>
<td>1</td>
</tr>
</tbody>
</table>


Table 11-7. Circumstances associated with risk of vitamin deficiencies.

<table>
<thead>
<tr>
<th>Circumstance</th>
<th>Possible Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prematurity</td>
<td>All vitamins</td>
</tr>
<tr>
<td>Protein-energy malnutrition</td>
<td>B1, B2, folate, A</td>
</tr>
<tr>
<td>Synthetic diets without adequate fortification (including total parenteral nutrition)</td>
<td>All vitamins</td>
</tr>
<tr>
<td>Vitamin-drug interactions</td>
<td>Folate, B12, D, B6</td>
</tr>
<tr>
<td>Fat malabsorption syndromes</td>
<td>Fat-soluble vitamins</td>
</tr>
<tr>
<td>Breast-feeding</td>
<td>B1, B2, folate, B12, D, E, K</td>
</tr>
<tr>
<td>Periconceptional</td>
<td>Folate</td>
</tr>
<tr>
<td>Bariatric surgery (all types)</td>
<td>B vitamins</td>
</tr>
</tbody>
</table>

*aAlcoholic or malnourished mother.  
*bFolate-deficient mother.  
*cVegan mother or maternal pernicious anemia.  
*dInfant not exposed to sunlight and mother’s vitamin D status suboptimal.  
*eMaternal status poor; neonatal prophylaxis omitted.
nurses at least 8–10 times a day, so that a generous milk supply is stimulated. This frequency is not an indication of inadequate lactation. In neonates, a loose stool is often passed with each feeding; later (at age 3–4 months), there may be an interval of several days between stools. Failure to pass several stools a day in the early weeks of breast-feeding suggests inadequate milk intake and supply.

Expressing milk may be indicated if the mother returns to work or if the infant is premature, cannot suck adequately, or is hospitalized. Electric breast pumps are very effective and can be borrowed or rented.

### Technique of Breast-Feeding

Breast-feeding can be started after delivery as soon as both mother and baby are stable. Correct positioning and breast-feeding technique are necessary to ensure effective nipple stimulation and optimal breast emptying with minimal nipple discomfort.

If the mother wishes to nurse while sitting, the infant should be elevated to the height of the breast and turned completely to face the mother, so that their abdomens touch. The mother’s arms supporting the infant should be held tightly at her side, bringing the baby’s head in line with her breast. The breast should be supported by the lower fingers of her free hand, with the nipple compressed between the thumb and index fingers to make it more protractile. The infant’s initial licking and mouthing of the nipple helps make it more erect. When the infant opens its mouth, the mother should rapidly insert as much nipple and areola as possible.

The most common early cause of poor weight gain in breast-fed infants is poorly managed mammary engorgement, which rapidly decreases milk supply. Unrelieved engorgement can result from inappropriately long intervals between feeding, improper infant suckling, a nondemanding infant, sore nipples, maternal or infant illness, nursing from only one breast, and latching difficulties. Poor maternal feeding technique, inappropriate feeding routines, and inadequate amounts of fluid and rest all can be factors. Some infants are too sleepy to do well on an ad libitum regimen and may need waking to feed at night. Primary lactation failure occurs in less than 5% of women.

A sensible guideline for duration of feeding is 5 minutes per breast at each feeding the first day, 10 minutes on each side at each feeding the second day, and 10–15 minutes per side thereafter. A vigorous infant can obtain most of the available milk in 5–7 minutes, but additional sucking time ensures breast emptying, promotes milk production, and satisfies the infant’s sucking urge. The side on which feeding

<table>
<thead>
<tr>
<th>Table 11–9. Summary of Dietary Reference Intakes for select vitamins.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–6 mo</td>
</tr>
<tr>
<td>Thiamin (mg/d)</td>
</tr>
<tr>
<td>Riboflavin (mg/d)</td>
</tr>
<tr>
<td>Pyridoxine (mg/d)</td>
</tr>
<tr>
<td>Niacin (mg/d)</td>
</tr>
<tr>
<td>Pantothenic acid (mg/d)</td>
</tr>
<tr>
<td>Biotin (mcg/d)</td>
</tr>
<tr>
<td>Folic acid (mcg/d)</td>
</tr>
<tr>
<td>Cobalamin (mcg/d)</td>
</tr>
<tr>
<td>Vitamin C (mg/d)</td>
</tr>
<tr>
<td>Vitamin A (mcg/d)</td>
</tr>
<tr>
<td>Vitamin D (IU/d)</td>
</tr>
<tr>
<td>Vitamin E (mg/d)</td>
</tr>
<tr>
<td>Vitamin K (mcg/d)</td>
</tr>
</tbody>
</table>

*aAdequate Intakes (AI). All other values represent the Recommended Dietary Allowances (RDAs). Both the RDA and AI may be used as goals for individual intakes.

bAmerican Academy of Pediatrics in 2008 recommended 400 IU/d vitamin D for infants, children, and adolescents.

Table 11–10. Summary of fat-soluble vitamins.

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Absorption/Metabolism</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vitamin A</strong></td>
<td>Retinol is stored in liver and from there is exported, attached to RBP and prealbumin. RBP may be decreased in liver disease or in protein energy malnutrition. Circulating RBP may be increased in renal failure.</td>
<td>Causes: Occurs in premature infants, in association with inadequately supplemented PN; protein-energy malnutrition (deficiency worsened by measles); dietary insufficiency and fat malabsorption. Clinical Features: Night blindness, xerosis, xerophthalmia, Bitot spots, keratomalacia, ulceration and perforation of cornea, prolapse of lens and iris, and blindness; follicular hyperkeratosis; pruritus; growth retardation; increased susceptibility to infection.</td>
</tr>
<tr>
<td><strong>Dietary sources:</strong> dairy products, eggs, liver, meats, fish oils. Precursor β-carotene is abundant in yellow and green vegetables. <strong>Functions:</strong> has critical role in vision, helping to form photosensitive pigment rhodopsin; modifies differentiation and proliferation of epithelial cells in respiratory tract; and is needed for glycoprotein synthesis. <strong>Absorption:</strong> absorbed in proximal small intestine in micelles with bile salts; circulates with VLDL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Vitamin K</strong></td>
<td>Absorbed in proximal small intestine in micelles with bile salts; circulates with VLDL.</td>
<td>Causes: Occurs in newborns, especially those who are breast-fed and who have not received vitamin K prophylaxis at delivery; in fat malabsorption syndromes; and with use of unabsorbed antibiotics and anticoagulant drugs (warfarin). Clinical Features: Bruising or bleeding in GI tract, genitourinary tract, gingiva, lungs, joints, and brain.</td>
</tr>
<tr>
<td><strong>Dietary sources:</strong> leafy vegetables, fruits, seeds; synthesized by intestinal bacteria. <strong>Functions:</strong> necessary for the maintenance of normal plasma levels of coagulation factors II, VII, IX, and X; essential for maintenance of normal levels of the anticoagulation protein C; essential for osteoblastic activity. <strong>Absorption:</strong> emulsified in intestinal lumen with bile salts; absorbed via passive diffusion; transported by chylomicrons and VLDL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Vitamin E</strong></td>
<td>Emulsified in intestinal lumen with bile salts; absorbed via passive diffusion; transported by chylomicrons and VLDL.</td>
<td>Causes: May occur with prematurity, cholestatic liver disease, pancreatic insufficiency, abetalipoproteinemia, and short bowel syndrome. Isolated inborn error of vitamin E metabolism. May result from increased consumption during oxidant stress. Clinical Features: Hemolytic anemia; progressive neurologic disorder with loss of deep tendon reflexes, loss of coordination, vibratory and position sensation, nystagmus, weakness, scoliosis, and retinal degeneration.</td>
</tr>
<tr>
<td><strong>Dietary sources:</strong> vegetable oils, some cereals, dairy, wheat germ, eggs. <strong>Functions:</strong> α-tocopherol has highest biologic activity; as a free-radical scavenger, stops oxidation reactions. Located at specific sites in cell membrane to protect polyunsaturated fatty acids in membrane from peroxidation and to protect thiol groups and nucleic acids; also acts as cell membrane stabilizer; may function in electron transport chain; may modulate chromosomal expression.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Vitamin D</strong></td>
<td>Normally obtained primarily from cholecalciferol (D₃) produced by UV radiation of dehydrocholesterol in skin. Ergocalciferol (D₂) is derived from UV irradiation of ergosterol in skin. Vitamin D is transported from skin to liver, attached to a specific carrier protein.</td>
<td>Causes: Results from a combination of inadequate sunlight exposure, dark skin pigmentation, and low dietary intake. Breast-fed infants are at risk because of low vitamin D content of human milk. Cow’s milk and infant formulas are routinely supplemented with vitamin D. Deficiency also occurs in fat malabsorption syndromes. Hydroxylated vitamin D may be decreased by CYP-450-stimulating drugs, hepatic or renal disease, and inborn errors of metabolism. Clinical Features: Osteomalacia (adults) or rickets (children), in which osteoid with reduced calcification accumulates in bone. <strong>Clinical findings:</strong> craniotabes, rachitic rosary, pigeon breast, bowed legs, delayed eruption of teeth and enamel defects, Harrison groove, scoliosis, kyphosis, dwarfism, painful bones, fractures, anorexia, and weakness. <strong>Radiographic findings:</strong> cupping, fraying, flaring of metaphyses.</td>
</tr>
<tr>
<td><strong>Dietary sources:</strong> fortified milk and formulas, egg yolk, fatty fish. <strong>Functions:</strong> calcitriol, the biologically active form of vitamin D, stimulates intestinal absorption of calcium and phosphate, renal reabsorption of filtered calcium, and mobilization of calcium and phosphorus from bone.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CYP, cytochrome P; GI, gastrointestinal; PN, parenteral nutrition; PTH, parathyroid hormone; RBP, retinol-binding protein; UV, ultraviolet; VLDL, very low-density lipoproteins.
is commenced should be alternated. The mother may break suction gently after nursing by inserting her finger between the baby’s gums.

Follow-Up

Individualized assessment before discharge should identify mothers and infants needing additional support. All mother-infant pairs require early follow-up. The onset of copious milk secretion between the second and fourth postpartum days is a critical time in the establishment of lactation. Failure to empty the breasts during this time can cause engorgement, which quickly leads to diminished milk production.

Common Problems

Nipple tenderness requires attention to proper positioning of the infant and correct latch-on. Ancillary measures include nursing for shorter periods, beginning feedings on the less sore side, air drying the nipples well after nursing, and use of lanolin cream. Severe nipple pain and cracking

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Diagnostic Laboratory Findings and Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Laboratory findings: serum retinol &lt; 20 mcg/dL; molar ratio of retinol:RBP &lt; 0.7 is also diagnostic. Treatment: xerophthalmia requires 5000–10,000 IU/kg/d for 5 d PO or IM; with fat malabsorption, standard dose is 2500–5000 IU. Toxicity effects are listed in Table 11–8.</td>
</tr>
<tr>
<td>K</td>
<td>Laboratory findings: assess plasma levels of PIVKA or PT. Treatment: Oral: 2.5–5.0 mg/d or IM/IV: 1–2 mg/dose as single dose.</td>
</tr>
<tr>
<td>E</td>
<td>Laboratory findings: normal serum level is 3–15 mg/mL for children. Ratio of serum vitamin E to total serum lipid is normally ≥ 0.8 mg/g. Treatment: large oral doses (up to 100 IU/kg/d) correct deficiency from malabsorption; for abetalipoproteinemia, 100–200 IU/kg/d are needed.</td>
</tr>
<tr>
<td>D</td>
<td>Laboratory findings: low serum phosphorus and calcium, high alkaline phosphatase, high serum PTH, low 25-OH-cholecalciferol. American Academy of Pediatrics recommends supplementation, as follows: 400 IU/d for all breast-fed infants, beginning in first 2 months of life and continuing until infant is receiving ≥ 500 mL/d of vitamin D-fortified formula or cow’s milk. Treatment: 1600–5000 IU/d of vitamin D, for rickets. If poorly absorbed, give 0.05–0.2 mcg/kg/d of calcitriol.</td>
</tr>
</tbody>
</table>

| IM | intramuscular; IV, intravenous; PIVKA, protein-induced vitamin K absence; PO, by mouth; PT, prothrombin time; PTH, parathyroid hormone; RBP, retinol-binding protein. |

| Table 11–11. Evaluation and treatment of deficiencies of fat-soluble vitamins. |

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Laboratory findings</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Serum retinol &lt; 20 mcg/dL; molar ratio of retinol:RBP &lt; 0.7 is also diagnostic.</td>
<td>Xerophthalmia requires 5000–10,000 IU/kg/d for 5 d PO or IM; with fat malabsorption, standard dose is 2500–5000 IU. Toxicity effects are listed in Table 11–8.</td>
</tr>
<tr>
<td>K</td>
<td>Assess plasma levels of PIVKA or PT.</td>
<td>Oral: 2.5–5.0 mg/d or IM/IV: 1–2 mg/dose as single dose.</td>
</tr>
<tr>
<td>E</td>
<td>Normal serum level is 3–15 mg/mL for children. Ratio of serum vitamin E to total serum lipid is normally ≥ 0.8 mg/g.</td>
<td>Large oral doses (up to 100 IU/kg/d) correct deficiency from malabsorption; for abetalipoproteinemia, 100–200 IU/kg/d are needed.</td>
</tr>
<tr>
<td>D</td>
<td>Low serum phosphorus and calcium, high alkaline phosphatase, high serum PTH, low 25-OH-cholecalciferol.</td>
<td>American Academy of Pediatrics recommends supplementation, as follows: 400 IU/d for all breast-fed infants, beginning in first 2 months of life and continuing until infant is receiving ≥ 500 mL/d of vitamin D-fortified formula or cow’s milk. Treatment: 1600–5000 IU/d of vitamin D, for rickets. If poorly absorbed, give 0.05–0.2 mcg/kg/d of calcitriol.</td>
</tr>
</tbody>
</table>

| Table 11–12. Summary of biologic roles of water-soluble vitamins. |

| B vitamins involved in production of energy |
Thiamin (B1)	Thiamin pyrophosphate is a coenzyme in oxidative decarboxylation (pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and transketolase).
Riboflavin (B2)	Coenzyme of several flavoproteins (eg, flavin mononucleotide [FMN] and flavin adenine dinucleotide [FAD]) involved in oxidative/electron transfer enzyme systems.
Niacin	Hydrogen-carrying coenzymes: nicotinamide adenine dinucleotide (NAD), nicotinamide adenine dinucleotide phosphate (NADP); decisive role in intermediary metabolism.
Pantothenic acid	Major component of coenzyme A.
Biotin	Component of several carboxylase enzymes involved in fat and carbohydrate metabolism.

| Hematopoietic B vitamins |
| Folic acid | Tetrahydrofolate has essential role in one-carbon transfers. Essential role in purine and pyrimidine synthesis; deficiency → arrest of cell division (especially bone marrow and intestine). |
| Cobalamin (B12) | Methyl cobalamin (cytoplasm): synthesis of methionine with simultaneous synthesis of tetrahydrofolic acid (reason for megaloblastic anemia in B12 deficiency). Adenosyl cobalamin (mitochondria) is coenzyme for mutases and dehydratases. |

| Other B vitamins |
| Pyridoxine (B6) | Prosthetic group of transaminases, etc, involved in amino acid interconversions; prostaglandin and heme synthesis; central nervous system function; carbohydrate metabolism; immune development. |

| Other water-soluble vitamins |
| L-Ascorbic acid (C) | Strong reducing agent—probably involved in all hydroxylations. Roles include collagen synthesis; phenylalanine → tyrosine; tryptophan → 5-hydroxytryptophan; dopamine → norepinephrine; Fe³⁺; folic acid → folinic acid; cholesterol → bile acids; leukocyte function; interferon production; carnitine synthesis. Copper metabolism; reduces oxidized vitamin E. |
usually indicate improper infant attachment. Temporary pumping may be needed.

Breast-feeding jaundice is exaggerated physiologic jaundice associated with inadequate intake of breast milk, infrequent stooling, and unsatisfactory weight gain. (See Chapter 2.) If possible, the jaundice should be managed by increasing the frequency of nursing and, if necessary, augmenting the infant’s sucking with regular breast pumping. Supplemental feedings may be necessary, but care should be taken not to decrease breast milk production further.

In a small percentage of breast-fed infants, breast milk jaundice is caused by an unidentified property of the milk that inhibits conjugation of bilirubin. In severe cases, interruption of breast-feeding for 24–36 hours may be necessary. The mother’s breast should be emptied with an electric breast pump during this period.

The symptoms of mastitis include flulike symptoms with breast tenderness, firmness, and erythema. Antibiotic therapy covering β-lactamase–producing organisms should be given for 10 days. Analgesics may be necessary, but breast-feeding should be continued. Breast pumping may be helpful adjunctive therapy.

### Table 11–13. Major dietary sources of water-soluble vitamins.

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiamin (B&lt;sub&gt;1&lt;/sub&gt;)</td>
<td>Whole and enriched grains, lean pork, legumes</td>
</tr>
<tr>
<td>Riboflavin (B&lt;sub&gt;2&lt;/sub&gt;)</td>
<td>Dairy products, meat, poultry, wheat germ, leafy vegetables</td>
</tr>
<tr>
<td>Niacin (B&lt;sub&gt;3&lt;/sub&gt;)</td>
<td>Meats, poultry, fish, legumes, wheat, all foods except fats; synthesized in body from tryptophan</td>
</tr>
<tr>
<td>Pyridoxine (B&lt;sub&gt;6&lt;/sub&gt;)</td>
<td>Animal products, vegetables, whole grains</td>
</tr>
<tr>
<td>Pantothenic acid</td>
<td>Ubiquitous</td>
</tr>
<tr>
<td>Biotin</td>
<td>Yeast, liver, kidneys, legumes, nuts, egg yolks (synthesized by intestinal bacteria)</td>
</tr>
<tr>
<td>Folic acid</td>
<td>Leafy vegetables (easily destroyed in cooking), fruits, whole grains, wheat germ, beans, nuts</td>
</tr>
<tr>
<td>Cobalamin (B&lt;sub&gt;12&lt;/sub&gt;)</td>
<td>Eggs, dairy products, liver, meats; none in plants</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Fruits and vegetables</td>
</tr>
<tr>
<td>Carnitine</td>
<td>Meats, dairy products; none in plants</td>
</tr>
</tbody>
</table>

### Table 11–14. Causes of deficiencies in water-soluble vitamins.

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiamin</td>
<td>Beriberi: in infants breast-fed by mothers with history of alcoholism or poor diet; has been described as complication of parenteral nutrition (PN); protein-energy malnutrition; following bariatric surgery of all types—reported in adults and adolescents</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>General undernutrition; inactivation in TPN solutions exposed to light</td>
</tr>
<tr>
<td>Niacin</td>
<td>Maize- or millet-based diets (high-leucine and low-tryptophan intakes); carcinoid tumors</td>
</tr>
<tr>
<td>Pyridoxine</td>
<td>Prematurity (these infants may not convert pyridoxine to pyridoxal-5-P); B&lt;sub&gt;6&lt;/sub&gt; dependency syndromes; drugs (isoniazid)</td>
</tr>
<tr>
<td>Biotin</td>
<td>Suppressed intestinal flora and impaired intestinal absorption; regular intake of raw egg whites</td>
</tr>
<tr>
<td>Folic acid</td>
<td>Breast-fed infants whose mothers are folate-deficient; term infants fed unsupplemented processed cow’s milk or goat’s milk; kwashiorkor; chronic overcooking of food sources; malabsorption of folate because of a congenital defect; celiac disease; drugs (phenytoin)</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Increased requirements: chronic hemolytic anemias, diarrhea, malignancies, extensive skin disease, cirrhosis, pregnancy</td>
</tr>
<tr>
<td>Cobalamin (B&lt;sub&gt;12&lt;/sub&gt;)</td>
<td>Breast-fed infants of mothers with latent pernicious anemia or who are on an unsupplemented vegan diet; absence of luminal proteases; short gut syndrome (absence of stomach or ileum); congenital malabsorption of B&lt;sub&gt;12&lt;/sub&gt;</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Maternal megadoses during pregnancy → deficiency in infants (rebound); diet without fruits or vegetables; seen in infants fed formula based on pasteurized cow’s milk (historical)</td>
</tr>
<tr>
<td>Carnitine</td>
<td>Premature infants fed unsupplemented formula or fed intravenously; dialysis; inherited deficits in carnitine synthesis; organic acidemias; infants receiving valproic acid</td>
</tr>
</tbody>
</table>


**Maternal Drug Use**

Factors playing a role in the transmission of drugs in breast milk include the route of administration, dosage, molecular weight, pH, and protein binding. Generally, any
drug prescribed to a newborn can be consumed by the breast-
feeding mother without ill effect. Very few drugs are absolutely
contraindicated in breast-feeding mothers; these include radio-
active compounds, antimitabolites, lithium, diazepam, chlor-
amphenicol, antithyroid drugs, and tetracycline. For up-to-date
information, a regional drug center should be consulted.

Maternal use of illicit or recreational drugs is a contrain-
dication to breast-feeding. Expression of milk for a feeding
or two after use of a drug is not an acceptable compromise.
The breast-fed infants of mothers taking methadone (but not
alcohol or other drugs) as part of a treatment program have
generally not experienced ill effects when the daily maternal
methadone dose is less than 40 mg.

Table 11-15. Clinical features of deficiencies in water-
soluble vitamins.

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiamin (B1)</td>
<td>&quot;Dry&quot; Beriberi (paralytic or nervous): peripheral neuropathy, with</td>
</tr>
<tr>
<td></td>
<td>impairment of sensory, motor, and reflex functions</td>
</tr>
<tr>
<td></td>
<td>&quot;Wet&quot; Beriberi: high output congestive heart failure ± signs of dry beriberi</td>
</tr>
<tr>
<td></td>
<td>Cerebral Beriberi: ophthalmoplegia, ataxia, mental confusion,</td>
</tr>
<tr>
<td></td>
<td>memory loss</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>Cheilosis; angular stomatitis; glossitis; soreness and burning of lips</td>
</tr>
<tr>
<td></td>
<td>and mouth; dermatitis of nasolabial fold and genitals; ± ocular signs</td>
</tr>
<tr>
<td></td>
<td>(photophobia → indistinct vision)</td>
</tr>
<tr>
<td>Niacin</td>
<td>Pellagra (dermatitis, especially on sun-exposed areas; diarrhea;</td>
</tr>
<tr>
<td></td>
<td>dementia)</td>
</tr>
<tr>
<td>Pyridoxine (B6)</td>
<td>Listlessness; irritability; seizures; anemia; cheilosis; glossitis</td>
</tr>
<tr>
<td>Biotin</td>
<td>Scaly dermatitis; alopecia; irritability; lethargy</td>
</tr>
<tr>
<td>Folic acid</td>
<td>Megaloblastic anemia; neutropenia; growth retardation; delayed</td>
</tr>
<tr>
<td></td>
<td>maturation of central nervous system in infants; diarrhea</td>
</tr>
<tr>
<td></td>
<td>(mucosal ulcerations); glossitis; neural tube defects</td>
</tr>
<tr>
<td>Cobalamin (B12)</td>
<td>Megaloblastic anemia; hypersegmented neutrophils; neurologic</td>
</tr>
<tr>
<td></td>
<td>degeneration: paresthesias, gait problems, depression</td>
</tr>
<tr>
<td>Ascorbic acid (C)</td>
<td>Irritability, apathy, pallor; increased susceptibility to infections;</td>
</tr>
<tr>
<td></td>
<td>hemorrhages under skin, petechiae in mucous membranes, in joints</td>
</tr>
<tr>
<td></td>
<td>and under periosteum; long-bone tenderness; costochondral beading</td>
</tr>
<tr>
<td>Carnitine</td>
<td>Increased serum triglycerides and free fatty acids; decreased</td>
</tr>
<tr>
<td></td>
<td>ketones; fatty liver; hypoglycemia; progressive muscle</td>
</tr>
<tr>
<td></td>
<td>weakness, cardiomyopathy, hypoglycemia</td>
</tr>
</tbody>
</table>

The nutrient composition of human milk is summarized and
compared to that of cow’s milk and formulas in Table 11-16.
Outstanding characteristics include (1) relatively low but
highly bioavailable protein content, which is adequate for
the normal infant; (2) generous but not excessive quantity
of essential fatty acids; (3) long-chain polysaturated fatty
acids, of which DHA is thought to be especially important;
(4) relatively low sodium and solute load; and (5) lower
concentration of highly bioavailable minerals, which are
adequate for the needs of normal breast-fed infants for
approximately 6 months.

Complementary Feeding

The American Academy of Pediatrics and the World Health
Organization recommend the introduction of solid foods in
normal infants at about 6 months of age. Gradual introduc-
tion of a variety of foods including fortified cereals, fruits,
vegetables, and meats should complement the breast milk
diet. Meats provide an important dietary source of iron and
zinc, both of which are low in human milk by 6 months, and
pureed meats may be introduced as an early complementary
food. Single-ingredient complementary foods are introduced
one at a time at 3–4 day intervals before a new food is given.
Fruit juice is not an essential part of an infant diet. Juice
should not be introduced until after 6 months; should only be
offered in a cup; and the amount should be limited to 4 oz/d.
Delaying the introduction of complementary foods beyond
6 months has not been shown to prevent atopic disease.
Breast-feeding should ideally continue for at least 12 months,
and thereafter for as long as mutually desired. Whole cow’s
milk can be introduced after the first year of life.

Breast-fed infants or toddlers on a vegetarian diet are at
particular risk for inadequate intake of iron and zinc because
of relatively high requirements during these periods of rapid
growth and because animal-based foods are best sources of
these minerals.

While breast milk, dairy, soy, legume, and other vege-
table sources of protein can provide adequate protein for
growth, vegetarian foods are impractical as sources of iron or
zinc. To meet requirements, infants and toddlers consuming
vegetarian diets should be offered fortified foods including
cereals and formula or daily supplementation of iron and
zinc. A vegan diet that omits all animal protein sources will
require supplementation of vitamin B12 in addition to iron
and zinc. Guidance from a pediatric registered dietitian is
suggested for families seeking for their infant or toddler to
follow a vegetarian or vegan diet to ensure adequate protein,
calorie, vitamin, and micronutrient intakes.

United States National Library of Medicine Drugs and Lactation
Database (Lactmed): http://toxnet.nlm.nih.gov/cgi-bin/sis/
htmlgen?LACT.

Fleischer DM, Spergel JM, Assa’ad AH, Pongracic JA: Primary
prevention of allergic disease through nutritional interven-
24229819].
**Table 11-16.** Composition of human and cow’s milk and typical infant formula (per 100 kcal).

<table>
<thead>
<tr>
<th>Nutrient (unit)</th>
<th>Minimal Level Recommended&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Mature Human Milk</th>
<th>Typical Commercial Formula</th>
<th>Cow’s Milk (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein (g)</td>
<td>1.8&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1.3-1.6</td>
<td>2.3</td>
<td>5.1</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>3.3&lt;sup&gt;c&lt;/sup&gt;</td>
<td>5</td>
<td>5.3</td>
<td>5.7</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>—</td>
<td>10.3</td>
<td>10.8</td>
<td>7.3</td>
</tr>
<tr>
<td>Linoleic acid (mg)</td>
<td>300</td>
<td>560</td>
<td>2300</td>
<td>125</td>
</tr>
<tr>
<td>Vitamin A (IU)</td>
<td>250</td>
<td>250</td>
<td>300</td>
<td>216</td>
</tr>
<tr>
<td>Vitamin D (IU)</td>
<td>40</td>
<td>3</td>
<td>63</td>
<td>3</td>
</tr>
<tr>
<td>Vitamin E (IU)</td>
<td>0.7/g linoleic acid</td>
<td>0.3</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Vitamin K (mcg)</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>8</td>
<td>7.8</td>
<td>8.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Thiamin (mcg)</td>
<td>40</td>
<td>25</td>
<td>80</td>
<td>59</td>
</tr>
<tr>
<td>Riboflavin (mcg)</td>
<td>60</td>
<td>60</td>
<td>100</td>
<td>252</td>
</tr>
<tr>
<td>Niacin (mcg)</td>
<td>250</td>
<td>250</td>
<td>1200</td>
<td>131</td>
</tr>
<tr>
<td>Vitamin B&lt;sub&gt;6&lt;/sub&gt; (mcg)</td>
<td>15 mcg of protein</td>
<td>15</td>
<td>63</td>
<td>66</td>
</tr>
<tr>
<td>Folic acid (mcg)</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Pantothenic acid (mcg)</td>
<td>300</td>
<td>300</td>
<td>450</td>
<td>489</td>
</tr>
<tr>
<td>Vitamin B&lt;sub&gt;12&lt;/sub&gt; (mcg)</td>
<td>0.15</td>
<td>0.15</td>
<td>0.25</td>
<td>0.56</td>
</tr>
<tr>
<td>Biotin (mcg)</td>
<td>1.5</td>
<td>1</td>
<td>2.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Inositol (mg)</td>
<td>4</td>
<td>20</td>
<td>5.5</td>
<td>20</td>
</tr>
<tr>
<td>Choline (mg)</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>5</td>
<td>50</td>
<td>75</td>
<td>186</td>
</tr>
<tr>
<td>Phosphorus (mg)</td>
<td>25</td>
<td>25</td>
<td>65</td>
<td>145</td>
</tr>
<tr>
<td>Magnesium (mg)</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>1</td>
<td>0.1</td>
<td>1.5</td>
<td>0.08</td>
</tr>
<tr>
<td>Iodine (mcg)</td>
<td>5</td>
<td>4-9</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Copper (mcg)</td>
<td>60</td>
<td>25-60</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>Zinc (mg)</td>
<td>0.5</td>
<td>0.1-0.5</td>
<td>0.65</td>
<td>0.6</td>
</tr>
<tr>
<td>Manganese (mcg)</td>
<td>5</td>
<td>1.5</td>
<td>5-160</td>
<td>3</td>
</tr>
<tr>
<td>Sodium (mEq)</td>
<td>0.9</td>
<td>1</td>
<td>1.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Potassium (mEq)</td>
<td>2.1</td>
<td>2.1</td>
<td>2.7</td>
<td>6</td>
</tr>
<tr>
<td>Chloride (mEq)</td>
<td>1.6</td>
<td>1.6</td>
<td>2.3</td>
<td>4.6</td>
</tr>
<tr>
<td>Osmolarity (mOsm)</td>
<td>—</td>
<td>11.3</td>
<td>16-18.4</td>
<td>40</td>
</tr>
</tbody>
</table>

<sup>a</sup>Committee on Nutrition, American Academy of Pediatrics.<br><sup>b</sup>Protein of nutritional quality equal to casein.<br><sup>c</sup>Includes 300 mg of essential fatty acids.
SPECIAL DIETARY PRODUCTS FOR INFANTS

Soy Protein Formulas

Historically, a common rationale for the use of soy protein formulas was the transient lactose intolerance after acute gastroenteritis. Lactose-free cow’s milk protein-based formulas are also now available. The medical indications for soy formulas are rare: galactosemia and hereditary lactase deficiency. Soy formulas provide an option when a vegetarian diet is preferred. Soy protein formulas are often used in cases of suspected intolerance to cow’s milk protein, though cow’s milk hydrolysate formulas are preferred because 30%–40% of infants intolerant to cow’s milk protein will also react to soy protein. In contrast to this T-cell mediated protein intolerance, those infants will less commonly documented IgE-mediated allergy to cow’s milk protein do not typically cross-react to soy formula. The estrogenic properties of isoflavones from soy formula has raised concern about potential reproductive system effects, but an Expert Committee of the National Toxicology program found minimal concern for potential harm based on an extensive review of available evidence in their 2011 report.

Semi-Elemental & Elemental Formulas

Semi-elemental formulas include protein hydrolysate formulas. The major nitrogen source of most of these products is casein hydrolysate, supplemented with selected amino acids, but partial hydrolysates of whey are also available. These formulas contain an abundance of EFA from vegetable oil; certain brands also provide substantial amounts of MCTs. Elemental formulas are available with free amino acids and varying levels and types of fat components.

Semi-elemental and elemental formulas are invaluable for infants with a wide variety of malabsorption syndromes. They are also effective in infants who cannot tolerate cow’s milk and soy protein. Controlled trials suggest that for infants with a family history of atopic disease, partial hydrolysate formulas may delay or prevent atopic disease. For specific product information, consult standard pediatric reference texts, formula manufacturers, or a pediatric dietitian.

Formula Additives

Occasionally it may be necessary to increase the caloric density of an infant feeding to provide more calories or restrict fluid intake. Concentrating formula to 24–26 kcal/oz is usually well tolerated, delivers an acceptable renal solute load, and increases the density of all the nutrients. Beyond this, individual macronutrient additives (Table 11–17) are usually employed to achieve the desired caloric density (up to 30 kcal/oz) based on the infant’s needs and underlying condition(s). A pediatric nutrition specialist can provide guidance in formulating calorically dense infant formula feedings. The caloric density of breast milk can be increased by adding infant formula powder or any of the additives used with infant formula. Because of their specialized nutrient

| Table 11–17. Common infant formula additives. |
Additive	Kcal/g	Kcal/Tbsp	Kcal/mL	Comments
Dry rice cereal	3.75	15	—	Thickens formula but not breast milk
Polycose (Abbott Nutrition)	3.8	23	2	Glucose polymers
MCT oil (Mead Johnson)	8.3	116	7.7	Not a source of essential fatty acids
Microlipid (Mead Johnson)	9	68.5	4.5	Safflower oil emulsion with 0.4 g linoleic acid/mL
Vegetable oil	9	124	8.3	Does not mix well
Beneprotein (Nestle)	3.6	16.7 (4 g protein)	—	Whey protein
Duocal (SHS)	4.9	42	—	Protein-free mix of hydrolyzed corn starch (60% kcal) and fat (35% MCT)

MCT, medium-chain triglyceride.
composition, human milk fortifiers are generally used only for premature infants.

**Special Formulas**

Special formulas are those in which one component, often an amino acid, is reduced in concentration or removed for the dietary management of a specific inborn metabolic disease. Also included under this heading are formulas designed for the management of specific disease states, such as hepatic failure, pulmonary failure with chronic carbon dioxide retention, and renal failure. These condition-specific formulas were formulated primarily for critically ill adults and are even used sparingly in those populations; thus, their use in pediatrics should only be undertaken with clear indication and caution.

Complete information regarding the composition of these special formulas, the standard infant formulas, specific metabolic disease formulas, and premature infant formulas can be found in standard reference texts and in the manufacturers’ literature.


**NUTRITION FOR CHILDREN 2 YEARS & OLDER**

Because of the association of diet with the development of such chronic diseases as diabetes, obesity, and cardiovascular disease, learning healthy eating behaviors at a young age is an important preventative measure.

Salient features of the diet for children older than 2 years include the following:

1. Consumption of three regular meals per day, and one or two healthful snacks according to appetite, activity, and growth needs.
2. Inclusion of a variety of foods. Diet should be nutritionally complete and promote optimal growth and activity.
3. Fat less than 35% of total calories (severe fat restriction <10% may result in an energy deficit and growth failure). Saturated fats should provide less than 10% of total calories. Monounsaturated fats should provide 10% or more of caloric intake. Trans-fatty acids, found in stick margarine and shortening, and in many processed foods, should provide less than 1% of total calories.
4. Cholesterol intake less than 100 mg/1000 kcal/d, to a maximum of 300 mg/d.
5. Carbohydrates should provide 45%–65% of daily caloric intake, with no more than 10% in the form of simple sugars. A high-fiber, whole-grain-based diet is recommended.
6. Limitation of grazing behavior, eating while watching television, and the consumption of soft drinks and other sweetened beverages.
7. Limitation of sodium intake by limiting processed foods and added salt.
8. Consumption of lean cuts of meats, poultry, and fish should be encouraged. Skim or low-fat milk, and vegetable oils (especially canola or olive oil) should be used. Whole-grain bread and cereals and plentiful amounts of fruits and vegetables are recommended. The consumption of processed foods, juice drinks, soft drinks, desserts, and candy should be limited. The American Academy of Pediatrics has endorsed use of low-fat milk in children after 12 months of age.

Lifestyle counseling for children should also include maintenance of a BMI in the healthy range; regular physical activity, limiting sedentary behaviors; avoidance of smoking; and screening for hypertension. The optimal target populations for cholesterol screening in childhood has been a topic of scientific debate. Current recommendations from the National Heart Lung and Blood Institute are to routinely screen all children once at age 9–11, and to consider screening children at younger ages who have additional risk factors (obesity, diabetes, family history of premature cardiovascular disease). The preferred time for screening occurs before puberty, a period in which hormonal changes render lipids unreliable in predicting persistent levels in adulthood.


**PEDIATRIC UNDERNUTRITION**

- Poor weight gain or weight loss.
- Loss of subcutaneous fat, temporal wasting.
- Most commonly related to inadequate caloric intake.
- Often associated in toddlers with marginal or low iron and zinc status.
General Considerations

Pediatric undernutrition is usually multifactorial in origin, and successful treatment depends on accurate identification and management of those factors. The terms “organic” and “nonorganic” failure to thrive, though still used by many medical professionals, are not helpful because any systemic illness or chronic condition can cause growth impairment and yet may also be compounded by psychosocial problems.

Clinical Findings

A. Definitions

Failure to thrive is a term used to describe growth faltering in infants and young children whose weight curve has fallen by two major percentile channels from a previously established rate of growth, or whose weight for length decreases below the 5th percentile. (See Chapter 9.) The World Health Organization growth charts (http:/www.who.int/childgrowth/en/) should be used to evaluate the growth of breast-fed infants, as these charts reflect the slower velocity of weight gain for healthy breast-fed infants without formula supplementation. Differences in weight gain are particularly notable after 6 months of age, and a lower weight for age on the Centers for Disease Control growth references should not necessarily be interpreted to reflect undernutrition. The acute loss of weight, or failure to gain weight at the expected rate, produces a condition of reduced weight for height known as wasting. The reduction in height for age, as is seen with more chronic malnutrition, is termed stunting.

The typical pattern for mild pediatric undernutrition is decreased weight, with normal height and head circumference. In more chronic malnutrition, linear growth will slow relative to the standard for age, although this should also prompt consideration of nonnutritional etiologies. Significant calorie deprivation produces severe wasting, called marasmus. Significant protein deprivation in the face of adequate energy intake, possibly with additional insults such as infection, may produce edematous malnutrition called kwashiorkor.

B. Risk Factors

A discussion of the multiple medical conditions that can cause pediatric undernutrition is beyond the scope of this chapter. However, the most common cause is inadequate dietary intake. In young but otherwise healthy breast- or bottle-fed infants, a weak or uncoordinated suck may be the causative factor; evaluation for congenital heart disease, breathing problems (eg, laryngomalacia), and other physical problems that may interfere with normal feeding. Inappropriate formula mixing or a family’s dietary beliefs may lead to hypocaloric or unbalanced dietary intakes. Diets restricted because of suspected food allergies or intolerances may result in inadequate intake of calories, protein, or specific micronutrients. Iron and zinc are micronutrients that are marginal in many older infants and young children with undernutrition. Deficiencies occur in older breast-fed infants whose diets are low in meats, and in toddlers who are not on any fortified formula and also do not consume good dietary sources. Cases of severe malnutrition and kwashiorkor have occurred in infants of well-intentioned parents who substitute “health food” milk alternatives (eg, rice milk or unfortified soy milk) for infant formula.

C. Assessment

1. Measurement of weight for age; length/height for age; occipital frontal circumference (OFC) for age (for < 2 years age), weight for length; and calculation of percent ideal body weight (current weight/median [50th percentile] weight for current length). Assess for downward crossing of growth percentiles (acute malnutrition) and for linear growth stunting (chronic malnutrition).

2. History should include details of diet intake and feeding patterns (including restrictive intake, grazing feeding pattern, inappropriate foods for age and development, excessive juice, sugar-sweetened beverages, or water intake); past medical history, including birth and developmental history; family history; social history; and review of systems.

3. Physical examination should include careful examination of skin (for rashes), mouth, eyes, nails, and hair for signs of micronutrient and protein deficiencies, as well as for abnormal neurologic function (eg, loss of deep tendon reflexes, abnormal strength and tone).

4. Laboratory studies are generally of low yield for diagnosis for growth faltering in the absence of other findings, and should be reserved for moderately severe cases of malnutrition. In such cases, risk of and suspicion for nutrient deficiencies and systemic pathology should guide studies ordered. Typical screening laboratories include chemistry panel; complete blood count; and iron panel, including ferritin. Thyroid function testing is indicated with linear growth faltering. Serology for celiac disease may also be warranted for toddlers. Guidelines for screening for inborn errors of metabolism have recently been published.

5. Some infants are naturally small and have weight for age percentile values below the 5th percentile and may have length and head circumferences at higher percentiles. Such infants are often called “constitutionally small,” as their thinness was present from birth, there was no evidence of intrauterine growth restriction, their mothers had small stature and usually thinness, and the family growth pattern is similar. Mothers of such normally small children should not be discouraged...
from breast-feeding and should not be counseled to prematurely add food supplements. Workup for failure to thrive is not indicated in these infants and evaluations or referrals for growth failure or child abuse from underfeeding are not warranted.

When providing nutritional rehabilitation to infants/children with severe malnutrition, refeeding syndrome may occur. Monitoring for hypophosphatemia, hypokalemia, hypomagnesemia, and hyperglycemia is prudent, and calorie intake should be slowly increased to avoid metabolic instability.

**Treatment**

Poor eating is often a learned behavior. Families should be counseled regarding choices of foods that are appropriate for the age and developmental level of the child. Increasing the caloric density of foods is associated with increased daily caloric intake and improved weight gain, but such weight gain usually is due to fat gain unless the calorie supplements include significant protein. Micronutrient deficiencies should be corrected. For repletion of iron, 2–4 mg/kg/d, divided BID, can be initiated. For zinc, 1 mg/kg/d for 1–2 months, administered several hours apart from iron supplement is typically adequate. Children should have structured meal times (eg, three meals and two to three snacks during the day), ideally at the same time other family members eat. Consultation with a pediatric dietitian can be helpful for educating the families. Poor feeding may be related to family dysfunction. Children whose households are chaotic and children who are abused, neglected, or exposed to poorly controlled mental illness may be described as poor eaters, and may fail to gain. Careful assessment of the social environment of such children is critical, and disposition options may include support services, close medical follow-up visits, family counseling, and even foster placement while a parent receives therapy.


**General Considerations**

The prevalence of childhood and adolescent obesity has increased rapidly in the United States and many other parts of the world. Currently in the United States, approximately 17% of 6- to 19-year-olds are obese, with even higher rates among subpopulations of minority and economically disadvantaged children. The increasing prevalence of childhood obesity is related to a complex combination of socioeconomic, genetic, and biologic factors.

Childhood obesity is associated with significant comorbidities, which, if untreated, are likely to persist into adulthood. The probability of obesity persisting into adulthood has been estimated to increase from 20% at 4 years to 80% by adolescence. Rates of persistence from early childhood are much higher when one or both parents are obese. Obesity is associated with cardiovascular and endocrine abnormalities (eg, dyslipidemia, insulin resistance, and type 2 diabetes), orthopedic problems, pulmonary complications (eg, obstructive sleep apnea), and mental health problems (Table 11–18).


**Clinical Findings**

**A. Definitions**

BMI is the standard measure of obesity in adults and children. BMI is correlated with more accurate measures of body fatness and is calculated with readily available information: weight and height (kg/m²). Routine plotting of the BMI on age- and gender-appropriate charts (http://www.cdc.gov/growthcharts) can identify those with excess weight. Definitions were outlined in 2007 by an expert committee representing numerous professional organizations. BMI between the 85th and 95th percentiles for age and sex identifies those who are overweight. Obese is defined as BMI at or above 95% and is associated with increased risk of secondary complications. Severe obesity is characterized by BMI for age
Table 11–18. Selected complications of childhood obesity.

<table>
<thead>
<tr>
<th>System</th>
<th>Condition</th>
<th>Note</th>
<th>Review of Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary</td>
<td>Obstructive sleep apnea</td>
<td>13%-33% of obese youth</td>
<td>Snoring, apnea, poor sleep, nocturnal enuresis, AM headaches, fatigue, poor school performance</td>
</tr>
<tr>
<td></td>
<td>Obesity-hypoventilation syndrome</td>
<td>Severe obesity, restrictive lung disease, may lead to right heart failure</td>
<td>Dyspnea, edema, somnolence</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Hypertension</td>
<td>3 occasions &gt; 95th percentile on National Heart, Lung, and Blood Institute (NHLBI) tables for gender, age, and height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lipid abnormalities</td>
<td>Total cholesterol 170-199 borderline, &gt; 200 high Low-density lipoprotein (LDL) 110-129 borderline, &gt; 130 high-density lipoprotein (HDL) &lt; 40 low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triglycerides (TG) &gt; 150 high</td>
<td>Assess for pancreatitis if TG &gt; 400, nausea, vomiting, abdominal pain</td>
</tr>
<tr>
<td>GI</td>
<td>Nonalcoholic fatty liver disease (NAFLD)</td>
<td>10%-25% of obese youth; elevated alanine aminotransferase (ALT); rule out other liver disease; steatohepatitis may progress to fibrosis, cirrhosis</td>
<td>Commonly asymptomatic, rarely abdominal pain: vague, recurrent,</td>
</tr>
<tr>
<td></td>
<td>Gastroesophageal reflux disease (GERD)</td>
<td>Increased abdominal pressure</td>
<td>Abdominal pain: heartburn</td>
</tr>
<tr>
<td></td>
<td>Gallstones</td>
<td>Associated with rapid weight loss</td>
<td>Abdominal pain: right upper or epigastric</td>
</tr>
<tr>
<td></td>
<td>Constipation</td>
<td>Associated with inactivity, r/o encopresis</td>
<td>Abdominal pain: distension, hard infrequent stools, soiling/incontinence</td>
</tr>
<tr>
<td>Endocrine</td>
<td>Impaired glucose metabolism</td>
<td>Elevated fasting glucose = 100-125</td>
<td>Acanthosis nigricans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impaired glucose tolerance = 2-h OGTT 140-199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 2 diabetes (T2DM)</td>
<td>Random glucose &gt; 200 with symptoms; Fasting glucose &gt; 126, 2-h OGTT &gt; 200, HgA1c &gt; 6.5</td>
<td>Polyuria and polydipsia, unintentional weight loss</td>
</tr>
<tr>
<td></td>
<td>Hypothyroid</td>
<td>Associated with poor linear growth</td>
<td>Asymptomatic until uncompensated: linear growth failure, cold intolerance, decline in school performance, coarse features, thin hair</td>
</tr>
<tr>
<td>Neurology/ophthalmology</td>
<td>Pseudotumor cerebri</td>
<td>Papilledema, vision loss possible, consult neuro/ophthalmology</td>
<td>Headaches (severe, recurrent), often worse in AM</td>
</tr>
<tr>
<td>Orthopedic</td>
<td>Blount disease</td>
<td>Stress injury to medial tibial growth plate, often painless</td>
<td>Bowed legs, ± knee pain</td>
</tr>
<tr>
<td></td>
<td>Slipped capital femoral epiphysis (SCFE)</td>
<td>More likely to progress to bilateral disease in obese</td>
<td>Hip, groin, or knee pain; limp with leg held in external rotation</td>
</tr>
<tr>
<td>Dermatology</td>
<td>Acanthosis nigricans</td>
<td>Secondary effect of elevated insulin</td>
<td>Darkening of skin on neck, axillae, groin, ± skin tags</td>
</tr>
<tr>
<td></td>
<td>Intertrigo/furunculosis/panniculitis</td>
<td>Examine skin folds, pannus; bacteria, and/or yeast</td>
<td>Rash/infection in skin folds, inflammatory papules</td>
</tr>
<tr>
<td></td>
<td>Hydradenitis suppurativa</td>
<td>Draining cysts in axillae or groin</td>
<td>Rash/infection in skin folds, blocked glands, recurrent and unrelenting</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>Depression/anxiety</td>
<td>May lead to worsening obesity if untreated</td>
<td>Full psycho/social review, including mood, school performance, peer and family relationships</td>
</tr>
<tr>
<td></td>
<td>Eating disorder</td>
<td>Assess for binging ± purging behavior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>History of abuse</td>
<td>Increases risk of severe obesity</td>
<td></td>
</tr>
</tbody>
</table>

OGTT, oral glucose tolerance test.
and sex at or above the 99th percentile and is associated with greatly increased risk of comorbidity. An upward change in BMI percentiles in any range should prompt evaluation and possible treatment. An annual increase of more than 2 kg/m² is almost always an indicator of a rapid increase in body fat. For children younger than 2 years, weight for length greater than 95th percentile indicates overweight and warrants further assessment, especially of energy intake and feeding behaviors.

### B. Risk Factors

There are multiple risk factors for developing obesity, reflecting the complex relationships between genetic and environmental factors. Family history is a strong risk factor. If one parent is obese, the odds ratio is approximately 3 for obesity in adulthood, but if both parents are obese, the odds ratio increases to greater than 10 compared to children with two nonobese parents.

Risk factors in the home environment offer targets for intervention. Consumption of sugar-sweetened beverages, lack of family meals, large portion sizes, foods prepared outside the home, television viewing, video gaming, poor sleep, and lack of activity are all associated with risk of excessive weight gain.

### C. Assessment

Early recognition of rapid weight gain or high-risk behaviors is essential. Anticipatory guidance or intervention earlier in childhood and before weight gain becomes severe is more likely to be successful than delayed intervention. Routine evaluation at well-child visits should include:

2. History regarding diet and activity patterns (Table 11–19); family history, and review of systems. Physical examination should include careful blood pressure measurement, distribution of adiposity (central vs generalized); markers of comorbidities, such as acanthosis nigricans, hirsutism, hepatomegaly, orthopedic abnormalities; and physical stigmata of genetic syndromes (e.g., Prader-Willi syndrome).
3. Laboratory studies are recommended as follows for children beginning by age 10 years or at onset of puberty. Consider testing at younger ages with severe obesity but not younger than 2 years:

   - Overweight with personal or family history of heart disease risk factors—fasting lipid profile, fasting glucose, alanine aminotransferase (ALT).
   - Obese—fasting lipid profile, fasting glucose, ALT.

   Other studies should be guided by findings in the history and physical.

**Table 11–19.** Suggested areas for assessment of diet and activity patterns.

<table>
<thead>
<tr>
<th>Diet</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portion sizes: adult portions for young children</td>
<td>Time spent in sedentary activity: television, video games, computer</td>
</tr>
<tr>
<td>Frequency of meals away from home (restaurants or take out)</td>
<td>Time spent in vigorous activity: organized sports, physical education, free play</td>
</tr>
<tr>
<td>Frequency/amounts of sugar-sweetened beverages (soda, juice drinks)</td>
<td>Activities of daily living: walking to school, chores, yard work</td>
</tr>
<tr>
<td>Meal and snack pattern: structured vs grazing, skipping meals</td>
<td>Sleep duration: risk of obesity is increased with inadequate sleep</td>
</tr>
<tr>
<td>Frequency of eating fruits and vegetables</td>
<td></td>
</tr>
<tr>
<td>Frequency of family meals</td>
<td></td>
</tr>
<tr>
<td>Television viewing while eating</td>
<td></td>
</tr>
</tbody>
</table>

Other studies should be guided by findings in the history and physical.


### Treatment

Treatment should be based on risk factors, including age, severity of obesity, and comorbidities, as well as family history. For children with uncomplicated obesity, the primary goal is to achieve healthy eating and activity patterns, not necessarily to achieve ideal body weight. For children with a secondary complication, improvement of the complication is an important goal. In general, weight goals for obese children range from weight maintenance up to 1 lb/mo weight loss for those younger than 12 years to 2 lb/wk for those older than 12 years. More rapid weight loss should be monitored for pathologic causes that may be associated with nutrient deficiencies and linear growth stunting (Table 11–20).

Treatment focused on behavior changes in the context of family involvement has been associated with sustained weight loss and decreases in BMI. Clinicians should assess the family’s readiness to take action. Motivational interviewing techniques can be helpful with resistant or ambivalent families to promote readiness. These techniques include open-ended questioning, exploring and resolving the family’s ambivalence toward changes, and accepting the family’s resistance nonjudgmentally. Providers should engage the family in collaborative decision making about which behavior change goals will be targeted. Improving dietary habits and activity levels concurrently is desirable for successful
weight management. The entire family should adopt healthy eating patterns, with parents modeling healthy food choices, controlling foods brought into the home, and guiding appropriate portion sizes. The American Academy of Pediatrics recommends no television for children younger than 2 years old, a maximum of 2 h/d of television and video games for older children, with lower levels recommended for children during attempts at BMI reduction.

A “staged approach” for treatment has been proposed, with the initial level depending on the severity of overweight, the age of the child, the readiness of the family to implement changes, the preferences of the parents and child, and the skills of the health care provider.

1. **Prevention plus**: Counseling regarding problem areas identified by screening questions (see Table 11–19); emphasis on lifestyle changes, including healthy eating and physical activity patterns.

2. **Structured weight management**: Provides more specific and structured dietary pattern, such as meal planning, exercise prescription, and behavior change goals. This may be done in the primary care setting. Generally referral to at least one ancillary health professional will be required: dietitian, behavior specialist, and/or physical therapist. Monitoring is monthly or tailored to patient and family’s needs.

3. **Comprehensive multidisciplinary**: This level further increases the structure of therapeutic interventions and support, employs a multidisciplinary team, and may involve weekly group meetings.

4. **Tertiary care intervention**: This level is for patients who have not been successful at the other intervention levels or who are severely obese. Interventions are prescribed by a multidisciplinary team, and may include intensive behavior therapy, specialized diets, medications, and surgery.

Pharmacotherapy can be an adjunct to dietary, activity, and behavioral treatment, but by itself it is unlikely to result in significant or sustained weight loss. Only one medication is approved for obesity treatment in adolescents: orlistat, a lipase inhibitor, is approved for patients older than 12 years. For severely obese adolescents, particularly with comorbidities, bariatric surgery is performed in some centers. In carefully selected and closely monitored patients, surgery can result in significant weight loss with a reduction in comorbidities.


### NUTRITION SUPPORT

#### 1. ENTERAL

##### Indications

Enteral nutrition support is indicated when a patient cannot adequately meet nutritional needs by oral intake alone and has a functioning GI tract. This method of support can be used for short- and long-term delivery of nutrition. Even when the gut cannot absorb 100% of nutritional needs, some enteral feedings should be attempted. Enteral nutrition, full or partial, has many benefits:

1. Maintaining gut mucosal integrity
2. Preserving gut-associated lymphoid tissue
3. Stimulation of gut hormones and bile flow

##### Access Devices

Nasogastric feeding tubes can be used for supplemental enteral feedings, but generally are not used for more than 6 months because of the complications of otitis media and sinusitis. Initiation of nasogastric feeding usually requires a brief hospital stay to ensure tolerance to feedings and to allow for parental instruction in tube placement and feeding administration.

If long-term feeding support is anticipated, a more permanent feeding device, such as a gastrostomy tube, may be considered. Referral to a home care company is necessary for equipment and other services such as nursing visits and dietitian follow-up.
Table 11–21. Guidelines for the initiation and advancement of tube feedings.

<table>
<thead>
<tr>
<th>Age</th>
<th>Drip Feeds</th>
<th>Bolus Feeds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initiation</td>
<td>Advancement</td>
</tr>
<tr>
<td>Preterm</td>
<td>1–2 mL/kg/d</td>
<td>5–10 mL q8–12h over 5–7 d as tolerated</td>
</tr>
<tr>
<td>Birth–12 mo</td>
<td>5–10 mL/h</td>
<td>5–10 mL q2–8h</td>
</tr>
<tr>
<td>1–6 y</td>
<td>10–15 mL/h</td>
<td>10–15 mL q2–8h</td>
</tr>
<tr>
<td>6–14 y</td>
<td>15–20 mL/h</td>
<td>10–20 mL q2–8h</td>
</tr>
<tr>
<td>&gt; 14 y</td>
<td>20–30 mL/h</td>
<td>20–30 mL q2–8h</td>
</tr>
</tbody>
</table>

Table 11–21 suggests appropriate timing for initiation and advancement of drip and bolus feedings, according to a child’s age. Clinical status and tolerance to feedings should ultimately guide their advancement.

**Monitoring**

Monitoring the adequacy of enteral feeding depends on nutritional goals. Growth should be frequently assessed, especially for young infants and malnourished children. Hydration status should be monitored carefully at the initiation of enteral feeding. Either constipation or diarrhea can be problems, and attention to stool frequency, volume, and consistency can help guide management. When diarrhea occurs, factors such as infection, hypertonic enteral medications, antibiotic use, and alteration in normal gut flora should be addressed.

In medically stable patients, the enteral feeding schedule should be developmentally appropriate (eg, 5–6 small feedings/d for a toddler). When night drip feedings are used in conjunction with daytime feedings, it is suggested that less than 50% of goal calories be delivered at night so as to maintain a daytime sense of hunger and satiety. This will be especially important once a transition to oral intake begins. Children who are satiated by tube feedings will be less likely to take significant amounts of food by mouth, thus possibly delaying the transition from tube to oral nutrition.


**2. PARENTERAL NUTRITION**

**Indications**

**A. Peripheral Parenteral Nutrition**

Peripheral parenteral nutrition is indicated when complete enteral feeding is temporarily impossible or undesirable. Short-term partial intravenous (IV) nutrition via a peripheral vein is a preferred alternative to administration of dextrose and electrolyte solutions alone. Because of the osmolality of the solutions required, it is usually impossible to achieve total calorie and protein needs with parenteral nutrition via a peripheral vein.

**B. Total Parenteral Nutrition**

Total parenteral nutrition (TPN) should be provided only when clearly indicated. Apart from the expense, numerous risks are associated with this method of feeding (see the section Complications). Even when TPN is indicated, every effort should be made to provide at least a minimum of nutrients enterally to help preserve the integrity of the GI mucosa and of GI function.

The primary indication for TPN is the loss of function of the GI tract that prohibits the provision of required nutrients by the enteral route. Important examples include short bowel syndrome, some congenital defects of the GI tract, and prematurity.

In recent years, an increasing number of injectable essential nutrients have been in short supply in the US pharmaceutical market. Shortages have included intravenous lipids, multi-vitamins mixtures, and trace minerals. Deficiencies of these micronutrients have led to significant medical morbidity. Nutrition support teams or quality improvement committees are encouraged to develop clinical guidelines to ensure provision of available injectable micronutrients to those patients who have the greatest need, eg, preterm infants and children with long-term exclusive dependence upon parenteral nutrition. Policies to promote use of enteral micronutrient preparations can also help to reduce the reliance on parenteral supplies.

Catheter Selection & Position

An indwelling central venous catheter is preferred for long-term IV nutrition. For periods of up to 3–4 weeks, a percutaneous central venous catheter threaded into the superior vena cava from a peripheral vein can be used. For the infusion of dextrose concentrations higher than 12.5%, the tip of the catheter should be located in the superior vena cava. Catheter positioning in the right atrium has been associated with complications, including arrhythmias and right atrial thrombus. After placement, a chest radiograph must be obtained to check catheter position. If the catheter is to be used for nutrition and medications, a double-lumen catheter is preferred.

Complications

A. Mechanical Complications

1. Related to catheter insertion or to erosion of catheter through a major blood vessel—Complications include trauma to adjacent tissues and organs, damage to the brachial plexus, hydrothorax, pneumothorax, hemothorax, and cerebrospinal fluid penetration. The catheter may slip during dressing or tubing changes, or the patient may manipulate the line.

2. Clotting of the catheter—Addition of heparin (1000 U/L) to the solution is an effective means of preventing this complication. If an occluded catheter does not respond to heparin flushing, filling the catheter with recombinant tissue plasminogen activator may be effective.

3. Related to composition of infusate—Calcium phosphate precipitation may occur if excess amounts of calcium or phosphorus are administered. Factors that increase the risk of calcium phosphate precipitation include increased pH and decreased concentrations of amino acids. Precipitation of medications incompatible with TPN or lipids can also cause clotting.

B. Septic Complications

Septic complications are the most common cause of non-elective catheter removal, but strict use of aseptic technique and limiting entry into the catheter can reduce the rates of line sepsis. Fever over 38–38.5°C in a patient with a central catheter should be considered a line infection until proved otherwise. Cultures should be obtained and IV antibiotics empirically initiated. Removing the catheter may be necessary with certain infections (eg, fungal), and catheter replacement may be deferred until infection is treated.

C. Metabolic Complications

Many of the metabolic complications of IV nutrition are related to deficiencies or excesses of nutrients in administered fluids. These complications are less common as a result of experience and improvements in nutrient solutions. However, specific deficiencies still occur, especially in the premature infant. Avoidance of deficiencies and excesses and of metabolic disorders requires attention to the nutrient balance, electrolyte composition, and delivery rate of the infusate and careful monitoring, especially when the composition or delivery rate is changed.

Currently, the most challenging metabolic complication is cholestasis, particularly common in premature infants of very low birth weight. The causes of cholestasis associated with TPN may be multifactorial: related to lack of enteral intake, toxicity of TPN constituents or contaminants, and interaction with underlying disease processes requiring IV nutrition. Patient and medical risk factors include prematurity, sepsis, hypoxia, major surgery (especially GI surgery), absence of enteral feedings, and small bowel bacterial overgrowth. Risk factors related to IV nutrition include amino acid excess or imbalance, use of IV omega-6-fatty-acid-rich soybean oil-based lipid emulsions, and prolonged duration of PN administration. Amino acid solutions with added cysteine decrease cholestasis. Practices that may minimize cholestasis include initiating even minimal enteral feedings as soon as feasible, avoiding sepsis by meticulous line care, avoiding overfeeding, using cysteine- and taurine-containing amino acid formulations designed for infants, preventing or treating small bowel bacterial overgrowth, protecting TPN solutions from light, and avoiding hepatotoxic medications. Substitution of omega-3 fatty acids for omega-6 lipid emulsions can prevent or reverse TPN-associated cholestasis in children. Data also support the beneficial effect of restricting use of soy oil-based lipid emulsions to the minimum that is required to prevent essential fatty acid deficiency.
NUTRIENT REQUIREMENTS & DELIVERY

Energy

When patients are fed intravenously, no fat and carbohydrate intakes are unabsorbed, and no energy is used in nutrient absorption. These factors account for at least 7% of energy in the diet of the enterally fed patient. The intravenously fed patient usually expends less energy in physical activity because of the impediment to mobility. Average energy requirements may therefore be lower in children fed intravenously, and the decrease in activity probably increases this figure to a total reduction of 10%–15%. Caloric guidelines for the IV feeding of infants and young children are outlined below.

The guidelines are averages, and individuals vary considerably. Factors significantly increasing the energy requirement estimates include exposure to cold environment, fever, sepsis, burns, trauma, cardiac or pulmonary disease, and catch-up growth after malnutrition.

With few exceptions, such as some cases of respiratory insufficiency, at least 50%–60% of energy requirements are provided as glucose. Up to 40% of calories may be provided by IV fat emulsions.

Dextrose

The energy density of IV dextrose (monohydrate) is 3.4 kcal/g. Dextrose is the main exogenous energy source provided by total IV feeding. IV dextrose suppresses gluconeogenesis and provides a substrate that can be oxidized directly, especially by the brain, red and white blood cells, and wounds. Because of the high osmolality of dextrose solutions (D₁₀W yields 505 mOsm/kg H₂O), concentrations greater than 10%–12.5% cannot be delivered via a peripheral vein or improperly positioned central line.

Dosing guidelines: The standard initial quantity of dextrose administered will vary by age (Table 11–22). Tolerance to IV dextrose normally increases rapidly, due primarily to suppression of hepatic production of endogenous glucose. Dextrose can be increased by 2.5 g/kg/d, by 2.5%–5%/d, or by 2–3 mg/kg/min/d if there is no glucosuria or hyperglycemia. Standard final infusates for infants via a properly positioned central venous line usually range from 15% to 25% dextrose, though concentrations of up to 30% dextrose may be used at low flow rates. Tolerance to IV dextrose loads is markedly diminished in the premature neonate and in hypermetabolic states.

Problems associated with IV dextrose administration include hyperglycemia, hyperosmolality, and glucosuria (with osmotic diuresis and dehydration). Possible causes of unexpected hyperglycemia include the following: (1) inadvertent infusion of higher glucose concentrations than ordered, (2) uneven flow rate, (3) sepsis, (4) a stress situation (including administration of catecholamines or corticosteroids), and (5) pancreatitis. If these causes have been addressed to the degree possible and severe hyperglycemia persists, use of insulin may be considered. IV insulin reduces
hyperglycemia by suppressing hepatic glucose production and increasing glucose uptake by muscle and fat tissues. It usually increases plasma lactate concentrations, but does not necessarily increase glucose oxidation rates; it may also decrease the oxidation of fatty acids, resulting in less energy for metabolism. Use of IV insulin also increases the risk of hypoglycemia. Hence, insulin should be used very cautiously. A standard IV dose is 1 U/4 g of carbohydrate, but much smaller quantities may be adequate and, usually, one starts with 0.2–0.3 U/4 g of carbohydrate.

Hypoglycemia may occur after an abrupt decrease in or cessation of IV glucose. When cyclic IV nutrition is provided, the IV glucose load should be decreased steadily for 1–2 hours prior to discontinuing the infusate. If the central line must be removed, the IV dextrose should be tapered gradually over several hours.

Maximum oxidation rates for infused dextrose decrease with age. It is important to note that the ranges for dextrose administration provided in Table 11–22 are guidelines and that individual patient tolerance and clinical circumstances may warrant administration of either less or more dextrose. Quantities of exogenous dextrose in excess of maximal glucose oxidation rates are used initially to replace depleted glycogen stores; hepatic lipogenesis occurs thereafter. Excess hepatic lipogenesis may lead to a fatty liver (steatosis). Lipogenesis results in release of carbon dioxide, which when added to the amount of carbon dioxide produced by glucose oxidation (which is 40% greater than that produced by lipid oxidation) may elevate the Paco2, and aggravate respiratory insufficiency or impede weaning from a respirator.

Lipids

The energy density of lipid emulsions (20%) is 10 kcal/g of lipid or 2 kcal/mL of infusate. The lipids are derived from either soybean or safflower oil. All commonly available formulations consist of more than 50% linoleic acid and 4%–9% linolenic acid. It is recognized that this high level of linoleic acid is not ideal due to the pro-inflammatory potential of omega-6 fatty acids, except when small quantities of lipid are being given to prevent an EFA deficiency. Ultimately, improved emulsions are anticipated, including an omega-3 fish oil based product that is currently available in Europe and in clinical trials or available for compassionate use for children with TPN-associated cholestatic liver disease in the US. Because 10% and 20% lipid emulsions contain the same concentrations of phospholipids, a 10% solution delivers more phospholipid per gram of lipid than a 20% solution. Twenty percent lipid emulsions are preferred. IV lipid is often used to provide 30%–40% of calorie needs for infants and up to 30% of calorie needs in older children and teens.

The level of lipoprotein lipase (LPL) activity is the rate-limiting factor in the metabolism and clearance of fat emulsions from the circulation. LPL activity is inhibited or decreased by malnutrition, leukotrienes, immaturity, growth hormone, hypercholesterolemia, hyperphospholipidemia, and theophylline. LPL activity is enhanced by glucose, insulin, lipid, catecholamines, and exercise. Heparin releases LPL from the endothelium into the circulation and enhances the rate of hydrolysis and clearance of triglycerides. In small premature infants, low dose heparin infusions may increase tolerance to IV lipid emulsion.

In general, adverse effects of IV lipid can be avoided by starting with modest quantities and advancing cautiously in light of results of triglyceride monitoring and clinical circumstances. In cases of severe sepsis, special caution is required to ensure that the lipid is metabolized effectively. Monitoring with long-term use is also essential.

IV lipid dosing guidelines: Check serum triglycerides before starting and after increasing the dose. Commence with 1 g/kg/d, given over 12–20 hours or 24 hours in small preterm infants. Advance by 0.5–1.0 g/kg/d, every 1–2 days, up to goal (see Table 11–22).

As a general rule, do not increase the dose if the serum triglyceride level is above 250 mg/dL during infusion (150 mg/dL in neonates) or if the level is greater than 150 mg/dL 6–12 hours after cessation of the lipid infusion.

Serum triglyceride levels above 400–600 mg/dL may precipitate pancreatitis. In patients for whom normal amounts of IV lipid are contraindicated, 4%–8% of calories as IV lipid should be provided (300 mg linoleic acid/100 kcal) to prevent essential fatty acid deficiency. Neonates and malnourished pediatric patients receiving lipid-free parenteral nutrition are at high risk for EFA deficiency because of limited adipose stores.

Nitrogen

One gram of nitrogen is yielded by 6.25 g of protein (1 g of protein contains 16% nitrogen). Caloric density of protein is equal to 4 kcal/g.

A. Protein Requirements

Protein requirements for IV feeding are the same as those for normal oral feeding (see Table 11–2).

B. Intravenous Amino Acid Solutions

Nitrogen requirements can be met by one of the commercially available amino acid solutions. For older children and adults, none of the standard preparations has a clear...
advantage over the others as a source of amino acids. For infants, however, including premature infants, accumulating evidence suggests that the use of TrophAmine (McGaw) is associated with a more normal plasma amino acid profile, superior nitrogen retention, and a lower incidence of cholestasis. TrophAmine contains 60% essential amino acids, is relatively high in branched-chain amino acids, contains taurine, and is compatible with the addition of cysteine within 24–48 hours after administration. The dose of added cysteine is 40 mg/g of TrophAmine. The relatively low pH of TrophAmine is also advantageous for solubility of calcium and phosphorus.

C. Dosing Guidelines

Amino acids can be started at 1–2 g/kg/d in most patients (see Table 11–22). In severely malnourished infants, the initial amount should be 1 g/kg/d. Even in infants of very low birth weight, there is evidence that higher initial amounts of amino acids are tolerated with little indication of protein “toxicity.” Larger quantities of amino acids in relation to calories can minimize the degree of negative nitrogen balance even when the infusate is hypocaloric. Amino acid intake can be advanced by 0.5–1.0 g/kg/d toward the goal. Normally the final infusate will contain 2%–3% amino acids, depending on the rate of infusion. Concentration should not be advanced beyond 2% in peripheral vein infusates due to osmolality.

D. Monitoring

Monitoring for tolerance of the IV amino acid solutions should include routine blood urea nitrogen. Serum alkaline phosphatase, γ-glutamyltransferase, and bilirubin should be monitored to detect the onset of cholestatic liver disease.

Minerals & Electrolytes

A. Calcium, Phosphorus, and Magnesium

Intravenously fed premature and full-term infants should be given relatively high amounts of calcium and phosphorus. Current recommendations are as follows: calcium, 500–600 mg/L; phosphorus, 400–450 mg/L; and magnesium, 50–70 mg/L. After 1 year of age, the recommendations are as follows: calcium, 200–400 mg/L; phosphorus, 150–300 mg/L; and magnesium, 20–40 mg/L. The ratio of calcium to phosphorous should be 1.3:1.0 by weight or 1:1 by molar ratio. These recommendations are deliberately presented as milligrams per liter of infusate to avoid inadvertent administration of concentrations of calcium and phosphorus that are high enough to precipitate in the tubing. During periods of fluid restriction, care must be taken not to inadvertently increase the concentration of calcium and phosphorus in the infusate. These recommendations assume an average fluid intake of 120–150 mL/kg/d and an infusate of 25 g of amino acid per liter. With lower amino acid concentrations, the concentrations of calcium and phosphorus should be decreased.

B. Electrolytes

Standard recommendations are given in Table 11–23. After chloride requirements are met, the remainder of the anion required to balance the cation should be given as acetate to avoid the possibility of acidosis resulting from excessive chloride. The required concentrations of electrolytes depend to some extent on the flow rate of the infusate and must be modified if flow rates are unusually low or high and if there are specific indications in individual patients. IV sodium should be administered sparingly in the severely malnourished patient because of impaired membrane function and high intracellular sodium levels. Conversely, generous quantities of potassium are indicated. Replacement electrolytes and fluids should be delivered via a separate infusate.

C. Trace Elements

Recommended IV intakes of trace elements are as follows: zinc 100 mcg/kg, copper 20 mcg/kg, manganese 1 mcg/kg, chromium 0.2 mcg/kg, selenium 2 mcg/kg, and iodide 1 mcg/kg. Of note, IV zinc requirements may be as high as 400 mcg/kg for premature infants and can be up to 250 mcg/kg for infants with short bowel syndrome and significant GI losses of zinc. When IV nutrition is supplemental or limited to fewer than 2 weeks, and preexisting nutritional deficiencies are absent, only zinc need routinely be added.

IV copper requirements are relatively low in the young infant because of the presence of hepatic copper stores.

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Preterm Infant</th>
<th>Full-Term Infant</th>
<th>Child</th>
<th>Adolescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>2-5 mEq/kg</td>
<td>2-3 mEq/kg</td>
<td>2-3 mEq/kg</td>
<td>60-150 mEq/d</td>
</tr>
<tr>
<td>Chloride</td>
<td>2-5 mEq/kg</td>
<td>2-3 mEq/kg</td>
<td>2-3 mEq/kg</td>
<td>60-150 mEq/d</td>
</tr>
<tr>
<td>Potassium</td>
<td>2-3 mEq/kg</td>
<td>2-3 mEq/kg</td>
<td>2-3 mEq/kg</td>
<td>70-180 mEq/d</td>
</tr>
</tbody>
</table>
These are significant even in the 28-week fetus. Circulating levels of copper and manganese should be monitored in the presence of cholestatic liver disease. If monitoring is not feasible, temporary withdrawal of added copper and manganese is advisable.

Copper and manganese are excreted primarily in the bile, but selenium, chromium, and molybdenum are excreted primarily in the urine. These trace elements, therefore, should be administered with caution in the presence of renal failure.

### Vitamins

Two vitamin formulations are available for use in pediatric parenteral nutrition: MVI Pediatric and MVI-12 (AstraZeneca). MVI Pediatric contains the following: vitamin A, 0.7 mg; vitamin D, 400 IU; vitamin E, 7 mg; vitamin K, 200 mcg; ascorbic acid, 80 mg; thiamin, 1.2 mg; riboflavin, 1.4 mg; niacinamide, 17 mg; pyridoxine, 1 mg; vitamin B₁₂, 1 mcg; folic acid, 140 mcg; pantothenate, 5 mg; and biotin, 20 mcg. Recommended dosing is as follows: 5 mL for children weighing more than 3 kg, 3.25 mL for infants 1–3 kg, and 1.5 mL for infants weighing less than 1 kg. Children older than 11 years can receive 10 mL of the adult formulation, MVI-12, which contains the following: vitamin A, 1 mg; vitamin D, 200 IU; vitamin E, 10 mg; ascorbic acid, 100 mg; thiamin, 3 mg; riboflavin, 3.6 mg; niacinamide, 40 mg; pyridoxine, 4 mg; vitamin B₁₂, 5 mcg; folic acid, 400 mcg; pantothenate, 15 mg; and biotin, 60 mcg. MVI-12 contains no vitamin K.

IV lipid preparations contain enough tocopherol to affect total blood tocopherol levels. The majority of tocopherol in soybean oil emulsion is α-tocopherol, which has substantially less biologic activity than the α-tocopherol present in safflower oil emulsions.

A dose of 40 IU/kg/d of vitamin D (maximum 400 IU/d) is adequate for both full-term and preterm infants.


### Table 11–24. Summary of suggested monitoring for parenteral nutrition.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Acute Stage</th>
<th>Long-Terma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>Daily</td>
<td>Weekly</td>
</tr>
<tr>
<td>Weight</td>
<td>Weekly</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>Weekly</td>
<td></td>
</tr>
<tr>
<td>Head circumference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose (dipstick)</td>
<td>With each void</td>
<td>With changes in intake or status</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>Void</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>4 h after changes, then daily × 2 d</td>
<td>Weekly</td>
</tr>
<tr>
<td>Na⁺, K⁺, Cl⁻, CO₂, blood urea nitrogen</td>
<td>Daily for 2 d after changes, then twice weekly</td>
<td>Weekly</td>
</tr>
<tr>
<td>Ca²⁺, Mg²⁺, P</td>
<td>Initially, then twice weekly</td>
<td>Weekly</td>
</tr>
<tr>
<td>Total protein, albumin, bilirubin, aspartate transaminase, and alkaline phosphatase</td>
<td>Initially, then weekly</td>
<td>Every other week</td>
</tr>
<tr>
<td>Zinc and copper</td>
<td>Initially according to clinical indications</td>
<td>Monthly</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>Initially, then twice weekly, according to clinical indications (see text)</td>
<td>Twice weekly</td>
</tr>
</tbody>
</table>

aChanges include alterations in concentration or flow rate.
bLong-term monitoring can be tapered to monthly or less often, depending on age, diagnosis, and clinical status of patient.
Fluid Requirements
The initial fluid volume and subsequent increments in flow rate are determined by basic fluid requirements, the patient’s clinical status, and the extent to which additional fluid administration can be tolerated and may be required to achieve adequate nutrient intake. Calculation of initial fluid volumes to be administered should be based on standard pediatric practice. Tolerance of higher flow rates must be determined on an individual basis. If replacement fluids are required for ongoing abnormal losses, these should be administered via a separate line.

Monitoring
Vital signs should be checked on each shift. With a central catheter in situ, a fever of more than 38.5°C requires that peripheral and central-line blood cultures, urine culture, complete physical examination, and examination of the IV entry point be made. Instability of vital signs, elevated white blood cell count with left shift, and glycosuria suggest sepsis. Removal of the central venous catheter should be considered if the patient is toxic or unresponsive to antibiotics.

A. Physical Examination
Monitor especially for hepatomegaly (differential diagnoses include fluid overload, congestive heart failure, steatosis, and hepatitis) and edema (differential diagnoses include fluid overload, congestive heart failure, hypoalbuminemia, and thrombosis of superior vena cava).

B. Intake and Output Record
Calories and volume delivered should be calculated from the previous day’s intake and output records (that which was delivered rather than that which was ordered). The following entries should be noted on flow sheets: IV, enteral, and total fluid (mL/kg/d); dextrose (g/kg/d or mg/kg/min); protein (g/kg/d); lipids (g/kg/d); energy (kcal/kg/d); and percent of energy from enteral nutrition.

C. Growth, Urine, and Blood
Routine monitoring guidelines are given in Table 11–24. These are minimum requirements, except in the very long-term stable patient. Individual variables should be monitored more frequently as indicated, as should additional variables or clinical indications. For example, a blood ammonia analysis should be ordered for an infant with lethargy, pallor, poor growth, acidosis, azotemia, or abnormal liver test results.
When faced with a seriously ill or injured child, a systematic approach and rapid determination of the child’s physiologic status with concurrent initiation of resuscitative measures is imperative. Initial management must be directed at correcting any physiologic derangement. Specifically, one must evaluate the airway for any obstruction, assess ventilatory status, and evaluate for shock. Intervention to correct any abnormalities in these three parameters must be undertaken immediately. Following this initial intervention, the provider must then carefully consider the underlying cause, focusing on those that are treatable or reversible. Specific diagnoses can then be made, and targeted therapy (eg, intravenous [IV] glucose for hypoglycemia) can be initiated.

Pediatric cardiac arrest more frequently represents progressive respiratory deterioration or shock, also called asphyxial arrest, rather than primary cardiac etiologies. Unrecognized deterioration may lead to bradycardia, agonal breathing, hypotension, and ultimately asystole. Resulting hypoxic and ischemic insult to the brain and other vital organs make neurologic recovery extremely unlikely, even in the doubtful event that the child survives the arrest. Children who respond to rapid intervention with ventilation and oxygenation alone or to less than 5 minutes of advanced life support are much more likely to survive neurologically intact. In fact, more than 70% of children with respiratory arrest who receive rapid and effective bystander resuscitation survive with good neurologic outcomes. Therefore, it is essential to recognize the child who is at risk for progressing to cardiopulmonary arrest and to provide aggressive intervention before asystole occurs.

When cardiopulmonary arrest does occur, survival is rare and most often associated with significant neurologic impairment. Current data reflect a 6% survival rate for out-of-hospital cardiac arrest, 8% for those who receive prehospital intervention, and 27% survival rate for in-hospital arrest.

The following discussion details care of the critically ill pediatric patient who does not require cardiopulmonary resuscitation (CPR). Detailed information regarding the 2010 Guidelines for Pediatric Basic (BLS) and Advanced Life Support (PALS) can be found under Statements & Guidelines at http://myamericanheart.org/professional.

Note: Standard precautions (personal protective equipment) must be maintained during resuscitation efforts.

THE ABCs OF RESUSCITATION

Any severely ill child should be rapidly evaluated in a deliberate sequence of airway patency, breathing adequacy, and circulation integrity. Derangement at each point must be corrected before proceeding. Thus, if a child’s airway is obstructed, the airway must be opened (eg, by head positioning and the chin lift maneuver) before breathing and circulation are assessed.

Airway

Look for evidence of spontaneous breathing effort. Adventitious breath sounds such as stridor, stertor, or gurgling, or increased work of breathing without air movement is suggestive of airway obstruction. Significant airway obstruction often is associated with altered level of consciousness, including agitation or lethargy. During this rapid assessment, if the patient is noted to be apneic or producing only gasping (agonal) breaths, chest compressions should be initiated immediately in accordance with pediatric advanced life support guidelines.

The airway is managed initially by noninvasive means such as oxygen administration, chin lift, jaw thrust, suctioning, or bag-valve-mask ventilation. Invasive maneuvers such as endotracheal intubation, laryngeal mask insertion, or rarely, cricothyroidotomy are required if the aforementioned
maneuvers are unsuccessful. The following discussion assumes that basic life support has been instituted.

Knowledge of pediatric anatomy is important for airway management. Children's tongues are large relative to their oral cavities, and the larynx is high and anteriorly located. Infants are obligate nasal breathers; therefore, secretions, blood, or foreign bodies in the nasopharynx can cause significant distress.

1. Place the head in the sniffing position. In the patient without concern for cervical spine injury, the neck should be flexed slightly and the head extended. This position aligns the oral, pharyngeal, and tracheal planes. In infants and children younger than about 8 years, the relatively large occiput causes significant neck flexion and poor airway positioning. This is relieved by placing a towel roll under the shoulders, thus returning the child to a neutral position (Figure 12–1). In an older child, slightly more head extension is necessary. Avoid hyperextension of the neck, especially in infants.

2. Perform the head tilt/chin lift or jaw thrust maneuver (Figure 12–2). Lift the chin upward while avoiding pressure on the submental triangle, or lift the jaw by traction upward on the angle of the jaw. **Head tilt/chin lift must not be done if cervical spine injury is possible.** (See section Approach to the Pediatric Trauma Patient, later.)

3. Assess airway for foreign material. Suction the mouth; use Magill forceps to remove visible foreign bodies. Visualize by means of a laryngoscope if necessary. Blind finger sweeps should not be done.

4. If airway obstruction persists, first attempt to reposition the head, then proceed with insertion of an airway adjunct, such as the oropharyngeal or nasopharyngeal airway (Figure 12–3). Such adjuncts relieve upper airway obstruction due to prolapse of the tongue into the posterior pharynx, the most common cause of airway obstruction in unconscious children. The correct size for an oropharyngeal airway is obtained by measuring from the upper central gumline to the angle of the jaw.
Figure 12–3. A: Oropharyngeal airways of various sizes. B: Nasopharyngeal airways of different sizes.

(Figure 12–4) and should be used only in the unconscious victim. Proper sizing is paramount, as an oropharyngeal airway that is too small will push the tongue further into the airway while one that is too large will mechanically obstruct the airway. Nasopharyngeal airways should fit snugly within the nares and should be equal in length to the distance from the nares to the tragus (Figure 12–5). This airway adjunct should be avoided in children with significant injuries to the midface due to the risk of intracranial perforation through a damaged cribriform plate.

Breathing

Assessment of respiratory status is largely accomplished by inspection. Look for adequate and symmetrical chest rise and fall, rate and work of breathing (eg, retractions, flaring, and grunting), accessory muscle use, skin color, and tracheal deviation. Note the mental status. Pulse oximetry measurement and end-tidal CO₂ determination, if available, are highly desirable. Listen for adventitious breath sounds such as wheezing. Auscultate for air entry, symmetry of breath sounds, and rales. Feel for subcutaneous crepitus.

Figure 12–4. Size selection for the oropharyngeal airway: hold the airway next to the child’s face and estimate proper size by measuring from the upper central gumline to the angle of the jaw.

Figure 12–5. Size selection for the nasopharyngeal airway: hold the airway next to the child’s face and estimate proper size by measuring from the nares to the tragus.
If spontaneous breathing is inadequate, initiate positive-pressure ventilation with bag-valve mask ventilation (BMV) and 100% oxygen. Assisted ventilations should be coordinated with the patient’s efforts, if present. Effective BMV is a difficult skill that requires training and practice. To begin, ensure a proper seal by choosing a mask that encompasses the area from the bridge of the nose to the cleft of the chin. Form an E–C clamp around the mask to seal the mask tightly to the child’s face. The thumb and index finger form the “C” surrounding the mask, while the middle, ring, and small fingers lift the jaw into the mask (Figure 12–6). Use only enough force and volume to make the chest rise visibly. In the patient with a perfusing rhythm, administer one breath every 3–5 seconds (12–20 breaths/min). To more easily achieve this rate, recite the pneumonic “squeeze-release-release” in a normal speaking voice. Two-person ventilation using this technique is optimal. When proper technique is used, BMV is effective in the vast majority of cases.

Adequacy of ventilation is reflected in adequate chest movement and auscultation of good air entry bilaterally. Take care to avoid hyperventilation. Excessive ventilation leads to barotrauma, increased risk of aspiration, and a decreased likelihood that return of spontaneous circulation will be achieved during cardiac arrest. If the chest does not rise and fall easily with bagging, reposition the airway and assess for foreign material as previously described. The presence of asymmetrical breath sounds in a child in shock or in severe distress suggests pneumothorax and is an indication for needle thoracostomy. In small children, the transmission of breath sounds throughout the chest may impair the ability to auscultate the presence of a pneumothorax. Note: Effective oxygenation and ventilation are the keys to successful resuscitation.

Cricoid pressure (Sellick maneuver) during positive-pressure ventilation may decrease gastric inflation; however, it has not been shown to reduce the risk of aspiration and should only be used if it does not interfere with ventilation or the speed and ease of intubation. Advanced airway management techniques are described in the references accompanying this section. (See also section Approach to the Pediatric Trauma Patient.)

Circulation

The methodical assessment of perfusion is critical to the diagnosis of shock, which results from inadequate perfusion of vital organs. This diagnosis should be made rapidly by clinical examination detailed as follows.

▲ Figure 12–6. A: Bag-valve-mask ventilation, one-person technique: the thumb and index finger form the “C” surrounding the mask, while the middle, ring, and little fingers lift the jaw into the mask. B: Bag-valve-mask ventilation, two-person technique: the first rescuer forms the “C” and “E” clamps with both hands; the second rescuer provides ventilation.
A. Pulses

Check adequacy of peripheral pulses. Pulses become weak and thready only with severe hypovolemia. Compare peripheral pulses with central pulses. In the infant, central pulses should be checked at the brachial artery.

B. Heart Rate

Compare with age-specific norms. Tachycardia can be a nonspecific sign of distress; bradycardia for age is a sign of imminent arrest and necessitates aggressive resuscitation.

C. Extremities

Extremities become cooler from distal to proximal, as shock progresses. A child whose extremities are cool distal to the elbows and knees is in severe shock.

D. Capillary Refill Time

When fingertip pressure is applied to a patient’s distal extremity and then released, blood should refill the area in less than 2 seconds. A prolonged capillary refill time in the setting of other signs of shock indicates a compensated shock state. It is important to recognize that capillary refill time is influenced by ambient temperature, limb position, site, age of the patient, and room lighting.

E. Mental Status

Hypoxia, hypercapnia, or ischemia will result in altered mental status. Other important treatable conditions may also result in altered mental status, such as intracranial hemorrhage, meningitis, and hypoglycemia.

F. Skin Color

Pallor, gray, mottled, or ashen skin colors all indicate compromised circulatory status.

G. Blood Pressure

It is important to remember that shock may be present before the blood pressure falls below the normal limits for age. As intravascular volume falls, peripheral vascular resistance increases. Blood pressure is maintained until there is 35%–40% depletion of blood volume, followed by precipitous and often irreversible deterioration. Shock represents a continuum that progresses if left untreated. Shock that occurs with any signs of decreased perfusion but normal blood pressure is compensated shock. When blood pressure also falls, decompensated (hypotensive) shock is present. Blood pressure determination should be done manually, using an appropriately sized cuff, because automated machines can give erroneous readings in children.

MANAGEMENT OF SHOCK

IV access is essential but can be difficult to establish in children with shock. Peripheral access, especially via the antecubital veins, should be attempted first, but central cannulation should follow quickly if peripheral access is unsuccessful. Alternatives are percutaneous cannulation of femoral, subclavian, or internal or external jugular veins; cutdown at antecubital, femoral, or saphenous sites; or intraosseous (IO) lines (Figure 12–7). IO needle placement is an acceptable alternative in any severely ill child when venous access cannot be established rapidly (within 10 seconds). Both manual and automated insertion devices are available for pediatric patients. Increasing evidence suggests that automated devices result in faster, more successful IO placement.
compared to manual devices. Decisions on more invasive access should be based on individual expertise as well as urgency of obtaining access. Use short, wide-bore catheters to allow maximal flow rates. Two IV lines should be started in severely ill children. In newborns, the umbilical veins may be cannulated. Consider arterial access if beat-to-beat monitoring or frequent laboratory tests will be needed.

Differentiation of Shock States & Initial Therapy

Therapy for inadequate circulation is determined by the cause of circulatory failure.

A. Hypovolemic Shock

The most common type of shock in the pediatric population is hypovolemia. Frequent causes include dehydration, diabetes, heat illness, hemorrhage, and burns. Normal saline or lactated Ringer solution (isotonic crystalloid) is given as initial therapy in shock and should be initiated even in normotensive patients. There is no advantage to the early administration of colloid (albumin). Give 20 mL/kg body weight and repeat as necessary, until perfusion normalizes. Children tolerate large volumes of fluid replacement and frequent reassessment is necessary. Typically, in hypovolemic shock, no more than 60 mL/kg is needed, but more may be required if ongoing losses are severe. Appropriate monitoring and reassessment will guide your therapy. Packed red blood cell transfusion is indicated in trauma patients not responding to initial crystalloid bolus fluid replacement; however, there is insufficient evidence to determine the volume required. Pressors are not required in simple hypovolemic states.

B. Distributive Shock

Distributive shock results from increased vascular capacitance with normal circulating volume. Examples are sepsis, anaphylaxis, and spinal cord injury. Initial therapy is again isotonic volume replacement with crystalloid, but pressors may be required if perfusion does not normalize after delivery of two or three 20-mL/kg boluses of crystalloid. If necessary, pressors may be initiated through a peripheral line until central access is obtained. Outcomes improve when threshold heart rates, normalized blood pressure, and a capillary refill in less than 2 seconds are achieved within the first hour of symptom onset. Children in distributive shock must be admitted to a pediatric intensive care unit.

The most recent clinical practice parameters from the American College of Critical Care Medicine emphasized four key concepts when faced with the pediatric or neonatal patient in septic shock. When compared to adults, infants and children are more likely to require (1) proportionally more fluid; (2) early inotrope or vasodilator therapy; (3) hydrocortisone for absolute adrenal insufficiency (caused by severe illness); (4) ECMO (extracorporeal membrane oxygenation) for refractory shock.

C. Cardiogenic Shock

Cardiogenic shock can occur as a complication of congenital heart disease, myocarditis, dysrhythmias, ingestions (eg, clonidine, cyclic antidepressants), or as a complication of prolonged shock due to any cause. The diagnosis is suggested by any of the following signs: abnormal cardiac rhythm, distended neck veins, rales, abnormal heart sounds such as an S3 or S4, friction rub, narrow pulse pressure, rales, or hepatomegaly. Chest radiographs may show cardiomegaly and pulmonary edema. An initial bolus of crystalloid may be given, but pressors, and possibly afterload reducers, are necessary to improve perfusion. Giving multiple boluses of fluid is deleterious. Comprehensive cardiopulmonary monitoring is essential. Children in cardiogenic shock must be admitted to a pediatric intensive care unit.

D. Obstructive Shock

Obstructive shock is rare in the pediatric population and involves extracardiac obstruction of blood flow and/or obstruction of adequate diastolic filling. Examples include cardiac tamponade, tension pneumothorax, massive pulmonary embolism, or a critical coarctation of the aorta after closure of the ductus arteriosus. Management is directed toward resolution of the obstruction. In the case of a critical coarctation, management should include prostaglandin initiation to reopen the ductus arteriosus while awaiting surgical repair.

Observation & Further Management

Clinically reassess physiologic response to each fluid bolus to determine additional needs. Serial central venous pressure determinations or a chest radiograph may help determine volume status. Place an indwelling urinary catheter to monitor urine output.

Caution must be exercised with volume replacement if intracranial pressure (ICP) is potentially elevated, as in severe head injury, diabetic ketoacidosis, or meningitis. Even in such situations, however, normal intravascular volume must be restored in order to achieve adequate mean arterial pressure and thus cerebral perfusion pressure.

SUMMARY OF RESUSCITATING THE ACUTELY ILL INFANT OR CHILD

Assess the ABCs in sequential fashion and, before assessing the next system, immediately intervene if physiologic derangement is detected. It is essential that each system be reassessed after each intervention to ensure improvement and prevent failure to recognize clinical deterioration.

EMERGENCY PEDIATRIC DRUGS

Although careful attention to airway and breathing remains the mainstay of pediatric resuscitation, medications are often needed. Rapid delivery to the central circulation, which can be via peripheral IV catheter, is essential. Infuse medications close to the catheter’s hub and flush with saline to achieve the most rapid systemic effects. In the rare instance that no IV or IO access is achievable, some drugs may be given by endotracheal tube (Table 12–1). However, the dose, absorption, and effectiveness of drugs given via this route are either unknown or controversial. The use of length-based emergency measuring tapes that contain preprinted drug dosages, equipment sizes, and IV fluid amounts (Broselow tapes) or preprinted resuscitation drug charts is much more accurate than estimation formulas and helps minimize dosing errors. Selected emergency drugs used in pediatrics are summarized in Table 12–2.

PREPARATION FOR EMERGENCY MANAGEMENT

Resuscitation occurs simultaneously at two levels: rapid cardiopulmonary assessment, with indicated stabilizing measures, while venous access is gained, and cardiopulmonary monitoring initiated. The technique of accomplishing these concurrent goals is outlined as follows:

1. If advance notice of the patient’s arrival has been received, prepare a resuscitation room and summon appropriate personnel and subspecialty expertise as needed.
2. Assign team responsibilities, including a team leader plus others designated to manage the airway, perform chest compressions, achieve access, draw blood for laboratory studies, place monitors, gather additional historical data, and provide family support.
3. Age-appropriate equipment (including laryngoscope blade, endotracheal tubes, nasogastric or orogastric tubes, IV lines, and an indwelling urinary catheter) and monitors (cardiorespiratory monitor, pulse oximeter, and appropriate blood pressure cuff) should be assembled and readily available. Use a length-based emergency tape if available. See Table 12–3 for endotracheal tube sizes. Cuffed endotracheal tubes are acceptable during the inpatient setting for children and infants beyond the newborn period. Cuff inflation pressures must be carefully monitored and maintained below 20 cm H2O. In certain circumstances, such as poor lung compliance or high airway resistance, the use of cuffed tubes may be preferable in controlled settings.

RECEPTION & ASSESSMENT

Upon patient arrival, the team leader begins a rapid assessment as team members perform their assigned tasks. If the patient is received from prehospital care providers, careful attention must be paid to their report, which contains information that they alone have observed. Interventions and medications should be ordered only by the team leader to avoid confusion. The leader should refrain from personally performing procedures. A complete timed record should be kept of events, including medications, interventions, and response to intervention.

All Cases

In addition to cardiac compressions and ventilation, ensure that the following are instituted:

1. Hundred percent high-flow oxygen.
2. Cardiorespiratory monitoring, pulse oximetry, and end-tidal CO2, if the patient is intubated.
3. Vascular (peripheral, IO, or central) access; two lines preferred.

| Table 12–1. Emergency drugs that may be given by endotracheal tube. |
|--------------------------|--------------------------|
| Lidocaine                | Epinephrine              |
| Atropine                 | Naloxone                 |

V APPROACH TO THE ACUTELY ILL INFANT OR CHILD

An unstable patient may present with a known diagnosis or in cardiorespiratory failure of unknown cause. The initial approach must rapidly identify the injuries, prioritize management, and reverse life-threatening conditions.

| Table 12–1. Emergency drugs that may be given by endotracheal tube. |
|--------------------------|--------------------------|
| Lidocaine                | Epinephrine              |
| Atropine                 | Naloxone                 |
### Table 12-2. Emergency pediatric drugs.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indications</th>
<th>Dosage and Route</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Atropine   | 1. Bradycardia, especially cardiac in origin  
2. Vagally mediated bradycardia, eg, during laryngoscopy and intubation  
3. Anticholinesterase poisoning | 0.02 mg/kg IV/IO 0.04-0.06 mg/kg ET. Minimum dose 0.1 mg; maximum single dose 0.5 mg.  
May repeat once if needed. | Atropine may be useful in hemodynamically significant primary cardiac-based bradycardias. Because of paradoxic bradycardia sometimes seen in infants, a minimum dose of 0.1 mg is recommended by the American Heart Association. Epinephrine is the first-line drug in pediatrics for bradycardia caused by hypoxia or ischemia. |
| Bicarbonate| 1. Documented metabolic acidosis  
2. Hyperkalemia                                                                   | 1 mEq/kg IV or IO; by arterial blood gas: 0.3 × kg × base deficit.  
May repeat every 5 min. | Infuse slowly. Sodium bicarbonate will be effective only if the patient is adequately oxygenated, ventilated, and perfused. Some adverse side effects. |
| Calcium chloride 10% | 1. Documented hypocalcemia  
2. Calcium channel blocker overdose  
3. Hyperkalemia, hypermagnesemia                                                | 20 mg/kg slowly IV, preferably centrally, or IO with caution.  
Maximum single dose 2 g. | Calcium is no longer indicated for asystole. Potent tissue necrosis results if infiltration occurs. Use with caution and infuse slowly. |
| Epinephrine | 1. Bradycardia, especially hypoxic-ischemic  
2. Hypotension (by infusion)  
3. Asystole  
4. Fine ventricular fibrillation refractory to initial defibrillation  
5. Pulseless electrical activity  
6. Anaphylaxis | Bradycardia and cardiac arrest:  
0.01 mg/kg of 1:10,000 solution IV/IO:  
0.1 mg/kg of 1:1000 solution ET  
Anaphylaxis:  
0.01 mg/kg of 1:1000 solution SC/IM  
Maximum dose: 0.3 mg.  
May repeat every 3-5 min.  
Constant infusion by IV drip:  
0.1-1 mcg/kg/min. | Epinephrine is the single most important drug in pediatric resuscitation. Recent pediatric studies have shown no added advantage to high-dose epinephrine in terms of survival to discharge or neurologic outcome. Because other studies have indicated adverse effects, including increased myocardial oxygen consumption during resuscitation and worsened postarrest myocardial dysfunction, high-dose epinephrine is no longer recommended. |
| Glucose    | 1. Hypoglycemia  
2. Altered mental status (empirical)  
3. With insulin, for hyperkalemia                                                 | 0.5–1 g/kg IV/IO. Continuous infusion may be necessary. | 2–4 mL/kg D10W, 1–2 mL/kg D25W. |
| Naloxone   | 1. Opioid overdose  
2. Altered mental status (empirical)                                              | 0.1 mg/kg IV/IO/ET; maximum single dose, 2 mg.  
May repeat as necessary. | Side effects are few. A dose of 2 mg may be given in children ≥ 5 years or > 20 kg. Repeat as necessary, or give as constant infusion in opioid overdoses. |

**D10W/D25W, 10%/25% glucose in water; D5W would be 10 mL/kg; D10W would be 1 mL/kg; ET, endotracheally; IO, intraosseously; IV, intravenously; SC, subcutaneously. D25W is not recommended PIV and use caution with D25. D10 is preferred for neonates (newborn – 1 month of age).**

---

5. Full vital signs.
6. Clothes removed.
7. Foley catheter and nasogastric or orogastric tube inserted.
8. Complete history.
10. Family support.
11. Law enforcement or security activation and emergency unit lockdown for cases involving potential terrorism, gang violence, or threats to staff or family.

---

**As Appropriate**
1. Immobilize neck.
2. Obtain chest radiograph (line and tube placement).
3. Insert central venous pressure and arterial line.

---

Table 12-3. Equipment sizes and estimated weight by age.

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Weight (kg)</th>
<th>Endotracheal Tube Size (mm)*</th>
<th>Laryngoscope Blade (Size)</th>
<th>Chest Tube (Fr)</th>
<th>Foley (Fr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature</td>
<td>1-2.5</td>
<td>2.5 (uncuffed only)</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Term newborn</td>
<td>3</td>
<td>3.0 (uncuffed only)</td>
<td>0-1</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>3.5-4.0</td>
<td>1</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>4.5</td>
<td>1</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>4.5</td>
<td>1</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>5.0</td>
<td>2</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>5.0-5.5</td>
<td>2</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>5.5</td>
<td>2</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>5.5-6.0</td>
<td>2</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>6.0</td>
<td>2</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>6.0-6.5</td>
<td>2-3</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>Adolescent</td>
<td>50</td>
<td>7.0</td>
<td>3</td>
<td>36</td>
<td>14</td>
</tr>
<tr>
<td>Adult</td>
<td>70</td>
<td>8.0</td>
<td>3</td>
<td>40</td>
<td>14</td>
</tr>
</tbody>
</table>

*Internal diameter.

**Decrease tube size by 0.5 mm if using a cuffed tube.

---

**APPROACH TO THE PEDIATRIC TRAUMA PATIENT**

Traumatic injuries, including motor vehicle crashes, falls, burns, and immersions, account for the greatest number of deaths among children older than 1 year; injury exceeds all other causes of death combined. A team approach to the severely injured child, using assigned roles as outlined in the preceding section, will optimize outcomes. A calm atmosphere in the receiving area will contribute to thoughtful care. Analgesia and sedation must be given to stable patients. Parents are often anxious, angry, or guilty, requiring ongoing support from staff, social workers, or child life workers (therapists knowledgeable about child development).

To provide optimal multidisciplinary care, regional pediatric trauma centers provide dedicated teams of pediatric specialists in emergency pediatrics, trauma surgery, orthopedics, neurosurgery, and critical care. However, most children with severe injuries are not seen in these centers. Primary care providers must be able to provide initial assessment and stabilization of the child with life-threatening injuries before transport to a verified pediatric trauma center.

**MECHANISM OF INJURY**

Document the time of occurrence, the type of energy transfer (eg, hit by a car, rapid deceleration), secondary impacts (if the child was thrown by the initial impact), appearance of the child at the scene, interventions performed, and clinical condition during transport. The report of emergency service personnel is invaluable. Forward all of this information with the patient to the referral facility if secondary transport occurs.

Trauma in children is predominantly blunt, with penetrating trauma occurring in 10% of cases. Head and abdominal injuries are particularly common and important.

**INITIAL ASSESSMENT & MANAGEMENT**

The vast majority of children who reach a hospital alive survive to discharge. As most deaths from trauma in children are due to head injuries, cerebral resuscitation must be the foremost consideration when treating children with serious injuries. Strict attention to the ABCs (airway, breathing, circulation) ensures optimal oxygenation, ventilation, and perfusion, and ultimately, cerebral perfusion.
The primary and secondary survey is a method for evaluating and treating injured patients in a systematic way that provides a rapid assessment and stabilization phase, followed by a head-to-toe examination and definitive care phase.

**PRIMARY SURVEY**

The primary survey is designed to immediately identify and treat all physiologic derangements resulting from trauma.

- **Airway**, with cervical spine control
- **Breathing**
- **Circulation**, with hemorrhage control
- **Disability** (neurologic deficit)
- **Exposure** (maintain a warm environment, undress the patient completely, and examine)

If the patient is apneic or has agonal breaths, the sequence becomes the **CABs** (chest compressions, open the airway, provide two rescue breaths). Please refer to pediatric advanced life support guidelines for further information. Refer to preceding discussion regarding details of the ABC assessment. Modifications in the trauma setting are added as follows.

**Airway**

Failure to manage the airway appropriately is the most common cause of preventable morbidity and death. Administer 100% high-flow oxygen to all patients. Initially, provide cervical spine protection by manual inline immobilization, not traction. A hard cervical spine collar is applied after the primary survey.

**Breathing**

Most ventilation problems are resolved adequately by the airway maneuvers described earlier and by positive-pressure ventilation. Sources of traumatic pulmonary compromise include pneumothorax, hemothorax, pulmonary contusion, flail chest, and central nervous system (CNS) depression. Asymmetrical breath sounds, particularly with concurrent tracheal deviation, cyanosis, or bradycardia, suggest pneumothorax, possibly under tension. To evacuate a tension pneumothorax, insert a large-bore catheter-over-needle assembly attached to a syringe through the second intercostal space in the midclavicular line into the pleural cavity and withdraw air. If a pneumothorax or hemothorax is present, place a chest tube in the fourth or fifth intercostal space in the anterior axillary line. Connect to water seal. Insertion should be over the rib to avoid the neurovascular bundle that runs below the rib margin. Open pneumothoraces can be treated temporarily by taping petrolatum-impregnated gauze on three sides over the wound, creating a flap valve.

A child with a depressed level of consciousness (Glasgow Coma Scale [GCS] score < 9), a need for prolonged ventilation, severe head trauma, or an impending operative intervention requires endotracheal intubation after bag-mask preoxygenation. Orotracheal intubation is the route of choice and is possible without cervical spine manipulation. Nasotracheal intubation may be possible in children 12 years of age or older who have spontaneous respirations, if not contraindicated by midfacial injury.

Supraglottic devices, such as the laryngeal mask airway (LMA), are being used with increasing frequency, in both theprehospital and hospital settings. The device consists of a flexible tube attached to an inflatable rubber mask (Figure 12–8). The LMA is inserted blindly into the hypopharynx and is seated over the larynx, occluding the esophagus. Advantages to its use include ease of insertion, lower potential for airway trauma, and higher success rates. Patients remain at higher risk for aspiration with LMA use compared with orotracheal intubation; therefore, the LMA should not be used for prolonged, definitive airway management. Rarely, if tracheal intubation cannot be accomplished, particularly in the setting of massive facial trauma, cricothyroidotomy may be performed.

▲ Figure 12–8. Laryngeal mask airways of various sizes.
be necessary. Needle cricothyroidotomy using a large-bore catheter through the cricothyroid membrane is the procedure of choice in patients younger than 12 years. Operative revision to a tracheostomy is necessary.

Circulation

Evaluation for ongoing external or internal hemorrhage is important in the trauma evaluation. Large-bore IV access should be obtained early during the assessment, preferably at two sites. If peripheral access is not readily available, a central line, cutdown, or IO line is established. Determine hematocrit and urinalysis in all patients. Blood type and cross-match should be obtained in the hypotensive child unresponsive to isotonic fluid boluses or with known hemorrhage. Consider coagulation studies, chemistry panel, liver transaminases, amylase, and toxicologic screening as clinically indicated.

External hemorrhage can be controlled by direct pressure. To avoid damage to adjacent neurovascular structures, avoid placing hemostats on vessels, except in the scalp. Determination of the site of internal hemorrhage can be challenging. Sites include the chest, abdomen, retroperitoneum, pelvis, and thighs. Bleeding into the intracranial vault rarely causes shock in children except in infants. Evaluation by an experienced clinician with adjunctive computed tomography (CT) or ultrasound will localize the site of internal bleeding.

Suspect cardiac tamponade after penetrating or blunt injuries to the chest if shock, pulseless electrical activity, narrowed pulse pressure, distended neck veins, hepatomegaly, or muffled heart sounds are present. Ultrasound may be diagnostic if readily available. Diagnose and treat with pericardiocentesis and rapid volume infusion.

Trauma ultrasonography, or the focused assessment with sonography for trauma (FAST), is routinely used in the adult trauma population. The purpose of the four-view examination (Morison pouch, splenorenal pouch, pelvic retrovesical space, and subcostal view of the heart) is to detect free fluid or blood in dependent spaces. In adults, such detection indicates clinically significant injury likely to require surgery. Accuracy and indications in children are much less clear. Solid-organ injuries are more frequently missed and much of the pediatric trauma management is nonoperative. As a result, detection of free fluid by ultrasound in children is less likely to lead to surgery or result in a change in management.

Treat signs of poor perfusion vigorously: A tachycardic child with a capillary refill time of 3 seconds, or other evidence of diminished perfusion, is in shock and is sustaining vital organ insults. Recall that hypotension is a late finding. Volume replacement is accomplished initially by rapid infusion of normal saline or lactated Ringer solution at 20 mL/kg of body weight. If perfusion does not normalize after two crystalloid bolus infusions, 10 mL/kg of packed red blood cells is infused.

Rapid reassessment must follow each bolus. If clinical signs of perfusion have not normalized, repeat the bolus. Lack of response or later or recurring signs of hypovolemia suggest the need for blood transfusion and possible surgical exploration. For every milliliter of external blood loss, 3 mL of crystalloid solution should be administered.

A common problem is the brain-injured child who is at risk for intracranial hypertension and who is also hypovolemic. In such cases, circulating volume must be restored to ensure adequate cerebral perfusion; therefore, fluid replacement is required until perfusion normalizes. Thereafter provide maintenance fluids with careful serial reassessments. Do not restrict fluids for children with head injuries.

Disability–Neurologic Deficit

Assess pupillary size and reaction to light and the level of consciousness. The level of consciousness can be reproducibly characterized by the AVPU (alert, voice, pain, unresponsive) system (Table 12–4). Pediatric GCS assessments can be done as part of the secondary survey (Table 12–5).

Exposure & Environment

Significant injuries can be missed unless the child is completely undressed and examined fully, front and back. Any patient transported on a backboard should be removed as soon as possible, as pressure sores may develop on the buttocks and heels of an immobilized patient within hours.

Because of their high ratio of surface area to body mass, infants and children cool rapidly. Hypothermia compromises outcome except with isolated head injuries; therefore, continuously monitor the body temperature and use warming techniques as necessary. Hyperthermia can adversely affect outcomes in children with acute brain injuries, so maintain normal body temperatures.

Monitoring

Cardiopulmonary monitors, pulse oximetry, and end-tidal CO₂ monitors should be put in place immediately. At the completion of the primary survey, additional "tubes" should be placed.

| Table 12–4. AVPU system for evaluation of level of consciousness. |
|---|---|---|---|---|
| A | Alert |
| V | Responsive to Voice |
| P | Responsive to Pain |
| U | Unresponsive |
**Table 12–5.** Glasgow Coma Scale.\(^a\)

<table>
<thead>
<tr>
<th>Eye opening response</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous</td>
<td></td>
</tr>
<tr>
<td>To speech</td>
<td>3</td>
</tr>
<tr>
<td>To pain</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbal response: Child (Infant modification)(^b)</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oriented (Coos, babbles)</td>
<td></td>
</tr>
<tr>
<td>Confused conversation (Irritable cry, consolable)</td>
<td>4</td>
</tr>
<tr>
<td>Inappropriate words (Cries to pain)</td>
<td>3</td>
</tr>
<tr>
<td>Incomprehensible sounds (Moans to pain)</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Best upper limb motor response: Child (Infant modification)(^b)</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obey commands (Normal movements)</td>
<td></td>
</tr>
<tr>
<td>Localizes pain (Withdraws to touch)</td>
<td>5</td>
</tr>
<tr>
<td>Withdraws to pain</td>
<td>4</td>
</tr>
<tr>
<td>Flexion to pain</td>
<td>3</td>
</tr>
<tr>
<td>Extension to pain</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\)The appropriate number from each section is added to total between 3 and 15. A score less than 8 usually indicates CNS depression requiring positive-pressure ventilation.

\(^b\)If no modification is listed, the same response applies for both infants and children.

**SECONDARY SURVEY**

After the resuscitation phase, a focused history and a head-to-toe examination should be performed to reveal all injuries and determine priorities for definitive care.

**History**

Obtain a rapid, focused history from the patient (if possible), available family members or prehospital personnel. The AMPLE mnemonic is frequently used:

- A—Allergies
- M—Medications
- P—Past medical history/pregnancy
- L—Last meal
- E—Events/environment leading to the injury

**Physical Examination**

**Skin**

Search for lacerations, hematomas, burns, swelling, and abrasions. Remove foreign material and cleanse as necessary. Cutaneous findings may indicate underlying pathology (eg, a flank hematoma overlying a renal contusion), although surface signs may be absent even with significant internal injury. Make certain that the child’s tetanus immunization status is current. Consider tetanus immune globulin for incompletely immunized children.

**Head**

Check for hemotympanum and for clear or bloody cerebrospinal fluid leak from the nares. Battle sign (hematoma over the mastoid) and raccoon eyes are late signs of basilar skull fracture. Explore wounds, evaluating for foreign bodies and defects in galea or skull. CT scan of the head is an integral part of evaluation for altered level of consciousness, posttraumatic seizure, or focal neurologic findings (see section Head Injury, later). Pneumococcal vaccine may be considered for basilar skull fractures.

**Spine**

Cervical spine injury must be excluded in all children. This can be done clinically in children older than 4 or 5 years with normal neurologic findings on examination who are able to deny midline neck pain or midline tenderness on palpation of the neck and who have no other painful distracting injuries that might obscure the pain of a cervical spine injury. If radiographs are indicated, a cross-table lateral neck view is obtained initially followed by anteroposterior, odontoid,

**A. Nasogastric or Orogastric Tube**

Children’s stomachs should be assumed to be full. Gastric distention from positive-pressure ventilation increases the chance of vomiting and aspiration. The nasogastric route should be avoided in patients with significant midface.

**B. Urinary Catheter**

An indwelling urinary bladder catheter should be placed to monitor urine output. Contraindications are based on the risk of urethral transection; signs include blood at the meatus or in the scrotum or a displaced prostate detected on rectal examination. Urine should be tested for blood. After the initial flow of urine with catheter placement, the urine output should exceed 1 mL/kg/h.
and, in some cases, oblique views. Normal studies do not exclude significant injury, either bony or ligamentous, or involving the spinal cord itself. Therefore, an obtunded child should be maintained in cervical spine immobilization until the child has awakened and an appropriate neurologic examination can be performed. The entire thoracolumbar spine must be palpated and areas of pain or tenderness examined by radiography.

Chest

Children may sustain significant internal injury without outward signs of trauma. Pneumothoraces are detected and decompressed during the primary survey. Hemothoraces can occur with rib fractures or with injury to intercostal vessels, large pulmonary vessels, or lung parenchyma. Tracheobronchial disruption is suggested by large continued air leak despite chest tube decompression. Pulmonary contusions may require ventilatory support. Myocardial contusions and aortic injuries are unusual in children.

Abdomen

Blunt abdominal injury is common in multisystem injuries. Significant injury may exist without cutaneous signs or instability of vital signs. Abdominal pain and tenderness coupled with a linear contusion across the abdomen (“seat belt sign”) increases the risk of intra-abdominal injury three-fold. Tenderness, guarding, distention, diminished or absent bowel sounds, or poor perfusion mandate immediate evaluation by a pediatric trauma surgeon. Injury to solid viscera frequently can be managed nonoperatively in stable patients; however, intestinal perforation or hypotension necessitates operative treatment. Serial examinations, ultrasound, and CT scan provide diagnostic help. Intra-abdominal injury is highly likely if the AST is less than 200 U/L or the ALT greater than 125 U/L; however, elevated levels that are below these thresholds do not exclude significant injury if a significant mechanism has occurred. When measured serially, a hematocrit of less than 30% also may suggest intra-abdominal injury in blunt trauma patients. Coagulation studies are rarely beneficial if no concomitant closed-head injury is present. Obtaining a serum amylase immediately postinjury is controversial, as recent studies have shown variable correlation between elevated levels and pancreatic injury.

Pelvis

Pelvic fractures are classically manifested by pain, crepitus, and abnormal motion. Pelvic fracture is a relative contraindication to urethral catheter insertion. Many providers perform a rectal examination, noting tone, tenderness, and in boys, prostate position. If this is done, stool should be tested for blood.

Genitourinary System

If urethral transection is suspected (see earlier discussion), perform a retrograde urethrogram before catheter placement. Diagnostic imaging of the child with hematuria less than 50 red blood cells per high-powered field often includes CT scan or occasionally, IV urograms. Management of kidney injury is largely nonoperative except for renal pedicle injuries.

Extremities

Long bone fractures are common but rarely life threatening. Test for pulses, perfusion, and sensation. Neurovascular compromise requires immediate orthopedic consultation. Treatment of open fractures includes antibiotics, tetanus prophylaxis, and orthopedic consultation.

Central Nervous System

Most deaths in children with multisystem trauma are from head injuries, so optimal neurointensive care is important. Significant injuries include diffuse axonal injury; cerebral edema; subdural, subarachnoid, and epidural hematomas; and parenchymal hemorrhages. Spinal cord injury occurs less commonly. Level of consciousness by the AVPU system (see Table 12–4) or GCS (see Table 12–5) should be assessed serially. A full sensorimotor examination should be performed. Deficits require immediate neurosurgical consultation and should be considered for a patient with a GCS less than 12. Extensor or flexor posturing represents intracranial hypertension until proven otherwise. If accompanied by a fixed, dilated pupil, such posturing indicates that a herniation syndrome is present, and mannitol or 3% hypertonic saline should be given if perfusion is normal. Treatment goals include aggressively treating hypotension to optimize cerebral perfusion, providing supplemental oxygen to keep saturations above 90%, achieving eucapnia (end-tidal CO₂ 35–40 mm Hg), avoiding hyperthermia, and minimizing painful stimuli. Early rapid sequence intubation, sedation, and paralysis should be considered. Mild prophylactic hyperventilation is no longer recommended, although brief periods of hyperventilation are still indicated in the setting of acute herniation. Seizure activity warrants exclusion of significant intracranial injury. In the trauma setting, seizures are frequently treated with fosphenytoin or levetiracetam. The use of high-dose corticosteroids for suspected spinal cord injury has not been prospectively evaluated in children and is not considered standard of care. Corticosteroids are not indicated for head trauma.

HEAD INJURY

Closed-head injuries range in severity from minor asymptomatic trauma without sequelae to fatal injuries. Even after minor closed-head injury, long-term disability and neuropsychiatric sequelae can occur.

ESSENTIALS OF DIAGNOSIS

▶ Traumatic brain injury (TBI) is the most common injury in children.
▶ Rapid acceleration-deceleration forces (eg, the shaken infant) as well as direct trauma to the head can result in brain injury.
▶ Rapid assessment can be made by evaluating mental status with the GCS score and assessing pupillary light response.
▶ Minor head injuries require a screening evaluation with symptom inventory and complete neurologic examination.

Prevention

Wearing helmets during snowsports or while riding wheeled recreational devices is a simple preventative strategy. Over 50% of children fail to wear helmets when riding bicycles; rates are lower with other wheeled devices. Adolescents are less likely to use protective equipment and warrant special attention when discussing helmet use. All-terrain vehicle (ATV)–related hospitalizations increased 150% among children from 1997 to 2006. Forty percent of children ride without helmets and 60% without adult supervision; fewer than 5% receive safety instruction. Their body size and weight likely contribute to an inability to control these vehicles safely. Toppled televisions result in mild to severe head injuries in young children; anticipatory guidance regarding properly securing furniture should be provided to parents.

Clinical Findings

A. Signs and Symptoms

Head injury symptoms are nonspecific; frequently they include headache, dizziness, nausea/vomiting, disorientation, amnesia, slowed thinking, and perseveration. Loss of consciousness is not necessary to diagnose a concussion (see Chapter 27 for more on concussion). Worsening symptoms in the first 24 hours may indicate more severe TBI. Obtain vital signs and assess the child’s level of consciousness by the AVPU system (see Table 12–4) or GCS (see Table 12–5), noting irritability or lethargy and pupillary equality, size, and light reaction. Perform a physical examination, including a detailed neurologic examination, being mindful of the mechanism of injury. Cerebrospinal fluid or blood from the ears or nose, hemotympanum, or the later appearance of periorbital hematomas (raccoon eyes) or Battle sign imply a basilar skull fracture. Evaluate for associated injuries, paying special attention to the cervical spine. Consider child abuse; injuries observed should be consistent with the history, the child’s developmental, and the injury mechanism.

B. Imaging Studies

CT may be indicated. A 2009 multicenter investigation of head-injured patients presenting to the ED derived and validated a decision rule for identifying those children at very low risk of clinically important traumatic brain injuries (Figure 12–9). Observation may be appropriate and reduces the use of CT. Plain films are not generally indicated. In infants, a normal neurologic examination does not exclude significant intracranial hemorrhage. Consider imaging if large scalp hematomas or concerns of nonaccidental trauma are present.

Differential Diagnosis

In young infants when no history is available, consider sepsis and inborn errors of metabolism. CNS infection, intoxication, or other medical causes of altered mental status may present similarly to head injuries which often have no external signs of injury.

Complications

Central Nervous System Infection

Open-head injuries (fractures with overlying lacerations) pose an infection risk due to direct contamination. Basilar skull
**Figure 12-9.** Suggested CT algorithm for children younger than 2 years (A) and for those aged 2 years and older (B) with GCS scores 14–15 after head trauma.

**A**

1. **GCS = 14 or other signs of altered mental status† or palpable skull fracture**
   - Yes → **CT recommended**
     - 4.4% risk of ciTBI
   - No → **Occipital, parietal or temporal scalp hematoma, LOC ≥ 5 s, severe mechanism‡ or not acting normally per parent**
     - Yes → **Observation vs CT on the basis of other clinical factors including:**
       - Physician experience
       - Multiple versus isolated§ findings
       - Worsening symptoms or signs after ED observation
       - Age < 3 mo
       - Parental preference
     - No → **< 0.02% risk of ciTBI**
   - No → **CT not recommended¶**

**B**

1. **GCS = 14 or other signs of altered mental† status or signs of basilar fracture**
   - Yes → **CT recommended**
     - 4.3% risk of ciTBI
   - No → **Occipital, parietal or temporal scalp hematoma, LOC ≥ 5 s, severe mechanism‡ or not acting normally per parent**
     - Yes → **Observation vs CT on the basis of other clinical factors including:**
       - Physician experience
       - Multiple versus isolated§ findings
       - Worsening symptoms or signs after ED observation
       - Age < 3 mo
       - Parental preference
     - No → **< 0.05% risk of ciTBI**
   - No → **CT not recommended¶**

---

ciTBI = clinically important traumatic brain injury. GCS = Glasgow Coma Scale. LOC = loss of consciousness.

†Other signs of altered mental status: agitation, somnolence repetitive questioning, or slow response to verbal communication.

‡Severe mechanism of injury: motor vehicle crash with patient ejection, death of another passenger, or rollover; pedestrian or bicyclist without helmet struck by motorized vehicle; falls of more than 3 ft (or more than 5 ft for panel B); or head struck by a high-impact object.

§Patients with certain isolated findings (ie, with no other findings suggestive of traumatic brain injury), such as isolated LOC, isolated headache, isolated vomiting, and certain type of isolated scalp hematomas in infants older than 3 mo, have a risk of ciTBI substantially lower than 1%.

¶Risk of ciTBI exceedingly low, generally lower than risk of CT-induced malignancies. Therefore, CT scans are not indicated for most patients in this group.

fractures that involve the cribiform plate or middle ear cavity may allow a portal of entry for *Streptococcus pneumoniae*. Pneumococcal vaccination is sometimes considered for such cases.

**Acute Intracranial Hypertension**

Close observation will detect early signs and symptoms of elevated ICP. Early recognition is essential to avoid disastrous outcomes. Symptoms include headache, vision changes, vomiting, gait difficulties, and declining level of consciousness. Papilledema is a cardinal sign of increased ICP. Other signs may include stiff neck, cranial nerve palsies, and hemiparesis. Cushing triad (bradycardia, hypertension, and irregular respirations) is a late and ominous finding. Consider CT scan before lumbar puncture if there is concern about elevated ICP because of the risk of herniation. Lumbar puncture should be deferred in the unstable patient.

**Treatment**—Therapy for elevated ICP must be swift and aggressive. Maintenance of adequate oxygenation, ventilation, and perfusion is paramount. Rapid sequence intubation is often necessary to protect the airway. A sedative, paralytic, and lidocaine (administered 2–3 minutes prior to attempt) decrease the ICP elevation accompanying intubation. Avoid hypoperfusion and hypoxemia, as both are associated with increased risk of morbidity and mortality. Hyperventilation (goal Pco₂ 30–35 mm Hg) is reserved for acute herniation; otherwise, maintain Pco₂ between 35 and 40 mm Hg. Mannitol (0.5–1 g/kg IV), an osmotic diuretic, will reduce brain water. Hypertonic saline (3%; 4–6 mL/kg bolus doses or 1–2 mL/kg/h infusion) also may be used. Adjunctive measures include elevating the head of the bed 30 degrees, maintaining the head in a midline position and treating hyperpyrexia and pain. Obtain immediate neurosurgical consultation. Further details about management of intracranial hypertension (cerebral edema) are presented in Chapter 14.

**Prognosis**

Children with concussion should not return to sports on the day of injury. Return to sport usually begins when symptom-free at rest, followed by a graduated return-to-play protocol. Most children recover fully. Persistent symptoms indicate the need for rehabilitation and/or neuropsychological referral.

The prognosis for children with moderate to severe injuries depends on many factors including severity of initial injury, presence of hypoxia or ischemia, development and subsequent management of intracranial hypertension, and associated injuries.


**Burns**

**Thermal Burns**

**Essentials of Diagnosis & Typical Features**

- Burn patterns can distinguish accidental burns from inflicted burns.
- Burns of the hands, feet, face, eyes, ears, and perineum are always considered to be major burns.

Burns are a common cause of accidental death and disfigurement in children. The association with child abuse and the preventable nature of burns constitute an area of major concern in pediatrics. Common causes include hot water or food, appliances, flames, grills, vehicle-related burns, and curling irons. Burns occur commonly in toddlers—in boys more frequently than in girls.

**Prevention**

Hot liquids should be placed as far as possible from counter edges. Water heater thermostats should be turned to less than 120°F (49°C). Irons and electrical cords should be kept out of reach. Barriers around fireplaces are crucial. Children older than 6 months should wear sunscreen and hats when outdoors.

**Clinical Findings**

**A. Signs and Symptoms**

Superficial thickness burns are painful, dry, red, and hypersensitive. Sunburn is an example. Partial-thickness burns
are subgrouped as superficial or deep, depending on appearance. Superficial partial-thickness burns are red and often blister. Deep partial-thickness burns are pale, edematous, blanch with pressure, and they display decreased sensitivity to pain. Full-thickness burns affect all epidermal and dermal elements. The wound is white or black, dry, depressed, leathery in appearance, and insensate. Deep full-thickness burns are the most severe, extending through all layers of skin as well as into the underlying fascia, muscle, and possibly bone. Singing of nasal or facial hair, carbonaceous material in the nose and mouth, and stridor indicate inhalational burns and may herald critical airway obstruction. Up to 25% of burns in children may be due to child physical abuse. Burn patterns help distinguish inflicted from accidental causes.

**B. Laboratory Findings**

Laboratory evaluation is rarely indicated. With extensive partial- and full-thickness burns, baseline complete blood cell count (CBC), basic metabolic panel, and creatine kinase are helpful for tracking infectious or renal complications. Consider carbon monoxide poisoning after inhalational injury: obtain an arterial blood gas and carboxyhemoglobin levels.

**C. Imaging Studies**

Imaging studies are rarely indicated. Neck x-rays should not delay intubation when inhalational injury is suspected.

**Differential Diagnosis**

The differential diagnosis of burns is limited when a history is provided. In the preverbal child when no history is available, the primary alternate consideration is cellulitis.

**Complications**

Superficial and superficial partial-thickness burns typically heal well. Deep partial- and full-thickness burns are at risk of scarring. Loss of barrier function predisposes to infection. Damage to deeper tissues in full-thickness burns may result in loss of function, contractures, and in the case of circumferential burns, compartment syndrome. Renal failure secondary to myoglobinuria from rhabdomyolysis is a concern.

**Treatment**

Burn extent can be classified as major or minor. Minor burns are less than 10% of the body surface area (BSA) for partial-thickness burns, or less than 2% for full-thickness burns. **Superficial thickness burns are not counted when assessing % BSA.** Partial- or full-thickness burns of the hands, feet, face, eyes, ears, and perineum are considered major.

**A. Superficial and Partial-Thickness Burns**

These burns generally can be treated in the outpatient setting. Wounds with a potential to cause disfigurement or functional impairment—especially wounds of the face, hands, feet, digits, or perineum—should be referred promptly to a burn surgeon. Analgesia is paramount. After parenteral narcotic administration, initial treatment of partial-thickness burns with blisters consists of saline irrigation followed by application of antibiotic ointment and a nonadherent dressing (eg, petroleum gauze). Digits should be individually dressed to prevent adhesions. Due to the pain associated with aggressive debridement and the ability to provide an infectious barrier, smaller blisters may be left intact under the dressing. Larger bullae may either be drained or left in place. Protect the wound with a bulky dressing, reexamine within 48 hours and serially thereafter. Treatment at home with cool compresses and hydrocodone or oxycodone is preferred.

**B. Full-Thickness, Deep or Extensive Partial-Thickness, and Subdermal Burns**

Major burns require particular attention to the ABCs of trauma management. Early establishment of an artificial airway is critical with oral or nasal burns because of their association with inhalation injuries and critical airway obstruction. Perform a primary survey (see earlier discussion). Consider toxicity from carbon monoxide, cyanide, or other combustion products. Place a nasogastric tube and bladder catheter. The secondary survey identifies associated injuries, including those suggestive of abuse.

Fluid losses can be substantial. Initial fluid resuscitation should restore adequate circulating volume. Subsequent fluid administration must account for increased losses. Fluid needs are based on weight and percentage of BSA with partial- and full-thickness burns. Figure 12–10 shows percentages of BSA by region in infants and children. The Parkland formula for fluid therapy is 4 mL/kg/% BSA burned for the first 24 hours, with half administered in the first 8 hours, in addition to maintenance rates. Use of burn tables improves calculation of appropriate fluids. Goal urine output is 1–2 mL/kg/h.

Children with burns greater than 10% BSA, suspicion for abuse, associated with inhalational injury, explosion, or fractures, or requiring parenteral analgesia should be admitted. Burns greater than 20% BSA or full-thickness burns greater than 2% BSA should be admitted to a children’s hospital or burn center. Children with subdermal burns require immediate hospitalization at a burn center under the care of a burn specialist.

**Prognosis**

Outcome depends on many factors. Healing occurs with minimal damage to epidermis in superficial burns. In contrast, full-thickness burns will be hard, uneven, and fibrotic unless skin grafting is provided. In general, the greater the surface area and depth of burn injury, the greater the risk of long-term morbidity and mortality.
**Electrical Burns**

Brief contact with a high-voltage source results in a contact burn and is treated accordingly. Infants and toddlers may bite electric cords, resulting in burns to the commissure of the lips. A late complication is labial artery hemorrhage. Children electrocuted with household current who are awake and alert at the time of medical evaluation are unlikely to have significant injury. An electrocardiogram (ECG) is not necessary. If current passes through the body, the pattern of the injury depends on the path of the current. Exposure to high-voltage current often induces a “locking-on” effect due to alternating current causing tetany. Extensive nerve and muscle injury, fractures, and ventricular fibrillation in addition to dermal burns are possible. Lightning strikes are more likely to induce asystole and blast trauma. The brevity of exposure is unlikely to cause significant burns.


**Heat-Related Illnesses & Heat Stroke**

**Essentials of Diagnosis**

- Heat illness is a spectrum ranging from heat cramps to life-threatening heat stroke.
- A high index of suspicion is required to make the diagnosis given the lack of specific symptoms and a usually normal or only slightly elevated temperature.

**Prevention**

Avoid exposure to extremes of temperature for extended periods. Plan athletic activities for early morning or late afternoon and evening. Acclimatization, adequate water, shade, and rest periods can prevent heat-related illness.

**Clinical Findings**

- **Heat cramps** are brief, severe cramps of skeletal or abdominal muscles following exertion. Core body temperature is normal or slightly elevated. Electrolyte disturbance is rare and mild; laboratory evaluation is not indicated.

- **Heat exhaustion** includes multiple, vague constitutional symptoms following heat exposure. Patients continue to sweat and have varying degrees of sodium and water depletion. Core temperature should be monitored frequently but is often normal or slightly increased. Symptoms and signs include weakness, fatigue, headache, disorientation, pallor, thirst, nausea and vomiting, and occasionally muscle cramps without CNS dysfunction. Shock may be present.
**Heat stroke** is a life-threatening failure of thermoregulation. Diagnosis is based on a rectal temperature above 40.6°C with associated neurologic dysfunction in a patient with an exposure history. Lack of sweating is not a necessary criterion. Symptoms are similar to those of heat exhaustion, but severe CNS dysfunction is a hallmark. Patients may be incoherent or combative. In severe cases, vomiting, shivering, coma, seizures, nuchal rigidity, and posturing may be present. Cardiac output may be high, low, or normal. Cellular hypoxia, enzyme dysfunction, and disrupted cell membranes lead to global end-organ derangements: rhabdomyolysis, myocardial necrosis, electrolyte abnormalities, acute tubular necrosis and renal failure, hepatic degeneration, acute respiratory distress syndrome (ARDS), and disseminated intravascular coagulation (DIC).

**Differential Diagnosis**
Viral gastroenteritis, sepsis and other infectious processes, neuroleptic malignant syndrome, malignant hyperthermia, and anticholinergic poisoning may present similarly.

**Treatment**
Removal from the offending environment and removal of clothing are the first steps in managing any heat-related illness. **Heat cramps** typically respond to rest and rehydration with electrolyte solutions. Severe cramping and **heat exhaustion** should prompt evaluation of electrolytes to guide IV fluid rehydration.

**Heat Stroke Management**
1. Address the ABCs and administer 100% oxygen.
2. Administer IV fluids: isotonic crystalloid for hypotension; cooled fluids are acceptable. Consider central venous pressure monitoring. Consider providing diazepam for patient comfort.
3. Once resuscitative efforts have begun, initiate active cooling: fanning/misting with cool water; ice application at neck, groin, and axillae. Discontinue active cooling measures once core temperature reaches 39°C to prevent shivering.
4. Place monitors, rectal temperature probe, Foley catheter, and nasogastric tube.
5. Order laboratory tests: CBC; electrolytes; glucose; creatinine; prothrombin time and partial thromboplastin time; creatine kinase; liver function tests; arterial blood gases; urinalysis; and serum calcium, magnesium, and phosphate.
6. Admit to the pediatric intensive care unit.

**Prognosis**
Full recovery is the rule for heat cramps and heat exhaustion. Patients with heat stroke are at risk of end-organ damage due to volume depletion, rhabdomyolysis, direct renal injury, hepatocellular injury, and DIC; however, even in this critically ill population, some children recover fully with intensive management.

**HYPOTHERMIA**

**ESSENTIALS OF DIAGNOSIS**

- Hypothermia is defined as a core temperature of less than 35°C.
- Children are at increased risk due to a greater body surface area-weight ratio.
- In children, hypothermia is most commonly associated with water submersion.

**Prevention**
Given the high association with submersion injuries, children should be carefully monitored around water. Proper use of life vests is critical.

**Clinical Findings**

**A. Signs and Symptoms**
Hypothermia is defined as a core temperature of less than 35°C. In an attempt to maintain core temperature, peripheral vasoconstriction leads to cool mottled skin. Shivering increases heat production to two to four times the basal levels. As temperature falls, heart rate slows and mental status declines. Severe cases (< 28°C) mimic death: patients are pale or cyanotic, pupils may be fixed and dilated, muscles are rigid, and there may be no palpable pulses. Heart rates as low as 4–6 beats/min may provide adequate perfusion, because of lowered metabolic needs in severe hypothermia. Besides cold exposure, disorders that cause incidental hypothermia include sepsis, metabolic derangements, ingestions, CNS disorders, and endocrinopathies. Neonates, trauma victims, intoxicated patients, and the chronically disabled are particularly at risk. Because hypothermia may be confused with postmortem changes, death is not pronounced until the patient has been rewarmed and remains unresponsive to resuscitative efforts.

**B. Laboratory Findings**
Standard evaluation includes CBC, electrolytes, coagulation studies, and glucose and blood gas studies. Coagulopathy, hypoglycemia, and acidosis are common. However, correction of derangements is accomplished by rewarming and resuscitating the patient.
C. Imaging Studies

Submersion is the most common cause of hypothermia. Chest x-ray should be performed. Other radiographic studies should be performed according to the history with special attention to potential head or skeletal trauma.

Treatment

A. General Supportive Measures

Management of hypothermia is largely supportive. Continuously monitor core body temperature using a low-reading indwelling rectal thermometer. Handle patients gently as the hypothermic myocardium is exquisitely prone to arrhythmias. Ventricular fibrillation may occur spontaneously or as a result of minor handling or invasive procedures. If asystole or ventricular fibrillation is present on the cardiac monitor, perform chest compressions and use standard pediatric advanced life support techniques as indicated. Defibrillation and pharmacologic therapy (eg, epinephrine) are unlikely to be successful until core rewarming has occurred. Hypoglycemia should be corrected. Spontaneous reversion to sinus rhythm at 28–30°C may take place as rewarming proceeds.

B. Rewarming

Remove wet clothing. Rewarming techniques are categorized as passive external, active external, or active core rewarming. Passive rewarming, such as covering with blankets, is appropriate only for mild cases (33–35°C). Active external rewarming methods include warming lights, thermal mattresses or electric warming blanket, and warm bath immersion. Be aware of potential core temperature depression after rewarming has begun when vasodilation allows cooler peripheral blood to be distributed to the core circulation. This phenomenon is called afterdrop.

Active core rewarming techniques supplement active external warming for moderate to severe hypothermia. The techniques include warmed, humidified oxygen, warmed (to 40°C) IV fluids, and warm peritoneal and pleural lavage. Bladder and bowel irrigation are not generally effective because of low surface areas for temperature exchange. Extracorporeal membrane oxygenation achieves controlled core rewarming, can stabilize volume and electrolyte disturbances, and is maximally effective (Table 12–6).

Prognosis

As with all trauma, recovery of the hypothermia victim is multifactorial. If associated with submersion injury (see next), the CNS anoxic injuries and lung injury play a major role. Mortality rates are high and are related to the presence of underlying disorders and injuries. Children with a core temperature as low as 19°C have survived neurologically intact.

Table 12–6. Management of hypothermia.

<table>
<thead>
<tr>
<th>General measures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove wet clothing.</td>
<td></td>
</tr>
<tr>
<td>Administer warmed and humidified 100% oxygen.</td>
<td></td>
</tr>
<tr>
<td>Monitor core temperature, heart and respiratory rates, and blood pressure continuously.</td>
<td></td>
</tr>
<tr>
<td>Consider central venous pressure determination for severe hypothermia.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory studies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete blood count and platelets.</td>
<td></td>
</tr>
<tr>
<td>Serum electrolytes, glucose, creatinine, amylase.</td>
<td></td>
</tr>
<tr>
<td>Prothrombin time, partial thromboplastin time.</td>
<td></td>
</tr>
<tr>
<td>Arterial blood gases.</td>
<td></td>
</tr>
<tr>
<td>Consider toxicology screen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct hypoxemia, hypercapnia, pH &lt; 7.2, clotting abnormalities, and glucose and electrolyte disturbances.</td>
<td></td>
</tr>
<tr>
<td>Start rewarming techniques: passive, active (core and external), depending on degree of hypothermia.</td>
<td></td>
</tr>
<tr>
<td>Replace intravascular volume with warmed intravenous crystalloid infusion at 40°C.</td>
<td></td>
</tr>
<tr>
<td>Continue cardiac massage at least until core temperature reaches 30°C, when defibrillation and epinephrine are more likely to be effective.</td>
<td></td>
</tr>
</tbody>
</table>


Prevention

The World Health Organization defines drowning as the process of experiencing respiratory impairment from submersion/immersion in liquid. The terms wet or dry drowning, near-drowning, and others are no longer used; nonfatal drowning describes survivors. Water hazards are ubiquitous; even toilets, buckets, and washing machines pose a threat. Risk factors include epilepsy, alcohol, and lack of supervision.
Males predominate in submersion deaths. Prevention strategies include fencing around public pools, use of life vests, avoiding swimming alone, and adequate supervision. Swim lessons may have a role in a comprehensive prevention strategy, even for children 1–4 years of age.

Clinical Findings

A. Signs and Symptoms

Depending on the duration of submersion and any protective hypothermia effects, children may appear clinically dead or completely normal. Major morbidity stems from CNS and pulmonary insult. Cough, nasal flaring, grunting, retractions, wheezes and/or rales, and cyanosis are common. A child rewarmed to 33°C but who remains apneic and pulseless is unlikely to survive to discharge or will have severe neurologic deficits. Until a determination of brain death can be made, however, aggressive resuscitation should continue in a patient with return of circulation. Cardiovascular changes include myocardial depression and arrhythmias. Children may develop ARDS.

B. Laboratory Findings

Electrolyte alterations are generally negligible. Unless hemolysis occurs, hemoglobin concentrations change only slightly. Blood gas will show hypoxemia and acidosis.

C. Imaging Studies

Chest radiographs may be normal or may show signs of pulmonary edema. Brain CT is warranted when the patient is comatose or believed to have suffered prolonged asphyxia or blunt head trauma. Consider cervical spine injury in teens where diving or intoxication may be involved.

Treatment

Care is generally supportive. Correct hypothermia. For children who appear well initially, observe for 12–24 hours for late pulmonary or neurologic compromise. Respiratory distress, an abnormal chest radiograph, abnormal arterial blood gases, or hypoxemia by pulse oximetry require maximal supplemental oxygen, cardiopulmonary monitoring, and frequent reassessment. There is little evidence for use of surfactant following drowning.

Prognosis

Anoxia from laryngospasm or aspiration leads to irreversible CNS damage after only 4–6 minutes. A child must fall through ice or directly into icy water for cerebral metabolism to be slowed sufficiently by hypothermia to provide protection from anoxia. Survival of the drowning victim depends on the duration of anoxia and the degree of lung injury. Children experiencing brief submersion with effective, high-quality resuscitation are likely to recover without sequelae. Children presenting asystolic are unlikely to survive.

Animal & Human Bites

Bites account for a large number of visits to the emergency department. Most fatalities are due to dog bites. Human and cat bites cause the majority of infected bite wounds.

Dog Bites

Prevention

Boys are bitten more often than girls. The dog is known by the victim in most cases. Younger children have a higher incidence of head and neck wounds, whereas school-age children are bitten most often on the upper extremities. Children should be taught not to taunt dogs or approach dogs that are eating, sleeping or are unknown to them.

Clinical Findings

A. Signs and Symptoms

Dogs may cause abrasions, lacerations, and puncture wounds. Larger dogs may tear skin, subcutaneous tissue, and muscle, or even cause fractures. Other signs and symptoms are related to the structures injured.

B. Imaging Studies

Bites caused by large dogs associated with significant crush injury may be associated with fractures. Dislodged teeth may also be present in the wound. Plain x-rays may be indicated.

Treatment

Provide appropriate analgesia or anesthesia before starting wound care. Debride any devitalized tissue and remove foreign matter. Irrigate using normal saline with high pressure (>5 psi [pounds per square inch]) and volume (> 1 L). Consider tetanus prophylaxis depending on immunization status. Rabies risk is low among dogs in developed countries; prophylaxis is rarely indicated. Suture wounds only if necessary for cosmesis as closure increases the risk of infection. Do not use tissue adhesives. Prophylactic antibiotics do not decrease infection rates in low-risk dog bites, except those involving the hands and feet. Bites involving a joint,
periosteum, or associated with fracture require prompt orthopedic surgery consultation.

*Pasteurella canis* and *Pasteurella multocida*, streptococci, staphylococci, and anaerobes may infect dog bites. Broad-spectrum coverage with amoxicillin and clavulanic acid is first-line therapy.

### Complications

Complications of dog bites include scarring, CNS infections, septic arthritis, osteomyelitis, endocarditis, sepsis, and post-traumatic stress.

### CAT BITES

#### Prevention

Cat-inflicted wounds occur more frequently in girls. The principal complication is infection, and the risk is higher compared to dog bites because cat bites produce a puncture wound. Children should be observed closely when playing with kittens or cats.

#### Clinical Findings

**A. Signs and Symptoms**

Cat bites typically result in abrasions and puncture wounds. Within 12 hours, untreated bites may result in cellulitis or, when involving the hand, tenosynovitis and septic arthritis. Other signs and symptoms are related to the structures injured. Cat scratch disease (CSD) can occur after bites or scratches especially from kittens. Local findings include a papule, vesicle, or pustule at the site of inoculation. The hallmark of CSD is regional lymphadenitis. See Chapter 42 for a detailed discussion of CSD.

**B. Laboratory Findings**

Serologic tests for *Bartonella henselae* are available when cat scratch is suspected. C-reactive protein and sedimentation rate may be useful to monitor treatment response in infected cat bites.

#### Complications

Cellulitis, tenosynovitis, and septic arthritis are important potential complications of cat bites. Systemic illness is rare.

#### Treatment

Management is similar to that for dog bites. Provide appropriate analgesia or anesthesia before starting wound care. Debride any devitalized tissue and remove foreign matter. With isolated puncture wounds, high-pressure irrigation is contraindicated as it may force bacteria deeper into tissue. Alternatively, the wound may be soaked in dilute povidone-iodine solution for 15 minutes. Consider tetanus prophylaxis in the under- or unimmunized. As with dogs, rabies risk is low in developed countries and prophylaxis is rarely indicated. Cat bites should not be closed except when absolutely necessary for cosmesis.

*P. multocida* is the most common pathogen. Prophylactic antibiotics are recommended. First-line treatment is amoxicillin and clavulanic acid. The dosage of the amoxicillin component should be 80 mg/kg/24 h in three divided doses. The maximum dosage is 2 g/24 h. Strongly consider admission and parenteral antibiotics for infected wounds on the hands and feet.

### HUMAN BITES

Most infected human bites occur during fights when a clenched fist strikes bared teeth. Pathogens most commonly include streptococci, staphylococci, anaerobes, and *Eikenella corrodens*. Hand wounds and deep wounds should be treated with antibiotic prophylaxis against *E. corrodens* and gram-positive pathogens with a penicillinase-resistant antibiotic (amoxicillin with clavulanic acid). Wound management is the same as for dog bites. Only severe lacerations involving the face should be sutured. Other wounds can be managed by delayed primary closure or healing by secondary intention. A major complication of human bite wounds is infection of the metacarpophalangeal joints. A hand surgeon should evaluate clenched-fist injuries from human bites if extensor tendon injury is identified or joint involvement is suspected.

### PROCEDURAL SEDATION & ANALGESIA

Relief of pain and anxiety is a paramount concept in the provision of acute care pediatrics, and should be considered at all times. Many agents also have amnestic properties. Parenteral agents can be effective and safe and produce few side effects if used judiciously.

Conditions such as fracture reduction, laceration repair, burn care, sexual assault examinations, lumbar puncture, and diagnostic procedures such as CT and magnetic resonance imaging may all be performed more effectively and compassionately if effective sedation or analgesia is used. The clinician should decide whether procedures will require sedation, analgesia, or both, and then choose agents accordingly.

Safe and effective sedation requires thorough knowledge of the selected agent and its side effects, as well as suitable monitoring devices, resuscitative medications, equipment, and personnel. The decision to perform procedural sedation and analgesia (PSA) must be patient-oriented and tailored to specific procedural needs, while ensuring the child’s safety throughout the procedure. In order to successfully complete this task, a thorough preprocedural assessment should be completed, including a directed history and physical examination. Risks, benefits, and limitations of the...
procedure should be discussed with the parent or guardian and informed; verbal consent must be obtained. PSA then proceeds as follows:

1. Choose the appropriate medication(s) and route. Commonly used medication classes include benzodiazepines (such as midazolam), opiates (fentanyl), barbiturates (pentobarbital), dissociative anesthetics (ketamine), and sedative-hypnotics (propofol).

2. Ensure appropriate NPO (nothing-by-mouth) status for 2–6 hours, depending on age and type of intake. For certain emergency procedures, suboptimal NPO status may be allowed, with attendant risks identified.

3. Establish vascular access as required.

4. Ensure that resuscitative equipment and personnel are readily available. Attach appropriate monitoring devices, as indicated.

5. Give the agent selected, with continuous monitoring for side effects. A dedicated observer, usually a nurse, should monitor the patient at all times. Respiratory effort, perfusion, and mental status should be assessed and documented serially.

6. Titrate the medication to achieve the desired sedation level. The ideal level depends on sedation goals and procedure type. PSA goals in the emergency department setting usually involve minimal or moderate sedation. Minimal sedation is a state in which the patient’s sensorium is dulled, but he or she is still responsive to verbal stimuli. Moderate sedation is a depression of consciousness in which the child responds to tactile stimuli. In both cases, airway reflexes are preserved. It is important to remember that sedation is a continuum and the child may drift to deeper, unintended levels of sedation.

7. Continue monitoring the patient after the procedure has finished and the child has returned to baseline mental status. Once a painful stimulus has been corrected, mental status and respiratory drive can decrease.

8. Criteria for discharge include the child’s ability to sit unassisted, take oral fluids, and answer verbal commands. A PSA discharge handout should be given, with precautions for close observation and avoidance of potentially dangerous activities.

Accidental and intentional exposures to toxic substances occur in children of all ages. Children younger than age 6 years are primarily involved in accidental exposures, with the peak incidence in 2-year-olds. Of the more than 2.5 million exposures reported by the American Association of Poison Control Centers’ National Poison Data System in 2011, a total of 62% of exposures occurred in those aged less than 20 years: 49% in children aged 5 years and younger, 6% aged 6–12 years, and 6% aged 13–19 years. Young children are occasionally exposed to intentional poisoning through the actions of parents or caregivers. Administration of agents such as diphenhydramine to induce sleep in a day-care setting, Munchausen syndrome by proxy to obtain parental secondary gain, or deliberate harm should be suspected when the history is not consistent. Involvement of child abuse specialists is very helpful in these cases (see Chapter 8).

Substance abuse and intentional ingestions account for most exposures in the adolescent population. In some locales, small-scale industrial or manufacturing processes may be associated with homes and farms, and exposures to hazardous substances should be considered in the history. Pediatric patients also have special considerations pertaining to nonpharmaceutical toxicologic exposures. Their shorter stature places them lower to the ground and some gas and vapor exposures will gather closer to the ground. They may have a greater inhalational exposure due to their higher minute ventilation. At their younger age, they may not be physically mature enough to remove themselves from exposures. They also have a large body surface area to weight ratio making them vulnerable to topical exposures and hypothermia.

CHAPTER 13

Elimination Half-Life

The $t_{1/2}$ of an agent must be interpreted carefully. Most published $t_{1/2}$ values are for therapeutic dosages. The $t_{1/2}$ may increase as the quantity of the ingested substance increases for many common intoxicants such as salicylates. One cannot rely on the published $t_{1/2}$ for salicylate (2 hours) to assume rapid elimination of the drug. In an acute salicylate overdose (150 mg/kg), the apparent $t_{1/2}$ is prolonged to 24–30 hours.

Volume of Distribution

The volume of distribution (Vd) of a drug is determined by dividing the amount of drug absorbed by the blood level. With theophylline, for example, the Vd is 0.46 L/kg body weight, or 32 L in an average adult. In contrast, digoxin distributes well beyond total body water. Because the calculation produces a volume above body weight, this figure is referred to as an “apparent volume of distribution.”

Body Burden

Using the pharmacokinetic principles permits a practical determination of the absorbed dose and permits an understanding of the patient’s status as to whether a therapeutic administration or an overdose has occurred. A 20-kg child with an acetaminophen blood level reported as 200 mcg/mL (equivalent to 200 mg/L) would have a body burden of 4000 mg of acetaminophen. This is ascertained by taking the volume of distribution of 1 L times the weight of the child times the blood level in milligram per liter. This would be consistent with an overdose history of having consumed eight extrastrength 500-mg tablets but would not be consistent with a history of therapeutic administration of 15 mg/kg for four doses. Such a therapeutic administration would have a maximum administered dose of 1200 mg (20 kg times 15 mg/kg times four doses), which is well under the calculated body burden. Given metabolism of the drug with a normal half-life of 2 hours, it is apparent that much of the first doses would have been metabolized further adding to an understanding that this must not have been a therapeutic dose. While patients who develop hepatic toxicity from acetaminophen might have a prolonged half-life later in the course, it would certainly not occur with early therapeutic doses.

Metabolism & Excretion

The route of excretion or detoxification is important for planning treatment. Methanol, for example, is metabolized to the toxic product, formic acid. This metabolic step may be blocked by the antidote fomepizole or ethanol and patients with renal failure may not eliminate methanol as readily.

Blood Levels

Care of the poisoned patient should never be guided solely by laboratory measurements. Concentration results may not return in time to influence acute management. Initial treatment should be directed at symptomatic and supportive care, guided by the clinical presentation, followed by more specific therapy based on laboratory determinations. Clinical information may speed the identification of a toxic agent by the laboratory.

PREVENTING CHILDHOOD POISONINGS

Inclusion of poison prevention as part of routine well-child care should begin at the 6-month well-baby visit. The poison prevention handout included as Table 13–1 may be copied and distributed to parents. It contains poison prevention information as well as first-aid actions that should be taken in the event of an exposure. All poison control centers in the United States can be reached by dialing 1-800-222-1222; the call will be automatically routed to the correct regional center.

GENERAL TREATMENT OF POISONING

The telephone is often the first contact in pediatric poisoning. Some patients may contact their pediatrician’s office first. Proper telephone management can reduce morbidity and prevent unwarranted or excessive treatment. The decision to refer the patient is based on the identity and dose of the ingested agent, the age of the child, the time of day, the reliability of the parent, and whether child neglect or endangerment is suspected. Poison control centers are the source of expert telephone advice and have excellent follow-up programs to manage patients in the home as well as provide further poison prevention information.

INITIAL TELEPHONE CONTACT

Basic information obtained at the first telephone contact includes the patient’s name, age, weight, address, and telephone number; the agent and amount of agent ingested; the patient’s present condition; and the time elapsed since ingestion or other exposure. Use the history to evaluate the urgency of the situation and decide whether immediate emergency transportation to a health facility is indicated. An emergency exists if the ingestant is high risk (caustic solutions, hydrogen fluoride, drugs of abuse, or medications such as a calcium channel blocker, opioid, hypoglycemic agent, or antidepressant) or if the self-poisoning was intentional. If immediate danger does not exist, obtain more details about the suspected toxic agent. If the child requires transport to a health facility, instruct parents that everything
Table 13–1. Poison prevention and emergency treatment handout.

**Poison safety tips**

If you or your child has come in contact with poison, call the Poison Center (1-800-222-1222). Nurses and pharmacists (that are poison experts) will answer your call. In most cases, they can help you take care of the problem right at home. When you need to get to the hospital, they will call ahead with detailed information to help doctors treat you or your child quickly and correctly.

**How people get poisoned**

People can breathe poison, eat or drink it, or get it on the skin or in the eyes. You probably know that antifreeze, bleach, and bug spray are poisonous. But did you know that vitamins, perfume, and makeup can be dangerous? Eating some plants can be toxic. Some spider bites can be dangerous. Taking medicine that is too old or not prescribed for you can make you sick. Also, mixing different kinds of medicine can be dangerous.

**Poison safety “do’s” and “don’ts”**

<table>
<thead>
<tr>
<th><strong>DO:</strong></th>
<th><strong>DON’T:</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ask for “safety-lock” tops on all prescription drugs.</td>
<td>1. Don’t store food and household cleaners together.</td>
</tr>
<tr>
<td>2. Keep cleaners, bug sprays, medicines, and other harmful products out of the reach and sight of children. If possible, keep the products locked up.</td>
<td>2. Don’t take medicine in front of children; children love to imitate “mommy” and “daddy.”</td>
</tr>
<tr>
<td>3. Store medicine in original containers.</td>
<td>3. Don’t call medicine candy.</td>
</tr>
<tr>
<td>4. Read the label before taking medicine; don’t take medicine that doesn’t have a label.</td>
<td>4. Don’t take medicine that is not for you. Never take medicine in the dark.</td>
</tr>
<tr>
<td>5. Follow the directions for all products.</td>
<td>5. Don’t put gasoline, bug spray, antifreeze, or cleaning supplies in soft-drink bottles, cups, or bowls. Always keep them in their original containers.</td>
</tr>
</tbody>
</table>

**Kids can get into things at any age!**

<table>
<thead>
<tr>
<th><strong>Children aged 0–6 mo</strong></th>
<th><strong>Children aged 1–3 y</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Learn to roll over and reach for things.</td>
<td>Have the highest accident rate of any group.</td>
</tr>
<tr>
<td>Learn about their environment by putting things in their mouths.</td>
<td>Begin to imitate parents and other adults.</td>
</tr>
<tr>
<td><strong>Children aged 7–12 mo</strong></td>
<td></td>
</tr>
<tr>
<td>Start to get curious and explore.</td>
<td>Put things in their mouths.</td>
</tr>
<tr>
<td>Learn to crawl, pull up to stand, and walk holding on.</td>
<td>Start to climb on things.</td>
</tr>
<tr>
<td>Put everything in their mouths.</td>
<td></td>
</tr>
<tr>
<td>Pull things down.</td>
<td></td>
</tr>
</tbody>
</table>

**Different dangers at different times of the year**

<table>
<thead>
<tr>
<th><strong>Spring and summer dangers</strong></th>
<th><strong>Fall and winter dangers</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesticides</td>
<td>Antifreeze</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>Outdoor plants and mushrooms</td>
<td>Black widow spider bites</td>
</tr>
<tr>
<td>Snake, spider, and other insect bites</td>
<td>Plants and autumn berries</td>
</tr>
<tr>
<td>Bee stings</td>
<td>Holly, mistletoe, and other holiday decorations</td>
</tr>
<tr>
<td>Ticks</td>
<td></td>
</tr>
<tr>
<td>Charcoal lighter fluid</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 13–1. Poison prevention and emergency treatment handout. (Continued)

<table>
<thead>
<tr>
<th>Follow this checklist to make sure your home is safe</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Kitchen</strong></td>
</tr>
<tr>
<td>— Remove products like detergent, drain cleaner, and dishwashing liquid from under the sink.</td>
</tr>
<tr>
<td>— Remove medicines from counters, tables, refrigerator top, or window sills.</td>
</tr>
<tr>
<td>— Put child safety latches on all drawers and cabinets that contain harmful products.</td>
</tr>
<tr>
<td>— Store harmful products away from food.</td>
</tr>
<tr>
<td><strong>Bathroom</strong></td>
</tr>
<tr>
<td>— Regularly clean out your medicine cabinet. <strong>Do not</strong> flush medicines down the toilet. Contact a pharmacy to see if they have a take-back program. If a take-back program is not available, then securely wrap the medication bottle/package in newspaper and duct tape before disposing of in household garbage.</td>
</tr>
<tr>
<td>— Keep all medicine in original safety-top containers.</td>
</tr>
<tr>
<td>— Keep medicine, hair spray, powder, makeup, fingernail polish, hair-care products, and mouthwash out of reach.</td>
</tr>
<tr>
<td><strong>Bedroom</strong></td>
</tr>
<tr>
<td>— Don’t keep medicine in or on dresser or bedside table.</td>
</tr>
<tr>
<td>— Keep perfume, makeup, aftershave, and other products out of reach.</td>
</tr>
<tr>
<td><strong>Laundry Area</strong></td>
</tr>
<tr>
<td>— Keep bleach, soap, fabric softener, starch, and other supplies out of reach.</td>
</tr>
<tr>
<td>— Keep all products in their original containers.</td>
</tr>
<tr>
<td><strong>Garage/Basement</strong></td>
</tr>
<tr>
<td>— Keep bug spray, weed killers, gasoline, oil, paint, and other supplies in locked area.</td>
</tr>
<tr>
<td>— Keep all products in their original containers.</td>
</tr>
<tr>
<td><strong>General household</strong></td>
</tr>
<tr>
<td>— Keep beer, wine, and liquor out of reach.</td>
</tr>
<tr>
<td>— Keep ashtrays clean and out of reach.</td>
</tr>
<tr>
<td>— Keep plants out of reach.</td>
</tr>
<tr>
<td>— Keep paint in good repair.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emergency action in case your child . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Breathes poison</strong></td>
</tr>
<tr>
<td>Get child to fresh air right away. Open doors and windows. Always call the Poison Center.</td>
</tr>
<tr>
<td><strong>Gets poison on the skin</strong></td>
</tr>
<tr>
<td>Remove clothes that have poison on them. Rinse skin with lukewarm water for 10 minutes. Wash gently with soap and water and rinse. Always call the Poison Center.</td>
</tr>
<tr>
<td><strong>Gets poison in the eye</strong></td>
</tr>
<tr>
<td>Gently pour lukewarm water over the eye from a large glass 2 or 3 inches from the eye. Repeat for 15 minutes. Have child blink as much as possible while pouring water in the eye. Do not force the eyelid open. Always call the Poison Center.</td>
</tr>
<tr>
<td><strong>Swallows poison</strong></td>
</tr>
<tr>
<td><strong>Medicines:</strong> Do not give child anything until you talk with the poison center or your doctor.</td>
</tr>
<tr>
<td><strong>Chemicals or household products:</strong> Unless your child has passed out or cannot swallow, give milk or water right away. Always call the Poison Center.</td>
</tr>
</tbody>
</table>

Pediatrician: ________________________ (Tel): ________________________

National Toll Free Number which connects with your local Poison Center: 1-800-222-1222

Information adapted from, and used, courtesy of the Rocky Mountain Poison Center, Denver Health and Hospital Authority, Denver, CO.
in the vicinity of the child that may be a cause of poisoning should be brought to the healthcare facility.

It may be difficult to obtain an accurate history. Obtain names of drugs or ingredients, manufacturers, prescription numbers, names and phone numbers of prescribing physician and pharmacy, and any other pertinent information. Find out whether the substance was shared among several children, whether it had been recently purchased, who had last used it, how full the bottle was, and how much was spilled. Determine if this occurred in the home, school, or elsewhere. If unsure of the significance of an exposure, consult with a poison control center.

Each year, children are accidentally poisoned by medicines, polishes, insecticides, drain cleaners, bleaches, household chemicals, and materials commonly stored in the garage. It is the responsibility of adults to make sure that children are not exposed to potentially toxic substances.

**Obtaining Information About Poisons**

Current data on ingredients of commercial products and medications can be obtained from a certified regional poison center. It is important to have the actual container at hand when calling. Material safety data sheets (MSDS) are helpful in providing product ingredient and concentration information. Caution: Antidote information on labels of commercial products or in the *Physicians’ Desk Reference* may be incorrect or inappropriate.

**Follow-Up**

In over 95% of cases of ingestion of potentially toxic substances by children, a trip to the hospital is not required. In these cases, it is important to call the parent at 1 and 4 hours after ingestion. If the child has ingested an additional unknown agent and develops symptoms, a change in management may be needed, including transportation to the hospital. An additional call should be made 24 hours after the ingestion to begin the process of poison prevention.

**INITIAL EMERGENCY DEPARTMENT CONTACT**

**Make Certain the Patient Is Breathing**

As in all emergencies, the principles of treatment are attention to Pediatric Advance Life Support algorithms in resuscitation: airway, breathing, and circulation. These are sometimes overlooked under the stressful conditions of a pediatric poisoning.

**Treat Shock**

Initial therapy of the hypotensive patient should consist of laying the patient flat or head down and administering intravenous (IV) isotonic solutions. Vasopressors should be reserved for poisoned patients in shock who do not respond to these standard measures.

**Treat Burns & Skin Exposures**

Burns may occur following exposure to strongly acidic or strongly alkaline agents or petroleum distillates. Burned areas should be decontaminated by flooding with sterile saline solution or water. A burn unit should be consulted if more than minimal burn damage has been sustained. Skin decontamination should be performed in a patient with cutaneous exposure. Emergency department personnel in contact with a patient who has been contaminated (with an organophosphate insecticide, for example) should themselves be decontaminated if their skin or clothing becomes contaminated. Ocular exposures can initially be decontaminated at home by placing the child in the shower allowing the water to indirectly flow from the top of the head into the eyes. Otherwise, irrigation with assessment of pH should be performed in the emergency department.

**Take a Pertinent History**

The history should be taken from the parents and all individuals present at the scene. It may be crucial to determine all of the kinds of poisons in the home. These may include drugs used by family members and their medical histories, dietary or herbal supplements, foreign medications, chemicals associated with the hobbies or occupations of family members, or the purity of the water supply.

**DEFINITIVE THERAPY OF POISONING**

Treatment of poisoning or potential poisoning has evolved over time, and general measures such as prevention of absorption and enhancement of excretion are only instituted when specifically indicated. Specific therapy is directed at each drug, chemical, or toxin as described in the management section that follows.

**Prevention of Absorption**

**A. Emesis and Lavage**

These measures are rarely used in pediatric patients and have their own associated risk. They should not be used routinely in the management of poisonings except in potential lethal exposures with poor treatment options, such as a large tricyclic antidepressant overdose. They should be performed only in consultation with a poison center.

**B. Charcoal**

The routine use of charcoal has decreased substantially in recent years, especially in unintentional pediatric ingestions where
lick, sip, taste ingestions are rarely dangerous. Charcoal can be considered in patients who are awake, alert, and able to drink it voluntarily. It should never be given to patients with altered sensorium who are unable to protect their airway due to risk of aspiration. The dose of charcoal is 1–2 g/kg (maximum, 100 g) per dose. Repeating the dose of activated charcoal may be useful for those agents that slow passage through the gastrointestinal (GI) tract. When multiple doses of activated charcoal are given, repeated doses of sorbitol or saline cathartics must not be given. Repeated doses of cathartics may cause electrolyte imbalances and fluid loss. Charcoal dosing is repeated every 2–6 hours until charcoal is passed through the rectum. It is not useful in ingestions of heavy metals, and may be harmful in hydrocarbons, caustics, and solvent ingestions.

C. Catharsis

Cathartics do not improve outcome and should be avoided.

D. Whole Gut Lavage

Whole bowel lavage uses an orally administered, nonabsorbable hypertonic solution such as CoLyte or GoLYTELY. The use of this procedure in poisoned patients remains controversial. Preliminary recommendations for use of whole bowel irrigation include poisoning with sustained-release preparations, mechanical movement of items through the bowel (eg, cocaine packets, iron tablets), and poisoning with substances that are poorly absorbed by charcoal (eg, lithium, iron). Underlying bowel pathology and intestinal obstruction are relative contraindications to its use. Consultation with a certified regional poison center is recommended.

Enhancement of Excretion

Excretion of certain substances can be hastened by urinary alkalization or dialysis and is reserved for very special circumstances. It is important to make certain that the patient is not volume depleted. Volume-depleted patients should receive a normal saline bolus of 10–20 mL/kg, followed by sufficient IV fluid administration to maintain urine output at 2–3 mL/kg/h.

A. Urinary Alkalization

1. Alkaline diuresis—Urinary alkalization should be chosen on the basis of the substance’s pKₐ, so that ionized drug will be trapped in the tubular lumen and not reabsorbed (see Table 13–1). Thus, if the pKₐ is less than 7.5, urinary alkalization is appropriate; if it is over 8.0, this technique is not usually beneficial. The pKₐ is sometimes included along with general drug information. Urinary alkalization is achieved with sodium bicarbonate. It is important to observe for hypokalemia, caused by the shift of potassium intracellularly. Follow serum K⁺ and observe for electrocardiogram (ECG) evidence of hypokalemia. If complications such as renal failure or pulmonary edema are present, hemodialysis or hemoperfusion may be required. It is most commonly used for the treatment of salicylate toxicity and to prevent methotrexate toxicity.

B. Dialysis

Hemodialysis is useful in the treatment of some poisons and in the general management of a critically ill patient. Although peritoneal dialysis can enhance elimination of a few medications, it is typically too slow to be clinically useful. Continuous hemofiltration techniques may be used when hypotensive patients may not tolerate traditional hemodialysis; however, clearance rates may also be slower. Dialysis should be considered part of supportive care if the patient satisfies any of the following criteria:

1. Clinical criteria

A. Potentially life-threatening toxicity that is caused by a dialyzable drug and cannot be treated by conservative means.

B. Hypotension threatening renal or hepatic function that cannot be corrected by adjusting circulating volume.

C. Marked hyperosmolality or severe acid-base or electrolyte disturbances not responding to therapy.

D. Marked hypothermia or hyperthermia not responding to therapy.

2. Immediate dialysis—Immediate dialysis should be considered in ethylene glycol and methanol poisoning only if acidosis is refractory, the patient does not respond to fomepizole treatment, or blood levels of ethanol of 100 mg/dL are consistently maintained. Refractory salicylate intoxication may benefit from dialysis.
Overdosage of acetaminophen is the most common pediatric poisoning and can produce severe hepatotoxicity. The incidence of hepatotoxicity in adults and adolescents has been reported to be 10 times higher than in children younger than age 5 years. In the latter group, fewer than 0.1% develop hepatotoxicity after acetaminophen overdose. In children, toxicity most commonly results from repeated overdosage arising from confusion about the age-appropriate dose, use of multiple products that contain acetaminophen, or use of adult suppositories.

Acetaminophen is normally metabolized in the liver. A small percentage of the drug goes through a pathway leading to a toxic metabolite. Normally, this electrophilic reactant is removed harmlessly by conjugation with glutathione. In overdosage, the supply of glutathione becomes exhausted, and the metabolite may bind covalently to components of liver cells to produce necrosis. Some authors have proposed that therapeutic doses of acetaminophen may be toxic to children with depleted glutathione stores. However, there is no evidence that administration of therapeutic doses can cause toxicity, and only a few inadequate case reports have been made in this regard.

**Treatment**

Treatment is to administer acetylcysteine. It may be administered either orally or intravenously. Consultation on difficult cases may be obtained from your regional poison control center or the Rocky Mountain Poison and Drug Center (1-800-525-6115). Blood levels should be obtained 4 hours after ingestion or as soon as possible thereafter and plotted on Figure 13–1. The nomogram is used only for acute ingestion, not repeated supratherapeutic ingestions. If the patient has ingested acetaminophen in a liquid preparation, blood levels obtained 2 hours after ingestion will accurately reflect the toxicity to be expected relative to the standard nomogram (see Figure 13–1). Acetylcysteine is administered to patients whose acetaminophen levels plot in the toxic range on the nomogram. Acetylcysteine is effective even when given more than 24 hours after ingestion, although it is most effective when given within 8 hours postingestion.

For children weighing 40 kg or more, IV acetylcysteine (Acetadote) should be administered as a loading dose of 150 mg/kg administered over 15–60 min; followed by a second infusion of 50 mg/kg over 4 hours, and then a third infusion of 100 mg/kg over 16 hours.

For patients weighing less than 40 kg, IV acetylcysteine must have less dilution to avoid hyponatremia (a dosage calculator is available at http://www.acetadote.com) (Table 13–2).

Patient-tailored therapy is critical when utilizing the IV “20-hour” protocol and those patients who still have acetaminophen measurable and/or elevated aspartate transaminase/alanine transaminase (AST/ALT) may need treatment beyond the 20 hours called for in the product insert.

The oral (PO) dose of acetylcysteine is 140 mg/kg, diluted to a 5% solution in sweet fruit juice or carbonated soft drink. The primary problems associated with administration are nausea and vomiting. After this loading dose, 70 mg/kg should be administered orally every 4 hours for 72 hours. AST—serum glutamic oxaloacetic transaminase (AST–SGOT), ALT—serum glutamic pyruvic transaminase (ALT–SGPT), serum bilirubin, and plasma prothrombin time should be followed daily. Significant abnormalities of liver function may not peak until 72–96 hours after ingestion.

Repeated miscalculated overdoses given by parents to treat fever are the major source of toxicity in children younger than age 10 years, and parents are often unaware of the significance of symptoms of toxicity, thus delaying its prompt recognition and therapy.

**Alcohol, Ethyl (Ethanol)**

Alcoholic beverages, tinctures, cosmetics, mouthwashes, rubbing alcohol, and hand sanitizers are common sources of poisoning in children. Concomitant exposure to other depressant drugs increases the seriousness of the intoxication. In most states, alcohol levels of 50–80 mg/dL are considered compatible with impaired faculties, and levels of 80–100 mg/dL are considered evidence of intoxication. (Blood levels cited here are for adults; comparable figures for children are not available.)

Recent erroneous information regarding hand sanitizers has indicated that a “lick” following application on the hand could cause toxicity in children. In fact, this is not the case, but because these hand sanitizers contain 62% ethanol, toxicity following ingestion is very possible. Potential blood ethanol concentration following consumption of a 62% solution in a 10-kg child is calculated as follows:

\[
1 \text{ oz} = 30 \text{ mL} \times 62\% = 18.6 \text{ mL} \text{ of pure ethanol}
\]

\[
18.6 \text{ mL} \times 0.79 \text{ (the specific gravity)} = 14.7 \text{ g of ethanol, or 14,700 mg}
\]
Nomogram: Acetaminophen plasma concentration vs time after acetaminophen ingestion (adapted with permission from Rumack and Matthew. *Pediatrics*. 1975;55:871–876). The nomogram has been developed to estimate the probability of whether a plasma acetaminophen concentration in relation to the interval postingestion will result in hepatotoxicity and, therefore, whether acetylcysteine therapy should be administered.

Cautions for use of this chart:
1. Time coordinates refer to time postingestion.
2. Graph relates only to plasma concentrations following a single, acute overdose ingestion.
3. The Treatment line is plotted 25% below the Rumack-Matthew line to allow for potential errors in plasma acetaminophen assays and estimated time from ingestion of an overdose (Rumack et al. *Arch Intern Med* 1981;141(suppl):380–385).

▲ Figure 13–1. Semi-logarithmic plot of plasma acetaminophen levels versus time. (Modified and reproduced, with permission, from Rumack BH, Matthew H: Acetaminophen poisoning and toxicity. *Pediatrics* 1975;55:871.)
Table 13–2. Intravenous acetylcysteine administration dosing.

<table>
<thead>
<tr>
<th>Body Weight (kg)</th>
<th>Acetadote (mL)</th>
<th>Diluent (mL)</th>
<th>Acetadote (mL)</th>
<th>Diluent (mL)</th>
<th>Acetadote (mL)</th>
<th>Diluent (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>75</td>
<td>200</td>
<td>25</td>
<td>500</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>90</td>
<td>67.5</td>
<td>200</td>
<td>22.5</td>
<td>500</td>
<td>45</td>
<td>1000</td>
</tr>
<tr>
<td>80</td>
<td>60</td>
<td>200</td>
<td>20</td>
<td>500</td>
<td>40</td>
<td>1000</td>
</tr>
<tr>
<td>70</td>
<td>52.5</td>
<td>200</td>
<td>17.5</td>
<td>500</td>
<td>35</td>
<td>1000</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
<td>200</td>
<td>15</td>
<td>500</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>50</td>
<td>37.5</td>
<td>200</td>
<td>12.5</td>
<td>500</td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
<td>200</td>
<td>10</td>
<td>500</td>
<td>20</td>
<td>1000</td>
</tr>
<tr>
<td>30</td>
<td>22.5</td>
<td>100</td>
<td>7.5</td>
<td>250</td>
<td>15</td>
<td>500</td>
</tr>
<tr>
<td>25</td>
<td>18.75</td>
<td>100</td>
<td>6.25</td>
<td>250</td>
<td>12.5</td>
<td>500</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>60</td>
<td>5</td>
<td>140</td>
<td>10</td>
<td>280</td>
</tr>
<tr>
<td>15</td>
<td>11.25</td>
<td>45</td>
<td>3.75</td>
<td>105</td>
<td>7.5</td>
<td>210</td>
</tr>
<tr>
<td>10</td>
<td>7.5</td>
<td>30</td>
<td>2.5</td>
<td>70</td>
<td>5</td>
<td>140</td>
</tr>
</tbody>
</table>

In a patient weighing 10 kg, the distribution into total body water (Vd) will be 6 L—this is the amount of the body water into which the ethanol will be distributed.

\[
14,700 \text{ mg} / 6 \text{ L} = 2450 \text{ mg/L}
\]
\[
2450 \text{ mg/L} / 10 = 245 \text{ mg/dL}
\]

Based on these calculations, a 10-kg child consuming 0.5 oz would have a concentration of 122.5 mg/dL; a 20-kg child consuming 1 oz would have a concentration of 122.5 mg/dL; a 30-kg child consuming 1 oz would have a concentration of 81.7 mg/dL; and a 70-kg adult consuming 1 oz would have a concentration of 35 mg/dL.

One “pump” from a hand sanitizer bottle dispenses approximately 2.5 mL of the product. If ingested, this amount (containing 62% ethanol) would create a blood ethanol concentration as follows:
1. In a 10-kg child: 23.1 mg/dL.
2. In a 20-kg child: 11.6 mg/dL.
3. In a 30-kg child: 7.7 mg/dL.

Children show a change in sensorium with blood levels as low as 10–20 mg/dL and any child displaying such changes should be seen immediately. Although a “lick” or a “drop” is unlikely to produce toxicity, the accuracy of the history should be considered when determining whether or not to see a child.

Complete absorption of alcohol requires 30 minutes to 6 hours, depending on the volume, the presence of food, and the time spent in consuming the alcohol. The rate of metabolic degradation is constant (about 20 mg/h in an adult). Absolute ethanol, 1 mL/kg, results in a peak blood level of about 100 mg/dL in 1 hour after ingestion. Acute intoxication and chronic alcoholism increase the risk of subarachnoid hemorrhage.

**Treatment**

Management of hypoglycemia and acidosis is usually the only measure required. Start an IV drip of D₅W or D₁₀W if blood glucose is less than 60 mg/dL. Fructose and glucagon have been suggested but are no longer used. Death is usually caused by respiratory failure. In severe cases, cerebral edema may occur and should be appropriately treated.

**AMPHETAMINES & RELATED DRUGS (METHAMPHETAMINE, MDMA)**

**Clinical Presentation**

**A. Acute Poisoning**

Amphetamine, 3,4-methylenedioxy-N-methylamphetamine (MDMA), and methamphetamine poisoning is common because of the widespread availability of “diet pills” and the use of “ecstasy,” “speed,” “crank,” “crystal,” and “ice” by adolescents. (Care must be taken in the interpretation of slang terms because...
A new cause of amphetamine poisoning is drugs for treating attention-deficit/hyperactivity disorder, such as methylphenidate. There are also newer designer drugs, synthetic cannabinoids ("spice, K2") and MPDV or mephedrone ("bath salts, plant food"), which cause effects similar to stimulants.

Symptoms include central nervous system (CNS) stimulation, anxiety, hyperactivity, hyperpyrexia, diaphoresis, hypertension, abdominal cramps, nausea and vomiting, and inability to void urine. MDMA has been associated with hyponatremia and seizures. Severe cases often include rhabdomyolysis. A toxic psychosis indistinguishable from paranoid schizophrenia may occur. Methamphetamine laboratories in homes are a potential cause of childhood exposure to a variety of hazardous and toxic substances. Maternal use and the effect on the fetus as well as exposures of young children are a continuing problem.

B. Chronic Poisoning

Chronic amphetamine users develop tolerance; more than 1500 mg of IV methamphetamine can be used daily. Hyperactivity, disorganization, and euphoria are followed by exhaustion, depression, and coma lasting 2–3 days. Heavy users, taking more than 100 mg/d, have restlessness, incoordination of thought, insomnia, nervousness, irritability, and visual hallucinations. Psychosis may be precipitated by the chronic administration of high doses. Chronic MDMA use can lead to serotonin depletion, which can manifest as depression, weakness, tremors, GI complaints, and suicidal thoughts.

> Treatment

The treatment of choice is diazepam, titrated in small increments to effect. Very large total doses may be needed. In cases of extreme agitation or hallucinations, droperidol (0.1 mg/kg per dose) or haloperidol (up to 0.1 mg/kg) parenterally has been used. Hyperthermia should be aggressively controlled. Chronic users may be withdrawn rapidly from amphetamines. If amphetamine–barbiturate combination tablets have been used, the barbiturates must be withdrawn gradually to prevent withdrawal seizures. Psychiatric treatment should be provided.


ANESTHETICS, LOCAL

Intoxication from local anesthetics may be associated with CNS stimulation, acidosis, delirium, ataxia, shock, convulsions, and death. Methemoglobinemia has been reported following local mouth or dental analgesia, typically with benzocaine or prilocaine. It has also been reported with use of topical preparations in infants. The maximum recommended dose for subcutaneous (SQ) infiltration of lidocaine is 4.5 mg/kg (Table 13–3). The temptation to exceed this

| Table 13–3. Pharmacologic properties of local anesthetics. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| pKₐ | Protein Binding (%) | Relative Potency | Duration of Action | Approximate Maximum Allowable Subcutaneous Dose (mg/kg) |
| Esters | | | | |
| Chlorprocaine | 9.3 | Unknown | Intermediate | Short | 10 |
| Cocaine | 8.7 | 92 | Low | Medium | 3 |
| Procaine | 9.1 | 5 | Low | Short | 10 |
| Tetracaine | 8.4 | 76 | High | Long | 3 |
| Amides | | | | |
| Bupivacaine | 8.1 | 95 | High | Long | 2 |
| Etidocaine | 7.9 | 95 | High | Long | 4 |
| Lidocaine | 7.8 | 70 | Low | Medium | 4.5 |
| Mepivacaine | 7.9 | 75 | Intermediate | Medium | 4.5 |
| Prilocaine | 8.0 | 40 | Intermediate | Medium | 8 |
| Ropivacaine | 8.2 | 95 | Intermediate | Long | 3 |

dose in procedures lasting a long time is great and may result in inadvertent overdosage. PO application of viscous lidocaine may produce toxicity. Hypercapnia may lower the seizure threshold to locally injected anesthetics.

Local anesthetics used in obstetrics cross the placental barrier and are not efficiently metabolized by the fetal liver. Mepivacaine, lidocaine, and bupivacaine can cause fetal bradycardia, neonatal depression, and death. Accidental injection of mepivacaine into the head of the fetus during paracervical anesthesia has caused neonatal asphyxia, cyanosis, acidoses, bradycardia, convulsions, and death.

### Treatment

If the anesthetic has been ingested, mucous membranes should be cleansed carefully and activated charcoal may be administered. If it is a topical application, the area should be cleaned and irrigated. Oxygen administration is indicated, with assisted ventilation if necessary. Symptomatic methemoglobinemia is treated with methylene blue, 1%, 0.2 mL/kg (1–2 mg/kg per dose, IV) over 5–10 minutes; this should promptly relieve the cyanosis. Acidosis may be treated with sodium bicarbonate, seizures with diazepam, and bradycardia with atropine. In the event of cardiac arrest, 20% fat emulsion therapy should be initiated. Initial 1.5 mL/kg bolus over 1 minute, followed by 0.25 mL/kg/min for up to 20–30 minutes until spontaneous circulation returns. Repeat bolus can be considered. Therapeutic levels of mepivacaine, lidocaine, and procaine are less than 5 mg/mL.


### ANTIHISTAMINES & COUGH & COLD PREPARATIONS

The use of cough and cold preparations in young children has recently been called into question due to potential toxicity. In 2007, manufacturers voluntarily removed preparations intended for use in children younger than the age of 4 from the market. Considerable controversy remains as to the toxicity of these medications if they are used according to labeled directions and an evaluation of the cases on file at FDA stated, “In the cases judged to be therapeutic intent or unknown intent, several factors appeared to contribute to the administration of an overdosage: administration of two medicines containing the same ingredients, failure to use a measuring device, use of an adult product, use of the wrong product because of product misidentification, and two or more caregivers administering the same medication. In the cases of non-therapeutic intent, circumstances involved attempts at sedation and several included apparent attempts of overt child abuse and were under investigation by law enforcement authorities.”

Medications included in this area are: antihistamine (brompheniramine, chlorpheniramine, diphenhydramine, doxylamine), antitussive (dextromethorphan), expectorant (guaifenesin), and decongestant (pseudoephedrine, phenylephrine). Although antihistamines typically cause CNS depression, children often react paradoxically with excitement, hallucinations, delirium, ataxia, tremors, and convulsions followed by CNS depression, respiratory failure, or cardiovascular collapse. Anticholinergic effects such as dry mouth, fixed dilated pupils, flushed face, fever, and hallucinations may be prominent.

They are absorbed rapidly and metabolized by the liver, lungs, and kidneys. A potentially toxic dose is 10–50 mg/kg of the most commonly used antihistamines, but toxic reactions have occurred at much lower doses.

### Treatment

Activated charcoal should be used to reduce drug absorption. Whole bowel irrigation may be useful for sustained-release preparations. Physostigmine (0.5–2.0 mg IV, slowly administered) dramatically reverses the central and peripheral anticholinergic effects of antihistamines, but it should be used only for diagnostic purposes in patients without cardio toxicity or seizures. Benzodiazepines, such as lorazepam (0.1 mg/kg IV) can be used to control seizures or agitation. Cardiac dysrhythmias and hypotension should be treated with normal saline at a dose of 10–20 mg/kg and a vasopressor if necessary. Sodium bicarbonate may be useful if there is QRS widening at a dose of 1–2 mEq/kg, making certain that the arterial pH does not exceed 7.55. Forced diuresis is not helpful. Exchange transfusion was reported to be effective in one case.


### ARSENIC

Arsenic is used in some insecticides (fruit tree or tobacco sprays), rodenticides, weed killers, and wood preservatives. It can also be found in some fireworks. It is well absorbed primarily through the GI and respiratory tracts, but skin absorption may occur. Arsenic can be found in the urine, hair, and nails by laboratory testing.
Highly toxic soluble derivatives of this compound, such as sodium arsenite, are frequently found in liquid preparations and can cause death in as many as 65% of victims. The organic arsenates found in persistent or preemergence weed killers are relatively less soluble and less toxic. Poisonings with a liquid arsenical preparation that does not contain alkyl methanearsonate compounds should be considered potentially lethal. Patients exhibiting clinical signs other than gastroenteritis should receive treatment until laboratory tests indicate that treatment is no longer necessary.

### Clinical Findings

#### A. Acute Poisoning

Abdominal pain, vomiting, watery and bloody diarrhea, cardiovascular collapse, paresthesias, neck pain, and garlic odor on the breath occur as the first signs of acute poisoning. Convulsions, coma, anuria, and exfoliative dermatitis are later signs. Inhalation may cause pulmonary edema. Death is the result of cardiovascular collapse.

#### B. Chronic Poisoning

Anorexia, generalized weakness, giddiness, colic, abdominal pain, polyneuritis, dermatitis, nail changes, alopecia, and anemia often develop.

### Treatment

In acute poisoning, administer activated charcoal. Then immediately give dimercaprol (commonly known as BAL), 3–5 mg/kg intramuscularly (IM), and follow with 2 mg/kg IM every 4 hours. The dimercaprol–arsenic complex is dialyzable. A second choice is succimer. The initial dose is 10 mg/kg every 8 hours for 5 days. A third choice is penicillamine, 100 mg/kg PO to a maximum of 1 g/d in four divided doses.

Chronic arsenic intoxication should be treated with succimer or penicillamine. Collect a 24-hour baseline urine specimen, greater than 50 mcg/L is elevated. Elevated levels must be correlated with history, as seafood can contain high levels of organic arsenic and cause a transient increase in urinary arsenic. With elevated levels, speciation of the sample is recommended, or a seafood holiday for 1 week and repeat lab work. If treatment is initiated, continue chelation for 5 days. After 10 days, repeat the 5-day cycle once or twice, depending on how soon the urine arsenic level falls below 50 mcg/L/24 hrs.

Barbiturates are rarely used today, and have mostly been replaced with benzodiazepines for their use in seizures or for sedation. The toxic effects of barbiturates include confusion, poor coordination, coma, miotic or fixed dilated pupils, and respiratory depression. Respiratory acidosis is commonly associated with pulmonary atelectasis, and hypotension occurs frequently in severely poisoned patients. Ingestion of more than 6 mg/kg of long-acting or 3 mg/kg of short-acting barbiturates is usually toxic. Benzodiazepines typically cause CNS depression and lethargy in unintentional oral ingestions. Large oral overdoses or iatrogenic IV overdose can cause cardiovascular or respiratory depression.

### Treatment

Careful, conservative management with emphasis on maintaining a clear airway, adequate ventilation, and control of hypotension is critical. Urinary alkalization and the use of multiple-dose charcoal may decrease the elimination half-life of phenobarbital but have not been shown to alter the clinical course. Hemodialysis is not useful in the treatment of poisoning with short-acting barbiturates or benzodiazepines. Analeptics are contraindicated. Flumazenil can be considered if severe CNS depression or respiratory depression develops after benzodiazepine overdose using a dose of 0.01 mg/kg IV (maximum dose of 0.2 mg).

The effects of anticholinergic compounds include dry mouth; thirst; decreased sweating with hot, dry, red skin; high fever; and tachycardia that may be preceded by bradycardia. The pupils are dilated, and vision is blurred. Speech and swallowing may be impaired. Hallucinations, delirium, and coma are common. Leukocytosis may occur, confusing the diagnosis.

Atropinism has been caused by normal doses of atropine or homatropine eye drops, especially in children with Down syndrome. Many common plants and over-the-counter medications contain belladonna alkaloids.

### Treatment

If the patient is awake and showing no signs or symptoms, administration of activated charcoal can be considered. Gastric emptying is slowed by anticholinergics, so that
gastric decontamination may be useful even if delayed. Benzodiazepines should be administered to control agitation. Bolus dosing should be given in escalating doses, and high doses may be required. Physostigmine (0.5–2.0 mg IV, administered slowly) dramatically reverses the central and peripheral signs of atropinism but should be used only as a diagnostic agent. It should not be given in patients with cardiotoxicity or seizures. Hyperthermia should be aggressively controlled. Catheterization may be needed if the patient cannot void.

Burns MJ et al: A comparison of physostigmine and benzodi-

CAUSTICS

1. Acids (Hydrochloric, Hydrofluoric, Nitric, & Sulfuric Acids; Sodium Bisulfate)

Strong acids are commonly found in metal and toilet bowl cleaners, batteries, and other products. Hydrofluoric acid is the most toxic and hydrochloric acid the least toxic of these household substances. However, even a few drops can be fatal if aspirated into the trachea.

Painful swallowing, mucous membrane burns, bloody emesis, abdominal pain, respiratory distress due to edema of the epiglottis, thirst, shock, and renal failure can occur. Coma and convulsions sometimes are seen terminally. Residual lesions include esophageal, gastric, and pyloric strictures as well as scars of the cornea, skin, and oropharynx.

β-BLOCKERS & CALCIUM CHANNEL BLOCKERS

β-Blockers and calcium channel blockers primarily cause cardiovascular toxicity; bradycardia, hypotension, and various degrees of heart block; a cardiac dysrhythmias may develop. Severe toxicity can cause CNS depression. The β-blocker propranolol is associated with seizures. Hyperglycemia can be seen with calcium channel blocker toxicity.

Treatment

Initial stabilization with IV fluid resuscitation with isotonic fluids should be initiated. Atropine can be given for symptomatic bradycardia. Calcium at doses of 20 mg/kg and repeated as needed should be administered. Infusions of calcium chloride 10%, 0.2–0.5 mL/kg/h, can be started after initial bolus dosing. Glucagon can be administered; 50–100 mcg/kg (5–10 mg) IV bolus followed by 2–5 mg/h infusion if patient improves. Vasopressors such as dopamine or norepinephrine should be started if patient continues to be hypotensive and bradycardic. In patients who are severely poisoned and refractory to these initial measures, hyperinsulinemia euglycemic therapy should be started. Your regional poison control center should be contacted for further details on dosing of this therapy.


CARBON MONOXIDE

The degree of toxicity correlates well with the carboxyhemoglobin level taken soon after acute exposure but not after oxygen has been given or when there has been some time since exposure. Onset of symptoms may be more rapid and more severe if the patient lives at a high altitude, has a high respiratory rate (ie, infants), is pregnant, or has myocardial insufficiency or lung disease. Normal blood may contain up to 5% carboxyhemoglobin (10% in smokers). Neonates may have elevated carboxyhemoglobin levels due to breakdown of bilirubin.

Presenting symptoms can include nonspecific symptoms such as headache or flu-like illness. Other effects include confusion, unsteadiness, and coma. Proteinuria, glycosuria, elevated serum aminotransferase levels, or ECG changes may be present in the acute phase. Permanent cardiac, liver, renal, or CNS damage occurs occasionally. The outcome of severe poisoning may be complete recovery, vegetative state, or any degree of mental injury between these extremes. The primary mental deficits are neuropsychiatric.

Treatment

The biologic half-life of carbon monoxide on room air is approximately 200–300 minutes; on 100% oxygen, it is 60–90 minutes. Thus, 100% oxygen should be administered immediately. Hyperbaric oxygen therapy at 2.0–2.5 atm of oxygen shortens the half-life to 30 minutes. The use of hyperbaric oxygen therapy for delayed neurologic sequelae can be considered, but remains controversial. After the level has been reduced to near zero, therapy is aimed at the non-specific sequelae of anoxia. Evaluation of the source should be performed before the patient returns to the home.


P

POISONING
Hydrofluoric acid is a particularly dangerous poison. Dermal exposure creates a penetrating burn that can progress for hours or days. Large dermal exposure or ingestion may produce life-threatening hypocalcemia abruptly as well as burn reactions.

**Treatment**

Emetics and lavage are contraindicated. Water or milk (<15 mL/kg) is used to dilute the acid, because a heat-producing chemical reaction does not occur. Take care not to induce emesis by excessive fluid administration. Alkalis should not be used. Burned areas of the skin, mucous membranes, or eyes should be washed with copious amounts of warm water. Opioids for pain may be needed. An endotracheal tube may be required to alleviate laryngeal edema. Esophagoscopy should be performed if the patient has significant burns or difficulty in swallowing, drooling, vomiting or stridor. Acids are likely to produce gastric burns or esophageal burns. Evidence is not conclusive, but corticosteroids have not proved to be of use.

Hydrofluoric acid burns on skin are treated with 10% calcium gluconate gel or calcium gluconate infusion. Severe exposure may require large doses of IV calcium. Therapy should be guided by calcium levels, the ECG, and clinical signs.

**2. Bases (Clinitest Tablets, Clorox, Drano, Liquid-Plumr, Purex, Sani-Clor—Examine the Label or Call a Poison Center to Determine Contents)**

Alkalis produce more severe injuries than acids. Some substances, such as Clinitest tablets or Drano, are quite toxic, whereas the chlorinated bleaches (3%–6% solutions of sodium hypochlorite) are usually not toxic. When sodium hypochlorite comes in contact with acid in the stomach, hypochlorous acid, which is very irritating to the mucous membranes and skin, is formed. Rapid inactivation of this substance prevents systemic toxicity. Chlorinated bleaches, when mixed with a strong acid (toilet bowl cleaners) or ammonia, may produce irritating chlorine or chloramine gas, which can cause serious lung injury if inhaled in a closed space (eg, bathroom).

Alkalis can burn the skin, mucous membranes, and eyes. Respiratory distress may be due to edema of the epiglottis, pulmonary edema resulting from inhalation of fumes, or pneumonia. Mediastinitis or other intercurrent infections or shock can occur. Perforation of the esophagus or stomach is rare.

**Treatment**

The skin and mucous membranes should be cleansed with copious amounts of water. A local anesthetic can be instilled in the eye if necessary to alleviate blepharospasm. The eye should be irrigated for at least 20–30 minutes. Ophthalmologic consultation should be obtained for all alkaline eye burns.

Ingestions should be treated with water as a diluent. Routine esophagoscopy is no longer indicated to rule out burns of the esophagus due to chlorinated bleaches unless an unusually large amount has been ingested or the patient is symptomatic. Symptoms that are concerning for significant injury esophageal injury include drooling, persistent vomiting, and stridor. The absence of oral lesions does not rule out the possibility of laryngeal or esophageal burns following granular alkali ingestion. The use of corticosteroids is controversial, but has not been shown to improve long-term outcome except possibly in partial-thickness esophageal burns. Antibiotics may be needed if mediastinitis is likely, but they should not be used prophylactically. (See Caustic Burns of the Esophagus section in Chapter 21.)

**CENTRAL ALPHA-2 ADRENERGIC AGONIST**

Central alpha-2 adrenergic agonists are common over-the-counter and prescribed medication. The imidazolines are found in nasal decongestants and eye drops to relieve redness. Clonidine and guanfacine are used most commonly to treat attention deficit hyperactivity disorder or hypertension. Dexmedetomidine is an IV central alpha-2 adrenergic agonist used for sedation. These medications exert their effects by stimulating presynaptic alpha-2 adrenergic receptors in the brain, resulting in decreased norepinephrine release and decreased sympathetic outflow.

**Clinical Findings**

Most common effects are related to CNS sedation. They can present similar to an opioid toxidrome with miosis, CNS depression, and respiratory depression. Other common effects include bradycardia and hypotension.

**Treatment**

If the patient becomes obtunded, or has inability to protect their airway, intubation may be indicated. Naloxone has been tried to reverse signs of toxicity with varying success. Symptomatic bradycardia can be treated with IV fluid resuscitation or atropine. Hypotension should be treated initially with IV fluid resuscitation, followed by vasopressors if needed.

**References**


COCOAINE

Cocaine is absorbed intranasally or via inhalation or ingestion. Effects are noted almost immediately when the drug is taken intravenously or smoked. Peak effects are delayed for about an hour when the drug is taken orally or nasally. Cocaine prevents the reuptake of endogenous catecholamines, thereby causing an initial sympathetic discharge, followed by catechol depletion after chronic abuse.

Clinical Findings

A local anesthetic and vasoconstrictor, cocaine is also a potent stimulant to both the CNS and the cardiovascular system. The initial tachycardia, hyperpnea, hypertension, and stimulation of the CNS are often followed by coma, seizures, hypotension, and respiratory depression. In severe cases of overdose, various dysrythmias may be seen, including sinus tachycardia, atrial arrhythmias, premature ventricular contractions, bigeminy, and ventricular fibrillation. If large doses are taken intravenously, cardiac failure, dysrythmias, rhabdomyolysis, or hyperthermia may result in death.

In addition to those poisoned through recreational use of cocaine, others are at risk of overdose. A "body stuffer" is one who quickly ingests the drug, usually poorly wrapped, to avoid discovery. A "body packer" wraps the drug carefully for prolonged transport. A stuffer typically manifests toxicity within hours of ingestion; a packer is asymptomatic unless the package ruptures, usually days later. Newborns of cocaine using mothers may continue to have seizures for months after birth.

Treatment

Except in cases of body stuffers or body packers, decontamination is seldom possible. Activated charcoal should be administered, and whole bowel irrigation may be useful in cases of body packers. Testing for cocaine in blood or plasma is generally not clinically useful, but a qualitative analysis of the urine may aid in confirming the diagnosis. For severe cases, an ECG is indicated. In suspected cases of body packing, radiographs of the GI tract may show multiple packets. Radiographic films are usually not helpful for identifying stuffers. Seizures are treated with IV benzodiazepines such as lorazepam, titrated to response. Hypotension is treated with standard agents. Because cocaine abuse may deplete norepinephrine, an indirect agent such as dopamine may be less effective than a direct agent such as norepinephrine. Agitation is best treated with a benzodiazepine.

<table>
<thead>
<tr>
<th>High toxicity</th>
<th>Low toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent wave neutralizers</td>
<td>Perfume</td>
</tr>
<tr>
<td>Fingernail polish</td>
<td>Hair removers</td>
</tr>
<tr>
<td>Fingernail polish remover</td>
<td>Deodorants</td>
</tr>
<tr>
<td>Metallic hair dyes</td>
<td>Bath salts</td>
</tr>
<tr>
<td>Home permanent wave lotion</td>
<td>No toxicity</td>
</tr>
<tr>
<td>Bath oil</td>
<td>Liquid makeup</td>
</tr>
<tr>
<td>Shaving lotion</td>
<td>Vegetable hair dye</td>
</tr>
<tr>
<td>Hair tonic (alcoholic)</td>
<td>Cleansing cream</td>
</tr>
<tr>
<td>Cologne, toilet water</td>
<td>Hair dressing (nonalcoholic)</td>
</tr>
</tbody>
</table>

Table 13-4. Relative toxicities of cosmetics and similar products.


Cobalt, copper, cadmium, iron, lead, nickel, silver, bis-muth, and tin are sometimes found in metallic hair dyes. In large amounts, they can cause skin sensitization, urti-caria, dermatitis, eye damage, vertigo, hypertension, asthma, methemoglobinemia, tremors, convulsions, and coma. Treatment for ingestions is to administer demulcents and, only with large amounts, the appropriate antidote for the heavy metal involved.

Home permanent wave lotions, hair straighteners, and hair removers usually contain thiglyglycolic acid salts, which cause alkaline irritation and perhaps CNS depression.

Shaving lotion, hair tonic, hair straighteners, cologne, and toilet water contain denatured alcohol, which can cause CNS depression and hypoglycemia.

Deodorants usually consist of an antibacterial agent in a cream base. Antiperspirants are aluminum salts, which frequently cause skin sensitization. Zirconium oxide can cause granulomas in the axilla with chronic use.

**CYCLIC ANTIDEPRESSANTS**

Cyclic antidepressants (eg, amitriptyline, imipramine) have a very low ratio of toxic to therapeutic doses, and even a moderate overdose can have serious effects.

Cyclic antidepressant overdosage can cause a progression of illness beginning with sudden onset coma within 1–2 hours of ingestion, followed by convulsions, hypotension, and dysrhythmias. These effects may be life-threatening and require rapid intervention. One agent, amoxapine, differs in that it causes fewer cardiovascular complications, but it is associated with a higher incidence of seizures.

**Treatment**

Decontamination should include administration of activated charcoal unless the patient is symptomatic.

An ECG should be obtained in all patients. A QRS interval greater than 100 ms specifically identifies patients at risk to develop dysrhythmias. If dysrhythmias are demonstrated, the patient should be admitted and monitored until free of irregularity for 24 hours. Another indication for monitoring is persistent tachycardia of more than 110 beats/min. The onset of dysrhythmias is rare beyond 24 hours after ingestion.

Alkalization with sodium bicarbonate (0.5–1.0 mEq/kg IV) may dramatically reverse ventricular dysrhythmias and narrow the QRS interval. If intubated, hyperventilation may be helpful. Lidocaine may be added for treatment of arrhythmias. Bolus administration of sodium bicarbonate is recommended for all patients with QRS widening to above 120 ms and for those with significant dysrhythmias, to achieve a pH of 7.5–7.6. Forced diuresis is contraindicated. A benzodia-zepine should be given for convulsions.

Cyclic antidepressants block the reuptake of catecholamines, thereby producing initial hypertension followed by hypotension. Vasopressors are generally effective. Dopamine is the agent of choice because it is readily available. If dopamine is ineffective, norepinephrine (0.1–1 mcg/kg/min, titrated to response) should be added. Diuresis and hemodialysis are not effective. Treatment with physostigmine is contraindicated.

**DIGITALIS & OTHER CARDIAC GLYCOSIDES**

Acute toxicity is typically the result of incorrect dosing, and chronic toxicity is due to unrecognized renal insufficiency. Clinical features include nausea, vomiting, diarrhea, delirium, confusion, and, occasionally, coma. Cardiac dysrhythmias typically involve bradydysrhythmias, but every type of dysrhythmia has been reported in digitalis intoxication, including atrial fibrillation, paroxysmal atrial tachycardia, and atrial flutter. Death usually is the result of ventricular fibrillation. Transplacental intoxication by digitals has been reported. Cardiac glycosides, such as yellow oleander and foxglove, can cause digitalis toxicity in large ingestions as well.

**Treatment**

If patient is awake and alert, consider administering activated charcoal. Potassium is contraindicated in acute overdose unless there is laboratory evidence of hypokalemia. In acute overdose, hyperkalemia is more common. Hypokalemia is common in chronic toxicity.

The patient must be monitored carefully for ECG changes. The correction of acidosis better demonstrates the degree of potassium deficiency present. Bradycardias have been treated with atropine. Phenytoin, lidocaine, magnesium salts (not in renal failure), amiodarone, and bretylium have been used to correct arrhythmias.

Definitive treatment is with digoxin immune Fab (ovine) (Digibind). Indications for its use include hypotension or any dysrhythmia, typically ventricular dysrhythmias and progressive bradydysrhythmias that produce clinical concern, or hyperkalemia in an acute overdose. Elevated T waves indicate high potassium and may be an indication for digoxin immune Fab (Digibind, DigiFab) use. Techniques of determining dosage and indications related to levels, when available are described in product literature. High doses of digoxin immune Fab may be needed in cardiac glycoside overdose.


DIPHENOXYLATE WITH ATROPINE (LOMOTIL) & LOPERAMIDE (IMODIUM)

Loperamide (Imodium) has largely replaced Lomotil and does not produce significant toxicity. Ingestions of up to 0.4 mg/kg can safely be managed at home.

Lomotil is still widely available and contains diphenoxylate hydrochloride, a synthetic narcotic, and atropine sulfate. Small amounts are potentially lethal in children; it is contraindicated in children younger than age 2 years. Early signs of intoxication with this preparation result from its anticholinergic effect and consist of fever, facial flushing, tachypnea, and lethargy. However, the miotic effect of the narcotic predominates. Later, hypothermia, increasing CNS depression, and loss of the facial flush occur. Seizures are probably secondary to hypoxia.

**Treatment**

Prolonged monitoring (24 hours) with pulse oximetry and careful attention to airway is sufficient in most cases.

Naloxone hydrochloride (0.4–2.0 mg IV in children and adults) should be given for signs of respiratory depression. Repeated doses may be required because the duration of action of diphenoxylate is considerably longer than that of naloxone.


DISINFECTANTS & DEODORIZERS

1. Naphthalene

Naphthalene is commonly found in mothballs, disinfectants, and deodorizers. Naphthalene’s toxicity is often not fully appreciated. It is absorbed not only when ingested but also through the skin and lungs. It is potentially hazardous to store baby clothes in naphthalene, because baby oil is an excellent solvent that may increase dermal absorption. Note: Most mothballs contain para-dichlorobenzene and not naphthalene (see next section). Metabolic products of naphthalene may cause severe hemolytic anemia, similar to that due to primaquine toxicity, 2–7 days after ingestion. Other physical findings include vomiting, diarrhea, jaundice, oliguria, anuria, coma, and convulsions.

**Treatment**

If the patient is awake and alert, consideration can be given for administering activated charcoal. Methemoglobinemia and anemia may require blood transfusions.


2. P-Dichlorobenzene, Phenolic Acids, & Others

Disinfectants and deodorizers containing p-dichlorobenzene or sodium sulfate are much less toxic than those containing naphthalene. They typically cause mucous membrane irritation and GI upset. Camphor can cause seizures after ingestion. Disinfectants containing phenolic acids are highly toxic, especially if they contain a borate ion. Phenol precipitates tissue proteins and causes respiratory alkalosis followed by metabolic acidosis. Some phenols cause methemoglobinemia.

Local gangrene occurs after prolonged contact with tissue. Phenol is readily absorbed from the GI tract, causing diffuse capillary damage and, in some cases, methemoglobinemia. Phenol can also be absorbed dermally. Pentachlorophenol, which has been used in terminal rinsing of diapers, has caused infant fatalities.

The toxicity of alkalis, quaternary ammonium compounds, pine oil, and halogenated disinfectants varies with the concentration of active ingredients. Wick deodorizers are usually of moderate toxicity. Iodophor disinfectants are the safest. Spray deodorizers are not usually toxic, because a child is not likely to swallow a very large dose.

Signs and symptoms of acute quaternary ammonium compound ingestion include diaphoresis, strong irritation, thirst, vomiting, diarrhea, cyanosis, hyperactivity, coma, convulsions, hypotension, abdominal pain, and pulmonary edema. Acute liver or renal failure may develop later.

**Treatment**

Mainstay to phenol toxicity is symptomatic and supportive care. The metabolic acidosis must be managed carefully. Anticonvulsants or measures to treat shock may be needed.

Because phenols are absorbed through the skin, exposed areas should be irrigated copiously with water. Undiluted polyethylene glycol may be a useful solvent as well.


DISK-SHAPED “BUTTON” BATTERIES

Small, flat, smooth disk-shaped batteries measure between 10 and 25 mm in diameter. About 69% of them pass through the GI tract in 48 hours and 85% in 72 hours. Some may become entrapped. These batteries contain caustic materials and heavy metals.

Batteries impacted in the esophagus may cause symptoms of refusal to take food, increased salivation, vomiting
with or without blood, and pain or discomfort. Aspiration into the trachea may also occur. Fatalities have been reported in association with esophageal perforation.

When a history of disk battery ingestion is obtained, radiographs of the entire respiratory tract and GI tract should be taken so that the battery can be located and the proper therapy determined.

**Treatment**

Any disk battery ingestion should be referred for evaluation and radiographs. If the disk battery is located in the esophagus, it must be removed immediately. Any prolonged time in the esophagus can cause injury. Consultation with GI or surgical subspecialty is recommended.

Location of the disk battery below the esophagus has been associated with tissue damage, but the course is benign in most cases. Perforated Meckel diverticulum has been the major complication. It may take as long as 7 days for spontaneous passage to occur, and lack of movement in the GI tract may not require removal in an asymptomatic patient.

Some researchers have suggested repeated radiographs and surgical intervention if passage of the battery pauses, but this approach may be excessive. Batteries that have opened in the GI tract have been associated with some toxicity due to mercury, but the patients have recovered.

Emesis is ineffective. Asymptomatic patients may simply be observed and stools examined for passage of the battery. If the battery has not passed within 7 days or if the patient becomes symptomatic, radiographs should be repeated. If the battery has come apart or appears not to be moving, a purgative, enema, or nonabsorbable intestinal lavage solution should be administered. If these methods are unsuccessful, surgical intervention may be required. Levels of heavy metals (mainly mercury) should be measured in patients in whom the battery has opened or symptoms have developed.

Some researchers have suggested repeated radiographs and surgical intervention if passage of the battery pauses, but this approach may be excessive. Batteries that have opened in the GI tract have been associated with some toxicity due to mercury, but the patients have recovered.

Emesis is ineffective. Asymptomatic patients may simply be observed and stools examined for passage of the battery. If the battery has not passed within 7 days or if the patient becomes symptomatic, radiographs should be repeated. If the battery has come apart or appears not to be moving, a purgative, enema, or nonabsorbable intestinal lavage solution should be administered. If these methods are unsuccessful, surgical intervention may be required. Levels of heavy metals (mainly mercury) should be measured in patients in whom the battery has opened or symptoms have developed.

**Treatment**

The primary treatment is to block the enzyme alcohol dehydrogenase, which converts both agents to their toxic metabolites. This is accomplished with fomepizole (loading dose of 15 mg/kg) or ethanol. Fomepizole is preferred for children, due to its reduced side effects in this age group. Hemodialysis is indicated with high concentrations, persistent metabolic acidosis, or end organ toxicity.


**γ-HYDROXYBUTYRATE, γ-BUTYROLACTONE, & BUTANEDIOL**

γ-Hydroxybutyrate (GHB), γ-butyrolactone (GBL), and butanediol have become popular drugs of abuse in adolescents and adults. GHB is a CNS depressant that is structurally similar to the inhibitory neurotransmitter γ-aminobutyric acid. GBL and butanediol are converted in the body to GHB. These drugs cause deep but short-lived coma; the coma often lasts only 1–4 hours. Treatment consists of supportive care with close attention to airway and endotracheal intubation if respiratory depression or decreased gag reflex complicates the poisoning. Atropine has been used successfully for symptomatic bradycardia.

Withdrawal from GHB, GBL, or butanediol can cause several days of extreme agitation, hallucination, or tachycardia. Treatment with high doses of benzodiazepines or with butyrophenones (eg, haloperidol or droperidol) or secoberbital may be needed for several days.


**ETHYLENE GLYCOL & METHANOL**

Ethylene glycol and methanol are the toxic alcohols. The primary source of ethylene glycol is antifreeze, whereas methanol is present in windshield wiper fluid and also as an ethanol denaturant. Ethylene glycol causes severe metabolic acidosis and renal failure. Methanol causes metabolic acidosis and blindness. Onset of symptoms with both agents occurs within several hours after ingestion, longer if ethanol was ingested simultaneously.

**Treatment**

The primary treatment is to block the enzyme alcohol dehydrogenase, which converts both agents to their toxic metabolites. This is accomplished with fomepizole (loading dose of 15 mg/kg) or ethanol. Fomepizole is preferred for children, due to its reduced side effects in this age group. Hemodialysis is indicated with high concentrations, persistent metabolic acidosis, or end organ toxicity.

**HYDROCARBONS (BENZENE, CHARCOAL LIGHTER FLUID, GASOLINE, KEROSENE, PETROLEUM DISTILLATES, TURPENTINE)**

Ingestion of hydrocarbons may cause irritation of mucous membranes, CNS depression, or aspiration pneumonitis. Although a small amount (10 mL) of certain hydrocarbons is potentially fatal, patients have survived ingestion of several ounces of other petroleum distillates. Hydrocarbons with high volatility, low viscosity, and low surface tension have more risk or aspiration pneumonitis. Benzene, kerosene, red seal oil...
furniture polish, and some of the essential oils are very dangerous. A dose exceeding 1 mL/kg is likely to cause CNS depression. A history of coughing or choking, as well as vomiting, suggests aspiration with resulting hydrocarbon pneumonia. This is an acute hemorrhagic necrotizing disease that usually develops within 24 hours of the ingestion and resolves without sequelae in 3–5 days. However, several weeks may be required for full resolution of hydrocarbon pneumonia. Pulmonary edema and hemorrhage, cardiac dilation and dysrhythmias, hepatosplenomegaly, proteinuria, and hematuria can occur following large overdoses. Hypoglycemia is occasionally present. A chest radiograph may reveal pneumonia within hours after the ingestion. An abnormal urinalysis in a child with a previously normal urinary tract suggests a large overdose.

**Treatment**

Both emetics and lavage should be avoided. Initial supportive care, observing for CNS depression or respiratory distress. Epinephrine should be avoided with halogenated hydrocarbons because it may affect an already sensitized myocardium. The usefulness of corticosteroids is debated, and antibiotics should be reserved for patients with infections (pneumonitis can cause fevers and infiltrates). Oxygen and mist are helpful. Surfactant therapy for severe hydrocarbon-induced lung injury has been used successfully. Extracorporeal membrane oxygenation has been useful in at least two cases of failure with standard therapy.

---


---

**INSECT STINGS (BEE, WASP, & HORNET)**

Insect stings are painful but not usually dangerous; however, death from anaphylaxis may occur. Bee venom has hemolytic, neurotoxic, and histamine-like activities that can on rare occasion cause hemoglobinuria and severe anaphylactoid reactions. Massive envenomation from numerous stings may cause hemolysis, rhabdomyolysis, and shock leading to multiple-organ failure.

**Treatment**

The physician should remove the stinger, taking care not to squeeze the attached venom sac. For allergic reactions, epinephrine 1:1000 solution, 0.01 mL/kg, should be administered IV or SQ above the site of the sting. Three to four whiffs from an isoproterenol aerosol inhaler may be given at 3- to 4-minute intervals as needed. Corticosteroids (hydrocortisone; 100 mg IV) and diphenhydramine (1.5 mg/kg IV) are useful ancillary drugs but have no immediate effect. Ephedrine or antihistamines may be used for 2 or 3 days to prevent recurrence of symptoms.

A patient who has had a potentially life-threatening insect sting should be desensitized against the Hymenoptera group, because the honey bee, wasp, hornet, and yellow jacket have common antigens in their venom. For the more usual stings, cold compresses, aspirin, and diphenhydramine (1 mg/kg PO) are sufficient.

---


---

**INSECTICIDES**

The petroleum distillates or other organic solvents used in these products are often as toxic as the insecticide itself.

1. Chlorinated Hydrocarbons (eg, Aldrin, Carbinoil, Chlordane, DDT, Dieldrin, Endrin, Heptachlor, Lindane, Toxaphene)

   Signs of intoxication include salivation, GI irritability, abdominal pain, vomiting, diarrhea, CNS depression, and convulsions. Inhalation exposure causes irritation of the eyes, nose, and throat; blurred vision; cough; and pulmonary edema.
Chlorinated hydrocarbons are absorbed through the skin, respiratory tract, and GI tract. Decontamination of skin with soap and evacuation of the stomach contents are critical. All contaminated clothing should be removed. Castor oil, milk, and other substances containing fats or oils should not be left in the stomach because they increase absorption of the chlorinated hydrocarbons. Convulsions should be treated with diazepam (0.1–0.3 mg/kg IV). Epinephrine should not be used because it may cause cardiac arrhythmias.

2. Organophosphate (Cholinesterase-Inhibiting) Insecticides (eg, Chlorothion, Co-Ral, DFP, Diazinon, Malathion, Paraoxon, Parathion, Phosdrin, TEPP, Thio-TEPP)

Dizziness, headache, blurred vision, miosis, tearing, salivation, nausea, vomiting, diarrhea, hyperglycemia, cyanosis, sense of constriction of the chest, dyspnea, sweating, weakness, muscular twitching, convulsions, loss of reflexes and sphincter control, and coma can occur.

The clinical findings are the result of cholinesterase inhibition, which causes an accumulation of acetylcholine. The onset of symptoms occurs within 12 hours of the exposure. Red cell cholinesterase levels should be measured as soon as possible. (Some normal individuals have a low serum cholinesterase level.) Normal values vary in different laboratories. In general, a decrease of red cell cholinesterase to below 25% of normal indicates significant exposure.

Repeated low-grade exposure may result in sudden, acute toxic reactions. This syndrome usually occurs after repeated household spraying rather than agricultural exposure.

Although all organophosphates act by inhibiting cholinesterase activity, they vary greatly in their toxicity. Parathion, for example, is 100 times more toxic than malathion. Toxicity is influenced by the specific compound, type of formulation (liquid or solid), vehicle, and route of absorption (lungs, skin, or GI tract).

**Treatment**

Decontamination of skin, nails, hair, and clothing with soapy water is extremely important. Atropine plus a cholinesterase reactivator, pralidoxime, is an antidote for organophosphate insecticide poisoning. After assessment and management of the ABCs, atropine should be given and repeated every few minutes until airway secretions diminish. An appropriate starting dose of atropine is 2–4 mg IV in an adult and 0.05 mg/kg in a child. The patient should receive enough atropine to stop secretions (mydriasis is not an appropriate stopping point). Severe poisoning may require gram quantities of atropine administered over 24 hours.

Because atropine antagonizes the muscarinic parasympathetic effects of the organophosphates but does not affect the nicotinic receptor, it does not improve muscular weakness.

Pralidoxime should also be given immediately in more severe cases and repeated every 6–12 hours as needed (25–50 mg/kg diluted to 5% and infused over 5–30 minutes at a rate of no more than 500 mg/min). Pralidoxime should be used in addition to—not in place of—atropine if red cell cholinesterase is less than 25% of normal. Pralidoxime is most useful within 48 hours after the exposure but has shown some effects 2–6 days later. Morphine, theophylline, aminophylline, succinylcholine, and tranquilizers of the reserpine and phenothiazine types are contraindicated. Hyperglycemia is common in severe poisonings.

3. Carbamates (eg, Carbaryl, Sevin, Zectran)

Carbamate insecticides are reversible inhibitors of cholinesterase. The signs and symptoms of intoxication are similar to those associated with organophosphate poisoning but are generally less severe. Atropine titrated to effect is sufficient treatment. Pralidoxime should not be used with carbaryl poisoning but is of value with other carbamates. In combined exposures to organophosphates, give atropine but reserve pralidoxime for cases in which the red cell cholinesterase is depressed below 25% of normal or marked effects of nicotinic receptor stimulation are present.

4. Botanical Insecticides (eg, Black Flag Bug Killer, Black Leaf CPR Insect Killer, Flit Aerosol House & Garden Insect Killer, French’s Flea Powder, Raid)

Allergic reactions, asthma-like symptoms, coma, and convulsions have been reported. Pyrethrins, allethrin, and rotenone do not commonly cause signs of toxicity. Antihistamines, short-acting barbiturates, and atropine are helpful as symptomatic treatment.

Iron has many different formulations with varying amounts of elemental iron. Three common formulations include ferrous fumarate (33%), ferrous sulfate (20%), and ferrous gluconate (12%). Typically, doses of more than 20 mg/kg of elemental iron will cause symptoms. Five stages of intoxication may occur in iron poisoning: (1) Hemorrhagic gastroenteritis, which occurs 30–60 minutes after ingestion and may be associated with shock, acidosis, coagulation defects, and coma. This phase usually lasts 4–6 hours. (2) Phase of improvement, lasting 2–12 hours, during which patient looks better. (3) Delayed shock, which may occur...
12–48 hours after ingestion. Metabolic acidosis, fever, leukocytosis, and coma may also be present. (4) Liver damage with hepatic failure. (5) Residual pyloric stenosis, which may develop about 4 weeks after the ingestion.

Once iron is absorbed from the GI tract, it is not normally eliminated in feces but may be partially excreted in the urine, giving it a red color prior to chelation. A reddish discoloration of the urine suggests a serum iron level greater than 350 mcg/dL.

**Treatment**

GI decontamination is based on clinical assessment. The patient should be referred to a healthcare facility if symptomatic or if the history indicates toxic amounts. Gastric lavage and whole bowel irrigation should be considered in potentially life-threatening overdoses.

Shock is treated in the usual manner. Sodium bicarbonate and Fleet Phospho-Soda left in the stomach to form the insoluble phosphate or carbonate have not shown clinical benefit and have caused lethal hypernatremia or hyperphosphatemia. Deferoxamine, a specific chelating agent for iron, is a useful adjunct in the treatment of severe iron poisoning. It forms a soluble complex that is excreted in the urine. It is contraindicated in patients with renal failure unless dialysis can be used. IV deferoxamine chelation therapy should be instituted if the patient has a metabolic acidosis, persistent symptoms and a serum iron determination cannot be obtained readily, or if the peak serum iron exceeds 400 mcg/dL (62.6 μmol/L) at 4–5 hours after ingestion.

Deferoxamine should not be delayed until serum iron levels are available in serious cases of poisoning. IV administration is indicated if the patient is in shock, in which case it should be given at a dosage of 15 mg/kg/h. Infusion rates up to 35 mg/kg/h have been used in life-threatening poisonings. Rapid IV administration can cause hypotension, facial flushing, urticaria, tachycardia, and shock. Deferoxamine, 90 mg/kg IM every 8 hours (maximum, 1 g), may be given if IV access cannot be established, but the procedure is painful. The indications for discontinuation of deferoxamine have not been clearly delineated. Generally, it can be stopped after 12–24 hours if the acidosis has resolved and the patient is improving. Use of deferoxamine for greater than 24 hours has been associated with ARDS.

Hemodialysis, peritoneal dialysis, or exchange transfusion can be used to increase the excretion of the dialyzable complex. Urine output should be monitored and urine sediment examined for evidence of renal tubular damage. Initial laboratory studies should include blood typing and cross-matching; total protein; serum iron, sodium, potassium, and chloride; Pco2; pH; and liver function tests. Serum iron levels fall rapidly even if deferoxamine is not given.

After the acute episode, liver function studies and an upper GI series are indicated to rule out residual damage.

---

**LEAD**

Lead poisoning (plumbism) causes vague symptoms, including weakness, irritability, weight loss, vomiting, personality changes, ataxia, constipation, headache, and colicky abdominal pain. Late manifestations consist of retarded development, convulsions, and coma associated with increased intracranial pressure, which is a medical emergency.

Plumbism usually occurs insidiously in children younger than age 5 years. The most likely sources of lead include flaking leaded paint, artist’s paints, fruit tree sprays, solder, brass alloys, home-glazed pottery, and fumes from burning batteries. Only paint containing less than 1% lead is safe for interior use (eg, furniture, toys). Repetitive ingestions of small amounts of lead are far more serious than a single massive exposure. Toxic effects are likely to occur if more than 0.5 mg of lead per day is absorbed. In the US, lead levels continue to decline. Lead poisoning is more common abroad, so particular attention should be paid to immigrant and refugee populations or use of foreign remedies.

Blood lead levels are used to assess the severity of exposure. A complete blood count and serum ferritin concentration should be obtained; iron deficiency increases absorption of lead. Glycosuria, proteinuria, hematuria, and aminoaciduria occur frequently. Blood lead levels usually exceed 80 mcg/dL in symptomatic patients. Abnormal blood lead levels should be repeated in asymptomatic patients to rule out laboratory error. Specimens must be meticulously obtained in acid-washed containers. A normocytic, slightly hypochromic anemia with basophilic stippling of the red cells and reticulocytosis may be present in plumbism. Stippling of red blood cells is absent in cases involving only recent ingestion.

The cerebrospinal fluid (CSF) protein is elevated, and the white cell count usually is less than 100 cells/mL. CSF pressure may be elevated in patients with encephalopathy; lumbar punctures must be performed cautiously to prevent herniation.

**Treatment**

Refer to the CDC guidelines for the most up to date recommendations on lead treatment. Succimer is an orally administered chelator approved for use in children and reported to be as efficacious as calcium edetate. Treatment for blood lead levels of 20–45 mcg/dL in children has not been determined. Succimer should be initiated at blood lead levels...
over 45 mcg/dL. The initial dose is 10 mg/kg (350 mg/m²) every 8 hours for 5 days. The same dose is then given every 12 hours for 14 days. At least 2 weeks should elapse between courses. Blood lead levels increase somewhat (ie, rebound) after discontinuation of therapy. Courses of dimercaprol (4 mg/kg per dose) and calcium edetate may still be used but are no longer the preferred method, except in cases of lead encephalopathy.

Encephalopathy associated with cerebral edema needs to be treated with standard measures. Anticonvulsants may be needed. A high-calcium, high-phosphorus diet and large doses of vitamin D may remove lead from the blood by depositing it in the bones. A public health team should evaluate the source of the lead. Necessary corrections should be completed before the child is returned home.

## Magnets

Although not strictly toxic, small magnets have been found to cause bowel obstructions in children. Recent cases have resulted in warnings and a recall by the Consumer Product Safety Commission following intestinal perforation and death in a 20-month-old child. Obstruction may occur following ingestion of as few as two magnets. Radiographs should be obtained and surgical consultation may be indicated.

## Mushrooms

Toxic mushrooms are often difficult to distinguish from edible varieties. Contact a poison control center to obtain identification assistance. Symptoms vary with the species ingested, time of year, stage of maturity, quantity eaten, method of preparation, and interval since ingestion. The most common symptom is GI upset within a few hours of ingestion. A mushroom that is toxic to one individual may not be toxic to another. Drinking alcohol and eating certain mushrooms may cause a reaction similar to that seen with disulfiram and alcohol. Cooking destroys some toxins but not the deadly one produced by *Amanita phalloides*, which is responsible for 90% of deaths due to mushroom poisoning. Mushroom toxins are absorbed relatively slowly. Onset of symptoms within 2 hours of ingestion suggests muscarinic toxin, whereas a delay of symptoms for 6–48 hours after ingestion strongly suggests *Amanita* (amanitin) poisoning. Patients who have ingested *A phalloides* may relapse and die of hepatic or renal failure following initial improvement.

Mushroom poisoning may produce muscarinic symptoms (salivation, vomiting, diarrhea, cramping abdominal pain, tenesmus, miosis, and dyspnea), coma, convulsions, hallucinations, hemolysis, and delayed hepatic and renal failure.

### Treatment

Consideration should be given to administering activated charcoal. However, many mushrooms cause emesis and this may not be feasible. Supportive care with IV fluid resuscitation may be needed due to emesis and diarrhea. If the patient has muscarinic signs, give atropine, 0.05 mg/kg IM (0.02 mg/kg in toddlers), and repeat as needed (usually every 30 minutes) to keep the patient atropinized. Atropine, however, is used only when cholinergic effects are present and not for all mushrooms. Hypoglycemia is most likely to occur in patients with delayed onset of symptoms. Try to identify the mushroom if the patient is symptomatic. Consultation with a certified poison center is recommended. Local botanical gardens, university departments of botany, and societies of mycologists may be able to help. Supportive care is usually all that is needed; however, in the case of *A phalloides*, penicillin, silibinin, or hemodialysis may be indicated.

## Nitrites, Nitrates, Aniline, Pentachlorophenol, & Dinitrophenol

Nausea, vertigo, vomiting, cyanosis (methemoglobinemia), cramping, abdominal pain, tachycardia, cardiovascular collapse, tachypnea, coma, shock, convulsions, and death are possible manifestations of nitrite or nitrate poisoning.

Nitrate and nitrite compounds found in the home include amyl nitrite, butyl nitrates, isobutyl nitrates, nitroglycerin, pentaerythritol tetranitrate, sodium nitrite, nitrobenzene, and phenazopyridine. Pentachlorophenol and dinitrophenol, which are found in wood preservatives, produce methemoglobinemia and high fever because of uncoupling of oxidative phosphorylation. Headache, dizziness, and bradycardia have been reported. High concentrations of nitrites...
in well water or spinach have been the most common cause of nitrite-induced methemoglobinemia. Symptoms do not usually occur until 15%–50% of the hemoglobin has been converted to methemoglobin. A rapid test is to compare a drop of normal blood with the patient’s blood on a dry filter paper. Brown discoloration of the patient’s blood indicates a methemoglobin level of more than 15%.

**Treatment**

In the setting of a recent ingestion, consider administering activated charcoal if the patient is awake and alert. Decontaminate affected skin with soap and water. Oxygen and artificial respiration may be needed. If the blood methemoglobin level exceeds 30%, or if levels cannot be obtained and the patient is symptomatic, give a 1% solution of methylene blue (0.2 mL/kg IV) over 5–10 minutes. Avoid perivascular infiltration, because it causes necrosis of the skin and subcutaneous tissues. A dramatic change in the degree of cyanosis should occur. Transfusion is occasionally necessary. Epinephrine and other vasoconstrictors are contraindicated. If reflex bradycardia occurs, atropine should be used.


**OPIOIDS & OPIATES**

Opioid and opiate-related medical problems may include drug addiction, withdrawal in a newborn infant, and accidental overdoses. They can vary in onset of action and duration of action. Opioids, including heroin, methadone, morphine, and codeine are routinely detected on most urine drug assays. However, many of the more commonly used oral opiates, such as oxycodone, hydrocodone, buprenorphine are not detected on standard urine drug assays. Care should be directed on clinical suspicion of ingestion.

Narcotic-addicted adolescents often have other medical problems, including cellulitis, abscesses, thrombophlebitis, tetanus, infective endocarditis, human immunodeficiency virus (HIV) infection, tuberculosis, hepatitis, malaria, foreign body emboli, thrombosis of pulmonary arterioles, diabetes mellitus, obstetric complications, nephropathy, and peptic ulcer.

**Treatment**

**A. Overdose**

Opioids and opiates can cause respiratory depression, stridor, coma, increased oropharyngeal secretions, sinus bradycardia, and urinary retention. Pulmonary edema rarely occurs in children but has been reported; deaths usually result from aspiration of gastric contents, respiratory arrest, and cerebral edema. Convulsions may occur with propoxyphene overdosage.

The indication for the administration of naloxone is respiratory depression. Although suggested doses for naloxone hydrochloride range from 0.01 to 0.1 mg/kg, it is generally unnecessary to calculate the dosage on this basis. This extremely safe antidote should be given in sufficient quantity to reverse opioid-binding sites. Doses as low as 0.04 mg have been effective for reversal. For children younger than age 1 year, one ampoule (0.4 mg) should be given initially; if there is no response, five more ampoules (2 mg) should be given rapidly. Older children should be given 0.4–0.8 mg, followed by 2–4 mg if there is no response. An improvement in respiratory status may be followed by respiratory depression, because the antagonist’s duration of action is less than 1 hour. Neonates poisoned in utero may require 10–30 mg/kg to reverse the effect. Naloxone infusion can be used for persistent symptoms. Depending on the formulation, some exposures may need to be observed for 24 hours due to the duration of effect.

**B. Withdrawal in the Addict**

Diazepam (10 mg every 6 hours PO), and antiemetics has been recommended for the treatment of mild narcotic withdrawal in ambulatory adolescents. Management of withdrawal in the confirmed addict may be accomplished with the administration of clonidine, by substitution with methadone or buprenorphine, or with reintroduction of the original addicting agent, if available through a supervised drug withdrawal program. A tapered course over 3 weeks will accomplish this goal. Death rarely, if ever, occurs. The abrupt discontinuation of narcotics (cold turkey method) is not recommended and may cause severe physical withdrawal signs.

**C. Withdrawal in the Newborn**

A newborn infant in opioid withdrawal is usually small for gestational age and demonstrates yawning, sneezing, decreased Moro reflex, hunger but uncoordinated sucking action, jitteriness, tremor, constant movement, a shrill protracted cry, increased tendon reflexes, convulsions, vomiting, fever, watery diarrhea, cyanosis, dehydration, vasomotor instability, seizure, and collapse.

The onset of symptoms commonly begins in the first 48 hours but may be delayed as long as 8 days, depending on the timing of the mother’s last fix and her predelivery medication. The diagnosis can be confirmed easily by identifying the narcotic in the urine of the mother and the newborn.

Several treatment methods have been suggested for narcotic withdrawal in the newborn. Phenobarbital (8 mg/kg/d IM or PO in four doses for 4 days and then reduced by one-third every 2 days as signs decrease) may be continued...
for as long as 3 weeks. Methadone may be necessary in those infants with congenital methadone addiction who are not controlled in their withdrawal by large doses of phenobarbital. Dosage should be 0.5 mg/kg/d in two divided doses but can be increased gradually as needed. After control of the symptoms is achieved, the dose may be tapered over 4 weeks.

It is unclear whether prophylactic treatment with these drugs decreases the complication rate. The mortality rate of untreated narcotic withdrawal in the newborn may be as high as 45%.


ORAL HYPOGLYCEMICS (SULFONLUREAS, METFORMIN)

Noninsulin hypoglycemic and antidiabetic medications include α-glucosidase inhibitors biguanides, gliptins, meglitinides, sulfonylureas, and thiazolidinediones. They are all used to treat hyperglycemia in diabetics. Sulfonylureas (acetohexamide, glipizide, glyburide) are the only oral hypoglycemic that actively secretes endogenous insulin and can cause hypoglycemia. The meglitinides (nateglinide, repaglinide) have scarce reports of hypoglycemia. Biguanides can rarely cause lactic acidosis in acute large overdose or in renal failure. Hypoglycemic symptoms are variable but can include altered mental status, diaphoresis, seizures, or coma.

**Treatment**

Children with possible exposures to sulfonylureas should be admitted for 24 hours. Mainstay of treatment is treating hypoglycemia. If patient is awake and alert, with minimal symptoms, PO glucose can be given. With more severe hypoglycemia or symptomatic, immediate treatment with 0.5–1 g/kg IV dextrose bolus should be administered. With repeated episodes of hypoglycemia, once euglycemia is achieved, octreotide should be considered at 1 mcg/kg SC/IV every 6 hours as needed for hypoglycemia. Metformin toxicity should be treated supportively, hemodialysis may be needed for severe acid-base abnormalities or patients with renal failure.


**Clinical Findings**

**A. Extrapyramidal Crisis**

Episodes characterized by torticollis, stiffening of the body, spasticity, poor speech, catatonia, and inability to communicate although conscious are typical manifestations. These episodes usually last a few seconds to a few minutes but have rarely caused death. Extrapyramidal crises may represent idiosyncratic reactions and are aggravated by dehydration. The signs and symptoms occur most often in children who have received prochlorperazine. They are commonly mistaken for psychotic episodes. These extrapyramidal symptoms are more common with typical antipsychotics (butyrophenones, phenothiazines).

**B. Overdose**

Lethargy and deep prolonged coma are the most common symptoms seen in toxicity. Of the typical antipsychotics, promazine, chlorpromazine, and prochlorperazine are the drugs most likely to cause respiratory depression and precipitous drops in blood pressure. Risperidone and quetiapine are atypical antipsychotics that can cause CNS depression. Clozapine, olanzapine, and quetiapine most commonly cause hypotension and also antimuscarnic symptoms. QTc prolongation can occur, most commonly with thioridazine and ziprasidone. Occasionally, paradoxical hyperactivity and extrapyramidal signs as well as hyperglycemia and acetonaemia are present. Seizures are uncommon.

**C. Neuroleptic Malignant Syndrome**

Neuroleptic malignant syndrome is a rare idiosyncratic complication that may be lethal. It is a syndrome involving mental status change (confusion, coma), motor abnormalities (lead pipe rigidity, clonus), and autonomic dysfunction (tachycardia, hyperpyrexia). Typically it occurs 1–2 weeks after starting therapy, and can occur at therapeutic doses.

**Treatment**

Extrapyramidal signs are alleviated within minutes by the slow IV administration of diphenhydramine, 1–2 mg/kg (maximum, 50 mg), or benzotropine mesylate, 1–2 mg IV (1 mg/min). No other treatment is usually indicated.

Patients with overdoses should receive conservative supportive care. Hypotension may be treated with standard agents, starting with isotonic saline administration. Agitation is best
treated with benzodiazepines. Neuroleptic malignant syndrome is treated by discontinuing the drug, and treating hyperthermia and agitation aggressively with benzodiazepines and sedation. In refractory cases, bromocriptine can be considered, although the evidence for its use is not clear.


PLANTS
Many common ornamental, garden, and wild plants are potentially toxic. Only in a few cases will small amounts of a plant cause severe illness or death. Table 13–5 lists the most toxic plants, symptoms and signs of poisoning, and treatment. Contact your poison control center for assistance with identification.

PSYCHOTROPIC DRUGS
Psychotropic drugs consist of four general classes: stimulants (amphetamines, cocaine), depressants (eg, narcotics, barbiturates), antidepressants and tranquilizers, and hallucinogens (eg, lysergic acid diethylamide [LSD], phencyclidine [PCP]).

Clinical Findings
The following clinical findings are commonly seen in patients abusing drugs. See also other entries discussed in alphabetic order in this chapter.

A. Stimulants
Agitation, euphoria, grandiose feelings, tachycardia, fever, abdominal cramps, visual and auditory hallucinations, mydriasis, coma, convulsions, and respiratory depression.

B. Depressants

C. Antidepressants and Tranquilizers
Hypotension, lethargy, respiratory depression, coma, and extrapyramidal reactions.

D. Hallucinogens and Psychoactive Drugs
Belladonna alkaloids cause mydriasis, dry mouth, nausea, vomiting, urinary retention, confusion, disorientation, paranoid delusions, hallucinations, fever, hypotension, aggressive behavior, convulsions, and coma. Psychoactive drugs such as LSD cause mydriasis, unexplained bizarre behavior, hallucinations, and generalized undifferentiated psychotic behavior.

Treatment
Only a small percentage of the persons using drugs come to the attention of physicians; those who do are usually experiencing adverse reactions such as panic states, drug psychoses, homicidal or suicidal thoughts, or respiratory depression.

Even with cooperative patients, an accurate history is difficult to obtain. A drug history is most easily obtained in a quiet spot by a gentle, nonthreatening, honest examiner, and without the parents present. The user often does not really know what drug has been taken or how much. Street drugs are almost always adulterated with one or more other compounds. Multiple drugs are often taken together. Friends may be a useful source of information.

The patient’s general appearance, skin, lymphatics, cardiorespiratory status, GI tract, and CNS should be focused on during the physical examination, because they often provide clues suggesting drug abuse.

Hallucinogens are not life-threatening unless the patient is frankly homicidal or suicidal. A specific diagnosis is usually not necessary for management; instead, the presenting signs and symptoms are treated. Does the patient appear intoxicated? In withdrawal? “Flashing back?” Is some illness or injury (eg, head trauma) being masked by a drug effect? (Remember that a known drug user may still have hallucinations from meningoencephalitis.)

The signs and symptoms in a given patient are a function not only of the drug and the dose but also of the level of acquired tolerance, the “setting,” the patient’s physical condition and personality traits, the potentiating effects of other drugs, and many other factors.

A common drug problem is the “bad trip,” which is usually a panic reaction. This is best managed by “talking the patient down” and minimizing auditory and visual stimuli. Allowing the patient to sit with a friend while the drug effect dissipates may be the best treatment. This may take several hours. The physician’s job is not to terminate the drug effect but to help the patient through the bad experience.

Drug therapy is often unnecessary and may complicate the clinical course of a drug-related panic reaction.

Although phenothiazines have been commonly used to treat bad trips, they should be avoided if the specific drug is unknown, because they may enhance toxicity or produce unwanted side effects. Benzodiazepines are the drug of choice if a sedative effect is required. Physical restraints are rarely indicated and usually increase the patient’s panic reaction.
### Table 13-5. Poisoning due to plants.\(^a\)

<table>
<thead>
<tr>
<th>Poisonous Plant Family</th>
<th>Symptoms and Signs</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Arum family:</strong> Caladium, Dieffenbachia, callalily, dumb cane (oxalic acid)</td>
<td>Burning of mucous membranes and airway obstruction secondary to edema caused by calcium oxalate crystals.</td>
<td>Accessible areas should be thoroughly washed. Corticosteroids relieve airway obstruction. Apply cold packs to affected mucous membranes.</td>
</tr>
<tr>
<td>Castor bean plant (ricin—a toxalbumin) Jequinty bean (abrin—a toxalbumin)</td>
<td>Mucous membrane irritation, nausea, vomiting, bloody diarrhea, blurred vision, circulatory collapse, acute hemolytic anemia, convulsions, uremia.</td>
<td>Fluid and electrolyte monitoring. Saline cathartic. Forced alkaline diuresis will prevent complications due to hemagglutination and hemolysis.</td>
</tr>
<tr>
<td>Foxglove, lily of the valley, and oleander(^b)</td>
<td>Nausea, diarrhea, visual disturbances, and cardiac irregularities (eg, heart block).</td>
<td>See treatment for digitalis drugs in text.</td>
</tr>
<tr>
<td>Jimsonweed: See Belladonna Alkaloids section in text</td>
<td>Mydriasis, dry mouth, tachycardia, and hallucinations.</td>
<td>Activated charcoal.</td>
</tr>
<tr>
<td>Larkspur (ajacine, Delphinium, delphinine)</td>
<td>Nausea and vomiting, irritability, muscular paralysis, and central nervous system depression.</td>
<td>Symptomatic. Atropine may be helpful.</td>
</tr>
<tr>
<td>Monkshood (aconite)</td>
<td>Numbness of mucous membranes, visual disturbances, tingling, dizziness, tinnitus, hypotension, bradycardia, and convulsions.</td>
<td>Activated charcoal, oxygen. Atropine is probably helpful.</td>
</tr>
<tr>
<td>Poison hemlock (conine)</td>
<td>Mydriasis, trembling, dizziness, bradycardia. Central nervous system depression, muscular paralysis, and convulsions. Death is due to respiratory paralysis.</td>
<td>Symptomatic. Oxygen and cardiac monitoring equipment are desirable. Assisted respiration is often necessary. Give anticonvulsants if needed.</td>
</tr>
<tr>
<td>Rhododendron (grayanotoxin)</td>
<td>Abdominal cramps, vomiting, severe diarrhea, muscular paralysis. Central nervous system and circulatory depression. Hypertension with very large doses.</td>
<td>Atropine can prevent bradycardia. Epinephrine is contraindicated. Antihypertensives may be needed.</td>
</tr>
<tr>
<td>Yellow jessamine (active ingredient, geisemine, is related to strychnine)</td>
<td>Restlessness, convulsions, muscular paralysis, and respiratory depression.</td>
<td>Symptomatic. Because of the relation to strychnine, activated charcoal and diazepam for seizures are worth trying.</td>
</tr>
</tbody>
</table>

---

\(^a\)Many other plants cause minor irritation but are not likely to cause serious problems unless large amounts are ingested. Data from Lampe KF, McCann MA. *AMA Handbook of Poisonous and Injurious Plants.* American Medical Association, 1985.


For treatment of life-threatening drug abuse, consult the section on the specific drug elsewhere in this chapter and the section on general management at the beginning of the chapter.

After the acute episode, the physician must decide whether psychiatric referral is indicated; in general, patients who have made suicidal gestures or attempts and adolescents who are not communicating with their families should be referred.


---

**SALICYLATES**

The use of childproof containers and publicity regarding accidental poisoning have reduced the incidence of acute salicylate poisoning. Nevertheless, serious intoxication still occurs and must be regarded as an emergency. In recent years, the frequency of poisoning has begun to rise again.

Salicylates uncouple oxidative phosphorylation, leading to increased heat production, excessive sweating, and dehydration. They also interfere with glucose metabolism.
and may cause hypo- or hyperglycemia. Respiratory center stimulation occurs early. Patients usually have signs of hyperventilation, sweating, dehydration, and fever. Vomiting and diarrhea sometimes occur. In severe cases, disorientation, convulsions, and coma may develop.

The severity of acute intoxication can, in some measure, be judged by serum salicylate levels. High levels are always dangerous irrespective of clinical signs, and low levels may be misleading in chronic cases. Other laboratory values usually indicate metabolic acidosis despite hyperventilation, low serum K⁺ values, and often abnormal serum glucose levels.

In mild and moderate poisoning, stimulation of the respiratory center produces respiratory alkalosis and may complain of tinnitus or hearing loss. In severe intoxication (occurring in severe acute ingestion with high salicylate levels and in chronic toxicity with lower levels), respiratory response is unable to overcome the metabolic overdose.

Once the urine becomes acidic, progressively smaller amounts of salicylate are excreted. Until this process is reversed, the half-life will remain prolonged, because metabolism contributes little to the removal of salicylate.

Chronic severe poisoning may occur as early as 3 days after a regimen of salicylate is begun. Findings usually include vomiting, diarrhea, and dehydration.

**Treatment**

Charcoal binds salicylates well and should be given for acute ingestions. Mild poisoning may require only the administration of oral fluids and confirmation that the salicylate level is falling. Moderate poisoning involves moderate dehydration and depletion of potassium. Fluids must be administered at a rate of 2–3 mL/kg/h to correct dehydration and produce urine with a pH of greater than 7.0. Initial IV solutions should be isotonic, with sodium bicarbonate constituting half the electrolyte content. Once the patient is rehydrated, the solution can contain more free water and approximately 40 mEq/L of K⁺.

Severe toxicity is marked by major dehydration. Symptoms may be confused with those of Reye syndrome, encephalopathy, and metabolic acidosis. Salicylate levels may even be in the therapeutic range. Major fluid correction of dehydration is required. Once this has been accomplished, hypokalemia must be corrected and sodium bicarbonate given. Usual requirements are sodium bicarbonate, 1–2 mEq/kg/h over the first 6–8 hours, and K⁺, 20–40 mEq/L. A urine flow of 2–3 mL/kg/h should be established. Despite this treatment, some patients will develop the paradoxical aciduria of salicylism. This is due to hypokalemia and the saving of K⁺ and excretion of H⁺ in the renal tubule. Correction of K⁺ will allow the urine to become alkaline and ionize the salicylate, resulting in excretion rather than reabsorption of nonionized salicylate in acid urine.

Renal failure or pulmonary edema is an indication for dialysis. Hemodialysis is most effective and peritoneal dialysis is relatively ineffective. Hemodialysis should be used in all patients with altered mental status or deteriorating clinical status. Acetazolamide should not be used.


**SCORPION STINGS**

Scorpion stings are common in arid areas of the southwestern United States. Scorpion venom is more toxic than most snake venoms, but only minute amounts are injected. Although neurologic manifestations may last a week, most clinical signs subside within 24–48 hours.

The most common scorpions in the United States are *Vejovis, Hadrurus, Androctonus*, and *Centruroides* species. Stings by the first three produce edema and pain. Stings by *Centruroides* (the Bark scorpion) cause tingling or burning paresthesias that begin at the site of the sting; other findings include hypersalivation, restlessness, muscular fasciculation, abdominal cramps, opisthotonos, convulsions, urinary incontinence, and respiratory failure.

**Treatment**

Sedation with benzodiazepines is the primary therapy. Antivenom is reserved for severe poisoning. In severe cases, the airway may become compromised by secretions and weakness of respiratory muscles. Endotracheal intubation may be required. Patients may require treatment for seizures, hypertension, or tachycardia.

The prognosis is good as long as the patient’s airway is managed appropriately and sedation is achieved.


**SEROTONIN REUPTAKE INHIBITORS**

Fluoxetine (Prozac), paroxetine (Paxil), sertraline (Zoloft), and many other agents comprise this class of drugs. Adverse effects in therapeutic dosing include suicidal thoughts, aggressive behavior, extrapyramidal effects, and cardiac dysrhythmias, and in overdose may include vomiting, lethargy, seizures, hypertension, tachycardia, hyperthermia, and abdominal pain. The findings in overdose are included in the serotonin syndrome due to the action of these drugs, which results in an increase of serotonin (5-hydroxytryptamine [5-HT]). Despite the degree of toxicity these agents generally are not life-threatening and intervention usually is not necessary.

Emptying the stomach is not helpful, but activated charcoal may be useful. Laboratory measurements of the drugs are not of benefit other than to establish their presence.
Treatment with benzodiazepines is most beneficial. Hypotension may be treated with fluids or norepinephrine. Cyproheptadine is an antagonist of serotonin, but its use has been limited. A dose of 0.25 mg/kg/d divided every 6 hours to a maximum of 12 mg/d may be useful in treating the serotonin syndrome. Adults and older adolescents have been treated with 12 mg initially followed by 2 mg every 2 hours to a maximum of 32 mg/d.

**SNABEITE**

Despite the lethal potential of venomous snakes, human morbidity and mortality rates are surprisingly low. The outcome depends on the size of the child, the site of the bite, the degree of envenomation, the type of snake, and the effectiveness of treatment.

Nearly all poisonous snakebites in the United States are caused by pit vipers (rattlesnakes, water moccasins, and copperheads). A few are caused by elapid snakes (coral snakes), and occasional bites occur from cobras and other nonindigenous exotic snakes kept as pets. Snake venom is a complex mixture of enzymes, peptides, and proteins that may have predominantly cytotoxic, neurotoxic, hemotoxic, or cardiotoxic effects but other effects as well. Up to 25% of bites by pit vipers do not result in venom injection. Pit viper venom causes predominantly local injury with pain, discoloration, edema, and hemorhage.

Swelling and pain occur soon after rattlesnake bite and are a certain indication that envenomation has occurred. During the first few hours, swelling and ecchymosis extend proximally from the bite. The bite is often obvious as a double puncture mark surrounded by ecchymosis. Hematemesis, melena, hemoptysis, and other manifestations of coagulopathy develop in severe cases. Respiratory difficulty and shock are the ultimate causes of death. Even in fatal rattlesnake bites, a period of 6–8 hours usually elapses between the bite and death; as a result, there is usually enough time to start effective treatment.

Coral snake envenomation causes little local pain, swelling, or necrosis, and systemic reactions are often delayed. The signs of coral snake envenomation include bulbar paralysis, dysphagia, and dysphoria; these signs may appear in 5–10 hours and may be followed by total peripheral paralysis and death in 24 hours.

**Treatment**

Children in snake-infested areas should wear boots and long trousers, should not walk barefoot, and should be cautioned not to explore under ledges or in holes.

**A. Emergency (First-Aid) Treatment**

The most important first-aid measure is transportation to a medical facility. Splint the affected extremity and minimize the patient’s motion. Tourniquets and ice packs are contraindicated. Incision and suction are not useful for either crotalid or elapid snake bite.

**B. Definitive Medical Management**

Blood should be drawn for hematocrit, clotting time and platelet function, and serum electrolyte determinations. Establish two secure IV sites for the administration of antivenom and other medications.

Specific antivenom is indicated when signs of progressive envenomation are present. Two antivenoms are available for treating pit viper envenomation: polyvalent pit viper antivenom and polyvalent Crotalidae Fab (CroFab). Both are effective, but their indications differ. For coral snake bites, an eastern coral snake antivenom (Wyeth Laboratories) is available. Patients with pit viper bites should receive antivenom if progressive local injury, coagulopathy, or systemic signs (eg, hypotension, confusion) are present. (Antivenom should not be given IM or SQ.) See package labeling or call your certified poison center for details of use. Hemorrhage, pain, and shock diminish rapidly with adequate amounts of antivenom. For coral snake bites, give three to five vials of antivenin in 250–500 mL of isotonic saline solution. An additional three to five vials may be required. While generally considered best if administered within the first 6 hours, recent evidence demonstrates that delayed use may be therapeutic.

Administer an opioid or opiate to control pain. Cryotherapy is contraindicated because it commonly causes additional tissue damage. Early physiotherapy minimizes contractures. In rare cases, fasciotomy to relieve pressure within muscular compartments is required. The evaluation of function and of pulses will better predict the need for fasciotomy. Antihistamines and corticosteroids (hydrocortisone, 1 mg/kg, given PO for a week) are useful in the treatment of serum sickness or anaphylactic shock. Antibiotics are not needed unless clinical signs of infection occur. Tetanus status should be evaluated and the patient immunized, if needed.


SOAPS & DETERGENTS

1. Soaps
Soap is made from salts of fatty acids. Some toilet soap bars contain both soap and detergent. Ingestion of soap bars may cause vomiting and diarrhea, but they have a low toxicity. Induced emesis is unnecessary.

2. Detergents
Detergents are nonsoap synthetic products used for cleaning purposes because of their surfactant properties. Commercial products include granules, powders, and liquids. Dishwasher detergents are very alkaline and can cause caustic burns. Low concentrations of bleaching and antibacterial agents as well as enzymes are found in many preparations. The pure compounds are moderately toxic, but the concentration used is too small to alter the product’s toxicity significantly, although occasional primary or allergic irritative phenomena have been noted in persons who frequently use such products and in employees manufacturing these products. Unit dose detergents, or packets, have become popular and have packaging attractive to young children. They are usually a mix of glycol ethers, ethyl alcohol and surfactant. They can cause CNS depression and respiratory distress if ingested.

A. Cationic Detergents (Ceepryn, Diaparene Cream, Phemerol, Zephiran)
Cationic detergents in dilute solutions (0.5%) cause mucosal irritation, but higher concentrations (10%–15%) may cause caustic burns to mucosa. Clinical effects include nausea, vomiting, collapse, coma, and convulsions. As little as 2.25 g of some cationic agents have caused death in an adult. In four cases, 100–400 mg/kg of benzalkonium chloride caused death. Cationic detergents are rapidly inactivated by tissues and ordinary soap.

Because of the caustic potential and rapid onset of seizures, emesis is not recommended. Activated charcoal should be administered. Anticonvulsants may be needed.

B. Anionic Detergents
Most common household detergents are anionic. Laundry compounds have water softener (sodium phosphate) added, which is a strong irritant and may reduce ionized calcium. Anionic detergents irritate the skin by removing natural oils. Although ingestion causes diarrhea, intestinal distention, and vomiting, no fatalities have been reported.

The only treatment usually required is to discontinue use if skin irritation occurs and replace fluids and electrolytes. Induced vomiting is not indicated following ingestion of automatic dishwasher detergent, because of its alkalinity. Dilute with water or milk.

C. Nonionic Detergents (Brij Products; Tritons X-45, X-100, X-102, and X-144)
These compounds include lauryl, stearyl, and oleyl alcohols and octyl phenol. They have a minimal irritating effect on the skin and are almost always nontoxic when swallowed.

SPIDER BITES

Most medically important bites in the United States are caused by the black widow spider (*Latrodectus mactans*) and the North American brown recluse (violin) spider (*Loxosceles reclusa*). Positive identification of the spider is helpful, because many spider bites may mimic those of the brown recluse spider.

1. Black Widow Spider
The black widow spider is endemic to nearly all areas of the United States. The initial bite causes sharp fleeting pain that spreads centripetally. Local and systemic muscular cramping, abdominal pain, nausea and vomiting, and shock can occur. Convulsions occur more commonly in small children than in older children. Systemic signs of black widow spider bite may be confused with other causes of acute abdomen. Although paresthesias, nervousness, and transient muscle spasms may persist for weeks in survivors, recovery from the acute phase is generally complete within 3 days. In contrast to popular opinion, death is extremely rare.

Initial pain control should be achieved with use of benzodiazepines and opioids or opiates. Antivenom is effective, but supplies are limited, and should be reserved for severe cases in which the previously mentioned therapies have failed. Local treatment of the bite is not helpful.

2. Brown Recluse Spider (Violin Spider)
The North American brown recluse spider is most commonly seen in the central and Midwestern areas of the United States. Its bite characteristically produces a localized reaction with progressively severe pain within 24 hours. The initial bleb on an erythematous ischemic base is replaced by a black eschar within 1 week. This eschar separates in 2–5 weeks, leaving an ulcer that heals slowly. Systemic signs include cyanosis, morbilliform rash, fever, chills, malaise, weakness, nausea and vomiting, joint pains, hemolytic reactions with hemoglobinuria, jaundice, and delirium. Fatalities are rare. Fatal disseminated intravascular coagulation has been reported.
Although of unproved efficacy, the following therapies have been used: dexamethasone, 4 mg IV four times a day, during the acute phase; polymorphonuclear leukocyte inhibitors, such as dapsone or colchicine. Supportive wound care is recommended, with possible reconstruction/debridement.


**THYROID PREPARATIONS (THYROID DESICCATED, SODIUM LEVOTHYROXINE)**

Ingestion of the equivalent of 50–150 g of desiccated thyroid can cause signs of hyperthyroidism, including irritability, mydriasis, hyperpyrexia, tachycardia, and diarrhea. Maximal clinical effect occurs about 9 days after ingestion—several days after the protein-bound iodine level has fallen dramatically.

Administer activated charcoal. If the patient develops clinical signs of toxicity, propranolol, 0.01–0.1 mg/kg (maximum, 1 mg), is useful because of its antiadrenergic activity.


**VITAMINS**

Accidental ingestion of excessive amounts of vitamins rarely causes significant problems. Vary rare cases of hypervitaminosis A do occur, however, particularly in patients with poor hepatic or renal function. Hypervitaminosis A can result in increased intracranial pressure, ocular toxicity, and hepatotoxicity. However, chronic doses more than 50,000–100,000 IU are required for toxicity. The fluoride contained in many multivitamin preparations is not a realistic hazard, because a 2- or 3-year-old child could eat 100 tablets, containing 1 mg of sodium fluoride per tablet, without experiencing serious symptoms. Iron poisoning has been reported with multivitamin tablets containing iron. Pyridoxine abuse has caused neuropathies; nicotinic acid can result in flushing, and rarely hypotension and hepatotoxicity. Most gummy vitamins do not contain iron.


**WARFARIN (COUMADIN) AND OTHER ORAL ANTICOAGULANTS**

Warfarin is used as a rodenticide. It causes hypoprothrombinemia and capillary injury. It is absorbed readily from the GI tract but is absorbed poorly through the skin. A dose of 0.5 mg/kg of warfarin may be toxic in a child. A prothrombin time is helpful in establishing the severity of the poisoning. Newer oral anticoagulants have been developed that have direct inhibition to specific clotting factors. Examples include dabigatran and rivaroxaban. Toxic dose has not been established, but bleeding complications can occur at therapeutic doses. Thrombin clotting time and activated partial thromboplastin time can provide information on anticoagulant activity.

If bleeding occurs or the prothrombin time is prolonged, give 1–5 mg of vitamin K₁ (phytonadione) IM or SQ. For large ingestions with established toxicity, 0.6 mg/kg may be given. No clear therapy is available for the newer direct factor inhibitors. Therapy has been focused on using fresh frozen plasma, prothrombin complex concentrate, and activated factor.

Another group of long-acting anticoagulant rodenticides (brodifacoum, difenacoum, bromadiolone, diphacinone, pinene, valone, and coumatetralyl) has been a more serious toxicologic problem than warfarin. They also cause hypoprothrombinemia and a bleeding diathesis that responds to phytonadione, although the anticoagulant activity may persist for periods ranging from 6 weeks to several months. However, most unintentional ingestions can be watched at home without further evaluation. If there are concerns for large ingestions, a prothrombin time at 48 hours can determine extent of toxicity. Treatment with vitamin K₁ may be needed for weeks, at high doses.


INTRODUCTION

The care of patients with life-threatening conditions requires a detailed understanding of human physiology and the pathophysiology of major illnesses, as well as an understanding of and experience with the rapidly changing technologies available in a modern intensive care unit (ICU). In addition, the science of caring for the critically ill patient has evolved rapidly in recent years as the molecular mediators of illness have become better defined and new therapies have been devised based on those advances. As a result, critical care is a multidisciplinary field and optimal outcomes for critically ill patients require a team-oriented approach, including critical care physicians and nurses, respiratory therapists, and pharmacists, as well as consulting specialists, physical, occupational and recreational therapists and social services specialists.

RESPIRATORY CRITICAL CARE

ACUTE RESPIRATORY FAILURE

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Inability to deliver oxygen or remove carbon dioxide.
- $\text{Pao}_2$ is low while $\text{Paco}_2$ is normal in hypoxemic respiratory failure (V/Q mismatch, diffusion defects, and intrapulmonary shunt).
- $\text{Pao}_2$ is low and $\text{Paco}_2$ is high in hypercapnic respiratory failure (alveolar hypoventilation seen in CNS dysfunction, over-sedation, neuromuscular disorders).
- Noninvasive mechanical ventilation can be an effective treatment for hypercapnic respiratory failure and selected patients with hypoxemic failure.

- Conventional mechanical ventilation should be accomplished within a strategy of “lung-protective” ventilation.
- HFOV and ECMO are viable options for patients failing conventional mechanical ventilation.

Pathogenesis

Acute respiratory failure, defined as the inability of the respiratory system to adequately deliver oxygen or remove carbon dioxide, causes significant morbidity and mortality in critically ill children, accounting for approximately 50% of deaths in children younger than 1 year of age. Anatomic and developmental differences place infants at higher risk than adults for respiratory failure. An infant’s thoracic cage is more compliant than that of the adult or older child, allowing a greater tendency toward alveolar collapse. The intercostal muscles are poorly developed and unable to achieve the “bucket-handle” motion characteristic of adult breathing, and the diaphragm is shorter and relatively flat with fewer type I muscle fibers, making it less effective and more easily fatigued. The infant’s airways are smaller in caliber than those in older children and adults, resulting in greater resistance to inspiratory and expiratory airflow and greater susceptibility to occlusion by mucus plugging and mucosal edema. Compared with adults, the alveoli of children are also smaller and have less collateral ventilation, again resulting in a greater tendency to collapse and develop atelectasis. Finally, young infants may have an especially reactive pulmonary vascular bed, impaired immune system, or residual effects from prematurity, all of which increase the risk of respiratory failure.

Respiratory failure can be due to inadequate oxygenation (hypoxemic respiratory failure) or inadequate ventilation (hypercapnic respiratory failure) or both. Hypoxemic respiratory failure occurs in three situations: (1) V/Q mismatch, which occurs when blood flows to parts of the lung that are
inadequately ventilated, or when ventilated areas of the lung are inadequately perfused; (2) diffusion defects, caused by thickened alveolar membranes or excessive interstitial fluid at the alveolar-capillary junction; and (3) intrapulmonary shunt, which occurs when structural anomalies in the lung allow blood to flow through the lung without participating in gas exchange. Hypercapnic respiratory failure results from impaired alveolar ventilation, due to conditions such as increased dead space ventilation, reduced respiratory drive due to CNS dysfunction or over-sedation, or neuromuscular disorders (Table 14–1).

**Clinical Findings**

The clinical findings in respiratory failure are the result of hypoxemia, hypercapnia, and arterial pH changes. Common features of respiratory failure are summarized in Table 14–2. These features are not consistently clinically obvious, and most of them have nonrespiratory causes as well. As a result, a strictly clinical assessment of respiratory failure is not always reliable, and clinical findings of respiratory failure should be supplemented by laboratory data such as blood gas analysis.

**Noninvasive Monitoring and Blood Gas Analysis**

The adequacy of oxygenation and ventilation can be measured both noninvasively and through blood gas analysis. *Arterial oxygen saturation* (Sao₂) can be measured continuously and noninvasively by *pulse oximetry*, a technique that should be used in the assessment and treatment of all patients with potential or actual respiratory failure. Pulse oximetry readings, however, become markedly less accurate in patients with saturations below approximately 80%, poor skin perfusion, or significant movement. In addition, pulse oximetry can be dangerously inaccurate in certain clinical settings such as carbon monoxide poisoning or methemoglobinemia. *End-tidal CO₂ (ETCO₂) monitoring* provides a continuous noninvasive means of assessing the adequacy of ventilation. The ETCO₂ level closely approximates the alveolar CO₂ level (Paco₂), which should equal the arterial CO₂ level (Paco₂) because carbon dioxide diffuses freely across the alveolar-capillary barrier. While most accurate in the intubated patient, this technique can also be used in extubated patients with the proper equipment. Though useful for following trends in ventilation, ETCO₂ monitoring is also susceptible to significant error, particularly in patients with rapid, shallow breathing or increased dead space ventilation.

Given the limitations of these noninvasive techniques, *arterial blood gas (ABG)* analysis remains the gold standard for assessment of acute respiratory failure. ABGs provide measurements of the patient’s acid-base status (with a measured pH and calculated bicarbonate level) as well as Pao₂ and Paco₂ levels. Although measurement of capillary or venous blood gases may provide some reassurance regarding the adequacy of ventilation and can be useful for following trends, they yield virtually no useful information regarding oxygenation and may generate highly misleading information about the ventilatory status of patients who have poor perfusion or
who had difficult blood draws. As a result, ABG analysis is important for all patients with suspected respiratory failure, particularly those with abnormal venous or capillary gases.

Knowing the ABG values and the inspired oxygen concentration also enables one to calculate the **alveolar-arterial oxygen difference** (A–aDO₂, or A–a gradient). The A–a gradient is less than 15 mm Hg under normal conditions, though it widens with increasing inspired oxygen concentrations to about 100 mm Hg in normal patients breathing 100% oxygen. This number has prognostic value in severe hypoxemic respiratory failure, with A–a gradients over 400 mm Hg being strongly associated with mortality. Diffusion impairment, shunts, and V/Q mismatch all increase the A–a gradient. In addition to the calculation of the A–a gradient, assessment of intrapulmonary shunting (the percentage of pulmonary blood flow that passes through nonventilated areas of the lung) may be helpful. Normal individuals have less than a 5% physiologic shunt from bronchial, coronary, and thebesian (cardiac intramural) circulations. Shunt fractions greater than 15% usually indicate the need for aggressive respiratory support. When intrapulmonary shunt reaches 50% of pulmonary blood flow, PaO₂ does not significantly increase regardless of the amount of supplemental oxygen used. Calculation of the shunt fraction requires a pulmonary arterial catheter for measurement of mixed venous blood gases; for patients without pulmonary artery catheters, the A–a gradient is a good surrogate measure of intrapulmonary shunting.

**Modes of Respiratory Support**

Patients with severe hypoxemia, hypoventilation, or apnea require immediate assistance with bag and mask ventilation until the airway is successfully intubated and controlled mechanical ventilation can be provided. Assisted ventilation with a bag and mask can generally be maintained for some time with a mask of the proper size, but gastric distention, emesis leading to aspiration of gastric contents, and inadequate tidal volumes leading to atelectasis are possible complications. In those patients not requiring immediate intubation, a variety of modalities can be used to provide respiratory support, including supplemental oxygen, heated high flow nasal cannula (HHFNC), and noninvasive ventilation (NIV) with continuous positive airway pressure (CPAP) or bilevel positive airway pressure (BIPAP).

**Supplemental oxygen** with a nasal cannula or oxygen mask may be adequate to treat patients with mild respiratory insufficiency (Table 14–3). Patients with hypoventilation and diffusion defects respond better to supplemental oxygen than patients with significant shunts or V/Q mismatch. **Heated high-flow nasal cannula (HHFNC)** devices utilize a nasal cannula for delivery of heated and humidified oxygen mixtures at high flow rates not normally tolerated with cooler drier air. This approach is increasingly being used in infants and young children but is also well tolerated in older patients. Generally, flow rates of greater than 2 L/min in infants and greater than 4 L/min in children are considered high flow. HHFNC use has been studied in children with bronchiolitis and appears to be well tolerated, potentially decreasing the need for intubation by providing some amount of airway positive pressure. HHFNC should be considered in patients who need more respiratory support than a simple low-flow nasal cannula, but if the patient is not improving on HHFNC after 60–90 minutes, additional escalation of care may be warranted. Furthermore, although HHFNC provides some amount of positive pressure, the exact amount of positive pressure cannot be accurately determined from the flow rate. If a patient needs further

<table>
<thead>
<tr>
<th>Source</th>
<th>Maximum % O₂ Delivered</th>
<th>Range of Rates (L/min)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal cannula</td>
<td>35%-40%</td>
<td>0.125-4</td>
<td>Easily applied, relatively comfortable</td>
<td>Uncomfortable at higher flow rates, requires open nasal airways, easily dislodged, lower % O₂ delivered, nosebleeds</td>
</tr>
<tr>
<td>Simple mask</td>
<td>50%-60%</td>
<td>5-10</td>
<td>Higher % O₂, good for mouth breathers</td>
<td>Unsure of delivered % O₂</td>
</tr>
<tr>
<td>Face tent</td>
<td>40%-60%</td>
<td>8-10</td>
<td>Higher % O₂, good for mouth breathers, less restrictive</td>
<td>Unsure of delivered % O₂</td>
</tr>
<tr>
<td>Nonrebreathing mask</td>
<td>80%-90%</td>
<td>5-10</td>
<td>Highest O₂ concentration, good for mouth breathers</td>
<td>Unsure of delivered % O₂</td>
</tr>
<tr>
<td>Oxyhood</td>
<td>90%-100%</td>
<td>5-10</td>
<td>Stable and accurate O₂ concentration</td>
<td>Difficult to maintain temperature, hard to give airway care</td>
</tr>
</tbody>
</table>
escalation of care, the device used should be capable of more reliably delivering a fixed amount of positive pressure, such as CPAP or BIPAP.

Noninvasive ventilation (NIV) refers to the administration of mechanical ventilatory support without using an invasive artificial airway (endotracheal tube or tracheostomy tube). The use of NIV has become an integral tool in the management of both acute and chronic respiratory failure. NIV can be used to avoid endotracheal intubation for milder cases of respiratory failure and as a bridge to extubation in mechanically ventilated patients with marginal lung function and respiratory mechanics. NIV devices provide positive pressure breathing through a variety of interfaces (mouth piece or nasal, face, or helmet mask) and using a variety of ventilatory modes, including continuous positive airway pressure (CPAP), bilevel positive airway pressure (BiPAP), volume ventilation, and pressure support. Ventilators dedicated to NIV exist, and many standard ventilators are capable of providing support through a mask with the appropriate adapters. Most current NIV ventilator models incorporate oxygen blenders for precise delivery of the fraction of inspired oxygen (Fio₂).

Continuous positive airway pressure (CPAP) refers to the constant application of airway pressure, usually in the range of 5–8 cm H₂O, and seeks to improve work of breathing, ventilation, and oxygenation by maintaining the functional residual capacity (FRC) of the lungs. Bilevel positive airway pressure (BiPAP) functions similarly but cycles between a higher inspiratory pressure (IPAP) and a lower expiratory pressure (EPAP). The additional inspiratory support in this mode improves tidal volume and ventilation in patients who are breathing shallowly and can improve oxygenation by providing a higher mean airway pressure. Typical initial settings would place the IPAP at 10–14 cm H₂O and the EPAP at 6–8 cm H₂O. The IPAP can then be titrated upward to achieve adequate tidal volumes, usually in the range of 5–7 mL/kg, and to reduce the patient’s work of breathing and respiratory rate toward the normal range. EPAP and delivered oxygen concentration can be adjusted upward on the basis of pulse oximetry to achieve adequate oxygenation. Serial blood gas measurements are essential to monitor the response to therapy and to guide further ventilator adjustments.

Successful application of NIV requires careful patient selection. The best candidates are patients in the recovery phases of their illness or those with primarily hypercapnic respiratory failure, such as patients with muscular dystrophies or other forms of neuromuscular weakness. Patients suffering from coma, impaired respiratory drive, an inability to protect their airway, or cardiac or respiratory arrest are not candidates for NIV. Controversy still exists regarding the safety of NIV as an initial strategy in patients with acute hypoxemic respiratory failure, but in general NIV appears to be well tolerated in many children with this condition and it may decrease the risk for intubation. These patients should be closely monitored, however, as NIV may mask symptoms of underlying disease progression, making eventual intubation more precarious. In patients with severe respiratory failure or those who are worsening on NIV, endotracheal intubation should not be delayed.

For patients with respiratory failure not responding adequately to noninvasive support, endotracheal intubation and the initiation of mechanical ventilation can be lifesaving. Safe placement of an endotracheal tube in infants and children requires experienced personnel and appropriate equipment at the bedside, including supplemental oxygen, correctly sized mask and bag oral airways, and endotracheal tubes, and suction catheters. The patient should first be positioned properly to facilitate air exchange while supplemental oxygen is given. The sniffing position is used in infants. Head extension with jaw thrust is used in older children without neck injuries. If obstructed by secretions or vomitus, the airway must be cleared by suction. When not obstructed and properly positioned, the airway should be patent and easily visualized, allowing the placement of an oral or nasopharyngeal endotracheal tube of the correct size. Patients with normal airway anatomy may be intubated under intravenous (IV) anesthesia by experienced personnel (Table 14–4). Endotracheal intubation of patients with significant upper airway obstruction (eg, patients with croup, epiglottitis, foreign bodies, or subglottic stenosis) or mediastinal masses should be approached with extreme caution; minimal sedation should be used and paralytic agents should be strictly avoided unless trained airway specialists decide otherwise.

The size of the endotracheal tube (ETT) is of critical importance in pediatrics. An inappropriately large endotracheal tube can cause pressure necrosis in the subglottic region, potentially leading to scarring and stenosis requiring surgical repair. An inappropriately small endotracheal tube can result in inadequate pulmonary toilet and excessive air leak around the endotracheal tube, making adequate ventilation and oxygenation difficult. Two useful methods for calculating the correct size of endotracheal tube for a child are (1) measuring the child’s height with a Broselow Tape and then reading the corresponding endotracheal tube size on the tape, or (2) in children older than age 2 years, choosing a tube size using the formula ETT size = (16 + age in years) ÷ 4. Approximate proper insertion depth (in cm) as measured at the teeth can be estimated by tripling the size of the ETT. Either cuffed or uncuffed tubes are appropriate; preference should be given for a cuffed tube in patients with significant lung disease likely to have poor lung compliance. Correct placement of the endotracheal tube should be confirmed by auscultation for the presence of equal bilateral breath sounds and by the use of a colorimetric filter (pH-sensitive indicator that changes from purple to yellow when exposed to carbon dioxide) to detect carbon dioxide. An assessment
of air leakage around the endotracheal tube is an important measure of the appropriateness of endotracheal tube size. An audible leak noted at pressures of 15–20 cm H₂O indicates acceptable ETT size, though higher leak pressures are acceptable in patients who have poor lung compliance and as a result require higher airway pressures to effectively ventilate and oxygenate. A chest radiograph is necessary for final assessment of endotracheal tube placement. A correctly positioned ETT will terminate in the mid-trachea between the thoracic inlet and the carina, at approximately the level of the second thoracic vertebrae.

### CONVENTIONAL MECHANICAL VENTILATION

#### Indications

The principal indications for institution of mechanical ventilation are acute and chronic respiratory failure or an airway rendered unstable either by illness, injury, or treatment with sedating medications. Examples of these conditions include pneumonia, sepsis, trauma, neuromuscular disease, and procedural sedation. The goals of mechanical ventilation are to facilitate the movement of gas into and out of the lungs (ventilation) and to improve oxygen uptake into the bloodstream (oxygenation). While life-saving in many situations, positive pressure ventilation can also be harmful. As a result, mechanical ventilation strategies must be adapted to achieve these goals in a way that minimizes further injury to the lung. The overriding principles of this “lung protective ventilation strategy” are to safely recruit under-inflated lung, sustain lung volume, minimize phasic overdistention, and decrease lung inflammation. This strategy requires adjustment of ventilator settings with an understanding of the difference between the gas exchange that is permissible and that which is normal or optimal.

### Modes of Mechanical Ventilation

The parameters used to control the delivery of mechanical ventilation breaths are known as the trigger, cycle, control, and limit variables. The **trigger variable** describes how breaths are initiated, either by the patient or by the ventilator. The most common triggers are patient effort, sensed as a drop in return pressure or gas flow to the ventilator, and time. A newer trigger method, neurally adjusted ventilatory assist (NAVA), measures the electrical activity of the diaphragm via an esophageal catheter in order to adjust the ventilator breaths to meet the patient’s neural activity. While NAVA holds promise as a means to improving patient-ventilator synchrony and facilitating ventilator weaning, its ideal role in clinical practice remains to be determined. The **cycle variable** describes how the inspiratory phase is terminated, either by the patient or by the ventilator. The most common cycle variables are set inspiratory time (I-time) although flow-cycled modes can be used in spontaneously breathing patients. The **control variable** determines whether the ventilator delivers a specific

---

**Table 14-4. Drugs commonly used for controlled endotracheal intubation.**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Class of Agent</th>
<th>Dose</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropine</td>
<td>Anticholinergic</td>
<td>0.02 mg/kg IV, minimum of 0.1 mg</td>
<td>Prevents bradycardia, dries secretions</td>
<td>Tachycardia, fever, seizures and coma with high doses</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Opioid (sedative)</td>
<td>1–3 mcg/kg IV</td>
<td>Rapid onset, hemodynamic stability</td>
<td>Respiratory depression, chest wall rigidity with rapid administration in neonates</td>
</tr>
<tr>
<td>Midazolam</td>
<td>Benzodiazepine (sedative)</td>
<td>0.1–0.2 mg/kg IV</td>
<td>Rapid onset, amnestic</td>
<td>Respiratory depression, hypotension</td>
</tr>
<tr>
<td>Etomidate</td>
<td>Anesthetic</td>
<td>0.2–0.4 mg/kg IV</td>
<td>Rapid onset, hemodynamic stability, lowers ICP</td>
<td>Suppresses adrenal function, should not be used in sepsis</td>
</tr>
<tr>
<td>Ketamine</td>
<td>Dissociative anesthetic</td>
<td>1–2 mg/kg IV, 2–4 mg/kg IM</td>
<td>Rapid onset, bronchodilator, hemodynamic stability</td>
<td>Increases oral and airway secretions, may increase ICP and pulmonary artery pressure</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>Nondepolarizing muscle relaxant</td>
<td>1 mg/kg</td>
<td>Rapid onset, suitable for rapid sequence intubation, lasts 30 min</td>
<td>Requires refrigeration</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>Nondepolarizing muscle relaxant</td>
<td>0.1 mg/kg</td>
<td>Long duration of action (40–60 min)</td>
<td>Tachycardia, slow onset (2–3 min)</td>
</tr>
</tbody>
</table>

ICP, intracranial pressure; IM, intramuscularly; IV, intravenously. 
tidal volume (volume-controlled modes) or a specific pressure (pressure-controlled modes). Limit variables are parameters whose magnitude is constrained during inspiration in order to prevent excessive pressure or volume from being delivered by the ventilator.

Breathing during mechanical ventilation can be classified as spontaneous or mandatory. The patient controls the timing and size of spontaneous breaths. The ventilator controls the timing and/or size of mandatory breaths, independent of patient activity. In addition, the breathing pattern provided by the ventilator can be set to one of three configurations. In continuous mandatory ventilation (CMV), the ventilator determines the size and duration of all breaths. In intermittent mandatory ventilation (IMV), the ventilator delivers mandatory breaths but additional spontaneous breaths between and during mandatory breaths are allowed. In continuous spontaneous ventilation (CSV), the patient initiates and controls all breaths but the ventilator assists those efforts.

A ventilator mode consists of a specific control variable (pressure or volume), a specific pattern of breathing (CMV, IMV, or CSV), and a specific set of phase variables (trigger, limit, and cycle). Initiation of breaths and the length of exhalation are controlled by setting the respiratory rate. In time-cycled modes of ventilation, the inspiratory time (I-time) determines the length of inspiration and when to allow exhalation. Most modern ventilators can deliver either a pressure-targeted or a volume-targeted breath in several manners. In synchronized intermittent mandatory ventilation (SIMV), the ventilator delivers breaths in an IMV pattern but the machine breaths are synchronized with the patient’s efforts. If the patient does not make adequate respiratory efforts to trigger the ventilator, the machine delivers a mandatory breath at a preset time interval. In pressure support ventilation, the patient’s own efforts are assisted by the delivery of gas flow to achieve a targeted peak airway pressure. Pressure support ventilation allows the patient to determine the rate and pattern of breaths (CSV breathing pattern), thus improving patient comfort and decreasing the work of breathing. The most commonly used mode of ventilation in most PICUs is synchronized intermittent mandatory ventilation with pressure support (SIMV + PS), a mixed mode allowing pressure-supported breaths between the synchronized machine breaths.

One of the ongoing controversies in critical care medicine surrounds the relative roles of volume- vs pressure-controlled modes of ventilation. In pressure-controlled ventilation, air flow begins at the start of the inspiratory cycle and continues until a preset airway pressure is reached. That airway pressure is then maintained until the end of the set I-time, when the exhalation valve on the ventilator opens and gas exits into the machine. With this mode of ventilation, changes in the compliance of the respiratory system will lead to fluctuations in the actual tidal volume delivered to the patient. The advantage of pressure-targeted ventilation lies primarily in the avoidance of high airway pressures that might cause barotrauma or worsen lung injury. The main disadvantage of pressure-controlled ventilation is the possibility of delivering either inadequate or excessive tidal volumes during periods of changing lung compliance. In volume-controlled ventilation, the machine delivers a set tidal volume to the patient. Changes in lung compliance will lead to fluctuations in the peak airway pressure generated by the breath. The main advantage of volume ventilation is better control of ventilation. More reliable tidal volume delivery may also help prevent atelectasis due to hypventilation. Disadvantages of volume ventilation include the risk of barotrauma from excessive airway pressures and difficulties overcoming leaks in the ventilator circuit. In either pressure- or volume-controlled modes, alarm limits can be set in order to restrict changes in either tidal volume or airway pressure with changing lung compliance; interpreting those alarms and adjusting the ventilator require the ICU clinician to understand the ventilator mode in use.

Finally, in any mode of ventilation, the minimum distending pressure applied to the lung during the respiratory cycle is determined by setting the positive end-expiratory pressure (PEEP). All mechanical ventilators open their expiratory limbs at the end of inspiration allowing gas release until a preset pressure is achieved; this is the PEEP value. PEEP helps to prevent the end-expiratory collapse of open lung units, thus preventing atelectasis and shunting. In disease states such as pulmonary edema, pneumonia, or ARDS, a higher PEEP (10–15 cm H₂O) may increase the patient’s functional residual capacity, helping to keep open previously collapsed alveoli and improve oxygenation. High levels of PEEP may also cause complications such as gas trapping and CO₂ retention, barotrauma with resultant air leaks, and decreased central venous return leading to declines in cardiac output or increases in intracranial pressure (ICP).

Setting and Adjusting the Ventilator

When initiating volume-controlled modes of ventilation, the ICU clinician sets a tidal volume, I-time, rate, and level of PEEP. A typical initial tidal volume is 6–10 mL/kg, as long as that volume does not cause excessive airway pressures (> 30 cm H₂O). The I-time is typically set at 1 second or 33% of the respiratory cycle, whichever is shorter. Rate can be adjusted to patient comfort and blood gas measurements, but generally patients starting on mechanical ventilation require full support at least initially with a rate of 20–30 breaths/min. Pressure-controlled ventilation is set in a similar fashion, although the adequacy of the inspiratory pressure is assessed by observing the patient’s chest rise and by measuring the delivered tidal volume. Typically, patients without lung disease require peak inspiratory pressures of 15–20 cm H₂O,
while patients with respiratory illnesses may require 20–30 cm H$_2$O pressure to provide adequate ventilation. In general, PEEP should be set at 5 cm H$_2$O initially and titrated up to maintain adequate oxygenation at acceptable inspired oxygen concentrations (< 60%–65%) while watching carefully for adverse effects on systemic hemodynamics.

Ventilated patients require careful monitoring for the efficacy of gas exchange, including respiratory rate and activity, chest wall movement, and quality of breath sounds. Oxygenation should be measured by ABGs and by continuous pulse oximetry. Ventilation should be assessed by blood gas analysis and by noninvasive means, such as transcutaneous monitoring or ETCO$_2$ sampling. Transcutaneous PO$_2$ or PCO$_2$ measurements are most useful with younger patients who have good skin perfusion, but they become problematic in patients with poorly perfusion, anasarca, or obesity. ETCO$_2$ monitoring involves placing a gas-sampling port on the endotracheal tube and analyzing expired gas for CO$_2$. This technique is more valuable for patients with large tidal volumes, lower respiratory rates, and without significant leaks around the endotracheal tube. In practice, ETCO$_2$ values may differ significantly (usually lower) from measured Paco$_2$ values and thus are most useful for following trends in ventilation, for early recognition of occluded or malpositioned endotracheal tubes, and for assessing the adequacy of chest compressions during CPR. Frequent, preferably continuous, systemic blood pressure monitoring is also necessary for patients ventilated with high PEEP levels, given the risk of adverse hemodynamic effects.

Ventilator settings can be adjusted to optimize both ventilation (Paco$_2$) and oxygenation (Pao$_2$). Ventilation is most closely associated with the delivered minute volume, or the tidal volume multiplied by the respiratory rate. As a result, abnormal Paco$_2$ values can be most effectively addressed by changes in the respiratory rate or the tidal volume. Increased respiratory rate or tidal volume should increase minute volume and thus decrease Paco$_2$ levels; decreases in respiratory rate or tidal volume should act in the opposite fashion. In some circumstances, additional adjustments may also be necessary. For example, for patients with disease characterized by extensive alveolar collapse, increasing PEEP may improve ventilation by helping to keep open previously collapsed lung units. Also, for patients with disease characterized by significant airway obstruction, decreases in respiratory rate may allow more time for exhalation and improve ventilation despite an apparent decrease in the minute volume provided.

The variables most closely associated with oxygenation are the inspired oxygen concentration and the mean airway pressure (MAP) during the respiratory cycle. Increases in inspired oxygen concentration will generally increase arterial oxygenation, unless right-to-left intracardiac or intrapulmonary shunting is a significant component of the patient’s illness. Concentrations of inspired oxygen above 60%–65%, however, may lead to hyperoxic lung injury. For patients requiring those levels of oxygen or higher to maintain adequate arterial saturations, increases in MAP should be considered as a means to recruit underinflated lung units. MAP is affected by PEEP, peak inspiratory pressure, and I-time. Increases in any one of those factors will increase MAP and should improve arterial oxygenation. It is important to bear in mind, however, that increases in MAP may also lead to decreases in cardiac output, primarily by decreasing venous return to the heart. In this circumstance, raising MAP may increase arterial oxygenation, but actually compromise oxygen delivery to the tissues. For patients with severe hypoxemic respiratory failure, these tradeoffs highlight the need for careful monitoring by experienced personnel.

Supportive Care of the Mechanically Ventilated Patient

Patients undergoing mechanical ventilation require meticulous supportive care. Mechanical ventilation is often frightening and uncomfortable for critically ill children. In order to reduce dysynchrony with the ventilator and impaired gas exchange, careful attention must be directed toward optimizing patient comfort and decreasing anxiety. Sedatives, anxiolytics are typically provided as intermittent doses of benzodiazepines, with or without opioids. Some patients respond better to the steady state of sedation provided by continuous infusion of these agents, although oversedation of the ventilated patient may lead to longer duration of ventilation, difficulty with weaning from the ventilator, and other complications. It is beneficial to use standardized assessments of sedation level and target the minimum sedation level necessary to maintain patient comfort and adequate gas exchange.

For patients with severe respiratory illness, even small physical movements can compromise gas exchange. In such cases, muscle paralysis may facilitate oxygenation and ventilation. Nondepolarizing neuromuscular blocking agents are most commonly used for this purpose, given as intermittent doses or as continuous infusions. When muscle relaxants are given, extra care must be taken to ensure that levels of sedation are adequate, as paralytics will mask many of the usual signs of patient discomfort. In addition, ventilator support may need to be increased to compensate for the elimination of patient respiratory effort.

Mechanically ventilated patients can often be fed enterally with the use of nasogastric feeding tubes. However, reflux aspiration leading to ventilator-associated pneumonia can be a concern. In patients where reflux or emesis is a major concern, transpyloric feeding or parenteral nutrition should be considered.

Ventilator-associated pneumonia (VAP) is a significant complication of mechanical ventilation, leading to longer ICU stays and increased hospital costs. As a result, many
local and national quality improvement initiatives have focused on minimizing the risks of VAP. These preventative measures include proper hand-washing, elevation of the head of the bed to 30 degrees to prevent reflux, frequent turning of the patient, proper oral care, the use of closed suction circuits on all ventilated patients and avoidance of breaking the closed suction system, sedation protocols to minimize sedation administration, and daily assessment of extubation readiness.

Mechanical ventilation should be weaned and discontinued as soon as safely possible. Extubation failure rates in mechanically ventilated children have been estimated between 4% and 20%. Considerable effort has been devoted to identifying predictors of extubation readiness and success. Unfortunately, the available literature does not clearly support any specific weaning protocol or extubation readiness test. Successful extubation requires adequate gas exchange, adequate respiratory muscle strength, and the ability to protect the airway. If those conditions can be met, most practitioners as a test of extubation readiness will perform a trial of spontaneous breathing in which the patient, while remaining intubated, breathes either without assistance (through a t-piece) or with a low level of pressure support (through the ventilator) for a defined period of time, usually 1–2 hours. The patient is observed carefully for signs of rapid shallow breathing or worsened gas exchange during this trial, and if neither is observed, the patient can generally be safely extubated.

### Troubleshooting

Troubleshooting a sudden deterioration in the mechanically ventilated patient should begin with determining whether the endotracheal tube is still in place using direct laryngoscopy and/or ETCO₂ measurements. Determine whether the ETT is patent and in the correct position by attempting to pass a suction catheter and by obtaining a chest x-ray if necessary. If the ETT is patent and correctly positioned, the next step is to determine whether any changes in the physical examination—such as poor or unequal chest rise, or absent or unequal breath sounds—suggest atelectasis, bronchospasm, pneumothorax, or pneumonia. Next, determine whether hemodynamic deterioration could be underlying acute respiratory compromise (shock or sepsis). If the problem cannot be readily identified, take the patient off the ventilator and begin manual ventilation by hand-bagging while the ventilator is checked for malfunction. Hand-bagging the patient can also determine the root of the problem if it lies within the patient and can help determine the next ventilator adjustments.

### High Frequency Oscillatory Ventilation

High frequency oscillatory ventilation (HFOV) is an alternative mode of mechanical ventilation in which the ventilator provides very small, very rapid tidal volumes at high rates. Respiratory rates used during oscillatory ventilation typically range from 5 to 10 Hz (rates of 300–600 breaths/min) in most PICU patients. This mode of ventilation has been used successfully in neonates, older pediatric patients, and adults, although recent work has suggested that HFOV may be associated with worse outcomes in infants with ARDS. HFOV is most widely used in severe, diffuse lung diseases, such as ARDS, which require high MAP to maintain lung expansion and oxygenation. Diseases characterized by significant heterogeneity or extensive gas trapping often respond too poorly to HFOV, although reports do exist of successful HFOV use in asthma. The advantage of HFOV is that high levels of MAP can be achieved without high peak inspiratory pressures or large tidal volumes, thus theoretically protecting the lung from ventilator-induced lung injury. Disadvantages of HFOV include general poor tolerance by patients who are not heavily sedated or paralyzed, the risk of cardiovascular compromise due to high MAP, and the risk of gas-trapping and barotrauma in patients with highly heterogeneous lung disease. Although HFOV clearly can be useful as a rescue mode for selected patients, it remains unclear whether HFOV provides any benefit compared with carefully managed conventional modes of ventilation.

### Extracorporeal Membrane Oxygenation

Extracorporeal membrane oxygenation (ECMO) has been used as a rescue therapy to support pediatric patients with severe respiratory failure who have not improved with less invasive therapies. ECMO circuits generally consist of a membrane oxygenator, a heater, and a pump. Central venous blood from the patient is directed out of the body, oxygenated, warmed, and returned back to the patient. ECMO can be provided in two major modes: venoarterial (VA) and venovenous (VV). VA ECMO bypasses the lungs and the heart, thus supporting both the cardiovascular and respiratory systems, and requires cannulation of a large central artery and vein. VV ECMO utilizes central venous cannulation to provide extracorporeal oxygenation and carbon dioxide removal, thus augmenting the function of the patient’s lungs, but the patient’s own cardiac output is required to provide systemic oxygen delivery. VV ECMO use has increased over the past 15 years and provides the advantage of a reduced risk of systemic and, particularly, cerebral emboli. Patients with moderate hemodynamic compromise prior to ECMO initiation can also experience improvements in circulatory status on VV ECMO, likely due to the improvements in acid base status, oxygenation, and decreased intrathoracic pressures that can be achieved with ECMO. ECMO is indicated for patients with reversible cardiovascular and/or respiratory failure and is not recommended in patients with severe neurologic compromise or who is in the terminal stages of a lethal condition. Despite an increase in the complexity of patients placed on ECMO, survival has remained acceptable over the
past 2 decades. According to recent registry data, 57% of pediatric respiratory failure patients who are supported with ECMO survive, and survival rates are even better for ECMO patients with a diagnosis of viral pneumonia (especially due to respiratory syncytial virus) and without significant co-morbidities. Of note, in both neonatal and adult randomized controlled trials, patients with severe respiratory failure who were referred to an ECMO center for consideration of ECMO had improved survival, even though not all patients were actually placed on ECMO. These results emphasize the importance of early referral to experienced centers if ECMO is to be considered.

Determining the optimal time to consider ECMO initiation is one of the most challenging aspects of using this technology. Survival appears equally good for most indications with mechanical ventilation for up to 14 days prior to ECMO initiation. Patients placed on ECMO later in the course of their illness or with prolonged ECMO runs (> 14 days) may have worse outcomes. Protocols to improve secretion clearance and lung recruitment have been described and should be considered to hasten lung recovery and shorten ECMO runs.

While ECMO remains a viable therapy for selected patients with severe respiratory failure, serious complications such as CNS injury, hemorrhage, renal insufficiency, infection, and complications of immobility do occur, and each patient should be carefully evaluated by experienced personnel in order to choose the optimal timing and mode of ECMO support.

### ARDS

ARDS is a severe form of lung injury characterized by hypoxemia, bilateral pulmonary infiltrates, and no clinical evidence of left atrial hypertension.

ARDS can arise as a consequence of either direct pulmonary injury or systemic conditions that are nonpulmonary in origin, such as sepsis.

Lung protective mechanical ventilation and careful fluid management are crucial to good outcomes in ARDS patients.
is between 200 and 300, the case is defined as mild ARDS, between 100 and 200 is moderate ARDS, and under 100 is severe ARDS. While these criteria remain controversial because of their lack of specificity, they helped to usher in a new era of clinical research that has contributed greatly to what we now know about the pathophysiology ARDS and factors influencing its outcomes in children.

**Presentation and Pathophysiology**

ARDS may be precipitated by a variety of insults (Table 14–5). Pneumonia and sepsis account for the majority of ARDS cases in children. Despite the diversity of potential causes, the clinical presentation is remarkably similar in most cases. ARDS can be divided roughly into four clinical phases (Table 14–6). In the earliest phase, the patient may have dyspnea and tachypnea with a relatively normal PaO₂ and hyperventilation-induced respiratory alkalosis. No significant abnormalities are noted on physical or radiologic examination of the chest. Experimental studies suggest that neutrophils accumulate in the lungs at this stage and that their products damage lung endothelium.

### Table 14–5. ARDS risk factors.

<table>
<thead>
<tr>
<th>Direct Lung Injury</th>
<th>Indirect Lung Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>Sepsis</td>
</tr>
<tr>
<td>Aspiration of gastric contents</td>
<td>Shock</td>
</tr>
<tr>
<td>Inhalation injury (heat or toxin)</td>
<td>Burns</td>
</tr>
<tr>
<td>Pulmonary contusion</td>
<td>Trauma</td>
</tr>
<tr>
<td>Hydrocarbon ingestion or aspiration</td>
<td>Fat embolism</td>
</tr>
<tr>
<td>Near-drowning</td>
<td>Drug overdoses (including aspirin, opioids, barbiturates, tricyclic antidepressants)</td>
</tr>
<tr>
<td></td>
<td>Transfusion of blood products</td>
</tr>
<tr>
<td></td>
<td>Pancreatitis</td>
</tr>
</tbody>
</table>

Over the next few hours, hypoxemia worsens and respiratory distress becomes clinically apparent, with cyanosis, tachycardia, irritability, and dyspnea. Early radiographic changes include the appearance of increasingly confluent alveolar infiltrates initially appearing in dependent lung fields, in a pattern suggestive of pulmonary edema. Proteinaceous exudates

### Table 14–6. Pathophysiologic changes of acute respiratory distress syndrome.

<table>
<thead>
<tr>
<th>Radiography</th>
<th>Symptoms</th>
<th>Laboratory Findings</th>
<th>Pathophysiology</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Phase 1 (early changes)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal radiograph</td>
<td>Dyspnea, tachypnea, normal chest examination</td>
<td>Mild pulmonary hypertension, normoxemic or mild hypoxemia, hypercapnia</td>
<td>Neutrophil sequestration, no clear tissue damage</td>
</tr>
<tr>
<td><strong>Phase 2 (onset of parenchymal changes)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patchy alveolar infiltrates; normal heart size</td>
<td>Dyspnea, tachypnea, cyanosis, tachycardia, coarse rales</td>
<td>Moderate to severe hypoxemia, increasing shunt, decreased lung compliance, pulmonary hypertension, normal wedge pressure</td>
<td>Neutrophil infiltration, vascular congestion, increased lung permeability, pulmonary edema, fibrin strands, platelet clumps, type I epithelial cell damage</td>
</tr>
<tr>
<td><strong>Phase 3 (acute respiratory failure with progression, 2–10 d)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffuse alveolar infiltrates; air bronchograms; decreased lung volume; normal heart size</td>
<td>Tachycardia, tachycardia, sepsis syndrome, signs of consolidation, diffuse rhonchi</td>
<td>Worsening shunt fraction, further decrease in compliance, increased minute ventilation, impaired oxygen extraction</td>
<td>Increased interstitial and alveolar inflammatory exudate with neutrophils and mononuclear cells, type II cell proliferation, beginning fibroblast proliferation, thromboembolic occlusion</td>
</tr>
<tr>
<td><strong>Phase 4 (pulmonary fibrosis, pneumonia with progression, &gt; 10 d)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent diffuse infiltrates; superimposed new pulmonary infiltrates; air leak; normal heart size or enlargement due to cor pulmonale</td>
<td>Symptoms as above, recurrent sepsis, evidence of multiorgan system failure</td>
<td>Phase 3 changes persist; recurrent pneumonia, progressive lung restriction, impaired tissue oxygenation, impaired oxygen extraction, multiorgan system failure</td>
<td>Type II cell hyperplasia, interstitial thickening; infiltration of lymphocytes, macrophages, fibroblasts; loculated pneumonia or interstitial fibrosis; medial thickening and remodeling of arterioles</td>
</tr>
</tbody>
</table>

*aThe process is readily reversible at this stage if the initiating factor is controlled.

*bMultiple organ system failure is common. The mortality rate is greater than 80% at this stage, since resolution is more difficult.

into the alveolar space and direct injury to type II alveolar pneumocytes cause surfactant inactivation and deficiency. As a result, the injured lung requires high inflation pressures to achieve lung opening, and increased positive end expiratory pressure (PEEP) to maintain end expiratory volume.

Injury to the alveolar type II cell also reduces the capacity for alveolar fluid clearance. Under normal conditions, sodium is taken up from the alveolar space by channels on the apical surface of type II cells and then actively transported across the basolateral cell membrane into the interstitial space. This process creates a gradient for the passive movement of water across the alveolar epithelium and back into the interstitium.

In ARDS, this mechanism becomes overwhelmed as direct lung injury depopulates the alveolar epithelium, creating conditions that favor alveolar fluid accumulation. Pulmonary hypertension, reduced lung compliance, and increased airways resistance are also commonly observed in ARDS. Clinical studies suggest that airways resistance may be increased in up to 50% of patients with ARDS, likely as a result of airway damage or inflammation-induced bronchospasm, although this increased resistance is only rarely clinically important.

Computer tomography (CT) studies of adult patients in the acute phases of ARDS demonstrate a heterogeneous pattern of lung involvement. The most dependent lung regions remain consolidated throughout the respiratory cycle and can only be recruited using exceedingly high inflation pressures. The most nondependent regions are overinflated throughout the respiratory cycle. Between these two zones lies a region that is either normally inflated or repetitively cycles between inflation and collapse. Attempts to improve oxygenation by recruiting the collapsed dependent lung regions occur at the expense of damaging nondependent regions by hyperinflation. This process, termed volutrauma, incites a potent inflammatory response that is capable of worsening nonpulmonary organ dysfunction. Even in normal lungs, ventilation with large tidal volumes and low positive end-expiratory pressure (PEEP) levels can produce a lung injury that is histologically indistinguishable from ARDS. This phenomenon is called ventilator-induced lung injury. Taken together, these findings suggest that mechanical injury from positive pressure ventilation is superimposed on the initial insult and is an integral part of the pathogenesis of ARDS. Appreciation of this phenomenon has prompted a shift toward ventilating ARDS patients with smaller tidal volumes and a tolerance for the relative hypocarbia that typically ensues. Published evidence currently supports using PEEP levels sufficient to stabilize those alveoli with tendency to collapse at end-expiration but below a threshold level that would overdistend nondependent lung regions at end-inspiration. Volutrauma is then mitigated by tidal volume reduction or peak pressure limitation. This approach is termed the “open-lung strategy” of mechanical ventilation.

The subacute phase of ARDS (2–10 days after lung injury) is characterized by type II pneumocyte and fibroblast proliferation in the interstitium of the lung. This results in decreased lung volumes and signs of consolidation that are noted clinically and radiographically. Worsening of the hypoxemia with an increasing shunt fraction occurs, as well as a further decrease in lung compliance. Some patients develop an accelerated fibrosing alveolitis. The mechanisms responsible for these changes are unclear. Current investigation centers on the role of growth and differentiation factors, such as transforming growth factor-β and platelet-derived growth factor released by resident and nonresident lung cells, such as alveolar macrophages, mast cells, neutrophils, alveolar type II cells, and fibroblasts. During the chronic phase of ARDS (10–14 days after lung injury), fibrosis, emphysema, and pulmonary vascular obliteration occur. During this phase of the illness, oxygenation defects generally improve, and the lung becomes more fragile and susceptible to barotrauma. Air leak is common among patients ventilated with high airway pressures at this late stage. Also, patients have increased dead space and difficulties with ventilation are common. Airway compliance remains low because of ongoing pulmonary fibrosis and insufficient surfactant production.

Secondary infections are common in the subacute and chronic phases of ARDS and can impact clinical outcomes. The mechanisms responsible for increased host susceptibility to infection during this phase are not well understood. Mortality in the late phase of ARDS can exceed 80%. Death is usually caused by multiorgan failure and systemic hemodynamic instability rather than by hypoxemia.

### Treatment

Contemporary ventilator management of ARDS is directed at protecting vulnerable lung regions from cyclic alveolar collapse at end expiration and protecting overinflated lung regions from hyperinflation at end inspiration. The actual mode of ventilation (eg, volume limited vs pressure limited) employed for ARDS is ultimately not as important as limiting phasic alveolar stretch and stabilizing lung units that are prone to repetitive end expiratory collapse. Over a decade ago, a landmark multicenter trial established that adult ARDS patients who were ventilated using a 6 mL/kg (ideal body weight) tidal volume had a 22% mortality reduction and fewer extrapulmonary organ failures relative to those randomized to receive tidal volumes of 12 mL/kg. The trial also demonstrated a greater reduction in plasma levels of pro-inflammatory cytokines among those in the lower tidal volume group, a finding suggesting that appropriate ventilator strategies can actually reduce the systemic inflammatory response. Although this trial has never been replicated in pediatric patients, application of these same management principles has gained widespread acceptance among pediatric ICU clinicians.

Given the large body of evidence supporting the benefits of low tidal volume ventilation, we suggest that mechanical
ventilation of pediatric ARDS patients be initiated using a tidal volume of 6–8 mL/kg (ideal body weight), combined with PEEP sufficient to produce target arterial saturations (> 88%–90%) using an FiO₂ of ≤ 0.6. In general, this can be accomplished by incremental increases in PEEP until adequate oxygenation is achieved or until a limiting side effect of the PEEP is reached. Whenever escalating mechanical ventilator settings, clinicians should minimize the endotracheal tube cuff leak (if possible), ensure an appropriate plane of patient sedation, and optimize the ventilation to perfusion relationship by verifying that the patient’s intravascular volume status is appropriate. Permissive hypercapnia should be used unless a clear contraindication exists (eg, increased intracranial pressure). If adequate ventilation cannot be achieved (pH remains below 7.25 due to hypercapnia), the ventilator rate can then be increased, provided the patient has time to adequately exhale before the next breath. Subsequently, tidal volume can then be increased as necessary toward 8 mL/kg (ideal body weight), monitoring again for adequacy of expiratory time. Throughout the course, efforts should be made to limit the alveolar plateau pressure (pressure at end-inspiration) to 25 cm H₂O or less.

**Fluid management** is an important element of the care of patients with ARDS. Given the increased pulmonary capillary permeability in ARDS, further pulmonary edema accumulation is likely with any elevation in pulmonary hydrostatic pressures. Evidence in adults has shown that a “conservative” fluid strategy targeting lower cardiac filling pressures (CVP < 4 mm Hg, or, if a pulmonary artery catheter is used, pulmonary artery occlusion pressure < 8 mm Hg) is associated with better oxygenation and a shorter duration of mechanical ventilation compared to a “liberal” fluid strategy targeting CVP 10–14 mm Hg (or PAOP 14–18 mm Hg). Fluid restriction should only be implemented after hemodynamic variables stabilize and volume resuscitation should not be denied to hemodynamically unstable patients with ARDS.

**Hemodynamic support** is directed toward increasing perfusion and oxygen delivery. Patients should be given adequate intravascular volume resuscitation using either crystalloid or colloid solutions to restore adequate circulating volume, and inotropes or vasopressors should be titrated to achieve adequate end-organ perfusion and oxygen delivery. While blood transfusions are excellent volume expanders and should theoretically increase oxygen-carrying capacity, transfusion incurs the risks of volume overload and transfusion-related lung injury. There is no evidence to support transfusion above a normal hemoglobin level in ARDS patients.

Patients with ARDS require careful monitoring. Given the risks of ventilator-induced lung injury and the inherent limitations of pulse oximetry and capnography, arterial blood gas analysis is strongly preferred for accurate assessment of oxygenation and ventilation and careful titration of mechanical ventilation. Indwelling arterial catheters are useful for continuous blood pressure monitoring and frequent laboratory sampling. Many clinicians advocate the use of CVP measurements to help determine the level of cardiac preload, although it is important to emphasize that the CVP value must be interpreted in the context of intrathoracic pressure and myocardial compliance. For patients with severe disease or concurrent cardiac dysfunction, consideration can be given to pulmonary artery catheterization in order to guide fluid management and to allow assessment of mixed venous oxygen saturation as an index of overall tissue oxygenation. Since secondary infections are common and contribute to increased mortality rates, surveillance for infection is important by obtaining appropriate cultures and following the temperature curve and white blood cell count. Renal, hepatic, and GI function should be watched closely because of the prognostic implications of multiorgan dysfunction in ARDS.

For patients failing these standard approaches of mechanical ventilation and fluid restriction, several alternative or rescue therapies are available. **High-frequency oscillatory ventilation (HFOV)** has been used successfully for many years in pediatric patients with ARDS. No studies to date have compared HFOV to a modern lung protective conventional ventilation strategy, and whether HFOV provides any advantage over conventional ventilation for pediatric ARDS remains unknown. Earlier studies have demonstrated that pediatric ARDS patients treated with HFOV can demonstrate rapid and sustained improvements in oxygenation without adverse effects on ventilation, and have suggested that HFOV patients showed a reduced incidence of chronic lung injury, as evidenced by a decreased need for supplemental oxygen at 30 days. At present, whether HFOV is best used as a first-line ventilator strategy or as a rescue therapy for patients failing conventional ventilation remains a matter of institutional and clinician preference. **Prone positioning** is a technique of changing the patient’s position in bed from supine to prone, with the goal of improving ventilation of collapsed dependent lung units via postural drainage and improved ventilation-perfusion matching. This technique can dramatically improve gas exchange in the short term, particularly for patients early in the course of ARDS, but the gains are often not sustained. To date, clinical trials examining the role of prone positioning in both adults and children with ARDS have not shown any improvement in mortality or in duration of mechanical ventilation. Based on the ability of **inhaled nitric oxide (iNO)** to reduce pulmonary artery pressure and to improve the matching of ventilation with perfusion without producing systemic vasodilation, iNO can be used as a therapy for refractory ARDS. Several multicenter trials of iNO in the treatment of ARDS, both in adults and in children, showed acute improvements in oxygenation in subsets of patients, but no significant improvement in overall survival. As a result, iNO cannot be recommended as a standard
therapy for ARDS. **Surfactant-replacement therapy** is also not routinely recommended for children with ARDS, as the data regarding its efficacy remain mixed. To date, it has been difficult to draw meaningful conclusions from the completed surfactant trials because they differ so greatly with respect to surfactant composition, dosing regimen, study population, and mechanical ventilation strategy. Finally, **ECMO** has been used to support pediatric patients with severe ARDS. Recent registry data suggest the overall survival rate for children who require ECMO for ARDS is around 40%–50%. To date, the efficacy of ECMO has not been evaluated against lung protective ventilation strategies for pediatric ARDS in a prospective randomized trial. In addition, recent improvements in outcome for pediatric ARDS patients receiving "conventional" therapies have made the role of ECMO less clear and have made further prospective randomized studies of ECMO difficult to complete. For now, ECMO remains a viable rescue therapy for patients with severe ARDS that is unresponsive to other modalities.

**Outcomes**

Information regarding the long-term outcome of pediatric patients with ARDS remains limited. One report of 10 children followed 1–4 years after severe ARDS showed that three children were still symptomatic and seven had hypoxemia at rest. Until further information is available, all patients with a history of ARDS need close follow-up of pulmonary function.


**Pathogenesis**

Life-threatening asthma exacerbations are caused by severe bronchospasm, excessive mucus secretion, inflammation, and edema of the airways (see Chapter 38). Reversal of these mechanisms is key to successful treatment. Several structural and mechanical features of the lungs of infants and children place them at increased risk for respiratory failure from severe asthma exacerbations, including less elastic recoil than the adult lung, thicker airway walls which lead to greater peripheral airway resistance for any degree of bronchoconstriction, increased airway reactivity to bronchoconstrictors, fewer collateral channels of ventilation, and a more compliant chest wall which can lead to increased work of breathing with airway obstruction. In addition, some individual patients display a pattern of recurrent life-threatening asthma exacerbations. These patients will often have a history of previous ICU admissions or intubations; obesity, lower socioeconomic status, and non-Caucasian race are additional risk factors for severe asthma exacerbations.

**Clinical Findings**

Patients presenting in status asthmaticus are often tachypneic and may have trouble speaking. Dyspnea at rest that interferes with the ability to speak can be an ominous sign of severe airflow obstruction. Accessory muscle use correlates well with expiratory flow rates less than 50% of normal predicted values. Inspiratory and expiratory wheezing, paradoxical breathing, cyanosis, and a respiratory rate more than 60 breaths/min are all important signs of serious distress. Particular attention should be paid to the degree of aeration. Diffuse wheezing is typically appreciated, but if severe airway obstruction reduces airflow enough, wheezing may be absent. Pulse oximetry should be performed on presentation. Saturations less than 90% on room air can be indicative of severe airway obstruction, especially in infants.

Patients with severe asthma exacerbations may display signs of panic or exhaustion and alterations in level of consciousness. Agitation, drowsiness, and confusion can be signs of elevated PaCO₂ levels and may signify impending respiratory failure. Likewise, gasping respirations or frank apnea are indications of respiratory failure and need for intubation.

**Status asthmaticus** is reversible small airway obstruction that is refractory to sympathomimetic and anti-inflammatory agents and that may progress to respiratory failure without prompt and aggressive intervention.
Patients are typically tachycardic secondary to stress, dehydration, and β-agonist therapy. A pulsus paradoxus of over 22 mm Hg correlates with elevated Paco₂ levels. Diastolic blood pressure may be low secondary to dehydration and β-agonist use. Diastolic pressures less than 40 mm Hg in conjunction with extreme tachycardia may impair coronary artery filling and predispose to cardiac ischemia, especially in teenagers.

**Laboratory Findings**

Blood gas measurements should be performed on all patients with severe asthma exacerbations. Venous blood gas measurements may serve as a screening test for acidosis and hypercapnia but cannot substitute for arterial blood gas measurements in critically ill asthmatics. Patients with severe asthma exacerbations typically have increased minute ventilation and should be expected to have a Paco₂ less than 40 mm Hg. Normal to elevated Paco₂ levels suggest respiratory failure. Metabolic acidosis may be due to relative dehydration, inadequate cardiac output, or underlying infection. Hypoxemia (Pao₂ < 60 mm Hg) on room air may be a sign of impending respiratory failure or significant ventilation/perfusion mismatch caused by pneumonia or atelectasis. Ventilation/perfusion mismatching also can be exacerbated by β-agonist therapy due to effects on both the airway and vascular smooth muscle.

Monitoring of serum electrolytes may reveal decreased serum potassium, magnesium, and/or phosphate, especially in patients with prolonged β-agonist use. Blood count measurements are not required routinely. Leukocytosis is common in asthma exacerbations, and corticosteroid treatment causes demargination of polymorphonuclear leukocytes within a few hours of administration. Differentiating infection from stress demargination as causes of leukocytosis can be difficult; measurement of other inflammatory markers such as C-reactive protein (CRP) levels can be useful.

Measurement of forced expiratory volume in 1 second (FEV1) or peak expiratory flow (PEF) is recommended in the urgent or emergency care setting; however, patients with life-threatening asthma exacerbation are often unable to cooperate with testing. Values of less than 40% of predicted indicate a severe exacerbation and values less than 25% of predicted indicate imminent respiratory arrest. Repeated measures of pulmonary function in very severe exacerbations are of limited value. Electrocardiograms are not routinely recommended but may be indicated to rule out cardiac ischemia, especially in patients with known cardiac disease, extreme tachycardia and low diastolic blood pressure, or complaints of chest pain.

Chest x-rays should be obtained in severe asthma exacerbations to evaluate for treatable triggers such as pneumonia, foreign body aspiration, suspected air leak, or a chest mass. Particularly in patients with severe wheezing who lack a previous asthma history, alternative diagnoses such as foreign body aspiration, congestive heart failure, pulmonary infections, or mediastinal mass should be entertained. An inspiratory chest film is particularly helpful in identifying foreign bodies. Pneumothorax and pneumomediastinum are common complications of severe asthma exacerbations and may occur in nonintubated patients.

**Treatment**

Much of the morbidity associated with the treatment of severe asthma is related to the complications of providing mechanical ventilation in patients with severe airflow obstruction. As a result, the goal of initial treatment of patients with life-threatening status asthmaticus is to improve their ability to ventilate without resorting to endotracheal intubation and mechanical ventilation. The medical therapies described in the following discussion should be undertaken swiftly and aggressively with the goal of reversing the bronchospasm before respiratory failure necessitates invasive ventilation.

Close monitoring of gas exchange, cardiovascular status, and mental status are crucial to assessing response to therapy and determining the appropriate interventions. Children with status asthmaticus require IV access, continuous pulse oximetry and cardiorespiratory monitoring. Due to inadequate minute ventilation and V/Q mismatching, patients with severe asthma are almost always hypoxemic and should receive supplemental humidified oxygen immediately to maintain saturations more than 90%.

The repetitive or continuous administration of a selective short-acting β₂-agonist is the most effective means of rapidly reversing airflow obstruction. Treatment with agents such as albuterol remains the first-line therapy for these patients. If the patient is in severe distress and has poor inspiratory flow rates, thus preventing adequate delivery of nebulized medication, subcutaneous injection of epinephrine or terbutaline may be considered. The frequency of β₂-agonist administration varies according to the severity of the patient’s symptoms and the occurrence of adverse side effects. Nebulized albuterol may be given intermittently at a dose of 0.1 mg/kg per nebulization up to 5.0 mg every 10–15 minutes, or it can be administered continuously at a dose of 0.5 mg/kg/h to a maximum of 20–30 mg/h, usually without serious side effects. IV β-agonists should be considered in patients with severe bronchospasm unresponsive to inhaled bronchodilators. The agent most commonly used in the United States is terbutaline, a relatively specific β₂-agonist, which can be given as a bolus dose or as a continuous infusion. Owing to its relative specificity for β₂-receptors, terbutaline has fewer cardiac side effects than previously available IV β-agonists such as isoproterenol. Terbutaline is given as a bolus or loading dose of 10 mcg/kg followed by a continuous infusion of 0.5–5 mcg/kg/min. The heart rate and blood pressure should be monitored closely, because excessive tachycardia, ventricular ectopy, and
diastolic hypotension may occur in patients receiving either inhaled or IV β₂-agonist therapy. In general, patients receiving IV therapy should have indwelling arterial lines for continuous blood pressure and blood gas monitoring.

Immediate administration of systemic corticosteroids is critical to the early management of life-threatening status asthmaticus. Although oral systemic corticosteroids are generally recommended, consideration should be given to IV steroid administration in critically ill patients secondary to frequent intolerance of enterally administered medications. A dose of 2 mg/kg/d of methylprednisolone is generally prescribed for the critical care setting.

Infants and children with status asthmaticus may become dehydrated as a result of increased respiratory rate and decreased oral intake. In these patients, clinicians should make an assessment of fluid status and provide appropriate corrections. Fluid replacement should be aimed toward restoration of euvoemia while avoiding overhydration. The hemodynamic effects of high dose β₂-agonist therapy (peripheral dilation, diastolic hypotension) may require some fluid resuscitation to maintain cardiac output and avoid metabolic acidosis. Antibiotics are generally not recommended for treatment of status asthmaticus unless a coexisting infection is identified or suspected.

For severe exacerbations unresponsive to the initial treatments listed above, additional treatments may be considered to avoid intubation. Ipratropium bromide, an inhaled anticholinergic bronchodilator, is a reasonable intervention given its low side-effect profile, though two controlled clinical trials failed to detect a significant benefit from its addition to standard therapy in preventing hospitalization due to asthma. Magnesium sulfate is reported to be an effective bronchodilator in adult patients with severe status asthmaticus when given in conjunction with steroids and β₂-agonists and may be considered for patients with impending respiratory failure or who have life-threatening exacerbations that do not respond well to the first 1 hour of intensive conventional therapy. The mechanism of action of magnesium is unclear, but its smooth muscle relaxation properties are probably caused by interference with calcium flux in the bronchial smooth muscle cell. Magnesium sulfate is given IV at a dose of 25–50 mg/kg per dose. Although usually well tolerated, hypotension and flushing can be side effects of IV magnesium administration. Heliox-driven albuterol nebulization can also be considered for patients refractory to conventional therapy.

Theophylline is a methylxanthine that remains controversial in the management of severe asthma. Clinical studies have yielded a mixed verdict on its benefit when given with steroids and β₂-agonists for children with asthma. This uncertainty, together with its high side-effect profile, led to a general recommendation against the use of theophylline for asthma exacerbations, although it may still have a role in severe exacerbations as a means to prevent intubation. The theoretical benefit of theophylline is relaxation of airway smooth muscle by preventing degradation of cyclic guanosine monophosphate, a mechanism of action distinct from that of β₂-agonists. Besides causing bronchodilation, this agent decreases mucociliary inflammatory mediators and reduces microvascular permeability. However, the pharmacokinetics of theophylline are erratic and therapeutic levels can be difficult to manage. It is also associated with serious side effects, such as seizures and cardiac arrhythmias that can occur with high drug levels. Theophylline is given IV as aminophylline. Each 1 mg/kg of aminophylline given as a loading dose will increase the serum level by approximately 2 mg/dL. For a patient who has not previously received aminophylline or oral theophylline preparations, load with 7–8 mg/kg of aminophylline in an attempt to achieve a level of 10–15 mg/dL; then start a continuous infusion of aminophylline at a dosage of 0.8–1 mg/kg/h. A postbolus level and steady-state level should be drawn with the initiation of the medication. Watch closely for toxicity (gastric upset, tachycardia, and seizures) and continue to monitor steady-state serum levels closely, trying to maintain steady-state levels of 12–14 mg/dL.

Noninvasive ventilation (NIV) is another approach for treatment of respiratory failure due to severe asthma exacerbation that may help avoid the need for intubation and mechanical ventilation. Positive pressure ventilation may help to avoid airway collapse during exhalation as well as to unload fatigued respiratory muscles by reducing the force required to initiate each breath. Because of its noninvasive interface, spontaneous breathing and upper airway function are preserved, allowing the patient to provide his/her own airway clearance. Data on the effectiveness of NIV for acute severe asthma in children are limited to small studies and case series but have shown an improvement in gas exchange and respiratory effort.

If aggressive management fails to result in significant improvement, mechanical ventilation may be necessary. Patients who present with apnea or coma should be intubated immediately. Otherwise, if there is steady deterioration despite intensive therapy for asthma, intubation should occur semi-electively before acute respiratory arrest, because the procedure can be dangerous in patients with severe asthma given the high risk of barotrauma and cardiovascular collapse. Mechanical ventilation for patients with asthma is difficult because the severe airflow obstruction often leads to very high airway pressures, air trapping, and resultant barotrauma. The goal of mechanical ventilation for an intubated asthma patient is to maintain adequate oxygenation and ventilation with the least amount of barotrauma until other therapies...
become effective. Worsening hypercarbia following intubation is typical, and aggressive efforts to normalize blood gases may only lead to complications. Due to the severe airflow obstruction, these patients will require long inspiratory times to deliver a breath and long expiratory times to avoid air trapping. In general, the ventilator rate should be decreased until the expiratory time is long enough to allow emptying prior to the next machine breath. Ventilator rates of 8–12 breaths/min are typical initially. Either volume- or pressure-targeted modes of ventilation can be used effectively, although tidal volume and pressure limits should be closely monitored. As a patient moves toward extubation, a support mode of ventilation is useful, as the patient can set his or her own I-time and flow rate. Due to air trapping, patients can have significant auto-PEEP. The level of PEEP on the ventilator is usually set low (0–5 cm H₂O) to minimize air trapping and high peak pressures. Isolated reports have noted patients who respond to greater PEEP, but these are exceptions.

These ventilator strategies and resulting hypercarbia typically are uncomfortable, requiring that patients be heavily sedated and often medically paralyzed. Fentanyl and midazolam are good choices for sedation. Ketamine is a dissociative anesthetic that can be used to facilitate intubation and also as a sedative infusion for intubated patients. Ketamine has bronchodilatory properties, although it also increases bronchial secretions. Barbiturates should be avoided as well as morphine, both of which can increase histamine release and worsen bronchospasm. Most patients, at least initially, will also require neuromuscular blockade to optimize ventilation and minimize airway pressures. In intubated patients not responding to the preceding strategies, inhaled anesthetics, such as isoflurane, should be considered. These agents act not only as anesthetics but also cause airway smooth muscle relaxation; they must be used with caution, however, as they can also cause significant hypotension due to vasodilation and myocardial depression.

### Prognosis

Status asthmaticus remains among the most common reasons for admission to the PICU. It is associated with a surprisingly high mortality rate (1%–3%), especially in patients with a previous PICU admission. As many as 75% of patients admitted to the PICU with life-threatening asthma flares will be readmitted with a future exacerbation, emphasizing the need for careful outpatient follow-up of this high-risk population.

---

**Table 14–7. Categories of shock.**

<table>
<thead>
<tr>
<th>Type of Shock</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Hypovolemic   | Dehydration due to vomiting and/or diarrhea  
|               | Trauma with severe hemorrhage               |
| Cardiogenic   | Viral myocarditis                           |
|               | Postoperative cardiac patient with poor heart function |
| Distributive  | Septic shock                                |
|               | Vasodilation secondary to anaphylaxis        |
| Dissociative  | Carbon monoxide poisoning                   |

---


result of reduced oxygen delivery (as in respiratory or cardiac failure or acute hemorrhage), increased tissue demand (as in infection, burns, or other major physiologic stresses), or impaired oxygen utilization (as in severe sepsis), or combinations of all three conditions. The lack of adequate oxygen delivery to meet the metabolic demands of a tissue leads to anaerobic metabolism in cells and ultimately to irreversible cellular damage.

Since oxygen delivery (DO₂) is defined as the product of the ability of the heart to pump blood to the organs, that is, cardiac output (CO), and the oxygen content of arterial blood (CaO₂) delivered by the heart, it can be expressed mathematically as CO × CaO₂. Cardiac output in turn is determined by ventricular stroke volume (SV) and heart rate (HR) and is calculated as SV × HR. Stroke volume is influenced by preload, afterload, contractility, and cardiac rhythm. Numerous conditions can disrupt one or more of these factors. Preload can be decreased as a result of hypovolemia due to hemorrhage or dehydration or as a result of vasodilation due to anaphylaxis, medications, or septic shock. Impaired contractility can lead to shock in conditions such as cardiomyopathy, myocardial ischemia/reperfusion following a cardiac arrest, postcardiac surgery, and sepsis. Age-dependent differences in myocardial physiology can also affect systolic performance and contractility. For example, in the infant heart, the sarcolemma, sarcoplasmic reticulum, and T-tubules are less well developed than in older children, resulting in a greater dependency on transsarcolemma Ca²⁺ flux (ie, extracellular serum calcium concentrations) for contraction. Afterload can be increased, as seen in late septic shock and cardiac dysfunction, or decreased, as in “warm” septic shock. Cardiac dysrhythmias can also alter cardiac output and contribute to inadequate oxygen delivery. One common example is supraventricular tachycardia, in which reduced time for ventricular filling can lead to reduced stroke volume and cardiac output.

The oxygen content of arterial blood consists of the oxygen bound to hemoglobin and the oxygen dissolved in the blood. The bound oxygen is determined by the hemoglobin concentration and the percent of the hemoglobin saturated by oxygen. The dissolved oxygen is calculated from the partial pressure of oxygen in the arterial blood (Pao₂). In general, the amount of dissolved oxygen is much smaller than that of bound oxygen and the main determinant of arterial oxygen content is the bound oxygen. Both illnesses that affect the oxygen saturation of hemoglobin and illnesses that alter hemoglobin concentration can impair oxygen delivery. Low hemoglobin oxygen saturations most commonly occur as a result of impaired uptake of oxygen in the lungs. Abnormal hemoglobins can also impair oxygen delivery, since carboxyhemoglobin (formed in carbon monoxide poisoning) or methemoglobin have different oxygen-carrying capacities than normal hemoglobin, resulting in impaired oxygen delivery.

Although shock from different critical illnesses can manifest similarly, the cellular pathophysiology will differ depending upon the underlying etiology. For example, in patients with cardiogenic shock, heart failure activates the renin-angiotensin-aldosterone and adrenergic sympathetic systems and decreases parasympathetic stimulation leading to sodium and water retention, increased afterload, increased energy expenditure, cardiomyocyte death, and progressive ventricular dysfunction. Persistent activation of the sympathetic nerves results in adrenergic receptor down-regulation, which is further complicated in the neonatal heart, which has less β-adrenergic receptor expression that limits the response to inotropic agents. Dissociative shock is a term referring to abnormalities of hemoglobin-oxygen dissociation that lead to impaired oxygen availability to the tissues, typically as a result of abnormal hemoglobin function due to poisoning. In all cases of shock, the defects in oxygen delivery and utilization lead to anaerobic metabolism, hypoxia, and lactic acidosis.

**Clinical Findings**

The clinical presentation of shock can be categorized into a series of recognizable stages: compensated, uncompensated, and irreversible. Patients in compensated shock have relatively normal cardiac output and normal blood pressures but have alterations in the microcirculation that increase flow to some organs and reduce flow to others. As shock progresses, cardiac output increases in order to meet the tissue demand for oxygen delivery. In infants, a compensatory increase in cardiac output is achieved primarily by tachycardia rather than by an increase in stroke volume. In older patients, cardiac contractility (stroke volume) and heart rate both increase to improve cardiac output. Blood pressure remains normal initially because of peripheral vasoconstriction and increased systemic vascular resistance. Thus, hypotension occurs late and is characteristic of uncompensated shock. In this stage, the oxygen and nutrient supply to the cells deteriorates further with subsequent cellular breakdown and release of toxic substances, causing further redistribution of flow. Patients in uncompensated shock are at risk of developing multiorgan system failure (MOSF), which carries a high risk of mortality. In extreme cases, organ damage can progress to the point that restoration of oxygen delivery will not improve organ function, a condition known as irreversible shock.

The symptoms and signs of shock result from end-organ dysfunction caused by inadequate oxygen delivery. Because this condition can progress rapidly to serious illness or death, rapid assessment of a child in shock is essential to determine the need for resuscitation.

In patients with impaired cardiac output and peripheral vasoconstriction, the skin will be cool and pale with delayed capillary refill (> 3 seconds) and the pulse thready. Additionally, the skin may appear gray or ashen, particularly
in newborns, and mottled or cyanotic in patients with decreased cardiac output. In contrast, patients with “warm” or septic shock can present with warm skin with brisk capillary refill and bounding pulses. The detection of peripheral edema is a worrisome sign; in a patient with shock this may reflect severe vascular leak due to sepsis or poor cardiac output with fluid and sodium retention. The skin examination can provide insight into the diagnosis (eg, the presence of rash such as purpuric bullae or petechiae may indicate an infectious etiology) or reveal the site and extent of traumatic injury. Cracked, parched lips, and dry mucous membranes may indicate severe volume depletion.

Tachycardia is an important and early sign of shock and is typically apparent well before hypotension, which is a late feature in pediatric shock. Not all patients can mount an appropriate increase in heart rate, however, and the presence of bradycardia in a patient with shock is particularly ominous. Peripheral pulses will weaken first in shock as cardiac output is diverted to the body core. Also, a discrepancy in pulses between lower extremities and upper extremities may indicate a critical coarctation of the aorta leading to shock, particularly in an infant with closure of the ductus arteriosus. A gallop cardiac rhythm can indicate heart failure, while a pathologic murmur suggests the possibility of congenital heart disease or valvular dysfunction. A rub or faint, distant heart sounds may indicate a pericardial effusion. Rales, hypoxia, and increased work of breathing can be seen in patients with shock from heart failure or acute lung injury, and a patient with severe metabolic acidosis due to shock will have compensatory tachypnea and respiratory alkalosis.

Urine output is directly proportionate to renal blood flow and the glomerular filtration rate and, therefore, is a good reflection of cardiac output. Normal urine output is > 1 mL/kg/h; output < 0.5 mL/kg/h is considered significantly decreased. Hepatomegaly may suggest heart failure or fluid overload, while splenomegaly may suggest an oncologic process and abdominal distension may suggest obstruction or perforated viscus as the etiology of shock.

The level of consciousness reflects the adequacy of brain cortical perfusion. When brain perfusion is severely impaired, the infant or child first fails to respond to verbal stimuli, then to light touch, and finally to pain. Lack of motor response and failure to cry in response to venipuncture or lumbar puncture is ominous. In uncompensated shock with hypotension, brainstem perfusion may be decreased. Poor thalamic perfusion can result in loss of sympathetic tone. Finally, poor medullary flow produces irregular respirations followed by gasping, apnea, and respiratory arrest.

### Monitoring

**Laboratory studies** in the patient with suspected shock should be directed at evaluating the etiology of shock, assessing the extent of impaired oxygen delivery, and identifying signs of end-organ dysfunction due to inadequate oxygen delivery (Table 14–8). Assessments of oxygen delivery require measurement of oxygen saturation and hemoglobin concentration. Pulse oximetry is adequate to measure oxygen saturation in patients with low oxygen requirements. Arterial blood gas (ABG) analyses provide more accurate oxygen measurements, which are important for optimizing mechanical ventilation in patients with significant hypoxemia, and provide measurements of arterial pH, which can reflect the adequacy of tissue perfusion. Measurements of central venous oxygen saturation can serve as a measure of the adequacy of overall oxygen delivery. If oxygen delivery is inadequate for the needs of the tissues, a greater portion of that oxygen will be consumed and the central venous saturation will be lower than normal (< 70% in a patient without cyanotic heart disease). In contrast, patients with septic shock may have an elevated central venous saturation due to impaired oxygen utilization by the tissues (> 80%).

Additional laboratory signs of organ dysfunction include evidence of anaerobic metabolism such as acidemia and elevated lactate, increased serum creatinine, or abnormal liver function tests such as elevated transaminases or reduced production of clotting factors. Blood chemistry measurements are also essential in patients with shock. Hypo- or hypernatremia are common, as are potentially

### Table 14-8. Laboratory studies in the case of shock.

<table>
<thead>
<tr>
<th>Evaluation for Infectious etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources include blood, urine, tracheal secretions, CSF, wound, pleural fluid, or stool</td>
</tr>
<tr>
<td>Stains, cultures, and other microbiologic tests (PCR, immunofluorescent antibody stains) for bacteria, fungus, viruses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation of organ function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary: ABG (evaluate acid-base status, evaluation of oxygen delivery/consumption)</td>
</tr>
<tr>
<td>Cardiac: ABG, mixed venous saturation, lactate</td>
</tr>
<tr>
<td>Liver: LFTs, coagulation studies</td>
</tr>
<tr>
<td>Renal (and hydration status): BUN, creatinine, bicarbonate, serum sodium</td>
</tr>
</tbody>
</table>

| Hematology: WBC count with differential, hemoglobin, hematocrit, platelet count |
| Evaluation for DIC: PT, PTT, fibrinogen, D-dimer |
| Extent of inflammatory state: CRP, WBC, ESR, procalcitonin |

<table>
<thead>
<tr>
<th>Additional studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolytes</td>
</tr>
<tr>
<td>Ionized calcium</td>
</tr>
<tr>
<td>Magnesium</td>
</tr>
<tr>
<td>Phosphate</td>
</tr>
</tbody>
</table>

ABG, arterial blood gas; ACTH, adrenocorticotropic hormone; BUN, blood urea nitrogen; CRP, C-reactive protein; CSF, cerebrospinal fluid; DIC, disseminated intravascular coagulation; LFTs, liver function tests; PCR, polymerase chain reaction; PT, prothrombin time; PTT, partial thromboplastin time; WBC, white blood cell.
life-threatening abnormalities in potassium levels, particularly hyperkalemia in patients with impaired renal function due to shock. Patients in shock may have decreased serum ionized calcium levels, which will adversely impact cardiac function, especially in infants. Calcium homeostasis also requires normal magnesium levels, and renal failure may disrupt phosphorus levels. Evaluation of a coagulation panel is required to detect disseminated intravascular coagulation (DIC), particularly in patients with purpura fulminans or petechiae, or in those at risk for thrombosis.

The selection of **imaging studies**, similar to laboratory studies, should be guided by the presumed etiology of shock. For patients presenting with shock secondary to trauma, standard trauma protocols to evaluate organ damage and potential sites of hemorrhage are indicated. Chest x-rays are routinely performed for critically ill patients to check endotracheal tube or central line placement, evaluate the extent of airspace disease and presence of pleural effusions or pneumothorax, and evaluate for pulmonary edema and cardiomegaly. Computed tomography (CT) of the chest or abdomen may be indicated to better evaluate sites of infection in septic shock, and echocardiography can provide important information about cardiac anatomy and function.

Patients with shock often need **invasive hemodynamic monitoring** for diagnostic and therapeutic reasons. **Arterial catheters** provide constant blood pressure readings, and to an experienced interpreter, the shape of the waveform is helpful in evaluating cardiac output. **Central venous catheters** allow monitoring of central venous pressure (CVP) and central venous oxygen saturation. CVP monitoring does not provide information about absolute volume status, but can provide useful information about relative changes in volume status as therapy is given. The **pulmonary artery catheter** can also provide valuable information on cardiac status and vascular resistance and enables calculations of oxygen delivery and consumption (Table 14–9), but these catheters are associated with a higher complication rate than CVP lines and are no longer commonly used in either adult or pediatric critical care.

**SEPSIS**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Sepsis and septic shock remain major causes of death in children worldwide.
- Early recognition and intervention are key to improving patient outcome.
- Organized systematic approaches to the treatment of sepsis within an institution can improve survival.

Sepsis and septic shock require particular consideration because sepsis is one of the major illnesses leading to admission to the pediatric intensive care unit. Worldwide, an estimated 18 million patients develop sepsis each year, with 750,000 of those cases in North America. Sepsis is the tenth leading cause of death in the United States and accounts for approximately 40% of intensive care unit expenditures in the United States and Europe. Among children, an estimated 42,000 cases of severe sepsis occur annually in the United States, accompanied by a mortality rate of nearly 10%. The incidence of severe sepsis is highest in infancy, remains relatively low from age 1 to mid-life, then rises again in later life.

Published literature regarding sepsis uses a number of overlapping and sometimes confusing terminologies. The **systemic inflammatory response syndrome (SIRS)** refers to a nonspecific syndrome of systemic inflammation typically associated with fever, tachycardia, tachypnea, and an abnormal white blood cell count. **Sepsis** is defined as a clinical syndrome characterized by a documented or suspected infection, accompanied by clinical and laboratory signs of systemic inflammation (SIRS). Though the criteria used to define sepsis in adults and children differ in published guidelines (Table 14–10), the more specific adult criteria provide

### Table 14-9. Hemodynamic parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Calculation</th>
<th>Normal Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveolar partial pressure of oxygen</td>
<td>$P_{aO_2} = (\text{Barometric pressure} - 47) \times % \text{ inspired oxygen concentration}$</td>
<td></td>
</tr>
<tr>
<td>Alveolar-arterial oxygen difference (mm Hg)</td>
<td>$A-aD_O_2 = P_{aO_2} - (P_{aCO_2}/R) - P_{aCO_2}$</td>
<td>5-15</td>
</tr>
<tr>
<td>Cardiac output (L/min)</td>
<td>$CO = HR \times SV$</td>
<td></td>
</tr>
<tr>
<td>Cardiac index (L/min/m²)</td>
<td>$CI = CO/BSA$</td>
<td>3.0-4.5</td>
</tr>
<tr>
<td>Oxygen content of arterial blood (mL/dL)</td>
<td>$CaO_2 = (1.34 \times \text{hemoglobin} \times O_2) + (0.003 \times P_{aO_2})$</td>
<td>17-24</td>
</tr>
<tr>
<td>Oxygen delivery index (mL/min/m²)</td>
<td>$DO_2 = CaO_2 \times CI \times 10$</td>
<td>550-650</td>
</tr>
<tr>
<td>Oxygen content of venous blood (mL/dL)</td>
<td>$Cvo_2 = (1.34 \times \text{hemoglobin} \times O_2) + (0.003 \times P_{vO_2})$</td>
<td>12-17</td>
</tr>
<tr>
<td>Oxygen consumption index (mL/min/m²)</td>
<td>$VO_2 = (CaO_2 - Cvo_2) \times CI \times 10$</td>
<td>120-200</td>
</tr>
</tbody>
</table>

R, respiratory quotient (normally approximates 0.8).
rubinemia. Of note, the number of organ systems affected by renal failure, thrombocytopenia, coagulopathy, or hyperbilirubinemia. Evidence of at least 1 sepsis-induced major organ dysfunction.

A useful framework for thinking about sepsis-related organ dysfunction is defined as sepsis along with evidence of at least 1 sepsis-induced major organ dysfunction such as hypotension, hypoxemia, lactic acidosis, oliguria, renal failure, thrombocytopenia, coagulopathy, or hyperbilirubinemia. Of note, the number of organ systems affected by severe sepsis is an important prognostic factor. The risk of death from sepsis rises with the number of organ failures, with a mortality rate of 7%–10% with single organ failure and up to 50% mortality with four organ failures. Septic shock is defined as severe sepsis associated with impaired oxygen delivery, often accompanied by hypotension unresponsive to fluids.

In addition to impaired oxygen delivery, sepsis and septic shock are also associated with impaired utilization of delivered oxygen. The etiology of this impaired oxygen utilization is not well understood but is likely multifactorial and includes maldistribution of blood flow in the microcirculation as well as mitochondrial dysfunction. Recent work has also brought to light the critical role of the innate immune system in sepsis. Infectious agents release pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide or peptidoglycans, and damaged tissues release endogenous proteins and nucleic acids that act as molecular triggers, collectively referred to as damage-associated molecular patterns (DAMPs). These molecules are recognized by pattern recognition receptors of the innate immune system, most prominently the Toll-like receptors, which then trigger inflammatory cascades throughout the body. Derangements of adaptive immunity also contribute to the pathogenesis of sepsis. Toll-like receptor signaling may activate subsets of regulatory T cells in septic patients, leading to either immune paralysis or uncontrolled inflammation depending on the pathophysiologic setting. Cytokine production and leukocyte activation lead to endothelial damage and activation of the clotting system. Microvascular thrombi lead to impaired tissue perfusion, which leads to further tissue damage, which in turn leads to further activation of the immune system. The end result of these processes is impaired oxygen delivery to the tissues, impaired oxygen utilization and metabolic down-regulation, leading to end-organ dysfunction and ultimately to death if the process is not reversed.

## Treatment of Shock and Sepsis

Much attention has been directed in recent years to the role of standardized treatment guidelines in improving outcomes from shock and sepsis, and detailed guidelines are now available from several professional organizations, most prominently the American Heart Association Pediatric Advanced Life Support (PALS) guidelines for initial management of shock in children, and the Surviving Sepsis Campaign guidelines for management of sepsis in adults and children. A key principle of both guidelines is that early recognition and treatment of shock and sepsis, preferably stemming from a consistent organized clinical approach, improve outcomes in all age ranges.

Regardless of the etiology, the end result of shock is organ dysfunction, which if untreated can lead to irreversible MOSF. Therefore, early recognition of shock, coupled
with early intervention, is necessary to minimize end-organ injury and improve survival. **Airway, breathing, and circulation** should be rapidly assessed, with appropriate stabilization of the airway, support of breathing, and stabilization of circulation. Indications for intubation and mechanical ventilation include altered mental status, significant hemodynamic instability, inability to protect the airway, poor respiratory effort, high work of breathing, or poor gas exchange. In addition, patients in shock who will require surgery or other interventions requiring general anesthesia will also require mechanical ventilation. Due to low functional residual capacity, infants and neonates are more likely to require early initiation of noninvasive ventilation or endotracheal intubation. In patients with septic shock, use of etomidate for sedation during intubation should be avoided due to its association with adrenal suppression and increased mortality. A temporary intraosseous line should be placed if IV access cannot be rapidly obtained for resuscitation fluids and medications. A central venous line should be considered in patients with hemodynamic instability, particularly if they require ongoing resuscitation and infusions of vasoactive medications. While femoral venous lines are simpler and safer to place, subclavian and internal jugular lines are preferred for more accurate and consistent central venous saturation and pressure monitoring, although they do carry the additional risk of pneumothorax. The rapidity and accuracy of placing central venous lines may be improved with the use of ultrasound guidance.

Empiric **antimicrobials** should be delivered promptly, ideally within 1 hour of presentation in patients with suspected sepsis. Antibiotics should be chosen according to the most likely cause of infection. While it is highly desirable to obtain cultures prior to initiation of antibiotics in order to guide the choice and duration of antibiotic coverage, the acquisition of cultures should never delay antibiotic administration in patients with suspected sepsis. Early and aggressive control of sources of infection is also essential for patients with sepsis and septic shock, including surgical drainage of abscesses or other infected spaces or removal of infected foreign bodies such as vascular catheters.

An important element of the treatment of shock is early aggressive **fluid resuscitation** targeted to measurable physiologic endpoints of organ perfusion, so-called “early goal directed therapy.” Fluid resuscitation should begin with 20 mL/kg increments administered over 5–10 minutes and repeated as necessary. Fluid administration should be titrated to reverse hypotension and achieve normal capillary refill, pulses, level of consciousness, and urine output. Adult guidelines recommend targeting fluid resuscitation to achieve a central venous oxygen saturation (ScvO₂) of greater than 70% and CVP of 8–12 mm Hg in the emergency department, but due to the challenges of placing central venous lines in pediatric patients, this is often not feasible in young patients. If pulmonary edema or hepatomegaly develop, inotropes should be used in place of more fluid, and cardiac function evaluated for evidence of cardiogenic shock. Large volumes of fluid for acute stabilization in children with hypovolemic or septic shock may be necessary to restore adequate oxygen delivery and do not increase the incidence of ARDS or cerebral edema. Patients who do not respond rapidly to 40–60 mL/kg should be monitored in an intensive care setting and considered for inotropic therapy and invasive hemodynamic monitoring. Initial fluid resuscitation should consist of crystalloid (salt solution), which is readily available and inexpensive. Albumin has been shown to be safe in adults and children with septic shock and should be considered when patients have received large volumes of crystalloid and require ongoing resuscitation. Children with hemolytic anemia crises who are hemodynamically stable should receive red blood cell transfusions. Hydroxyethyl starches (HES) are not recommended as resuscitation fluids in septic shock based on adult studies, which showed no improvement in mortality with HES versus normal saline, but an increased risk of renal failure.

**Inotropic and vasopressor agents** should be considered for patients with refractory shock despite receiving 60 mL/kg of fluid resuscitation (Table 14–11). Inotropic support can be delivered through an intraosseous or peripheral line until stable central access is secured to prevent a delay in initiation. Inotropes or vasopressor therapy should be selected based on the hemodynamic state, which may include high or low cardiac output and high or low systemic vascular resistance and which may also change during the clinical course. An inotropic agent may be required to maintain cardiac output when patients require vasopressors for refractory hypotension. Though dopamine (α- and β-adrenergic agonist) is no longer recommended for adults with septic shock due to arrhythmogenic effects in this population, **dopamine** remains an acceptable first-line vasopressor in the pediatric population. Either norepinephrine (α- and β₁-adrenergic agonist) or epinephrine (potent α- and β₁-adrenergic agonist) may be useful for dopamine-refractory shock; generally epinephrine has a greater net effect on cardiac output and is preferred for cold shock states, while norepinephrine has a greater net effect on vascular tone and is preferred for warm shock states. **Vasopressin** may be considered as a rescue therapy for patients failing catecholamine infusions but has not been clearly shown to improve outcomes from severe sepsis in children. In patients with low cardiac output and high systemic vascular resistance, **dobutamine** (selective β-agonist) may be used to improve myocardial contractility and reduce afterload. Alternatively, **milrinone**, a type III phosphodiesterase inhibitor with inotropic and vasodilator activity, can be added to other more potent inotropic agents. Hypocalcemia also often contributes to cardiac dysfunction in shock; **calcium** replacement should be given to normalize ionized calcium levels.
If perfusion is still inadequate despite aggressive fluid and pressor support, the patient can be considered to have **catecholamine-resistant septic shock**. This condition may be related to critical illness-related corticosteroid insufficiency (CIRCI), which is a condition of impaired adrenal responsiveness that may occur in as many as 30%–50% of critically ill patients. Absolute adrenal insufficiency, characterized by impaired adrenal responsiveness, low-circulating cortisol concentrations, and often associated with adrenal hemorrhage, is less common and occurs in fewer than 25% of children with septic shock. Children with fulminating meningococcemia, congenital adrenal hyperplasia, or recent steroid exposure are at the highest risk of absolute adrenal insufficiency, while CIRCI can occur in any critically ill patient. Pediatric patients with fluid-refractory, catecholamine-resistant septic shock and suspected or proven adrenal insufficiency should receive hydrocortisone. The recommended dose of hydrocortisone is 50 mg/m²/d (up to 200 mg/d) either as a continuous infusion or divided doses; however, some children may require higher doses. Hydrocortisone is generally continued until catecholamine support can be successfully discontinued, and a taper should be considered in those children requiring longer than 7 days of therapy.

Cardiogenic shock can also be associated with elevated ventricular filling pressures (> 20 mm Hg). Although increasing preload to patients in this condition may result in augmented cardiac output (to a degree), volume should be administered cautiously as improvement may occur at the expense of elevated pulmonary venous pressure with resultant pulmonary edema. In this setting, judicious administration of **diuretics** combined with inotropic support can reduce...

Table 14–11. Pharmacologic support of the patient with shock.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>α-Adrenergic Effect&lt;sup&gt;a&lt;/sup&gt;</th>
<th>β-Adrenergic Effect&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Vasodilator Effect</th>
<th>Actions and Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine</td>
<td>1–20 mcg/kg/min</td>
<td>+ to +++ (dose-related)</td>
<td>+ to ++ (dose-related)</td>
<td>none</td>
<td>Moderate inotrope, wide and safe dosage range, short half-life</td>
<td>Neuroendocrine effects; may increase pulmonary artery pressure</td>
</tr>
<tr>
<td>Dobutamine</td>
<td>1–10 mcg/kg/min</td>
<td>none</td>
<td>+</td>
<td>+ (via β&lt;sub&gt;2&lt;/sub&gt;)</td>
<td>Moderate inotrope; less chronotropy, fewer dysrhythmias than epinephrine</td>
<td>Marked variation among patients, tachycardia</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>0.05–1 mcg/kg/min</td>
<td>++ to ++++ (dose-related)</td>
<td>+++</td>
<td>+ (at lower doses, via β&lt;sub&gt;2&lt;/sub&gt;)</td>
<td>Strong inotrope and chronotrope; increases SVR</td>
<td>Tachycardia, dysrhythmias; can cause myocardial necrosis at high doses</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>0.05–1 mcg/kg/min</td>
<td>+++</td>
<td>+++</td>
<td>none</td>
<td>Potent vasoconstrictor (systemic and pulmonary), increases SVR</td>
<td>Reduced cardiac output if afterload is too high; renal and splanchic ischemia</td>
</tr>
<tr>
<td>Milrinone</td>
<td>0.25–0.75 mcg/kg/min</td>
<td>none</td>
<td>none</td>
<td>+</td>
<td>Decreases SVR and PVR; increases cardiac contractility but only mild increase in myocardial O₂ consumption</td>
<td></td>
</tr>
<tr>
<td>Nitroprusside</td>
<td>0.05–8 mcg/kg/min</td>
<td>none</td>
<td>none</td>
<td>+ + (arterial and venous vasodilation)</td>
<td>Potent vasodilator, decreases SVR and PVR, very short-acting.</td>
<td>Toxic metabolites (thiocyanates and cyanide); increased intracranial pressure; ventilation-perfusion mismatch; methemoglobinemia</td>
</tr>
</tbody>
</table>

<sup>a</sup>+, small effect; ++, moderate effect; ++++, potent effect. PVR, pulmonary vascular resistance; SVR, systemic vascular resistance.
pulmonary edema and improve pulmonary compliance, the work of breathing, and oxygenation.

**Blood products** can be important supportive therapies in patients with shock. *Red blood cells* can be administered to patients with shock to improve oxygen-carrying capacity. In hemodynamically stable patients, hemoglobin levels should be maintained over 7 g/dL, while the transfusion threshold can be increased to 10 g/dL in unstable patients. DIC is common in shock, particularly septic shock, due to endothelial damage, formation of microvascular emboli, and consumptive coagulopathy. Thus, a process beginning as increased coagulation leads to a bleeding diathesis. *Platelets* are generally transfused when platelet counts are less than 20,000/μL, or less than 40,000–60,000/μL in a patient with bleeding or requiring surgical intervention. The presence of antiplatelet antibodies may modify these transfusion criteria. For severe coagulopathies associated with bleeding in the setting of shock, the standard treatment is *fresh frozen plasma* or, for fibrinogen replacement, *cryoprecipitate*, with close monitoring of prothrombin time (PT), international normalized ratio (INR), and partial thromboplastin time (PTT).

*Other supportive therapies* for shock and sepsis include mechanical ventilation, sedation and analgesia, renal replacement therapy for renal insufficiency, deep vein thrombosis prophylaxis, stress ulcer prophylaxis, nutrition and glucose control. Finally, *ECMO* can be used as a life-saving measure in the treatment of severe shock in patients with recoverable cardiac and pulmonary function who have failed conventional management.

Trauma is the leading killer of children in the United States. Fifty percent of trauma-related deaths are due to traumatic brain injury, and many survivors endure lifelong disabilities. Prevention is the only true “therapy” for traumatic brain injury, and injury prevention strategies have helped reduce the incidence of this problem.

Traumatic brain injuries can be conceptualized as occurring in two phases. Primary injury occurs at the moment injury disrupts bone, blood vessels, and brain tissue. Secondary injury is the indirect result of the primary injury and develops within minutes to days after the initiating injury. Secondary injuries are potentially reversible and include (1) processes triggered by the primary injury, such as excitotoxicity (neuronal damage due to excitatory neurotransmitter release), oxidative stress, inflammation, and delayed neuronal death; and (2) additional insults to the vulnerable injured brain, including hypoxia, hypotension, hyperthermia, and hypoglycemia. Management of the head-injured child is directed at preventing and/or modifying the events contributing to secondary injury.

**Intracranial Hypertension**

One of the key elements of managing children with traumatic brain injuries is the management of intracranial hypertension, in large part because intracranial hypertension can promote and worsen secondary brain injury. Intracranial pressure (ICP) is the pressure inside the skull, and is generally less than 15 mm Hg in healthy children.
Prolonged periods of intracranial hypertension (defined as ICP greater than 20 mm Hg) are associated with increased morbidity and mortality. Table 14–12 lists common causes of intracranial hypertension in children. The skull, containing the brain, CSF, and cerebral blood, contains a fixed volume. Under normal circumstances, these three components are in balance, such that an increase in the volume of one component is offset by a decrease in one of the other components, maintaining a constant intracranial pressure (Monroe-Kellie doctrine). As a result of a traumatic brain injury, the volume of any or all of these components may increase, resulting in increased intracranial pressure (ICP). The factors contributing to intracranial hypertension can be understood by considering each of these three components.

The brain occupies about 80% of the volume within the skull. Apart from solid tumors, increases in the brain compartment are generally a result of cerebral edema. Cerebral edema can be divided into several forms: vasogenic, hydrostatic, interstitial, and cytotoxic. Vasogenic edema is frequently associated with trauma, tumors, abscesses, and infarct, and is due to breakdown of the tight endothelial junctions that make up the blood-brain barrier (BBB). As plasma constituents cross the BBB, extracellular water moves along fiber tracts into the brain parenchyma. This form of edema is thought to be at least partially responsive to corticosteroid therapy. Hydrostatic edema is due to transudation of fluid from the capillaries into the parenchyma as a result of elevated cerebral vascular pressures. This form of edema is frequently associated with malignant hypertension and is treated by judicious reduction of cerebral vascular pressures. Interstitial edema occurs primarily in lesions resulting in obstructed CSF flow and appears in a typical periventricular distribution; it is best treated by CSF drainage. Cytotoxic edema is the most common form of edema seen in the PICU and is the least easily treated. Cytotoxic edema occurs as a result of direct injury to brain cells, often leading to irreversible cell swelling and death. This form of cerebral edema is typical of traumatic brain injuries as well as hypoxic-ischemic injuries and metabolic disease.

CSF occupies an estimated 10% of the intracranial space. Intracranial hypertension due primarily to obstructed CSF flow or increased CSF volume (eg, hydrocephalus, primary or secondary) is generally easily diagnosed by CT scan and treated with appropriate drainage and shunting. CSF drainage can be of benefit in managing intracranial hypertension, however, even in the absence of overt hydrocephalus.

Cerebral blood volume comprises the final 10% of the intracranial space. Changes in cerebral blood volume generally result from alterations in vascular diameter in response to local metabolic demands or to local vascular pressures, responses termed auto-regulation. Several factors interact to control cerebral blood volume via the auto-regulatory responses of the cerebral vasculature. Metabolic auto-regulation matches cerebral blood flow to tissue demands. High metabolic rates, such as those induced by fever or seizure activity, increase cerebral blood flow by causing vasodilation, which in turn increases cerebral blood volume; lower metabolic rates allow the vessels to constrict, reducing cerebral blood volume. Partial pressure of carbon dioxide is another important determinant, as elevations in blood Paco₂ lead to cerebral vasodilation and decreases in Paco₂ lead to vasoconstriction. Pressure auto-regulation links cerebral blood pressure to cerebral blood flow. This response attempts to maintain a constant cerebral blood flow rate over a range of systemic blood pressures. Within the auto-regulatory range of blood pressure, the cerebral vessels dilate or constrict as appropriate to maintain constant cerebral blood flow. Once the cerebral vessels are maximally constricted, continued increases in systemic pressure may further increase cerebral blood flow and volume; conversely, once the vessels are maximally dilated, flow will fall as perfusing pressure falls. It is not unusual to see partial or complete loss of cerebral blood flow auto-regulation in the event of injury. Cerebral blood flow then becomes dependent on systemic blood pressure (traditionally termed “pressure passive” blood flow).

### Table 14–12. Pediatric illnesses commonly associated with intracranial hypertension.

<table>
<thead>
<tr>
<th>Diffuse processes</th>
<th>Focal processes</th>
<th>Infectious</th>
<th>Mass lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trauma</td>
<td>Trauma</td>
<td>Encephalitis</td>
<td>Tumors</td>
</tr>
<tr>
<td>Hypoxic-ischemic</td>
<td>Hypoxic-ischemic</td>
<td>Meningitis</td>
<td>Hematomas</td>
</tr>
<tr>
<td>Near-drowning</td>
<td>Trauma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiorespiratory arrest</td>
<td>Stroke</td>
<td>Abscess</td>
<td></td>
</tr>
<tr>
<td>Infectious</td>
<td></td>
<td>Mass lesions</td>
<td></td>
</tr>
<tr>
<td>Metabolic</td>
<td></td>
<td>Tumors</td>
<td></td>
</tr>
<tr>
<td>Reye syndrome</td>
<td>Stroke</td>
<td>Mass lesions</td>
<td></td>
</tr>
<tr>
<td>Liver failure</td>
<td>Infectious</td>
<td>Tumors</td>
<td></td>
</tr>
<tr>
<td>Inborn errors of metabolism</td>
<td></td>
<td>Hematomas</td>
<td></td>
</tr>
<tr>
<td>Toxic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead intoxication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A overdose</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

*ICP* stands for intracranial pressure. The skull, containing the brain, CSF, and cerebral blood, contains a fixed volume. Under normal circumstances, these three components are in balance, such that an increase in the volume of one component is offset by a decrease in one of the other components, maintaining a constant intracranial pressure (Monroe-Kellie doctrine). As a result of a traumatic brain injury, the volume of any or all of these components may increase, resulting in increased intracranial pressure (ICP). The factors contributing to intracranial hypertension can be understood by considering each of these three components.

The brain occupies about 80% of the volume within the skull. Apart from solid tumors, increases in the brain compartment are generally a result of cerebral edema. Cerebral edema can be divided into several forms: vasogenic, hydrostatic, interstitial, and cytotoxic. Vasogenic edema is frequently associated with trauma, tumors, abscesses, and infarct, and is due to breakdown of the tight endothelial junctions that make up the blood-brain barrier (BBB). As plasma constituents cross the BBB, extracellular water moves along fiber tracts into the brain parenchyma. This form of edema is thought to be at least partially responsive to corticosteroid therapy. Hydrostatic edema is due to transudation of fluid from the capillaries into the parenchyma as a result of elevated cerebral vascular pressures. This form of edema is frequently associated with malignant hypertension and is treated by judicious reduction of cerebral vascular pressures. Interstitial edema occurs primarily in lesions resulting in obstructed CSF flow and appears in a typical periventricular distribution; it is best treated by CSF drainage. Cytotoxic edema is the most common form of edema seen in the PICU and is the least easily treated. Cytotoxic edema occurs as a result of direct injury to brain cells, often leading to irreversible cell swelling and death. This form of cerebral edema is typical of traumatic brain injuries as well as hypoxic-ischemic injuries and metabolic disease.

CSF occupies an estimated 10% of the intracranial space. Intracranial hypertension due primarily to obstructed CSF flow or increased CSF volume (eg, hydrocephalus, primary or secondary) is generally easily diagnosed by CT scan and treated with appropriate drainage and shunting. CSF drainage can be of benefit in managing intracranial hypertension, however, even in the absence of overt hydrocephalus.

Cerebral blood volume comprises the final 10% of the intracranial space. Changes in cerebral blood volume generally result from alterations in vascular diameter in response to local metabolic demands or to local vascular pressures, responses termed auto-regulation. Several factors interact to control cerebral blood volume via the auto-regulatory responses of the cerebral vasculature. Metabolic auto-regulation matches cerebral blood flow to tissue demands. High metabolic rates, such as those induced by fever or seizure activity, increase cerebral blood flow by causing vasodilation, which in turn increases cerebral blood volume; lower metabolic rates allow the vessels to constrict, reducing cerebral blood volume. Partial pressure of carbon dioxide is another important determinant, as elevations in blood Paco₂ lead to cerebral vasodilation and decreases in Paco₂ lead to vasoconstriction. Pressure auto-regulation links cerebral blood pressure to cerebral blood flow. This response attempts to maintain a constant cerebral blood flow rate over a range of systemic blood pressures. Within the auto-regulatory range of blood pressure, the cerebral vessels dilate or constrict as appropriate to maintain constant cerebral blood flow. Once the cerebral vessels are maximally constricted, continued increases in systemic pressure may further increase cerebral blood flow and volume; conversely, once the vessels are maximally dilated, flow will fall as perfusing pressure falls. It is not unusual to see partial or complete loss of cerebral blood flow auto-regulation in the event of injury. Cerebral blood flow then becomes dependent on systemic blood pressure (traditionally termed “pressure passive” blood flow).
**Clinical Findings**

Initial examination of the patient with traumatic brain injury should include assessment of airway patency, breathing, and cardiovascular function. In addition, mental status should be evaluated, and the Glasgow Coma Scale (GCS) score calculated. Once stabilized from a cardiac and respiratory standpoint, a more detailed neurological examination including cranial nerves, spontaneous movement of extremities, strength, sensory perception, and presence or absence of deep tendon reflexes should be performed. Cervical spine injury and immobilization should also be considered. Similar considerations apply in patients with suspected intracranial hypertension but no clinical history of trauma. In either setting, repeated neurologic examinations are needed to monitor the progression of intracranial hypertension.

The clinical presentation of intracranial hypertension is dependent on the nature, location and size of the lesions in the brain, as well as the amount of edema and infringement of CSF pathways (Table 14–13). Early signs and symptoms are nonspecific, particularly in young children. Head CT or magnetic resonance imaging (MRI) is generally needed to identify intracranial injuries, to determine the need for surgical intervention, to monitor the progression of injuries and cerebral edema, and to monitor for the development of complications.

**Treatment**

Continuous monitoring and correction of hemodynamic and respiratory abnormalities are essential for maintaining proper nutrient and oxygen supply to the brain after injury. Hypoxic episodes (Pao<sub>2</sub> less than 60 mm Hg) after TBI are associated with increased morbidity and mortality, and current treatment guidelines recommend early endotracheal intubation and initiation of mechanical ventilation if elevated ICP is suspected. Episodes of agitation and/or pain can induce elevated ICP, and thus adequate sedation, either via intermittent dosing or continuous infusion, is also important. Several modalities may be used to monitor ICP, including placement of an external ventricular drain (EVD) in the lateral ventricle, and/or an intraparenchymal pressure monitor. Current treatment guidelines for children with severe traumatic brain injury recommend ICP monitoring for all patients with GCS ≤ 8. Little evidence exists to support the utility of ICP measurement and ICP-directed therapies in conditions associated with global CNS injuries (eg, anoxic brain injuries).

Mechanical treatments for TBI range from simple positioning to aggressive surgical decompression. Midline positioning and head elevation to 30 degrees can aid in cerebral venous drainage of blood from the head, thereby reducing cerebral blood volume and ICP. Timely surgical evacuation of hematomas and other pathologic masses remains a mainstay of TBI treatment, and decompressive craniectomy (removal of a portion of the skull and opening of the dura) can be of benefit in the treatment of refractory intracranial hypertension secondary to focal or diffuse injury. CSF drainage reduces ICP by reducing CSF volume, and can be accomplished by placement of an EVD in the lateral ventricles of the brain.

Medical treatment strategies for TBI in children are largely based on reducing ICP to normal levels. Studies in adult patients have demonstrated that more frequent and higher elevations in ICP predict worse outcomes, particularly when ICP rises over 20 mm Hg. As a result, treatment should be directed at reducing ICP to less than 20 mm Hg and preventing frequent spikes to higher levels. Another important concept for the treatment of intracranial hypertension is that of cerebral perfusion pressure (CPP), which is the driving pressure across the cerebral circulation and is defined as mean arterial pressure minus central venous pressure (CVP) or ICP, whichever is higher. Maintenance of CPP remains a second tier goal in most published guidelines for management of TBI. Though the ideal target value is not clear in children, most practitioners use 50–60 mm Hg. A suggested treatment algorithm for patients with documented intracranial hypertension based on best available evidence is presented in Figure 14–1. The information is largely drawn from experience with traumatic brain injuries, and the direct applicability of these concepts to other illnesses associated with intracranial hypertension remains unclear.

**Osmotic therapies** such as mannitol and hypertonic (3% or greater) saline can be effective treatments for elevated ICP regardless of etiology. These agents exert a rheologic effect, decreasing blood viscosity, which allows for increased blood flow and subsequent auto-regulatory vasoconstriction, which reduces cerebral blood volume and therefore ICP. Osmotic agents also increase serum osmolarity and enhance movement of excess water out of brain cells and

---

**Table 14–13.** Signs and symptoms of intracranial hypertension in children.

<table>
<thead>
<tr>
<th>Early</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor feeding, vomiting</td>
<td>Coma</td>
</tr>
<tr>
<td>Irritability, lethargy</td>
<td>Decerebrate responses</td>
</tr>
<tr>
<td>Seizures</td>
<td>Cranial nerve palsies</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Abnormal respirations</td>
</tr>
<tr>
<td></td>
<td>Bradycardia</td>
</tr>
<tr>
<td></td>
<td>Hypertension</td>
</tr>
<tr>
<td></td>
<td>Apnea</td>
</tr>
</tbody>
</table>

---
Glasgow Coma Scale < 8
(and nonsurgical head injury)

Monitor ICP (consider placement of ventriculostomy at the same time) and If ICP remains elevated, proceed through the following steps until there is a positive response:

**FIRST TIER OF THERAPY:**
- Sedation, analgesia, elevate head of bed
- Drain CSF via ventriculostomy if present
- Neuromuscular blockade
- Mannitol or 3% saline
- Hyperventilation to Pco2 of 30–35 mm Hg

If ICP remains elevated, proceed to second-tier therapy (order nonspecified)

**SECOND TIER OF THERAPY:**
- Decompressive craniectomy
- Barbiturate therapy
- Moderate hypothermia (32–34°C)
- Place lumbar drain
- Hyperventilation to Pco2 < 30 mm Hg

**Figure 14–1.** Proposed treatment algorithm for intracranial hypertension in head injury. CSF, cerebrospinal fluid; ICP, intracranial pressure; Pco2, partial pressure of arterial CO2.

interstitium into blood vessels for removal by the kidney, an effect which enhances and prolongs the initial rheologic effects on ICP. Continuous infusion of hypertonic saline can be used to increase serum osmolarity, using the minimum dose to achieve an ICP of less than 20 mm Hg. Serum sodium and osmolarity should be followed closely to avoid severe hypernatremia or severe hypertonicity. Mannitol in doses of 0.25–1 g/kg can also be used for intracranial hypertension unresponsive to sedation. Treatment with mannitol may result in a brisk diuresis, leading to hypovolemia and hypotension that exacerbate secondary injuries, and should be promptly treated with fluid resuscitation and/or vasoressors. Renal failure due to intravascular volume depletion and acute tubular necrosis is a rare side effect and is associated with serum osmolarity greater than 320 mOsm/L.

**Controlled ventilation** is an important element of treating intracranial hypertension. Although acutely effective in causing cerebral vasoconstriction, hyperventilation leads to much larger decreases in blood flow than in blood volume, such that hyperventilation necessary to control ICP may actually compromise CNS perfusion to uninjured brain and exacerbate secondary injury. This concept was confirmed by studies showing worse outcomes in head-injured patients consistently hyperventilated to a Pco2 of 25 mm Hg or less. Hyperventilation to Pco2 levels less than 30 mm Hg—in the past a mainstay in the treatment of intracranial hypertension—should only be used in emergent situations involving patients with acute ICP elevations unresponsive to other measures, such as sedation, paralysis, ventricular drainage, and osmotic diuretics. Mild hyperventilation, to maintain Pco2 between 30 and 35 mm Hg, may be useful for managing intracranial hypertension in patients with severe brain injury. Due to the risks of worsening CNS ischemia, monitoring cerebral perfusion by blood flow studies or jugular bulb saturation is recommended for patients treated with extreme hyperventilation.

Current guidelines suggest the use of barbiturates for treating intracranial hypertension refractory to other measures. Barbiturates suppress cerebral metabolism and, through metabolic auto-regulatory effects, reduce cerebral blood volume and ICP. Although effective in many instances for ICP elevations, these agents are potent cardiac depressants, and their use often leads to hypotension, necessitating the use of a pressor to maintain adequate cerebral and systemic perfusion pressures. In addition, plasma barbiturate levels correlate poorly with effect on ICP, and monitoring of CNS electrical activity by EEG is necessary to accurately titrate their use.

**Temperature regulation** and in particular maintenance of normothermia is essential. Hyperthermia increases cerebral metabolic demand and worsens outcome, and should be promptly recognized and treated with antipyretics and/or surface cooling devices. Induced hypothermia lowers cerebral metabolism, cerebral blood flow, and cerebral blood volume, but has not been shown to improve overall outcome.

**Hemodynamic support** is also crucial in managing patients with traumatic brain injuries. Maintenance of adequate cardiac output and oxygen delivery to the CNS is necessary to optimize chances for recovery from significant
brain injuries. Studies in both adult and pediatric head injury patients show that even a single episode of hypotension is associated with a marked increase in mortality rates. Although age-appropriate thresholds for blood pressure in the context of severe TBI have not been delineated, a rational starting point for therapy would be maintenance of an adequate circulating blood volume, and a blood pressure at least well within the normal range for age.

**Corticosteroids** may be of use in reducing vasogenic cerebral edema surrounding tumors and other inflammatory CNS lesions but in general they have no role in the treatment of traumatic brain injuries or diffuse cerebral edema due to traumatic, ischemic, or metabolic injuries.

### Complications

Complications are frequent in patients with traumatic brain injuries and should be anticipated. **Seizures** occur in approximately 30% of patients with severe head injury, and therefore a short course of empiric antiepileptic medication is frequently used. Single early seizures do not require long-term treatment. Continuous electroencephalography (EEG) should be considered to determine if clinically unrecognized seizures or nonconvulsive status epilepticus are present in patients with persistent altered mental status or in those requiring heavy sedation. **Cerebral herniation** presenting with Cushing triad of bradycardia, hypertension, and altered respirations is a medical emergency requiring intubation, infusion of mannitol, and brief period of hyperventilation while more definitive therapies are implemented. **Cerebral infarctions** may occur as a result of ischemia, thrombosis, and progressive edema compromising blood supply.

### Prognosis

Many factors will affect prognosis of traumatic brain injury patients, especially the inciting event and severity of injury. To date there are no clear methods for definitively predicting outcome, although several studies have shown that the initial GCS score (particularly the motor score), mechanism of injury, or radiologic findings may be useful. Global hypoxic-ischemic events and inflicted brain injury have a worse outcome than uncomplicated, accidental traumatic brain injuries. Lack of improvement in neurological examination at 24–72 hours is associated with poor outcome. Follow-up studies have also demonstrated that “recovery” occurs over time, even months to years.

### Hypoxic-Ischemic Encephalopathy

Hypoxic-ischemic encephalopathy (HIE) is due to global brain hypoxia and ischemia produced by systemic hypoxemia and/or reduced blood flow to the brain. Pediatric HIE is commonly caused by cardiopulmonary arrests due to drowning, severe respiratory distress, shock, drug overdose/poisoning, lethal arrhythmia, and other insults. Pediatric HIE is associated with poor neurologic outcome. Like TBI, the extent of brain injury in HIE depends on the duration and severity of the initial inciting event and the development of secondary injury over the minutes to days following reestablishment of cerebral blood flow and oxygen delivery.

### Clinical Findings

Signs and symptoms of brain injury secondary to hypoxic-ischemic injury are variable and depend on injury severity and affected brain regions. Manifestations of HIE can include cognitive dysfunction, seizures (clinical and subclinical), status epilepticus, stroke, coma, a persistent vegetative state, and brain death.

### Treatment

The initial evaluation of a patient with HIE includes assessment of airway patency, breathing, and cardiovascular stability. The GCS score should be periodically calculated to assess injury progression. As with traumatic brain injuries, treatment strategies for victims of HIE are focused on optimizing cerebral blood flow and mitigating neuronal loss. Blood flow to the brain is dependent on cardiac output, which may be impaired following cardiac arrest and/or injury. Optimization of cardiac function and systemic hemodynamics with fluid resuscitation and inotropic and/or vasopressor agents is necessary to ensure adequate delivery of oxygen and nutrients to the injured brain. Cerebral pressure auto-regulation may also be impaired in children who develop HIE as a result of cardiac arrest. Several studies in adult victims of cardiac arrest suggest that maintaining a higher mean blood pressure may better support the post-ischemic brain, but the degree of pressure dysregulation and blood pressure targets to optimize cerebral blood flow in the ischemic pediatric brain remain unclear. Intracranial hypertension may develop as a result of cerebral edema. The utility of intracranial pressure monitoring and titration of therapies to a normal ICP in HIE patients has not been clearly defined, and this remains an area of substantial variation in practice across pediatric referral centers. Seizures should be aggressively treated, and continuous EEG monitoring is useful for identifying subclinical seizure activity. Temperature regulation and maintenance of normothermia are also essential, since the risk of severe disability in patients with HIE increases with temperatures greater than 38°C. **Therapeutic hypothermia** (target body temperature 33–35°C) is a mainstay of treating postcardiac arrest HIE in adults and post-anoxic HIE in newborns. Application of therapeutic hypothermia to improve neurologic outcome can be considered in children with HIE following cardiac arrest. Currently, clinical data in children are controversial and research evaluating the efficacy of hypothermia in the pediatric population is underway.
Prognosis

Accurately predicting outcome in children with HIE is difficult. While practice parameters for prognosticating neurologic outcome after cardiac arrest in adult patients have been published, no clear roadmap for predicting outcome in pediatric HIE exists. There are, however, several event characteristics, physical examination findings, and tests that have been shown to have a high positive predictive value for poor outcome. A prolonged cardiopulmonary resuscitation (> 10–15 minutes) is a significant risk factor for poor outcome. Other indicators of likely poor outcome include any of the following, 24 hours or more after the inciting event: (1) GCS score less than 3–5, (2) absent pupillary and motor responses, (3) absent spontaneous respiratory effort, (4) bilateral absence of median nerve somatosensory evoked potential (N20), (5) discontinuous, nonreactive, or silent EEG (in the absence of confounding drug administration), (6) MRI imaging demonstrating watershed, basal ganglia, and brainstem injury. Outcome prediction is enhanced when several assessment modalities are combined.

Inflicted Traumatic Brain Injury

Inflicted traumatic brain injury (iTBI), also referred to as nonaccidental trauma (NAT), accounts for a significant portion of traumatic brain injuries in infants and young children. The pathophysiology underlying severe iTBI is often more complex than in accidental head trauma. This is the result of several factors, including (1) sustaining multiple, less severe brain injuries prior to presentation and (2) suffering additional acute global hypoxic-ischemic brain damage as a result of trauma-induced respiratory failure or cardiac arrest. The management of children with iTBI is similar to children with accidental TBI and includes therapies to mitigate secondary brain injuries. Additional evaluations that should be performed include an ophthalmologic assessment for retinal hemorrhages and a radiologic skeletal survey to identify occult bone fractures should be performed. The appropriate child advocacy and law enforcement groups should also be notified when abuse is suspected. Unfortunately, children with inflicted traumatic brain injury often have a worse neurologic outcome compared to accidentally injured children.

Table 14–14. pRIFLE criteria for diagnosis of acute kidney injury in children.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Creatinine Criteria</th>
<th>Urine Output Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (risk)</td>
<td>eCCL down &gt; 25%</td>
<td>&lt; 0.5 cc/kg/h × 8 h</td>
</tr>
<tr>
<td>I (injury)</td>
<td>eCCL down &gt; 50%</td>
<td>&lt; 0.5 cc/kg/h × 16 h</td>
</tr>
<tr>
<td>F (failure)</td>
<td>eCCL down &gt; 75% or &lt; 20 mL/min/m²</td>
<td>&lt; 0.3 cc/kg/h × 24 h or anuria × 12 h</td>
</tr>
<tr>
<td>L (loss)</td>
<td>Meets F criteria for &gt; 4 wk</td>
<td></td>
</tr>
<tr>
<td>E (end stage)</td>
<td>Meets F criteria for &gt; 3 mo</td>
<td></td>
</tr>
</tbody>
</table>


Definitions

The kidney is important in maintaining homeostasis for a number of important physiologic processes, including fluid balance, electrolyte balance, acid-base status, erythropoiesis, and vascular tone. Acute renal failure is a frequent problem in critically ill children, with a range of manifestations from modest reductions in creatinine clearance with preserved urine output to anuria. In recent years, the recognition that renal injury is often undiagnosed led to efforts to develop more consistent diagnostic criteria. The term acute kidney injury (AKI) has been adopted to reflect the broad range of clinically important manifestations of renal failure, and a number of diagnostic scoring systems have been developed. The most widely accepted of these is the pRIFLE system (Table 14–14), which specifies thresholds for increasing degrees of renal injury.

Pathophysiology

The etiology of AKI in pediatric ICU patients is most often multifactorial. Altered renal perfusion is a common contributing factor, due to combinations of systemic hypotension, impaired venous return to the heart (as with heart failure or high intrathoracic pressure), or high intra-abdominal pressures (abdominal compartment syndrome). Sepsis is

Table 14–14. pRIFLE criteria for diagnosis of acute kidney injury in children.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Creatinine Criteria</th>
<th>Urine Output Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (risk)</td>
<td>eCCL down &gt; 25%</td>
<td>&lt; 0.5 cc/kg/h × 8 h</td>
</tr>
<tr>
<td>I (injury)</td>
<td>eCCL down &gt; 50%</td>
<td>&lt; 0.5 cc/kg/h × 16 h</td>
</tr>
<tr>
<td>F (failure)</td>
<td>eCCL down &gt; 75% or &lt; 20 mL/min/m²</td>
<td>&lt; 0.3 cc/kg/h × 24 h or anuria × 12 h</td>
</tr>
<tr>
<td>L (loss)</td>
<td>Meets F criteria for &gt; 4 wk</td>
<td></td>
</tr>
<tr>
<td>E (end stage)</td>
<td>Meets F criteria for &gt; 3 mo</td>
<td></td>
</tr>
</tbody>
</table>

eCCL, estimated creatinine clearance = 0.413 × height (cm)/serum creatinine.
another common contributing factor to AKI. The renal effects of sepsis are thought to be due to disturbances of the renal microvasculature caused by inflammatory mediators and activation of the coagulation system, as well as to sepsis-related alterations in systemic hemodynamics. Nephrotoxic medications contribute to as much as 25% of cases of AKI, most commonly antibiotics (aminoglycosides, vancomycin), and immunosuppressives such as cytotoxic cancer chemotherapeutics and calcineurin inhibitors. Other contributing factors can include hypoxia, pulmonary-renal and hepatorenal syndromes, and toxic metabolic byproducts as in rhabdomyolysis or tumor lysis syndrome.

**Clinical Findings**

In general PICU populations, 10%–30% of patients are found to have or develop AKI, defined as “I” or worse on the pRIFLE scale. Of those who develop AKI, most do so within the first 24–48 hours of hospitalization and almost all within the first week. Importantly, the development of AKI is a strong independent risk factor for increased ICU length of stay and increased mortality. Even after adjusting for severity of illness, AKI is associated with a 2- to 6-fold increase in mortality risk.

One of the most important clinical consequences of AKI is fluid overload. Excess fluid over 10% of body weight is an independent risk factor for increased ICU length of stay and mortality, and patients overloaded by 20% of their body weight in fluid may have as much as an 8-fold increased risk of death. The mechanism behind this association remains unclear, but based on these findings some authorities recommend consideration of renal replacement therapies for patients reaching 10%–20% fluid overload. Other potential clinical consequences of AKI include electrolyte abnormalities, hypertension, and reduced clearance of medications.

**Treatment**

The management of AKI is directed at alleviating potential contributing factors. Methods to improve renal perfusion include maintenance of adequate cardiac output and systemic blood pressure with fluids and/or pressors, and relief of excess intrathoracic and intraabdominal pressures when feasible. Unfortunately, prospectively validated thresholds of adequate renal perfusion pressures to prevent or reverse AKI do not exist. The use of direct renal vasodilators such as dopamine or fenoldopam to increase renal blood flow does not improve outcomes in AKI.

**Diuretics** are commonly used to address fluid overload associated with AKI, but these agents have not been shown to improve renal recovery in children and have been associated with an increased risk of death in adults with AKI. Fluid restriction can be helpful in managing fluid overload and may be of particular benefit in patients with concomitant lung injury.

**Renal replacement therapies** should be considered for serious electrolyte disturbances, drug or toxin overdoses, or when fluid overload associated with AKI is not responsive to fluid restriction and/or diuretic use. Renal replacement modalities include peritoneal dialysis, intermittent hemodialysis, and continuous renal replacement therapy (CRRT), also known as continuous venovenous hemofiltration (CVVH). This latter technique involves sending patient venous blood through an extracorporeal filtration circuit and pump to provide slow, continuous fluid removal and/or dialysis. While the ideal modality depends on the individual clinical situation, recent advances in technology have made CRRT the preferred modality of renal replacement for managing AKI in most pediatric ICU patients. CRRT can be performed as ultrafiltration alone if control of intravascular volume is the primary goal, or CRRT can be performed with a dialysate to allow solute control as well. Advantages of CRRT include (1) in hemodynamically labile patients, a slower continuous rate of fluid removal may be better tolerated and can be more precisely controlled than intermittent dialysis; (2) solute and fluid removal can be regulated separately; and (3) CRRT may allow easing of fluid restrictions so that nutrition can be improved. Disadvantages include the technical complexity of the procedure, including anticoagulation of the circuit, and the need for central venous access. Importantly, despite its growing popularity, no prospective studies have compared CRRT with other modes of renal replacement or demonstrated that early initiation of CRRT improves outcomes in AKI. As a result, the decision to proceed with CRRT should involve a careful assessment of risks and possible benefits in each individual patient.

---

**FLUID MANAGEMENT AND NUTRITIONAL SUPPORT OF THE CRITICALLY ILL CHILD**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Fluid overload is an important predictor of poor outcome in critically ill children.
- Hyponatremia is also common in the PICU and may be associated with worse outcomes.

---


Fluid Management

The majority of critically ill children will be unable to take oral fluids and food, and as a result, the ICU provider must carefully consider the needs of the individual patient in prescribing a fluid and nutrition regimen. Especially in the complex environment of the ICU, the prescription of a fluid and nutrition regimen is a decision that should be approached with the same care as prescription of antibiotics or vasopressors.

Perhaps the most important issue in prescribing fluids is the patient’s overall fluid balance. Standard maintenance IV fluid calculations are based on the assumption of a normotensive, spontaneously breathing patient. Patients presenting with hypovolemia or poor perfusion will usually benefit from an infusion rate greater than maintenance. Additional fluid losses may occur from increased urinary losses (eg, with glucosuria), hemorrhage, or externalized surgical drains. Insensible fluid losses may be elevated due to increased work of breathing or fever. Furthermore, any patient with evidence of hypovolemic shock should have appropriate fluid resuscitation regardless of the continuous fluid rate.

While some patients require administration of large volumes of IV fluid early in their course, PICU patients are more likely to develop fluid overload than hypovolemia. Patients may be oliguric due to AKI or have reduced urine output due to excess ADH secretion, as is seen with certain lung diseases and/or positive pressure ventilation. In addition, mechanically ventilated patients generally require less fluid than non-intubated patients because the ventilator delivers humidified gas and the insensible fluid loss that occurs with normal breathing is greatly reduced. Therefore, maintenance fluid requirements for these patients may be as little as 2/3 that of someone who is not mechanically ventilated. Fluid overload more than 10%–20% of body weight is an independent risk factor for increased length of stay and death in general ICU populations, and fluid overload has been associated with worse outcomes in many critically ill subpopulations, including patients with acute lung injury, traumatic brain injury, and acute renal failure. If systemic hemodynamics will allow, early consideration of fluid restriction and/or diuretic use may be warranted in these situations.

Another important parameter in prescribing fluids in the ICU is the tonicity of the fluid chosen. Hyponatremia has been associated with significant morbidity and mortality in neurocritical care patients, and even mild to moderate abnormalities in serum sodium are associated with worse outcomes in adult ICU patients. For these reasons, in children with acute brain injury (traumatic or hypoxic-ischemic), isotonic maintenance fluids are generally recommended to avoid worsening the risk of cerebral edema. For other children who are also at high risk for cerebral edema or hyponatremia, such as patients with diabetic ketoacidosis or meningitis, it may also be prudent to use isotonic fluid. When using isotonic fluid, close electrolyte monitoring is warranted to avoid the complications of undesired hypernatremia and hyperchloremic acidosis. No matter the choice of fluid, the critical care practitioner should closely monitor the patient’s fluid balance based on physical examination, weight, and laboratory values and modify the fluid management strategy accordingly.

Nutritional Support

When severely ill pediatric patients are admitted to the PICU, initial therapy is directed at the primary or underlying problem and at providing cardiorespiratory and hemodynamic support. Provision of adequate nutritional support is often overlooked early in the course of therapy. Malnutrition is, however, a major problem in hospitalized patients, leading to higher rates of infectious and noninfectious complications as well as longer hospital stays and increased hospital costs. In the pediatric ICU, it is estimated that as many as 20% of patients experience either acute or chronic malnutrition, a rate that is largely unchanged over the past 30 years. The etiology of malnutrition in PICU patients is typically multifactorial, related to increased demands due to the physiologic and metabolic stresses associated with critical illness (Table 14–15), to inaccurate assessments of caloric needs, and to inadequate delivery of nutrition at the bedside.

Nutritional Assessment

Pediatric Registered Dietitians (RDs) are integral members of the PICU team. Early assessment by a pediatric RD can be helpful to establish nutritional requirements and goals and to identify factors impeding adequate nutrition intake and tolerance. The caloric needs of the critically ill child can be estimated beginning with calculations of the basal metabolic rate (BMR) or the resting energy expenditure (REE). BMR represents the energy requirements of a healthy, fasting person who recently awoke from sleep, with normal temperature, and no stress, while REE represents the energy requirements of a healthy person at rest, with
Table 14–15. Physiologic and metabolic responses to severe illness.

<table>
<thead>
<tr>
<th>Physiologic</th>
<th>Pulmonary</th>
<th>Skeletal muscle</th>
<th>Renal</th>
<th>Metabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>Increased cardiac output</td>
<td>Increased minute ventilation</td>
<td>Easier fatigability</td>
<td>Increased insulin</td>
</tr>
<tr>
<td></td>
<td>Peripheral vasodilatation and capillary leak</td>
<td>Ventilation-perfusion mismatch</td>
<td>Slower relaxation</td>
<td>Increased glucocorticoids</td>
</tr>
<tr>
<td></td>
<td>Expansion of vascular compartment</td>
<td>Inefficient gas exchange</td>
<td>Altered force-frequency pattern</td>
<td>Increased catecholamines</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>Increased minute ventilation</td>
<td>Increased CO₂ responsiveness</td>
<td>Increased interleukin-1</td>
<td>Increased interleukin-1</td>
</tr>
<tr>
<td></td>
<td>Ventilation-perfusion mismatch</td>
<td></td>
<td>Increased tumor necrosis factor</td>
<td>Increased tumor necrosis factor</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>Inefficient gas exchange</td>
<td></td>
<td>Carbohydrate metabolism</td>
<td>Increased blood glucose</td>
</tr>
<tr>
<td></td>
<td>Increased CO₂ responsiveness</td>
<td></td>
<td>Increased gluconeogenesis</td>
<td>Increased glucose turnover</td>
</tr>
<tr>
<td>Renal</td>
<td>Increased CO₂ responsiveness</td>
<td></td>
<td>Increased glucose turnover</td>
<td>Glucose intolerance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fat metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased lipid turnover and utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Insuppressible lipolysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Decreased ketogenesis</td>
</tr>
<tr>
<td>Metabolic</td>
<td></td>
<td></td>
<td></td>
<td>Protein metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased muscle protein catabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased muscle branch-chain amino acid oxidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased serum amino acids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased nitrogen losses</td>
</tr>
</tbody>
</table>

Normal temperature and not fasting (Table 14–16). These closely related parameters are for practical purposes used interchangeably, although the REE tends to be approximately 10% above the BMR. The estimated basal metabolic need (BMR or REE) can then be multiplied by a stress factor related to the severity of the patient’s illness to more accurately estimate overall energy requirements. Unfortunately, because these calculations are based on studies of healthy adults and children, they can be very inaccurate for use in critically ill children and lead to underfeeding or overfeeding. For example, studies have demonstrated significant metabolic instability and alterations in resting energy expenditures with a predominance of hypometabolism in the PICU population, resulting in a higher risk of overfeeding when using calculations alone.

Indirect calorimetry (IC) is a more accurate means of directly measuring energy expenditure and determining caloric needs, but it is more difficult and expensive to perform and as a result is not always readily available. Identification of patients at highest risk for malnutrition (Table 14–16) for targeted use of IC assessment has been suggested as one strategy for optimizing the cost-benefit ratio of IC. This technique requires collection of exhaled gases from the patient and can be inaccurate if a significant endotracheal tube leak is present, if the Fio₂ is more than 60%, and during hemodialysis or continuous renal replacement.

Delivery of Nutrition

In adult ICU patients, enteral nutrition is associated with fewer infectious complications than parenteral nutrition. No such comparisons in pediatric patients exist, but it is generally accepted that enteral nutrition is preferred in critically ill children as well. Enteral nutrition is generally well tolerated in hemodynamically stable children, with a goal protein intake of 2–3 g/kg/d. Patients with unstable hemodynamics or requiring vasopressor support may not tolerate full volume enteral feeding, although low-volume continuous “trophic” feeding is generally safe and feasible in all but the most unstable patients and may reduce the incidence of nosocomial infections by protecting GI tract integrity. Use of an enteral feeding protocol and early transpyloric feeding may improve tolerance. Complications of enteral feeding include GI intolerance (vomiting, bleeding, diarrhea, and necrotizing enterocolitis), aspiration events/pneumonia, and mechanical issues (occlusion of tube, errors in tube placement).
Parenteral nutrition should be considered in critically ill children when enteral nutrition cannot be delivered or tolerated within 3–5 days. Although it is common practice to gradually increase the amino acid dose, evidence from preterm neonates shows that it is safe and efficacious to start parenteral amino acids at the target dose. Lipids should be included to decrease carbon dioxide production, minute ventilation, and fat storage, enhance lipid oxidation, augment protein retention, and prevent essential fatty acid deficiency. Hyperglycemia, hypertriglyceridemia, infection, and hepatobiliary abnormalities are all potential complications of parenteral nutrition. Metabolic evaluation (electrolytes, glucose, lipase, and liver function tests) should be performed regularly and the components of parenteral nutrition adjusted as needed.

Regardless of route of nutrition, monitoring should include routine physical examination, serial measures of growth (weight, skinfold thickness), serial monitoring of serum electrolyte and mineral concentrations, and repeated measurements of REE when available. Measurements of serum albumin provide limited information about nutritional status given the multiple other influences on albumin concentrations. Prealbumin and CRP measurements may be helpful, however. Prealbumin levels are a good marker of nutritional protein status; they drop during acute illness and return to normal during recovery. CRP levels are a marker of the acute phase response to illness and injury; they rise during acute illness and drop with recovery, typically in association with a return to anabolic metabolism and before increases in prealbumin.

**Supplementation in Critical Illness**

Pharmaconutrition is an area of ongoing research interest, but little prospective data is available to guide the use of supplements in critically ill children. Glutamine levels decrease during critical illness, and glutamine supplementation may improve GI, metabolic, antioxidant, and immune functions in a stressed state. Some subgroups of critically ill adults may have improved outcomes with glutamine supplementation; studies in critically ill infants and children have been conflicting. Glutamine supplementation in children with burns, trauma, and critical illness should be considered, since it may produce the same benefits as in adults. Arginine is important for immune function, protein synthesis, and tissue repair, and arginine supplementation may improve nitrogen intake and immune function in children with traumatic injuries, including burns.

**Sedation & Analgesia in the Pediatric ICU**

- Pain control and relief of anxiety are standard of care for all patients in the PICU.
- Sedation and analgesia must be individualized for each patient and reassessed frequently to avoid inadequate or excessive medication.
- Every medication has a unique set of physiologic effects and side effects, and should never be used without adequate monitoring and support to address potential adverse events.

Children admitted to the PICU often require anxiolytic and analgesic medications to minimize their discomfort and keep them safe. Sedation and anxiolysis may also be needed to facilitate mechanical ventilation or the performance of procedures, and analgesia may be needed for children suffering postoperative pain or pain related to traumatic injuries. Thus, careful consideration of a patient’s sedative and analgesic needs is a critical part of ICU management.

When determining which anxiolytic and analgesic medications to initiate, the PICU provider should consider the underlying problem and the goals of treatment. It is important to distinguish between anxiety and pain, because pharmacologic therapy may be directed at either or both of these symptoms (Table 14–17). Additional considerations in sedative selection are the route of administration and the anticipated duration of treatment. Routes of administration may be limited by the patient’s intravenous access or ability to tolerate oral medications. Children who will require more frequent dosing or tighter control of sedation level may benefit from a continuous infusion rather than intermittent dosing. Patients undergoing a bedside procedure, on the other hand, may only require a small number of discrete doses. Potential adverse effects are another important consideration in sedative and analgesic selection. For example, a medication known to cause hypotension may not be an optimal choice in a hemodynamically unstable child. Because of the known potential for adverse effects, all children should be appropriately monitored, with resuscitation equipment readily available.

---

**References**


Sedation

Sedative (anxiolytic) medications may be indicated when the goals of treatment are to reduce anxiety, facilitate treatment or diagnostic procedures, manage acute confusional states, and diminish physiologic responses to stress, such as tachycardia, hypertension, or increased ICP. Although many classes of drugs cause sedation, the most commonly used classes in the PICU are the benzodiazepines and the opioids. These should be carefully titrated to effect to avoid over-sedation and resultant respiratory depression and/or hemodynamic instability.

Benzodiazepines

The benzodiazepine class works through the neuroinhibitory transmitter γ-aminobutyric acid (GABA) system, resulting in anxiolysis, sedation, hypnosis, skeletal muscle relaxation and anticonvulsant effects. Benzodiazepines provide little to no analgesia and thus need to be combined with other medications when pain control is required.

Most benzodiazepines are metabolized in the liver, with their metabolites subsequently excreted in the urine; thus, patients in liver failure are likely to have long elimination times. Benzodiazepines can cause respiratory depression if given rapidly in high doses, an important consideration for the nonintubated patient. They can also cause cardiovascular compromise in the critically ill patient, making careful titration of doses essential.

In some children, benzodiazepines can cause a paradoxical effect, producing greater agitation than sedation. In those cases, selection of an alternative agent may be more appropriate than escalation in dose. When overdose is a concern, flumazenil may be used to reverse benzodiazepine effects. Flumazenil must be used with care, however, as its effects generally wear off faster than those of most benzodiazepines. Additionally, in tolerant patients rapid reversal may result in benzodiazepine withdrawal symptoms, including seizures.

The three commonly used benzodiazepines in the PICU include midazolam, lorazepam, and diazepam. Each has differing half-lives, resulting in varying durations of effect, and multiple possible routes of administration. Midazolam has the shortest half-life and produces excellent retrograde amnesia lasting for 20–40 minutes after a single IV dose. Therefore, it can be used for short-term procedural sedation and anxiolysis with single or intermittent doses (IV, oral, intranasal) or for prolonged sedation as a continuous IV infusion. Lorazepam (PO, IV, or intramuscular) has a longer half-life than midazolam (or diazepam) and can achieve sedation for as long as 6–8 hours. It has less effect on the cardiovascular and respiratory systems than other benzodiazepines and is commonly used for short-term sedation or initial treatment of seizures. Continuous infusions of lorazepam should be avoided because its preservative, polyethylene glycol, can accumulate in patients with renal insufficiency and produce a metabolic acidosis. Diazepam has a longer half-life than midazolam and can be administered via IV, oral or rectal routes. It is used most commonly to treat muscle spasticity and seizures. A disadvantage of diazepam in the PICU is the long-half life of its intermediary metabolite, nordiazepam, which may
accumulate and prolong sedation, making diazepam less ideal for short-term sedation.

**Other Sedative Medications**

**Opioids** are strong analgesics that also have sedative effects. They are commonly used as adjuncts in combination with other sedatives such as benzodiazepines. Specific medications are described further in the analgesic medication section below.

**Ketamine** (IV or IM) is a phencyclidine derivative that produces a trance-like state of immobility and amnesia known as dissociative anesthesia. Ketamine does not cause significant respiratory depression at non-anesthetic doses, an advantage for the nonintubated patient. Although it does have negative inotropic effects, this is countered by stimulation of the sympathetic nervous system resulting in an increase in heart rate, blood pressure, and cardiac output for most patients. This effect may make ketamine a good choice for hemodynamically unstable patients. Additionally, ketamine has bronchodilatory properties and, thus, may be an agent of choice for children with status asthmaticus. Finally, it has strong analgesic effects and therefore may be used as a single agent for sedation for painful procedures. The main side effects seen with ketamine are increased salivary and tracheobronchial secretions and unpleasant dreams or hallucinations. Atropine may be administered ahead of time to reduce secretions, and concurrent administration of benzodiazepines may reduce the hallucinatory effects. Although most frequently used for short-term sedation, low-dose continuous infusions may be used in selected patients.

**Dexmedetomidine** is an α₂-adrenoreceptor agonist that produces sedation with minimal respiratory depression and maintains the ability to rouse the patient easily if necessary. Dexmedetomidine does have some analgesic properties as well. These advantages have resulted in increasing use in critically ill children for procedural sedation as well as sedation to facilitate mechanical ventilation. The most frequent side effects observed are dose-related bradycardia and hypotension. Dexmedetomidine is primarily used as a short or long-term continuous infusion.

**Propofol** is an anesthetic IV induction agent with strong sedative effects. Its main advantages are a rapid recovery time and no cumulative effects resulting from its rapid hepatic metabolism. Because propofol has no analgesic properties, an analgesic agent should be concurrently administered for painful procedures. Propofol can cause significant vasodilation, resulting in dose-related hypotension, in addition to dose-dependent respiratory depression. Due to concerns for propofol infusion syndrome, a sudden-onset, profound, and often fatal acidosis associated with prolonged infusions, propofol is now used mostly for procedural or short-term sedation rather than prolonged sedation.

**Barbiturates** (phenobarbital and thiopental) can cause direct myocardial and respiratory depression and are, in general, poor choices for sedation of seriously ill patients. Phenobarbital has a very long half-life (up to 4 days), and recovery from thiopental, although it is a short-acting barbiturate, can be prolonged because remobilization from tissue stores occurs.

**Analgesia**

Opioid and nonopioid analgesics are the mainstay of treatment for acute and chronic pain in the PICU. Although several other medications used for sedation also have analgesic properties, they are uncommonly used for primary treatment of pain.

**A. Opioid Analgesics**

All drugs within the opioid class provide analgesia and have the potential for sedation that is dose-dependent. A range of plasma concentrations produce analgesia without sedation; the dose required to produce adequate analgesia varies significantly between patients. Therefore, the best approach to dosing with opioids is to start with a low-end dose but then titrate to effect, monitoring for side effects. The most common side effects of these agents are nausea, pruritis, slowed intestinal motility, miosis, cough suppression, and urinary retention. Opioids can also cause respiratory depression, particularly in infants. Morphine can cause histamine release leading to pruritus and even hypotension; fentanyl generally has few hemodynamic effects in a volume-replete patient. Opioids are metabolized in the liver, with metabolites excreted in the urine. Thus, patients with hepatic or renal impairment may have prolonged responses to their administration.

The choice and mode of delivery of agents within this class depends upon the physiologic state of the child and the etiology of pain. If the patient is awake and developmentally capable, a patient-controlled analgesia (PCA) approach with an infusion pump may be appropriate. Each of these medications may also be administered intermittently, in which case half-life and tolerability of side effects may be the primary considerations. For many patients in the pediatric ICU, a continuous infusion may be the best option. Several IV medications are commonly used as a continuous infusion or by PCA, including fentanyl, morphine and hydromorphone. For children who have more chronic, less severe pain and who can tolerate oral medications, there are many different options, including codeine, hydrocodone, hydromorphone, morphine, and oxycodone.

**Naloxone** may be used as an opioid reversal agent for narcotic overdoses. Because of its relatively short half-life compared to many opioids, symptoms may recur and repeat dosing may be necessary. Furthermore, caution should be used in patients with chronic opioid exposure to avoid precipitating severe withdrawal symptoms.
B. Nonopioid Analgesics

Nonopioid analgesics used in the treatment of mild to moderate pain include acetaminophen, aspirin, and other nonsteroidal anti-inflammatory drugs (NSAIDs). Because the effects of these agents can be additive with opiates, a combination of opiate and nonopiate medications can be a very effective approach to pain management in the ICU.

Acetaminophen is the most commonly used analgesic in pediatrics in the United States and is the drug of choice for mild to moderate pain because of its low toxicity and lack of effect on bleeding time. With chronic use and higher doses, acetaminophen may cause liver and renal toxicity.

Nonsteroidal anti-inflammatory drugs (NSAID) are reasonable alternatives for the treatment of pain, particularly those conditions associated with inflammation. All NSAIDs carry the risk of gastritis, renal compromise, and bleeding due to inhibition of platelet function. These side effects may limit use in patients with thrombocytopenia, bleeding, and kidney disease. Ketaorolac is the only IV NSAID currently available. It can be very effective for children who cannot take oral medication or require a faster onset of action. Because of the concerns for more serious renal toxicity with longer-term use, ketaorolac is primarily used for shorter-term pain control. Ibuprofen and naproxen are two oral NSAID options for patients who can tolerate oral medications. Ibuprofen has a shorter half-life and therefore requires more frequent dosing.

Titration of Sedative and Analgesic Dosing, Delirium, and Withdrawal Syndromes

Recently, there has been an increasing appreciation of the disadvantages of sedative agents, including short- and long-term cognitive deficits, an increased risk of delirium, and withdrawal syndromes. Daily interruption of all continuous sedation with titrated reintroduction as necessary has been shown in adult ICU patients to dramatically reduce the duration of mechanical ventilation and length of stay in the ICU. Similar data are not yet available for pediatric patients but the untoward effects of sedation in critically ill children remain a concern and, in general, doses of these agents should be titrated downward daily to the minimum required doses.

Standardized scales have been developed to assist in the titration of sedatives and analgesics in children. In the awake and verbal patient, a pain scale can be used to determine the level of pain and need for treatment. In a nonverbal patient, this assessment can be more difficult, and the medical team may need to depend upon changes in physiologic parameters such as heart rate and blood pressure to indicate pain and the effect of treatment. When using these measures, however, the provider should also exclude or address physiologic causes of agitation, such as hypoxemia, hypercapnia, or cerebral hypoperfusion caused by low cardiac output.

Several scoring systems are available to assess the level of sedation and help guide sedation management decisions. These include the Ramsay scale, the COMFORT score, and the State Behavioral Scale (SBS). The SBS is the most recently developed and has been validated for infants and children who are mechanically ventilated. Utilizing such a measurement tool allows for better communication among team members with regard to the goals of treatment and the effectiveness of any changes in sedation plan.

As with adult patients, critically ill children are at risk for developing delirium while in the intensive care unit. Delirium may present with a wide variety of symptoms, commonly grouped as hypoactive or hyperactive. Hyperactive delirium is associated with restlessness, agitation, emotional lability and even combative ness. Hypoactive delirium, on the other hand, may be more difficult to recognize. With hypoactive delirium, patients may be quiet, withdrawn, and apathetic with decreased responsiveness. Parents may notice their child’s personality is quite different from baseline. A newly developed PICU delirium scale (Pediatric Confusion Assessment Method for the ICU, or, pCAM-ICU) may help to better assess for delirium in the PICU population.

In critically ill children, as in adults, the risk of developing delirium appears to increase with severity of illness, administration of sedative medications such as benzodiazepines, and greater sleep disturbances. Preventing delirium completely may be difficult, but suggested strategies include avoiding over-sedation, changing environmental cues between day and night, and ensuring presence of parents and objects familiar to the child. Once delirium is present, returning to as normal a schedule and environment as possible can be very helpful. This includes promoting normal circadian rhythms, for example, greater activity during the day and quiet, dark rooms at night. Maintaining close involvement of family members may also bring reassurance and consistency for the child. Finally, in more extreme situations, treatment with medications can be considered. Antipsychotics may be used intermittently but with caution given their potential side effects. Benzodiazepines may calm the patient but also may induce a paradoxical reaction. Dexmedetomidine has also been proposed as an effective medication for treatment of delirium but this use has not been well studied in the pediatric population.

Withdrawal syndromes are another important aspect of the use of sedative and analgesic agents in the ICU. Long-term administration and high doses of continuous infusions of opioids or benzodiazepines can lead to tolerance and physical dependence. Acute reductions or cessation of these medications can result in withdrawal symptoms such as agitation, tachypnea, tachycardia, sweating, and diarrhea. The risk of withdrawal varies among individuals, but the longer patients receive opiates or benzodiazepines, the more likely they are to have withdrawal symptoms. Gradual tapering of the medication dosage over a period of 7–10 days often effectively prevents withdrawal symptoms. This gradual reduction
may be facilitated by transitioning to intermittent dosing of longer half-life agents, such as methadone or lorazepam. While weaning opiates or benzodiazepines, providers should assess daily for symptoms of withdrawal. This assessment can be facilitated by symptom scores such as the Withdrawal Assessment Tool-1 (WAT-1). A higher WAT-1 score suggests greater withdrawal symptoms and may indicate a need to slow the weaning plan. Conversely, if the WAT-1 score is consistently low, the patient is likely to tolerate the current pace or, possibly, an accelerated course of dose reduction.

**Brain Death**

Severe neurologic injury can result in the irreversible loss of all brain functioning, or brain death. The concept of brain death arose when advances in ICU technologies allowed heart and lung function to be supported even in the absence of any brain activity. Brain death is diagnosed by a clinical examination (Table 14–18) and is based on published guidelines. The general approach in the diagnosis of brain death is similar in most medical centers, but there can be subtle institutional variations. Therefore, it is imperative for PICU providers performing the brain death examination to be familiar with their own institutional policies on brain death declaration. A patient declared brain dead is legally dead and further medical support is no longer indicated, though the timing of discontinuation of medical support should be discussed and agreed upon with the patient’s family.

Brain death is determined through a complete clinical assessment of the patient. First and foremost, the provider must be confident that the patient’s condition is irreversible and must exclude any potentially reversible conditions that may produce signs similar to brain death. These may include hypotension, hypothermia, or the presence of excessive doses of sedating medications. The brain death examination is a formal clinical examination directed at demonstrating the absence of cortical function (flaccid coma without evidence of response to stimuli) and brainstem function (cranial nerve testing). In order to meet the definition of brain death, guidelines require that qualified physicians document two separate clinical examinations consistent with brain death (ie, no evidence of brain function) separated by a
support with escalation as deemed medically reasonable by the healthcare team; (2) continuing current support but not adding any new therapies; (3) withdrawal of life sustaining therapies such as mechanical ventilation and hemodynamic support. The first two options may include a decision to withhold cardiopulmonary resuscitation in the event of a respiratory or cardiac arrest (Do Not Attempt Resuscitation or DNAR). The third option presumes a DNAR but this must be explicitly written in the medical record and communicated to team members.

Discussions with patients and families regarding the decision to limit resuscitation or to withdraw LSMT should respect the following basic principles:

- Discussions should be conducted by experienced personnel with the ability to communicate in a clear and compassionate manner and should occur at an appropriate time and place.

- Cultural needs should be considered prior to major discussions and may include the need for a translator or spiritual guidance.

- Deliberations should begin with a clear statement that the goal is to make decisions in the best interest of the patient, and that the healthcare team can support the patient and family in making reasonable decisions based on that goal.

- Potential options regarding limitations of care or withdrawal of care should be clearly elucidated for the decision-makers.

- Withdrawal of LSMT can be considered when the pain and suffering inflicted by prolonging and supporting life outweighs the potential benefit for the individual. If there is no reasonable chance of recovery, the patient has the right to a natural death in a dignified and pain-free manner.

The healthcare team should emphasize that decisions are not irrevocable; if at any time the family or healthcare providers wish to reconsider the decision, full medical therapy can be reinstituted until the situation is clarified.

Prior to the withdrawal of LSMT, the patient’s family and care team should be prepared for the physiologic process of dying that the child will undergo. Key facets of the process to discuss include the possibility of agonal respirations, which can be disturbing to witness for family members and care providers, as well as the unpredictable length of time that the process may require. Additionally, the fact that patient will ultimately have a cardiopulmonary arrest and a member of the medical team will declare the time of death should be discussed. The family should also be reassured that the patient will be given appropriate doses of medications to treat signs and symptoms of pain or discomfort and that neither they nor the patient will be abandoned by the medical team during this process.

### Table 14-18. Brain death examination.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apnea (“apnea test”)</td>
<td>No respirations seen with Paco₂ &gt; 60 mm Hg and a change in Paco₂ &gt; 20 mm Hg.</td>
</tr>
<tr>
<td>Fixed dilated pupils</td>
<td>With no response to light.</td>
</tr>
<tr>
<td>Absence of corneal reflexes</td>
<td></td>
</tr>
<tr>
<td>Absence of eye movements</td>
<td>Spontaneous, oculocephalic (doll’s eye), or oculovestibular (cold caloric). Do not perform oculocephalic maneuver if there is potential for cervical spine injury.</td>
</tr>
<tr>
<td>Absence of gag and cough reflex</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Consistent throughout observation period as documented by two separate clinical examinations by two different attending physicians.</td>
</tr>
<tr>
<td>Term newborn</td>
<td>30 days old—24 h</td>
</tr>
<tr>
<td>Ancillary testing</td>
<td>Cerebral angiography, radionuclide scanning, electroencephalography, or transcranial Doppler ultrasonography recommended if unable to perform cranial nerve examination or apnea testing due to patient instability or injuries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period of Observation</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term newborn</td>
<td>30 days old—24 h</td>
</tr>
<tr>
<td>Term 1 to 6 years</td>
<td>12 h</td>
</tr>
<tr>
<td>Ancillary testing</td>
<td>Cerebral angiography, radionuclide scanning, electroencephalography, or transcranial Doppler ultrasonography recommended if unable to perform cranial nerve examination or apnea testing due to patient instability or injuries.</td>
</tr>
</tbody>
</table>

**Limitation or Withdrawal of Medical Care**

Most patients who die in the pediatric ICU will do so following a decision to limit or withdraw medical support rather than via a brain death declaration. The discussions leading to these decisions should include the patient (to the extent possible given their medical condition and developmental age), family members, and members of the medical team. The primary goals of these discussions should be (1) to communicate information regarding the patient’s medical status and anticipated prognosis, and (2) to clarify the goals of ongoing medical care both in regard to the patient’s current status and in the event of an acute decompensation. If the opinion of the medical team is that the patient’s condition is likely irreversible, the options for care include (1) continuing current
Palliative Care & Bioethics Consultation

Palliative care teams and ethics consultation services are essential resources to help the healthcare team and families address difficult end-of-life decision-making. For families of children with congenital or chronic diseases, the palliative care team may have established relationships with the patient and family during prior medical episodes. For patients with new conditions or whose prognosis has changed, the palliative care team may be newly introduced in the PICU. In either case, the palliative care team can bring invaluable support and resources for families during end-of-life discussions. If conflict arises, surrounding decisions about limiting medical care, an ethics consultation in the ICU setting can aid the process by helping to identify, analyze, and resolve ethical problems. Ethics consultation can independently clarify views and allow the healthcare team, patient, and family to make decisions that respect patient autonomy and promote maximum benefit and minimal harm to the patient.

A more comprehensive discussion of palliative care can be found elsewhere in this book. Briefly, palliative care medicine has developed as a specialized field of practice to address the needs of dying children or children with a shortened lifespan. Many centers have developed palliative care teams that include medical personnel, social workers, and spiritual leaders to help families navigate the difficult process of dying and end-of-life decision-making, including withdrawal of support. Once the decision is made to limit or withdraw LSMT, a palliative care plan should be agreed on by all decision-makers, clarified to other healthcare providers and instituted with the primary goal of optimizing the patient’s and family’s experience prior to and following death. The plan, at minimum, should address: (1) adequate pain control and sedation, (2) provision of warmth and cleanliness, and (3) ongoing patient and family support and dignity.

Tissue & Organ Donation

Organ transplantation is standard therapy for many pediatric conditions and many children die while awaiting a transplant due to short supply of organs. The gift of organ donation can be a positive outcome for a family from the otherwise tragic loss of their child’s life. The 1986 U.S. Federal Required Request Law mandates that all donor-eligible families be approached about potential organ donation. The decision to donate must be made free of coercion, with informed consent, and without financial incentive. The state organ-procurement agencies provide support and education to care providers and families to make informed decisions.

To be a solid organ donor, the patient must be declared dead and have no conditions contraindicating donation. The most frequent type of solid organ donor in the PICU is a brain dead donor. However, the need for new donor organs has led to the emergence of protocols for procuring solid organs from non-heart-beating donors. Although this practice has been described by many terms including Donation after Cardiac Death, the most recent nomenclature is Donation after Circulatory Determination of Death (DCDD). In these cases, the patient does not meet brain death criteria but has an irreversible disease process, and the family or patient has decided to withdraw life-sustaining therapy and consented to attempted organ donation. In the DCDD process, LSMT is withdrawn and comfort measures are provided as per usual care. The withdrawal of care may take place in the PICU or the operating room without any surgical staff present, depending upon institutional policy. Once the declaring physician has determined cessation of cardiac function, the patient is observed for an additional short time period for auto-resuscitation (the re-initiation of cardiac activity without medical intervention). After this waiting period, the patient is declared dead and the organs are harvested for donation. If the patient does not die within a predetermined time limit following discontinuation of LSMT, comfort measures continue but solid organ donation is abandoned due to unacceptably long ischemic times.

Tissue (heart valves, corneas, skin, and bone) can be donated following a “traditional” cardiac death (no pulse or respirations), brain death, or DCDD.

Bereavement and Grief Support

After any pediatric death, bereavement and grief support for families and healthcare providers are essential components of comprehensive end-of-life care. Families may need information about care of the body after the death, funeral arrangements, and autopsy decisions as well as about educational, spiritual, and other supportive resources available. Members of the medical team may feel their own grief and sense of loss with the death of a patient. These emotions, if not appropriately addressed, can negatively affect their personal and professional lives. Therefore, similar supportive services should be available to healthcare workers caring for dying children.


QUALITY IMPROVEMENT INITIATIVES IN THE PICU

There has been intense interest in quality improvement initiatives in adult and pediatric ICUs in recent years given
the frequency and high cost of ICU-related complications. National collaboratives have identified six areas of focus for pediatric ICU quality and safety improvement efforts: risk adjustment (severity-adjusted mortality rates and length of stay measures), central venous catheter infection, mechanical ventilation, unplanned readmissions to the PICU, pain assessment, and medication safety. The two most widely applied quality initiatives are efforts to reduce central venous catheter-related infections and to reduce the incidence of ventilator-associated pneumonia. Efforts to reduce catheter-related infections have largely focused on implementation of procedure checklists to ensure strict adherence to sterile procedure during catheter insertion, including hand hygiene, barrier precautions and site preparation, as well as sterile practice when accessing the catheter during care. Efforts to reduce ventilator-associated pneumonias include defined order sets ("order bundles") for mechanically ventilated patients specifying patient positioning, oral care, feeding, and endotracheal tube suctioning practices in an effort to reduce contamination of the airway and endotracheal tube with bacterial pathogens from the patient’s GI tract or caregivers. More recent efforts have begun to focus on early identification and treatment of sepsis using defined diagnostic triggers and order sets. Most of the data supporting these interventions have been derived from adult ICU populations, and, to date, few large scale studies have been published documenting efficacy of these measures in the pediatric ICU population. Data that are available suggest that these initiatives are beneficial, although additional studies will likely be needed to refine and optimize these approaches in the pediatric ICU setting.
GENERAL PRINCIPLES

DIAGNOSIS OF SKIN DISORDERS

Examination of the skin requires that the entire surface of the body be palpated and inspected in good light. The onset and duration of each symptom should be recorded, together with a description of the primary lesion and any secondary changes, using the terminology in Table 15–1. In practice, characteristics of skin lesions are described in an order opposite to that shown in the table. Begin with distribution, then configuration, color, secondary changes, and primary changes. For example, guttate psoriasis could be described as “generalized, discrete, red, or scaly papules.”

TREATMENT OF SKIN DISORDERS

Topical Therapy

Treatment should be simple and aimed at preserving normal skin physiology. Topical therapy is often preferred because medication can be delivered in optimal concentrations to the desired site.

Water is an important therapeutic agent, and optimally hydrated skin is soft and smooth. This occurs at approximately 60% environmental humidity. Because water evaporates readily from the cutaneous surface, skin hydration (stratum corneum of the epidermis) is dependent on the water concentration in the air, and sweating contributes little. However, if sweat is prevented from evaporating (eg, in the axilla, groin), local humidity and hydration of the skin are increased. As humidity falls below 15%–20%, the stratum corneum shrinks and cracks; the epidermal barrier is lost and allows irritants to enter the skin and induce an inflammatory response. Decrease of transepidermal water loss will correct this condition. Therefore, dry and scaly skin is treated by using barriers to prevent evaporation (Table 15–2). Oils and ointments prevent evaporation for 8–12 hours, so they must be applied once or twice a day. In areas already occluded (axilla, diaper area), creams or lotions are preferred, but more frequent application may be necessary.

Overhydration (maceration) can also occur. As environmental humidity increases to 90%–100%, the number of water molecules absorbed by the stratum corneum increases and the tight lipid junctions between the cells of the stratum corneum are gradually replaced by weak hydrogen bonds; the cells eventually become widely separated, and the epidermal barrier falls apart. This occurs in immersion foot, diaper areas, axillae, and the like. It is desirable to enhance evaporation of water in these areas by air drying.

Wet Dressings

By placing the skin in an environment where the humidity is 100% and allowing the moisture to evaporate to 60%, pruritus is relieved. Evaporation of water stimulates cold-dependent nerve fibers in the skin, and this may prevent the transmission of the itching sensation via pain fibers to the central nervous system. It also is vasoconstrictive, thereby helping to reduce the erythema and also decreasing the inflammatory cellular response.

The simplest form of wet dressing consists of one set of wet underwear (eg, long johns) worn under dry pajamas. Cotton socks are also useful for hand or foot treatment. The underwear should be soaked in warm (not hot) water and wrung out until no more water can be expressed. Dressings can be worn overnight for a few days up to 1 week. When the condition improves, wet dressings are discontinued.

Topical Glucocorticoids

Twice-daily application of topical corticosteroids is the mainstay of treatment for all forms of dermatitis (Table 15–3).
### Table 15-1. Examination of the skin.

<table>
<thead>
<tr>
<th>Clinical Appearance</th>
<th>Description and Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Primary lesions (first to appear)</strong></td>
<td></td>
</tr>
<tr>
<td>Macule</td>
<td>Any flat circumscribed color change in the skin &lt; 1 cm. Examples: white (vitiligo), brown (junctional nevus), purple (petechia).</td>
</tr>
<tr>
<td>Patch</td>
<td>Any flat circumscribed color change in the skin &gt; 1 cm. Examples: white (nevus depigmentosa), brown (café au lait macule), purple (purpura).</td>
</tr>
<tr>
<td>Papule</td>
<td>A solid, elevated area &lt; 1 cm in diameter whose top may be pointed, rounded, or flat. Examples: acne, warts, small lesions of psoriasis.</td>
</tr>
<tr>
<td>Plaque</td>
<td>A solid, circumscribed area &gt; 1 cm in diameter, usually flat-topped. Example: psoriasis.</td>
</tr>
<tr>
<td>Vesicle</td>
<td>A circumscribed, elevated lesion &lt; 1 cm in diameter and containing clear serous fluid. Example: blisters of herpes simplex.</td>
</tr>
<tr>
<td>Bulla</td>
<td>A circumscribed, elevated lesion &gt; 1 cm in diameter and containing clear serous fluid. Example: bullous impetigo.</td>
</tr>
<tr>
<td>Pustule</td>
<td>A vesicle containing a purulent exudate. Examples: acne, folliculitis.</td>
</tr>
<tr>
<td>Nodule</td>
<td>A deep-seated mass with indistinct borders that elevates the overlying epidermis. Examples: tumors, granuloma annulare. If it moves with the skin on palpation, it is intradermal; if the skin moves over the nodule, it is subcutaneous.</td>
</tr>
<tr>
<td>Wheal</td>
<td>A circumscribed, flat-topped, firm elevation of skin resulting from tense edema of the papillary dermis. Example: urticaria.</td>
</tr>
<tr>
<td><strong>Secondary changes</strong></td>
<td></td>
</tr>
<tr>
<td>Lichenification</td>
<td>Induration of skin with exaggerated skin lines and a shiny surface resulting from chronic rubbing of the skin. Example: chronic atopic dermatitis.</td>
</tr>
<tr>
<td>Erosion and oozing</td>
<td>A moist, circumscribed, slightly depressed area representing a blister base with the roof of the blister removed. Examples: burns, impetigo. Most oral blisters present as erosions.</td>
</tr>
<tr>
<td>Crusts</td>
<td>Dried exudate of plasma on the surface of the skin following disruption of the stratum corneum. Examples: impetigo, contact dermatitis.</td>
</tr>
<tr>
<td>Fissures</td>
<td>A linear split in the skin extending through the epidermis into the dermis. Example: angular cheilitis.</td>
</tr>
<tr>
<td>Scars</td>
<td>A flat, raised, or depressed area of fibrotic replacement of dermis or subcutaneous tissue. Examples: acne scar, burn scar.</td>
</tr>
<tr>
<td>Atrophy</td>
<td>Depression of the skin surface caused by thinning of one or more layers of skin. Example: lichen sclerosus.</td>
</tr>
<tr>
<td><strong>Color</strong></td>
<td>The lesion should be described as white, red, yellow, brown, tan, or blue. Particular attention should be given to the blanching of red lesions. Failure to blanch suggests bleeding into the dermis (petechiae).</td>
</tr>
<tr>
<td><strong>Configuration of lesions</strong></td>
<td></td>
</tr>
<tr>
<td>Annular (circular)</td>
<td>Annular nodules represent granuloma annulare; annular scaly papules are more apt to be caused by dermatophyte infections.</td>
</tr>
<tr>
<td>Linear (straight lines)</td>
<td>Linear papules represent lichen striatus; linear vesicles, incontinentia pigmenti; linear papules with burrows, scabies.</td>
</tr>
<tr>
<td>Grouped</td>
<td>Grouped vesicles occur in herpes simplex or zoster.</td>
</tr>
<tr>
<td>Discrete</td>
<td>Discrete lesions are independent of each other.</td>
</tr>
<tr>
<td><strong>Distribution</strong></td>
<td>Note whether the eruption is generalized, acral (hands, feet, buttocks, face), or localized to a specific skin region.</td>
</tr>
</tbody>
</table>
Topical steroids can also be used under wet dressings. After wet dressings are discontinued, topical steroids should be applied only to areas of active disease. They should never be applied to normal skin to prevent recurrence. Only low-potency steroids (see Table 15–3) are applied to the face or intertriginous areas.


**Characteristics of bases for topical preparations:**

1. Thermolabile, low-residue foam vehicles are cosmetically acceptable and use a novel permeability pathway for delivery.

2. Most greases are triglycerides (eg, Aquaphor, petrolatum, Eucerin).

3. Oils are fluid fats (eg, Alpha Keri, olive oil, mineral oil).

4. True fats (eg, lard, animal fats) contain free fatty acids that cause irritation.

5. Ointments (eg, Aquaphor, petrolatum) should not be used in intertriginous areas such as the axillae, between the toes, and in the perineum, because they increase maceration. Lotions or creams are preferred in these areas.

6. Oils and ointments hold medication on the skin for long periods and are therefore ideal for barriers, prophylaxis, and for dried areas of skin. Medication penetrates the skin more slowly from ointments.

7. Creams carry medication into skin and are preferable for intertriginous dermatitis.

8. Foams, solutions, gels, or lotions should be used for scalp treatments.

### DISORDERS OF THE SKIN IN NEWBORNS

#### TRANSPORT DISEASES IN NEWBORNS

**1. Milia**

Milia are tiny epidermal cysts filled with keratinous material. These 1- to 2-mm white papules occur predominantly on the face in 40% of newborns. Their intraoral counterparts are called Epstein pearls and occur in up to 60%–85% of neonates. These cystic structures spontaneously rupture and exfoliate their contents.
2. Sebaceous Gland Hyperplasia
Prominent white to yellow papules at the opening of pilosebaceous follicles without surrounding erythema—especially over the nose—represent overgrowth of sebaceous glands in response to maternal androgens. They occur in more than half of newborns and spontaneously regress in the first few months of life.

3. Neonatal Acne
Inflammatory papules and pustules with occasional comedones predominantly on the face occur in as many as 20% of newborns. Although neonatal acne can be present at birth, it most often occurs between 2 and 4 weeks of age. Spontaneous resolution occurs over a period of 6 months to 1 year. A rare entity that is often confused with neonatal acne is neonatal cephalic pustulosis. This is a more monomorphic eruption with red papules and pustules on the head and neck that appears in the first month of life. There is associated neutrophilic inflammation and yeasts of the genus Malassezia. This eruption will resolve spontaneously, but responds to topical antiyeast preparations.

4. Harlequin Color Change
A cutaneous vascular phenomenon unique to neonates in the first week of life occurs when the infant (particularly one of low birth weight) is placed on one side. The dependent half develops an erythematous flush with a sharp demarcation at the midline, and the upper half of the body becomes pale. The color change usually subsides within a few seconds after the infant is placed supine but may persist for as long as 20 minutes.

5. Mottling
A lacelike pattern of bluish, reticular discoloration representing dilated cutaneous vessels appears over the extremities and often the trunk of neonates exposed to lowered room temperature. This feature is transient and usually disappears completely on rewarming.

6. Erythema Toxicum
Up to 50% of full-term infants develop erythema toxicum. At 24–48 hours of age, blotchy erythematous macules 2–3 cm in diameter appear, most prominently on the chest but also on the back, face, and extremities. These are occasionally present at birth. Onset after 4–5 days of life is rare. The lesions vary in number from a few up to as many as 100. Incidence is much higher in full-term versus premature infants. The macular erythema may fade within 24–48 hours or may progress to formation of urticarial wheals in the center of the macules or, in 10% of cases, pustules. Examination of a Wright-stained smear of the lesion reveals numerous eosinophils. No organisms are seen on Gram stain. These findings may be accompanied by peripheral blood eosinophilia of up to 20%. The lesions fade and disappear within 5–7 days. Transient neonatal pustular melanosis is a pustular eruption in newborns of African-American descent. The pustules rupture leaving a collarette of scale surrounding a macular hyperpigmentation. Unlike erythema toxicum, the pustules contain mostly neutrophils and often involve the palms and soles.

7. Sucking Blisters
Bullae, either intact or as erosions (representing the blister base) without inflammatory borders, may occur over the forearms, wrists, thumbs, or upper lip. These presumably result from vigorous sucking in utero. They resolve without complications.

8. Miliaria
Obstruction of the eccrine sweat ducts occurs often in neonates and produces one of two clinical scenarios. Superficial obstruction in the stratum corneum causes miliaria crystallina, characterized by tiny (1- to 2-mm), superficial grouped vesicles without erythema over intertriginous areas and adjacent skin (eg, neck, upper chest). More commonly, obstruction of the eccrine duct deeper in the epidermis results in erythematous grouped papules in the same areas and is called miliaria rubra. Rarely, these may progress to pustules. Heat and high humidity predispose the patient to eccrine duct pore closure. Removal to a cooler environment is the treatment of choice.

9. Subcutaneous Fat Necrosis
This entity presents in the first 7 days of life as reddish or purple, sharply circumscribed, firm nodules occurring over the cheeks, buttocks, arms, and thighs. Cold injury is thought to play an important role. These lesions resolve spontaneously over a period of weeks, although in some instances they may calcify. Affected infants should be screened for hypercalcemia.


PIGMENT CELL BIRTHMARKS, NEVI, & MELANOMA
Birthmarks may involve an overgrowth of one or more of any of the normal components of skin (eg, pigment cells, blood vessels, lymph vessels). A nevus is a hamartoma of highly differentiated cells that retain their normal function.
1. Mongolian Spot
A blue-black macule found over the lumbosacral area in 90% of infants of Native-American, African-American, and Asian descent is called a mongolian spot. These spots are occasionally noted over the shoulders and back and may extend over the buttocks. Histologically, they consist of spindle-shaped pigment cells located deep in the dermis. The lesions fade somewhat with time as a result of darkening of the overlying skin, but some traces may persist into adult life.

2. Café au Lait Macule
A café au lait macule is a light brown, oval macule (dark brown on brown or black skin) that may be found anywhere on the body. Café au lait spots over 1.5 cm in greatest diameter are found in 10% of white and 22% of black children. These lesions persist throughout life and may increase in number with age. The presence of six or more such lesions over 1.5 cm in greatest diameter is a major diagnostic criterion for neurofibromatosis type 1 (NF-1). Patients with McCune-Albright syndrome (see Chapter 34) have a large, unilateral café au lait macule.

3. Spitz Nevus
A Spitz nevus presents as a reddish-brown smooth solitary papule appearing on the face or extremities. Histologically, it consists of epithelioid and spindle shaped nevomelanocytes that may demonstrate nuclear pleomorphism. Although these lesions can look concerning histologically, they follow a benign clinical course in most cases.

MELANOCYTIC NEVI
1. Common Moles
Well-demarcated, brown to brown-black macules represent junctional nevi. They can appear in the first years of life and increase with age. Histologically, single and nested melanocytes are present at the junction of the epidermis and dermis. Approximately 20% may progress to compound nevi—papular lesions with melanocytes both in junctional and intradermal locations. Intradermal nevi are often lighter in color and can be fleshy and pedunculated. Melanocytes in these lesions are located purely within the dermis. Nevi look dark blue (blue nevi) when they contain more deeply situated spindle-shaped melanocytes in the dermis.

2. Melanoma
Melanoma in prepubertal children is very rare. Pigmented lesions with variegated colors (red, white, blue), notched borders, asymmetrical shape, and very irregular or ulcerated surfaces should prompt suspicion of melanoma. Ulceration and bleeding are advanced signs of melanoma. If melanoma is suspected, wide local excision and pathologic examination should be performed.

3. Congenital Melanocytic Nevi
One in 100 infants is born with a congenital nevus. Congenital nevi tend to be larger and darker brown than acquired nevi and may have many terminal hairs. If the pigmented plaque covers more than 5% of the body surface area, it is considered a giant or large congenital nevus; these large nevi occur in 1 in 20,000 infants. Other classification systems characterize lesions over 20 cm as large. Often the lesions are so large they cover the entire trunk (bathing trunk nevi). Histologically, they are compound nevi with melanocytes often tracking around hair follicles and other adnexal structures deep in the dermis. The risk of malignant melanoma in small congenital nevi is controversial in the literature, but most likely very low, and similar to that of acquired nevi. Transformation to malignant melanoma in giant congenital nevi has been estimated between 1% and 5%. Of note, these melanomas often develop early in life (before puberty) and in a dermal location. Two-thirds of melanomas in children with giant congenital nevi develop in areas other than the skin.


VASCULAR BIRTHMARKS
1. Capillary Malformations

Capillary malformations are an excess of capillaries in localized areas of skin. The degree of excess is variable. The color of these lesions ranges from light red-pink to dark red.

Nevus simplex are the light red macules found over the nape of the neck, upper eyelids, and glabella of newborns. Fifty percent of infants have such lesions over their necks. Eyelid and glabellar lesions usually fade completely within the first year of life. Lesions that occupy the total central forehead area usually do not fade. Those on the neck persist into adult life.

Port-wine stains are dark red macules appearing anywhere on the body. A bilateral facial port-wine stain or one covering the entire half of the face may be a clue to Sturge-Weber syndrome, which is characterized by seizures, mental
retardation, glaucoma, and hemiplegia (see Chapter 25). Most infants with smaller, unilateral facial port-wine stains do not have Sturge-Weber syndrome. Similarly, a port-wine stain over an extremity may be associated with hypertrophy of the soft tissue and bone of that extremity (Klippel-Trénaunay syndrome).

**Treatment**

The pulsed dye laser is the treatment of choice for infants and children with port-wine stains.

**2. Hemangioma**

**Clinical Findings**

A red, rubbery vascular plaque or nodule with a characteristic growth pattern is a hemangioma. The lesion is often not present at birth but is represented by a permanent blanched area on the skin that is supplanted at age 2–4 weeks by red papules. Hemangiomas then undergo a rapid growth or “proliferative” phase, where growth of the lesion is out of proportion to growth of the child. At 9–12 months, growth stabilizes, and the lesion slowly involutes over the next several years. Histologically, hemangiomas are benign tumors of capillary endothelial cells. They may be superficial, deep, or mixed. The terms *strawberry* and *cavernous* are misleading and should not be used. The biologic behavior of a hemangioma is the same despite its location. Fifty percent reach maximal regression by age 5 years, 70% by age 7 years, and 90% by age 9 years, leaving redundant skin, hypopigmentation, and telangiectasia. Local complications include superficial ulceration and secondary pyoderma. Rare complications include obstruction of vital structures such as the orbit or airway.

**Treatment**

Complications that require immediate treatment are (1) visual obstruction (with resulting amblyopia), (2) airway obstruction (hemangiomas of the head and neck ["beard hemangiomas"] may be associated with subglottic hemangiomas), and (3) cardiac decompensation (high-output failure). Historically, the preferred treatment for complicated hemangiomas has been prednisolone, 2–3 mg/kg orally daily for 6–12 weeks. Currently, oral propranolol (2 mg/kg/d divided BID) has replaced systemic steroids as the treatment of choice at most institutions. Reported side effects are sleep disturbance, hypoglycemia, and bradycardia. Recommendations on pretreatment cardiac evaluation vary between institutions. Interferon α2b has also been used to treat serious hemangiomas. However, 10% of patients with hemangiomas treated with interferon α2b have developed spastic diplegia, and its use is very limited. If the lesion is ulcerated or bleeding, pulsed dye laser treatment is indicated to initiate ulcer healing and immediately control pain. The Kasabach-Merritt syndrome, characterized by platelet trapping with consumption coagulopathy, does not occur with solitary cutaneous hemangiomas. It is seen only with internal hemangiomas or the rare vascular tumors such as kaposiform hemangioendotheliomas and tufted angiomas.

**3. Lymphatic Malformations**

Lymphatic malformations may be superficial or deep. Superficial lymphatic malformations present as fluid-filled vesicles often described as resembling “frog spawn.” Deep lymphatic malformations are rubbery, skin-colored nodules occurring most commonly in the head and neck. They often result in grotesque enlargement of soft tissues. Histologically, they can be either macrocystic or microcystic.

**Treatment**

Therapy includes sclerotherapy with injection of picibanil, or doxycycline, radiotherapy, or surgical excision.

**EPIDERMAL BIRTHMARKS**

**1. Epidermal Nevus**

**Clinical Findings**

The majority of these birthmarks present in the first year of life. They are hamartomas of the epidermis that are warty to papillomatous plaques, often in a linear array. They range in color from skin-colored to dirty yellow to brown. Histologically they show a thickened epidermis with hyperkeratosis. The condition of widespread epidermal nevi associated with other developmental anomalies (central nervous system, eye, and skeletal) is called the epidermal nevus syndrome.

**Treatment**

Treatment once or twice daily with topical calcipotriene may flatten some lesions. The only definitive cure is surgical excision.

**2. Nevus Sebaceus**

**Clinical Findings**

This is a hamartoma of sebaceous glands and underlying apocrine glands that is diagnosed by the appearance at birth of a yellowish, hairless plaque in the scalp or on the face. The lesions can be contiguous with an epidermal nevus on the face, and widespread lesions can constitute part of the epidermal nevus syndrome.
Histologically, nevus sebaceus represents an overabundance of sebaceous glands without hair follicles. At puberty, with androgenic stimulation, the sebaceous cells in the nevus divide, expand their cellular volume, and synthesize sebum, resulting in a warty mass.

**Treatment**

Because it has been estimated that approximately 15% of these lesions will develop secondary epithelial tumors, including basal cell carcinomas (BCC), trichoblastomas, and other benign tumors, surgical excision at puberty is recommended by most experts. The majority of the tumors develop in adulthood, although BCCs have been reported in childhood and adolescence.

**CONNECTIVE TISSUE BIRTHMARKS (JUVENILE ELASTOMA, COLLAGENOMA)**

**Clinical Findings**

Connective tissue nevi are smooth, skin-colored papules 1–10 mm in diameter that are grouped on the trunk. A solitary, larger (5–10 cm) nodule is called a shagreen patch and is histologically indistinguishable from other connective tissue nevi that show thickened, abundant collagen bundles with or without associated increases of elastic tissue. Although the shagreen patch is a cutaneous clue to tuberous sclerosis (see Chapter 25), the other connective tissue nevi occur as isolated events.

**Treatment**

These nevi remain throughout life and need no treatment.

**HEREDITARY SKIN DISORDERS**

1. **Ichthyosis**

Ichthyosis is a term applied to several diseases characterized by the presence of excessive scales on the skin. These disorders represent a large and heterogeneous group of genetic and acquired defects of cornification of the skin. Classification of these diseases is clinically based, although the underlying genetic causes and pathophysiologic mechanisms responsible continue to be elucidated.

Disorders of keratinization are characterized as syndromic when the phenotype is expressed in the skin and other organs, or nonsyndromic when only the skin is affected. Ichthyoses may be inherited or acquired. Inherited disorders are identified by their underlying gene defect if known. Acquired ichthyosis may be associated with malignancy and medications, or a variety of autoimmune, inflammatory, nutritional, metabolic, infectious, and neurologic diseases. These disorders are diagnosed by clinical examination, with supportive findings on skin biopsy (including electron microscopy) and mutation analysis if available.

**2. Epidermolysis Bullosa**

This is a group of heritable disorders characterized by skin fragility with blistering. Four major subtypes are recognized, based on the ultrastructural level of skin cleavage (Table 15–4).

For the severely affected, much of the surface area of the skin may have blisters and erosions, requiring daily wound care and dressings. These children are prone to frequent skin infections, anemia, growth problems, mouth erosions and esophageal strictures, and chronic pain issues. They are also at increased risk of squamous cell carcinoma, a common cause of death in affected patients.

**Treatment**

Treatment consists of protection of the skin with topical emollients as well as nonstick dressings. The other medical needs and potential complications of the severe forms of epidermolysis bullosa require a multidisciplinary approach. For the less severe types, protecting areas of greatest trauma with padding and dressings as well as intermittent topical or oral antibiotics for superinfection are appropriate treatments. If hands and feet are involved, reducing skin friction with 5% glutaraldehyde every 3 days is helpful.

**ACNE**

Acne affects 85% of adolescents. The onset of adolescent acne is between ages 7 and 10 years in 40% of children. The early lesions are usually limited to the face and are primarily closed comedones.

**Pathogenesis**

The primary event in acne formation is obstruction of the sebaceous follicle and subsequent formation of the microcomedo (not evident clinically). This is the precursor to all future
Table 15–4. Major epidermolysis bullosa subtypes.

<table>
<thead>
<tr>
<th>Cleavage Level</th>
<th>Common Name</th>
<th>Targeted Protein(s)</th>
<th>Inheritance Pattern</th>
<th>Characteristic Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suprabasilar</td>
<td>Epidermolysis Bullosa Superficialis</td>
<td>Unknown</td>
<td>Autosomal dominant</td>
<td>Superficial erosions at birth; rare to no blistering</td>
</tr>
<tr>
<td>Suprabasilar</td>
<td>Plakophilin-deficient EB, Lethal acantholytic EB</td>
<td>Plakophilin, Desmoplakin</td>
<td>Autosomal recessive</td>
<td>Similar to above</td>
</tr>
<tr>
<td>Basilar</td>
<td>Epidermolysis bullosa simplex</td>
<td>Keratin 5 and 14</td>
<td>Autosomal dominant</td>
<td>Palm and sole blistering presents in early childhood with trauma</td>
</tr>
<tr>
<td>Basilar</td>
<td>EB simplex with muscular dystrophy</td>
<td>Plectin</td>
<td>Autosomal recessive</td>
<td>Blisters, muscular dystrophy</td>
</tr>
<tr>
<td>Basilar</td>
<td>EB with pyloric atresia</td>
<td>α-6 β-4 integrin</td>
<td>Autosomal recessive</td>
<td>Blisters, pyloric atresia</td>
</tr>
<tr>
<td>Junctional (within the basement membrane zone)</td>
<td>Junctional EB—Herlitz or non-Herlitz</td>
<td>Laminin 5, α-6 β-4 integrin, type XVII collagen</td>
<td>Autosomal recessive</td>
<td>Severe generalized blistering, oral involvement</td>
</tr>
<tr>
<td>Sub-basilar</td>
<td>Dystrophic EB or “dermolytic” EB</td>
<td>Type VII collagen</td>
<td>Autosomal dominant or recessive</td>
<td>Severe blisters and scarring</td>
</tr>
</tbody>
</table>

Differential Diagnosis

Consider rosacea, nevus comedonicus, flat warts, miliaria, molluscum contagiosum, and the angiofibromas of tuberous sclerosis.

Treatment

Different treatment options are listed in Table 15–5. Recent data have indicated that combination therapy that targets multiple pathogenic factors increases the efficacy of treatment and rate of improvement.

A. Topical Keratolytic Agents

Topical keratolytic agents address the plugging of the follicular opening with keratinocytes and include retinoids, benzoyl peroxide, and azelaic acid. The first-line treatment for both comedonal and inflammatory acne is a topical retinoid (tretinoin [retinoic acid], adapalene, and tazarotene). These are the most effective keratolytic agents and have been shown to prevent the microcomedone. These topical agents may be used once daily, or the combination of a retinoid applied to acne-bearing areas of the skin in the evening and a benzoyl peroxide gel or azelaic acid applied in the morning may be used. This regimen will control 80%–85% of cases of adolescent acne.

B. Topical Antibiotics

Topical antibiotics are less effective than systemic antibiotics and at best are equivalent in potency to 250 mg of tetracycline orally once a day. One percent clindamycin phosphate...
solution is the most efficacious topical antibiotic. Most *P. acnes* strains are now resistant to topical erythromycin solutions. Topical antibiotic therapy alone should never be used. Multiple studies have shown a combination of benzoyl peroxide or a retinoid and a topical antibiotic are more effective than the antibiotic alone. Benzoyl peroxide has been shown to help minimize the development of bacterial resistance at sites of application. The duration of application of topical antimicrobials should be limited unless benzoyl peroxide is used. Several combination products (benzoyl peroxide and clindamycin, tretinoin and clindamycin, adapalene and benzoyl peroxide) are available which may simplify the treatment regimen and increase patient compliance.

### C. Systemic Antibiotics

Antibiotics that are concentrated in sebum, such as tetracycline, minocycline, and doxycycline, should be reserved for moderate to severe inflammatory acne. The usual dose of tetracycline is 0.5–1.0 g divided twice a day on an empty stomach; minocycline and doxycycline 50–100 mg taken once or twice daily can be taken with food. Monotherapy with oral antibiotics should never be used. Recent recommendations are that oral antibiotics should be used for a finite time period, and then discontinued as soon as there is improvement in the inflammatory lesions. The tetracycline antibiotics should not be given to children younger than 8 years of age due to the effect on dentition (staining of teeth).

Doxycycline may induce significant photosensitivity, and minocycline can cause bluish-gray dyspigmentation of the skin, vertigo, headaches, and drug-induced lupus. These antibiotics have anti-inflammatory effects in addition to decreasing *P. acnes* in the follicle.

### D. Oral Retinoids

An oral retinoid, 13-cis-retinoic acid (isotretinoin; Accutane), is the most effective treatment for severe cystic acne. The precise mechanism of its action is unknown, but apoptosis of sebocytes, decreased sebaceous gland size, decreased sebum production, decreased follicular obstruction, decreased skin bacteria, and general anti-inflammatory activities have been described. The initial dosage is 0.5–1 mg/kg/d. This therapy is reserved for severe nodulocystic acne, or acne recalcitrant to aggressive standard therapy. Side effects include dryness and scaling of the skin, dry lips, and, occasionally, dry eyes and dry nose. Fifteen percent of patients may experience some mild achiness with athletic activities. Up to 10% of patients experience mild, reversible hair loss. Elevated liver enzymes and blood lipids have rarely been described. Acute depression may occur. Isotretinoin is teratogenic in young women of childbearing age. Because of this and the other side effects, it is not recommended unless strict adherence to the Food and Drug Administration (FDA) guidelines is ensured. The FDA has implemented a strict registration program (iPLEDGE) that must be used to obtain isotretinoin.

### E. Other Acne Treatments

Hormonal therapy (oral contraceptives) is often an effective option for girls who have perimenstrual flares of acne or have not responded adequately to conventional therapy. Adolescents with endocrine disorders such as polycystic ovary syndrome also see improvement of their acne with hormonal therapy. Oral contraceptives can be added to a conventional therapeutic regimen and should always be used in female patients who are prescribed oral isotretinoin unless absolute contraindications exist. There is growing data regarding the use of light, laser, and photodynamic therapy in acne. However, existing studies are of variable quality, and although there is evidence to suggest that these therapies offer benefit in acne, the evidence is not sufficient to recommend any device as monotherapy in acne.

### F. Patient Education and Follow-Up Visits

The multifactorial pathogenesis of acne and its role in the treatment plan must be explained to adolescent patients. Good general skin care includes washing the face consistently and using only oil-free, noncomedogenic cosmetics, face creams, and hair sprays. Acne therapy takes 8–12 weeks to produce improvement, and this delay must be stressed to the patient. Realistic expectations should be encouraged.

<table>
<thead>
<tr>
<th>Table 15-5. Acne treatment.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type of Lesion</strong></td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Comedonal acne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Papular inflammatory acne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pustular inflammatory acne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Nodulocystic acne</td>
</tr>
</tbody>
</table>
in the adolescent patient because no therapy will eradicate all future acne lesions. A written education sheet is useful. Follow-up visits should be made every 12–16 weeks. An objective method to chart improvement should be documented by the provider, because patients’ assessment of improvement tends to be inaccurate.


**BACTERIAL INFECTIONS OF THE SKIN**

1. **Impetigo**

Erosions covered by honey-colored crusts are diagnostic of impetigo. Staphylococci and group A streptococci are important pathogens in this disease, which histologically consists of superficial invasion of bacteria into the upper epidermis, forming a subcorneal pustule.

**Treatment**

Impetigo should be treated with an antimicrobial agent effective against *Staphylococcus aureus* (β-lactamase-resistant penicillins or cephalosporins, clindamycin, amoxicillin–clavulanate) for 7–10 days. Topical mupirocin and fusidic acid (three times daily) are also effective.

2. **Bullous Impetigo**

All impetigo is bullous, with the blister forming just beneath the stratum corneum, but in “bullous impetigo” there is, in addition to the usual erosion covered by a honey-colored crust, a border filled with clear fluid. Staphylococci may be isolated from these lesions, and systemic signs of circulating exfoliatin are absent. Bullous impetigo lesions can be found anywhere on the skin, but a common location is the diaper area.

**Treatment**

Treatement with oral antistaphylococcal drugs for 7–10 days is effective. Application of cool compresses to debride crusts is a helpful symptomatic measure.

3. **Ecthyma**

Ecthyma is a firm, dry crust, surrounded by erythema that exudes purulent material. It represents invasion by group A β-hemolytic streptococci through the epidermis to the superficial dermis. This should not be confused with ecthyma gangrenosum. Lesions of ecthyma gangrenosum may be similar in appearance, but they are seen in a severely ill or immunocompromised patient and are due to systemic dissemination of bacteria, usually *Pseudomonas aeruginosa*, through the bloodstream.

4. **Cellulitis**

Cellulitis is characterized by erythematous, hot, tender, ill-defined, edematous plaques accompanied by regional lymphadenopathy. Histologically, this disorder represents invasion of microorganisms into the lower dermis and sometimes beyond, with obstruction of local lymphatics. Group A β-hemolytic streptococci and coagulase-positive staphylococci are the most common causes; pneumococci and *Haemophilus influenzae* are rare causes. Staphylococcal infections are usually more localized and more likely to have a purulent center; streptococcal infections spread more rapidly, but these characteristics cannot be used to specify the infecting agent. An entry site of prior trauma or infection (eg, variella) is often present. Septicemia is a potential complication.

**Treatment**

Treatment is with an appropriate systemic antibiotic.

5. **Folliculitis**

A pustule at a follicular opening represents folliculitis. Deeper follicular infections are called furuncles (single follicle) and carbuncles (multiple follicles). Staphylococci and streptococci are the most frequent pathogens. Lesions are painless and tend to occur in crops, usually on the buttocks and extremities in children. Methicillin-resistant *Staphylococcus aureus* (MRSA) is now an increasing cause of folliculitis and skin abscesses. Cultures of persistent or recurrent folliculitis for MRSA are advisable.

**Treatment**

Treatment consists of measures to remove follicular obstruction—either warm, wet compresses for 24 hours or keratolytics such as those used for acne. Topical or oral antistaphylococcal antibiotics may be required.

6. **Abscess**

An abscess occurs deep in the skin, at the bottom of a follicle or an apocrine gland, and is diagnosed as an erythematous, firm, acutely tender nodule with ill-defined borders. Staphylococci are the most common organisms.
Treatment

Treatment consists of incision and drainage and may require adjuvant systemic antibiotics. Recent studies have suggested that incision and drainage alone may be adequate for uncomplicated MRSA skin abscesses in otherwise healthy patients.

7. Scalded Skin Syndrome

This entity consists of the sudden onset of bright red, acutely painful skin, most obvious periorally, periorbitally, and in the flexural areas of the neck, the axillae, the popliteal and antecubital areas, and the groin. The slightest pressure on the skin results in severe pain and separation of the epidermis, leaving a glistening layer (the stratum granulosum of the epidermis) beneath. The disease is caused by a circulating toxin (exfoliatin) elaborated by phage group II staphylococci. Exfoliatin binds to desmoglein-1 resulting in a separation of cells in the granular layer. The causative staphylococci may be isolated not from the skin but rather from the nasopharynx, an abscess, sinus, blood culture, joint fluid, or other focus of infection.

Treatment

Treatment is with systemic antistaphylococcal drugs.


Fungal infections of the skin

1. Dermatophyte infections

Dermatophytes become attached to the superficial layer of the epidermis, nails, and hair, where they proliferate. Fungal infection should be suspected with any red and scaly lesion.

Classification & Clinical Findings

A. Tinea Capitis

Thickened, broken-off hairs with erythema and scaling of underlying scalp are the distinguishing features (Table 15–6). Hairs are broken off at the surface of the scalp, leaving a “black dot” appearance. Diffuse scaling of the scalp and pustules are also seen. A boggy, fluctuant mass on the scalp called a kerion, represents an exaggerated host response to the organism. Microsporum canis and Trichophyton tonsurans are the cause. Fungal culture should be performed in all cases of suspected tinea capitis.

B. Tinea Corporis

Tinea corporis presents either as annular marginated plaques with a thin scale and clear center or as an annular confluent dermatitis. The most common organisms are Trichophyton mentagrophytes, Trichophyton rubrum, and M canis. The diagnosis is made by scraping thin scales from the border of the lesion, dissolving them in 20% potassium hydroxide (KOH), and examining for hyphae.

C. Tinea Cruris

Symmetrical, sharply marginated lesions in inguinal areas occur with tinea cruris. The most common organisms are T rubrum, T mentagrophytes, and Epidermophyton floccosum.

D. Tinea Pedis

The diagnosis of tinea pedis is becoming more common in the prepubertal child, although it is still most commonly seen in postpubertal males. Presentation is with red scaly soles, blisters on the instep of the foot, or fissuring between the toes. T rubrum and T mentagrophytes are the cause.

E. Tinea Unguium (Onychomycosis)

Loosening of the nail plate from the nail bed (onycholysis), giving a yellow discoloration, is the first sign of fungal invasion of the nails. Thickening of the distal nail plate then occurs, followed by scaling and a crumbly appearance of the entire nail plate surface. T rubrum is the most common cause. The diagnosis is confirmed by KOH examination and fungal culture. Usually only one or two nails are involved. If every nail is involved, psoriasis, lichen planus, or idiopathic trachonychia is a more likely diagnosis than fungal infection.

Treatment

The treatment of dermatophytosis is quite simple: If hair is involved, systemic therapy is necessary. Griseofulvin and terbinafine are both effective. Terbinafine does not work for Microsporum canis. Topical antifungal agents do not enter hair or nails in sufficient concentration to clear the infection. The absorption of griseofulvin from the gastrointestinal...
tract is enhanced by a fatty meal; thus, whole milk or ice cream taken with the medication increases absorption. The dosage of griseofulvin is 20 mg/kg/d (maximum 500 mg/dose). With hair infections, cultures should be done every 4 weeks, and treatment should be continued for 4 weeks following a negative culture result. The side effects are few, and the drug has been used successfully in the newborn period. Terbinafine dosing is (62.5 mg/d, < 20 kg–125 mg/d, 20–40 kg–250 mg/d, > 40 kg). For nails, daily administration of topical ciclopirox 8% (Penlac nail lacquer) can be considered, as can terbinafine for 6–12 weeks or pulsed-dose itraconazole (50 mg/twice a day < 20 kg–100 mg/twice a day, 20–40 kg–200 mg/twice a day, > 40 kg) given in three 1-week pulses separated by 3 weeks.

Tinea corporis, tinea pedis, and tinea cruris can be treated effectively with topical medication after careful inspection to make certain that the hair and nails are not involved. Treatment with any of the imidazoles, allylamines, benzylamines, or ciclopirox applied twice daily for 3–4 weeks is recommended.


2. Tinea Versicolor

Tinea versicolor is a superficial infection caused by Malassezia globosa, a yeastlike fungus. It characteristically causes polycyclic connected hypopigmented macules and very fine scales in areas of sun-induced pigmentation. In winter, the polycyclic macules appear reddish brown.

 Treatment

Treatment consists of application of selenium sulfide (Selsun), 2.5% suspension, zinc pyrithione shampoo, or topical antifungals. Selenium sulfide and zinc pyrithione shampoo should be applied to the whole body and left on overnight. Treatment can be repeated again in 1 week and then monthly thereafter. It tends to be somewhat irritating, and the patient should be warned about this difficulty. Topical antifungals are applied twice a day for 1–2 weeks. Fluconazole 400 mg single dose may also be used.

3. Candida albicans Infections (See also Chapter 43)

Clinical Findings

Candida albicans causes diaper dermatitis; thick, white patches on the oral mucosa (thrush); fissures at the angles of the mouth (perleche); and periungual erythema and nail plate abnormalities (chronic paronychia). Candida dermatitis is characterized by sharply defined erythematous patches, sometimes with eroded areas. Pustules, vesicles, or papules may be present as satellite lesions. Similar infections may be found in other moist areas, such as the axillae and neck folds. This infection is more common in children who have recently received antibiotics.

 Treatment

A topical imidazole cream is the drug of first choice for C albicans infections. In diaper dermatitis, the cream form can be applied twice a day. In oral thrush, nystatin suspension should be applied directly to the mucosa with the parent’s finger or a cotton-tipped applicator. In candidal paronychia, the antifungal agent is applied over the area, covered with occlusive plastic wrapping, and left on overnight after the application is made airtight. Refractory candidiasis will respond to a brief course of oral fluconazole.

VIRAL INFECTIONS OF THE SKIN (SEE ALSO CHAPTER 40)

1. Herpes Simplex Infection

Clinical Findings

Painful, grouped vesicles or erosions on a red base suggest herpes simplex. Rapid immunofluorescent tests for herpes simplex virus (HSV) and varicella-zoster virus (VZV) are available. A Tzanck smear is done by scraping a vesicle base with a No. 15 blade, smearing on a glass slide, and staining the epithelial cells with Wright stain. The smear is positive if epidermal multinucleated giant cells are visualized. A positive Tzanck smear indicates herpesvirus infection (HSV or VZV). In infants and children, lesions resulting from herpes simplex type 1 are seen most commonly on the gingiva, lips, and face. Involvement of a digit (herpes whitlow) will occur if the child sucks the thumb or fingers. Herpes simplex type 2 lesions are seen on the genitalia and in the mouth in adolescents. Cutaneous dissemination of herpes simplex occurs in patients with atopic dermatitis (eczema herpeticum) and appears clinically as very tender, punched-out erosions among the eczematous skin changes.

 Treatment

The treatment of HSV infections is discussed in Chapter 46.

2. Varicella-Zoster Infection

Clinical Findings

Grouped vesicles in a dermatome, usually on the trunk or face, suggest varicella-zoster reactivation. Zoster in children may not be painful and usually has a mild course. In patients with compromised host resistance, the appearance of an erythematous border around the vesicles is a good prognostic sign. Conversely, large bullae without a tendency to crusting and systemic illness imply a poor host response to the virus.
Varicella-zoster and herpes simplex lesions undergo the same series of changes: papule, vesicle, pustule, crust, slightly depressed scar. Lesions of primary varicella appear in crops, and many different stages of lesions are present at the same time (eg, papules), eccentically placed vesicles on an erythematous base (“dew drop” on a rose petal), erosions, and crusts.

**Treatment**
The treatment of VZV infections is discussed in Chapter 46.

### 3. Human Immunodeficiency Virus Infection (See also Chapter 41)

#### Clinical Findings
The average time of onset of skin lesions after perinatally acquired HIV infection is 4 months; after transfusion-acquired infection, it is 11 months. Persistent oral candidiasis and recalcitrant candidal diaper rash are the most frequent cutaneous features of infantile HIV infection. Severe or recurrent herpetic gingivostomatitis, varicella zoster infection, and molluscum contagiosum infection occur. Recurrent staphylococcal pyoderma, tinea of the face, and onychomycosis are also observed. A generalized dermatitis with features of seborrhea (severe cradle cap) is extremely common. In general, persistent, recurrent, or extensive skin infections should make one suspicious of HIV infection.

**Treatment**
The treatment of HIV infections is discussed in Chapter 46.

### VIRUS-INDUCED TUMORS

#### 1. Molluscum Contagiosum
Molluscum contagiosum is a poxvirus that induces the epidermis to proliferate, forming a pale papule. Molluscum contagiosum consists of umbilicated, flesh-colored papules in groups anywhere on the body. They are common in infants and preschool children, as well as sexually active adolescents.

**Treatment**
Treatment for molluscum is either immunological (topical imiquimod, oral cimetidine, intralesional candida antigen injection) or cytodestructive (topical cantharidin, cryotherapy with liquid nitrogen, and curettage). Left untreated, the lesions resolve over months to years.

#### 2. Warts
Warts are skin-colored papules with rough (verrucous) surfaces caused by infection with human papillomavirus (HPV). There are over 200 types of this DNA virus, which induces the epidermal cells to proliferate, thus resulting in the warty growth. Flat warts are smoother and smaller than common warts and are often seen on the face. Certain types of HPV are associated with certain types of warts (eg, flat warts) or location of warts (eg, genital warts).

**Treatment**
Thirty percent of warts will clear in 6 months. As with molluscum, the treatment of warts is also immunological (topical imiquimod, oral cimetidine, intralesional candida antigen injection, and squaric acid contact therapy) or cytodestructive. Liquid nitrogen is painful, user dependent, and can lead to blistering and scarring. Topical salicylic acid may also be used. Large mosaic plantar warts are treated most effectively by applying 40% salicylic acid plaster cut with a scissors to fit the lesion. The adhesive side of the plaster is placed against the lesion and taped securely in place with duct or athletic tape. The plaster and tape should be placed on Monday and removed on Friday. Over the weekend, the patient should soak the skin in warm water for 30 minutes to soften it. Then the white, macerated tissue should be pared with a pumice stone, cuticle scissors, or a nail file. This procedure is repeated every week, and the patient is seen every 4 weeks. Most plantar warts resolve in 6–8 weeks when treated in this way. Vascular pulsed dye lasers are a useful adjunct therapy for the treatment of plantar warts.

For flat warts, a good response to 0.025% tretinoin gel or topical imiquimod (Aldara) cream, applied once daily for 3–4 weeks, has been reported.

Surgical excision, electrosurgery, and nonspecific burning laser surgery should be avoided; these modalities do not have higher cure rates and result in scarring. Cantharidin may cause small warts to become large warts and should not be used.

Venereal warts (condylomata acuminata) (see Chapter 44) may be treated with imiquimod, 25% podophyllin resin (podophyllin) in alcohol, or podofilox, a lower concentration of purified podophyllin, which is applied at home. Podophyllin should be painted on the lesions in the practitioner’s office and then washed off after 4 hours. Re-treatment in 2–3 weeks may be necessary. Podofilox is applied by the patient once daily, Monday through Thursday, whereas imiquimod is used three times a week on alternating days. Lesions not on the vulvar mucous membrane but on the adjacent skin should be treated as a common wart and frozen.

No wart therapy is immediately and definitively successful. Realistic expectations should be set and appropriate follow-up treatments scheduled.

### INSECT INFESTATIONS

#### 1. Scabies

**Clinical Findings**
Scabies is suggested by linear burrows about the wrists, ankles, finger webs, areolas, anterior axillary folds, genitalia,
or face (in infants). Often there are excoriations, honey-colored crusts, and pustules from secondary infection. Identification of the female mite or her eggs and feces is necessary to confirm the diagnosis. Apply mineral oil to a No. 15 blade and scrape an unscratched papule or burrow and examine microscopically to confirm the diagnosis. In a child who is often scratching, scrape under the fingernails. Examine the parents for unscratched burrows.

**Treatment**

Permethrin 5% is the treatment of choice for scabies. It should be applied as a single overnight application and repeated in 7 days. Oral ivermectin 200 mcg/dose × 1 and repeated in 7 days may be used in resistant cases.

2. **Pediculoses (Louse Infestations)**

**Clinical Findings**

The presence of excoriated papules and pustules and a history of severe itching at night suggest infestation with the human body louse. This louse may be discovered in the seams of underwear but not on the body. In the scalp hair, the gelatinous nits of the head louse adhere tightly to the hair shaft. The pubic louse may be found crawling among pubic hairs, or blue-black macules may be found dispersed through the pubic region (maculae cerulea). The pubic louse is often seen on the eyelashes of newborns.

**Treatment**

Initial treatment of head lice is often instituted by parents with an over-the-counter pyrethrin or permethrin product. If head lice are not eradicated after two applications 7 days apart with these products, malathion 0.5% is highly effective but is toxic if ingested, and flammable. A second application 7–9 days after initial treatment may be necessary. Treatment of pubic lice is similar. Treatment of body lice is clean clothing and washing the infested clothing at high temperature.

3. **Papular Urticaria**

**Clinical Findings**

Papular urticaria is characterized by grouped erythematous papules surrounded by an urticarial flare and distributed over the shoulders, upper arms, legs, and buttocks in infants. Although not a true infestation, these lesions represent delayed hypersensitivity reactions to stinging or biting insects. Fleas from dogs and cats are the usual offenders. Less commonly, mosquitoes, lice, scabies, and bird and grass mites are involved. The sensitivity is transient, lasting 4–6 months. Usually no other family members are affected. It is often difficult for the parents to understand why no one else is affected.

**Treatment**

The logical therapy is to remove the offending insect, although in most cases it is very difficult to identify the exact cause. Topical corticosteroids and oral antihistamines will control symptoms.

**DERMATITIS (ECZEMA)**

The terms *dermatitis* and *eczema* are currently used interchangeably in dermatology, although the term *eczema* truly denotes an acute weeping dermatosis. All forms of dermatitis, regardless of cause, may present with acute edema, erythema, and oozing with crusting, mild erythema alone, or lichenification. Lichenification is diagnosed by thickening of the skin with a shiny surface and exaggerated, deepened skin markings. It is the response of the skin to chronic rubbing or scratching.

Although the lesions of the various dermatoses are histologically indistinguishable, clinicians have nonetheless divided the disease group called dermatitis into several categories based on known causes in some cases and differing natural histories in others.

1. **Atopic Dermatitis**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- **Dry skin**
- **Presence of eczema**
- **Onset before 2 years of age**

**Pathogenesis**

Atopic dermatitis is a polygenic disease with positive and negative modifiers. Atopic dermatitis results from an interaction among susceptibility genes, the host environment, skin barrier defects, pharmacologic abnormalities, and immunologic response. The case for food and inhalant allergens as specific causes of atopic dermatitis is not strong. There is significant evidence that a primary defect in atopic dermatitis is an abnormality in the skin barrier formation due to defects in the filaggrin gene. Not all people with filaggrin abnormalities have atopic dermatitis and not all people with atopic dermatitis have filaggrin abnormalities.

**Clinical findings**

**A. Symptoms & Signs**

Many (not all) patients go through three clinical phases. In the first, infantile eczema, the dermatitis begins on the
cheeks and scalp and frequently expresses itself as oval patches on the trunk, later involving the extensor surfaces of the extremities. The usual age at onset is 2–3 months, and this phase ends at age 18 months to 2 years. Only one-third of all infants with infantile eczema progress to phase 2 childhood or flexural eczema in which the predominant involvement is in the antecubital and popliteal fossae, the neck, the wrists, and sometimes the hands or feet. This phase lasts from age 2 years to adolescence. Only one-third of children with typical flexural eczema progress to adolescent eczema, which is usually manifested by the continuation of chronic flexural eczema along with hand and/or foot dermatitis. Atopic dermatitis is quite unusual after age 30 years.

**Differential Diagnosis**

All other types of dermatitis must be considered.

A few patients with atopic dermatitis have immunodeficiency with recurrent pyoderma, unusual susceptibility to herpes simplex viruses, hyperimmunoglobulinemia E, defective neutrophil and monocyte chemotaxis, and impaired T-lymphocyte function (see Chapter 33).

**Complications**

A faulty epidermal barrier predisposes the patient with atopic dermatitis to dry, itchy skin. Inability to hold water within the stratum corneum results in rapid evaporation of water, shrinking of the stratum corneum, and cracks in the epidermal barrier. Such skin forms an ineffective barrier to the entry of various irritants. Chronic atopic dermatitis is frequently infected secondarily with *S. aureus* or *Streptococcus pyogenes*. Herpes simplex virus may also superinfect atopic dermatitis and severe widespread disease is known as Kaposi’s varicelliform eruption or eczema herpeticum. Patients with atopic dermatitis have a deficiency of antimicrobial peptides in their skin, which may account for the susceptibility to recurrent skin infection.

**Treatment**

**A. Acute Stages**

Application of wet dressings and medium-potency topical corticosteroids is the treatment of choice for acute, weeping atopic eczema. The use of wet dressings is outlined at the beginning of this chapter. Superinfection with *S. aureus*, *Streptococcus pyogenes*, and herpes simplex virus may occur, and appropriate systemic therapy may be necessary. If the expected improvement is not seen, bacterial and HSV cultures should be obtained to identify the possibility of a superinfection.

**B. Chronic Stages**

Treatment is aimed at avoiding irritants and restoring water to the skin. No soaps or harsh shampoos should be used, and the patient should avoid woolen or any rough clothing. Bathing is minimized to every second or third day. Twice daily lubrication of the skin is very important.

Nonperfumed creams or lotions are suitable lubricants. Plain petrolatum is an acceptable lubricant, but some people find it too greasy and during hot weather it may also cause considerable sweat retention. Liberal use of Cetaphil lotion four or five times daily as a substitute for soap is also satisfactory as a means of lubrication. A bedroom humidifier is often helpful. Topical corticosteroids should be limited to medium strength (see Table 15–3). There is seldom a reason to use super- or high-potency corticosteroids in atopic dermatitis. In superinfected atopic dermatitis, systemic antibiotics for 10–14 days are necessary.

Tacrolimus and pimecrolimus ointments are topical immunosuppressive agents that are effective in atopic dermatitis. Because of concerns about the development of malignancies, tacrolimus and pimecrolimus should be reserved for children older than 2 years of age with atopic dermatitis unresponsive to medium-potency topical steroids. It has been argued that an increased risk of malignancy has not been seen in immunologically normal individuals using these products. Recommendations for usage likely will change with time. Treatment failures in chronic atopic dermatitis are most often the result of noncompliance. This is a frustrating disease for parent and child. Return to a normal lifestyle for the parent and child is the ultimate goal of therapy.

**2. Nummular Eczema**

Nummular eczema is characterized by numerous symmetrically distributed coin-shaped patches of dermatitis, principally on the extremities. These may be acute, oozing, and crusted or dry and scaling. The differential diagnosis should include tinea corporis, impetigo, and atopic dermatitis.

**Treatment**

The same topical measures should be used as for atopic dermatitis, although more potent topical steroids may be necessary.

**3. Primary Irritant Contact Dermatitis (Diaper Dermatitis)**

Contact dermatitis is of two types: primary irritant and allergic eczematous. Primary irritant dermatitis develops within a few hours, reaches peak severity at 24 hours, and then disappears. Allergic eczematous contact dermatitis (described...
in the next section) has a delayed onset of 18 hours, peaks at 48–72 hours, and often lasts as long as 2–3 weeks even if exposure to the offending antigen is discontinued.

Diaper dermatitis, the most common form of primary irritant contact dermatitis seen in pediatric practice, is caused by prolonged contact of the skin with urine and feces, which contain irritating chemicals such as urea and intestinal enzymes.

Clinical Findings

The diagnosis of diaper dermatitis is based on the picture of erythema and scaling of the skin in the perineal area and the history of prolonged skin contact with urine or feces. This is frequently seen in the “good baby” who sleeps many hours through the night without waking. In 80% of cases of diaper dermatitis lasting more than 3 days, the affected area is colonized with *C. albicans* even before appearance of the classic signs of a beefy red, sharply margined dermatitis with satellite lesions. Streptococcal perianal cellulitis and infantile psoriasis should be included in the differential diagnosis.

Treatment

Treatment consists of changing diapers frequently. The area should only be washed following a bowel movement. Washing should be done with a wash cloth and warm water only. Because rubber or plastic pants prevent evaporation of the contactant and enhance its penetration into the skin, they should be avoided as much as possible. Air drying is useful. Treatment of long-standing diaper dermatitis should include application of a barrier cream such as zinc oxide with each diaper change and an imidazole cream twice a day.

4. Allergic Eczematous Contact Dermatitis (Poison Ivy Dermatitis)

Clinical Findings

Plants such as poison ivy, poison sumac, and poison oak cause most cases of allergic contact dermatitis in children. Allergic contact dermatitis has all the features of delayed type (T-lymphocyte–mediated) hypersensitivity. Many substances may cause such a reaction; other than plants, nickel sulfate, potassium dichromate, and neomycin are the most common causes. Nickel is found to some degree in all metals. Nickel allergy is commonly seen on the ears secondary to the wearing of earrings, and near the umbilicus from pants snaps and belt buckles. The true incidence of allergic contact dermatitis in children is unknown. Children often present with acute dermatitis with blister formation, oozing, and crusting. Blisters are often linear and of acute onset.

Treatment

Treatment of contact dermatitis in localized areas is with potent topical corticosteroids. In severe generalized involvement, prednisone, 1–2 mg/kg/d orally for 10–14 days, can be used.


5. Seborrheic Dermatitis

Clinical Findings

Seborrheic dermatitis is an erythematous scaly dermatitis accompanied by overproduction of sebum occurring in areas rich in sebaceous glands (ie, the face, scalp, and perineum). This common condition occurs predominantly in the newborn and at puberty, the ages at which hormonal stimulation of sebum production is maximal. Although it is tempting to speculate that overproduction of sebum causes the dermatitis, the exact relationship is unclear.

Seborrheic dermatitis on the scalp in infancy is clinically similar to atopic dermatitis, and the distinction may become clear only after other areas are involved. Psoriasis also occurs in seborrheic areas in older children and should be considered in the differential diagnosis.

Treatment

Seborrheic dermatitis responds well to low-potency topical corticosteroids.

6. Dandruff

Dandruff is physiologic scaling or mild seborrhea, in the form of greasy scalp scales. The cause is unknown. Treatment is with medicated dandruff shampoos.

7. Dry Skin Dermatitis (Asteatotic Eczema, Xerosis)

Children who live in arid climates are susceptible to dry skin, characterized by large cracked scales with erythematous borders. The stratum corneum is dependent on environmental humidity for its water, and below 30% environmental humidity the stratum corneum loses water, shrinks, and cracks. These cracks in the epidermal barrier allow irritating substances to enter the skin, predisposing the patient to dermatitis.

Treatment

Treatment consists of increasing the water content of the skin in the immediate external environment. House humidifiers
are very useful. Minimize bathing to every second or third day.

Frequent soaping of the skin impairs its water-holding capacity and serves as an irritating alkali, and all soaps should therefore be avoided. Frequent use of emollients (eg, Cetaphil, Eucerin, Lubriderm) should be a major part of therapy.

8. Keratosis Pilaris

Follicular papules containing a white inspissated scale characterize keratosis pilaris. Individual lesions are discrete and may be red. They are prominent on the extensor surfaces of the upper arms and thighs and on the buttocks and cheeks. In severe cases, the lesions may be generalized.

▶ Treatment

Treatment is with keratolytics such as urea cream or lactic acid, followed by skin hydration.

9. Pityriasis Alba

White, scaly macular areas with indistinct borders are seen over extensor surfaces of extremities and on the cheeks in children with pityriasis alba. Sun tanning exaggerates these lesions. Histologic examination reveals a mild dermatitis. These lesions may be confused with tinea versicolor.

▶ Treatment

Low-potency topical corticosteroids may help decrease any inflammatory component and may lead to faster return of normal pigmentation.

COMMON SKIN TUMORS

If the skin moves with the nodule on lateral palpation, the tumor is located within the dermis; if the skin moves over the nodule, it is subcutaneous. Seventy-five percent of lumps in childhood will be either epidermoid cysts (60%) or pilomatrixomas (15%).

1. Epidermoid Cysts

▶ Clinical Findings

Epidermoid cysts are the most common type of cutaneous cyst. Other names for epidermoid cysts are epidermal cysts, epidermal inclusion cysts, and “sebaceous” cysts. This last term is a misnomer since they contain neither sebum nor sebaceous glands. Epidermoid cysts can occur anywhere, but are most common on the face and upper trunk. They usually arise from and are lined by the stratified squamous epithelium of the follicular infundibulum. Clinically, epidermoid cysts are dermal nodules with a central punctum, representing the follicle associated with the cyst. They can reach several centimeters in diameter. Dermoid cysts are areas of sequestration of skin along embryonic fusion lines. They are present at birth and occur most commonly on the lateral eyebrow.

▶ Treatment

Epidermoid cysts can rupture, causing a foreign-body inflammatory reaction, or become infected. Infectious complications should be treated with antibiotics. Definitive treatment of epidermoid and dermoid cysts is surgical excision.

2. Pilomatricomas

These are benign tumors of the hair matrix. They are most commonly seen on the face and upper trunk. They are firm and may be irregular. Their color varies, flesh colored or blue. The firmness is secondary to calcification of the tumor.

▶ Treatment

Treatment is by surgical excision.

3. Granuloma Annulare

Violaceous circles or semicircles of nontender intradermal nodules found over the lower legs and ankles, the dorsum of the hands and wrists, and the trunk suggest granuloma annulare. Histologically, the disease appears as a central area of tissue death (necrobiosis) surrounded by macrophages and lymphocytes.

▶ Treatment

No treatment is necessary. Lesions resolve spontaneously within 1–2 years in most children.

4. Pyogenic Granuloma

These lesions appear over 1–2 weeks at times following skin trauma as a dark red papule with an ulcerated and crusted surface that may bleed easily with minor trauma. Histologically, this represents excessive new vessel formation with or without inflammation (granulation tissue). It should be regarded as an abnormal healing response.

▶ Treatment

Pulsed dye laser for very small lesions or curettage followed by electrocautery are the treatments of choice.

5. Keloids

Keloids are scars of delayed onset that continue to grow for up to several years and to progress beyond the initial wound margins.
The tendency to develop keloids is inherited. They are often found on the face, earlobes, neck, chest, and back.

**Treatment**

Treatment includes intrallesional injection with triamcino-lone acetonide, 20–40 mg/mL, or excision and injection with corticosteroids. For larger keloids, excision followed by postoperative radiotherapy may be indicated.

**PAPULOSQUAMOUS ERUPTIONS**

Papulosquamous eruptions (Table 15–7) comprise papules or plaques with varying degrees of scale.

1. **Pityriasis Rosea**

**Pathogenesis & Clinical Findings**

Pink to red, oval plaques with fine scales that tend to align with their long axis parallel to skin tension lines (eg, “Christmas tree pattern” on the back) are characteristic lesions of pityriasis rosea. The generalized eruption is usually preceded for up to 30 days by a solitary, larger, scaling plaque with central clearing and a scaly border (the herald patch). The herald patch is clinically similar to ringworm and can be confused. In whites, the lesions are primarily on the trunk; in blacks, lesions are primarily on the extremities and may be accentuated in the axillary and inguinal areas (inverse pityriasis rosea).

This disease is common in school-aged children and adolescents and is presumed to be viral in origin. The role of human herpesvirus 7 in the pathogenesis of pityriasis rosea is debated. The condition lasts 6–12 weeks and may be pruritic.

**Differential Diagnosis**

The major differential diagnosis is secondary syphilis, and a VDRL (Venereal Disease Research Laboratories) test should be done if syphilis is suspected, especially in high-risk patients with palm or sole involvement. Fever and widespread lymphadenopathy is often found in secondary syphilis. “Pityriasis rosea” lasting more than 12 weeks is likely to be pityriasis lichenoides.

**Treatment**

Exposure to natural sunlight may help hasten the resolution of lesions. Oral antihistamines and topical steroids can be used for pruritus. Often, no treatment is necessary. Pityriasis rosea that lasts more than 12 weeks should be referred to a dermatologist for evaluation.

**Psoriasis**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Erythematous papules and plaques with thick, white scales.
- Elbows, knees and scalp often affected.
- Nail pitting and distal onycholysis.

**Pathogenesis**

The pathogenesis of psoriasis is complex and incompletely understood. It has immune-mediated inflammation, is a familial condition, and multiple psoriasis susceptibility genes have been identified. There is increased epidermal turnover; psoriatic epidermis has a turnover time of 3–4 days versus 28 days for normal skin. These rapidly proliferating epidermal cells produce excessive stratum corneum, giving rise to thick, opaque scales.

**Clinical Findings**

Psoriasis is characterized by erythematous papules covered by thick white scales. Guttate (droplike) psoriasis is a common form in children that often follows by 2–3 weeks an episode of streptococcal pharyngitis. The sudden onset of small papules (3–8 mm), seen predominantly over the trunk and quickly covered with thick white scales, is characteristic of guttate psoriasis. Chronic psoriasis is marked by thick, large scaly plaques (5–10 cm) over the elbows, knees, scalp, and other sites of trauma. Pinpoint pits in the nail plate are seen, as well as yellow discoloration of the nail plate resulting from onycholysis. Psoriasis occurs frequently on the scalp, elbows, knees, periumbilical area, ears, sacral area, and genitalia.

**Differential Diagnosis**

Papulosquamous eruptions that present problems of differential diagnosis are listed in Table 15–7.
Treatment

Topical corticosteroids are the initial treatment of choice. Penetration of topical steroids through the enlarged epidermal barrier in psoriasis requires that more potent preparations be used, for example, fluocinonide 0.05% (Lidex) or clobetasol 0.05% (Temovate) ointment twice daily.

The second line of therapy is topical vitamin D3 medications such as calcipotriene (Dovonex) or calcitriol (Vectical), applied twice daily or the combination of a superpotent topical steroid twice daily on weekends and calcipotriene or calcitriol twice daily on weekdays.

Topical retinoids such as tazarotene (0.1%, 0.5% cream, gel) can be used in combination with topical corticosteroids to help restore normal epidermal differentiation and turnover time.

Anthralin therapy is also useful. Anthralin is applied to the skin for a short contact time (eg, 20 minutes once daily) and then washed off with a neutral soap (eg, Dove). This can be used in combination with topical corticosteroids.

Crude coal tar therapy is messy and stains bedclothes. The newer tar gels (Estar, PsoriGel) and one foam product (Scytera) cause less staining and are most efficacious. They are applied twice daily. These preparations are sold over the counter and are not usually covered by insurance plans.

Scalp care using a tar shampoo requires leaving the shampoo on for 5 minutes, washing it off, and then shampooing with commercial shampoo to remove scales. It may be necessary to shampoo daily until scaling is reduced.

More severe cases of psoriasis are best treated by a dermatologist. Narrow band UVB phototherapy and multiple systemic medications and new biologic agents (antibodies, fusion proteins, and recombinant cytokines) are effective in more widespread, severe cases.


HAIR LOSS (ALOPECIA)

Hair loss in children (Table 15–8) imposes great emotional stress on the patient and the parent. A 60% hair loss in a single area is necessary before hair loss can be detected clinically. Examination should begin with the scalp to determine whether inflammation, scale, or infiltrative changes are present. The hair should be gently pulled to see if it is easily removable. Hairs should be examined microscopically for breaking and structural defects and to see whether growing or resting hairs are being shed. Placing removed hairs in mounting fluid (Permount) on a glass microscope slide makes them easy to examine.

Three diseases account for most cases of hair loss in children: alopecia areata, tinea capitis (described earlier in this chapter), and hair pulling.

Table 15–8. Other causes of hair loss in children.

<table>
<thead>
<tr>
<th>Hair loss with scalp changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrophy:</td>
</tr>
<tr>
<td>Lichen planus</td>
</tr>
<tr>
<td>Lupus erythematosus</td>
</tr>
<tr>
<td>Birthmarks:</td>
</tr>
<tr>
<td>Epidermal nevus</td>
</tr>
<tr>
<td>Nevoid sebaceous</td>
</tr>
<tr>
<td>Aplasia cutis congenita</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hair loss with hair shaft defects (hair fails to grow out enough to require haircuts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monilethrix—alternating bands of thin and thick areas</td>
</tr>
<tr>
<td>Pili annulati—alternating bands of light and dark pigmentation</td>
</tr>
<tr>
<td>Pili torti—hair twisted 180 degrees, brittle</td>
</tr>
<tr>
<td>Trichorrhexis invaginata (bamboo hair)—intussucception of one hair into another</td>
</tr>
<tr>
<td>Trichorrhexis nodosa—nodules with fragmented hair</td>
</tr>
</tbody>
</table>

1. Alopecia Areata

Clinical Findings

Complete hair loss in a localized area is called alopecia areata. This is the most common cause of hair loss in children. An immunologic pathogenic mechanism is suspected because dense infiltration of lymphocytes precedes hair loss. Fifty percent of children with alopecia areata completely regrow their hair within 12 months, although as many may have a relapse in the future.

A rare and unusual form of alopecia areata begins at the occiput and proceeds along the hair margins to the frontal scalp. This variety, called ophiasis, often eventuates in total scalp hair loss (alopecia totalis). The prognosis for regrowth in ophiasis is poor.

Treatment

Superpotent topical steroids, minoxidil (Rogaine), contact therapy, and anthralin are topical treatment options. Systemic corticosteroids given to suppress the inflammatory response will result in hair growth, but the hair may fall out again when the drug is discontinued. Systemic corticosteroids should never be used for a prolonged time period. In children with alopecia totalis, a wig is most helpful. Treatment induced hair growth does not alter risk of recurrence.


2. Hair Pulling

**Clinical Findings**

Traumatic hair pulling causes the hair shafts to be broken off at different lengths, with an ill-defined area of hair loss, petechiae around follicular openings, and a wrinkled hair shaft on microscopic examination. This behavior may be merely habit, an acute reaction to severe stress, trichotillomania, or a sign of another psychiatric disorder. Eyelashes and eyebrows rather than scalp hair may be pulled out.

**Treatment**

If the behavior has a long history, psychiatric evaluation may be helpful. Cutting or oiling the hair to make it slippery is an aid to behavior modification.

REACTIVE ERYTHEMAS

1. Erythema Multiforme

**Clinical Findings**

Erythema multiforme begins with papules that later develop a dark center and then evolve into lesions with central bluish discoloration or blisters and the characteristic target lesions (iris lesions) that have three concentric circles of color change. Erythema multiforme has sometimes been diagnosed in patients with severe mucous membrane involvement, but Stevens-Johnson syndrome is the diagnosis when severe involvement of conjunctiva, oral cavity, and genital mucosa also occur.

Many causes are suspected, particularly concomitant herpes simplex virus; drugs, especially sulfonamides; and *Mycoplasma* infections. Recurrent erythema multiforme is usually associated with reactivation of herpes simplex virus. In erythema multiforme, spontaneous healing occurs in 10–14 days, but Stevens-Johnson syndrome may last 6–8 weeks.

**Treatment**

Treatment is symptomatic in uncomplicated erythema multiforme. Removal of offending drugs is an obvious measure. Oral antihistamines such as cetirizine 5–10 mg every morning and hydroxyzine 1 mg/kg/d at bedtime are useful. Cool compresses and wet dressings will relieve pruritus. Steroids have not been demonstrated to be effective. Chronic acyclovir therapy has been successful in decreasing attacks in patients with herpes-associated recurrent erythema multiforme.

2. Drug Eruptions

Drugs may produce urticarial, morbilliform, scarlatiniform, pustular, bullous, or fixed skin eruptions. Urticaria may appear within minutes after drug administration, but most reactions begin 7–14 days after the drug is first administered.

**Table 15–9. Common drug reactions.**

<table>
<thead>
<tr>
<th>Urticaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbiturates</td>
</tr>
<tr>
<td>Opioids</td>
</tr>
<tr>
<td>Penicillins</td>
</tr>
<tr>
<td>Sulfonamides</td>
</tr>
<tr>
<td>Morbilliform eruption</td>
</tr>
<tr>
<td>Anticonvulsants</td>
</tr>
<tr>
<td>Cephalosporins</td>
</tr>
<tr>
<td>Penicillins</td>
</tr>
<tr>
<td>Sulfonamides</td>
</tr>
<tr>
<td>Fixed drug eruption, erythema multiforme, toxic epidermal necrolysis, Stevens-Johnson syndrome</td>
</tr>
<tr>
<td>Anticonvulsants</td>
</tr>
<tr>
<td>Nonsteroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>Sulfonamides</td>
</tr>
<tr>
<td>DRESS syndrome</td>
</tr>
<tr>
<td>Anticonvulsants</td>
</tr>
<tr>
<td>Photodermatitis</td>
</tr>
<tr>
<td>Psoralens</td>
</tr>
<tr>
<td>Sulfonamides</td>
</tr>
<tr>
<td>Tetracyclines</td>
</tr>
<tr>
<td>Thiazides</td>
</tr>
</tbody>
</table>

DRESS syndrome = drug eruptions with fever, eosinophilia, and systemic symptoms.

These eruptions may occur in patients who have received these drugs for long periods, and eruptions continue for days after the drug has been discontinued. Drug eruptions with fever, eosinophilia, and systemic symptoms (DRESS syndrome) is most commonly seen with anticonvulsants, but may be seen with other drugs. Drugs commonly implicated in skin reactions are listed in Table 15–9.

MISCELLANEOUS SKIN DISORDERS SEEN IN PEDIATRIC PRACTICE

1. Aphthous Stomatitis

Recurrent erosions on the gums, lips, tongue, palate, and buccal mucosa are often confused with herpes simplex. A smear of the base of such a lesion stained with Wright stain will aid in ruling out herpes simplex by the absence of epithelial multinucleate giant cells. A culture for herpes simplex is also useful in differential diagnostics. The cause remains unknown, but T-cell–mediated cytotoxicity to various viral antigens has been postulated.

**Treatment**

There is no specific therapy for this condition. Rinsing the mouth with liquid antacids provides relief in most patients. Topical corticosteroids in a gel base may provide some relief. In severe cases that interfere with eating, prednisone, 1 mg/kg/d
orally for 3–5 days, will suffice to abort an episode. Colchicine, 0.2–0.5 mg/d, sometimes reduces the frequency of attacks.

2. Vitiligo

Vitiligo is characterized clinically by the development of areas of depigmentation. These are often symmetrical and occur mainly on extensor surfaces. The depigmentation results from a destruction of melanocytes. The basis for this destruction is unknown, but immunologically mediated damage is likely and vitiligo sometimes occurs in individuals with autoimmune endocrinopathies.

**Treatment**

Treatment is with potent topical steroids or tacrolimus. Topical calcipotriene has also been used. Narrow-band ultraviolet B radiation (UVB 311 nm) may be used in severe cases. Response to treatment is slow often requiring many months to years.

Normal vision is a sense that develops during infancy and childhood. Pediatric ophthalmology emphasizes early diagnosis and treatment of pediatric eye diseases in order to obtain the best possible visual outcome. Eye disease in children is not always limited to the ocular system and may be a sign of systemic disease.

**COMMON NONSPECIFIC SIGNS & SYMPTOMS**

Nonspecific signs and symptoms commonly occur as the chief complaint or as an element of the history of a child with eye disease. Five of these findings are described here, along with a sixth—leukocoria—which is less common, but often has serious implications. Do not hesitate to seek the help of a pediatric ophthalmologist when you believe the diagnosis and treatment of these signs and symptoms requires in-depth clinical experience.

**RED EYE**

Redness (injection) of the bulbar conjunctiva or deeper vessels is a common presenting complaint. It may be mild and localized or diffuse and bilateral. Causes include superficial or penetrating foreign bodies, trauma, infection, allergy, and conjunctivitis associated with systemic entities such as Stevens-Johnson syndrome, uveitis, or Kawasaki disease. Irritating noxious agents also cause injection. Subconjunctival hemorrhage may be traumatic, spontaneous, or may be associated with hematopoietic disease, vascular anomalies, or inflammatory processes. Uncommonly, an injected eye can be due to an intraocular or orbital tumor.

**TEARING**

Tearing in infants is usually due to nasolacrimal obstruction but may also be associated with congenital glaucoma, in which case photophobia and blepharospasm may also be present. Inflammation, allergic and viral diseases, or conjunctival and corneal irritation can also cause tearing.

**DISCHARGE**

Purulent discharge is usually associated with bacterial conjunctivitis. In infants and toddlers with nasolacrimal obstruction, a mucopurulent discharge may be present with low-grade, chronic dacryocystitis. Watery discharge occurs with viral infection, iritis, superficial foreign bodies, and nasolacrimal obstruction. Mucoid discharge may be a sign of allergic conjunctivitis or nasolacrimal obstruction. A mucoid discharge due to allergy typically contains eosinophils, whereas a purulent bacterial discharge contains polymorphonuclear leukocytes.

**PAIN & FOREIGN BODY SENSATION**

Pain in or around the eye may be due to foreign bodies, corneal abrasions, lacerations, acute infections of the globe or ocular adnexa, iritis, and angle-closure glaucoma. Large refractive errors or poor accommodative ability may manifest as headaches. Trichiasis (inturned lashes) and contact lens problems also cause ocular discomfort.

**PHOTOPHOBIA**

Acute aversion to light may occur with corneal abrasions, foreign bodies, and iritis. Squinting of one eye in bright light is a common sign of intermittent exotropia. Photophobia is present in infants with glaucoma, albinism, aniridia, and retinal dystrophies such as achromatopsia. Photophobia is common after ocular surgery and after dilation of the pupil with mydriatic and cycloplegic agents. Photophobia in individuals with no ocular pathology may be due to migraine headache, meningitis, and retrobulbar optic neuritis.
LEUKOCORIA

Although not a common sign or complaint, leukocoria (a white pupil) is associated with serious diseases and requires prompt ophthalmologic consultation. Causes of leukocoria include retinoblastoma, retinopathy of prematurity (ROP), pupillary membrane, cataract, vitreous opacities, retinal detachment, *Toxocara* infection, and retinal dysplasia (Figure 16–1).

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Significant refractive errors (myopia, hyperopia, astigmatism, or anisometropia) may cause decreased visual acuity, amblyopia, and strabismus.
- Symptoms and signs of uncorrected refractive error include blurred vision, squinting, headaches, fatigue with visual tasks, and failure of visual acuity screening.

REFRACTIVE ERRORS

Pathogenesis

Refractive error refers to the optical state of the eye (Figure 16–2). The shape of the cornea and, to a lesser extent, the shape of the lens and length of the eye play a role in the refractive state of the eye. Children at particular risk for refractive errors requiring correction with glasses include those who were born prematurely; have Down syndrome; have parents with refractive errors; or have certain systemic conditions such as Stickler, Marfan, or Ehlers-Danlos syndrome.

Diagnosis

There are three common refractive errors: myopia, hyperopia, and astigmatism. Inequality of the refractive state between the two eyes (anisometropia) can cause amblyopia. The refractive state is determined by an eye care professional via a procedure called refraction. The determination of the refractive state in a preverbal child often proves challenging. If there is concern that there may be a significant problem with a preverbal child’s vision, they should be referred to an eye care professional specially trained for treating children.

Treatment

Not all refractive errors require correction, but severe errors can cause amblyopia (reduced vision with or without an organic lesion). Refractive errors in children are most commonly treated with glasses. Less often, contact lenses are required, usually for very high or asymmetrical refractive errors, or for adolescents who do not want to wear glasses. Laser refractive surgery is not indicated for most children.
MYOPIA (NEARSIGHTEDNESS)
For the myopic or nearsighted individual, objects nearby are in focus; those at a distance are blurred. This is because the plane of focus is anterior to the retina. The onset is typically at about age 8 years and may progress throughout adolescence and young adulthood. A myopic person may squint to produce a pinhole effect, which improves distance vision. Divergent lenses provide clear distance vision. Many studies have attempted to slow or stop myopic progression. Atropine eye drops have shown some effect, but produce many side effects. A newer drug, pirenzepine, has shown promise in animal studies, but human studies have not shown a significant decrease in myopic progression.

HYPEROPIA (FARSIGHTEDNESS)
Saying that the hyperopic child is sighted for far (not near) vision is somewhat misleading, because the child can focus on near objects if the hyperopia is not excessive. Large amounts of uncorrected hyperopia can cause esotropia (inward deviation, or crossing, of the eyes) and amblyopia (see later sections Amblyopia and Strabismus). Most infants have a hyperopic refraction that begins to diminish during the toddler years and does not require correction.

ASTIGMATISM
When either the cornea or the crystalline lens is not perfectly spherical, an image will not be sharply focused in one plane. Schematically, there will be two planes of focus. Both of the planes can be in front of or behind the retina, or one of the planes can be in front of the retina and the other behind it. This refractive state is described as astigmatism. Large amounts of astigmatism not corrected at an early age can cause decreased vision from amblyopia, but proper refractive correction can prevent this.

OPHTHALMIC EXAMINATION
A history suggesting poor vision or misalignment of the eyes, visual acuity that falls outside the expected level for a specific age, eyelid malposition, abnormal pupil reactivity or shape, and presence of an asymmetric/abnormal red reflex requires referral to an ophthalmologist.

The American Academy of Pediatrics (AAP), American Association for Pediatric Ophthalmology and Strabismus (AAPOS), and the American Academy of Ophthalmology (AAO) policy statements for red reflex testing can be accessed at http://aappolicy.aappublications.org/. Prompt detection and treatment of ocular conditions can prevent a lifetime of visual disability. The ophthalmic examination should be a part of every well-child assessment.

It is crucial to check newborn infants for vision or life-threatening conditions that present with an abnormal red reflex that may be caused by cataracts or intraocular tumors. Eyelid ptosis (droopy eyelid) that obstructs the visual axis can cause permanent visual acuity loss from deprivation amblyopia and/or induced astigmatism, and requires urgent consultation with an ophthalmologist.

From birth to 3 years of age, the ophthalmic examination should include taking a history for ocular problems, vision assessment, inspection of the eyelids and eyes, pupil examination, ocular motility assessment, and red reflex check.

The ophthalmic examination of children older than 3 years should include taking a history for ocular problems, inspection of the eyelids and eyes, pupil examination, ocular motility assessment, and red reflex check and visual acuity testing with Allen, Lea, HOTV, Tumbling E, or Snellen symbols. Direct ophthalmoscopy should be attempted. Testing of binocular status can be accomplished by various tests, including the Random Dot E stereoacuity test.

HISTORY
Evaluation begins with the chief complaint and history of the present illness. Elements of the ocular history include onset of the complaint, its duration, whether it is monocular or binocular, treatment received thus far, and associated systemic symptoms. If an infectious disease is suspected, ask about possible contact with others having similar findings. The history should include prior ocular disease, perinatal and developmental history, history of allergy, and history of familial ocular disorders.

VISUAL ACUITY
Visual acuity testing is the most important test of visual function and should be part of every general physical examination (http://one.aao.org/Flash/VisionScreening/PediatricVisionScreening.html). Acuity should be tested in each eye individually, using an adhesive eye patch to prevent peeking. Glasses that were previously prescribed should be worn during vision screening. In older children who can cooperate, use of a pinhole will improve vision in children not wearing the appropriate spectacle prescription.

Vision Screening
Vision screening in the pediatric age group is a challenge, especially in younger and developmentally delayed children. Accuracy of the screening test being administered to a particular population and expense in terms of time, equipment, and personnel are some factors that must be considered in choosing a screening test. Vision screening should be done at well child visits. Further information on vision screening can be found at the AAP website (http://www.aap.org). Risk factors that should be screened for because they interfere with normal visual development and are amblyogenic include media opacities (such as cataracts), strabismus...
(misalignment of the visual axes of the eyes), and refractive errors that are different in the two eyes (anisometropia) or of large magnitude in both eyes.

In the sleeping newborn, the presence of a blepharospastic response to bright light is an adequate response. At age 6 weeks, eye-to-eye contact with slow, following movements is usually present. By age 3 months, the infant should demonstrate fixing and following ocular movements for objects at a distance of 2–3 ft. At age 6 months, interest in movement across the room is the norm. Vision can be recorded for the presence or absence of fixing and following behavior, and whether vision is steady (unsteady when nystagmus is present) and maintained.

In the verbal child, the use of familiar icons will allow for a quantitative test. Allen or Lea symbols with familiar pictures can be used to test children 2–3 years of age. When it is not possible to measure visual acuity or assess alignment in the preschool-aged child, random dot stereopsis testing (for depth perception) is effective in screening for manifest strabismus and amblyopia, but this test may miss some cases of anisometropic (unequal refractive error) amblyopia and small-angle strabismus, and is not designed to detect refractive errors.

Four-year-old children are often ready to play the tumbling E game (in which the child identifies the orientation of the letter E, which is turned in one of four directions) or the HOTV letters game (in which these four letters are shown individually at a distance and matched on a board that the child is holding). Literate children are tested with Snellen letters. Typical acuity levels in developmentally appropriate children are approximately 20/60 or better in children younger than 2–3 years, 20/40–20/30 in 3-year-old children, 20/30–20/25 in 4-year-old children, and 20/20 in literate children 5–6 years old. Referral criteria for children 3–5 years of age include visual acuity of less than 20/40 or 10/20 in either eye or a two-line difference between the eyes. Children 6 years or older should be referred if their visual acuity is less than 20/30 or 20/15 in either eye or a two-line difference is noted between the eyes.

The practitioner should be aware of two situations in which vision screening is complicated by nystagmus. Children who require a face turn or torticollis (in which the head is tilted to the right or left) to quiet the nystagmus will have poor visual acuity results when tested in the absence of the compensatory head posture. When latent nystagmus is present, acuity testing is particularly challenging (see later section Nyctagmus). Nystagmus appears or worsens when an eye is occluded, degrading central vision. To minimize the nystagmus, the occluder should be held about 12 in in front of the eye not being tested. Testing both eyes simultaneously without occlusion often gives a better visual acuity measurement than when either eye is tested individually.

Traditional vision screening methods using eye charts in children aged 3–5 years require the child’s cooperation as well as proficiency in testing by the examiner. Additional screening modalities including photoscreening and autorefractors have been used by various volunteer programs in schools, day care facilities, and physician offices. Photoscreening does not screen directly for amblyopia but for amblyogenic factors, which include strabismus, media opacities, eyelid ptosis, and refractive errors. Autorefractors can determine if there is a significant refractive error present in either eye or if there is a significant difference between the two eyes. Some autorefractors can also detect strabismus and eyelid ptosis. If the screening results suggest an amblyogenic factor, children are referred to an eye care professional for a complete eye examination. Problems exist with sensitivity and specificity of the instruments and poor follow-up for referrals to eye care professionals. The cost-effectiveness of various vision screening modalities remains an area of continued research.

EXTERNAL EXAMINATION

Inspection of the anterior segment of the globe and its adnexa requires adequate illumination and often magnification. A penlight provides good illumination and should be used in both straight-ahead and oblique illumination. A Wood lamp or a blue filter cap placed over a penlight is needed for evaluation after applying fluorescein. Immobilization of the child may be necessary. A drop of topical anesthetic may facilitate the examination.

In cases of suspected foreign body, pulling down on the lower lid provides excellent visualization of the inferior cul-de-sac (palpebral conjunctiva). Visualizing the upper cul-de-sac and superior bulbar conjunctiva is possible by having the patient look inferiorly while the upper lid is pulled away from the globe and the examiner peers into the upper recess. Illumination with a penlight is necessary. The upper lid should be everted to evaluate the superior tarsal conjunctiva (Figure 16–3).

When indicated for further evaluation of the cornea, a small amount of fluorescein solution should be instilled into the lower cul-de-sac. Blue light will stain defects yellow-green. Disease-specific staining patterns may be observed. For example, herpes simplex lesions of the corneal epithelium produce a dendrite or branchlike pattern. A foreign body
Figure 16–3. Eversion of the upper lid. A: The patient looks downward. B: The fingers pull the lid down, and an index finger or cotton tip is placed on the upper tarsal border. C: The lid is pulled up over the finger. D: The lid is everted.

lodged beneath the upper lid shows one or more vertical lines of stain on the cornea due to the constant movement of the foreign body over the cornea. Contact lens overwear produces a central staining pattern. A fine, scattered punctate pattern may be a sign of viral keratitis or medication toxicity. Punctate erosions of the inferior third of the cornea can be seen with staphylococcal blepharitis or exposure keratitis secondary to incomplete lid closure.

PUPILS

The pupils should be evaluated for reaction to light, regularity of shape, and equality of size as well as for the presence of afferent pupillary defect. This defect, which occurs in optic nerve disease, is evaluated by the swinging flashlight test (see later section Diseases of the Optic Nerve). Irregular pupils are associated with iritis, trauma, pupillary membranes, and structural defects such as iris coloboma (see later section on Iris Coloboma).

Pupils vary in size due to lighting conditions and age. In general, infants have miotic (constricted) pupils. Children have larger pupils than either infants or adults, whereas the elderly have miotic pupils.

Anisocoria, a size difference between the two pupils, may be physiologic if the size difference is within 1 mm and is the same in light and dark. Anisocoria occurs with Horner syndrome, third nerve palsy, Adie tonic pupil, iritis, and trauma. Medication could also cause abnormal pupil size or reactivity. For example, contact with atropine-like substances (belladonna alkaloids) will cause pupillary dilation and limit pupillary reaction. Systemic antihistamines and scopolamine patches, among other medicines, can dilate the pupils and interfere with accommodation (focusing).

ALIGNMENT & MOTILITY EVALUATION

Alignment and motility should be tested because amblyopia is associated with strabismus. Besides alignment, ocular rotations should be evaluated in the six cardinal positions of gaze (Table 16–1; Figure 16–4). A small toy is an interesting target for testing ocular rotations in infants; a penlight works well in older children.

Alignment can be assessed in several ways. In order of increasing accuracy, these methods are observation, the corneal light reflex test, and cover testing. Observation is an educated guess about whether the eyes are properly aligned. Corneal light reflex evaluation (Hirschberg test)

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Function</th>
<th>Innervation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial rectus</td>
<td>Adductor</td>
<td>Oculomotor (third)</td>
</tr>
<tr>
<td>Lateral rectus</td>
<td>Abductor</td>
<td>Abducens (sixth)</td>
</tr>
<tr>
<td>Inferior rectus</td>
<td>Depressor, adductor, extorter</td>
<td>Oculomotor</td>
</tr>
<tr>
<td>Superior rectus</td>
<td>Elevator, adductor, intorter</td>
<td>Oculomotor</td>
</tr>
<tr>
<td>Inferior oblique</td>
<td>Elevator, abductor, intorter</td>
<td>Oculomotor</td>
</tr>
<tr>
<td>Superior oblique</td>
<td>Depressor, abductor, intorter</td>
<td>Trochlear (fourth)</td>
</tr>
</tbody>
</table>

Figure 16–4. Cardinal positions of gaze and muscles primarily tested in those fields of gaze. Arrow indicates position in which each muscle is tested.
is performed by shining a light beam at the patient’s eyes, observing the reflections off each cornea, and estimating whether these “reflexes” appear to be positioned properly. If the reflection of light is noted temporally on the cornea, esotropia is suspected (Figure 16–5). Nasal reflection of the light suggests exotropia (outward deviation). Accuracy of these tests increases with increasing angles of misalignment.

Another way of evaluating alignment is with the cover test, in which the patient fixes on a target while one eye is covered. If an esotropia or an exotropia is present, the deviated eye will make a corrective movement to fixate on the target when the previously fixating eye is occluded. The other eye is tested similarly. When the occluder is removed from the eye just uncovered, a refixation movement of that eye indicates a phoria, or latent deviation, if alignment is reestablished (Figure 16–6). If the uncovered eye picks up fixation and strabismus is still present, that eye can be presumed to be dominant and the non-preferred eye possibly amblyopic.

If the eye remains deviated after the occluder is removed, a tropia is noted to be present. A deviated eye that is blind or has very poor vision will not fixate on a target. Consequently, spurious results to cover testing may occur, which can happen with disinterest on the part of the patient, small-angle strabismus, and inexperience in administering cover tests.

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- The handheld ophthalmoscope is the tool necessary to check the red reflex of the eye.
- Simultaneous examination of both pupils at the same time is called the *Brückner test*.

**Red Reflex Test**

- **Clinical Findings**

  The examiner should see a round, red light in both eyes. The red reflex of each eye can be compared simultaneously when the observer is approximately 4 ft away from the patient. The largest diameter of light is shown through the ophthalmoscope, and no correction (zero setting) is dialed in the ophthalmoscope unless it is to compensate for the examiner’s uncorrected refractive error. A red reflex chart is available through the AAP policy statement on red reflex testing on pediatric patients at [http://aappolicy.aappublications.org/](http://aappolicy.aappublications.org/).
**Differential Diagnosis**

The red reflex test (Brückner test) is useful for identifying disorders such as media opacities (eg, cataracts), large refractive errors, tumors such as retinoblastoma, and strabismus.

**Treatment**

A difference in quality of the red reflexes between the two eyes constitutes a positive Brückner test and requires referral to an ophthalmologist.


**OPHTHALMOSCOPIC EXAMINATION**

A handheld direct ophthalmoscope allows visualization of the ocular fundus. As the patient’s pupil becomes more constricted, viewing the fundus becomes more difficult. Although pupillary dilation can precipitate an attack of closed-angle glaucoma in the predisposed adult, children are very rarely predisposed to angle closure. Exceptions include those with a dislocated lens, past surgery, or an eye previously compromised by a retrolental membrane, such as in ROP. Therefore, if an adequate view of the fundus is precluded by a miotic pupil, use of a dilating agent (eg, one drop in each eye of 2.5% phenylephrine or 0.5% or 1% tropicamide) should provide adequate mydriasis (dilation). In infants, one drop of a combination of 1% phenylephrine with 0.2% cyclopentolate (Cyclomydril) is safer. Structures to be observed during ophthalmoscopy include the optic disc, blood vessels, the macular reflex, and retina, as well as the clarity of the vitreous media. By increasing the amount of plus lens dialed into the instrument, the point of focus moves anteriorly from the retina to the lens and finally to the cornea.

**OCULAR TRAUMA**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- A careful history of the events that lead to the ocular injury is crucial in the diagnosis and treatment of ocular trauma.
- The examination of the traumatized eye may be difficult in the child due to poor cooperation and significant discomfort.

**Differential Diagnosis**

Corneal abrasion, corneal ulcer, globe rupture/laceration.

**Complications**

Pain, infection, and potential vision loss from scarring.
Treatment
When foreign bodies are noted on the bulbar conjunctiva or cornea (Figure 16–7), removal is facilitated by using a topical anesthetic. If the foreign body is not too adherent, it can be dislodged with a stream of irrigating solution (Dacriose or saline) or with a cotton applicator after instillation of a topical anesthetic. Otherwise, a foreign body spud or needle is used to undermine the foreign body. This must be done with adequate magnification and illumination. An antibiotic ointment is then instilled. Ferrous corneal bodies often have an associated rust ring, which may be removed under slit-lamp visualization in cooperative children or under anesthesia if necessary.

Prognosis
Usually excellent if treatment is obtained shortly after injury.

CORNEAL ABRASION

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- A corneal abrasion results in loss of the most superficial layer of corneal cells and causes severe ocular pain, tearing, and blepharospasm.
- An inciting event is usually identifiable as the cause of a corneal abrasion.

Pathogenesis
Children often suffer corneal abrasions accidentally while playing with siblings or pets as well as participating in sports. Contact lens users frequently develop abrasions due to poorly fitting lenses, overnight wear, and use of torn or damaged lenses.

Prevention
Proper contact lens care and parental supervision can prevent activities that can lead to a corneal abrasion.

Clinical Findings
Symptom of a corneal abrasion is sudden and severe eye pain, usually after an inciting event such as an accidental finger poke to the eye. Decreased vision secondary to pain and tearing are common complaints. Eyelid edema, tearing, injection of the conjunctiva, and poor cooperation with the ocular examination due to pain are common signs of a corneal abrasion. Fluorescein dye is instilled into the eye and a cobalt blue or Wood lamp is used to illuminate the affected eye. The area with the abrasion will stain bright yellow.

Differential Diagnosis
Ocular or adnexal foreign bodies, corneal ulcer, corneal laceration.

Complications
Possible vision loss from corneal infection and scarring.

Treatment
Ophthalmic ointment, such as erythromycin ointment, lubricates the surface of the cornea and also helps prevent infections. Patching the affected eye when a large abrasion
is present may provide comfort, but it is not advised for corneal abrasions caused by contact lens wear or other potentially contaminated sources. Large corneal abrasions result in referred pain to the ipsilateral brow. If a brow ache is present, it may be treated by the use of a topical cycloplegic agent such as 1% cyclopentolate. Daily follow-up is required until healing is complete.

**Prognosis**

Excellent if corneal infection and scarring do not occur.

### INTRAOCULAR FOREIGN BODIES & PERFORATING OCULAR INJURIES

**Essentials of Diagnosis & Typical Features**

- Severe trauma may result in penetration of the eye by foreign bodies or retained foreign bodies, and is an ocular emergency.

**Pathogenesis**

Intraocular foreign bodies and penetrating injuries are most often caused by being in close proximity to high-velocity projectiles such as windshield glass broken during a motor vehicle accident, metal ground without use of protective safety goggles, and improperly detonated fireworks.

**Prevention**

Use protective eyewear when engaging in activities at risk for ocular injury.

**Clinical Findings**

Sudden ocular pain occurs; vision loss, as well as multiple organ trauma, may be present.

Intraocular foreign bodies and corneal and scleral lacerations (ruptured globe) require emergency referral to an ophthalmologist. The diagnosis may be difficult if the obvious signs of corneal perforation (shallow anterior chamber with hyphema, traumatic cataract, and irregular pupil) are not present (Figure 16–8). Furthermore, nonradiopaque materials such as glass will not be seen on x-ray film.

Computed tomographic (CT) scan may be useful in evaluating ocular trauma, including bony injury and intraocular foreign bodies. Magnetic resonance imaging (MRI) must be avoided if a magnetic foreign body is suspected.

**Differential Diagnosis**

Corneal abrasion, superficial foreign body of the eye or eyelids.

**Complications**

Vision loss, intraocular infection, loss of the eye.

**Treatment**

In cases of suspected intraocular foreign body or perforation of the globe, it may be best to keep the child at rest, gently shield the eye with a metal shield or cut-down paper cup, and keep the extent of examination to a minimum to prevent expulsion of intraocular contents. In this setting, the child should be given nothing by mouth in case eye examination under anesthesia or surgical repair is required.

**Prognosis**

Prognosis depends on the extent of the trauma.

### BLUNT ORBITAL TRAUMA

**Essentials of Diagnosis & Typical Features**

- Blunt orbital and soft tissue trauma may produce “black eye,” which is ecchymosis (blue or purplish hemorrhagic areas) of the eyelids.

**Pathogenesis**

Trauma to the orbit from a closed fist, collision with another player during team sports, and falls are common causes of blunt orbital injuries. Orbital compartment syndrome, which may result from severe orbital trauma, is caused by hemorrhaging within the orbit or severe orbital edema (or
both). This is an emergency which may lead to permanent vision loss if not treated urgently.

**Prevention**

Protective eyewear during athletic activities and adequate supervision of children at home and school.

**Clinical Findings**

Blunt trauma to the orbit may result in orbit fractures. The orbital floor is a common location for a fracture (called a *blowout fracture*). A specific fracture that occurs mainly in children after blunt orbit trauma is called the *white-eyed blowout fracture*. This results from a greenstick fracture of the orbit with entrapment of extraocular muscles. It is called “white-eyed” because the external orbital soft tissue injury may appear to be minimal, but the patient will have severe pain with eye movement, as well as nausea, vomiting, and restriction of eye movements.

A blowout fracture must be suspected in a patient with symptoms of double vision, pain with eye movements, and restriction of extraocular muscle movements after blunt orbital trauma. CT images of an orbital floor fracture often reveal herniation of orbital fat or the inferior rectus muscle into the maxillary sinus. Assessment of ocular motility, globe integrity, and intraocular pressure will determine the extent of the blunt orbital injury. Consultation with an ophthalmologist is necessary to determine the full spectrum of the injuries.

Orbital compartment syndrome is an emergency requiring immediate treatment. Patients present with severe edema or ecchymosis of the eyelids (which makes it very difficult to open the eyelids), proptosis, and possibly an acute traumatic optic neuropathy, resulting in decreased vision or an afferent pupillary defect. Neuroimaging may reveal a retrobulbar hemorrhage and proptosis.

**Differential Diagnosis**

Orbit fracture with or without muscle entrapment, globe rupture, orbital compartment syndrome, and traumatic or ischemic optic neuropathy.

**Treatment**

Orbital compartment syndrome requires emergent lateral eyelid canthotomy and cantholysis to decompress the orbit. Treatment should not be delayed in order to image the orbits. Prompt treatment can prevent permanent vision loss.

Patients with clinical signs of muscle entrapment require urgent surgical repair to avoid permanent ischemic injury to the involved extraocular muscle. Large fractures may need repair to prevent enophthalmos, a sunken appearance to the orbit. This can usually be performed on a nonemergent basis.

Cold compresses or ice packs for brief periods (eg, 10 minutes at a time) are recommended in older children in the first 24 hours after injury to reduce hemorrhage and swelling.

**Prognosis**

The prognosis depends on the severity of the blunt trauma, associated ocular injuries, and extent of the orbit fractures.

---

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Inspection of the eyelids reveals the extent and severity of the traumatic laceration.
- Lacerations of the nasal third of the eyelid and involving the eyelid margin are at risk for lacrimal system injury and subsequent chronic tearing.

**LACERATIONS**

**Pathogenesis**

Lacerations of the eyelids and lacrimal system often result from dog bites, car accidents, falls, and fights.

**Prevention**

Supervision of children at home and at school.

**Clinical Findings**

Eyelid lacerations may be partial or full thickness in depth depending on the extent of the injury. Foreign bodies, such as glass or gravel, may be present depending on the mechanism of the injury.

**Differential Diagnosis**

Lacerations involving the eyelid may or may not involve the nasolacrimal duct system or eyelid margin. Globe injury may be associated with eyelid lacerations as well.

**Complications**

Poor surgical repair of lacerations of the eyelid margin can result in eyelid malposition, which causes chronic ocular surface irritation and possible corneal scarring.

**Treatment**

Except for superficial lacerations away from the globe, repair in children is best performed in the operating room under general anesthesia. Special consideration must be given to lacerations involving the lid margin, significant tissue...
loss, full-thickness lacerations, lacerations that may involve the levator muscle in the upper lid, and to those that may involve the canaliculus (Figure 16–9). These injuries are best repaired by an ophthalmologist and may require intubation of the nasolacrimal system with silicone tubes.

**Prognosis**

Prognosis depends on severity of the injury, tissue loss, and adequacy of surgical repair.

### BURNS

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Severe thermal or chemical burns can result in permanent vision loss, ectropion or entropion of the lid, and scarring of the conjunctiva and cul-de-sac.

**Pathogenesis**

Chemical burns with strong acidic and alkaline agents can be blinding and constitute a true ocular emergency. Examples are burns caused by exploding batteries, spilled drain cleaner, and bleach. Eyelid burns can occur in toddlers from contact with a lighted cigarette. The cornea is often involved as well. Curling irons can cause similar burns. Burns of the conjunctiva and cornea may be thermal, radiant, or chemical. Radiant energy causes ultraviolet keratitis. Typical examples are welder’s burn and burns associated with skiing without goggles in bright sunlight.

### PREVENTION

Protective eyewear when engaging in activities that pose a potential risk for exposure to hazardous chemicals, radiant energy, or when explosive conditions are possible.

### CLINICAL FINDINGS

Superficial thermal burns cause pain, tearing, and injection. Corneal epithelial defects can be diagnosed using fluorescein dye, which will stain areas of the cornea bright yellow where the epithelium is absent. The fluorescein dye pattern will show a uniformly stippled appearance of the corneal epithelium in ultraviolet keratitis.

**DIFFERENTIAL DIAGNOSIS**

Corneal abrasion, iritis.

**COMPLICATIONS**

Significant corneal injury, especially if associated with an alkali burn, may lead to scarring and vision loss. Eyelid scarring can result in chronic exposure, dry eye, irritation, and entropion or ectropion.

### TREATMENT

Alkalis tend to penetrate deeper than acids into ocular tissue and often causes severe injury. Damage to the conjunctival vessels gives the eye a white or blanched appearance, resulting in ocular ischemia. Immediate treatment consists of copious irrigation and removal of precipitates as soon as possible after the injury. Initial stabilization of the injury is initiated by using topical antibiotics and patching the injured eye closed. A cycloplegic agent such as cyclopentolate 1% may be added if corneal involvement is present. This reduces the pain from ciliary spasm and iritis that may accompany the injury. The patient should be referred to an ophthalmologist after immediate first aid has been given.

**Prognosis**

Prognosis depends on the severity of the injury.

### HYPHEMA

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Slit-lamp examination or penlight examination may reveal a layer of blood within the anterior chamber. Other injuries to the globe and orbit are often present.
- A hyphema may be microscopic or may fill the entire anterior chamber (Figure 16–10).
Pathogenesis

Blunt trauma to the globe may cause a hyphema, or bleeding within the anterior chamber, from a ruptured vessel located near the root of the iris or in the anterior chamber angle (Figure 16–10).

Prevention

Protective eyewear and appropriate supervision at home and at school.

Clinical Findings

Blunt trauma severe enough to cause a hyphema may be associated with additional ocular injury, including iritis, lens subluxation, retinal edema or detachment, and glaucoma. In patients with sickle cell anemia or trait, even moderate elevations of intraocular pressure may quickly lead to optic atrophy and permanent vision loss. Therefore, all African Americans whose sickle cell status is unknown should be tested if hyphema is observed. These patients require extra vigilance in diagnosing and treating hyphema.

Differential Diagnosis

Nontraumatic causes of hyphema include juvenile xanthogranuloma and blood dyscrasias. Rarely, hyphema is noted in the newborn after a stressful birth.

Complications

Increased intraocular pressure, glaucoma, permanent corneal staining, and vision loss.

Treatment

A shield should be placed over the eye, the head elevated, and arrangements made for ophthalmologic referral.

Prognosis

The prognosis is worse if intraocular pressure is elevated, the patient has sickle cell disease, or if other associated ocular injuries are present.

ABUSIVE HEAD TRAUMA & NONACCIDENTAL TRAUMA

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

Traumatic head trauma, commonly known as shaken baby syndrome, is a form of nonaccidental trauma characterized by a constellation of examination findings, including traumatic brain injury, retinal hemorrhages, and fractures of long bones or ribs.

The history leading to the diagnosis of shaken baby syndrome is often vague and poorly correlated with the extent of injury.

Pathogenesis

The mechanism of injury has been ascribed to a rapid back and forth shaking of young children that results in brain and ocular injuries. It is now believed that injuries may also be the result of blunt impact. Additional injury may result from spinal cord injuries and hypoxia.

Clinical Findings

Victims often have multiple organ system involvement that includes, but is not limited to, traumatic brain injury, bone fractures, and retinal hemorrhages. The presentation can vary from irritability to emesis, change in mental status, or cardiopulmonary arrest.

Neuroimaging of the brain and a skeletal survey are used to diagnose shaken baby syndrome. Ophthalmic consultation and a dilated retinal examination are necessary to document retinal hemorrhages. Hemorrhages may be unilateral or bilateral and may be located in the posterior pole or periphery. Whereas retinal hemorrhages tend to resolve fairly quickly, those in the vitreous do not. If a blood clot lies over the macula, deprivation amblyopia may occur and may require intraocular surgery by a retinal specialist. Other ocular findings associated with nonaccidental trauma include lid ecchymosis, subconjunctival hemorrhage, hyphema, retinal
folds, retinoschisis (traumatic separation of the retinal layers), and optic nerve edema. Acute-onset esotropia can also occur.

**Differential Diagnosis**

The differential diagnosis of retinal hemorrhages includes those secondary to a fall, seizures, chest compressions during cardiopulmonary resuscitation, blood dyscrasias, and Terson syndrome, among others. A team effort between the primary treating physician, neurosurgery, orthopedics, ophthalmology, and social services is often needed to determine the true cause of a patient’s injuries.

**Complications**

The severity of injuries dictates the long-term outcome. Severely diffuse retinal hemorrhages, associated traumatic optic neuropathy, and cortical injury adversely affect the potential for normal vision.

**Treatment**

Management of any systemic injuries is required. Observation by an ophthalmologist for resolution of retinal hemorrhages is the usual management. Vitreous hemorrhages or large preretinal hemorrhages that do not resolve within several weeks may need surgical treatment by a retinal specialist.

**Prognosis**

Prognosis depends on the severity of ocular and brain injuries.


**PREVENTION OF OCULAR INJURIES**

Air rifles, paintballs, and fireworks are responsible for many serious eye injuries in children. Golf injuries can be very severe. Bungee cords have been associated with multiple types of severe ocular trauma, including corneal abrasion, iris tears, hyphema, vitreous hemorrhage, retinal detachment, and blindness. Use of these items and associated activities should be avoided or very closely supervised. Safety goggles should be used in laboratories and industrial arts classes, and when operating snow blowers, power lawn mowers, and power tools, or when using hammers and nails.

Sports-related eye injuries can be prevented with protective eyewear. Sports goggles and visors of polycarbonate plastic will prevent injuries in games using fast projectiles such as tennis or racquet balls, or where opponents may swing elbows or poke at the eye.

The one-eyed individual should be specifically advised to always wear polycarbonate eyeglasses and goggles for all sports. High-risk activities such as boxing and the martial arts should be avoided by one-eyed children.

**DISORDERS OF THE OCULAR STRUCTURES**

**DISEASES OF THE EYELIDS**

The eyelids can be affected by various dermatologic and infectious conditions.

**Blepharitis**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

Blepharitis is inflammation of the lid margin characterized by crusty debris at the base of the lashes, erythema of eyelid margins, and ocular irritation.

**Pathogenesis**

Blepharitis is caused by inflammation of the eyelid margin, meibomian gland obstruction, bacterial overgrowth, and tear film imbalance.

**Prevention**

Eyelid hygiene is essential to prevent or control blepharitis. Eyelid scrubs help decrease the bacterial load on the eyelid margins and lashes. Warm compresses help loosen the secretions of the meibomian glands.

**Clinical Findings**

Patients may present with dry eye symptoms, red and irritated eyelid margins, conjunctivitis, and decreased vision from corneal erosions or vascularization. When conjunctival injection accompanies blepharitis, the condition is known as blepharoconjunctivitis. Staphylococcus is the most common bacterial cause.

**Differential Diagnosis**

Chalazion, hordeolum, and rosacea blepharitis.

**Complications**

Permanent corneal and eyelid margin scarring in severe cases.

**Treatment**

Treatment includes lid scrubs with baby shampoo several times a week, warm compresses to the eyelids, and application of a topical antibiotic ointment such as erythromycin or bacitracin at bedtime.
Prognosis
Generally good.

Chalazion

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- A chalazion is an inflammation of the meibomian glands, which may produce a tender nodule over the tarsus of the upper or lower lid.
- Chalazion tends to be recurrent if eyelid hygiene is poor.

Pathogenesis
Obstruction of the eyelid margin meibomian glands with resultant inflammation, fibrosis, and granuloma formation.

Prevention
See earlier section Blepharitis.

Clinical Findings
Eyelid nodule of variable size and localized erythema of the corresponding palpebral conjunctiva that may be associated with a yellow lipogranuloma (Figure 16–11).

Differential Diagnosis
Hordeolum, blepharitis.

Treatment
See earlier section Blepharitis. Oral flax seed oil may also decrease the risk of recurrent chalazion. If incision and curettage are needed because the lesion is slow to resolve, the child will require a general anesthetic. Topical azithromycin (ophthalmic solution 1%) may also help decrease recurrence of chalazion, but it is still under investigation.

Prognosis
Generally good.

VIRAL EYELID DISEASE

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Viral infections of the eyelids can result in eyelid vesicles or papules.

Pathogenesis
Herpes simplex virus (HSV) may involve the conjunctiva and lids at the time of primary herpes simplex infection resulting in blepharoconjunctivitis. Vesicular lesions with an erythematous base occur. Herpes zoster causes vesicular disease in association with a skin eruption in the dermatome of the ophthalmic branch of the trigeminal nerve. Molluscum contagiosum lesions are typically umbilicated papules. If near the lid margin, the lesions may cause conjunctivitis.

Prevention
Avoid contact with individuals with active viral infections.

Clinical Findings
A vesicular rash is the most common sign of herpes viral eyelid infection. Fluorescein dye should be administered topically to the effected eye followed by examination with
a cobalt blue light to determine if corneal or conjunctival involvement is present. Herpes simplex or herpes zoster can be diagnosed by rapid viral culture (24–48 hours) or detection of antigen in skin lesions (3 hours).

**Differential Diagnosis**

Impetigo.

**Complications**

Conjunctivitis, keratitis (corneal infection).

**Treatment**

Primary herpes simplex blepharoconjunctivitis should be treated with systemic acyclovir (a liquid formulation is available), valacyclovir, or famciclovir. When either the conjunctiva or the cornea is involved, treatment should include topical 1% trifluridine or 3% vidarabine.

Treatment of ophthalmic herpes zoster with nucleoside analogues within 5 days after onset may reduce the morbidity. When vesicles are present on the tip of the nose with herpes zoster (Hutchinson sign), ocular involvement, including iritis, is more likely.

Molluscum contagiosum lesions may be treated with cautery or excision.

**Prognosis**

Generally good unless corneal involvement is present.

**MISCELLANEOUS EYELID INFECTIONS**

**Pediculosis**

Pediculosis of the lids (phthiriasis palpebrarum) is caused by *Phthirus pubis*. Nits and adult lice can be seen on the eyelashes when viewed with appropriate magnification. Mechanical removal and application to the lid margins of Phospholine iodide or 1% mercuric oxide ointment can be effective. Other bodily areas of involvement must also be treated if involved. Family members and contacts may also be infected (see Chapter 15).

**Papillomavirus**

Papillomavirus may infect the lid and conjunctiva. Warts may be recurrent, multiple, and difficult to treat. Treatment modalities include cryotherapy, cautery, carbon dioxide laser, and surgery.

**Staphylococcal Infection**

Localized staphylococcal infections of the glands of Zeis within the lid cause a sty (hordeolum) (Figure 16–12). When the infection coalesces and points internally or externally, it may discharge itself or require incision. The lesion is tender and red. Warm compresses help to shorten the acute process. Some practitioners prescribe a topical antibiotic ointment. Any coexisting blepharitis should be treated.

**Eyelid Ptosis**

*Eyelid ptosis results in a droopy eyelid that may be unilateral or bilateral. If the pupil is obstructed, deprivation amblyopia may result.*

**Pathogenesis**

Ptosis—a droopy upper lid (Figure 16–13)—may be congenital or acquired but is usually congenital in children owing to a defective levator muscle. Other causes of ptosis are myasthenia gravis, lid injuries, third nerve palsy, and Horner...
syndrome (see next section). Ptosis may be associated with astigmatism and amblyopia.

**Prevention**

Injury prevention.

**Clinical Findings**

An association sometimes seen with congenital ptosis is the Marcus Gunn jaw-winking phenomenon. Intermittent reduction of the ptosis occurs during mastication or sucking, due to a synkinesis or simultaneous firing of the external or internal pterygoid muscle (innervated by the trigeminal nerve) and the levator muscle (innervated by the oculomotor nerve).

**Differential Diagnosis**

Congenital ptosis, traumatic ptosis, neurogenic ptosis (oculomotor nerve palsy), Horner syndrome.

**Complications**

Deprivation amblyopia and induced astigmatism.

**Treatment**

Surgical correction is indicated for moderate to severe ptosis. Mild cases less often require operative management. Cosmesis may be better if surgery is delayed until most of the facial growth has occurred, usually around age 5 years.

**Prognosis**

The prognosis depends on the presence of amblyopia and whether it is adequately treated.

**HORNER SYNDROME**

**Essentials of Diagnosis & Typical Features**

- Horner syndrome, which may be congenital or acquired, presents with signs of unequal pupils (anisocoria), eyelid ptosis, iris heterochromia, and anhidrosis.

**Pathogenesis**

The syndrome is caused by an abnormality or lesion to the sympathetic chain. The congenital variety is most commonly the result of birth trauma. Acquired cases may occur in children who have had cardiothoracic surgery, trauma, or brainstem vascular malformation. Most worrisome is a Horner syndrome caused by neuroblastoma of the sympathetic chain in the apical lung region.

**Prevention**

Sympathetic chain injury avoidance during cardiothoracic surgery and delivery.

**Clinical Findings**

Parents may notice unequal pupils or different colored eyes. Penlight examination of the eyes may reveal unequal pupils (anisocoria), iris heterochromia, and eyelid ptosis of the affected eye.

The ptosis is usually mild with a well-defined upper lid crease. This differentiates it from congenital ptosis, which typically has a poorly defined lid crease. Another key finding of congenital Horner syndrome is heterochromia of the two irides, with the lighter colored iris occurring on the same side as the lesion (Figure 16–14). Anhidrosis can occur in congenital and acquired cases. Of note, not all of the three signs must be present to make the diagnosis.

Pharmacologic assessment of the pupils with topical cocaine and hydroxyamphetamine or epinephrine will help determine whether the Horner syndrome is due to a preganglionic or postganglionic lesion of the sympathetic chain. Preliminary studies suggest that topical apraclonidine may be useful in the diagnosis of Horner syndrome. Physical examination, including palpation of the neck and abdomen for masses, and MRI of structures in the head, neck, chest, and abdomen should be considered. An excellent screening test for neuroblastoma is the spot urine vanillylmandelic acid/creatinine ratio.

**Differential Diagnosis**

Congenital or neurogenic ptosis, physiologic anisocoria.

**Complications**

Prognosis depends on the etiology. Ptosis associated with Horner syndrome is usually mild and rarely results in amblyopia.

**Treatment**

Management of any underlying disease is required. The ptosis and vision should be monitored by an ophthalmologist.
Prognosis

Prognosis depends on the etiology. The vision is usually normal.

Eyelid Tics

Eyelid tics may occur as a transient phenomenon lasting several days to months. Although a tic may be an isolated finding in an otherwise healthy child, it may also occur in children with multiple tics, attention-deficit/hyperactivity disorder, or Tourette syndrome. Caffeine consumption may cause or exacerbate eyelid tics. If the disorder is a short-lived annoyance, no treatment is needed.

Disorders of the Nasolacrimal System

Nasolacrimal Duct Obstruction

Essentials of Diagnosis & Typical Features

- Nasolacrimal obstruction occurs in up to 6% of infants.
- Most cases clear spontaneously during the first year.

Pathogenesis

Obstruction in any part of the drainage system may result from either incomplete canalization of the duct or membranous obstructions. Nasolacrimal obstruction may also occur in individuals with craniofacial abnormalities or Down syndrome.

Prevention

Not applicable.

Clinical Findings

Nasolacrimal duct obstruction presents with tearing and mucoid discharge from the affected eye. Signs and symptoms include tearing (epiphora), mucoid discharge especially in the morning, erythema of one or both lids, and conjunctivitis (Figure 16–15). Light sensitivity and blepharospasm suggest possible congenital glaucoma and warrant an urgent ophthalmic referral.

Differential Diagnosis

The differential diagnosis of tearing includes nasolacrimal duct obstruction, congenital glaucoma, foreign bodies, nasal disorders, and, in older children, allergies.

Complications

Dacryocystitis, orbital cellulitis, sepsis, respiratory distress.

Treatment

Massage over the nasolacrimal sac may empty debris from the nasolacrimal sac and clear the obstruction, although the efficacy of massage in clearing nasolacrimal obstruction is debated. Superinfection may occur, and treatment with topical antibiotics may help decrease the discharge.

The mainstay of surgical treatment is probing, which is successful 80% or more of the time, but the success rate may decrease after the infant reaches 1 year of age. Other surgical procedures, including infraction of the inferior nasal turbinate, balloon dilation, and silicone tube intubation, may be necessary if probing fails. Much less often, dacryocystorhinostomy is required.

Prognosis

Generally good with surgical treatment.

Congenital Dacryocystocele

Essentials of Diagnosis & Typical Features

- Presence of a nodular enlargement which may be blue in color, occurring shortly after birth over the nasolacrimal sac/medial eyelids.
- Dacryocystitis often occurs due to bacterial superinfection.
DACRYOCYSTITIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

☆ Dacryocystitis is an infection of the nasolacrimal sac that causes erythema and edema over the nasolacrimal sac.

☆ Pathogenesis
Acute and chronic dacryocystitis are typically caused by bacteria that colonize the upper respiratory tract, such as *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Streptococcus pyogenes*, *Streptococcus viridans*, *Moraxella catarrhalis*, and *Haemophilus* species.

☆ Prevention
Treatment of nasolacrimal duct obstruction.

☆ Clinical Findings
At birth, the nasolacrimal sac is distended and has a bluish hue that often leads to an erroneous diagnosis of hemangioma. The tense and swollen sac displaces the medial canthus superiorly (Figure 16–16). Digital pressure over the nodule may result in reflux of tears, mucus, or purulent discharge from the inferior eyelid punctum. An intranasal duct cyst may be present beneath the inferior turbinate at the valve of Hasner. These cysts may be associated with respiratory distress.

☆ Differential Diagnosis
Eyelid hemangioma, basal encephalocele.

☆ Complications
Dacryocystitis, orbital cellulitis, sepsis, respiratory distress.

☆ Treatment
Massage and warm compresses are rarely effective. Nasolacrimal duct probing and endoscopic marsupialization of the intranasal cyst under general anesthesia may be required. Hospital admission and systemic antibiotics are indicated if dacryocystitis is present. Consultation with an ear, nose, and throat specialist is recommended to aid in the diagnosis and treatment of an associated intranasal cyst.

☆ Prognosis
Generally good.
Complications
Preseptal cellulitis, orbital cellulitis, sepsis.

Treatment
Severe acute dacryocystitis is treated with intravenous antibiotics after attempts at identifying the offending organism by culture and staining. Oral antibiotics can be tried in milder cases. Topical antibiotic administration is adjunctive and is also used with recurrent chronic infections. Warm compresses are beneficial. After the acute episode subsides—and in chronic cases—the nasolacrimal obstruction must be relieved surgically. If it cannot be drained via the intranasal portion of the nasolacrimal duct, external drainage may be necessary. This should be done as a last resort since a fistula may develop.

Prognosis
Generally good.

DISEASES OF THE CONJUNCTIVA
Conjunctivitis may be infectious, allergic, or associated with systemic disease. Trauma, irritation of the conjunctiva, and intraocular inflammation can cause injection of conjunctival vessels that can be confused with conjunctivitis.

OPHTHALMIA NEONATORUM

Clinical Findings
Ophthalmia neonatorum is characterized by redness and swelling of the lids and conjunctiva and by discharge (Figure 16–18). Gram staining, polymerase chain reaction amplification for Chlamydia and HSV, and bacterial and viral cultures aid in making an etiologic diagnosis.

Differential Diagnosis
Chemical/toxic conjunctivitis, viral conjunctivitis, bacterial conjunctivitis, chlamydial conjunctivitis.

Complications
Chlamydia can cause a delayed-onset pneumonitis. Gonococcal infections can cause blindness through endophthalmitis as well as sepsis.

Treatment
Treatment of these infections requires specific systemic antibiotics because they can cause serious infections in other organs. Parents should be examined and receive treatment when a sexually associated pathogen is present.
Prognosis

Prognosis depends on the infectious agent as well as the rapidity of treatment.

Bacterial Conjunctivitis

Essentials of Diagnosis & Typical Features

- In general, bacterial conjunctivitis is accompanied by a purulent discharge.

Pathogenesis

Common bacterial causes of conjunctivitis in older children include *Haemophilus* species, *S pneumoniae*, *M catarrhalis*, and *S aureus*.

Prevention

Hand-washing and contact precautions.

Clinical Findings

Purulent discharge and conjunctival injection of one or both eyes. These symptoms may be associated with an upper respiratory infection. Regional lymphadenopathy is not a common finding in bacterial conjunctivitis except in cases of oculoglandular syndrome due to *S aureus*, group A β-hemolytic streptococci, *Mycobacterium tuberculosis* or atypical mycobacteria, *Francisella tularensis* (the agent of tularemia), and *Bartonella henselae* (the agent of cat-scratch disease).

Differential Diagnosis

Viral, allergic, traumatic, or chemical/toxic conjunctivitis.

Complications

Bacterial conjunctivitis is usually self-limited unless caused by *Chlamydia trachomatis*, *N gonorrhoeae*, and *Neisseria meningitidis* which may have systemic manifestations.

Treatment

If conjunctivitis is not associated with systemic illness, topical antibiotics such as erythromycin, polymyxin-bacitracin, sulfacetamide, tobramycin, and fluoroquinolones are adequate. Systemic therapy is recommended for conjunctivitis associated with *C trachomatis*, *N gonorrhoeae*, and *N meningitidis*.

Prognosis

Generally good.


Viral Conjunctivitis

Essentials of Diagnosis & Typical Features

- Children with viral conjunctivitis usually present with injection of the conjunctiva of one or both eyes and watery ocular discharge.

Pathogenesis

Adenovirus infection is often associated with pharyngitis, a follicular reaction and injection of the palpebral conjunctiva, and preauricular adenopathy (pharyngoconjunctival fever). Epidemics of adenoviral keratoconjunctivitis occur. Conjunctivitis may also be due to enterovirus and can occur as part of an acute measles illness. HSV may cause conjunctivitis or blepharoconjunctivitis.

Prevention

Hand-washing and contact precautions.

Clinical Findings

Watery discharge associated with conjunctival injection of one or both eyes. A vesicular rash involving the eyelids or face suggests HSV.

Differential Diagnosis

Bacterial, allergic, traumatic, or chemical/toxic conjunctivitis.

Complications

Generally, viral conjunctivitis is self-limited. Herpes conjunctivitis may result in keratitis, which can affect visual acuity. This should be treated with antiviral therapy and the patient should be referred to an ophthalmologist.

Treatment

Treatment of adenovirus conjunctivitis is supportive. Children with presumed adenoviral keratoconjunctivitis are considered contagious 10–14 days from the day of onset. They should stay out of school and group activities as long as their eyes are red and tearing. Strict hand-washing precautions are recommended.
Herpes conjunctivitis can be treated with topical trifluoridine 1% drops or 3% vidarabine ointment. Oral acyclovir may be used for treatment of the primary infection to decrease the duration and severity of the infection and as prophylaxis to reduce recurrence of herpes simplex ocular disease.

**Prognosis**
Generally good.

### ALLERGIC CONJUNCTIVITIS

#### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- A history of itchy, watery, red eyes, often associated with other allergy symptoms such as sneezing and rhinitis.

#### Prevention
Decrease exposure to allergens. This may be done by hand washing after handling dogs/cats, washing clothing, and bathing after being outdoors when pollen counts are elevated.

#### Clinical Findings
The history of itchy, watery, and red eyes is essential in making the diagnosis of allergic conjunctivitis. Redness of the conjunctiva, tearing, and discharge may be part of the history but need not be present on examination to make the diagnosis. Vernal conjunctivitis is a more severe form of allergic conjunctivitis occurring mostly in the spring and summer that is associated with intense tearing, itching, and a stringy discharge. Vernal allergic conjunctivitis is more common in males. Vernal conjunctivitis may present with giant cobblestone papillae (Figure 16–19) on the eyelid conjunctiva, nodules around the corneal limbus, and even sterile corneal ulcers. Contact lens wear may induce a conjunctivitis that appears similar to the palpebral form of vernal conjunctivitis.

#### Treatment
Topical ophthalmic solutions that combine both an antihistamine and mast cell stabilizers, including olopatadine 0.1%, epinastine HCl 0.05%, and ketotifen fumarate 0.025%, are very effective at treating allergic conjunctivitis. Other agents available include a combination topical vasoconstrictor plus an antihistamine (naphazoline antazoline), a nonsteroidal anti-inflammatory drug (NSAID) such as ketorolac tromethamine 0.5%, a mast cell stabilizer such as lodoxamide tromethamine 0.1%, or a corticosteroid such as prednisolone 0.125% (Table 16–2). Corticosteroids should be used with caution because their extended use causes glaucoma or cataracts in some patients. Systemic antihistamines and limitation of exposure to allergens may help reduce symptoms as well.

**Prognosis**
Generally good.

### MUCOCUTANEOUS DISEASES

#### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis are systemic conditions that often affect the eyes, as well as the skin, and oral and genital mucosa.
- Ocular involvement may result in permanent conjunctival scarring, eyelid malposition, severe dry eye syndrome, and permanent vision loss.

#### Clinical Findings
Erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis may be caused by medications including: phenytoin, sulfonamides, NSAIDs, and barbiturates or infections such as HSV or *Mycoplasma pneumoniae*. 
Table 16–2. Common ocular allergy medications.

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Brand Name</th>
<th>Mechanism of Action</th>
<th>Side Effects</th>
<th>Dosage</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lodoxamide tromethamine 0.1%</td>
<td>Alomide</td>
<td>Mast cell stabilizer</td>
<td>Transient burning or stinging</td>
<td>1 drop 4 times daily—taper</td>
<td>Vernal keratoconjunctivitis</td>
</tr>
<tr>
<td>Cromolyn Na 4%</td>
<td>Crolom, Opticrom</td>
<td>Mast cell stabilizer</td>
<td>Transient burning or stinging</td>
<td>1 drop 4–6 times daily</td>
<td>Vernal keratoconjunctivitis</td>
</tr>
<tr>
<td>Olopatadine</td>
<td>Patanol, Pataday</td>
<td>Mast cell stabilizer, H₁-receptor antagonist</td>
<td>Headache, burning or stinging</td>
<td>Twice daily (interval 6–8 h)</td>
<td>Itching due to allergic conjunctivitis</td>
</tr>
<tr>
<td>Ketorolac tromethamine 0.5%</td>
<td>Acular</td>
<td>Nonsteroidal anti-inflammatory</td>
<td>Transient burning or stinging</td>
<td>1 drop 4 times daily</td>
<td>Itching due to seasonal allergic conjunctivitis</td>
</tr>
<tr>
<td>Levocabastine HCl 0.05%</td>
<td>Livostin</td>
<td>H₁-receptor antagonist</td>
<td>Transient burning or stinging, headache</td>
<td>1 drop 4 times daily</td>
<td>Relief of symptoms of seasonal allergic conjunctivitis</td>
</tr>
<tr>
<td>Naphazoline HCl 0.1%</td>
<td>AK-Con, Naphcon, Opcon, Vasocon</td>
<td>Ocular decongestant, vasoconstrictor</td>
<td>Mydriasis, increased redness, irritation, discomfort, punctate keratits, increased intraocular pressure, dizziness, headache, nausea, nervousness, hypertension, weakness, cardiac effects, hyperglycemia</td>
<td>Varies by preparation</td>
<td>Temporary relief of redness due to minor eye irritants</td>
</tr>
<tr>
<td>Pheniramine maleate</td>
<td>Component in AK-Con A, Opcon-A, Naphcon-A</td>
<td>Antihistamine</td>
<td></td>
<td>1 drop every 3–4 h, as needed</td>
<td>Relief of symptoms of seasonal allergic conjunctivitis</td>
</tr>
</tbody>
</table>

With Stevens-Johnson syndrome, conjunctival changes include erythema and vesicular lesions that frequently rupture. Staining of the conjunctiva and/or cornea with fluorescein suggests severe ocular involvement and high risk for permanent ocular sequela, including symblepharon (adhesions) between the raw edges of the bulbar (eye) and palpebral (lid) conjunctivae.

**Differential Diagnosis**

Viral or bacterial conjunctivitis if the patient presents prior to cutaneous or mucosal eruptions.

**Complications**

Severe ocular involvement can result in permanent scarring of the conjunctiva leading to eyelid malposition, trichiasis (eyelashes touching the surface of the eye), and vision loss from chronic ocular irritation and extreme tear film deficiency.

**Treatment**

Treatment of the underlying disease, including discontinuation of offending medications and use of appropriate antimicrobials is necessary. Management of conjunctivitis associated with mucocutaneous disease depends on its severity. Artificial tears and ointment provide comfort and a topical corticosteroid may help prevent adhesions and dry eye in mild to moderate cases. Lysis of adhesions or use of a scleral ring by an ophthalmologist may be required. Surgical treatment of severe cases with amniotic membrane grafts may prevent visual disability by decreasing the risk of dry eye from tear-producing glands/goblet cell destruction, symblepharon, and trichiasis. Topical cyclosporine may help decrease the inflammatory reaction that leads to the destruction of tear-producing glands/goblet cells and subsequent dry eye syndrome.

**Prognosis**

Prognosis depends on the severity of the underlying condition. Guarded visual prognosis is made in severe cases.

**DISORDERS OF THE IRIS**

**IRIS COLOBOMA**

<table>
<thead>
<tr>
<th>ESSENTIALS OF DIAGNOSIS &amp; TYPICAL FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Iris coloboma is a developmental defect due to incomplete closure of the anterior embryonal fissure.</td>
</tr>
<tr>
<td>▶ Iris coloboma may occur as an isolated defect or in association with various chromosomal abnormalities and syndromes.</td>
</tr>
</tbody>
</table>

**Clinical Findings**

Penlight examination of the pupils reveals a keyhole shape to the pupil rather than the normal round configuration (Figure 16–20). A dilated examination by an ophthalmologist is necessary to determine if the coloboma involves additional structures of the eye including the retina. If the retina is involved, vision may be poor. A genetic evaluation is usually recommended due to the high rate of associated genetic syndromes.

**Differential Diagnosis**

Microphthalmia, aniridia, previous iris trauma.

**Complications**

Low vision and rarely a secondary retinal detachment may need surgical intervention.

**Figure 16–20.** Iris coloboma located inferiorly.

**Figure 16–21.** Bilateral aniridia. Iris remnants present temporally in each eye.

**ANIRIDIA**

<table>
<thead>
<tr>
<th>ESSENTIALS OF DIAGNOSIS &amp; TYPICAL FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Aniridia is a bilateral disorder that results in the absence of the majority of the iris (Figure 16–21).</td>
</tr>
</tbody>
</table>

**Pathogenesis**

Aniridia may occur as an autosomal dominant disease or in a sporadic form associated with Wilms tumor. The aniridia gene is located within the 11p13 chromosome region. Aniridia, genitourinary abnormalities, and developmental delay have been linked to an 11p deletion.

**Clinical Findings**

Slit-lamp or penlight examinations reveal little to no visible iris (see Figure 16–21). Photophobia, nystagmus, and poor vision are present in aniridia. Abdominal ultrasonography is indicated in the sporadic form of aniridia to diagnose Wilms tumor. Genetic evaluation is indicated as well. Cataract, corneal changes, macular hypoplasia, and glaucoma are often seen.

**Differential Diagnosis**

Microphthalmia, iris coloboma, previous iris trauma.
Complications
Low vision, cataracts, and glaucoma.

Treatment
An ophthalmologist should determine if cataracts or glaucoma are present in patients with aniridia. Surgical treatment of cataracts and glaucoma is often indicated.

Prognosis
Patients tend to have low vision.

ALBINISM

Complications
Low vision, strabismus, high refractive errors, and visual field abnormalities.

Treatment
Children with albinism should be evaluated by a pediatric ophthalmologist in order to optimize their visual function. Low-vision aids such as telescopes, stand magnifiers, and large-print books are often required. Vision teachers in schools and ophthalmic specialists trained in treating low-vision patients can improve the patient’s ability to perform activities of daily living and function within society. Affected individuals should use sunscreen and protective clothing to prevent skin cancer.

Prognosis
Vision is subnormal in most individuals.

MISCELLANEOUS IRIS CONDITIONS
Heterochromia, or a difference in iris color, can occur in congenital Horner syndrome, after iritis, or with tumors and nevi of the iris and use of topical prostaglandins. Malignant melanoma of the iris may also cause iris heterochromia. Acquired iris nodules (Lisch nodules), which occur in type 1 neurofibromatosis, usually become apparent by age 8 years. When seen on slit-lamp examination, Lisch nodules are 1–2 mm in diameter. They are often beige in color, although their appearance can vary. Iris xanthogranuloma occurring with juvenile xanthogranuloma can cause hyphema and glaucoma. Patients with juvenile xanthogranuloma should be evaluated by an ophthalmologist for ocular involvement.

GLAUCOMA

Complications
Low vision, cataracts, and glaucoma are associated with albinism are Waardenburg, Prader-Willi, and Angelman syndromes.

Treatment
An ophthalmologist should determine if cataracts or glaucoma are present in patients with aniridia. Surgical treatment of cataracts and glaucoma is often indicated.

Prognosis
Patients tend to have low vision.
Clinical Findings

Signs of glaucoma presenting within the first year of life include enlargement of the globe due to low scleral rigidity in the infant eye (buphthalmos), as well as tearing, photophobia, blepharospasm, corneal clouding due to edema, and optic nerve cupping. After age 3 years, usually only optic nerve changes occur. Findings may be unilateral or bilateral. In general, a red, inflamed eye is not typical of congenital or infantile glaucoma.

Sudden eye pain, redness, corneal clouding, and vision loss suggests possible pupillary block or angle-closure glaucoma. Urgent referral to an ophthalmologist is indicated. Genetic evaluation should be completed if other systemic abnormalities are noted.

Glaucoma also occurs with ocular and systemic syndromes such as aniridia, anterior segment dysgenesis, Sturge-Weber syndrome, the ocucerebrorenal syndrome of Lowe, and the Pierre Robin syndrome. Glaucoma can also occur with a traumatic hyphema, iritis, lens dislocation, intraocular tumor, and ROP.

Differential Diagnosis

Buphthalmos is glaucoma until proven otherwise. The signs and symptoms of glaucoma are quite variable and should be urgently evaluated by an ophthalmologist.

Treatment

Treatment depends on the cause, but surgery is often indicated. Topical medications, which are available to decrease the intraocular pressure, have limited success in pediatric glaucoma.

Prognosis

In general, the prognosis is guarded but is often poor for glaucoma associated with congenital buphthalmos.


UVEITIS

Inflammation of the uveal tract can be subdivided according to the uveal tissue primarily involved (iris, choroid, or retina) or by location (anterior, intermediate, or posterior uveitis). Perhaps the most commonly diagnosed form of uveitis in childhood is traumatic iridocyclitis or iritis.

ANTERIOR UVEITIS/IRIDOCYCLITIS/IRITIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

Iridocyclitis associated with juvenile idiopathic arthritis may be asymptomatic despite severe ocular inflammation.

Pathogenesis

Iridocyclitis associated with juvenile idiopathic arthritis occurs most often in girls with oligoarticular arthritis and a positive antinuclear antibody test. Inflammatory bowel disease is also associated with iritis—perhaps more commonly with Crohn disease than with ulcerative colitis. Other causes of anterior uveitis in children include syphilis, tuberculosis, sarcoidosis, relapsing fever (borreliosis), and Lyme disease, all but the last also causing posterior uveitis. Juvenile spondyloarthropathies, including ankylosing spondylitis, Reiter syndrome, and psoriatic arthritis, are associated with anterior uveitis. A substantial percentage of cases are of unknown origin.

Clinical Findings

Injection, photophobia, pain, and blurred vision usually accompany iritis (anterior uveitis or iridocyclitis). An exception to this is iritis associated with juvenile idiopathic arthritis (see Chapter 29). The eye in such cases is quiet and asymptomatic, but slit-lamp examination reveals anterior chamber inflammation with inflammatory cells and protein flare. Children with juvenile idiopathic arthritis should be screened according to a schedule recommended by the AAP (http://www.aap.org). Children with Crohn disease or ulcerative colitis should have routine periodic ophthalmologic examinations to detect ocular inflammation, which may be asymptomatic, and to detect cataracts if they have been receiving long-term systemic corticosteroids.

Other ocular findings of the anterior segment include conjunctivitis, episcleritis, and sterile corneal infiltrates. Posterior segment findings may include central serous retinchoroidopathy, panuveitis (inflammation of all uveal tissue), choroiditis, ischemic optic neuropathy, retinal vasculitis, neuroretinitis, and intermediate uveitis (see later section Intermediate Uveitis).

Posterior subcapsular cataracts can develop in patients with or without ocular inflammation. Most, if not all, of these patients have been taking corticosteroids as part of the long-term treatment of their autoimmune disease.
Differential Diagnosis

Iridocyclitis due to autoimmune disorder, trauma, infection, malignancy, or idiopathic etiology.

Complications

Permanent decreased vision due to cataracts, secondary glaucoma, and band keratopathy.

Treatment

Treatment with a topical corticosteroid and a cycloplegic agent is aimed at quieting the inflammation and preventing or delaying the onset of cataract and glaucoma. Methotrexate and other systemic immunosuppressive agents can be used in refractory cases. Systemic antitumor necrosis factor agents such as etanercept, infliximab, and adalimumab show promise in treating refractory cases of uveitis.

Prognosis

Prognosis depends on the severity of ocular inflammation, development of cataracts, and secondary glaucoma.


Posterior Uveitis

Essentials of Diagnosis & Typical Features

The terms choroiditis, retinitis, and retinochoroiditis denote the tissue layers primarily involved in posterior uveitis. Infectious agents are the most common cause of posterior uveitis in the pediatric population.

Clinical Findings

Children with posterior uveitis often present with systemic manifestations of a congenital infection. Examples include deafness, developmental delay, cataracts, “salt and pepper” retinopathy, and hearing and cardiac disorders seen in congenital rubella.

Serologic analysis and retinal examination by an ophthalmologist are used to identify the cause of posterior uveitis. Active toxoplasmosis (see Chapter 43) produces a white lesion appearing as a “headlight in the fog” owing to the overlying vitreitis. Inactive lesions have a hyperpigmented border. Contiguous white satellite lesions suggest reactivation of disease.

A granular “salt and pepper” retinopathy is characteristic of congenital rubella. In infants, the TORCH complex (toxoplasmosis, other infections, rubella, cytomegalovirus [CMV], and HSV) and syphilis are congenital infections that cause chorioretinitis.

Congenital chorioretinitis caused by lymphocytic choriomeningitis is diagnosed by immunofluorescent antibody or enzyme-linked immunosorbent assay (ELISA) serologic testing. The virus is transmitted to humans by consumption of food contaminated with rodent urine or feces. It most closely resembles congenital toxoplasmosis in presentation. Ocular candidiasis occurs typically in an immune compromised host or a premature infant in the intensive care nursery receiving hyperalimentation. Candidal chorioretinitis, which is evidence of candidemia, appears as multifocal, whitish yellow, fluffy retinal lesions that may spread into the vitreous and produce a so-called cotton or fungus ball vitritis.

Acute retinal necrosis syndrome is caused most often by varicella-zoster virus and occasionally by HSV. Patients may present with vision loss and a red and painful eye. Ophthalmoscopy may show unilateral or bilateral patchy white areas of retina, arterial sheathing, vitreous haze, atrophic retinal scars, retinal detachment, and optic nerve involvement.

CMV infection is the most common cause of retinitis in immune compromised children, especially those with human immunodeficiency virus (HIV) infection. CMV retinitis appears as a white retinal lesion, typically but not always associated with hemorrhage, or as a granular, indolent-appearing lesion with hemorrhage and a white periphery. Cotton-wool spots (nerve fiber layer infarcts) also commonly occur in HIV-positive patients.

In toddlers and young children, Toxocara canis or Toxocara cati infections (ocular larva migrans; see Chapter 43) occur from ingesting soil contaminated with parasite eggs. The disease is usually unilateral. Common signs and symptoms include a red injected eye, leukocoria, and decreased vision. Funduscopic examination may show endophthalmitis (vitreous abscess) or localized granuloma. Diagnosis is based on the appearance of the lesion and serologic testing using ELISA for T canis and T cati.

Differential Diagnosis

Posterior uveitis due to autoimmune disorder, trauma, infection, malignancy, or idiopathic etiology.

Complications

Permanent vision loss due to retinal scarring and detachment.
Treatment
Congenital toxoplasmosis infections must be treated with systemic antimicrobials (see Chapter 43). Studies have shown improved ophthalmic and neurologic outcomes with prolonged treatment. Other infectious agents such as Candida, varicella, and CMV require systemic and/or intraocular injections of antimicrobial agents, and may require retinal surgery. Treatment of toxocariasis includes periocular corticosteroid injections and vitrectomy.

Prognosis
The prognosis for vision depends on the severity of retinal and systemic involvement.

Intermediate Uveitis

Clinical Findings
Patients with pars planitis, inflammation of the anterior edge of the retina, often complain of decreased vision and floaters. They may also have a history of a red eye and ocular discomfort. Patients with intermediate uveitis often have decreased vision. A prolonged duration of the disease can lead to deprivation amblyopia and strabismus.

A dilated examination is required for observation of inflammation of the pars plana and vitritis. Slit-lamp and dilated funduscopic examinations by an ophthalmologist often reveal chronic signs of inflammation associated with intermediate uveitis, including macular edema, cataracts, increased intraocular pressure, irregular pupil, iris adhesion to the lens, and band keratopathy.

Differential Diagnosis
Intermediate uveitis is often idiopathic although there are several known etiologies. Toxocara infections with peripheral granuloma can be associated with intermediate uveitis, as can inflammatory bowel disease, multiple sclerosis, and sarcoidosis. Retinoblastoma and other neoplasms may imitate uveitis.

Complications
Decreased vision due to macular edema, vitreous floaters, cataracts, and glaucoma.

Treatment
The most common treatment regimen for intermediate uveitis includes subtenon steroid injections, vitrectomy by a retinal surgeon, and systemic immunosuppression. Secondary glaucoma often requires tube shunt surgery.

Prognosis
The prognosis depends on the severity of the disease and associated secondary complications such as glaucoma and cataracts.

Ocular Manifestations of AIDS

Pathogenesis
Pathogens commonly causing eye infection include CMV and varicella-zoster virus. Acute retinal necrosis syndrome (see earlier section Posterior Uveitis) is a severe necrotizing retinitis that often results in blindness in patients with AIDS. Most cases are thought to be caused by varicella-zoster virus. Other implicated agents are herpes simplex types 1 and 2.

Patients with CD4 counts below 200/μL are at high risk for CMV retinitis and should have a complete ocular evaluation by an ophthalmologist. Various retinal abnormalities may be present which include cotton-wool spots, retinal hemorrhages, microaneurysms, perivasculitis, and decreased visual acuity from ischemic maculopathy.

Immune recovery uveitis associated with antiretroviral therapy may result in decreased vision and require treatment.

Differential Diagnosis
Decreased vision due to immune recovery uveitis, CMV retinitis, or acute retinal necrosis syndrome.
Complications
Retinal scarring, retinal detachment, and blindness.

Treatment
If immune recovery is sufficient with antiretroviral therapy for an extended period, the patient may be able to discontinue anti-CMV therapy. However, active viral retinitis must be treated with antiviral agents. CMV retinitis is treated with intravenous ganciclovir but foscarnet may be required if resistance develops. Intravitreal ganciclovir or ganciclovir implants in conjunction with oral valganciclovir may be required in severe cases or in individuals intolerant to intravenous therapy. Acute retinal necrosis due to HSV or VZV must be treated with intravenous acyclovir, systemic steroids, and intraocular surgery.

Prognosis
Viral retinitis generally has a poor prognosis.

Complications
Vision loss is likely due to deprivation amblyopia.

Treatment
Treatment depends on the underlying condition. Surgical treatment of glaucoma and possible corneal transplantation or keratoprosthesis may be required.

Prognosis
Prognosis depends on the amount of corneal involvement and response to surgical treatment. Corneal transplants have a very high frequency of rejection and subsequently a poor prognosis in children.

DISORDERS OF THE CORNEA
CLOUDY CORNEA

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Corneal clouding can be caused by developmental abnormalities, metabolic disorders, trauma, and infection.

Clinical Findings
The cornea may have a white, hazy appearance on penlight examination. The red reflex may be decreased or absent.

Differential Diagnosis
Corneal clouding, tearing, blepharospasm, and photophobia in a newborn are signs of congenital glaucoma until proven otherwise. Peter anomaly and sclerocornea are congenital malformations of the anterior segment of the eye that are the most common causes of a cloudy cornea at birth. Direct trauma to the cornea during a forceps delivery can result in corneal haze and significant amblyopia. Systemic abnormalities such as developmental delay and liver or kidney failure suggest metabolic disorders such as mucopolysaccharidoses, Wilson disease, and cystinosis. Corneal infiltrates occur with viral infections, staphylococcal lid disease, corneal dystrophies, and interstitial keratitis due to congenital syphilis.

A complete ocular evaluation by an ophthalmologist is required and should be completed urgently when congenital glaucoma is suspected.

Complications
Retinal scarring, retinal detachment, and blindness.

Treatment
If immune recovery is sufficient with antiretroviral therapy for an extended period, the patient may be able to discontinue anti-CMV therapy. However, active viral retinitis must be treated with antiviral agents. CMV retinitis is treated with intravenous ganciclovir but foscarnet may be required if resistance develops. Intravitreal ganciclovir or ganciclovir implants in conjunction with oral valganciclovir may be required in severe cases or in individuals intolerant to intravenous therapy. Acute retinal necrosis due to HSV or VZV must be treated with intravenous acyclovir, systemic steroids, and intraocular surgery.

Prognosis
Viral retinitis generally has a poor prognosis.


VIRAL KERATITIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Herpes simplex, herpes zoster, and adenovirus can infect the cornea.
- When the corneal epithelium is involved, a dendritic or amoeboïd pattern can be seen with fluorescein staining.

Clinical Findings
Patients commonly present with a painful, red eye. Photophobia and decreased vision are also common complaints. Fever,
malaise, and symptoms of upper respiratory tract infection may be present.

Fluorescein administration to the involved cornea will reveal areas of staining when viewed with a blue light if the corneal epithelium is involved. The pattern of epithelium staining may be dendritic (branch-like) or irregular and round if a geographic ulcer is present. Slit-lamp examination may reveal white infiltrates beneath the corneal epithelium as a result of corneal stromal scarring or edema from viral infection of the corneal stromal tissue. Decreased visual acuity, photophobia, and conjunctivitis may also be noted.

**Differential Diagnosis**

Corneal abrasion, bacterial corneal ulcer, iritis.

**Treatment**

Topical antivirals such as trifluridine and vidarabine are indicated when herpes simplex infection is limited to the corneal epithelium, although additional systemic therapy is required in newborns. Topical corticosteroids may be a useful addition to antiviral therapy when stromal disease is present. The use of corticosteroids in the presence of herpetic disease should be undertaken only by an ophthalmologist because of the danger of worsening the disease. Oral acyclovir started in the early phase (first 5 days) may be helpful in treating herpes zoster eye disease. Acyclovir prophylaxis is helpful in preventing recurrent herpetic epithelial keratitis (see earlier section Viral Conjunctivitis) and stromal keratitis caused by herpes simplex.

Adenovirus conjunctivitis may progress to keratitis 1–2 weeks after onset. Vision may be decreased. In most cases, no treatment is necessary because adenovirus keratitis is most often self-limiting. However, adenovirus is highly contagious and easily spread (see section Viral Conjunctivitis).

**Prognosis**

Corneal involvement with herpes simplex can be recurrent and lead to blindness.

**CORNEAL ULCERS**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Decreased vision, pain, injection, a white corneal infiltrate or ulcer (Figure 16–22), and hypopyon (pus in the anterior chamber) may all be present.
- Bacterial corneal ulcers in healthy children who are not contact lens wearers are usually secondary to corneal trauma from corneal abrasion or a penetrating foreign body.

**Figure 16–22.** Corneal ulcer. Note white infiltrate located on inferior cornea.

**Clinical findings**

A corneal ulcer appears as a white spot on the surface of the cornea that stains with fluorescein (see Figure 16–22). Associated symptoms include pain and decreased vision. Signs often include conjunctival injection, photophobia, tearing, and purulent discharge.

**Differential Diagnosis**

Viral keratitis, corneal abrasion, penetrating foreign body.

**Complications**

Permanent vision loss may result from corneal scarring. Corneal transplantation may be required.

**Prognosis**

Prognosis depends on how large the ulcer is and whether the central cornea is involved.

**DISORDERS OF THE LENS**

Lens disorders involve abnormality of clarity or position. Lens opacification (Figure 16–23) can affect vision depending on its density, size, and position. Visual potential is also influenced by age at onset and the success of amblyopia treatment.
Cataracts in children may be unilateral or bilateral, may exist as isolated defects, or may be accompanied by other ocular disorders or systemic disease (see Figure 16–23).

**Clinical Findings**

Leukocoria, poor fixation, and strabismus or nystagmus (or both) may be the presenting complaints. Absence of a red reflex in the newborn may be due to a cataract which requires an urgent referral to an ophthalmologist. Laboratory investigation for infectious and metabolic causes of congenital cataracts is often indicated. Such investigation would include cultures or serologic tests for toxoplasmosis, rubella, CMV, HSV, and syphilis, as well as evaluation for inborn metabolic errors, such as galactosemia or Lowe syndrome.

**Differential Diagnosis**

Cloudy cornea, intraocular tumor, retinal detachment.

**Complications**

Pediatric cataracts are frequently associated with severe deprivation amblyopia.

**Treatment**

Early diagnosis and treatment are necessary to prevent deprivation amblyopia in children younger than 9 years, because they are visually immature. Cataracts that are visually significant require removal. Visually significant cataracts in infants are usually removed prior to 6 weeks of age to prevent deprivation amblyopia. Rehabilitation of the vision will require the correction of refractive errors and amblyopia treatment. Contact lenses, glasses, and artificial intraocular lenses are used to correct refractive errors after cataract extraction. Treatment of underlying concomitant congenital infections or systemic diseases must be instituted as appropriate.

**Prognosis**

The ultimate visual acuity depends on when the cataract was diagnosed and treated as well as compliance with amblyopia treatment. Glaucoma is often associated with pediatric cataracts and may result in a poor prognosis if not controlled.

Dislocated Lenses/Ectopia Lentis

**Essentials of Diagnosis & Typical Features**

- Nontraumatic lens dislocation is usually bilateral.
- Subluxation causes refractive errors of large magnitude that are difficult to correct.

**Pathogenesis**

Systemic diseases, including Marfan syndrome, homocystinuria, Weill-Marchesani syndrome, sulfite oxidase deficiency, hyperlysinemia, syphilis, and Ehlers-Danlos syndrome, are often associated with dislocated lenses.

**Clinical Findings**

Slit-lamp examination reveals malposition of the intraocular lens. Refraction often reveals significant astigmatism. A complete ophthalmic evaluation, as well as genetic and metabolic evaluation, may be warranted.

**Differential Diagnosis**

Ectopia lentis due to systemic disease versus trauma.

**Complications**

Ectopia lentis can cause decreased vision and amblyopia due to induced refractive errors. Another ophthalmologic concern is pupillary block glaucoma, in which a malpositioned unstable lens interferes with the normal flow of aqueous humor from the ciliary body (posterior to the pupil), where it is produced, into the trabecular meshwork (anterior to the pupillary plane).

**Treatment**

Surgical lensectomy may be required if the visual acuity is not improved significantly with glasses or contact lenses. Underlying metabolic and/or genetic disorders require a multidisciplinary approach.
Prognosis
Prognosis depends on the severity of the lens dislocation and need for lensectomy.

DISORDERS OF THE RETINA

RETINAL HEMORRHAGES IN THE NEWBORN

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Retinal hemorrhages are commonly seen in the otherwise healthy newborn.
- Retinal hemorrhages occur most often after vaginal delivery but can also be present after suction delivery or cesarean section.

Clinical Findings
A dilated retinal examination reveals unilateral or bilateral hemorrhages that can be located anywhere in the retina. They may appear as dot, blot, subretinal, or preretinal hemorrhages. They may also break into the vitreous. Examination of the retina of an otherwise healthy newborn infant is not indicated.

Differential Diagnosis
See earlier section Abusive Head Trauma & Nonaccidental Trauma.

Treatment
Observation is indicated since retinal hemorrhages of the newborn usually disappear within the first month of life.

Prognosis
Excellent.

RETINOPATHY OF PREMATURITY

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Screening examinations are recommended for infants with a birth weight of 1500 g or less or gestational age of 30 weeks or less and selected infants with a birth weight between 1500 and 2000 g or gestational age of greater than 30 weeks with an unstable clinical course.

Cost analysis studies have determined that screening and laser photoablation of retinopathy of prematurity (ROP) are cost-effective medical interventions.

The joint policy statement from the AAP, AAO, and AAPOS on screening examinations of premature infants for ROP is available at http://www.pediatrics.org.

Pathogenesis
Premature infants with incomplete retinal vascularization are at risk for developing abnormal peripheral retinal vascularization, which may lead to retinal detachment and blindness. The cause of this disorder—including the role of supplemental oxygen in the neonatal period—is still not fully understood. Recent studies suggest that vascular endothelial growth factor (VEGF) may play a key role in ROP development. Other risk factors for severe ROP are bronchopulmonary dysplasia, intraventricular hemorrhage, sepsis, apnea and bradycardia, and mutations of the Norrie disease gene. White males, infants with zone 1 disease, and infants with very low birth weight and gestational age have a higher risk of developing severe ROP that requires treatment.

Clinical Findings
The Cryotherapy for Retinopathy of Prematurity (CRYOROP) study outlined a standard nomenclature to describe the progression and severity of ROP (Table 16–3). Since retinal blood vessels emanate from the optic nerve and do not fully cover the developing retina until term, the optic nerve is used as the central landmark. The most immature zone of the retina, zone 1, is the most posterior concentric imaginary circle around the optic nerve. The next peripheral area is zone 2, and peripheral to that is zone 3. Zone 1 disease by definition is more high-risk than disease in more anterior/peripheral zones.

<table>
<thead>
<tr>
<th>Table 16–3. Stages of retinopathy of prematurity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
</tr>
<tr>
<td>Stage II</td>
</tr>
<tr>
<td>Stage III</td>
</tr>
<tr>
<td>Stage IV</td>
</tr>
<tr>
<td>Stage V</td>
</tr>
</tbody>
</table>
Similarly, the stages of the abnormal vessels are numbered from zero (simply incomplete vascularization) through stages I–V.

Recommendations for initiating eye examination are outlined in the joint policy statement issued by the AAP, AAO, and AAPOS and are based on the gestational age and birth weight. Screening examinations are recommended for infants with a birth weight of 1500 g or less or gestational age of 30 weeks or less and selected infants with a birth weight between 1500 and 2000 g or gestational age of greater than 30 weeks with an unstable clinical course. The frequency of follow-up examinations depends on the findings and the risk factors for developing the disease. Most infants are evaluated every 1–2 weeks. ROP often resolves when the infant reaches 40 weeks estimated gestational age. Examinations can be discontinued when the retinas are fully vascularized, or when the infant is 45 weeks' gestational age and has never had prethreshold disease or worse, or is vascularized out to zone 3 and never had zone 1 or 2 disease.

**Complications**

Low vision, retinal detachment.

**Treatment**

Surgical treatment of ROP is indicated when there is zone I ROP with any stage and plus disease, zone 1 ROP stage III without plus disease, zone 2 ROP with stage II or III and plus disease. The treatment of ROP within 72 hours can reduce the occurrence of bad visual outcomes by 50%. Some patients still progress to a retinal detachment, which can have a very poor prognosis for vision. Surgical treatment for a retinal detachment involves scleral buckling or a lens-sparing vitrectomy by a vitreoretinal specialist. Intraocular injections of anti-VEGF agents such as bevacizumab and ranibizumab have been used in certain severe cases of ROP but long-term effects are still under investigation.

**Prognosis**

Most cases of ROP do not progress to retinal detachment and require no treatment. However, ROP remains a leading cause of blindness in children. Those with a history of ROP are at a much higher risk of developing strabismus, amblyopia, myopia, and glaucoma than the average child.

**Retinoblastoma**

Retinoblastoma is the most common primary intraocular malignancy of childhood, with an incidence estimated between 1:17,000 and 1:34,000 live births (see Chapter 31). Most patients present before age 3 years.

**Pathogenesis**

Inherited forms of retinoblastoma are autosomal dominant with high penetrance. The disease may consist of a solitary mass or multiple tumors in one or both eyes. All bilateral cases and some unilateral cases are caused by germlinal mutations; however, most unilateral cases are caused by a somatic retinal mutation. In both situations, the mutation occurs in the retinoblastoma gene (Rb) at chromosome 13q14. This is a tumor suppressor gene. One mutated copy may be inherited in an autosomal dominant fashion (germline mutation). If a second mutation spontaneously occurs in any cell, tumorigenesis is likely. Individuals with a germline mutation are at risk for the development of tumors other than retinoblastoma (pineal tumors, osteosarcoma, and other soft tissue sarcomas). All children with unilateral or bilateral retinoblastoma must be presumed to have the germline form, and followed expectantly for other tumors in the remaining eye and at extraocular sites. Approximately 15% of patients with unilateral disease have germline mutations.

**Clinical Findings**

The most common presenting sign in a child with previously undiagnosed retinoblastoma is leukocoria (see Figure 16–1). Evaluation of the pupillary red reflex is important, although a normal red reflex does not rule out retinoblastoma. Examination requires indirect ophthalmoscopy with scleral depression and pupillary dilation, performed by an ophthalmologist. Other presentations include strabismus, red eye, glaucoma, or pseudo-hypopyon (appearance of pus-like material in the anterior chamber).
Genetic testing is available for patients with retinoblastoma. Once the causative mutation is found in an affected individual, unaffected members of the family should be tested to determine their personal and reproductive risk.

**Differential Diagnosis**

Retinal vasculature abnormalities seen in diseases such as Coats disease, uveitis, and endophthalmitis.

**Complications**

Death if not adequately treated.

**Treatment**

The goal of treatment is to preserve the eye and as much useful vision as possible. Chemoreduction is used to reduce initial tumor volume. Local treatment with laser photocoagulation, cryotherapy, plaque radiotherapy, or thermotherapy can often preserve vision and spare the patient enucleation and radiation. Ophthalmic artery chemotherapy can be successful in certain cases.

**Prognosis**

Generally good except in developing countries where children often succumb to their disease due to lack of treatment. Patients with germline mutations need lifelong monitoring for secondary neoplasms such as sarcomas.


**RETINAL DETACHMENT**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- A retinal detachment may present as an abnormal or absent red reflex.
- Older children may complain of decreased vision, flashes, floaters, or visual field defects.

**Pathogenesis**

Common causes are trauma and high myopia. Other causes are ROP, Marfan syndrome, and Stickler syndrome.

**Clinical Findings**

Symptoms of detachment are floaters, flashing lights, and loss of visual field; however, children often cannot appreciate or verbalize their symptoms. A detachment may not be discovered until the child is referred after failing a vision screening examination, strabismus supervenes, or leukocoria is noted.

**Differential Diagnosis**

Intraocular tumor.

**Complications**

Vision loss, glaucoma, strabismus.

**Treatment**

Treatment of retinal detachment is surgical. For children with conditions predisposing to retinal detachment, or a strong family history, examinations under anesthesia by an ophthalmologist, with prophylactic laser treatment, may be recommended.

**Prognosis**

Prognosis depends on the location and duration of the detachment.

**DIABETIC RETINOPATHY**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Diabetic retinopathy is a specific vascular complication of diabetes mellitus. Patients with type 1, or insulin-dependent, diabetes are at higher risk of developing severe proliferative retinopathy leading to visual loss than are those with type 2, or non-insulin-dependent, diabetes.
- The cost-effectiveness of screening examinations for diabetic retinopathy in children requires further evaluation.

**Prevention**

Control of diabetes is the best way to prevent ocular complications.

**Clinical Findings**

Acute onset of diabetes may be accompanied by sudden blurred vision due to myopia and cataracts.
In children older than 9 years, referral to an ophthalmologist for screening of retinopathy should occur within 3–5 years after the onset of diabetes. Both conditions may be reversible with good glucose control. Young children with type 1 diabetes should be followed for the Wolfram, or DIDMO, syndrome, in which diabetes mellitus occurs in conjunction with diabetes insipidus, optic atrophy, and deafness.

**Complications**
Vision loss due to vitreous hemorrhage, macular edema, neovascular glaucoma, cataracts, or retinal detachment.

**Treatment**
Severe proliferative diabetic retinopathy requires pan-retinal laser photocoagulation or vitreoretinal surgery (or both). Cataracts often require surgical removal and intraocular lens placement. Intraocular steroid injections have been used to treat macular edema in adults, but their role in children is not well established.

**Prognosis**
Prognosis depends on the severity of the retinopathy and associated complications.

---

**Optic Neuropathy**

### Essentials of Diagnosis & Typical Features

Optic nerve function is evaluated by checking visual acuity, color vision, pupillary response, and visual fields.

### Clinical Findings
Poor optic nerve function results in decreased central or peripheral vision, decreased color vision, strabismus, and nystagmus. Optic nerve disorders can be due to congenital malformation, malignancy, inflammation, infection, metabolic disorders, and trauma.

The swinging flashlight test is used to assess function of each optic nerve. It is performed by shining a light alternately in front of each pupil to check for an afferent pupillary defect or Marcus Gunn pupillary defect. An abnormal response in the affected eye is pupillary dilation when the light is directed into that eye after having been shown in the other eye with its healthy optic nerve. This results from poorer conduction along the optic nerve of the affected eye, which in turn results in less pupillary constriction of both eyes than occurs when the light is shined into the noninvolved eye. Hippus—rhythmic dilating and constricting movements of the pupil—can be confused with an afferent pupillary defect.

The optic nerve is evaluated as to size, shape, color, and vascularity. Occasionally, myelinization past the entrance of the optic nerve head occurs. It appears white, with a feathery edge (Figure 16–24). Myelinization onto the retina can be associated with myopia and amblyopia. Anatomic defects of the optic nerve include colobomatous defects and pits.

**Treatment**
Management of the underlying condition resulting in the optic neuropathy is necessary.

**Prognosis**
Prognosis depends on the severity of optic neuropathy and the underlying disease.

---

**Optic Nerve Hypoplasia**

### Essentials of Diagnosis & Typical Features

Optic nerve hypoplasia may be associated with absence of the septum pellucidum and hypothalamic-pituitary dysfunction, which is known as septo-optic dysplasia, or de Morsier syndrome.
Children with septo-optic dysplasia and hypocortisolism are at risk for sudden death during febrile illness from thermoregulatory disturbance and dehydration from diabetes insipidus.

**Pathogenesis**

Optic nerve hypoplasia may occur in infants of diabetic mothers and has also been associated with alcohol use or ingestion of quinine or phenytoin during pregnancy. Anatomically, the optic nerve may range from absent (aplasia) to almost full size, with a segmental defect.

**Clinical Findings**

Visual function with optic nerve hypoplasia ranges from mildly decreased to absent light perception. If only one eye is involved, the child usually presents with strabismus. If both eyes are affected, nystagmus is usually the presenting sign. Ophthalmoscopy is performed to directly visualize the optic nerves and to determine the severity of the hypoplasia. Neuroimaging of the brain and endocrine consultation should be performed in all patients with bilateral optic nerve hypoplasia.

**Treatment**

Sensory amblyopia and significant refractive errors should be treated by an ophthalmologist. Strabismus surgery may be necessary in certain patients. Endocrine abnormalities should be managed as necessary.

**Prognosis**

Severe bilateral optic nerve hypoplasia results in blindness.

---

**PAPILLEDEMA**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Papilledema (optic nerve edema) is associated with increased intracranial pressure due to any cause, such as tumor, craniosynostosis, or intracranial infection.

**Pathogenesis**

Papilledema is optic nerve head or optic disc edema associated with increased intracranial pressure. Hydrocephalus and intracranial tumors are common causes of papilledema. In idiopathic intracranial hypertension (pseudotumor cerebri), neuroimaging is normal but papilledema, headaches, and pulsating tinnitus may be present. Papilledema occurs almost equally in boys and girls and sometimes is associated with obesity or upper respiratory tract infection. Other associated causes are viral and other infections, corticosteroid use or withdrawal, sinus infection, trauma, tetracycline use, growth hormone supplementation, and venous sinus thrombosis (see Chapter 25). Early in the illness the patient may not notice a change in vision, although the blind spot may be enlarged. Transient obscuration of vision (amaurosis fugax) may occur as the process becomes more long-standing. Further effects on vision will occur as the papilledema becomes chronic and ultimately leads to optic atrophy. Diplopia (double vision) may occur if increased intracranial pressure results in cranial nerve VI palsy. Workup and treatment are directed toward finding the underlying systemic or central nervous system cause.

**Clinical Findings**

Direct visualization of the optic nerve by ophthalmoscopy reveals an elevated disc with indistinct margins, increased vessel diameter, vessel tortuosity, and hyperemia. Hemorrhages and exudates are present in more severe cases. Observed changes may be subtle to striking. Optic nerve head changes are usually bilateral and generally symmetrical. Strabismus may occur if a sixth nerve palsy is associated with the underlying condition.

Pseudopapilledema is a normal variant of the optic disc in which the disc appears elevated, with indistinct margins and a normal vascular pattern. Pseudopapilledema sometimes occurs in hyperopic individuals. It is not associated with vision loss, but true papilledema must be ruled out prior to making the diagnosis.

**Differential diagnosis**

Pseudopapilledema, optic neuritis.

**Treatment**

Treatment of idiopathic intracranial hypertension may be pharmacologic—for example, using acetazolamide, a carbonic anhydrase inhibitor, or a corticosteroid. Discontinue medications that are suspected of causing papilledema or utilize anticoagulation if venous sinus thrombosis is present. Diagnostic lumbar puncture may also be curative. Optic nerve sheath fenestration and ventriculoperitoneal shunt are surgical interventions used when conservative measures fail. Strabismus surgery, Botox (botulinum toxin type A) injection of extraocular muscles, and amblyopia treatment may be necessary in cases of associated cranial neuropathies resulting in strabismus.

**Complications**

Optic atrophy and vision loss.
**Optic Neuritis**

**Essentials of Diagnosis & Typical Features**

- Papillitis is a form of optic neuritis seen on ophthalmoscopic examination as an inflamed optic nerve head.
- Optic neuritis in children may be idiopathic or associated with multiple sclerosis, acute disseminated encephalomyelitis, Devic disease, or cat-scratch disease.

**Clinical Findings**

Optic neuritis is inflammation of the optic nerve and may have the same appearance as papilledema. Papillitis (inflammation of the optic disc) results in a swollen/elevated nerve head, blurred optic disc margins, hyperemia of the nerve, optic disc hemorrhages, and dilated retinal veins. Retrobulbar optic neuritis (inflammation of the optic nerve posterior to the optic disc) has a normal appearing optic disc on examination by ophthalmoscopy. Optic neuritis may be unilateral, whereas papilledema is almost always bilateral. Optic neuritis is associated with an afferent pupillary defect (Marcus Gunn pupil), decreased visual acuity, decreased color vision, and it may also have pain with eye movements. Other central nervous system (CNS) signs or symptoms may be present so a complete review of systems and neurologic examination are important to complete.

Optic neuritis can be associated with viral and other infections, vaccinations, and CNS inflammatory demyelination diseases such as acute disseminated encephalomyelitis, multiple sclerosis, and neuromyelitis optica (Devic Disease). Neoplasms infiltrating the nerve or orbital infections that compress the optic nerve can also result in optic neuritis.

Workup of the patient with optic neuritis includes lumbar puncture and cerebrospinal fluid analysis. Serology should target infectious and inflammatory markers. Neuromyelitis optica can be diagnosed by detecting neuromyelitis optica immunoglobulin G (IgG). Neuroimaging of the brain and orbits is useful adjunct to the workup.

**Differential Diagnosis**

Papilledema, pseudopapilledema, systemic immune disorder, infection, or neoplasm.

**Complications**

Decreased visual acuity, color vision, peripheral vision, and contrast sensitivity. CNS involvement can result in a variety of complications based on the underlying etiology.

**Treatment**

Treatment of the underlying disease.

**Prognosis**

Prognosis depends on the underlying disease process.

**Optic Atrophy**

**Essentials of Diagnosis & Typical Features**

- Optic atrophy is pallor of the optic nerve noted on ophthalmoscopy.

**Clinical Findings**

Optic atrophy is found in children most frequently after neurologic compromise during the perinatal period. An example would be a premature infant who develops an intraventricular hemorrhage. Hydrocephalus, glioma of the optic nerve, craniosynostosis, certain neurologic diseases, and toxins such as methyl alcohol can cause optic atrophy, as can certain inborn errors of metabolism, long-standing papilledema, or papillitis.

Direct examination of the optic nerve by ophthalmoscopy reveals an optic nerve head with a cream or white color and possibly cupping. Neuroimaging is necessary to delineate CNS abnormalities.

**Complications**

Vision loss, decreased peripheral vision, and contrast sensitivity.

**Treatment**

Treatment of the underlying condition is indicated.

**Prognosis**

Prognosis depends on the severity of the optic nerve atrophy and associated neurologic deficits.
DISEASES OF THE ORBIT

PERIORBITAL & ORBITAL CELLULITIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- The fascia of the eyelids joins with the fibrous orbital septum to isolate the orbit from the lids.
- The orbital septum helps decrease the risk of an eyelid infection extending into the orbit.
- Infections arising anterior to the orbital septum are termed preseptal.
- Orbital cellulitis denotes infection posterior to the orbital septum and may cause serious complications, such as an acute ischemic optic neuropathy or cerebral abscess.

Pathogenesis

Preseptal (periorbital) cellulitis usually arises from a local exogenous source such as an abrasion of the eyelid, from other infections (hordeolum, dacryocystitis, or chalazion), or from infected varicella or insect bite lesions. *S. aureus* and *S. pyogenes* are the most common pathogens cultured from these sources. Preseptal infections in children younger than 3 years also occur from bacteremia, although this is rare since *Haemophilus influenzae* and *S. pneumoniae* vaccines are routinely administered. Bacteremia is still an occasional cause of this infection. Children with periorbital cellulitis from presumed bacteremia must be examined for additional foci of infection.

Orbital cellulitis almost always arises from contiguous sinus infection, because the walls of three sinuses make up portions of the orbital walls and infection can breach these walls or extend by way of a richly anastomosing venous system. The orbital contents can develop a phlegmon (orbital cellulitis), or frank pus can develop in the orbit (orbital abscess). The pathogenic agents are those of acute or chronic sinusitis—respiratory flora and anaerobes. *S. aureus* is also frequently implicated.

The frequency of methicillin-resistant *S. aureus* preseptal and orbital cellulitis has increased over the past several years.

Clinical Findings

Children with preseptal cellulitis present with erythematous and edematous eyelids, pain, and mild fever. The vision, eye movements, and eye itself are normal. Decreased vision, restricted eye movements, and an afferent pupillary deficit suggest orbital cellulitis.

Orbital cellulitis presents with signs of periorbital disease as well as proptosis (a protruding eye), restricted eye movement, and pain with eye movement. Fever is usually high. CT scanning or MRI is required to establish the extent of the infection within the orbit and sinuses.

Differential Diagnosis

Primary or metastatic neoplasm of the orbit, orbital pseudotumor (idiopathic orbital inflammation), and orbital foreign body with secondary infection.

Complications

Preseptal cellulitis can progress to orbital cellulitis. Orbital cellulitis can result in permanent vision loss due to compressive optic neuropathy. Proptosis can cause corneal exposure, dryness, and scarring. Cavernous sinus thrombosis, intracranial extension, blindness, and death can result from severe orbital cellulitis.

Treatment

Therapy for preseptal and orbital cellulitis infection is with systemic antibiotics. Treatment of orbital infections may require surgical drainage for subperiosteal abscess in conjunction with intravenous antibiotics. Drainage of infected sinuses is often part of the therapy.

Prognosis

Most patients do well with timely treatment.

CRANIOFACIAL ANOMALIES

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Craniofacial anomalies can affect the orbit and visual system.
- Craniofacial anomalies occur with craniosynostoses and midface syndromes such as Treacher Collins and Pierre Robin syndromes.
- Fetal alcohol syndrome is associated with similar changes of the ocular adnexa.

Clinical Findings

Ocular abnormalities associated with craniofacial abnormalities involving the orbits include visual impairment,
proptosis, corneal exposure, hypertelorism (widely spaced orbits), strabismus, amblyopia, lid coloboma, papilledema, refractive errors, and optic atrophy.

**Treatment**

Orbital and ocular abnormalities associated with craniofacial anomalies often require a multispecialty approach. Management may require orbital and strabismus surgery. Ophthalmologists also treat amblyopia, refractive errors, and corneal exposure if present.

**ORBITAL TUMORS**

- Both benign and malignant orbital lesions occur in children.
- The most common benign tumor is capillary hemangioma (Figure 16–25).
- The most common primary malignant tumor of the orbit is rhabdomyosarcoma.

**Clinical Findings**

Capillary hemangiomas may be located superficially in the lid or deep in the orbit and can cause ptosis (see Figure 16–25), refractive errors, and amblyopia. Deeper lesions may cause proptosis. Capillary hemangiomas in infants initially increase in size before involuting at about age 2–4 years.

Orbital dermoid cysts vary in size and are usually found temporally at the brow and orbital rim or supranasally. These lesions are firm, well encapsulated, and mobile. Rupture of the cyst causes a severe inflammatory reaction.

**Differential Diagnosis**

Orbital pseudotumor (idiopathic orbital inflammation), orbital cellulitis.

**Treatment**

Therapy for capillary hemangiomas includes observation and intraleisional or systemic corticosteroids. Topical and systemic β-blockers have shown success in treating capillary hemangiomas but optimal dosages and duration of treatment are still under investigation. Treatment is indicated if the lesion is large enough to cause amblyopia. Induced astigmatism or amblyopia (or both) are treated with glasses and patching, respectively. Treatment of orbital dermoids is by excision.

Rhabdomyosarcoma is treated with radiation and chemotherapy after biopsy confirms the diagnosis. With expeditious diagnosis and proper treatment, the survival rate of patients with orbital rhabdomyosarcoma confined to the orbit approaches 90%.

Treatment of metastatic disease requires management by an oncologist and may require chemotherapy and radiation therapy.

**Prognosis**

Prognosis depends on the underlying disease.
**Nystagmus**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Nystagmus is a rhythmic oscillation or jiggling of the eyes. It may be unilateral or bilateral, more pronounced in one eye, or gaze-dependent.

**Pathogenesis**

Nystagmus may be associated with esotropia or may occur with ocular lesions that cause deprivation amblyopia (e.g., cataract and eyelid ptosis) or conditions in which the visual pathways are hypoplastic, sometimes referred to as “sensory nystagmus.” Nystagmus is seen with optic nerve hypoplasia, macular hypoplasia, aniridia, and albinism. Nystagmus can also occur with normal ocular structures and seemingly normal CNS development, sometimes referred to as “motor nystagmus.” In the latter instance, the nystagmus may be blocked in certain positions of gaze, in which case a face turn or torticollis may develop. Latent nystagmus occurs when one eye is occluded. This type of nystagmus occurs in patients with congenital esotropia. An associated amblyopia may be present.

Most nystagmus occurring in childhood is of ocular origin, but CNS disease and, less frequently, inner ear disease are other causes. A CNS cause is likely when the nystagmus is acquired. Patients should be referred to an ophthalmologist for evaluation.

**Clinical Findings**

Evaluation for iris transillumination defects caused by albinism should be performed since albinism is a common cause of nystagmus.

Spasmus nutans, in which a rapid, shimmering, disconjugate nystagmus occurs with head bobbing and torticollis. Glioma of the hypothalamus can mimic spasmus nutans. Neuroimaging may be necessary to determine if the cause of the nystagmus is due to a CNS disease. An electroretinogram may be required to rule out retinal pathology as the cause of nystagmus if neuroimaging is normal.

**Differential Diagnosis**

Opsoclonus.

**Treatment**

Therapy is directed at managing the underlying ocular or CNS disease. An ophthalmologist can optimize vision by correcting significant refractive errors and strabismus. The range of vision varies depending on the cause of the nystagmus. Some patients may benefit from extraocular muscle surgery and contact lenses.

**Prognosis**

Most affected individuals have subnormal vision but spasmus nutans usually improves with time.

**Amblyopia**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Amblyopia is a unilateral or bilateral reduction in vision due to strabismus, refractive errors, and/or visual deprivation.
- Amblyopia can occur only during the critical period of visual development in the first decade of life when the visual nervous system is plastic.
- Approximately 3% of the population is amblyopic.

**Pathogenesis**

Amblyopia is classified according to its cause. Strabismic amblyopia can occur in the nondominant eye of a strabismic child. Refractive amblyopia can occur in both eyes if significant refractive errors are untreated (ametropic or refractive amblyopia). Another type of refractive amblyopia can occur in the eye with the worse refractive error when imbalance is present between the eyes (anisometropic amblyopia). Deprivation amblyopia occurs when dense cataracts or complete ptosis prevents formation of a formed retinal image. Of the three types of amblyopia, the deprivation form of amblyopia results in the worst vision.

**Prevention**

Vision screening and referral to an eye care professional if amblyopia is suspected.

**Clinical Findings**

Screening for amblyopia should be a component of periodic well-child examinations. The single best screening technique to discover amblyopia is obtaining visual acuity in each eye. In preverbal children unable to respond to visual acuity assessment, amblyogenic factors are sought, including strabismus, media opacities, unequal Brückner reflexes (pupillary red reflexes), and a family history suggestive of strabismus, amblyopia, or ocular disease occurring in childhood (see earlier section Ophthalmic Examination).
Treatment
The earlier treatment is begun, the better will be the chance of improving visual acuity. Treatment is usually discontinued after age 9 years. Amblyogenic factors such as refractive errors are addressed. Because of the extreme sensitivity of the visual nervous system in infants, congenital cataracts and media opacities must be diagnosed and treated within the first few weeks of life. Visual rehabilitation and amblyopia treatment must then be started to foster visual development.

After eradicating amblyogenic factors, the mainstay of treatment is patching the sound eye, which causes the visual nervous system to process input from the amblyopic eye and in that way permits the development of useful vision. Other treatment modalities include “fogging” the sound eye with cycloplegic drops (atropine), lenses, and filters.

Prognosis
Prognosis depends on the compliance with treatment but usually good.

STRABISMUS

DIAGNOSIS & TYPICAL FEATURES

- Strabismus is misalignment of the eyes.
- Its prevalence in childhood is about 2%-3%.
- Strabismus is categorized by the direction of the deviation (esotropia, exotropia, hypertropia, hypotropia) and its frequency (constant or intermittent).
- Strabismus may cause or be due to amblyopia.

Esotropia (Crossed Eyes)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Pseudoesotropia can result from prominent epicanthal folds that give the appearance of crossed eyes when they are actually straight.
- Esotropia is deviation of the eyes toward the nose and may involve one or both eyes.

Pathogenesis
Congenital esotropia (infantile esotropia) has its onset in the first year of life in healthy infants. The deviation of the eyes toward the nose is large and obvious. Esotropia beginning in the first year also occurs in premature infants or children with a complicated perinatal history associated with CNS problems such as intracranial hemorrhage and periventricular leukomalacia. The most frequent type of acquired esotropia is the accommodative type (Figure 16–26). Onset is usually between ages 2 and 5 years. The deviation is variable in magnitude and constancy and is often accompanied by amblyopia. One type of accommodative esotropia is associated with a high hyperopic refraction. In another type, the deviation is worse with near than with distant vision. This type of esodeviation is usually associated with lower refractive errors.

Esotropia is associated with certain syndromes. In Möbius syndrome (congenital facial diplegia), a sixth nerve palsy causing esotropia is associated with palsies of the 7th
and 12th cranial nerves and limb deformities. Duane syndrome can affect the medial or lateral rectus muscles (or both). It may be an isolated defect or may be associated with a multitude of systemic defects (eg, Goldenhar syndrome). Duane syndrome is often misdiagnosed as a sixth (abducens) nerve palsy. The left eye is involved more commonly, but both eyes can be involved. Girls are affected more frequently. Children with unilateral paretic or restrictive causes of esotropia may develop face turns toward the affected eye to maintain binocularity.

After age 5 years, any esotropia of recent onset should arouse suspicion of CNS disease. Infratentorial masses, hydrocephalus, demyelinating diseases, and idiopathic intracranial hypertension are causes of abducens palsy, which appears as an esotropia, lateral rectus paralysis, and face turn. The face turn is an attempt to maintain binocularity away from the field of action of the paretic muscle. Papilledema is often, but not invariably, present with increased intracranial pressure.

Besides the vulnerability of the abducens nerve to increased intracranial pressure, it is susceptible to infection and inflammation. Otitis media and Gradenigo syndrome (inflammatory disease of the petrous bone) can cause sixth nerve palsy. Less commonly, migraine and diabetes mellitus are considerations in children with sixth nerve palsy.

**Clinical Findings**

Observation of the reflection of a penlight on the cornea, the corneal light reflex, is an accurate means of determining if the eyes are straight. If strabismus is present, the corneal light reflex will not be centered in both eyes. Observation of eye movements may reveal restriction of eye movements in certain positions of gaze. Alternate cover testing of the eyes while the child is fixating on a near and/or distant target will reveal refixation movements if the eyes are crossed. Motility, cycloplegic refraction, and a dilated funduscopic examination by an ophthalmologist are necessary to determine the etiology of esotropia. Some children require imaging studies and neurologic consultation.

**Complications**

Amblyopia and poor stereoacuity/depth perception.

**Treatment**

Surgery is the mainstay of treatment for congenital esotropia. Surgery is typically performed between 6 months and 2 years of age in order to obtain optimal results.

Management of accommodative esotropia includes glasses with or without bifocals, amblyopia treatment, and, in some cases, surgery.

Underlying neurologic disease should be referred to the appropriate specialists for further management.

**Prognosis**

Usually good.

**Exotropia (Wall-Eyed)**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Exotropia is a type of strabismus in which the eyes are divergent/wall-eyed (Figure 16–27).
- Exotropia may be intermittent or constant and involve one or both eyes.

**Clinical Findings**

The deviation of the eyes toward the ears most often begins intermittently and occurs after age 2 years (see Figure 16–27). Congenital (infantile) exotropia is extremely rare in an otherwise healthy infant. Early-onset exotropia may occur in infants and children with severe neurologic problems.

Evaluation of the corneal light reflex reveals the penlight’s reflection in the deviated eye is displaced nasally.

**Figure 16–27.** Exotropia. A: Fixation with left eye. B: Fixation with right eye.
All children with constant, congenital exotropia require CNS neuroimaging. Referral to an ophthalmologist is indicated.

**Complications**
Amblyopia and poor stereoacuity/depth perception.

**Treatment**
Treatment of exotropia is with surgery, orthoptic exercises, patching, and occasionally glasses.

**Prognosis**
Generally good.


---

**UNEXPLAINED DECREASED VISION IN INFANTS & CHILDREN**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Blindness in infants and children is commonly caused by retinal dystrophies, optic nerve disorders, or cortical visual impairment due to significant CNS disease.

**Pathogenesis**
Occult causes of poor vision and blindness in children may be due to hereditary retinal dystrophies such as Leber congenital amaurosis and optic nerve abnormalities, including optic nerve hypoplasia and atrophy.

Cerebral visual impairment, also known as cortical blindness, is manifested as decreased visual attentiveness of varying degree. Cerebral visual impairment can be congenital or acquired. Insults to the optic pathways and higher cortical visual centers are responsible. Asphyxia, trauma, intracranial hemorrhage, and periventricular leukomalacia are some of the causes of cortical visual impairment.

**Clinical Findings**
Affected infants will have poor eye contact, fail to fixate and follow a visual target, and be unresponsive to visual threat. Wandering or roving eye movements and nystagmus are common. Eye poking is seen in some infants with low vision.

Referral to an ophthalmologist is indicated to determine the etiology of the low vision. Diagnostic tests such as an electroretinogram and visual evoked response may be required. Imaging studies of the brain, genetics, and neurology consultations may be useful.

**Differential Diagnosis**
Delayed visual maturation, vision loss due to an ocular versus neurologic disease.

**Treatment**
Low-vision aids enhance remaining vision. Devices used include magnifiers for both distance and near vision, closed-circuit television, and large-print reading materials. Vision rehabilitation specialists and support groups can help teach the affected child and their family how to best use these devices. Clinical trials are underway for treatment of Leber congenital amaurosis with gene therapy.

**Prognosis**
Generally poor for vision.


---

**LEARNING DISABILITIES & DYSLEXIA**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Learning disabilities and dyslexia result in poor reading comprehension and writing.
- Children often have vague complaints of ocular fatigue, headaches, and difficulty reading.

**Clinical Findings**
Evaluation of the child with learning disabilities and dyslexia should include ophthalmologic examination to identify any ocular disorders that could cause or contribute to poor school performance. Most children with learning difficulties have no demonstrable problems on ophthalmic examination.

**Treatment**
A multidisciplinary approach is recommended by the AAP, the AAPOS, and the AAO for evaluating and treating children with learning disabilities. There is no scientific
evidence to support the use of vision therapy, eye exercises, prisms, colored lenses, or filters to treat learning disabilities or dyslexia.

**Prognosis**

Generally good.


**Web Resources**

- American Academy of Ophthalmology: www.aao.org
- American Association of Pediatric Ophthalmology and Strabismus: www.aapos.org
ISSUES IN PEDIATRIC ORAL HEALTH

Concept of the Dental Home

Analogous to the American Academy of Pediatrics’ (AAP) concept of a “medical home,” the American Academy of Pediatric Dentistry (AAPD) has promoted the concept of a “dental home.” A dental home is best established by referring a child for oral health examination to a dentist who provides care for infants and young children (ie, pediatric dentist) 6 months after the first tooth erupts or by 12 months of age. The primary goal of the dental home is to encourage good oral healthcare habits that will allow the child to grow up free from dental disease. In partnership with the caregivers, the pediatric dentist develops a comprehensive, personalized preventive healthcare program based on an accurate risk assessment for dental disease. The pediatric dentist provides education on age-appropriate oral hygiene techniques and a tooth-friendly diet. Other functions of the dental home include provision of anticipatory guidance on growth and development, provision of comprehensive routine and emergency dental care, and referral to other dental specialists as needed. The dental home has the benefit of promoting continuity of care in a family-centered and culturally appropriate environment, and is associated with fewer emergency visits and reduced treatment costs. A child is less likely to develop dental anxiety if a number of positive experiences precede a less pleasant appointment.


Perinatal Factors & Oral Health

The perinatal period offers a unique opportunity for oral health counseling from various healthcare providers aimed at women’s self-care as well as future child care. Mothers may be unaware of the consequences of their own poor oral health or that of their children. Cariogenic bacteria can be transmitted vertically from mother to child by licking a pacifier or sharing eating utensils or horizontally between siblings of similar age, from the father, and from children in day care centers. Colonization of the infant with mutans streptococci (MS) is more likely when maternal salivary MS levels are high. The mother’s oral hygiene, snacking habits, and socioeconomic status all have an influence on the infant’s colonization with MS. Anticipatory guidance and dental treatment of the expectant mother can significantly reduce the child’s risk of acquiring MS. Prenatal dental counseling should include education on the importance of regular dental visits and the role of fluoride in maternal and childhood oral health, counseling on appropriate maternal diet, and advice on reduction of MS colonization. Maternal MS levels and the risk of transmission to infants can be reduced by twice-daily rinsing with chlorhexidine digluconate 0.12% for 2 weeks followed by chewing 100% xylitol gum for 5 minutes 3–5 times/d (total dose of xylitol 6–10 g/d) for several weeks.

Delayed dental development is characteristic of preterm infants and is also seen in infants with global developmental delay. Postnatal environmental tobacco smoke exposure increases susceptibility to childhood caries, an association that is independent of age, family income, geographic region, and frequency of dental visits. It is important to advise expectant mothers about this risk. The risk of oral anomalies is higher in preterm and low-birth-weight infants than in full-term infants. These anomalies may include a narrow palate caused by traumatic laryngoscopy or prolonged endotracheal intubation, hypoplasia of the enamel of primary dentition, and crown dilaceration (an angulation, or a sharp bend or curve, in the root or crown of a formed tooth) of the permanent maxillary incisors. The role of palatal protection plates to prevent palatal “grooving” is not clear.

Infant Oral Health Care

Infant oral health care is the foundation on which preventive dental care is built. Ideally, this begins before caries develops so preventive measures can be implemented. The primary goals for an infant oral health program are: (1) to establish with parents the goals of oral health; (2) to inform parents of their role in reaching these goals; (3) to motivate parents to learn and practice good preventive dental care; and (4) to initiate a long-term dental care relationship with parents. These goals can be achieved through oral examination of the child, risk assessment for oral disease, anticipatory parental guidance, and regular dental health supervision. This approach advances dental care beyond tooth monitoring toward true health promotion. Because pediatricians encounter new mothers and infants earlier than dentists, it is essential that they be aware of the infectious pathophysiology and risk factors for early childhood caries (ECC).

Pediatricians should incorporate oral health into anticipatory guidance by providing information on oral health in their offices and by referring children with special healthcare needs to a pediatric dentist as early as 6 months of age. Referral of healthy infants to establish a dental home should occur no later than 6 months after the first tooth erupts or 12 months of age (whichever comes first).


Table 17–1. Caries-risk assessment for 0–3-year-olds.

<table>
<thead>
<tr>
<th>Biological Factors</th>
<th>High Risk</th>
<th>Moderate Risk</th>
<th>Protective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother/primary caregiver has active caries</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent/primary caregiver has low socioeconomic status</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child has &gt; 3 between-meal sugar-containing snacks or beverages per day</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Child is put to bed with a bottle containing natural or added sugar</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Child has special healthcare needs</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Child is a recent immigrant</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protective Factors</th>
<th>High Risk</th>
<th>Moderate Risk</th>
<th>Protective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child receives optimally fluoridated drinking water and fluoride supplements</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Child has teeth brushed daily with fluoridated toothpaste</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Child receives topical fluoride from health professional</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Child has dental home/regular dental care</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Findings</th>
<th>High Risk</th>
<th>Moderate Risk</th>
<th>Protective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child has white spot lesions or enamel defects</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child has visible cavities of fillings</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child is a recent immigrant</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Guidelines on Caries-Risk Assessment and Management for Infants, Children, and Adolescents, 2013 is Copyright © 2009–10 by the American Academy of Pediatric Dentistry and is reproduced with their permission.

Caries-Risk Assessment

Caries-risk assessment estimates the likelihood of developing carious lesions based on biological and protective factors as well as clinical findings. By 6 months of age, every child should have a caries-risk assessment performed by a pediatric healthcare provider. The Caries Risk Assessment Form (Table 17–1) details risk indicators for the age group 0–3 years old that directly or indirectly influence development of dental caries. Caries management by risk assessment (CAMBRA) is another protocol for a comprehensive evaluation of the child and his/her family and integrates the many factors that contribute to the development of ECC into a practical and individualized strategy for caries control. Although the best predictor of future caries is the incidence of previous caries, this finding is not a practical preventative tool. Additional risk factors include the level of parental education and age of colonization with MS and lactobacilli. The earlier the colonization occurs, the greater the risk of severe decay.

The ultimate purpose of this assessment is to develop a caries management protocol. Based on a child’s risk category and extent of parental engagement, interventions include diagnostics (regular recalls and determination of MS levels in saliva), optimization of the protective factors listed above, dietary counseling, and restorative measures as needed.

DENTAL CARIES

Dental caries is the most common chronic disease of childhood and the most prevalent unmet health need of US children. Dental caries is largely a disease of poverty. Children and adolescents in low-income families account for 80% of patients with tooth decay.

Pathogenesis

Development of caries requires the interaction of four factors: (1) a host (tooth in the oral environment); (2) a suitable dietary substrate (fermentable carbohydrates); (3) cariogenic microorganisms that adhere to the tooth; and (4) time, measured as the frequency of exposure to fermentable carbohydrates and the duration of acid exposure. The main organisms implicated in the initiation of caries are *Streptococcus mutans* (MS) and *Streptococcus sobrinus*. *Lactobacillus acidophilus* and *Lactobacillus casei* are linked to the progression of caries. MS organisms are most commonly passed vertically from mother to child. A “window of infectivity” between ages 19 and 33 months has been described, but colonization can occur as early as 3 months of age. Earlier colonization increases the risk of caries. Dental plaque is an adherent biofilm on the tooth surface that harbors acidogenic bacteria in close proximity to the enamel. As bacteria metabolize sucrose, they produce lactic acid that solubilizes calcium phosphate in tooth enamel and dentin. Demineralization of the dental enamel occurs below pH 5.5 and is the first step in cariogenesis. The flow rate of saliva and its buffering capacity are important modifiers of demineralization. Demineralization of enamel and dentin can be halted or even reversed by redeposition of calcium, phosphate, and fluoride from saliva. If not halted, the carious process penetrates the enamel, advancing through the dentin toward the pulp of the tooth. In response, blood vessels in the pulp dilate and inflammatory cells begin to infiltrate (pulpitis). If the carious lesion is untreated, pulp exposure will occur, triggering invasion of more inflammatory cells and the eventual formation of a small pulp abscess. If this abscess can drain into the oral cavity, the apical tooth tissue may remain vital. However, if the radical pulp becomes necrotic, a periapical abscess develops (Figure 17–1). Although this process may be asymptomatic, it usually causes severe pain, fever, and swelling.

Clinical Findings & Treatment

The diagnosis of caries is usually made by visual and tactile oral examination. Radiographs are used to visualize caries on the surfaces between teeth. The initial defect observed on enamel beneath the dental plaque is the so-called “white-spot lesion,” a white, chalky, decalcified area along the gingival margin or on approximated tooth surfaces. Frank carious lesions are light- to dark-brown spots or cavities of varying size on the tooth. A light shade of brown indicates more rampant decay. Arrested caries are almost black in color. In the early stages of decay, the tooth may be sensitive to temperature changes or sweets. Removing the carious tooth structure and filling the early defect with a restorative material can repair the tooth. As decay progresses deeper into the pulp, inflammation and pain increase. Eventually, the entire pulp becomes necrotic, and a choice must be made between root canal therapy (pulpectomy) or removal of the tooth. In the presence of cellulitis or facial space abscess, extraction and antibiotic therapy are the treatments of choice.

Cavitation is the late phase of disease. Filling cavities does not address the underlying pathologic process responsible for tooth decay. Unlike other infections, dental caries cannot be treated by a course of antibiotics. However, a daily dose of chlorhexidine gluconate rinse 0.12% for 2 weeks can significantly reduce the number of cariogenic bacteria in the mouth and delay recolonization for 3–6 weeks. Such treatment is recommended at 3-month intervals for patients with high levels of bacteria. Improvement in risk of dental caries can only be achieved by a sustained reduction in the number of cariogenic bacteria.
of cariogenic oral bacteria and by the creation of a favorable oral environment. Additionally, all active cavities must be restored to eliminate sources of reinfection. A patient and his/her family must be encouraged to change diet and habits of oral hygiene in an effort to prevent further infection. Motivational interviewing has been shown to be more successful in setting these self-management goals than simple or stern recommendations. Regular dental visits, the periodicity of which should be determined by the risk level for developing carious lesions, must be maintained to monitor and reinforce these goals. The concept of prevention through timely and regular parent education, early diagnosis, and prompt intervention offers greater efficiency, better health outcomes, and lower costs than repeated restoration of diseased teeth.

### Caries Prevention

Prevention of dental caries necessitates restoring the delicate balance between pathologic and protective factors. Pathologic factors include cariogenic bacteria and fermentable carbohydrates. Protective factors include salivary flow, and fluoride in food, beverages, drinking water, and oral care products. Saliva provides calcium, phosphate, proteins, antibacterial substances, and buffers to neutralize acid produced by bacteria in plaque.

#### A. Changes in Lifestyle

Oral hygiene practices should start soon after birth. The infant’s gums should be cleaned daily using a moist, soft cloth. Once the teeth erupt, oral hygiene must be practiced in earnest, particularly in children assessed as high risk. A small amount of fluoridated toothpaste (“smear layer”) should be used on a small, soft toothbrush designed for infants. Because of a lack of manual dexterity in children younger than 8 years of age, parents need to brush for them twice daily and assist with flossing. Another important parental task is reducing the amount of substrate available to the bacteria by limiting the consumption of sugar-containing infant formulas, beverages, and snacks. Each such exposure produces an acidic oral environment for up to 30 minutes. The primary care physician and his/her team play an invaluable role in disseminating this information during early well-baby visits.

#### B. Fluorides

Fluorides are safe and effective in caries prevention through three topical mechanisms of action: inhibition of bacterial metabolism by interfering with enzyme activity; inhibition of demineralization; and enhancing remineralization. Fluoride can be applied professionally or by the patient under parental supervision. Although more than half the US population has access to fluoridated community water, an increasing number of families consume processed water with unknown fluoride content. Fluorides affect the dentin and enamel of both erupted and unerupted teeth. Systemic effects are achieved by oral ingestion from sources such as fluoridated drinking water or fluoride supplements. Fluoridated toothpaste and mouth rinses deliver topical benefits. Table 17–2 shows the current ADA recommendations for dietary fluoride supplementation for children at high caries risk. They should be taken daily to maximize the caries risk prevention benefit. For children at low caries risk, dietary fluoride supplements are not recommended. The child’s true exposure to fluoride must be evaluated before supplements are prescribed to avoid the mottled enamel (dental fluorosis) produced by excessive fluoride. Because children younger than 6 years of age cannot expectorate reliably, parents must monitor the use of fluoridated toothpaste, ensuring that only a “pea-sized” amount of the product is used at each brushing. Several factors are associated with a high risk for caries—orthodontic appliances, decreased salivary function, gastroesophageal reflux disease, cariogenic diet, physical inability to properly clean the teeth, mother or siblings with caries, personal history of caries. Children with these risk factors should be considered for additional topical fluoride therapy to supplement oral hygiene measures.

Infants who consume concentrate infant formulas as the main source of nutrition may incur an increased risk for enamel fluorosis in the permanent dentition if those formulas are reconstituted with optimally fluoridated drinking water. It is important that practitioners evaluate all sources of fluoride intake when advising parents about the use of fluoridated toothpastes or prescribing fluoride supplements.

---

**Table 17–2.** Dietary fluoride supplementation schedule for children at high caries risk.

<table>
<thead>
<tr>
<th>Age</th>
<th>Concentration of Fluoride in Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt; 0.3 ppm F</td>
</tr>
<tr>
<td>Birth–6 mo</td>
<td>None</td>
</tr>
<tr>
<td>6 mo–3 y</td>
<td>0.25 mg</td>
</tr>
<tr>
<td>3–6 y</td>
<td>0.50 mg</td>
</tr>
<tr>
<td>6-at least 16 y</td>
<td>1.00 mg</td>
</tr>
</tbody>
</table>


---

C. Other Adjunctive Measures

Consumption of beverages sweetened with artificial sweeteners instead of sugar can help reduce the intake of fermentable carbohydrates. While chewing gum helps to clean food debris from teeth and increases salivary flow, these beneficial effects are lost when sugar-containing gum is used. The AAP considers chewing gum a choking risk in smaller children. A significant reduction of salivary MS by the polyol sweetener xylitol has been described, but a dose of at least 5–10 g/d for adults and 5–7.5 g/d for toddlers aged 6–36 months with exposure times lasting several minutes three times daily are required to produce this effect. Topical application of 8 g/d xylitol syrup in 9–15-month-old children twice per day for 12 months during primary tooth eruption could prevent up to 70% of dental caries. However, unclear labeling of the ingredients in xylitol-containing products makes the exact determination of the dose difficult and the high cost of foods containing xylitol limits its widespread use.


Early Childhood Caries

Formerly termed “baby bottle tooth decay” or “nursing bottle caries,” early childhood caries (ECC) is a particularly virulent and rapidly progressive form of caries that begins on the smooth surfaces of the teeth soon after eruption. Lack of adequate preventive care as well as poor feeding habits, such as the frequent consumption of liquids containing fermentable carbohydrates from a nursing bottle, frequent sipping from a no-spill sippy cup, taking a bottle to bed, and breast-feeding in combination with other carbohydrates, place children at high risk for ECC. It is uncertain whether ad libitum breast-feeding increases the risk for developing caries. ECC typically involves the maxillary incisors but any other teeth may be affected.

ECC is defined as one or more decayed (d), missing (m), or filled (f) tooth surfaces (s) in any primary tooth in a child younger than 71 months of age. Any sign of smooth-surface caries in a child younger than 3 years is termed severe ECC (S-ECC). From 3 to 5 years, one or more decayed, missing, or filled smooth surfaces in maxillary front teeth or a total dmfs score of 4 or higher must be present to make a diagnosis of S-ECC. By age 5 years, a dmfs score of 6 or higher must be present to constitute S-ECC. Children with S-ECC are at higher risk for new carious lesions, more frequent hospitalizations, and emergency department visits. They are absent more often from school, may have below-normal height and weight gain, and have a diminished oral health-related quality of life. Although S-ECC can affect all children, it is 32 times more likely in children who consume sugary foods and whose mothers are of low socioeconomic status and education level.

Parents should be counseled to eliminate saliva-sharing activities and not to put infants to sleep with a bottle containing fermentable carbohydrates. After eruption of the first tooth, ad libitum breast-feeding should be discontinued and regular oral hygiene measures such as twice-daily use of fluoridated toothpaste, both in optimally fluoridated and fluoride-deficient communities, should be implemented. Infants should be weaned from the bottle about 1 year of age and encouraged to drink from an uncovered cup mainly as part of a snack or meal. Frequent consumption of cariogenic liquids from a bottle or no-spill training cup should be avoided. The AAP recommends limiting juice to 4–6 oz/day for children 1–6 years of age.

Preventive strategies focused on the pregnant woman should start in the prenatal and perinatal periods. Maternal malnutrition during the third trimester, low birth weight, and systemic illness in the neonatal period can lead to tooth hypoplasia, which makes teeth more susceptible to caries. Later, motivational interviewing may help parents to reduce deleterious feeding habits and to adopt lifestyle changes within their family that address the multifactorial etiologies of early childhood caries.


Preventive Dental Treatment (Fluoride Varnish) by Physicians for High-Risk Populations

Since parents are more likely to take their very young child to a physician for well-child visits than to a dentist for oral health counseling, some states have established formal programs to entice medical offices to provide preventive dental services. These include dental screening, risk assessment, and referrals to dentists as needed, parent counseling about their child’s oral health, and applications of fluoride varnish (ICD-9-CM Diagnosis Code V07.31: Need for Prophylactic Fluoride Administration). The latter consists of a resin base in which fluoride (5% NaF) is suspended. Its sticky nature allows for extended contact time of the fluoride with the tooth surface. Many studies have demonstrated the safety and efficacy of fluoride varnishes and have described a significant reduction in the decay rate of smooth surfaces...
as well as pits and fissures. A report from a medical office-based preventive dental program in North Carolina found that it was successful in reducing caries-related treatments for children up to 6 years of age by 17%. Multiple fluoride varnish applications at the time of tooth emergence seemed to be most beneficial.

The varnish in single-dose packages (0.3–0.5 mL) should be stirred vigorously before application and the contents of larger tubes (5 mL) massaged to redissolve any precipitated fluoride. The former are preferable because consistent availability of fluoride cannot be guaranteed with multidose packages. The average amount of varnish needed depends on the number of teeth present and ranges from 0.1 mL for infants to 0.3 mL for preschool children. Teeth should be dried with gauze before application of the varnish with a small brush. It will set quickly to a dull yellow film upon contact with saliva. Caregivers should be instructed not to brush or floss and to give their child only soft foods until the next morning in order to provide the fluoride enough time for absorption into enamel.


### ORAL EXAMINATION OF THE NEWBORN & INFANT

The sagittal and vertical maxillomandibular relationships are different at birth. An anterior open bite is considered physiologic before the onset of tooth eruption. The infant’s mouth is more triangularly shaped and its oral cavity is small and totally filled by the tongue due to a small and slightly retrognathic lower jaw. This newborn’s pseudo micrognathia is due to ventral positioning of the fetus and will generally correct after birth by physiologic suckling.

#### Sucking Pads

Frequent breast-feeding can lead in some babies to formation of a lip callus (“sucking or suckling pad”) at the midline of the upper lip. Since it does not bother the mother or the child, it should not be removed. It will generally go away within the baby’s first year.

Within the cheek of newborns wedged between masseter and buccinator and related to the facial nerve and parotid duct there is a buccal fat pad that is completely enclosed within a distinctive capsule. These “sucking pads” are supposed to strengthen and support the cheek during the act of suckling.

The mouth of the normal newborn is lined with an intact, smooth, moist, shiny mucosa (Figure 17–2). The alveolar ridges are continuous and relatively smooth. Within the alveolar bone are numerous tooth buds, which at birth are mostly primary teeth.

#### Teeth

Hard tissue formation of primary teeth begins at approximately 4 months’ gestation. At birth, all 20 primary teeth are calcified. The central maxillary incisors are almost completely calcified while only the cusp tips of the maxillary and mandibular second molars are calcified. There is a trace of enamel on the first four permanent molars at birth.

The primary teeth usually begin to erupt at around 7 months of age. On rare occasions (1:3000), natal teeth are present at birth or neonatal teeth erupt within the first month. These are most commonly (85%) mandibular primary incisors. They can be “real” primary teeth (90%) or supernumerary teeth (10%) and should be differentiated radiographically. Although the preferred approach is to leave the tooth in place, supernumerary and hypermobile immature primary teeth should be extracted. On occasion, such teeth must be smoothed or removed if their sharp incisal edge causes laceration of the tongue (Riga-Fede disease). If such teeth cause difficulties with breast-feeding, pumping and bottle feeding is initially recommended while the infant is conditioned not to “bite” during suckling.
Frena

Noticeable but small maxillary and mandibular labial frena should be present (Figure 17–3). The “persisting tectolabial frenum” that is observed in 25% of all children tends to diminish in size with normal development. Its physiological purpose is to provide greater support to the upper lip during breast-feeding. Several small accessory frena may also be present farther posteriorly. In rare cases, as in oral-facial-digital syndrome, there are multiple thick tightly bound frena. Decisions about surgical correction should be based on the ability to maintain the child’s gingival health and are best left until the late preteen years. Many thick frena do not require correction.

The tongue is connected to the floor of the mouth by the lingual frenum (Figures 17–3 and 17–4). This connection should not impede the free movement of the tongue.

![Figure 17–3. The frena.](image)

If the attachment is tight and high up on the alveolar ridge (Figure 17–5), it may restrict movement and interfere with the child’s ability to produce “t,” “d,” and “l” sounds. This condition is called ankyloglossia (tongue-tie). Surgical correction may be indicated if the tongue cannot touch the maxillary incisors or the roof of the mouth. Earlier intervention (at age 3–4 years) is better than later, but there is usually no urgency for surgery in the neonatal period unless the child has difficulty latching on properly to the mother’s nipple and causes her pain during nursing. Frenotomy can be carried out as early as at 10 days of age to provide, in most cases, real, immediate, and sustained improvement in breast-feeding.


Cleft Lip & Palate

The palate of the newborn should be intact and continuous from the alveolar ridge anteriorly to the uvula (see Figure 17–2). Cleft lip and palate are common defects with an incidence of 0.28–3.74 in 1000 live births globally. Incidence varies widely among races and ranges from 1 in 500 among Navaho Native Americans and Japanese to more than 1 in 800 in Caucasians and 1 in 2000 in African Americans. The cleft of the palate can be unilateral or bilateral (Figure 17–6). It can involve only the alveolar ridge, or the ridge and entire palate. Cleft palate may also present as an isolated submucous cleft or as bifid uvula. Although clefts present superficially as a cosmetic problem, they cause complex functional problems such as oro-antral communication and disruption of the maxillary alveolar ridge with significant associated dental problems, such as irregularities in tooth numbers, delayed eruption, and malocclusion. They disturb the muscle arrangement of the perioral and the soft palate muscles by interrupting their continuity across the midline. As a result, feeding, swallowing, speech, and ventilation of the middle ear are negatively affected.
Children with cleft lip and palate should be referred as soon as possible to a multidisciplinary cleft palate team for comprehensive assessment of their medical status, feeding problems, general development, dental development, hearing, facial esthetics, and overall functioning. The dental needs of children with cleft palate are extensive, and treatment may begin immediately after birth with fabrication of a palatal obturator as a feeding aid. Nasoalveolar molding should be performed to lengthen the columella and to guide the protruding greater segment (in unilateral clefts) or the premaxilla (in bilateral clefts) back into the oral cavity, thus making surgical lip closure easier when it is performed, usually after 10 weeks of age. Palate closure to approximate the muscles of the soft palate, which is intended to restore its proper function and to facilitate the acquisition of normal speech without nasality, follows at 12–18 months of age. The associated scar formation causes significant dentofacial growth disturbance. Orthodontic treatment aims to address the sagittal and transverse maxillary growth deficits as well as the frequent irregularities in tooth eruption and position. Between 8 and 10 years of age, an alveolar bone graft is indicated to add bony support to the central incisor adjacent to the cleft and to enable eruption of the lateral incisor and canine on the cleft side. In some patients, orthognathic surgery to reposition the maxilla anteriorly and mandible posteriorly is needed in late adolescence after cessation of growth to complete their successful rehabilitation.

Other Soft Tissue Variations

Minor oral soft tissue variations can occur in newborns. Small, 1–2 mm round, smooth, white, or grayish lesions are sometimes noted on the buccal and lingual aspects of the alveolar ridges or the midpalatine raphe. The latter, called Epstein pearls, are remnants of epithelial tissue trapped along the raphe during fetal growth. The former, Bohn nodules, are remnants of mucous gland tissue. Both are benign, require no treatment, and usually disappear a few weeks after birth.

Some newborns may have small intraoral lymphangiomata on the alveolar ridge or the floor of the mouth. A dentist familiar with neonates should evaluate these and any other soft tissue variations that are more noticeable or larger than those just described.

ERUPTION OF THE TEETH

Normal Eruption

Primary teeth generally begin to erupt at about 7 months of age, but a gestational age of < 37 weeks or a birth weight < 2500 g increases the mean eruption times by 1 month. The mandibular incisors usually erupt before the maxillary incisors. The first teeth may appear as early as age 3–4 months or as late as age 12–16 months. Many symptoms are ascribed to teething, but any association with fever, upper respiratory infection, or systemic illness is probably coincidental rather than related to the eruption process. Attributing fever to teething without thorough diagnostic evaluation for other sources has resulted in missing serious organic disease.

Common treatment for teething pain is the application of topical anesthetics or teething gels that are available over the counter. Most contain benzocaine or, less commonly, lidocaine. If improperly used, they can cause numbness of the entire oral cavity and pharynx. Suppression of the gag reflex can be a serious side effect. Systemic analgesics such as acetaminophen or ibuprofen are safer and more effective. Chewing on a teething object can be beneficial, if only for distraction purposes.

Occasionally, swelling of the alveolar mucosa overlying an erupting tooth is seen during teething. This condition appears as localized red to purple, round, raised, smooth lesions that may be symptomatic but usually are not. Treatment is rarely needed, as these so-called eruption cysts or eruption hematomas resolve with tooth eruption.

Delayed Eruption

Premature loss of a primary tooth can either accelerate or delay eruption of the underlying secondary tooth. Typically, early eruption occurs when the permanent tooth is in its active eruption stage and the overlying primary tooth is
removed within 6–9 months of its normal exfoliation. If loss of the primary tooth occurs more than 1 year before expected exfoliation, the permanent tooth will likely be delayed in eruption owing to healing, which results in filling in of bone and gingiva over the permanent tooth. The loss of a primary tooth may cause adjacent teeth to tip or drift into the space and lead to space loss for the underlying permanent tooth. Placement of a space maintainer can prevent this.

Other local factors delaying or preventing tooth eruption include supernumerary teeth, cysts, tumors, overretained primary teeth, ankylosed primary teeth, and impaction. A generalized delay in eruption may be associated with global developmental delays, endocrinopathies (hypothyroidism or hypopituitarism), or other systemic conditions (eg, cleidocranial dysplasia, rickets, or trisomy 21).

**Ectopic Eruption**

If the dental arch provides insufficient room, permanent teeth may erupt ectopically and cause a usually painless partial or complete root resorption in the adjacent primary tooth. This phenomenon is more common in the maxilla, with ectopic eruption of the maxillary first permanent molar being the most frequent. In the mandible, lower incisors may erupt lingually and thus the primary predecessor may be retained. Parental concern about a “double row of teeth” may be the reason for the child’s first dental visit. If the primary teeth are not loose, the dentist should remove them to allow their successors to drift into proper position.

**Impaction**

Impaction occurs when a permanent tooth is prevented from erupting. Although crowding is the most frequent reason, an over-retained primary or supernumerary tooth is another cause. The teeth most often affected in the developing dentition are the maxillary canines. Generally, they are brought into correct alignment through surgical exposure and orthodontic treatment.

**Variations in Tooth Number**

Failure of teeth to develop—a condition called hypodontia—is rare in the primary dentition, but occurs with an incidence of 5:100 in the permanent dentition. The most frequently missing teeth are the third molars followed by the lateral maxillary incisors and mandibular second premolars. Oligodontia, a condition in which only a few teeth develop, occurs in patients with ectodermal dysplasias. Tooth agenesis is likely caused by several independent defective genes, which can act alone or in combination with other genes. It can occur in isolated cases, but often occurs in combination with cleft lip/cleft palate as part of the phenotype of over 200 syndromes.

Occasionally, supernumerary teeth are present, most typically in the maxillary incisor area, distal to the maxillary molars, or in the mandibular bicuspid region. Mesiodentes are peg-shaped supernumerary teeth situated at the maxillary midline that occur in about 5% of individuals. If they hinder eruption of adjacent permanent incisors, their timely removal is recommended.


**PERIODONTAL DISEASE**

Periodontal disease involves a tooth’s supporting structures: bone, gingiva, and periodontal ligaments (Figure 17–7). It begins as inflammation of the gingival tissue adjacent to a tooth. Bacterial accumulation in the gingival sulcus causes irritation and inflammation. This initial phase, called dental plaque-induced disease, is found almost universally in children and adolescents. Systemic conditions, alterations in hormone levels (insulin, gonadotropin), certain medications, and malnutrition can intensify the inflammatory response to plaque. Generally, this condition responds well to removal of bacterial deposits and improved oral hygiene.

Periodontitis is characterized by loss of attachment and destruction of bone. Patients with localized aggressive periodontitis typically have severe alveolar bone loss around permanent first molars and incisors, whereas the generalized form involves other teeth as well. The prevalence is 0.2% in Caucasians, but higher (2.5%) in African Americans, and tends to run in families. Functional defects, such as defects in neutrophil chemotaxis, phagocytosis, and antibacterial activity increase the risk of periodontitis. Actinobacillus actinomycetemcomitans in combination with Bacteroides-like species are implicated in this disease. Treatment consists of combined surgical and nonsurgical root debridement plus antibiotic therapy.

Periodontitis as a manifestation of systemic disease can be associated with hematological (acquired neutropenia, leukemias) or genetic disorders, such as Down-, Papillon–Lefèvre-, Chediak–Higashi-, hypophosphatasia-, and leukocyte adhesion
deficiency syndromes. The incidence of necrotizing periodontal diseases is lower (1%) in North America than in developing countries (2%–5%). Necrotizing periodontal disease is characterized by interproximal ulceration and necrosis of the dental papillae, rapid onset of dental pain, and often fever. Predisposing factors include viral infections (including human immunodeficiency virus [HIV]), malnutrition, emotional stress, and systemic disease. The condition usually responds rapidly to treatment consisting of mechanical debridement with ultrasonic scalers, improved oral hygiene, and metronidazole and penicillin for febrile patients.

**DENTAL EMERGENCIES**

**Orofacial Trauma**

Orofacial trauma most often consists only of abrasions or lacerations of the lips, gingiva, tongue, or oral mucosa (including the frena), without damage to the teeth. Lacerations should be cleansed, inspected for foreign bodies, and sutured if necessary. Occasionally, radiographs of the tongue, lips, or cheeks are needed to detect tooth fragments or other foreign bodies. All patients with facial trauma should be evaluated for jaw fractures. Blows to the chin are among the most common childhood orofacial traumas. They are also a leading cause of condylar fracture in the pediatric population. Condylar fracture should be suspected if pain or deviation occurs when the jaw is opened.

Tooth-related trauma affects any or all of the dental hard tissues and the pulp, the alveolar process, and the periodontal tissues. The range of luxation injuries includes concussion; subluxation; intrusive, extrusive, and lateral luxation; and avulsion. Figure 17–8 demonstrates the different luxation injuries, and Figure 17–9 shows the different degrees of tooth fractures.

The least problematic luxation injuries are concussion (no mobility) and subluxation (mobility without displacement). Unless mobility is extensive, this condition can be followed without active intervention, but pulp vitality should be periodically assessed.

**Primary Teeth**

The peak age for injuries to primary teeth is toddlerhood. Any treatment must include measures to ensure the integrity of the permanent teeth. Parents should be advised of any permanent tooth complications such as enamel hypoplasification or crown-root dilaceration caused by intrusion injuries of primary maxillary front teeth. An intrusive luxation is usually observed for a period of time to discern whether the tooth will spontaneously reerupt (see Figure 17–8). Severe luxations in any direction are treated with extraction. Avulsed primary teeth are not replanted. In a root fracture, the crown and apical fragment are generally extracted. The latter should be left for physiologic resorption if its retrieval would result in potential damage to the permanent tooth.

**Permanent Teeth**

Because the prognosis for viability worsens rapidly as time outside the mouth increases, an avulsed permanent tooth should be replanted into its socket, ideally as soon as possible at or near the accident scene following gentle rinsing with clean water. The patient should seek emergency dental care immediately thereafter. Hank’s balanced salt solution is the best storage and transport medium for avulsed teeth that
are to be replanted at a distant emergency clinic. The next best storage media in decreasing order are milk, saline, saliva (buccal vestibule), or water. The commercially available FDA-approved Save-a-Tooth kit should be part of first-aid kits in schools and sports facilities.

Intrusions of permanent teeth are corrected with surgical or orthodontic repositioning. Lateral and extrusive luxations are generally repositioned and splinted for up to 3 weeks. Root canal treatment is necessary in the majority of injuries. Factors to consider during treatment planning are root development (open or closed apex) and the extent of the luxation. Pulp necrosis; surface, inflammatory, and replacement resorption; or ankylosis may occur at any time during the healing process and determine the long-term outcome. All luxated and replanted teeth need to be followed regularly by a dentist.


Other Dental Emergencies

Dental emergencies other than trauma are usually associated with pain or swelling due to infection resulting from advanced caries. Odontogenic pain usually responds to acetaminophen or ibuprofen. Topical medications are of limited value.

A localized small swelling confined to the gingival tissue associated with a tooth is usually not an urgent situation. This “gumboil” or parulis represents an infection that has spread outward from the root of the tooth through the bone and periosteum. Usually it will drain and leave a fistulous tract. Facial cellulitis results if the infection invades the facial spaces. Elevated temperature (> 38.8°C), difficulty swallowing, and difficulty breathing are signs of more serious infection. Swelling of the midface—especially the bridge of the nose and the lower eyelid—should be urgently evaluated as a potential dental infection. Depending on the clinical situation and the patient’s overall health, treatment choices range from treating or extracting the offending tooth/teeth with or without antibiotic coverage to achieve drainage. Occasionally, treatment is delayed for several days while antibiotics are prescribed to contain the spread of the infection. Hospitalization is a prudent choice for younger children with severe facial cellulitis especially if other risk factors are present—dehydration, airway compromise, or possible noncompliance. Inpatient treatment consists of intravenous antibiotics such as clindamycin or ampicillin-sulbactam (Unasyn) with incision, drainage, and removal of the source of infection.

**Antibiotics in Pediatric Dentistry**

The antibiotics of choice for odontogenic infection are penicillin and clindamycin. The need for antibiotics—usually a 5- to 7-day course—depends on the severity of the infection and the patient’s medical status.

Patients with certain medical conditions are at risk for bacteremia-induced infections and require prophylactic antibiotic coverage prior to invasive dental manipulation. These include children with artificial heart valves, previous infectious endocarditis, certain repaired or nonrepaired congenital heart conditions, or compromised immunity. For nonvalvular devices such as indwelling vascular catheters and cardiovascular implantable electronic devices, antibiotic coverage is indicated only at the time they are placed. Hydrocephalus shunts with vascular access (eg, ventriculoatrial, ventriculocardiac, ventriculovenous) may cause bacteremia-induced infections and therefore require antibiotic prophylaxis, whereas the nonvascular type (ventriculoperitoneal) does not.

Antibiotic prophylaxis is generally not indicated for dental patients with pins, plates, screws, or other orthopedic hardware that is not within a synovial joint. Likewise, most patients with total joint replacements do not routinely require antibiotic prophylaxis, but for them, as well as for the management of patients at high risk and those with Harrington rods or external fixation devices, consultation with the child’s physician is advised. Special consideration is also warranted when higher risk dental procedures are performed within 24 months of implant surgery, on immunocompromised patients with total joint arthroplasty, or those who have had previous joint infections.

**Special Patient Populations**

**Children With Cancer**

The most common source of systemic sepsis in the immunosuppressed patient with cancer is the oral cavity. Therefore, a dentist knowledgeable about pediatric oncology should evaluate children with cancer soon after diagnosis. The aim is to educate the patient and caregivers about the importance of good oral hygiene and to remove all existing and potential sources of infection, such as abscessed teeth, extensive caries, teeth that will soon exfoliate, ragged or broken teeth, uneven fillings, and orthodontic appliances, before the child...
becomes neutropenic as a consequence of chemotherapy. Younger patients have more oral problems than adults. After an initial evaluation and before the initiation of cancer therapy, a dental treatment plan should be developed in discussion with the medical team. Preventive strategies include reduction of refined sugars, fluoride therapy, lip care, and patient education. Chemotherapeutic drugs and local irradiation are cytotoxic to the oral mucosa, which becomes atrophic and develops mucositis. Oral pain may be severe and often leads to inadequate food and fluid intake, infections in the oral cavity, and an increased risk of septicemia. Meticulous oral hygiene reduces the risk of severe mucositis.

The pediatric oncology patient should be monitored throughout therapy to screen for infection, manage oral bleeding, and control oral pain. These patients can experience spontaneous oral hemorrhage, especially when the platelet count is less than 20,000/μL. Poor oral hygiene or areas of irradiation can increase the chances of bleeding. Children receiving radiation therapy to the head and neck may develop xerostomia if salivary glands are in the path of the beam of radiation. Customized fluoride applicators and artificial saliva in combination with close follow-up are used to manage xerostomia aggressively to avoid rapid and extensive destruction of the teeth. Children receiving hematopoietic stem cell transplantation may require longer periods of immunosuppression. During the neutropenic phase of pretransplant conditioning, mucositis, xerostomia, oral pain, oral bleeding, and opportunistic infections may occur. Oral graft-versus-host disease as well as oral fungal and herpes simplex virus infections can be seen during the subsequent initial engraftment and hematopoietic reconstitution period. Long-term dental follow-up includes management of salivary dysfunction and craniofacial growth abnormalities from total body radiation and treatment of oral graft-versus-host disease.

Pediatric oncology patients need regular care by a dentist familiar with young children and their growth and development. Oral and maxillofacial growth disturbances can occur after therapy. Late effects of therapy include such morphologic changes as microdontia, hypocalcification, short and blunted roots, delayed eruption, and alterations in facial bone growth.

Children With Type 1 Diabetes

The incidence of caries is not increased in diabetic children if metabolic control is good. However, they are at higher risk for periodontal disease that usually starts at puberty with mild gingivitis, gum bleeding, and gingival recession. Care must be taken not to disturb the regular cycle of eating and insulin dosage. Anxiety associated with dental appointments can cause a major upset in glycemic control. Postoperative pain or pain from dental abscess can disrupt their routine oral intake, necessitating adjustment of insulin doses.

ORTHODONTIC REFERRAL

A child’s dentist usually initiates the referral to an orthodontist. For any child with a cleft palate or other craniofacial growth disorder, referral is indicated when maxillary permanent incisors are starting to erupt. Other localized problems such as anterior and/or posterior crossbites and disturbances associated with the eruption of maxillary and mandibular front teeth should be addressed early to restore proper function and normal craniofacial growth. Significant arch length deficiency that results in severe crowding requires early decisions on how to guide the developing dentition through extractions of multiple primary and permanent teeth (ie, serial extraction sequence). Likewise, pronounced discrepancies in anterior-posterior skeletal jaw relationships warrant early evaluation by an orthodontist.
INFECTIONS OF THE EAR

Otitis Externa

ESSENTIALS OF DIAGNOSIS

- Edema and erythema of the external auditory canal (EAC) with debris or thick, purulent discharge.
- Severe ear pain, worsened by manipulation of the pinna.
- Periauricular and cervical lymphadenopathy may be present.

Differential Diagnosis

Acute otitis media (AOM) with tympanic membrane (TM) rupture, furunculosis of the ear canal, and mastoiditis.

Pathogenesis

Otitis externa (OE) is a cellulitis of the soft tissues of the EAC, which can extend to surrounding structures such as the pinna, tragus, and lymph nodes. Also known as “swimmer’s ear,” humidity, heat, and moisture in the ear are known to contribute to the development of OE, along with localized trauma to the ear canal skin. Sources of trauma may include digital trauma, earplugs, ear irrigations, and the use of cotton-tipped swabs to clean or scratch the ear canal. Keeping the ear “too clean” can also contribute to the development of OE, since cerumen actually serves as a protective barrier to the underlying skin and its acidic pH inhibits bacterial and fungal growth. The most common organisms in OE are Staphylococcus aureus and Pseudomonas aeruginosa.

Clinical Findings

Symptoms include pain, aural fullness, decreased hearing, and sometimes itching in the ear. Manipulation of the pinna or tragus causes considerable pain. Discharge may start out as clear then become purulent. It may also cause secondary eczema of the auricle. The ear canal is typically swollen and narrowed, and the patient may resist any attempt to insert an otoscope. Debris is present in the canal and it is usually very difficult to visualize the TM due to canal edema.

Complications

If untreated, facial cellulitis may result. Immunocompromised individuals can develop malignant OE, which is a spread of the infection to the skull base with resultant osteomyelitis. This is a life-threatening condition.

Treatment

Management includes pain control, removal of debris from the canal, topical antimicrobial therapy, and avoidance of causative factors. Fluoroquinolone eardrops are first-line therapy for OE. In the absence of systemic symptoms, children with OE should be treated with antibiotic eardrops only. The topical therapy chosen must be nonototoxic because a perforation or patent tube may be present; if the TM cannot be visualized, then a perforation should be presumed to exist. If the ear canal is too edematous to allow entry of the eardrops, a Pope ear wick (expandable sponge) should be placed to ensure antibiotic delivery. Oral antibiotics are indicated for any signs of invasive infection, such as fever, cellulitis of the face or auricle, or tender periauricular or cervical lymphadenopathy.
In such cases, in addition to the ototopical therapy, cultures of the ear canal discharge should be sent, and an antistaphylococcal antibiotic prescribed while awaiting culture results. The ear should be kept dry until the infection has cleared.

Children with intact TMs who are predisposed to external otitis may be prophylaxed with two to three drops of a 1:1 solution of white vinegar and 70% ethyl alcohol in the ears before and after swimming.

**Bullous Myringitis**

Bullous myringitis (BM) is inflammation of the TM with hemorrhagic or serous bullae, and has been associated with viral upper respiratory infections and *Streptococcus pneumoniae*. It is often very painful and may be associated with otorrhea and decreased hearing. BM is treated with antibiotics, analgesics, anti-inflammatories, and occasionally steroids.

**Acute Otitis Media**

Acute otitis media (AOM) is the most common reason why antibiotics are prescribed for children in the United States. It is an acute infection of the middle ear space associated with inflammation, effusion, or, if a patent tympanostomy tube or perforation is present, otorrhea (ear drainage).

**ESSENTIALS OF DIAGNOSIS**

- Moderate to severe bulging of the TM or new otorrhea not associated with OE.
- Mild bulging of the TM and less than 48 hours of otalgia (ear holding, tugging, or rubbing in a nonverbal child) or intense erythema of the TM.
- Middle ear effusion (MEE), proven by pneumatic otoscopy or tympanometry, must be present.

**Differential Diagnosis**

Otitis media with effusion (OME), BM, acute mastoiditis, and middle ear mass.

**Clinical Findings**

Two findings are critical in establishing a diagnosis of AOM: a bulging TM and a MEE. The presence of MEE is best determined by visual examination and either pneumatic otoscopy or tympanometry (Figure 18–1). In order to distinguish AOM from OME, signs and symptoms of middle ear inflammation and acute infection must be present. Otoscopic findings specific for AOM include a bulging TM, impaired visibility of ossicular landmarks, yellow or white effusion (pus), an opacified and inflamed eardrum, and sometimes squamous exudate or bullae on the eardrum.
A. Pathophysiology and Predisposing Factors

1. Eustachian tube dysfunction (ETD)—The eustachian tube regulates middle ear pressure and allows for drainage of the middle ear. It must periodically open to prevent the development of negative pressure and effusion in the middle ear space. If this does not occur, negative pressure leads to transudation of cellular fluid into the middle ear, as well as influx of fluids and pathogens from the nasopharynx and adenoids. Middle ear fluid may then become infected, resulting in AOM. The eustachian tube of infants and young children is more prone to dysfunction because it is shorter, floppers, wider, and more horizontal than in adults. Infants with craniofacial disorders, such as Down syndrome or cleft palate, may be particularly susceptible to ETD.

2. Bacterial colonization—Nasopharyngeal colonization with S pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis increases the risk of AOM, whereas colonization with normal flora such as viridans streptococci may prevent AOM by inhibiting growth of these pathogens.

3. Viral upper respiratory infections (URI)—URIs increase colonization of the nasopharynx with otitis pathogens. They impair eustachian tube function by causing adenoid hypertrophy and edema of the eustachian tube itself.

4. Smoke exposure—Passive smoking increases the risk of persistent MEE by enhancing colonization, prolonging the inflammatory response, and impeding drainage of the middle ear through the eustachian tube. For infants aged 12–18 months, cigarette exposure is associated with an 11% per pack increase in the duration of MEE.

5. Impaired host immune defenses—Immuno compromised children such as those with selective IgA deficiency usually experience recurrent AOM, rhinosinusitis, and pneumonia. However, most children who experience recurrent or persistent otitis only have selective impairments of immune defenses against specific otitis pathogens.

6. Bottle feeding—Breast-feeding reduces the incidence of acute respiratory infections, provides immunoglobulin A (IgA) antibodies that reduce colonization with otitis pathogens, and decreases the aspiration of contaminated secretions into the middle ear space which can occur when a bottle is propped in the crib.

7. Time of year—The incidence of AOM correlates with the activity of respiratory viruses, accounting for the annual surge in otitis media cases during the winter months in temperate climates.

8. Daycare attendance—Children exposed to large groups of children have more respiratory infections and OM. The increased number of children in daycare over the past three decades has undoubtedly played a major role in the increase in AOM in the United States.

9. Genetic susceptibility—Although AOM is known to be multifactorial, and no gene for susceptibility has yet been identified, recent studies of twins and triplets suggest that as much as 70% of the risk is genetically determined.

B. Microbiology of Acute Otitis Media

Bacterial or viral pathogens can be detected in up to 96% of middle ear fluid samples from patients with AOM if sensitive and comprehensive microbiologic methods are used. S pneumoniae and H influenzae account for 35%–40% and 30%–35% of isolates, respectively. With widespread use of the pneumococcal conjugate vaccine starting in 2000, the incidence of AOM caused by H influenzae rose while that of the S pneumoniae vaccine serotypes declined. However, there has been an increase in disease caused by S pneumoniae serotypes not covered by the vaccine. The third most common pathogen cited is M catarrhalis, which causes up to 15%–25% of AOM cases in the United States (Table 18–1). The fourth most common organism in AOM is Streptococcus pyogenes, which is found more frequently in school-aged children than in infants. S pyogenes and S pneumoniae are the predominant causes of mastoiditis.

Drug-resistant S pneumoniae is a common pathogen in AOM and strains may be resistant to only one drug class (eg, penicillins or macrolides) or to multiple classes. Children with resistant strains tend to be younger and to have had more unresponsive infections. Antibiotic treatment in the preceding 3 months also increases the risk of harboring resistant pathogens. The prevalence of resistant strains no longer varies significantly among geographic areas within the United States, but it does vary worldwide. Lower incidences are found in countries with less antibiotic use. β-Lactamase resistance is seen in 34%–45% of H influenzae, while M catarrhalis approaches 100%.

C. Examination Techniques and Procedures

1. Pneumatic otoscopy—AOM is overdiagnosed, leading to inappropriate antibiotic therapy, unnecessary surgical referrals and significant associated costs. Contributing to errors in diagnosis is the temptation to accept the diagnosis without removing enough cerumen to adequately visualize

<table>
<thead>
<tr>
<th>Table 18–1. Microbiology of acute otitis media (AOM).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Streptococcus pneumonia</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
</tr>
<tr>
<td>Moraxella catarrhalis</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
</tr>
</tbody>
</table>
the TM, and the mistaken belief that a red TM establishes the diagnosis. Redness of the TM is often a vascular flush caused by fever or crying.

A pneumatic otoscope with a rubber suction bulb and tube is used to assess TM mobility. When used correctly, pneumatic otoscopy can improve diagnostic ability by 15%–25%. The largest possible speculum should be used to provide an airtight seal and maximize the field of view. When the rubber bulb is squeezed, the TM should move freely with a snapping motion; if fluid is present in the middle ear space, the mobility of the TM will be absent or resemble a fluid wave. The ability to assess mobility is compromised by failure to achieve an adequate seal with the otoscope, poor visualization due to low light intensity, and mistaking the ear canal wall for the membrane. The bulb should be slightly compressed when placing the speculum to allow gentle retraction of the TM and avoid discomfort. The tip of the speculum should not be advanced past the cartilaginous EAC to avoid pressure on the bony canal, which is painful. Light, rapid squeezes of the bulb should be undertaken to maximize visualization and minimize pain.

2. Cerumen removal—Cerumen (ear wax) removal is an essential skill for anyone who cares for children. Impacted cerumen pushed against the TM can cause itching, pain, or hearing loss. Parents should be advised that cerumen actually protects the ear and usually comes out by itself through the natural sloughing and migration of the skin of the ear canal. Parents should never put anything into the ear canal to remove wax.

Cerumen may be safely removed under direct visualization through the operating head of an otoscope, provided two adults are present to hold the child. A size 0 plastic disposable ear curette may be used. Irrigation can also be used to remove hard or flaky cerumen. Wax can be softened with 1% sodium docusate solution, carbamyl peroxide solutions, or mineral oil before irrigation is attempted. Irrigation with a soft bulb syringe is performed with water warmed to 35–38°C to prevent vertigo. A commercial jet tooth cleanser (eg, Water Pik) can be used, but it is important to set it at low power to prevent vertigo. A perforated TM or patent tympanostomy tube is a contraindication to any form of irrigation.

A home remedy for recurrent cerumen impaction is a few drops of oil such as mineral or olive oil a couple of times a week, warmed to body temperature to prevent dizziness. Droppers are available at pharmacies.

3. Tympanometry—Tympanometry can be helpful in assessing middle ear status, particularly when pneumatic otoscopy is inconclusive or difficult to perform. Tympanometry can reveal the presence or absence of a MEE but cannot differentiate between acutely infected fluid (AOM) and a chronic effusion (OME).

Tympanometry measures TM compliance and displays it in graphic form. It also measures the volume of the ear canal, which can help differentiate between an intact and perforated TM. Standard 226-Hz tympanometry is not reliable in infants younger than 6 months. A high-frequency (1000 Hz) probe is used in this age group.

Tympanograms can be classified into four major patterns, as shown in Figure 18–2. The pattern shown in Figure 18–2A, characterized by maximum compliance at normal atmospheric pressure, indicates a normal TM, good eustachian tube function, and absence of effusion. Figure 18–2B identifies a nonmobile TM with normal volume, which indicates MEE. Figure 18–2C indicates an intact, mobile TM with excessively negative middle ear pressure (greater than –150 daPa), indicative of poor eustachian tube function. Figure 18–2D shows a flat tracing with a large middle ear volume, indicative of a patent tube or TM perforation.

### Treatment

#### A. Pain Management

Pain is the primary symptom of AOM, and the 2013 clinical practice guidelines emphasize the importance of addressing this symptom. As it may take 1–3 days before antibiotic therapy leads to a reduction in pain, mild to moderate pain should be treated with ibuprofen or acetaminophen. Severe pain should be treated with narcotics, but careful and close observation is required to address possible respiratory depression, altered mental status, gastrointestinal upset and constipation. Topical analgesics have a very short duration and studies do not support efficacy in children younger than 5 years.

#### B. The Observation Option

Since the release of clinical practice guidelines in 2004, watchful waiting with close observation has been recommended in certain groups of children with AOM. The updated 2013 guidelines modify the initial recommendations, including the laterality of infection and otorrhea as criteria (Table 18–2). The choice to observe is an option in otherwise healthy children without other underlying conditions such as cleft palate, craniofacial abnormalities, immune deficiencies, cochlear implants, or tympanostomy tubes. The decision should be made in conjunction with the parents, and a mechanism must be in place to provide antibiotic therapy if there is worsening of symptoms or lack of improvement within 48–72 hours. For infants younger than 6 months, antibiotics are always recommended on the first visit, regardless of diagnostic certainty.

#### C. Antibiotic Therapy

High-dose amoxicillin remains the first-line antibiotic for treating AOM, even with a high prevalence of drug-resistant *S. pneumoniae*, because data show that isolates of the bacteria remain susceptible to the drug 83%–87% of the time.
**Figure 18–2.** Four types of tympanograms obtained with Welch-Allyn MicroTymp 2. **A:** Normal middle ear. **B:** Otitis media with effusion or acute otitis media. **C:** Negative middle ear pressure due to eustachian tube dysfunction. **D:** Patent tympanostomy tube or perforation in the tympanic membrane. Same as B except for a very large middle ear volume.

| Table 18–2. Recommendations for initial management of uncomplicated AOM.\(^a\) |
|---|---|---|---|---|
| **Age** | **Otorrhea With AOM\(^b\)** | **Unilateral or Bilateral AOM\(^c\) With Severe Symptoms\(^d\)** | **Bilateral AOM\(^e\) Without Otorrhea** | **Unilateral AOM\(^e\) Without Otorrhea** |
| 6 mo–2 y | Antibiotic therapy | Antibiotic therapy | Antibiotic therapy | Antibiotic therapy or additional observation |
| ≥ 2 y | Antibiotic therapy | Antibiotic therapy | Antibiotic therapy or additional observation | Antibiotic therapy or additional observation |

\(^a\)Applies only to children with well-documented AOM and a high certainty of diagnosis.

\(^b\)A toxic-appearing child, persistent otalgia for more than 48 hours, temperature greater than 39°C (102.2°F) in the past 48 hours, or if there is uncertain access to follow up after the visit.

\(^c\)This plan of initial management provides an opportunity for shared decision making with the child’s family for those categories appropriate for initial observation. If observation is offered, a mechanism must be in place to ensure follow-up and begin antibiotics if the child worsens or fails to improve within 48–72 hours of AOM onset.
Amoxicillin is generally considered safe, low-cost, palatable, and has a narrow microbiologic spectrum.

Amoxicillin-clavulanate enhanced strength (ES), with 90 mg/kg/d of amoxicillin dosing (14:1 ratio of amoxicillin-clavulanate), is an appropriate choice when a child has had amoxicillin in the last 30 days, or is clinically failing after 48–72 hours on amoxicillin (Table 18–3). The regular strength formulations of amoxicillin-clavulanate (7:1 ratio) should not be doubled in dosage to achieve 90 mg/kg/d of amoxicillin, because the increased amount of clavulanate will cause diarrhea.

Three oral cephalosporins (cefuroxime, cefpodoxime, and cefdinir) are more β-lactamase–stable and are alternative choices in children who develop a papular rash with amoxicillin (see Table 18–3). Unfortunately, coverage of highly penicillin-resistant pneumococci with these agents is poor and only the intermediate-resistance classes are covered. Of these drugs, cefdinir suspension is most palatable; the other two have a bitter after-taste which is difficult to conceal. Newer flavoring agents may be helpful here.

A second-line antibiotic is indicated when a child experiences symptomatic infection within 1 month of finishing amoxicillin; however, repeat use of high-dose amoxicillin is indicated if more than 4 weeks have passed without symptoms. Macrolides such as azithromycin and clarithromycin are not recommended as second-line agents because S pneumoniae is resistant to macrolides in approximately 30% in respiratory isolates, and because virtually all strains of H influenzae have an intrinsic macrolide efflux pump, which pumps antibiotic out of the bacterial cell.

Reasons for failure to eradicate a sensitive pathogen include drug noncompliance, poor drug absorption, or vomiting of the drug. If a child remains symptomatic for longer than 3 days while taking a second-line agent, a tympanocentesis is useful to identify the causative pathogen. If a highly resistant pneumococcus is found or if tympanocentesis is not feasible, intramuscular ceftriaxone at 50 mg/kg/dose for 3 consecutive days is recommended. If a child has experienced a severe reaction, such as anaphylaxis, to amoxicillin, cephalosporins should not be substituted. Otherwise, the risk of cross-sensitivity is less than 0.1%. Multi-drug resistant S pneumoniae poses a treatment dilemma and newer antibiotics may need to be employed such as fluoroquinolones or linezolid. However, these drugs are not approved by the U.S. Food and Drug Administration (FDA) for the treatment of AOM in children.

Table 18–3. Antibiotic therapies for acute otitis media.

<table>
<thead>
<tr>
<th>A. Initial Immediate or Delayed Antibiotic Treatment</th>
<th>Alternative Treatments (If Penicillin-Allergic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Line Treatment</td>
<td></td>
</tr>
<tr>
<td>Amoxicillin (80-90 mg/kg/d in 2 divided doses)</td>
<td>Cefdinir (14/mg/kg/d in 1 or 2 doses)</td>
</tr>
<tr>
<td>• For children aged &lt; 2 y or children of all ages with severe symptoms, treat for 10 d.</td>
<td>Cefuroxime (30 mg/kg/d divided BID)</td>
</tr>
<tr>
<td>• Age 2-6 y with mild-moderate symptoms, treat for 7 d.</td>
<td>Cefpodoxime (10 mg/kg/d in 2 divided doses)</td>
</tr>
<tr>
<td>• Age &gt; 6 y with mild-moderate symptoms, treat for 5 d.</td>
<td>Ceftriaxone (50 mg IM or IV per day for 1 or 3 d)</td>
</tr>
<tr>
<td>or Amoxicillin-clavulanate (90 mg/kg/d or amoxicillin, with 6.4 mg/kg/d of clavulanate in two divided doses)</td>
<td>• If unable to take oral medications</td>
</tr>
<tr>
<td>• For patients who have received amoxicillin in the previous 30 days or who have otitis-conjunctivitis syndrome</td>
<td>For children with severe penicillin allergies (IgE-mediated events):</td>
</tr>
<tr>
<td>• Trimethoprim–sulfamethoxazole</td>
<td></td>
</tr>
<tr>
<td>• Macrolides</td>
<td></td>
</tr>
<tr>
<td>• Clindamycin (30-40 mg/kg/day, divided TID)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Antibiotic Treatment After 48-72 h of Failure of Initial Antibiotic</th>
<th>Alternative Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Line Treatment</td>
<td></td>
</tr>
<tr>
<td>Amoxicillin-clavulanate (90 mg/kg/d or amoxicillin, with 6.4 mg/kg/d of clavulanate in two divided doses)</td>
<td>Ceftriaxone (50 mg IM or IV per day for 3 d)</td>
</tr>
<tr>
<td>• For patients who have received amoxicillin in the previous 30 days or who have otitis-conjunctivitis syndrome.</td>
<td>Clindamycin (30-40 mg/kg/d, divided TID) with or without a 3rd generation cephalosporin</td>
</tr>
<tr>
<td>or Ceftriaxone (50 mg IM or IV per day for 3 d)</td>
<td>Consider tympanocentesis</td>
</tr>
<tr>
<td></td>
<td>Consult specialist</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Recurrence &gt; 4 wk After Initial Episode:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A new pathogen is likely, so restart first-line therapy.</td>
</tr>
<tr>
<td>2. Be sure diagnosis is not OME, which may be observed for 3-6 mo without treatment.</td>
</tr>
</tbody>
</table>
In patients with tympanostomy tubes with uncomplicated acute otorrhea, ototopical antibiotics (fluoroquinolone eardrops) are first-line therapy. The eardrops serve two purposes: (1) They treat the infection and (2) they physically “rinse” drainage from the tube which helps prevent plugging of the tube. Oral antibiotics are not indicated in the absence of systemic symptoms.

D. Tympanocentesis

Tympanocentesis is performed by placing a needle through the TM and aspirating the middle ear fluid. The fluid is sent for culture and sensitivity. Indications for tympanocentesis are (1) AOM in an immunocompromised patient, (2) research studies, (3) evaluation for presumed sepsis or meningitis, such as in a neonate, (4) unresponsive otitis media despite courses of two appropriate antibiotics, and (5) acute mastoiditis or other suppurrative complications. Tympanocentesis can be performed with an open-headed operating otoscope or a binocular microscope with either a spinal needle and 3-mL syringe, or if available, an Alden-Senturia trap (Storz Instrument Co., St. Louis, MO) or the Tymp-Tap aspirator (Xomed Surgical Products, Jackson, FL) (Figure 18–3).

Figure 18–3. Operating head and Alden-Senturia trap for tympanocentesis. Eighteen-gauge spinal needle is attached and bent.

E. Prevention of Acute Otitis Media

1. Antibiotic prophylaxis—Strongly discouraged. Antibiotic resistance is a concern and studies have shown poor efficacy.

2. Lifestyle modifications—Parental education plays a major role in decreasing AOM. These are some items to consider in children with RAOM:
   - Smoking is a risk factor both for upper respiratory infection and AOM. Primary care physicians can provide information on smoking cessation programs and measures.
   - Breast-feeding protects children from AOM. Clinicians should encourage exclusive breast-feeding for 6 months.
   - Bottle-propping in the crib should be avoided. It increases AOM risk due to the reflux of milk into the eustachian tubes.
   - Pacifiers are controversial. In Finland, removing pacifiers from infants was shown to reduce AOM episodes by about one-third compared to a control group. The mechanism is uncertain but likely to be related to effects on the eustachian tube. However, the benefit of pacifier use in reducing sudden infant death syndrome (SIDS)–related deaths is also important to consider. Currently, the recommendation from the American Academy of Family Physicians is to wean a pacifier if used after 6 months of age to reduce the risk of AOM.
   - Day care is a risk factor for AOM, but working parents may have few alternatives. Possible alternatives include care by relatives or child care in a setting with fewer children.

3. Surgery—Tympanostomy tubes are effective in the treatment of recurrent AOM as well as OME.

4. Immunologic evaluation and allergy testing—While immunoglobulin subclass deficiencies may be more common in children with recurrent AOM, there is no practical immune therapy available. More serious immunodeficiencies, such as selective IgA deficiency, should be considered in children who suffer from a combination of recurrent AOM, rhinosinusitis, and pneumonia. In the school-aged child or preschooler with an atopic background, skin testing may be beneficial in identifying allergens that can predispose to AOM.

5. Vaccines—The pneumococcal conjugate and influenza vaccines are recommended. The seven-valent pneumococcal conjugate vaccine (PCV7) has been used in the United States since 2000, and the 13-valent pneumococcal conjugate vaccine (PCV13) was introduced in 2010. PCV7 was found to produce a 29% reduction in AOM resulting from the seven serotypes found in the vaccine, and overall, PCV7 reduced AOM by 6%–7%, according to a 2009 Cochrane database review. Data are not yet available regarding the effect of
PCV13 on AOM at this time. In recent studies, intranasal influenza vaccine reduced the number of influenza-associated cases of AOM by 30%–55%.


Web Resources


Otitis Media With Effusion

ESSENTIALS OF DIAGNOSIS

- MEE with decreased TM mobility.
- No signs or symptoms of acute inflammation.
- May precede or follow an episode of AOM.

Clinical Findings

Otitis media with effusion (OME) is the presence of fluid in the middle ear space without signs or symptoms of acute inflammation. There may be some discomfort, but acute pain is not characteristic. A retracted or neutral TM with decreased mobility is seen on pneumatic otoscopy. The TM may be opacified or may have a whitish or amber discoloration. Children with OME can develop AOM if the middle ear fluid should become infected. OME often follows an episode of AOM. After AOM, fluid can remain in the ear for several weeks, with 60%–70% of children still having MEE 2 weeks after successful treatment. This drops to 40% at 1 month and 10%–25% at 3 months after treatment. It is important to distinguish OME from AOM because the former does not benefit from treatment with antibiotics.

Management

An audiology evaluation should be performed after approximately 3 months of continuous bilateral effusion in children younger than 3 years and those at risk of language delay due to socioeconomic circumstances, craniofacial anomalies, or other risk factors. Children with hearing loss or speech delay should be referred to an otolaryngologist for possible tympanostomy tube placement. Antibiotics, antihistamines and steroids have not been shown to be useful in the treatment of OME.

Traditionally, OME was observed for 3 months in uncomplicated cases prior to consideration for tympanostomy tube placement. More recent studies have found that longer periods of observation do not necessarily have significant negative effects on literacy, attention, academic achievement, and social skills. Longer periods of observation may be acceptable in children with normal or very mild hearing loss on audiogram, no risk factors for speech and language issues, and no structural changes to the TM. Absolute indications for tympanostomy tubes include hearing loss greater than 40 dB, TM retraction pockets, ossicular erosion, adhesive atelectasis, and cholesteatoma. If a patient clears a persistent MEE, the physician should follow the patient monthly.

Prognosis & Sequelae

Prognosis is variable based on age of presentation. Infants who are very young at the time of first otitis media are more likely to need surgical intervention. Other factors that decrease the likelihood of resolution are onset of OME in the summer or fall, history of prior tympanostomy tubes, presence of adenoids, and hearing loss greater than 30 dB.

The presence of biofilms has been found to explain the “sterile” effusion sometimes present when culturing middle ear fluid in OME. On electron microscopy, biofilms have been found to cover the middle ear mucosa and adenoids in up to 80% of patients with OME. Currently, work is being done to find ways to eradicate biofilms, including physical disruption, reduction, and eradication.

Complications of Otitis Media

A. Tympanosclerosis, Retraction Pockets, Adhesive Otitis

Tympanosclerosis is an acquired disorder of calcification and scarring of the TM and middle ear structures from inflammation. The term *myringosclerosis* applies to calcification of the TM only, and is a fairly common sequela of OME and AOM. Myringosclerosis may also develop at the site of a previous tympanostomy tube; tympanosclerosis is not a common sequela of tube placement. If tympanosclerosis involves the ossicles, a conductive hearing loss may result. Myringosclerosis rarely causes a hearing loss, unless the entire TM is involved (“porcelain eardrum”). Myringosclerosis may be confused with a middle ear mass. However, use of pneumatic otoscopy can often help in differentiation, as the plaque will move with the TM during insufflation.

The appearance of a small defect or invagination of the pars tensa or pars flaccida of the TM suggests a retraction pocket. Retraction pockets occur when chronic inflammation and negative pressure in the middle ear space produce atrophy and atelectasis of the TM.

Continued inflammation can cause adhesions to form between the retracted TM and the ossicles. This condition, referred to as *adhesive otitis*, predisposes one to formation of a cholesteatoma or fixation and erosion of the ossicles.

B. Cholesteatoma

A greasy-looking mass or pearly white mass seen in a retraction pocket or perforation suggests a cholesteatoma (Figure 18–4). If infection is superimposed, serous or purulent drainage will be seen, and the middle ear cavity may contain granulation tissue or even polyps. Persistent, recurrent, or foul smelling otorrhea following appropriate medical management should make one suspect a cholesteatoma.

C. Tympanic Membrane Perforation

Occasionally, an episode of AOM may result in rupture of the TM. Discharge from the ear is seen, and often there is rapid relief of pain. Perforations due to AOM usually heal spontaneously within a couple of weeks. Ototopical antibiotics are recommended for a 10- to 14-day course and patients should be referred to an otolaryngologist 2–3 weeks after the rupture for examination and hearing evaluation.

When perforations fail to heal after 3–6 months, surgical repair may be needed. TM repair is generally delayed until the child is older and eustachian tube function has improved. Procedures include paper patch myringoplasty, fat myringoplasty, and tympanoplasty. Tympanoplasty is generally deferred until around 7 years of age, which is approximately when the eustachian tube reaches adult orientation. In otherwise healthy children, some surgeons perform a repair earlier if the contralateral, nonperforated ear remains free of infection and effusion for 1 year.

In the presence of a perforation, water activities should be limited to surface swimming, preferably with the use of an ear mold.

D. Facial Nerve Paralysis

The facial nerve traverses the middle ear as it courses through the temporal bone to its exit at the stylomastoid foramen. Normally, the facial nerve is completely encased in bone, but occasionally bony dehiscence in the middle ear is present, exposing the nerve to infection and making it susceptible to inflammation during an episode of AOM. The acute onset of a facial nerve paralysis should not be deemed idiopathic Bell palsy until all other causes have been excluded. If middle ear fluid is present, prompt myringotomy and tube placement are indicated. CT is indicated if a cholesteatoma or mastoiditis is suspected.

E. Chronic Suppurative Otitis Media

ESSENTIALS OF DIAGNOSIS

- Ongoing purulent ear drainage.
- Nonintact TM: perforation or tympanostomy tubes.
- May be associated with cholesteatoma.

Chronic suppurative otitis media (CSOM) is present when persistent otorrhea occurs in a child with tympanostomy tubes or TM perforations. It starts with an acute infection...
that becomes chronic with mucosal edema, ulceration, and granulation tissue. The most common associated bacteria include *P. aeruginosa*, *S. aureus*, *Proteus* species, *Klebsiella pneumoniae*, and diphtheroids. Visualization of the TM, meticulous cleaning with culture of the drainage, and appropriate antimicrobial therapy, usually topical, are the keys to management.

Occasionally, CSOM may be a sign of cholesteatoma or other disease process such as foreign body, neoplasm, Langerhans cell histiocytosis, tuberculosis, granulomatosis, fungal infection, or petrositis. If CSOM is not responsive to culture-directed treatment, imaging and biopsy may be needed to rule out other possibilities. Patients with facial palsy, vertigo, or other CNS signs should be referred immediately to an otolaryngologist.


F. Labyrinthitis

Suppurative infections of the middle ear can spread into the membranous labyrinth of the inner ear through the round window membrane or abnormal congenital communications. Symptoms include vertigo, hearing loss, fevers, and the child often appears extremely toxic. Intravenous antibiotic therapy is used, and intravenous steroids may also be used to help decrease inflammation. Sequelae can be serious, including a condition known as *labyrinthitis ossificans*, or bony obliteration of the inner ear including the cochlea, leading to profound hearing loss.

#### Mastoiditis

**ESSENTIALS OF DIAGNOSIS**

- *AOM* otitis media is almost always present.
- Postauricular pain and erythema.
- Ear protrusion (late finding).

**Pathogenesis**

Mastoiditis occurs when infection spreads from the middle ear space to the mastoid portion of the temporal bone, which lies just behind the ear and contains air-filled spaces. Mastoiditis can range in severity from inflammation of the mastoid periosteum to bony destruction of the mastoid air cells (coalescent mastoiditis) with abscess development. Mastoiditis can occur in any age group, but more than 60% of the patients are younger than 2 years. Many children do not have a prior history of recurrent AOM.

**Clinical Findings**

A. Symptoms and Signs

Patients with mastoiditis usually have postauricular pain, fever, and an outwardly displaced pinna. On examination, the mastoid area often appears indurated and red. With disease progression it may become swollen and fluctuant. The earliest finding is severe tenderness on mastoid palpation. AOM is almost always present. Late findings include a pinna that is pushed forward by postauricular swelling and an ear canal that is narrowed due to pressure on the posterosuperior wall from the mastoid abscess. In infants younger than 1 year, the swelling occurs superior to the ear and pushes the pinna downward rather than outward.

**B. Imaging Studies**

The best way to determine the extent of disease is by computed tomography (CT) scan. Early mastoiditis may be radiographically indistinguishable from AOM, with both showing opacification but no destruction of the mastoid air cells. With progression of mastoiditis, coalescence of the mastoid air cells is seen.

**C. Microbiology**

The most common pathogens are *S. pneumoniae* followed by *H. influenzae* and *S. pyogenes*. Rarely, gram-negative bacilli and anaerobes are isolated. Antibiotics may decrease the incidence and morbidity of acute mastoiditis. However, acute mastoiditis still occurs in children who are treated with antibiotics for an acute ear infection. In the Netherlands, where only 31% of AOM patients receive antibiotics, the incidence of acute mastoiditis is 4.2 per 100,000 person-years. In the United States, where more than 96% of patients with AOM receive antibiotics, the incidence of acute mastoiditis is 2 per 100,000 person-years. Moreover, despite the routine use of antibiotics, the incidence of acute mastoiditis has been rising in some cities. The pattern change may be secondary to the emergence of resistant *S. pneumoniae*.

**Differential Diagnosis**

Lymphadenitis, parotitis, trauma, tumor, histiocytosis, OE, and furuncle.

**Complications**

Meningitis can be a complication of acute mastoiditis and should be suspected when a child has associated high fever, stiff neck, severe headache, or other meningeal signs. Lumbar puncture should be performed for diagnosis. Brain abscess occurs in 2% of mastoiditis patients and may be associated with persistent headaches, recurring fever, or changes in sensorium. Facial palsy, sigmoid sinus thrombosis, epidural
abscess, cavernous sinus thrombosis, and thrombophlebitis may also be encountered.

**Treatment**

In the preantibiotic era, up to 20% of patients with AOM underwent mastoidectomy for mastoiditis. Now, the occurrence is 5 cases per 100,000 persons with AOM. Intravenous antibiotic treatment alone may be successful if there is no evidence of coalescence or abscess on CT. However, if there is no improvement within 24–48 hours, surgical intervention should be undertaken. Minimal surgical management starts with tympanostomy tube insertion, during which cultures are taken. If a subperiosteal abscess is present, incision and drainage is also performed, with or without a cortical mastoidectomy. Intracranial extension requires complete mastoidectomy with decompression of the involved area.

Antibiotic therapy (intravenous and topical ear drops) is instituted along with surgical management and relies on culture directed antibiotic therapy for 2–3 weeks. An antibiotic regimen should be chosen which is able to cross the blood-brain barrier. After significant clinical improvement is achieved with parenteral therapy, oral antibiotics are begun and should be continued for 2–3 weeks. A patent tympanostomy tube must also be maintained, with continued use of otic drops until drainage abates.

**Prognosis**

Prognosis for full recovery is good. Children that develop acute mastoiditis with abscess as their first ear infection are not necessarily prone to recurrent otitis media.

**ACUTE TRAUMA TO THE MIDDLE EAR**

Head injuries, a blow to the ear canal, sudden impact with water, blast injuries, or the insertion of pointed objects into the ear canal can lead to perforation of the TM, ossicular disruption, and hematoma of the middle ear. One study reported that 50% of serious penetrating wounds of the TM were due to parental use of a cotton swab.

Treatment of middle ear trauma consists mainly of watchful waiting. An audiogram may show a conductive hearing loss. Antibiotics are not necessary unless signs of infection appear. The prognosis for normal hearing depends on whether the ossicles have been dislocated or fractured. The patient needs to be followed with audiometry or by an otolaryngologist until hearing has returned to normal, which is expected within 6–8 weeks. A CT scan may be needed to evaluate the middle ear structures. Occasionally, middle ear trauma can lead to a perilymphatic fistula (PLF) which is disruption of the barrier between the middle ear and inner ear, usually in the area of the oval window. PLF can occur from an acute blow to the ear, foreign body, or occasionally from more innocuous mechanisms such as Valsalva or sneezing. Symptoms include sudden hearing loss and vertigo. This requires emergent otolaryngology evaluation.

Traumatic TM perforations should be referred to an otolaryngologist for examination and hearing evaluation. Spontaneous healing may occur within 6 months of the perforation. If the perforation is clean and dry and there is no hearing change, there is no urgency for specialty evaluation. In the acute setting, antibiotic eardrops are often recommended to provide a moist environment which is thought to speed healing.

**CERUMEN IMPACTION AND EAR CANAL FOREIGN BODY**

Foreign bodies in the ear are common, whether intentional (self-placement, placement by another child) or accidental (eg, insect, broken-off cotton swab after cleaning attempt). Cerumen can also be obstructive, acting like a foreign body. If the cerumen or object is large or difficult to remove with available instruments, otolaryngology referral is recommended, as the child may be traumatized by further removal attempts, and trauma to the ear canal may cause edema, necessitating removal under general anesthesia. Vegetable matter should never be irrigated as it can swell causing increased pain and removal difficulty. An emergency condition exists if the foreign body is a disk-type battery, such as those used in clocks, watches, and hearing aids. An electric current is generated in the moist canal, and a severe burn can occur in less than 4 hours. If the TM cannot be visualized, assume a perforation and avoid irrigation or ototoxic medications.

**AURICULAR HEMATOMA**

Trauma can result in formation of a hematoma between the perichondrium and cartilage of the pinna. This is different from a bruise, which does not change the ear shape and where the blood is in the soft tissue outside of the perichondrial layer. A hematoma appears as a boggy purple swelling of the cartilaginous auricle, and the normal folds of the ear are obscured. If untreated, pressure necrosis of the underlying cartilage may occur, resulting in “cauliflower ear.” To prevent this cosmetic deformity, physicians should urgently refer patients to an otolaryngologist for drainage and application of a carefully molded pressure dressing.
CONGENITAL EAR MALFORMATIONS

Atresia is agenesis of the EAC. This results in conductive hearing loss and should be evaluated within the first 3 months of life by an audiologist and otolaryngologist.

Microtia is the term used for an external ear that is small, collapsed or only has an earlobe present. Often, there is an associated EAC atresia. Reconstruction can be performed in girls around age 6 and in boys around age 8–10 years.

“Lop ears,” folded down, or protruding ears (“Dumbo ears”) can be a source of much teasing and ridicule. Taping of the ears into correct anatomic position is very effective if performed in the first 72–96 hours of life. Tape is applied over a molding of wax and continued for 2 weeks. If this window of opportunity is missed or taping is unsuccessful, another option for this sort of deformity is an otoplasty procedure.

An ear is considered “low-set” if the upper pole is below eyebrow level. This condition is often associated with other congenital anomalies, and in these patients a genetics evaluation should be considered.

Preauricular tags, ectopic cartilage, fistulas, and cysts require surgical correction primarily for cosmetic reasons. Children exhibiting any of these findings should have their hearing tested. Renal ultrasound should be considered, as external ear anomalies can be associated with renal anomalies, as both structures form during the same period of embryogenesis. Most preauricular pits cause no symptoms but can become infected. If one should become infected, the patient should receive antibiotic therapy and be referred to an otolaryngologist for eventual excision.

IDENTIFICATION & MANAGEMENT OF HEARING LOSS

Hearing loss is classified as being conductive, sensorineural, or mixed in nature. Conductive hearing loss occurs when there is a blockage of sound transmission between the opening of the external ear and the cochlear receptor cells. The most common cause of conductive hearing loss in children is fluid in the middle ear. Sensorineural hearing loss (SNHL) is due to a defect in the neural transmission of sound, arising from a defect in the cochlear hair cells or the auditory nerve. Mixed hearing loss is characterized by elements of both conductive and sensorineural loss.

Hearing is measured in decibels (dB). The threshold, or 0 dB, refers to the level at which a sound is perceived in normal subjects 50% of the time. Hearing is considered normal if an individual’s thresholds are within 15 dB of normal. In children, severity of hearing loss is commonly graded as follows: 16–25 dB slight, 26–40 dB mild, 41–55 dB moderate, 56–70 dB moderately severe, 71–90 dB severe, and 91+ dB profound.

Hearing loss can significantly impair a child’s ability to communicate, and hinder academic, social, and emotional development. Studies suggest that periods of auditory deprivation may have enduring effects on auditory processing, even after normal hearing is restored. Even a unilateral loss may be associated with difficulties in school and behavioral issues. Early identification and management of any hearing impairment is therefore critical.

Conductive Hearing Loss

The most common cause of childhood conductive hearing loss is otitis media and related conditions such as MEE and eustachian tube dysfunction. Other causes of conductive hearing loss may include EAC atresia or stenosis, TM perforation, cerumen impaction, cholesteatoma, and middle ear abnormalities, such as ossicular fixation or discontinuity. Often, a conductive loss may be corrected with surgery.

MEE may be serous, mucoid, or purulent, as in AOM. Effusions are generally associated with a mild conductive hearing loss that normalizes once the effusion is gone. The American Academy of Pediatrics recommends that hearing and language skills be assessed in children who have recurrent AOM or MEE lasting longer than 3 months.

Sensorineural Hearing Loss

Sensorineural hearing loss (SNHL) arises due to a defect in the cochlear receptor cells or the auditory nerve (cranial nerve VIII). The loss may be congenital (present at birth) or acquired. In both the congenital and acquired categories, the hearing loss may be either hereditary (due to a genetic mutation) or nonhereditary. It is estimated that SNHL affects 2–3 out of every 1000 live births, making this the most common congenital sensory impairment. The incidence is thought to be considerably higher among the neonatal intensive care unit population. Well-recognized risk factors for SNHL in neonates include positive family history of childhood SNHL, birthweight less than 1500 g, low Apgar scores (0–4 at 1 minute or 0–6 at 5 minutes), craniofacial anomalies, hypoxia, in-utero infections (eg, TORCH syndrome), hyperbilirubinemia requiring exchange transfusion, and mechanical ventilation for more than 5 days.

A. Congenital Hearing Loss

Nonhereditary causes account for approximately 50% of congenital hearing loss. These include prenatal infections, teratogenic drugs, and perinatal injuries. The other 50% is
attributed to genetic factors. Among children with hereditary hearing loss, approximately one-third of cases are thought to be due to a known syndrome, while the other two-thirds are considered nonsyndromic.

Syndromic hearing impairment is associated with malformations of the external ear or other organs, or with medical problems involving other organ systems. Over 400 genetic syndromes that include hearing loss have been described. All patients being evaluated for hearing loss should also be evaluated for features commonly associated with these syndromes. These include branchial cleft cysts or sinuses, preauricular pits, ocular abnormalities, white forelock, café au lait spots, and craniofacial anomalies. Some of the more frequently mentioned syndromes associated with hearing loss include the following: Waardenburg, branchio-oto-renal, Usher, Pendred, Jervell and Lange-Nielsen, and Alport.

Over 70% of hereditary hearing loss is nonsyndromic (ie, there are no associated visible abnormalities or related medical problems). The most common known mutation associated with nonsyndromic hearing loss is in the \( GJB2 \) gene, which encodes the protein Connexin 26. The \( GJB2 \) mutation has a carrier rate of about 3% in the general population. Most nonsyndromic hearing loss, including that due to the \( GJB2 \) mutation, is autosomal recessive.

**B. Acquired Hearing Loss**

Hereditary hearing loss may be delayed in onset, as in Alport syndrome and most types of autosomal dominant nonsyndromic hearing loss. Vulnerability to aminoglycoside-induced hearing loss has also been linked to a mitochondrial gene defect.

Nongenetic etiologies for delayed-onset SNHL include exposure to ototoxic medications, meningitis, autoimmune or neoplastic conditions, noise exposure, and trauma. Infections such as syphilis or Lyme disease have been associated with hearing impairment. Hearing loss associated with congenital cytomegalovirus (CMV) infection may be present at birth, or may have a delayed onset. The loss is progressive in approximately half of all patients with congenital CMV-associated hearing loss. Other risk factors for delayed-onset, progressive loss include a history of persistent pulmonary hypertension and extracorporeal membrane oxygenation therapy.

**Identification of Hearing Loss**

**A. Newborn Hearing Screening**

Prior to the institution of universal newborn screening programs, the average age at identification of hearing loss was 30 months. Recognizing the importance of early detection, in 1993, a National Institutes of Health Consensus Panel recommended that all newborns be screened for hearing impairment prior to hospital discharge. Today, every state and territory in the United States has an Early Hearing Detection and Intervention (EHDI) program, with a goal of hearing loss identification by 3 months of age, and appropriate intervention by the age of 6 months. Subjective testing is not reliable in infants, and therefore objective, physiologic methods are used for screening. Auditory brainstem response and otoacoustic emission testing are the two commonly employed screening modalities.

**B. Audiologic Evaluation of Infants and Children**

A parent’s report of his or her infant’s behavior cannot be relied upon for identification of hearing loss. A deaf infant’s behavior can appear normal and mislead parents as well as professionals. Deaf infants are often visually alert and able to scan the environment so actively that this can be mistaken for an appropriate response to sound. In children, signs of hearing loss include inconsistent response to sounds, not following directions, speech and language delays, unclear hearing loss includes inconsistent response to sounds, not following directions, speech and language delays, unclear

Audiometry subjectively evaluates hearing. There are several different methods used, based on patient age:

- Behavioral observational audiometry (birth to 6 months): Sounds are presented at various intensity levels, and the audiologist watches closely for a reaction, such as change in respiratory rate, starting or stopping of activity, startle, head turn, or muscle tensing. This method is highly tester-dependent and error-prone.
- Visual reinforcement audiometry (6 months to 2.5 years): Auditory stimulus is paired with positive reinforcement. For example, when a child reacts appropriately by turning toward a sound source, the behavior is rewarded by activation of a toy that lights up. After a brief conditioning period, the child localizes toward the tone, if audible, in anticipation of the lighted toy.
- Conditioned play audiometry (2.5–5 years): The child responds to sound stimulus by performing an activity, such as putting a peg into a board.
- Conventional audiometry (5 years and up): The child indicates when he or she hears a sound.

Objective methods such as auditory brainstem response and otoacoustic emission testing may be used if a child cannot be reliably tested using these listed methods.

**Referral**

A child who fails newborn hearing screening or has a suspected hearing loss should be referred for further audiologic
evaluation, and any child with hearing loss should be referred to an otolaryngologist for further workup and treatment. In addition to the infants who fall into the high-risk categories for SNHL as outlined earlier, hearing should be tested in children with a history of developmental delay, bacterial meningitis, ototoxic medication exposure, neurodegenerative disorders, or a history of infection such as mumps or measles. Children with bacterial meningitis should be referred immediately to an otolaryngologist, as cochlear ossification can occur, necessitating urgent cochlear implantation. Even if a newborn screening was passed, all infants who fall into a high-risk category for progressive or delayed-onset hearing loss should receive ongoing audiologic monitoring for 3 years and at appropriate intervals thereafter to avoid a missed diagnosis.

**Prevention**

Appropriate care may treat or prevent conditions causing hearing deficits. Aminoglycosides and diuretics, particularly in combination, are potentially ototoxic and should be used judiciously and monitored carefully. Given the association of a certain mitochondrial gene defect and aminoglycoside ototoxicity, use should be avoided, if possible, in patients with a family history of aminoglycoside-related hearing loss. Reduction of repeated exposure to loud noises may prevent high-frequency hearing loss associated with acoustic trauma. Any patient with sudden-onset SNHL should be seen by an otolaryngologist immediately, as in some cases, steroid therapy may reverse the loss if initiated right away.

**Management of Hearing Loss**

Children with hearing loss should be referred to an otolaryngologist for etiologic workup which may include radiographic imaging and/or laboratory tests. Workup is directed by each individual patient’s history, examination, and audiologic results. As discussed previously, hearing loss may be an isolated abnormality or may be part of a larger syndrome. Within the past couple of years, comprehensive genetic testing for syndromic and nonsyndromic hearing loss using next-generation sequencing technology has become widely available to the public.

The importance of early intervention for receptive and expressive development is well-established. The management of hearing loss depends on the type and severity of impairment. Conductive hearing loss is typically correctable by addressing the point in sound transmission at which efficiency is compromised. For example, hearing loss due to chronic effusions usually normalizes once the fluid has cleared, whether by natural means or by the placement of tympanostomy tubes. As of yet, SNHL is not reversible, although cochlear hair cell regeneration is an area of active research. Most sensorineural loss is managed with amplification. Cochlear implantation is an option for some children with severe-profound loss, and at the time of this writing, is FDA-approved down to the age of 12 months. Unlike hearing aids, cochlear implants do not amplify sound but directly stimulate the cochlea with electrical impulses. Children with hearing loss should receive ongoing audiologic monitoring.

**Web Resources**


**ACUTE VIRAL RHINITIS (COMMON COLD; SEE ALSO CHAPTER 38)**

The common cold (viral upper respiratory infection) is the most common pediatric infectious disease, and the incidence is higher in early childhood than in any other period of life. Children younger than 5 years typically have 6–12 colds per year. Approximately 30%–40% of these are caused by rhinoviruses. Other culprits include adenoviruses, coronaviruses, enteroviruses, influenza and parainfluenza viruses, and respiratory syncytial virus.

**ESSENTIALS OF DIAGNOSIS**

- Clear or mucoid rhinorrhea, nasal congestion, sore throat.
- Possible fever, particularly in younger children (under 5–6 years).
- Symptoms resolve by 7–10 days.

**Differential Diagnosis**

Rhinosinusitis (acute or chronic), allergic rhinitis, nonallergic rhinitis, influenza, pneumonia, gastroesophageal reflux disease, asthma, and bronchitis.

**Clinical Findings**

The patient usually experiences a sudden onset of clear or mucoid rhinorrhea, nasal congestion, sneezing, and sore throat. Cough or fever may develop. Although fever is usually not a prominent feature in older children and adults, in
the first 5 or 6 years of life it can be as high as 40.6°C without superinfection. The nose, throat, and TMs may appear red and inflamed. The average duration of symptoms is about 1 week. Nasal secretions tend to become thicker and more purulent after day 2 of infection due to shedding of epithelial cells and influx of neutrophils. This discoloration should not be assumed to be a sign of bacterial rhinosinusitis, unless it persists beyond 10–14 days, by which time the patient should be experiencing significant symptomatic improvement. A mild cough may persist for 2–3 weeks following resolution of other symptoms.

**Treatment**

Treatment for the common cold is symptomatic (Figure 18–5). Because colds are viral infections, antibiotics will not cure or shorten their length. Acetaminophen or ibuprofen can be helpful for fever and pain. Humidification may provide relief for congestion and cough. Nasal saline drops and bulb suctioning may be used for an infant or child unable to blow his or her nose.

Available scientific data suggest that over-the-counter cold and cough medications are generally not effective in children. These medications may be associated with serious adverse effects, and it is recommended that they not be used in children under the age of 4 years. Antihistamines have not proven effective in relieving cold symptoms; in rhinoviral colds, increased levels of histamine are not observed. Oral decongestants have been found to provide some symptomatic relief in adults but have not been well-studied in children. Cough suppression at night is the number one goal of many parents; however, studies have shown that antitussives, antihistamines, antihistamine-decongestant combinations and antitussive-bronchodilator combinations are no more effective than placebo. Use of narcotic antitussives is discouraged, as these have been associated with severe respiratory depression.

Education and reassurance may be the most important “therapy” for the common cold. Parents should be informed about the expected nature and duration of symptoms, efficacy and potential side effects of medications, and the signs

---

**Figure 18–5.** Algorithm for acute nasal congestion and rhinosinusitis.
and symptoms of complications of the common cold, such as bacterial rhinosinusitis, bronchiolitis, or pneumonia.

**Pathogenesis**

Situations which lead to inflammation of sinonasal mucosa and obstruction of sinus drainage pathways underlie the development of rhinosinusitis. A combination of anatomic, mucosal, microbial, and immune pathogenic factors are believed to be involved. Both viral and bacterial infections play integral roles in the pathogenesis. Viral upper respiratory infections may cause sinus mucosal injury and swelling, resulting in osteomeatal obstruction, loss of ciliary activity, and mucus hypersecretion. The bacterial pathogens that commonly cause acute rhinosinusitis are *S pneumoniae, H influenzae* (nontypeable), *M catarrhalis*, and β-hemolytic streptococci.

**Clinical Findings**

The onset of symptoms in ABRS may be gradual or sudden, and may commonly include nasal drainage, nasal congestion, facial pressure or pain, postnasal drainage, hyposmia or anosmia, fever, cough, fatigue, maxillary dental pain, and ear pressure or fullness. The physical examination is rarely helpful in making the diagnosis, as the findings are essentially the same as those in a child with an uncomplicated cold. Occasionally, sinus may be tender to percussion, but this is typically seen only in older children and is of questionable reliability.

In complicated or immunocompromised patients, sinus aspiration and culture by an otolaryngologist should be considered for diagnostic purposes and to facilitate culture-directed antibiotic therapy. Gram stain or culture of nasal discharge does not necessarily correlate with cultures of sinus aspirates. If the patient is hospitalized because of rhinosinusitis-related complications, blood cultures should also be obtained.

Imaging of the sinuses during acute illness is not indicated except when evaluating for possible complications, or for patients with persistent symptoms which do not respond to medical therapy. As with the physical examination, the radiographic findings of ABRS, such as sinus opacification, fluid, and mucosal thickening, are indistinguishable from those seen in the common cold.

**Complications**

Complications of ABRS occur when infection spreads to adjacent structures—the overlying tissues, the eye, or the brain. *S aureus* (including methicillin-resistant *S aureus* [MRSA]) is frequently implicated in complicated ABRS, as well as *Streptococcus anginosus* (*milleri*), which has been found to be a particularly virulent organism.

Orbital complications are the most common, arising from the ethmoid sinuses. These complications usually begin as a preseptal cellulitis, but can progress to postseptal cellulitis, subperiosteal abscess, orbital abscess, and cavernous sinus thrombosis. Associated signs and symptoms include eyelid

---

**Web Resources**


**RHINOSINUSITIS**

The use of the term *rhinosinusitis* has replaced sinusitis. Rhinosinusitis acknowledges that the nasal and sinus mucosa are involved in similar and concurrent inflammatory processes.

1. **Acute Bacterial Rhinosinusitis**

Acute bacterial rhinosinusitis (ABRS) is a bacterial infection of the paranasal sinuses which lasts less than 30 days and in which the symptoms resolve completely. It is almost always preceded by a viral upper respiratory infection (cold). Other predisposing conditions include allergies and trauma. The diagnosis of ABRS is made when a child with a cold does not improve by 10–14 days or worsens after 5–7 days. The maxillary and ethmoid sinuses are most commonly involved. These sinuses are present at birth. The sphenoid sinuses typically form by the age of 5 years, and the frontal sinuses by age 7–8 years. Frontal sinusitis is unusual before age 10 years.

**Essentials of Diagnosis**

- Upper respiratory infection symptoms are present 10 or more days beyond onset, or symptoms worsen within 10 days after an initial period of improvement.
- Symptoms may include nasal congestion, nasal drainage, postnasal drainage, facial pain, headache, and fever.
- Symptoms resolve completely within 30 days.
edema, restricted extraocular movements, proptosis, chemosis, and altered visual acuity (see Chapter 15).

The most common complication of frontal sinusitis is osteitis of the frontal bone, also known as Pott’s puffy tumor. Intracranial extension of infection can lead to meningitis and to epidural, subdural, and brain abscesses. Frequently, children with complicated rhinosinusitis have no prior history of sinus infection.

**Treatment**

For children who are not improving by 10 days, or who have more severe symptoms, with fever of at least 39°C and purulent nasal drainage for at least 3–4 consecutive days, antibiotic therapy is recommended. Although some discrepancy exists, antibiotics are generally thought to decrease duration and severity of symptoms.

To minimize the number of children who receive antimicrobial therapy for uncomplicated viral upper respiratory infections, and to help combat antibiotic resistance, the American Academy of Pediatrics in 2001 issued guidelines for treatment. This algorithm is presented in Figure 18-6. Key decision points include severity of disease and risk factors for resistant organisms.

For patients with mild-moderate symptoms, who are not in day care, and have not been on recent antibiotic therapy, high-dose amoxicillin is considered first-line therapy. For those with severe symptoms, in day care, or who were on antibiotics within the past 1–3 months, high-dose amoxicillin–clavulanate is recommended as first-line therapy. Cefuroxime, cefpodoxime, and cefdinir are recommended for patients with a non–type I hypersensitivity to penicillin. Macrolides should be reserved for patients with an anaphylactic reaction to penicillin. Other options for these patients include clindamycin or trimethoprim–sulfamethoxazole. However, it should be remembered that clindamycin is not effective against gram-negative organisms such as *H influenzae*.

Failure to improve after 48–72 hours suggests a resistant organism or potential complication. Second-line therapies should be initiated at this point, or, if the patient is already on amoxicillin–clavulanate or cephalexin, intravenous antibiotic therapy should be considered. Imaging and referral for sinus aspiration should be strongly considered as well.

Patients who are toxic, or who have evidence of invasive infection or CNS complications, should be hospitalized immediately. Intravenous therapy with nafcillin or clindamycin plus a third-generation cephalosporin such as cefotaxime should be initiated until culture results become available.

Decongestants, antihistamines, and nasal saline irrigations are frequently used in acute rhinosinusitis to promote drainage. To date, there is no evidence-based data supporting their efficacy, and concern has been raised about potential adverse effects related to impaired ciliary function, decreased blood flow to the mucosa, and reduced diffusion of antibiotic into the sinuses with the use of decongestants. Topical nasal decongestants, such as oxymetazoline or phenylephrine sprays, should not be used for more than 3 days due to risk of rebound edema. Patients with underlying allergic rhinitis may benefit from intranasal cromolyn or corticosteroid nasal spray.

2. **Recurrent or Chronic Rhinosinusitis**

Recurrent rhinosinusitis occurs when episodes of ABRS clear with antibiotic therapy but recur with each or most upper respiratory infections. Chronic rhinosinusitis (CRS) is diagnosed when the child has not cleared the infection in the expected time but has not developed acute complications. Both symptoms and physical findings are required to support the diagnosis, and CT scan may be a useful adjuvant in making the diagnosis. Although recent meta-analysis evaluations have resulted in recommendations for ABRS, there is a paucity of data for the treatment of recurrent or chronic rhinosinusitis. Important factors to consider include allergies, anatomic variations, and disorders in host immunity. Mucosal inflammation leading to obstruction is most commonly caused by allergic rhinitis and occasionally by nonallergic rhinitis. There is a great deal of evidence that allergic rhinitis, rhinosinusitis, and asthma are all manifestations of a systemic inflammatory response. Gastroesophageal reflux has also been implicated in CRS. Less commonly, CRS is caused by anatomic variations, such as septal deviation, polyp, or foreign body.

Allergic nasal polyps are unusual in children younger than 10 years and should prompt a workup for cystic fibrosis. In cases of chronic or recurrent pyogenic pansinusitis, poor host resistance (eg, an immune defect, primary ciliary dyskinesia, or cystic fibrosis)—though rare—must be ruled out by immunoglobulin studies, electron microscopy studies of respiratory cilia, nasal nitric oxide measurements if available, a sweat chloride test, and genetic testing (see Chapters 18 and 31). Anaerobic and staphylococcal organisms are often responsible for CRS. Evaluation by an allergist and an otolaryngologist may be useful in determining the underlying causes.

**Treatment**

**A. Medical Therapy**

Antibiotic therapy is similar to that used for ABRS, but the duration is longer, typically 3–4 weeks. Antimicrobial choice should include drugs effective against staphylococcal organisms. Nasal saline irrigations and intranasal steroid sprays...
have been shown to be helpful in the reduction of symptoms of CRS.

B. Surgical Therapy

The mainstay of treatment for pediatric CRS is medical management, with appropriate antibiotic therapy and treatment of comorbid conditions such as allergic rhinitis and asthma. Only a small percentage of children will warrant surgical management.

1. Antral lavage—Antral lavage, generally regarded as a diagnostic procedure, may have some therapeutic value. An aspirate or a sample from the maxillary sinus is retrieved under anesthesia. The maxillary sinus is then irrigated. In the very young child, this may be the only procedure performed.

2. Adenoidectomy—Adenoidectomy is thought to be effective in 50%–75% of children with CRS. The adenoids serve as a reservoir of pathogenic bacteria and may also interfere with mucociliary clearance and drainage. Biofilms have been reported in the adenoids of children with CRS, and may explain the resistance of these infections to standard antibiotic therapy.

3. Balloon catheter dilation—This procedure opens up the maxillary sinuses without removal of tissue to promote drainage. Preliminary studies indicate that this may be effective in children who have failed adenoidectomy.

4. Endoscopic sinus surgery—Endoscopic sinus surgery in children was controversial because of concerns regarding facial growth. However, recent studies have not supported this concern. Endoscopic sinus surgery is reported to be effective in over 80% of cases, and may be indicated if adenoidectomy or balloon dilation is not effective.

5. External drainage—External drainage procedures are reserved for complications arising from ethmoid and frontal sinusitis.

Recurrent rhinitis is frequently seen in the office practice of pediatrics. The child is brought in with the chief complaint of having “one cold after another,” “constant colds,” or “always being sick.” Approximately two-thirds of these children have recurrent colds; the rest have either allergic rhinitis or recurrent rhinosinusitis.

1. Allergic Rhinitis

Allergic rhinitis is a chronic disorder of the upper airway which is induced by IgE-mediated inflammation secondary to allergen exposure. It is more common in children than in adults and affects up to 40% of children in the United States. It significantly affects quality of life, interfering with physical and social activities, concentration, school performance, and sleep. Allergic rhinitis can contribute to the development of rhinosinusitis, otitis media, and asthma. Symptoms may include nasal congestion, sneezing, rhinorrhea, and itchy nose, palate, throat, and eyes. On physical examination the nasal turbinates are swollen and may be red or pale pink-purple. Several classes of medications have proven effective in treating allergic rhinitis symptoms, including intranasal corticosteroids, oral and intranasal antihistamines, leukotriene antagonists, and decongestants. Ipratropium nasal spray may also be used as an adjunctive therapy. Nasal saline rinses are helpful to wash away allergens. Recent studies have indicated that use of intranasal steroid sprays may not only decrease the impairment caused by allergic rhinitis symptoms, but also help prevent progression to more severe disease and decrease the risk of related comorbidities such as asthma and sleep-disordered breathing.

2. Nonallergic Rhinitis

Nonallergic rhinitis also causes rhinorrhea and nasal congestion, but does not seem to involve an immunologic reaction. Its mechanism is not well understood. Triggers can include sudden changes in environmental temperature, air pollution, and other irritants such as tobacco smoke. Medications can also be associated with nonallergic rhinitis. Nasal decongestant
sprays, when used for long periods of time can cause rhinitis medicamentosa, which is a rebound nasal congestion which can be very difficult to treat. Oral decongestants, nasal corticosteroids, antihistamines, and ipratropium spray have all been shown to offer symptomatic relief.


Web Resources


EPISTAXIS

The nose is an extremely vascular structure. In most cases, epistaxis (nosebleed) arises from the anterior portion of the nasal septum (Kieselbach area). It is often due to dryness, vigorous nose rubbing, nose blowing, or nose picking. Examination of the anterior septum usually reveals a red, raw surface with fresh clots or old crusts. Presence of telangiectasias, hemangiomas, or varicosities should also be noted. If a patient has been using a nasal corticosteroid spray, check the patient’s technique to make sure he or she is not directing the spray toward the septum. If proper technique does not reduce the nosebleeds, the spray should be discontinued.

In fewer than 5% of cases, epistaxis is caused by a bleeding disorder such as von Willebrand disease. A hematologic workup is warranted if any of the following is present: family history of a bleeding disorder; medical history of easy bleeding, particularly with circumcision or dental extraction; spontaneous bleeding at any site; bleeding that lasts for more than 30 minutes or blood that will not clot with direct pressure by the physician; onset before age 2 years; or a drop in hematocrit due to epistaxis. High blood pressure may rarely predispose to prolonged nosebleeds in children.

A nasopharyngeal angiofibroma may manifest as recurrent epistaxis. Adolescent boys are affected almost exclusively. CT scan with contrast of the nasal cavity and nasopharynx is diagnostic.

Treatment

The patient should sit up and lean forward so as not to swallow the blood. Swallowed blood may cause nausea and hematemesis. The nasal cavity should be cleared of clots by gentle blowing. The soft part of the nose below the nasal bones is pinched and held firmly enough to prevent arterial blood flow, with pressure over the bleeding site (anterior septum) being maintained for 5 minutes by the clock. For persistent bleeding, a one-time only application of oxymetazoline into the nasal cavity may be helpful. If bleeding continues, the bleeding site needs to be visualized. A small piece of gelatin sponge (Gelfoam) or collagen sponge (Surgicel) can be inserted over the bleeding site and held in place.

Friability of the nasal vessels is often due to dryness and can be decreased by increasing nasal moisture. This can be accomplished by daily application of a water-based ointment to the nose. A pea-sized amount of ointment is placed just inside the nose and spread by gently squeezing the nostrils. Twice-daily nasal saline irrigation and humidifier use may also be helpful. Aspirin and ibuprofen should be avoided, as should nose picking and vigorous nose blowing. Otolaryngology referral is indicated for refractory cases. Cautery of the nasal vessels is reserved for treatment failures.

NASAL INFECTION

A nasal furuncle is an infection of a hair follicle in the anterior nares. Hair plucking or nose picking can provide a route of entry. The most common organism is S aureus. A furuncle presents as an exquisitely tender, firm, red lump in the anterior nares. Treatment includes dicloxacillin or cephalaxin orally for 5 days to prevent spread. The lesion should be gently incised and drained as soon as it points with a sterile needle. Topical antibiotic ointment may be of additional value. Because this lesion is in the drainage area of the cavernous sinus, the patient should be followed closely until healing is complete. Parents should be advised never to pick or squeeze a furuncle in this location—and neither should the physician. Associated cellulitis or spread requires hospitalization for administration of intravenous antibiotics.

A nasal septal abscess usually follows nasal trauma or a nasal furuncle. Examination reveals fluctuant gray septal swelling, which is usually bilateral. The possible complications are the same as for nasal septal hematoma (see following discussion). In addition, spread of the infection to the CNS is possible. Treatment consists of immediate hospitalization, incision and drainage by an otolaryngologist, and antibiotic therapy.

NASAL TRAUMA

Newborn infants rarely present with subluxation of the quadrangular cartilage of the septum. In this disorder, the top of the nose deviates to one side, the inferior septal border deviates to the other side, the columella leans, and the nasal tip is unstable. This disorder must be distinguished from the more common transient flattening of the nose caused by the birth process. In the past, physicians were encouraged to reduce all subluxations in the nursery. Otolaryngologists are more likely to perform the reduction under anesthesia for more difficult cases.

After nasal trauma, it is essential to examine the inside of the nose in order to rule out hematoma of the nasal septum, as these can cause septal necrosis, leading to permanent nasal deformity. This diagnosis is confirmed by the abrupt
onset of nasal obstruction following trauma and the presence of a boggy, widened nasal septum. The normal nasal septum is only 2–4 mm thick. A cotton swab can be used to palpate the septum. Treatment consists of immediate referral to an otolaryngologist for evacuation of the hematoma and packing of the nose.

Most blows to the nose result in epistaxis without fracture. A persistent nosebleed after trauma, crepitus, instability of the nasal bones, and external deformity of the nose indicate fracture. Septal injury cannot be ruled out by radiography, and can only be ruled out by careful intranasal examination. Patients with suspected nasal fractures should be referred to an otolaryngologist for definitive therapy. Since the nasal bones begin healing immediately, the child must be seen by an otolaryngologist within 48–72 hours of the injury to allow time to arrange for fracture reduction before the bones become immobile.

### FOREIGN BODIES IN THE NOSE

If this diagnosis is delayed, unilateral foul-smelling rhinorrhea, halitosis, bleeding, or nasal obstruction often result. There are many ways to remove nasal foreign bodies. The obvious first maneuver is vigorous nose blowing if the child is old enough. The next step in removal requires nasal decongestion, good lighting, correct instrumentation, and physical restraint. Topical tetracaine or lidocaine may be used for anesthesia in young children. Nasal decongestion can be achieved by topical phenylephrine or oxymetazoline. When the child is properly restrained, most nasal foreign bodies can be removed using a pair of alligator forceps or right-angle instrument through an operating head otoscope. If the object seems unlikely to be removed on the first attempt, is wedged in, or is quite large, the patient should be referred to an otolaryngologist rather than worsening the situation through futile attempts at removal.

Because the nose is a moist cavity, the electrical current generated by disk-type batteries—such as those used in clocks, watches, and hearing aids—can cause necrosis of mucosa and cartilage destruction in less than 4 hours. Batteries constitute a true foreign body emergency.

### THE THROAT & ORAL CAVITY

### ACUTE STOMATITIS

#### 1. Recurrent Aphthous Stomatitis

Aphthous ulcers, or canker sores, are small painful ulcers (3–10 mm) usually found on the inner aspect of the lips or on the tongue; rarely they may appear on the tonsils or palate. There is usually no associated fever or cervical adenopathy. They can last 1–2 weeks and may recur numerous times throughout lifetime. The cause is unknown, although an allergic or autoimmune basis is suspected.

A topical corticosteroid, such as triamcinolone dental paste, may reduce duration of the lesion. Pain can also be reduced by eating a bland diet, avoiding salty or acidic foods and juices, and by taking acetaminophen or ibuprofen. A recent Cochrane review was unable to promote a single systemic treatment for those unresponsive to local therapy.

Less common causes of recurrent oral ulcers include Behçet disease, familial Mediterranean fever, and PFAPA syndrome (Periodic Fever, Aphthous stomatitis, Pharyngitis, and cervical Adenopathy). PFAPA syndrome was first described in 1987, and its cause is unknown, although an immune etiology is suspected. It usually begins before the age of 5 years, continues through adolescence, and then spontaneously resolves. Fever and other symptoms recur at regular intervals. Episodes last approximately 5 days and are not associated with other URI symptoms or illnesses. Episodes may be dramatically improved with prednisone bursts, but recurrences typically continue. PFAPA may resolve with prolonged cimetidine treatment. Tonsillectomy has been shown to be effective in curing this condition. Otolaryngology referral is appropriate.

A diagnosis of Behçet disease requires two of the following: genital ulcers, uveitis, and erythema nodosum–like lesions. Patients with Mediterranean fever usually have a positive family history, serosal involvement, and recurrent fever.


#### 2. Herpes Simplex Gingivostomatitis

(See also Chapter 38)

In the initial infection with the herpes simplex virus, children usually develop 10 or more small ulcers (1–3 mm) on the buccal mucosa, anterior tonsillar pillars, inner lips, tongue, and gingiva; the posterior pharynx is typically spared. The lesions are associated with fever, tender cervical adenopathy, and generalized oral inflammation which precedes the development of the ulcers. This gingivostomatitis lasts 7–10 days. Exposure to the virus occurs 3–50 days prior to the onset of symptoms. Affected children are commonly younger than 3 years. Treatment is symptomatic, as described earlier for recurrent aphthous stomatitis, with the exception that corticosteroids are contraindicated. Acyclovir therapy may be initiated if the child is seen early in the course. Because of pain, dehydration occasionally develops, requiring hospitalization. Herpetic laryngotracheitis is a rare complication.
3. Thrush (See also Chapter 41)

Oral candidiasis mainly affects infants and occasionally older children in a debilitated state. *Candida albicans* is a saprophyte that normally is not invasive unless the mouth is abraded or the patient is immunocompromised. The use of broad-spectrum antibiotics and systemic or inhaled corticosteroids may be contributing factors. Symptoms include oral pain and refusal of feedings. Lesions consist of white curdlike plaques, predominantly on the buccal mucosa, which cannot be washed away after a feeding. Another less common variation of oral candidal infection is erythematous candidiasis, which produces erythematous patches on the palate and dorsum of the tongue. This condition is associated primarily with patients who are taking broad-spectrum antibiotics or corticosteroids, or are human immunodeficiency virus (HIV) positive.

Treatment consists of nystatin oral suspension. Large plaques may be removed with a moistened cotton swab, and the nystatin may be applied to the lesions with a swab. Patients who do not respond to oral therapy or are immunocompromised may require systemic antifungal agents. Parents should be advised to replace any items, such as a pacifier, that may have become contaminated with *Candida*.

4. Traumatic Oral Ulcers

Mechanical trauma most commonly occurs on the buccal mucosa secondary to biting by the molars. Thermal trauma, from very hot foods, can also cause ulcerative lesions. Chemical ulcers can be produced by mucosal contact with aspirin or other caustic agents. Oral ulcers can also occur with leukemia or on a recurrent basis with cyclic neutropenia.

PHARYNGITIS

Figure 18–7 is an algorithm for the management of a sore throat.

1. Acute Viral Pharyngitis

Over 90% of sore throats and fever in children are due to viral infections. The findings seldom point toward any particular viral agent, but four types of viral pharyngitis are sufficiently distinctive to warrant discussion below.

Clinical Findings

A. Infectious Mononucleosis

Findings include exudative tonsillitis, generalized cervical adenitis, and fever, usually in patients older than 5 years. A palpable spleen or axillary adenopathy increases the likelihood of the diagnosis. The presence of more than 10% atypical lymphocytes on a peripheral blood smear or a positive mononucleosis spot test supports the diagnosis, although these tests are often falsely negative in children younger than age 5 years. Epstein-Barr virus serology showing an elevated IgM-capsid antibody is definitive. Amoxicillin is contraindicated in patients suspected of having mononucleosis because the drug often precipitates a rash.

B. Herpangina

Herpangina ulcers are classically 3 mm in size, surrounded by a halo, and are found on the anterior tonsillar pillars, soft palate, and uvula; the anterior mouth and tonsils are spared. Herpangina is caused by the coxsackie A group of viruses. Enteroviral polymerase chain reaction testing is widely available, but not typically indicated, as herpangina is a self-limited illness.

C. Hand, Foot, and Mouth Disease

This entity is caused by several enteroviruses, one of which (enterovirus 71) can rarely cause encephalitis. Ulcers occur anywhere in the mouth. Vesicles, pustules, or papules may be found on the palms, soles, interdigital areas, and buttocks. In younger children lesions may be seen on the distal extremities and even the face.

D. Pharyngoconjunctival Fever

This disorder is caused by an adenovirus and often is epidemic. Exudative tonsillitis, conjunctivitis, lymphadenopathy, and fever are the main findings. Treatment is symptomatic.

2. Acute Bacterial Pharyngitis

ESSENTIALS OF DIAGNOSIS

- Sore throat.
- At least one of the following:
  - Cervical lymphadenopathy (lymph nodes tender or > 2 cm)
  - Tonsillar exudates
  - Positive group A β-hemolytic streptococcus culture
  - Fever greater than 38.3°C

Differential Diagnosis

Viral pharyngitis, infectious mononucleosis, bacterial pharyngitis other than streptococcal, diphtheria, and peritonsillar abscess.

Approximately 20%–30% of children with pharyngitis have a group A streptococcal infection. It is most common in
Pharyngitis

Assess degree of illness

Mild to moderate

Afebrile with upper respiratory tract infection

Symptomatic care

Rapid strep test

Negative

Send throat culture

Positive

Penicillin VK 50–70 mg/kg/d in 3 divided doses; benzathine penicillin 600,000 units IM if < 27 kg, 1.2 million units if > 27 kg, single dose; for penicillin-allergic patients use azithromycin

Failure or relapse in < 1 wk

Repeat throat culture and consider serologic testing for mononucleosis

Persistent group A Streptococcus

Clindamycin for 10 d

Severe pharyngitis

ENT consult

Unilateral swelling of tonsils

Drain surgically if abscess or treat intravenously if cellulitis

Bilateral swelling of tonsils and airway problems during sleep

Airway compromised

Urgent ENT assessment

1. Throat culture and rapid test
2. Mononucleosis diagnostic tests (CBC, Monospot, EBV-IgM)

Admit for observation

Child febrile or tender cervical nodes or tonsillar exudates or *S. pyogenes* exposure or family history of rheumatic fever

Severe (see below)

Severe pharyngitis

Symptomatic care

Admit for observation

Drain surgically if abscess or treat intravenously if cellulitis

1. Throat culture and rapid test
2. Mononucleosis diagnostic tests (CBC, Monospot, EBV-IgM)

Counsel about contact sports

▲ Figure 18–7. Algorithm for pharyngitis. CBC, complete blood count; EBV, Epstein-Barr virus; ENT, ear, nose, and throat.
children between 5 and 15 years of age in the winter or early spring. Less common causes of bacterial pharyngitis include *Mycoplasma pneumoniae*, *Chlamydia pneumoniae*, groups C and G streptococci, and *Arcanobacterium hemolyticum*. Of the five, *M pneumoniae* is by far the most common and may cause over one-third of all pharyngitis cases in adolescents and adults.

**Clinical Findings**

Sudden onset of sore throat, fever, tender cervical adenopathy, palatal petechiae, a beefy-red uvula, and a tonsillar exudate suggest streptococcal infection. Other symptoms may include headache, stomachache, nausea, and vomiting. The only way to make a definitive diagnosis is by throat culture or rapid antigen test. Rapid antigen tests are very specific, but have a sensitivity of only 85%–95%. Therefore, a positive test indicates *S pyogenes* infection, but a negative result requires confirmation by performing a culture. Diagnosis is important because untreated streptococcal pharyngitis can result in acute rheumatic fever, glomerulonephritis, and suppurative complications (eg, cervical adenitis, peritonsillar abscess, otitis media, cellulitis, and septicemia). The presence of conjunctivitis, cough, hoarseness, symptoms of upper respiratory infection, anterior stomatitis, ulcerative lesions, viral rash, and diarrhea should raise suspicion of a viral etiology.

Occasionally, a child with group A streptococcal infection develops scarlet fever within 24–48 hours after the onset of symptoms. Scarlet fever is a diffuse, finely papular, erythematous eruption producing a bright red discoloration of the skin, which blanches on pressure. The rash is more intense in the skin creases. The tongue has a strawberry appearance.

A controversial but possible complication of streptococcal infections is pediatric autoimmune neuropsychiatric disorders associated with *Streptococcus* (PANDAS). PANDAS is a relatively newly recognized condition. It describes a subset of pediatric patients who experience a sudden onset of obsessive-compulsive disorder and/or tics, or worsening of such symptoms in children who previously had these, following a strep infection.

**Treatment**

Suspected or proven group A streptococcal infection should be treated with penicillin (oral or intramuscular) or amoxicillin as outlined in Table 18–4. For patients allergic to penicillin, alternative treatments include cephalexin, azithromycin, and clindamycin.

Repeat culture after treatment is not recommended and is indicated only for those who remain symptomatic, have a recurrence of symptoms, or have had rheumatic fever. Of note, children who have had rheumatic fever are at a

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Dose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Penicillin</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillin V</td>
<td>250 mg 2–3 times per day for 10 d if &lt; 27 kg; 500 mg 2–3 times per day for 10 d if &gt; 27 kg</td>
<td>Resistance to penicillin, amoxicillin, and first-generation cephalosporins has not been reported. Each is equally effective if compliance is assured.</td>
</tr>
<tr>
<td>Benzathine penicillin</td>
<td>600,000 units IM single dose if &lt; 27 kg; 1.2 million units IM single dose if &gt; 27 kg</td>
<td></td>
</tr>
<tr>
<td><strong>Amoxicillin</strong></td>
<td>50 mg/kg/d once daily for 10 d (max 1200 mg)</td>
<td></td>
</tr>
<tr>
<td><strong>Cephalexin</strong></td>
<td>25–50 mg/kg/d in 2 divided doses for 10 d</td>
<td></td>
</tr>
<tr>
<td><strong>Clindamycin</strong></td>
<td>20 mg/kg/d in 3 divided doses for 10 d</td>
<td>Rare resistance reported in US</td>
</tr>
<tr>
<td><strong>Azithromycin</strong></td>
<td>12 mg/kg once daily for 5 d (max 500 mg/d)</td>
<td>Some resistance reported in US</td>
</tr>
<tr>
<td><strong>Eradication of carrier state</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clindamycin</td>
<td>20 mg/kg/d in 3 divided doses for 10 d</td>
<td>Most effective</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>25–50 mg/kg/d in 2 divided doses for 10 d</td>
<td>Also effective</td>
</tr>
<tr>
<td>Penicillin + rifampin</td>
<td>See above penicillin doses; rifampin 20 mg/kg/d twice daily for final 4 days</td>
<td></td>
</tr>
</tbody>
</table>

*Tetracyclines, sulfonamides (including trimethoprim-sulfamethoxazole), and quinolones should not be used for treating GAS infections. Table reproduced and adapted, courtesy of Todd J. Update on group A streptococcal pharyngitis. Contagious Comments, Children’s Hospital Colorado, 2013; XXVIII(1).*
high risk of recurrence if future group A strep infections are inadequately treated. In this group of patients, long-term antibiotic prophylaxis is recommended, sometimes lifelong in patients with residual rheumatic heart disease. (See Chapter 20.)

In general, the carrier state is harmless, self-limited (2–6 months), and not contagious. An attempt to eradicate the carrier state is warranted only if the patient or another family member has frequent streptococcal infections, or if a family member or patient has a history of rheumatic fever or glomerulonephritis. If eradication is chosen, a course of clindamycin for 10 days or rifampin for 5 days should be used.

In the past, daily penicillin prophylaxis was occasionally recommended; however, because of concerns about the development of drug resistance, tonsillectomy is now preferred for patients with recurrent streptococcal tonsillitis.

Web Resources


PERITONSILLAR CELLULITIS OR ABSCESS (QUINSY)

ESSENTIALS OF DIAGNOSIS

- Severe sore throat.
- Unilateral tonsillar swelling.
- Deviation of the uvula.
- Trismus (limited mouth opening).

Tonsillar infection occasionally penetrates the tonsillar capsule, spreading to the surrounding tissues, causing peritonsillar cellulitis. If untreated, necrosis occurs and a peritonsillar abscess forms. The most common pathogen is β-hemolytic streptococcus, but others include group D streptococcus, *S pneumoniae*, and anaerobes.

The patient complains of a severe sore throat even before the physical findings become marked. A high fever is usually present, and the process is almost always unilateral. The tonsil bulges medially, and the anterior tonsillar pillar is prominent. The soft palate and uvula on the involved side are edematous and displaced toward the uninvolved side. As the infection progresses, trismus, ear pain, dysphagia, and drooling may occur. The most serious complication of untreated peritonsillar abscess is a lateral pharyngeal abscess.

It is often difficult to differentiate peritonsillar cellulitis from abscess. In some children, it is possible to aspirate the peritonsillar space to diagnose and treat an abscess. However, it is reasonable to admit a child for 12–24 hours of intravenous antimicrobial therapy, because aggressive treatment of cellulitis can usually prevent suppuration. Therapy with a penicillin or clindamycin is appropriate. Failure to respond to therapy during the first 12–24 hours indicates a high probability of abscess formation. An otolaryngologist should be consulted for incision and drainage or for aspiration under local or general anesthesia.

Recurrent peritonsillar abscesses are so uncommon (7%) that routine tonsillectomy for a single incident is not indicated unless other tonsillectomy indications exist. Hospitalized patients can be discharged on oral antibiotics when fever has resolved for 24 hours and dysphagia has improved.

RETROPHARYNGEAL ABSCESS

Retropharyngeal lymph nodes, which drain the adenoïds, nasopharynx, and paranasal sinuses, can become infected, commonly due to β-hemolytic streptococci and *S aureus*. If this pyogenic adenitis goes untreated, a retropharyngeal abscess forms. This occurs most commonly during the first 2 years of life. After this age, the most common cause of retropharyngeal abscess is superinfection of a penetrating injury of the posterior wall of the oropharynx.

The diagnosis of retropharyngeal abscess should be strongly suspected in a child with fever, respiratory symptoms, and neck hyperextension. Dysphagia, drooling, dyspnea, and gurgling respirations are also found. Prominent swelling on one side of the posterior pharyngeal wall is characteristic. Swelling usually stops at the midline because a medial raphe divides the prevertebral space. On lateral neck x-ray, the retropharyngeal tissues are wider than the C4 vertebral body. But plain films are not specific; a CT scan with contrast is more helpful.

Although a retropharyngeal abscess is a surgical emergency, frequently it cannot be distinguished from retropharyngeal adenitis. Immediate hospitalization and intravenous antimicrobial therapy with a semisynthetic penicillin or clindamycin is the first step for most cases. Immediate surgical drainage is required when a definite abscess is seen radiographically or when the airway is compromised. In most instances, a period of 12–24 hours of antimicrobial therapy will help differentiate the two entities. In the child with adenitis, fever will decrease and oral intake will increase. A child with retropharyngeal abscess will not improve and may continue to deteriorate. A surgeon should incise and drain the abscess under general anesthesia to prevent its extension.
LUDWIG ANGINA

Ludwig angina is a rapidly progressive cellulitis of the submandibular space that can cause airway obstruction and death. The submandibular space extends from the mucous membrane of the floor of the mouth to the muscular and fascial attachments of the hyoid bone. This infection is unusual in infants and children. The initiating factor in over 50% of cases is dental disease, including abscesses and extraction. Some patients have a history of injury to the floor of the mouth. Group A strep is the most common organism identified.

Symptoms include fever and tender swelling of the floor of the mouth. The tongue can become tender and inflamed. Upward displacement of the tongue may cause dysphagia, drooling, and airway obstruction.

Treatment consists of high-dose intravenous clindamycin or ampicillin plus nafcillin until the culture results and sensitivities are available. Because the most common cause of death in Ludwig angina is sudden airway obstruction, the patient must be monitored closely in the intensive care unit and intubation provided for progressive respiratory distress. An otolaryngologist should be consulted for airway evaluation and management, and to perform a drainage procedure if needed.

ACUTE CERVICAL ADENITIS

Local infections of the ear, nose, and throat can involve a regional lymph node and cause abscess formation. The typical case involves a unilateral, solitary, anterior cervical node. About 70% of these cases are due to β-hemolytic streptococcal infection, 20% to staphylococci, and the remainder to viruses, atypical mycobacteria, and Bartonella henselae. MRSA must also be considered.

The initial evaluation of cervical adenitis should generally include a rapid group A streptococcal test, and a complete blood count with differential looking for atypical lymphocytes. A purified protein derivative skin test, looking for nontuberculous mycobacteria, should also be considered. If multiple enlarged nodes are found, a rapid mononucleosis test is useful. Early treatment with antibiotics prevents many cases of adenitis from progressing to suppuration. However, once abscess formation occurs, antibiotic therapy alone is often insufficient and a drainage procedure may be necessary. Because of the increase in community-acquired MRSA, it is a prudent to send a specimen for culture and sensitivity.

Cat-scratch disease, caused by B henselae, causes indolent (“cold”) adenopathy. The diagnosis is supported if a primary papule is found at the scratch site on the face. In over 90% of patients, there is a history of contact with kittens. The node is usually only mildly tender but may, over a month or more, suppurate and drain. About one-third of children have fever and malaise; rarely neurologic sequelae and prolonged fever occur. Cat-scratch disease can be diagnosed by serologic testing, but testing is not always confirmatory. Blood should be drawn 2–8 weeks after onset of symptoms. Because most enlarged lymph nodes infected with B henselae spontaneously regress within 1–3 months, the benefit of antibiotics is controversial. In a placebo-controlled trial, azithromycin for 5 days caused a more rapid decrease in node size. Other drugs likely to be effective include rifampin, trimethoprim-sulfamethoxazole, erythromycin, clarithromycin, doxycycline, ciprofloxacin, and gentamicin.

Cervical lymphadenitis can also be caused by nontuberculous mycobacterial species or Mycobacterium avium complex. Mycobacterial disease is unilateral and may involve several matted nodes. A characteristic violaceous appearance may develop over a prolonged period of time without systemic signs or much local pain. Atypical mycobacterial infections are often associated with positive purified protein derivative skin test reactions less than 10 mm in diameter, and a second-strength (250-test-unit) purified protein derivative skin test is virtually always positive.


Differential Diagnosis

A. Neoplasms and Cervical Nodes

Malignant tumors usually are not suspected until adenopathy persists despite antibiotic treatment. Classically, malignant lymph nodes are painless, nontender, and firm to hard in consistency. They may be fixed to underlying tissues. They may occur as a single node, as unilateral nodes in a chain, bilateral cervical nodes, or as generalized adenopathy. Common malignancies that may manifest in the neck include lymphoma, rhabdomyosarcoma, and thyroid carcinoma.

B. Imitators of Adenitis

Several structures in the neck can become infected and resemble a lymph node. The first three masses are of congenital origin.

1. Thyroglossal duct cyst—These are in the midline of the neck, usually located near the level of the hyoid bone. Thyroglossal duct cysts move upward when the tongue is protruded or with swallowing. Occasionally, a thyroglossal duct cyst may have a sinus tract with an opening just lateral to the midline. When infected, these can become acutely swollen and inflamed.

2. Branchial cleft cyst—These masses are found along the anterior border of the sternocleidomastoid muscle and are smooth and fluctuant. Sometimes a branchial cleft cyst may be attached to the overlying skin by a small dimple or
a draining sinus tract. When infected, they can become a tender mass 3–5 cm in diameter.

3. **Lymphatic malformation**—Most lymphatic cysts are located in the posterior triangle just above the clavicle. These are soft and compressible and can be transilluminated. Over 60% of lymphatic malformations are noted at birth; the remaining malformations are usually seen by the age of 2 years. If these become large enough, they can compromise the patient’s ability to swallow and breathe.

4. **Parotitis**—The most common pitfall is mistaking parotitis for cervical adenitis. The parotid salivary gland crosses the angle of the jaw. Parotitis may be bacterial or viral and may occur unilaterally or bilaterally. Mumps was once the most common cause of viral parotitis, but because of routine vaccinations, parainfluenza is the primary viral cause in the United States. An amylase level will be elevated in parotitis.

5. **Ranula**—A ranula is a cyst in the floor of the mouth caused by obstruction of the sublingual salivary gland. A “plunging” ranula extends through the mylohyoid muscle and can present as a neck mass.

6. **Sternocleidomastoid muscle hematoma**—Also known as fibromatosi colli, these are noted at age 2–4 weeks. On examination, the mass is found to be part of the muscle body and not movable. An associated torticollis usually confirms the diagnosis. A neck ultrasound can help confirm the diagnosis. Treatment involves physical therapy, with range of motion exercises.

**SNORING, MOUTH BREATHING, & UPPER AIRWAY OBSTRUCTION**

The American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS) defines sleep-disordered breathing (SDB) as an abnormal respiratory pattern during sleep that includes snoring, mouth breathing, and pauses in breathing. SDB encompasses a spectrum of disorders that ranges in severity from snoring to obstructive sleep apnea. SDB is a presumptive diagnosis; OSA can be diagnosed only by polysomnogram (PSG).

In 2012, the American Academy of Pediatrics (AAP) updated their clinical practice guideline for the diagnosis and management of uncomplicated childhood obstructive sleep apnea syndrome. The guideline emphasizes that pediatricians should screen all children for snoring. If the child exhibits additional signs and symptoms of SDB, referral for a sleep study is recommended, but referral to an otolaryngologist or sleep specialist is also an option. The American Academy of Sleep Medicine (AASM) has similar recommendations.

**Polysomnography**

The gold standard for diagnosis of OSA is a polysomnogram (PSG), commonly called a “sleep study”. A patient’s history and clinical examination cannot predict the presence or severity of OSA. Similarly, an overnight oximetry study is a poor screening test for OSA, as it may detect patients with severe disease but miss those with milder forms, since obstructive respiratory events can occur without oxygen desaturations. The criteria for diagnosing OSA differ between children and adults. An obstructive event occurs when airflow stops despite persistence of respiratory effort. A hypopnea is counted when airflow and respiratory effort decrease with an associated oxygen desaturation or arousal. Normative values for children are just being established. The AASM states that for children, the occurrence of more than one apneic or hypopneic event per hour with duration of at least two respiratory cycles is abnormal. However, the AASM has qualified its recommendation, stating that the criteria may be modified once more comprehensive data become available. One study of children aged 6–11 years found that a respiratory disturbance index of at least one event per hour, when associated with a 3% oxygen desaturation, was associated with daytime sleepiness and learning problems. If oxygen desaturations were absent, a respiratory disturbance index of five events per hour was associated with clinical symptoms.

Although an obstructive apnea index greater than one event per hour may be statistically significant, whether it is clinically relevant remains unclear. Children with an apnea-hypopnea index of greater than five events per hour appear to have clinically significant OSA. The dilemma is how to manage children with an apnea-plus-hypopnea index of more than one but fewer than five events per hour, as some of these children experience neurocognitive symptoms. Of note, many research studies have shown little correlation between the severity of OSA by PSG and neuropsychological morbidity.

**Clinical Evaluation & Management**

The AAO-HNS has developed clinical guidelines to help otolaryngologists determine when to proceed with surgical treatment (usually adenotonsillectomy) or request a polysomnogram. A PSG is generally recommended for children with suspected sleep apnea if they have any of the following comorbid conditions: obesity, Down syndrome, craniofacial abnormalities, neuromuscular disorders, sickle cell disease, or mucopolysaccharidoses. PSG is also recommended for children without the above comorbidities if the need for surgery is uncertain, or if there is discordance between tonsillar size on physical examination and the reported severity of symptoms.

Most pediatric otolaryngologists perform adenotonsillectomy in healthy patients with SDB without obtaining a PSG.
An adenotonsillectomy without PSG is usually recommended in a healthy child if the following are present:

1. **Nighttime symptoms:** habitual snoring along with gasping, pauses, or labored breathing. Other symptoms which may be related to SDB include night terrors, sleep walking, and secondary enuresis.
2. **Daytime symptoms:** unrefreshed sleep, attention deficit, hyperactivity, emotional lability, temperamental behavior, poor weight gain, and daytime fatigue. Other signs include daytime mouth breathing or dysphagia.
3. **Enlarged tonsils.**

If the three findings cannot be confirmed, but the child has other indications for an adenotonsillectomy—that is, recurrent tonsillitis or markedly enlarged (4+) tonsils with dysphagia—surgery is also warranted.

Figure 18–8 is an algorithm for management of SDB complaints in an otherwise healthy child. The pathway relies on clinical symptoms and tonsil size. Of note, tonsil size alone does not predict the presence of significant SDB. Children without significant tonsil hypertrophy may still have SDB. Factors such as low muscle tone can contribute to an individual’s propensity to experience SDB. Although the pathway states that an asymptomatic child with markedly enlarged tonsils (4+) should undergo PSG, a period of observation is reasonable. One’s clinical suspicion of SDB should be heightened if a child has enlarged tonsils, especially if the parents cannot provide a reliable history. If the child has no clinical symptoms and the tonsils are only moderately enlarged (3+), observation is appropriate. Educating the parents about the risks of SDB and what to look for is paramount.

A polysomnographic study is recommended for a child who has no adenotonsillar hypertrophy or nasal obstruction, but has significant symptoms of SDB. Other conditions, especially a periodic limb movement disorder, may mimic the daytime symptoms of SDB. If a polysomnogram indicates OSA in a child without tonsillar hypertrophy, a complete evaluation of the upper airway by awake flexible laryngoscopy should be performed to look for other possible sites of obstruction: nose, nasopharynx (adenoid), hypopharynx (base of tongue or lingual tonsils), and larynx. The adenoid can also be assessed with a lateral neck x-ray. Alternative methods to evaluate a child for anatomical sites of obstruction include sedated ciné MRI of the upper airway or sleep endoscopy.

As for postoperative PSG, the AASM and AAP agree that a child with mild OSA (typically fewer than five obstructive events an hour) does not require a follow-up study. However, those with persistent symptoms, more severe OSA, obesity, or other comorbidities should routinely have a postoperative study.

![Figure 18–8. Algorithm for evaluation of snoring in a healthy child.](image)
Allergic rhinitis is a common cause of nasal obstruction. If allergy is the suspected cause of SDB, a trial of intra-nasal corticosteroid spray is indicated. If enlarged tonsils (Figure 18–9) or adenoids are present, a referral to an otolaryngologist or a pediatric sleep laboratory is appropriate.

Complications & Sequelae

The importance of diagnosing SDB in children cannot be underestimated. SDB has been associated with problems in a multitude of realms, including social, behavioral, and neurocognitive. It has been shown to significantly impact quality of life and has been associated with growth impairment and cardiovascular complications. Recent studies also suggest that SDB is associated with systemic inflammation.

TONSILLECTOMY & ADENOIDECTOMY

Tonsillectomy

A tonsillectomy, with or without adenoidectomy, is most often performed for either hypertrophy or recurrent infections. The most common indication for adenotonsillectomy is adenotonsillar hypertrophy associated with an obstructive breathing pattern during sleep (see earlier discussion of OSA and SDB). Adenotonsillar hypertrophy may also cause dysphagia or dental malocclusion. Rarely, hypertrophied tonsils may lead to pulmonary hypertension or cor pulmonale.

Recurrent tonsillitis is the second most common reason for tonsillectomy. Tonsillitis is considered “recurrent” when a child has seven or more documented infections in 1 year, five per year for 2 years, or three per year for 3 years. For an infection to be considered clinically significant, there must be a sore throat and at least one of the following clinical features: cervical lymphadenopathy (tender lymph nodes or > 2 cm), OR tonsillar exudate, OR positive culture for group A β-hemolytic streptococcus, OR temperature greater than 38.3°C.

Tonsillectomy is reasonable with fewer infections if the child has missed multiple school days due to infection, has a complicated course, or under other circumstances such as recurrent peritonsillar abscess, persistent streptococcal carrier state, or multiple antibiotic allergies. Unless neoplasm is suspected, tonsil asymmetry is not an indication.

A new indication for tonsillectomy is PFAPA syndrome (see section on Recurrent Aphthous Stomatitis, earlier), in which fever recurs predictably, typically every 4–8 weeks. Tonsillectomy has been shown to be an effective treatment.
Web Resources


Adenoidectomy

The adenoids, composed of lymphoid tissue in the nasopharynx, are a part of the Waldeyer ring of lymphoid tissue, which also includes the palatine and lingual tonsils. Enlarged adenoids, with or without infection, can obstruct the nose, alter normal orofacial growth, and interfere with speech, swallowing, and eustachian tube function. Children who are persistent mouth breathers can develop dental malocclusion and “adenoid facies,” where the face is pinched and the maxilla narrowed because the molding pressures of the orbicularis oris and buccinator muscles are unopposed by the tongue. The adenoids can also harbor biofilms, which have been associated with CRS and otitis media.

Indications for adenoidectomy with or without tonsillectomy include upper airway obstruction, orofacial conditions such as mandibular growth abnormalities and dental malocclusion, speech abnormalities, persistent MEE, recurrent otitis media, and CRS.

Complications of Tonsillectomy & Adenoidectomy

The mortality rate associated with tonsillectomy and adenoidectomy is reported to approximate that of general anesthesia alone. The rate of hemorrhage varies between 0.1% and 8.1%, depending on the definition of hemorrhage; the rate of postoperative transfusion is 0.04%. Other potential complications include permanently hypernasal speech (< 0.01%) and, more rarely, nasopharyngeal stenosis, atlantoaxial subluxation, mandibular condyle fracture, and psychological trauma.

Contraindications to Tonsillectomy & Adenoidectomy

A. Palatal Abnormalities

Adenoids should not be removed completely in a child with a cleft palate or submucous cleft palate because of the risk of velopharyngeal incompetence which may cause hypernasal speech and nasal regurgitation. If needed, a partial adenoidectomy can be performed in at-risk children. A bifid uvula can be a sign of a palatal abnormality.

B. Bleeding Disorder

When suspected, bleeding disorders must be diagnosed and treated prior to surgery.

C. Acute Tonsillitis

An elective tonsillectomy and adenoidectomy can often be postponed until acute tonsillitis is resolved. Urgent tonsillectomy may occasionally be required for tonsillitis unresponsive to medical therapy.

DISORDERS OF THE LIPS

1. Labial Sucking Tubercle

A young infant may present with a small callus in the mid-upper lip. It usually is asymptomatic and disappears after cup feeding is initiated.

2. Cheilitis

Dry, cracked, scaling lips are usually caused by sun or wind exposure. Contact dermatitis from mouthpieces or various woodwind or brass instruments has also been reported. Licking the lips exacerbates cheilitis. Liberal use of lip balm gives excellent results.

3. Inclusion Cyst

Inclusion or mucous retention cysts are due to obstruction of mucous glands or other mucous membrane structures, such as minor salivary glands. In the newborn, they occur on the hard palate or gums and are called Epstein pearls. These resolve spontaneously in 1–2 months. In older children, inclusion cysts usually occur on the palate, uvula, or tonsillar pillars. They appear as taut yellow sacs varying in size from 2 to 10 mm. Inclusion cysts that do not resolve spontaneously may undergo incision and drainage. Occasionally a mucous cyst on the lower lip (mucocele) will require excision for cosmetic reasons.

DISORDERS OF THE TONGUE

1. Geographic Tongue (Benign Migratory Glossitis)

This condition of unknown etiology occurs in 1%–2% of the population with no age, sex, or racial predilection. It is characterized by irregularly shaped patches on the tongue that are devoid of papillae and surrounded by parakeratotic
reddish borders. The pattern changes as alternating regeneration and desquamation occurs. The lesions are generally asymptomatic and require no treatment.

2. Fissured Tongue (Scrotal Tongue)
This condition is marked by numerous irregular fissures on the dorsum of the tongue. It occurs in approximately 1% of the population and is usually a dominant trait. It is also frequently seen in children with trisomy 21.

3. Coated Tongue (Furry Tongue)
The tongue becomes coated if mastication is impaired and the patient is limited to a liquid or soft diet. Mouth breathing, fever, or dehydration can accentuate the process.

4. Macroglossia
Tongue hypertrophy and protrusion may be due to trisomy 21, Beckwith-Wiedemann syndrome, glycogen storage diseases, cretinism, mucopolysaccharidoses, lymphangiomma, or hemangiomma. Tongue reduction procedures should be considered in otherwise healthy subjects if macroglossia affects airway patency.

HALITOSIS
Bad breath is usually due to acute stomatitis, pharyngitis, rhinosinusitis, nasal foreign body, or dental hygiene problems. In older children and adolescents, halitosis can be a manifestation of CRS, gastric bezoar, bronchiectasis, or lung abscess. The presence of orthodontic devices or dentures can cause halitosis if good dental hygiene is not maintained. Halitosis can also be caused by decaying food particles embedded in cryptic tonsils. Mouthwashes and chewable breath fresheners give limited improvement. Treatment of the underlying cause is indicated, and a dental referral may be in order.

SALIVARY GLAND DISORDERS

1. Parotitis
A first episode of parotitis may safely be considered to be of viral origin, unless fluctuance is present. Mumps was the leading cause until adoption of vaccination; now the leading viruses are parainfluenza and Epstein-Barr virus. HIV infection should be considered if the child is known to be at risk.

2. Suppurative Parotitis
Suppurative parotitis occurs chiefly in newborns and debilitated elderly patients. The parotid gland is swollen, tender, and often erythematous, usually unilaterally. The diagnosis is made by expression of purulent material from Stensen duct. The material should be cultured. Fever and leukocytosis may be present. Treatment includes hospitalization and intravenous antibiotic therapy. S. aureus is the most common causative organism.

3. Juvenile Recurrent Parotitis
Some children experience recurrent nonsuppurative parotid inflammation with swelling or pain and fever. Juvenile recurrent parotitis (JRP) is most prevalent between the ages of 3 and 6 years, and it generally decreases by adolescence. The cause is unknown, but possible etiologic factors include ductal anomaly, autoimmune, allergy, and genetic. It usually occurs unilaterally. Treatment includes analgesics and some recommend an antistaphylococcal antibiotic for prophylaxis of bacterial infection and quicker resolution. Recently, endoscopy of Stensen duct has been investigated not only to confirm the diagnosis but also to provide treatment.

4. Tumors of the Parotid Gland
Mixed tumors, hemangiomas, sarcoidosis, and leukemia can manifest in the parotid gland as a hard or persistent mass. A cystic mass or multiple cystic masses may represent an HIV infection. Workup may require consultation with oncology, infectious disease, hematology, and otolaryngology.

5. Ranula
A ranula is a retention cyst of a sublingual salivary gland. It occurs on the floor of the mouth to one side of the lingual frenulum. It is thin-walled and can appear bluish. Refer to an otolaryngologist for surgical management.

CONGENITAL ORAL MALFORMATIONS

1. Tongue-Tie (Ankyloglossia)
A short lingual frenulum can hinder both protrusion and elevation of the tongue. Puckering of the midline tongue tip is noted with tongue movement. Ankyloglossia can cause feeding difficulties in the neonate, speech problems, and dental problems. If the tongue cannot protrude past the teeth or alveolar ridge or move between the gums and cheek, referral to an otolaryngologist is indicated. A frenulectomy should be performed in the neonatal period if the infant is having difficulty breast-feeding. In our practice, neonatal frenulectomy is performed in clinic. Early treatment is favored, as when an infant is even several months old, general anesthesia is required for the procedure to be performed safely.

2. Torus Palatini

Torus palatini are hard, midline, palate masses which form at suture lines of the bone. They are usually asymptomatic and require no therapy, but they can be surgically reduced if necessary.

3. Cleft Lip & Cleft Palate (See Chapter 35)

A. Submucous Cleft Palate

A bifid uvula is present in 3% of healthy children. However, a close association exists between bifid uvula and submucous cleft palate. A submucous cleft can be diagnosed by noting a translucent zone in the middle of the soft palate (zona pellucida). Palpation of the hard palate reveals absence of the posterior bony protrusion. Affected children have a 40% risk of developing persistent MEE. They are at risk for velopharyngeal incompetence, or an inability to close the palate against the posterior pharyngeal wall, resulting in hypernasal speech. During feeding, some of these infants experience nasal regurgitation of food. Children with submucous cleft palate causing abnormal speech or significant nasal regurgitation of food should be referred for possible surgical repair.

B. High-Arched Palate

A high-arched palate is usually a genetic trait of no consequence. It also occurs in children who are chronic mouth breathers and in premature infants who undergo prolonged oral intubation. Some rare causes of high-arched palate are congenital disorders such as Marfan syndrome, Treacher Collins syndrome, and Ehlers-Danlos syndrome.

C. Pierre Robin Sequence

This group of congenital malformations is characterized by the triad of micrognathia, cleft palate, and glossoptosis. Affected children present as emergencies in the newborn period because of infringement on the airway by the tongue. The main objective of treatment is to prevent asphyxia until the mandible becomes large enough to accommodate the tongue. In some cases, this can be achieved by leaving the child in a prone position when unattended. Other airway manipulations such as a nasal trumpet may be necessary. Recently, distraction osteogenesis has been used to avoid tracheostomy. In severe cases, a tracheostomy is required. The child requires close observation and careful feeding until the problem is outgrown.

Pediatric pulmonary diseases account for almost 50% of deaths in children younger than age 1 year and about 20% of all hospitalizations of children younger than age 15 years. Approximately 7% of children have a chronic disorder of the lower respiratory system. Understanding the pathophysiology of many pediatric pulmonary diseases requires an appreciation of the normal growth and development of the lung.

The lung has its origins from an outpouching of the foregut during the fourth week of gestation. The development of the lung is divided into five overlapping stages.

1. **Embryonic stage** (3–7 weeks’ gestation): During this stage, the primitive lung bud undergoes asymmetrical branching and then subsequent dichotomous branching, leading to the development of the conducting airways. This stage of lung development is dependent on a complex interaction of various growth factors originating in both the pulmonary epithelium and the splanchnic mesenchyme. It also sees the development of the large pulmonary arteries from the sixth aortic arch and the pulmonary veins as outgrowths of the left atrium. Abnormalities during this stage result in congenital abnormalities such as lung aplasia, tracheoesophageal fistula, and congenital pulmonary cysts.

2. **Pseudoglandular stage** (5–17 weeks’ gestation): During this stage, which overlaps with the embryonic stage, the lung has a glandular appearance. The conducting airways (bronchi and bronchioles) form over these 12 weeks. The respiratory epithelium of these airways begins to differentiate, and the presence of cartilage, smooth muscle cells, and mucus glands are first seen.

3. **Canalicular stage** (16–26 weeks’ gestation): This stage witnesses the delineation of the pulmonary acinus. The alveolar type II cells differentiate into type I cells, the pulmonary capillary network develops, and the alveolar type I cells closely approximate with the developing capillary network. Abnormalities of development during this stage include neonatal respiratory distress syndrome and lung hypoplasia.

4. **Saccular stage** (26–36 weeks’ gestation): During this stage further branching of the terminal saccules takes place as well as a thinning of the interstitium and fusion of the type I cell and capillary basement membrane in preparation for the lungs’ function as a gas-exchange organ. This stage sees the beginning of an exponential increase in the epithelial surface area for gas exchange. During this stage of lung development the lung is able to fulfill its function, in terms of a gas-exchange organ.

5. **Alveolar stage** (36 weeks’ gestation to 3–8 years of age): Controversy surrounds the length of this stage of lung development. During this stage, secondary alveolar septa form to increase the surface area for gas exchange, the capillary network has a rapid phase of growth, and true alveoli develop. Abnormalities during this stage lead to lung hypoplasia and can result in the development of bronchopulmonary dysplasia (BPD).

At birth, the lung assumes the gas-exchanging function served by the placenta in utero, placing immediate stress on all components of the respiratory system. Any abnormality in the lung, respiratory muscles, chest wall, airway, central respiratory control, or pulmonary circulation may therefore
lead to problems at birth. For example, infants who are homozygous for an abnormality in the surfactant protein B gene will develop lethal pulmonary disease. Persistent pulmonary hypertension of the newborn due to a failure of the normal transition to a low-resistance pulmonary circulation at birth can complicate neonatal respiratory diseases. There is also mounting evidence that abnormalities during fetal and neonatal growth and development of the lung have long-standing effects into adulthood, such as reduced gas exchange, exercise intolerance, asthma, and an increased risk of chronic obstructive pulmonary disease.


### PHYSICAL EXAMINATION OF THE RESPIRATORY TRACT

The four components of a complete pulmonary examination include inspection, palpation, auscultation, and percussion. **Inspection** of respiratory rate, depth, ease, symmetry, and rhythm of respiration is critical to the detection of pulmonary disease. In young children, an elevated respiratory rate may be an initial indicator of pneumonia or hypoxemia. In a study of children with respiratory illnesses, abnormalities of attentiveness, inconsolability, respiratory effort, color, and movement had a good diagnostic accuracy in detecting hypoxemia. **Palpation** of tracheal position, symmetry of chest wall movement, and vibration with vocalization can help in identifying intrathoracic abnormalities. For example, a shift in tracheal position can suggest pneumothorax or significant atelectasis. Tactile fremitus may change with consolidation or air in the pleural space. **Auscultation** should assess the quality of breath sounds and detect the presence of abnormal sounds such as fine or coarse crackles, wheezing, or rhonchi. Wheezing or prolonged expiratory compared to inspiratory time suggests intrathoracic airways obstruction. Tachypnea with an equal inspiratory and expiratory time suggests decreased lung compliance. Transmitted voice sounds in egophony and whispered pectoriloquy change with lung consolidation. It is important to know the lung anatomy in order to identify the location of abnormal findings (Figure 19–1). In older patients, unilateral crackles are the most valuable examination finding in pneumonia. **Percussion** may identify tympanic or dull sounds that can help define an intrathoracic process. (This component of the examination can prove challenging in young children, who may not cooperate.) Although chest radiography has replaced the utility of these tests, they can be helpful when imaging is not available.

Extrapulmonary manifestations of pulmonary disease include acute findings such as cyanosis and altered mental status and signs of chronic respiratory insufficiency such as growth failure, clubbing, and osteoarthropathy. Evidence of cor pulmonale (loud pulmonic component of the second heart sound, hepatomegaly, elevated neck veins, and rarely, peripheral edema) signifies pulmonary hypertension and may accompany advanced lung disease.

Respiratory disorders can be secondary to disease in other systems. It is therefore important to look for other conditions such as metabolic acidosis, congenital heart disease, neuromuscular disease, immunodeficiency, autoimmune disease, and occult malignancy (arthritis or hepatosplenomegaly). Children with an elevated body mass index are more likely to present with respiratory symptoms and need to be evaluated for pulmonary pathology versus deconditioning or dyspnea.
PULMONARY FUNCTION TESTS

Pulmonary function tests (PFTs) are objective measures of lung and airway physiology that can help differentiate obstructive from restrictive lung diseases, measure disease severity, measure disease progression, and evaluate response to therapy. Because the range of predicted normal values changes with growth, serial determinations of lung function are often more informative than a single determination. Patient cooperation and consistent effort is essential for almost all standard physiologic assessments. With a well-trained technician in a comfortable environment aided by visual incentives, and an interactive computer-animated system, most children age 3 years and older can produce satisfactory results. Lung function measurements in infants and toddlers are available at centers with specialized equipment and expertise. Despite these limitations, tests of lung function are valuable in the care of children. Children with cystic fibrosis perform pulmonary function testing routinely as early as they can cooperate. The Expert Panel Report (3) recommends pulmonary function testing be performed routinely for evaluation and management of asthmatic children age 5 and older. Current spirometers use a pneumotachograph to record flow over time and produce a volume-time tracing (spirogram) or a flow-volume curve. The patient inhales maximally, holds his or her breath for a short period, and then exhales as fast and hard as possible until they reach residual volume or for at least 3 seconds. The values reported include: the forced vital capacity (FVC), which is the total volume of air that is exhaled; the forced expiratory volume in the first second of the exhalation (FEV₁); the ratio of the FEV₁/FVC; the forced expiratory flow at the middle of the vital capacity (FEF₉₀₋₇₅); and the peak expiratory flow rate (PEFR). A suggested range of normal for these measurements are included in Table 19–1 and examples are shown in the figures. Obstructive processes include asthma, bronchopulmonary dysplasia (BPD), and cystic fibrosis (CF). Restrictive lung disease can be caused by chest wall deformities that limit lung expansion, muscle weakness, and interstitial lung diseases such as collagen-vascular diseases, hypersensitivity pneumonitis, and interstitial fibrosis. Confirmation of restrictive lung or chest wall physiology requires lung volume measurements (eg, total lung capacity, residual volume, and functional residual capacity) because poor effort can mimic restrictive physiology. Lung volume measurements are usually only available at specialized centers. (For examples of pulmonary function tests, see Figures 19–2 to 19–4.)

The peak expiratory flow rate, the maximal flow recorded during an FVC maneuver, can be assessed by handheld devices. These devices are not as well calibrated as spirometers and the PEFR measurement can vary greatly with patient effort, so they are not good substitutes for actual spirometry. However, peak flow monitoring can be helpful in a patient with asthma that is difficult to control or for patients with poor perception of their airflow obstruction.


Table 19–1. Classification of lung function abnormalities.

<table>
<thead>
<tr>
<th>Range of Normal</th>
<th>Type of Lung Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (L)</td>
<td>Obstructive&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>80%-120% predicted</td>
<td>Normal or decreased</td>
</tr>
<tr>
<td>FEV₁ (L)</td>
<td>Decreased</td>
</tr>
<tr>
<td>80%-120% predicted</td>
<td></td>
</tr>
<tr>
<td>FEV₁/FVC ratio</td>
<td>Greater than 82; less than 95</td>
</tr>
<tr>
<td>FEF&lt;sub&gt;25-75&lt;/sub&gt; (L/sec)</td>
<td>60%-140% predicted</td>
</tr>
</tbody>
</table>

<sup>a</sup>FEF<sub>25-75</sub>, forced expiratory flow at 25%-75% of FVC; FEV₁, forced expiratory volume in the first second of exhalation; FVC, forced vital capacity.
Arterial blood gas measurements define the acid-base balance between respiration at the tissue level and that in the lungs. Blood gas measurement is essential in critically ill children to evaluate hypoxemia, acidosis, and hypercarbia. Blood gas measurements can be used to categorize acid-base disturbances as respiratory, metabolic, or mixed. Blood gas measurements are affected by abnormalities of respiratory control, gas exchange, respiratory mechanics, and the circulation. In pediatrics, hypoxemia (low partial pressure of arterial oxygen [Pao₂]) most commonly results from ventilation (V') and perfusion (Q') mismatch. Common pediatric diseases that may be associated with hypoxemia due to V'/Q' mismatch include acute asthma, cystic fibrosis (CF), pneumonia, bronchiolitis, and bronchopulmonary dysplasia (BPD). Other causes of hypoxemia include hypoventilation, shunts, and diffusion barrier for oxygen. Hypercapnia (elevated partial pressure of arterial carbon dioxide [Paco₂]) results from inadequate alveolar ventilation (ie, inability to clear the CO₂ produced). This is termed hypoventilation. Causes include decreased central respiratory drive, respiratory muscle weakness, and low-tidal-volume breathing as seen in restrictive lung diseases, severe scoliosis, or chest wall trauma. Hypercapnea can also occur when severe V'/Q' mismatch is present which may occur with severe CF or BPD. Table 19–2 gives normal values for arterial pH, Pao₂, and Paco₂ at sea level and at 5000 ft.
Venous blood gas analysis or capillary blood gas analysis can be useful for the assessment of PCO₂ and pH, but not PO₂ or saturation. Noninvasive assessment of oxygenation can be achieved with pulse oximetry (measuring light absorption by transilluminating the skin). Oxygenated hemoglobin absorbs light at different wavelengths than deoxygenated hemoglobin. Measurement during a systolic pulse allows estimation of arterial oxygen saturation. No heating of the skin is necessary. Values of oxygen saturation are reliable as low as 80%. The pulse oximeter has reduced reliability during conditions causing reduced arterial pulsation such as hypothermia, hypotension, or infusion of vasoconstrictor drugs. Carbon monoxide bound to hemoglobin results in falsely high oxygen saturation readings. Transcutaneous PCO₂ monitoring is also feasible but may be less reliable than transcutaneous PO₂ monitoring and should be used with caution if at all.

Exhaled or end-tidal CO₂ monitoring can be used to noninvasively estimate arterial CO₂ content. It is used to monitor alveolar ventilation and is most accurate in patients without significant lung disease, particularly those with a good match of ventilation and perfusion and without airway obstruction. Monitoring of exhaled or end-tidal CO₂ is commonly used during a polysomnogram and by anesthesia. Transcutaneous PCO₂ monitoring is also feasible but may be less reliable than transcutaneous PO₂ monitoring and should be used with caution if at all.


▲ Figure 19-3. Flow volume loops from a child with asthma (obstructive pattern).
Respiratory tract infections may be caused by bacteria, viruses, atypical bacteria (eg, *Mycoplasma pneumoniae* and *Chlamydia pneumoniae*), *Mycobacterium tuberculosis*, nontuberculous mycobacterium, or fungi (eg, *Aspergillus* and *Pneumocystis jiroveci*). The type of infection suspected and appropriate diagnostic tests vary depending on host factors such as underlying lung disease, immune function, and geographic region. Sources of respiratory tract secretions for diagnostic testing include nasopharyngeal and oropharyngeal swabs; expectorated and induced sputum; tracheal aspirates; direct lung or pleural fluid sampling; bronchoalveolar lavage fluid; and gastric aspirates, specifically for *M. tuberculosis*. Blood and urine samples may also be used for serologic and antigen testing. Spontaneously expectorated sputum is the least invasive way to collect a sample for diagnostics, though it is rarely available from patients younger than age 6 years. Sputum
induction, performed by inhaling aerosolized hypertonic saline, is a relatively safe, noninvasive means of obtaining lower airway secretions. Sputum induction has been used in patients with CF and may be useful in patients with suspected *M tuberculosis, P jiroveci* pneumonia, or complicated community-acquired pneumonia. Tracheal aspirates can be obtained easily from patients with endotracheal or tracheostomy tubes. Culture of respiratory tract samples is the most commonly used approach to detect and identify airway pathogens. Molecular diagnostic tests, based on PCR amplification and detection of nucleic material from microbes, may offer more rapid and sensitive testing for microbes. Molecular assays are used for detection of viruses and atypical bacteria in many laboratories. PCR is also used as an adjunct to culture for identification of *M tuberculosis*, nontuberculous mycobacteria, and some fastidious bacteria. Molecular approaches to the diagnosis of *M tuberculosis* and *P jiroveci* are also available and their use is likely to become more widespread.

---

**IMAGING OF THE RESPIRATORY TRACT**

The plain chest radiograph remains the foundation for investigating the pediatric thorax. Both frontal (posterior-anterior) and lateral views should be obtained if feasible. The radiograph is useful for evaluating chest wall abnormalities, heart size and shape, mediastinum, diaphragm, and lung parenchyma. When pleural fluid is suspected, lateral decubitus radiographs may be helpful in determining the extent and mobility of the fluid. When a foreign body is suspected, forced expiratory radiographs may show focal air trapping and shift of the mediastinum to the contralateral side. Lateral neck radiographs can be useful in assessing the size of adenoids and tonsils and also in differentiating croup from epiglottitis, the latter being associated with the “thumbprint” sign.

Barium swallow is indicated for detection of swallowing dysfunction in patients with suspected aspiration, tracheoesophageal fistula, gastroesophageal reflux, vascular rings and slings, and achalasia. Airway fluoroscopy assesses both fixed airway obstruction (eg, tracheal stenosis, masses, or tracheal compression) and dynamic airway obstruction (eg, tracheomalacia). Fluoroscopy or ultrasound of the diaphragm can detect paralysis by demonstrating paradoxical movement of the involved hemidiaphragm.

Chest CT is useful in evaluation of congenital lung lesions, pleural disease (eg, effusion or recurrent pneumothorax), mediastinum (eg, lymphadenopathy), pulmonary nodules or masses. High-resolution CT is best for evaluating interstitial lung disease (ILD) or bronchiectasis while decreasing radiation exposure compared to a standard CT. Magnetic resonance imaging (MRI) is useful for defining vascular or bronchial anatomical abnormalities. Ventilation-perfusion scans can provide information about regional ventilation and perfusion and can help detect vascular malformations and pulmonary emboli. Pulmonary angiography is occasionally necessary to define the pulmonary vascular bed more precisely. Recent concerns about radiation exposure in children led to the Image Gently campaign, an initiative of The Alliance for Radiation Safety in Pediatric Imaging, dedicated to increasing awareness of the need for radiation protection for children. Identified challenges include the need for continued education particularly at adult-focused hospitals, increased emphasis on appropriateness of pediatric imaging and outcomes research to validate the use of CT, and establishing ranges of optimal CT technique when imaging children.

---

**LARYNGOSCOPY & BRONCHOSCOPY**

Direct visualization of the airways may be necessary to establish the etiology of the respiratory problem despite an extensive history and physical and sophisticated imaging. This can be achieved with rigid or flexible instrumentation. Indications for laryngoscopy include hoarseness, stridor, symptoms of obstructive sleep apnea, and laryngeal wheezing. Indications for bronchoscopy include wheezing, suspected foreign body, recurrent pneumonia, persistent atelectasis, chronic cough, and hemoptysis. A flexible bronchoscope can also be used to assess placement and patency of an endotracheal tube. In general, the more specific the indication, the higher the diagnostic yield. Each method, rigid or flexible, has advantages and for some patients both should be employed sequentially under the same anesthesia.

The rigid, open tube instruments have the best optics and allow surgical intervention to be easily achieved such as removal of a foreign body. Rigid bronchoscopy is done with general anesthesia. Flexible laryngoscopy may be done with topical anesthesia or light sedation and flexible bronchoscopy can be done with either conscious sedation or general anesthesia. The flexible bronchoscopy is of a smaller caliber and allows more distal examination of the airways. Because
The goal of supplemental oxygen (O₂) therapy is to relieve hypoxemia. Supplemental oxygen can reduce the work of breathing, resulting in fewer respiratory symptoms; relax the pulmonary vasculature, lessening the potential for pulmonary hypertension and congestive heart failure; and improve feeding. Patients breathing spontaneously can be treated by nasal cannula, head hood, or mask (including simple, rebreathing, nonrebreathing, or Venturi masks). The goal of O₂ therapy is to achieve an arterial oxygen tension of 65–90 mm Hg or an oxygen saturation above 92%, although lower PaO₂ or SpO₂ levels may be acceptable in certain situations. The actual O₂ concentration achieved by nasal cannula or mask depends on the flow rate, the type of mask used, and the patient’s age. Small changes in flow rate during oxygen administration by nasal cannula can lead to substantial changes in inspired oxygen concentration in young infants. The amount of oxygen required to correct hypoxemia may vary according to the child’s activity. It is not unusual, for example, for an infant with chronic lung disease to require 0.75 L/min while awake but 1 L/min while asleep or feeding.

Although the head hood is an efficient device for delivery of oxygen in young infants, the nasal cannula is used more often because it allows greater mobility. The cannula has nasal prongs that are inserted in the nares. Flow through the cannula should generally not exceed 3 L/min to avoid excessive drying of the mucosa. Even at high flow rates, oxygen by nasal cannula rarely delivers inspired oxygen concentrations greater than 40%–45%. In contrast, partial rebreathing and nonrebreathing masks or head hoods achieve inspired oxygen concentrations as high as 90%–100%. Heated high-flow nasal cannulas have been developed recently to deliver a high flow rate without a high FIO₂.

Physical findings of hypoxemia are subtle. Adequate oxygenation should be measured by the arterial oxygen tension or pulse oximetry. The advantages of the latter noninvasive method include the ability to obtain continuous measurements during normal activities and to avoid artifacts caused by crying or breath-holding during arterial puncture. For children with cardiopulmonary disorders that require chronic supplemental oxygen therapy (eg, bronchopulmonary dysplasia or cystic fibrosis), frequent noninvasive assessments are essential to ensure the safety and adequacy of O₂ treatment.


INHALATION OF MEDICATIONS

Inhalation of medications is a mainstay of therapy for pediatric respiratory conditions and are routinely used in patients with chronic diseases such as cystic fibrosis (CF), bronchopulmonary dysplasia (BPD), and asthma, as well as in acute illnesses such as infectious laryngotracheobronchitis and bronchiolitis (Table 19–3). Short-acting β-agonists and anticholinergics provide acute bronchodilatation (relievers), whereas inhaled corticosteroids and cromones provide anti-inflammatory effects (controllers). Nebulized antibiotics have documented benefit in CF and nebulized mucolytic medications are used in CF and other conditions with impaired secretion control such as non-CF bronchiectasis.

The medications can be delivered by pressurized metered dose inhaler (pMDI), dry powder inhaler ( DPI), or compressed air-driven wet nebulization. Careful attention to delivery technique is critical to optimize medication delivery to the airways. A valved holding chamber or similar spacer should be used with pMDI use, and this technique has been shown to be effective in infants as young as 4 months of age. A face-mask interface is recommended for both pMDI and wet nebulization in infants and toddlers; a simple mouth piece suffices for older children who can form a seal around the mouth piece. Delivery technique should be assessed and reviewed at each clinical visit.

AIRWAY CLEARANCE THERAPY

Chest physical therapy, with postural drainage, percussion, and forced expiratory maneuvers, has been widely used to improve the clearance of lower airway secretions in children with CF, bronchiectasis, and neuromuscular disorders. Currently available airway clearance techniques include: chest physiotherapy, autogenic drainage, blowing therapies (bubbles, pinwheels), active coughing, positive expiratory pressure (PEP) with handheld devices, intrapulmonary percussive ventilation, or high-frequency chest compression. The decision about which technique to use should be based on the patient’s age and preference after trying different approaches. Daily exercise is an important adjunctive therapy for airway clearance and overall lung health. Cough assist devices (e.g., mechanical insufflator-exsufflators) are useful for children with a weak cough. For example, they are useful for children with neuromuscular disorders such as muscular dystrophy and spinal muscular atrophy. Bronchodilators or mucolytic medications may be given prior to or during airway clearance therapy. Inhaled corticosteroids and inhaled antibiotics should be given after airway clearance therapy so that the airways are first cleared of secretions, allowing the medications to maximally penetrate into the lung. Airway clearance has not been shown to be beneficial for patients with acute respiratory illnesses such as pneumonia, bronchiolitis, and asthma.


AVOIDANCE OF ENVIRONMENTAL HAZARDS

Environmental insults can aggravate existing lung diseases and impair pulmonary function, and probably cause lung disease in children. Outdoor air pollution (ozone and particulates), indoor pollution, diesel exhaust, and household fungi are examples. Environmental tobacco poisoning, either second or third hand, dramatically increases childhood pulmonary morbidity. Many adolescents personally abuse tobacco and become addicted. Public health policies that limit smoke exposure and reduce advertising to children have had a positive impact. Smoking family members should be admonished to quit smoking and do everything possible to minimize environmental smoke exposure to the children around them. Homes with mold should have remediation, particularly if children with lung disease are in residence. Ozone exposure can be limited by avoiding outdoor activities during the height of daily ozone levels, but additional public policy changes will be required to further reduce ozone pollutants in the air.

For children with asthma, family pets may be a significant trigger as can household cockroach infestation. Despite the known risk, many families are reluctant to eliminate risk of exposure to the pet. Families should also be counseled about risks of foreign body aspiration in curious toddlers.


Table 19–3. Common uses for inhaled medications in pediatric respiratory illness.

<table>
<thead>
<tr>
<th>Disease Process</th>
<th>Short-Acting Bronchodilator</th>
<th>Anticholinergic Bronchodilator</th>
<th>Inhaled Steroid</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td>Acute relief prior to exercise</td>
<td>Acute relief</td>
<td>Chronic use for control</td>
<td>Inhaled corticosteroid + long-acting bronchodilator for control</td>
</tr>
<tr>
<td>Bronchopulmonary dysplasia</td>
<td>Acute relief</td>
<td>Acute relief</td>
<td>Control if bronchial reactivity is present</td>
<td></td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>Prior to airway clearance</td>
<td>Limited data</td>
<td>Control if bronchial reactivity is present</td>
<td>Mucolytics and inhaled antibiotics</td>
</tr>
<tr>
<td>Infectious laryngotracheobronchitis (croup)</td>
<td>Acute relief (racemic epinephrine)</td>
<td></td>
<td>Acute relief (nebulized steroid)</td>
<td></td>
</tr>
<tr>
<td>Bronchiolitis (acute infectious)</td>
<td>Acute relief (may have limited benefit)</td>
<td></td>
<td></td>
<td>Recent interest in inhaled epinephrine and hypertonic saline</td>
</tr>
</tbody>
</table>


DISORDERS OF THE CONDUCTING AIRWAYS

The conducting airways include the nose, mouth, pharynx, larynx, trachea, bronchi, and terminal bronchioles. These airways direct inspired air to the gas-exchange units of the lung but do not participate in gas exchange. Airflow obstruction in the conducting airways can occur at extrathoracic sites (eg, above the thoracic inlet) or at intrathoracic sites (eg, below the thoracic inlet). Extrathoracic or upper airway obstruction disrupts the inspiratory phase of respiration and is often manifest by stridor or “noisy breathing.” Intrathoracic obstruction disrupts the expiratory phase of respiration and is often manifest by wheezing and prolongation of the expiratory phase. After assessing whether the obstruction is extrathoracic or intrathoracic the next challenge is to determine if the obstruction is fixed or variable. Fixed obstructions disrupt each breath and the abnormal sounds are consistently heard. Fixed obstructions can be intrinsic to the airway or due to airway compression (extrinsic). They are often associated with anatomic abnormalities that may be amenable to surgical correction (Table 19–4).

Variable obstruction leads to abnormal sounds with breathing that are softer or absent with normal quiet breathing and may sound different with every breath. Variable obstructions are often due to dynamic changes in airway caliber that occurs with laryngomalacia, tracheomalacia, or bronchomala- cia. The onset and progression of the obstruction can provide important clues as to the etiology and help determine the urgency of evaluation and management. Obstructions due to dynamic airway collapse often improve with age, whereas fixed obstructions typically progress or fail to improve with age. Acute onset extrathoracic obstruction is often infectious. Clinical indications that the obstruction is severe include high-pitched stridor or wheezing, biphasic stridor, drooling or dysphagia, poor-intensity breath sounds, severe retractions, and poor color or cyanosis.

**Table 19–4.** Classification and causes of upper airway obstruction.

<table>
<thead>
<tr>
<th>Fixed, Extrathoracic, Not Acute</th>
<th>Fixed, Extrathoracic, Acute</th>
<th>Fixed Intrathoracic, Intrinsic</th>
<th>Fixed, Intrathoracic, Extrinsic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocal cord paralysis</td>
<td>Infectious laryngotracheobronchitis</td>
<td>Tracheal stenosis</td>
<td>Tumor (compressing the airways)</td>
</tr>
<tr>
<td>Laryngeal atresia/web</td>
<td>Epiglottitis</td>
<td>Complete tracheal rings</td>
<td>Vascular ring or sling</td>
</tr>
<tr>
<td>Laryngocele/cyst</td>
<td>Bacterial tracheitis</td>
<td>Foreign body aspiration</td>
<td>Bronchogenic cyst</td>
</tr>
<tr>
<td>Laryngeal papillomas</td>
<td>Anaphylaxis</td>
<td>Endobronchial tumor</td>
<td>Congenital pulmonary airway malformation</td>
</tr>
<tr>
<td>Subglottic hemangioma</td>
<td>Angioneurotic edema</td>
<td></td>
<td>Esophageal duplication</td>
</tr>
<tr>
<td>Tracheal web</td>
<td>Foreign body aspiration</td>
<td></td>
<td>Congenital lobar overdistention</td>
</tr>
<tr>
<td>Peritonsillar abscess</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choanal atresia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retropharyngeal abscess</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LARYNGOMALACIA & CONGENITAL DISORDERS OF THE EXTRATHORACIC AIRWAY

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Presentation from birth or within the first few months of life.
- Intermittent, high-pitched, inspiratory stridor.
- Moderate to severe symptoms require visualization of the airway.

LARYNGOMALACIA

Laryngomalacia is a benign congenital disorder in which the cartilaginous support for the supraglottic structures is underdeveloped. It is the most common cause of variable extrathoracic airway obstruction and manifests as intermittent stridor in infants and usually is seen in the first 6 weeks of life. Stridor has been reported to be worse in the supine position, with increased activity, with upper respiratory infections, and during feeding; however, the clinical presentation can be variable. Patients may have slight oxygen desaturation during sleep. The condition usually improves with age and resolves by the time the child is 2 years old, but in some cases symptoms persist for years. The diagnosis is established by direct laryngoscopy, which shows inspiratory collapse of an omega-shaped epiglottis (with or without long, redundant arytenoids). In mildly affected patients with no stridor at rest and no retractions, treatment is not usually needed. Patients with either severe symptoms of airway obstruction such as stridor with each breath, retractions, and increased work of breathing or more chronic signs such as feeding difficulties, failure to thrive, obstructive sleep apnea, hypoxemia, or severe dyspnea may benefit from surgical epiglottoplasty.


OTHER CAUSES OF CONGENITAL EXTRATHORACIC OBSTRUCTION

Other congenital lesions of the larynx such as laryngeal atresia, laryngeal web, laryngocele and cyst of the larynx, subglottic hemangioma, and laryngeal cleft usually present as fixed extrathoracic obstruction and are best evaluated by direct laryngoscopy.

Laryngeal atresia presents at birth with severe respiratory distress and is usually fatal. Laryngeal web, representing fusion of the anterior portion of the true vocal cords, is associated with hoarseness, aphonia, and stridor. Surgical correction is usually necessary. Laryngeal cysts and laryngoceles present with stridor and significant airway obstruction. Laryngeal cysts are superficial and are generally fluid filled. Laryngoceles communicate with the interior of the larynx and may be either air- or fluid-filled. Both require surgery or laser therapy.

Subglottic hemangiomas are a rare cause of upper airway obstruction in infants and are associated with cutaneous vascular lesions of the skin in 50%–60% of patients. Although vascular malformations regress spontaneously, upper airway obstruction usually necessitates intervention. Medical management options include propranolol, systemic steroids, or intralesional steroids. Surgical intervention with laser ablation is usually successful, but rarely tracheostomy is required. Laryngeal cleft is an uncommon condition resulting from failure of posterior cartilaginous fusion of the larynx. Patients present with stridor, dysphagia, or silent aspiration. A type 1 laryngeal cleft (above the vocal cords) may not show aspiration on a modified barium swallow while more severe type 2 and 3 laryngeal clefts almost always do. All types of clefts may result in recurrent or chronic pneumonia and failure to thrive. The diagnosis is made by direct laryngoscopy with attention to spreading the glottis structures apart and assessing for the absence of tissue above the vocal folds. The decision to correct type 1 clefts should be made after multidisciplinary consideration of the pulmonary complications and other comorbidities. Repair of type 1 clefts may be addressed surgically or with an injection laryngoplasty. More severe clefts require surgical repair and may require tracheostomy. Normal swallow function without aspiration may take months to occur, even after repair.


ACQUIRED DISORDERS OF THE EXTRATHORACIC AIRWAY

Acquired disorders of the extrathoracic airway can present acutely or with recurrent symptoms of upper airway obstruction. Children with acquired disorders of the extrathoracic airway present with inspiratory sounds consistent...
with stridor. The pitch of the sound varies depending on the diagnosis. Upper airway obstruction can progress quickly and may be life-threatening, requiring close observation.

**FOREIGN BODY ASPIRATION IN THE EXTRATHORACIC AIRWAY**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Sudden onset of coughing or respiratory distress.
- Difficulty vocalizing.

Aspiration of a foreign body into the respiratory tract is a significant cause of accidental death each year.

The foreign body can lodge anywhere along the respiratory tract. Foreign bodies that lodge in the esophagus may compress the airway and cause respiratory distress. More typically, the foreign body lodges in the supraglottic airway, triggering protective reflexes that result in laryngospasm. Small objects such as coins may pass through the glottis and obstruct the trachea. Objects that pass into the lower airway cause coughing but more variable respiratory distress (see section Acquired Causes of Intrathoracic Airway Obstruction).

Foreign body aspiration is commonly seen with small, round foods such as nuts and seeds, berries, corn/popcorn, hot dogs, and beans. Children 6 months to 4 years are at highest risk. Homes and child care centers in which an older sibling or child feeds age-inappropriate foods (eg, peanuts, hard candy, or carrot slices) to the younger child are typical. Without treatment, progressive cyanosis, loss of consciousness, seizures, bradycardia, and cardiopulmonary arrest can follow.

**Clinical Findings**

Signs at the time of ingestion can include coughing, choking, or wheezing. Onset is generally abrupt, with a history of the child running with food in the mouth or playing with seeds, small coins, or toys.

The diagnosis is established by acute onset of choking along with inability to vocalize or cough and cyanosis with marked distress (complete obstruction), or with drooling, stridor, and ability to vocalize (partial obstruction). Chest x-rays and other imaging studies have been used to evaluate for foreign body ingestion. However, rigid bronchoscopy is the gold standard for diagnosis.

**Treatment**

The emergency treatment of upper airway obstruction due to foreign body aspiration has changed over the last few years. If complete obstruction is present, then one must intervene immediately. If partial obstruction is present, then the choking subject should be allowed to use his or her own cough reflex to remove the foreign body. If, after a brief observation period, the obstruction increases or the airway becomes completely obstructed, acute intervention is required. The American Academy of Pediatrics and the American Heart Association distinguish between children younger than and older than 1 year of age. In an awake child younger than 1 year of age with a complete obstruction, the child should be placed face down over the rescuer’s arm. Five measured back blows are delivered rapidly followed by rolling the infant over and delivering 5 rapid chest thrusts. This sequence is repeated until the obstruction is relieved. In a choking child older than 1 year of age, abdominal thrusts (Heimlich maneuver) should be performed, with special care in younger children because of concern about possible intra-abdominal organ injury. If the child of any age becomes unresponsive, cardiopulmonary resuscitation is recommended. Chest compressions may help to dislodge the foreign body.

Blind finger sweeps should not be performed in infants or children because the finger may push the foreign body further into the airway causing worse obstruction. The airway may be opened by jaw thrust, and if the foreign body can be directly visualized, careful removal with the fingers or instruments should be attempted. Patients with persistent apnea and inability to achieve adequate ventilation may require emergency intubation, tracheotomy, or needle cricothyrotomy, depending on the setting and the rescuer’s skills. Foreign body removal is most successfully performed using a rigid bronchoscopy under general anaesthesia.

**GROUP SYNDROMES**

Croup describes acute inflammatory diseases of the larynx, including viral croup (laryngotracheobronchitis), epiglottitis (supraglottitis), and bacterial tracheitis. These are the main entities in the differential diagnosis for patients presenting with acute stridor, although spasmodic croup, angioedema, laryngeal or esophageal foreign body, and retropharyngeal abscess should be considered as well.

1. **Viral croup**

Viral croup generally affects young children 6 months to 5 years of age in the fall and early winter months and is
 CHAPTER 19

most often caused by parainfluenza virus serotypes. Other organisms causing croup include respiratory syncytial virus (RSV), human coronavirus NL63, rhinovirus, human metapneumovirus, influenza virus A&B, rubeola virus, adenovirus, and M pneumoniae. Although inflammation of the entire airway is usually present, edema formation in the subglottic space accounts for the predominant signs of upper airway obstruction.

**Clinical Findings**

**A. Symptoms and Signs**

Usually a prodrome of upper respiratory tract symptoms is followed by a barking cough and stridor. Fever is usually absent or low-grade but may on occasion be high-grade. Patients with mild disease may have stridor when agitated. As obstruction worsens, stridor occurs at rest, accompanied in severe cases by retractions, air hunger, and cyanosis. On examination, the presence of cough and the absence of drooling favor the diagnosis of viral croup over epiglottitis.

**B. Imaging**

Anteroposterior and lateral neck radiographs in patients with classic presentations are not required but can be diagnostically supportive if the x-ray shows subglottic narrowing (the steeple sign) without the irregularities seen in tracheitis and a normal epiglottis. However, a severely ill patient should never be left unattended in the imaging suite.

**Treatment**

Treatment of viral croup is based on the symptoms. Mild croup, signified by a barking cough and no stridor at rest, requires supportive therapy with oral hydration and minimal handling. Mist therapy has historically been used but clinical studies do not demonstrate effectiveness. Conversely, patients with stridor at rest require active intervention. Oxygen should be administered to patients with oxygen desaturation. Nebulized racemic epinephrine (0.5 mL of 2.25% solution diluted in sterile saline) is commonly used because it has a rapid onset of action within 10–30 minutes. Both racemic epinephrine and epinephrine hydrochloride (l-epinephrine, an isomer) are effective in alleviating symptoms and decreasing the need for intubation.

The efficacy of glucocorticoids in croup is now firmly established. Dexamethasone, 0.6 mg/kg intramuscularly as one dose, improves symptoms, reduces the duration of hospitalizations and frequency of intubations, and permits earlier discharge from the emergency department. Oral dexamethasone (0.15 mg/kg) may be equally effective for mild to moderate croup. Inhaled budesonide (2–4 mg) also improves symptoms and decreases hospital stay and may be as effective as dexamethasone. Dexamethasone has also been shown to be more effective than prednisolone in equivalent doses.

If symptoms resolve within 3 hours of glucocorticoids and nebulized epinephrine, patients can safely be discharged without fear of a sudden rebound in symptoms. If, however, recurrent nebulized epinephrine treatments are required or if respiratory distress persists, patients require hospitalization for close observation, supportive care, and nebulization treatments as needed. In patients with impending respiratory failure, an airway must be established. Intubation with an endotracheal tube of slightly smaller diameter than would ordinarily be used is reasonably safe. Extubation should be accomplished within 2–3 days to minimize the risk of laryngeal injury. If the patient fails extubation, tracheostomy may be required. Other underlying causes should be considered in hospitalized patients with persistent symptoms over 3–4 days despite treatment.

**Prognosis**

Most children with viral croup have an uneventful course and improve within a few days. Some evidence suggests that patients with a history of croup associated with wheezing may have airway hyperreactivity. It is not always clear if the hyperreactivity was present prior to the croup episode or if the viral infection causing croup altered airway function.

**Epiglottitis**

With the introduction of the _Haemophilus influenzae_ conjugate vaccine, the incidence of epiglottitis has dramatically decreased and epiglottitis is rare in countries with immunization programs. If disease occurs, it is likely to be associated with _H influenzae_ in unimmunized children, or another organism such as nontypeable _H influenzae_, _Neisseria meningitides_, or _Streptococcus_ species in immunized populations.

**Clinical Findings**

**A. Symptoms and Signs**

The classic presentation is a sudden onset of high fever, dysphagia, drooling, muffled voice, inspiratory retractions, cyanosis, and soft stridor. Patients often sit in the so-called sniffing dog position, with the neck hyperextended and the chin stretched forward, which gives them the best airway possible under the circumstances. Progression to total airway obstruction may occur and result in respiratory arrest. The definitive diagnosis is made by direct inspection of the epiglottis, a procedure that should be done by an experienced airway specialist under controlled conditions (typically in the operating room during intubation). The typical findings are a cherry-red and swollen epiglottis and swollen arytenoids.

**B. Imaging**

Diagnostically, lateral neck radiographs may be helpful in demonstrating a classic “thumbprint” sign caused by the swollen epiglottis. Obtaining radiographs, however, may delay important airway intervention.

**Treatment**

Once the diagnosis of epiglottitis is made, endotracheal intubation must be performed immediately in children but not necessarily in adult populations. Most anesthesiologists prefer general anesthesia (but not muscle relaxants) to facilitate intubation. After an airway is established, cultures of the blood and epiglottis should be obtained and the patient should be started on appropriate intravenous antibiotics to cover *H influenzae* and *Streptococcus* species (ceftriaxone sodium or an equivalent cephalexin). Extubation can usually be accomplished in 24–48 hours, when direct inspection shows significant reduction in the size of the epiglottis. Intravenous antibiotics should be continued for 2–3 days, followed by oral antibiotics to complete a 10-day course.

**Prognosis**

Prompt recognition and appropriate treatment usually results in rapid resolution of swelling and inflammation. Recurrence is unusual.

---

**3. Bacterial Tracheitis**

Bacterial tracheitis (pseudomembranous croup) is a severe life-threatening form of laryngotracheobronchitis. As the management of severe viral croup has been improved with the use of dexamethasone and vaccination has decreased the incidence of epiglottis, tracheitis is a more common cause of a pediatric airway emergency requiring admission to the pediatric intensive care unit. This diagnosis must be high in the differential when a patient presents with severe upper airway obstruction and fever. The organism most often isolated is *Staphylococcus aureus*, but organisms such as *H influenzae*, group A *Streptococcus pyogenes*, *Neisseria* species, *Moraxella catarrhalis*, and others have been reported. A viral prodrome is common. Viral coinfections are described and should be treated especially in Influenza A and H1N1. The disease probably represents localized mucosal invasion of bacteria in patients with primary viral croup, resulting in inflammatory edema, purulent secretions, and pseudomembranes. Although cultures of the tracheal secretions are frequently positive, blood cultures are almost always negative.

**Clinical Findings**

**A. Symptoms and Signs**

The early clinical picture is similar to that of viral croup. However, instead of gradual improvement, patients develop higher fever, toxicity, and progressive or intermittent severe upper airway obstruction that is unresponsive to standard croup therapy. The incidence of sudden respiratory arrest or progressive respiratory failure is high; in such instances, airway intervention is required. Findings of toxic shock and the acute respiratory distress syndrome may also be seen. Recently, subsets of patients with tracheal membranes have been reported with a less severe initial clinical presentation. Nevertheless, these patients are still at risk for life-threatening airway obstruction. Aggressive medical treatment and debridement still must occur in these patients.

**B. Laboratory Findings and Imaging**

The white cell count is usually elevated with a left shift. Cultures of tracheal secretions usually demonstrate one of the causative organisms. Lateral neck radiographs show a normal epiglottis but severe subglottic and tracheal narrowing. Irregularity of the contour of the proximal tracheal mucosa can frequently be seen radiographically and should elicit concern for tracheitis. Bronchoscopy showing a normal epiglottis and the presence of copious purulent tracheal secretions and membranes confirms the diagnosis.

**Treatment**

Patients with suspected bacterial tracheitis will require direct visualization of the airway in a controlled environment and debridement of the airway. Most patients will be intubated because the incidence of respiratory arrest or progressive respiratory failure and respiratory arrest is high. Patients may also require further debridement, humidification, frequent suctioning, and intensive care monitoring to prevent endotracheal tube obstruction by purulent tracheal secretions. Intravenous antibiotics to cover *S aureus*, *H influenzae*, and the other organisms are indicated. Thick secretions persist for several days, usually resulting in longer periods of intubation for bacterial tracheitis than for epiglottitis or croup. Despite the severity of this illness, the reported mortality rate is very low if it is recognized and treated promptly.

---


VOCAL CORD PARALYSIS

Unilateral or bilateral vocal cord paralysis may be congenital, or more commonly may result from injury to the recurrent laryngeal nerves. Risk factors for acquired paralysis include difficult delivery (especially face presentation), neck and thoracic surgery (eg, ductal ligation or repair of tracheoesophageal fistula), trauma, mediastinal masses, and central nervous system disease (eg, Arnold-Chiari malformation). Patients may present with varying degrees of hoarseness, aspiration, or high-pitched stridor. Unilateral cord paralysis is more likely to occur on the left because of the longer course of the left recurrent laryngeal nerve and its proximity to major thoracic structures. Patients with unilateral paralysis are usually hoarse but rarely have stridor. With bilateral cord paralysis, the closer to midline the cords are positioned, the greater the airway obstruction; the more lateral the cords are positioned, the greater the tendency to aspirate and experience hoarseness or aphonia. If partial function is preserved (paresis), the adductor muscles tend to operate better than the abductors, with a resultant high-pitched inspiratory stridor and normal voice.

Airway intervention (tracheostomy) is rarely indicated in unilateral paralysis but is often necessary for bilateral paralysis. Clinically, paralysis can be assessed by direct visualization of vocal cord function with laryngoscopy or more invasively by recording the electrical activity of the muscles (electromyography). Electromyogram recordings can differentiate vocal fold paralysis from arytenoid dislocation, which has prognostic value. Recovery is related to the severity of nerve injury and the potential for healing.


SUBGLOTTICstenosis

Subglottic stenosis may be congenital, or more commonly may result from endotracheal intubation. Neonates and infants are particularly vulnerable to subglottic injury from intubation. The subglottis is the narrowest part of an infant’s airway, and the cricoid cartilage, which supports the subglottis, is the only cartilage that completely encircles the airway. This area is therefore susceptible to injury while patients have an endotracheal tube inserted. The clinical presentation may vary from totally asymptomatic to the typical picture of severe upper airway obstruction. Patients with signs of stridor who repeatedly fail extubation are likely to have subglottic stenosis. Subglottic stenosis should also be suspected in children with multiple, prolonged, or severe episodes of croup. Diagnosis is made by direct visualization of the subglottic space with bronchoscopy and maneuvers to size the airway. Tracheostomy is often required when airway compromise is severe. Surgical intervention is ultimately required to correct the stenosis. Laryngotracheal reconstruction in which a cartilage graft from another source (eg, rib) is used to expand the airway has become the standard procedure for symptomatic subglottic stenosis in children.


CONGENITAL CAUSES OF INTRATHORACIC AIRWAY OBSTRUCTION

MALACIA OF AIRWAYS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Chronic monophonic wheeze with or without a barking cough.
- Respiratory symptoms do not respond to bronchodilators.

Pathogenesis

Tracheomalacia or bronchomalacia exists when the cartilaginous framework of the airway is inadequate to maintain airway patency. Airway collapse is dynamic and can lead to airway obstruction. Because the cartilage of the infant airway is normally soft, all infants may have some degree of dynamic collapse of the central airway when pressure outside the airway exceeds intraluminal pressure.

Tracheomalacia and bronchomalacia can be congenital or acquired. Congenital tracheomalacia and bronchomalacia are associated with developmental abnormalities such as tracheoesophageal fistula, vascular ring, or cardiac anomalies causing extrinsic airway compression during development. Tracheomalacia is also associated with various syndromes. Congenital tracheomalacia may be localized to part of the trachea, but can also involve the entire trachea as well as the remainder of the conducting airways (bronchomalacia). Acquired tracheomalacia has been associated with long-term ventilation of premature newborns, severe tracheobronchitis, surgical repair of airways anomalies such as tracheoesophageal fistula and complete tracheal rings, and airway compression due to tumors, abscess or infection, and cysts.

Clinical Findings

Coarse wheezing, cough, stridor, recurrent illnesses, recurrent wheezing that does not respond to bronchodilators, or
radiographic changes are common findings. Symptoms classically present insidiously over the first few months of life and can increase with agitation, excitement, activity, or upper respiratory tract infections. Diagnosis can be made by airway fluoroscopy or bronchoscopy.

Treatment

Conservative treatment is usually indicated for the isolated condition, which generally improves over time with growth. Coexisting lesions such as tracheoesophageal fistulas and vascular rings need primary repair. In severe cases of tracheomalacia, intubation or tracheostomy may be necessary. Unfortunately, tracheostomy alone is seldom satisfactory because airway collapse continues to exist below the tip of the artificial airway. Positive pressure ventilation may be required to stent the collapsing airway. Surgical approaches to the problem (tracheopexy or aortopexy) may be considered as alternatives prior to or in an effort to wean off ventilatory support.


VASCULAR RINGS AND SLINGS

The most common vascular anomaly to compress the trachea or esophagus is a vascular ring. A vascular ring can be formed by a double aortic arch or a right aortic arch with left ligamentum arteriosum or a patent ductus arteriosus. The pulmonary sling is created when the left pulmonary artery branches off the right pulmonary artery. Other common vascular anomalies include an anomalous innominate artery, a left carotid artery, and an aberrant right subclavian artery. All but the right subclavian artery can cause tracheal compression. The pulmonary sling may compress the trachea but can also compress the right upper lobe bronchus or the right mainstem takeoff. Of note, a pulmonary sling is associated with long segment tracheal stenosis 50% of the time.

Clinical Findings

A. Symptoms and Signs

Symptoms of chronic airway obstruction (stridor, coarse wheezing, and croupy cough) are often worse in the supine position. Respiratory compromise is most severe with double aortic arch and may lead to apnea, respiratory arrest, or even death. Esophageal compression, present in all but anomalous innominate or carotid artery, may result in feeding difficulties. Barium swallow showing esophageal compression is the mainstay of diagnosis. Chest radiographs and echocardiograms may miss abnormalities. Anatomy can be further defined by angiography, chest CT with contrast, MRI or magnetic resonance angiography, or bronchoscopy.

B. Treatment

Patients with significant symptoms require surgical correction, especially those with double aortic arch. Patients usually improve following correction but may have persistent but milder symptoms of airway obstruction due to associated tracheomalacia.


BRONCHOGENIC CYSTS

Bronchogenic cysts generally occur in the middle mediastinum (see section Mediastinal Masses) near the carina and adjacent to the major bronchi but can be found elsewhere in the lung. They range in size from 2 to 10 cm. Cyst walls are thin and may contain air, pus, mucus, or blood. Cysts develop from abnormal lung budding of the primitive foregut. They can be seen in conjunction with other congenital pulmonary malformations such as pulmonary sequestration or lobar emphysema.

Clinical Findings

Bronchogenic cysts can present acutely with respiratory distress in early childhood due to airway compression or with symptoms of infection. Other patients present with chronic symptoms such as chronic wheezing, cough, intermittent tachypnea, recurrent pneumonia, or recurrent stridor, depending on the location and size of the cysts and the degree of airway compression. Still other patients remain asymptomatic until adulthood. However, all asymptomatic cysts will eventually become symptomatic with chest pain being the most common presenting complaint. The physical examination is often normal. Positive examination findings might include tracheal deviation from the midline and decreased breath sounds; percussion over involved lobes may be hyperresonant due to air trapping.

A. Laboratory Findings and Imaging Studies

The choice of diagnostic studies for bronchogenic cysts is controversial. Chest radiographs can show air trapping and
hyperinflation of the affected lobes or may show a spherical lesion with or without an air-fluid level. However, smaller lesions may not be seen on chest radiographs. CT scan is the preferred imaging study and can differentiate solid versus cystic mediastinal masses and define the cyst’s relationship to the airways and the rest of the lung. A barium swallow can help determine whether the lesion communicates with the gastrointestinal tract. MRI and ultrasound are other imaging modalities used.

**Treatment**

Treatment is surgical resection. Resection should be performed as soon as the cyst is detected to avoid future complications including infection. Postoperatively, vigorous pulmonary physiotherapy is required to prevent complications (atelectasis or infection of the lung distal to the site of resection of the cyst).


**ACQUIRED CAUSES OF INTRATHORACIC AIRWAY OBSTRUCTION**

**FOREIGN BODY ASPIRATION IN THE INTRATHORACIC AIRWAY**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Sudden onset of coughing, wheezing, or respiratory distress.
- Asymmetrical physical findings of decreased breath sounds or localized wheezing.
- Asymmetrical radiographic findings, especially with forced expiratory view.

**Clinical Findings**

**A. Symptoms and Signs**

Respiratory symptoms and signs vary depending on the site of obstruction and the duration following the acute episode. (See section Foreign Body Aspiration in the Intrathoracic Airway.) For example, a large or central airway obstruction may cause marked distress. The acute cough or wheezing caused by a foreign body in the lower respiratory tract may diminish over time only to recur later as chronic cough or persistent wheezing, monophonic wheezing, asymmetrical breath sounds on chest examination, or recurrent pneumonia in one location. Foreign body aspiration should be suspected in children with chronic cough, persistent wheezing, or recurrent pneumonia. Long-standing foreign bodies may lead to bronchiectasis or lung abscess. Hearing asymmetrical breath sounds or localized wheezing also suggests a foreign body.

**B. Laboratory Findings and Imaging Studies**

Inspiratory and forced expiratory (obtained by manually compressing the abdomen during expiration) chest radiographs should be obtained if foreign body aspiration is suspected. Chest radiographs may be normal up to 17% of the time. A positive forced expiratory study shows unilateral hyperinflation and there may be a mediastinal shift away from the affected side. If airway obstruction is complete, atelectasis and related volume loss will be the major radiologic findings. Virtual bronchoscopy and computerized tomography are alternative approaches for detecting a foreign body.

**Treatment**

When a foreign body is highly suspected, a normal chest radiograph should not rule out the possibility of an airway foreign body. If clinical suspicion persists based on two of three findings—history of possible aspiration, focal abnormal lung examination, or an abnormal chest radiograph—then a bronchoscopy is indicated. Rigid bronchoscopy under general anesthesia is recommended. Flexible bronchoscopy may be helpful for follow-up evaluations (after the foreign object has been removed).

Children with suspected acute foreign body aspiration should be admitted to the hospital for evaluation and treatment. Chest postural drainage is no longer recommended because the foreign body may become dislodged and obstruct a major central airway. Bronchoscopy should not be delayed in children with respiratory distress but should be performed as soon as the diagnosis is made—even in children with more chronic symptoms. Following the removal of the foreign body, β-adrenergic nebulization treatments followed by chest physiotherapy are recommended to help clear related mucus or treat bronchospasm. Failure to identify a foreign body in the lower respiratory tract can result in bronchiectasis or lung abscess. This risk justifies an aggressive approach to suspected foreign bodies in suspicious cases.

Cystic fibrosis (CF), an autosomal recessive disease, results in a syndrome of chronic sinopulmonary infections, malabsorption, and nutritional abnormalities. It is one of the most common lethal genetic diseases in the United States, with an incidence of approximately 1:3000 among Caucasians and 1:9200 in the US Hispanic population. Although abnormalities occur in the hepatic, gastrointestinal, and male reproductive systems, lung disease is the major cause of morbidity and mortality. Most individuals with CF develop obstructive lung disease associated with chronic infection that leads to progressive loss of pulmonary function.

The cause of CF is a defect in a single gene on chromosome 7 that encodes an epithelial chloride channel called the CF transmembrane conductance regulator (CFTR) protein. The most common mutation is ΔF508, although approximately 1500 other disease-causing mutations in the CF gene have been identified. Gene mutations lead to defects or deficiencies in CFTR, causing problems in salt and water movement across cell membranes, resulting in abnormally thick secretions in various organ systems and critically altering host defense in the lung.

Clinical Findings

A. Symptoms and Signs

All states in the United States and many other countries now perform newborn screening for CF by measuring immunoreactive trypsin (IRT), a pancreatic enzyme, in blood with or without concurrent DNA testing. Most infants with CF have elevated IRT in the newborn period, although false negative results are possible. In newborns with positive newborn screen, the diagnosis of CF must be confirmed by sweat testing, mutation analysis, or both (http://www.cff.org/AboutCF/Testing/NewbornScreening/).

Approximately 15% of newborns with CF present at birth with meconium ileus, a severe intestinal obstruction resulting from inspissation of tenacious meconium in the terminal ileum. Meconium ileus is virtually diagnostic of CF, so the infant should be treated presumptively as having CF until a sweat test or genotyping can be obtained.

During infancy and beyond, a common presentation of CF is failure to thrive due to malabsorption from exocrine pancreatic insufficiency. These children fail to gain weight despite good appetite and typically have frequent, bulky, foul-smelling, oily stools. These symptoms are the result of severe exocrine pancreatic insufficiency, the failure of the pancreas to produce sufficient digestive enzymes to allow breakdown and absorption of fats and protein. Pancreatic insufficiency occurs in more than 85% of persons with CF. (Chapter 22 describes gastrointestinal and hepatobiliary manifestations of CF; see also Table 22–12.) Infants with undiagnosed CF may also present with hypoprothrombinemia with or without edema, anemia, and deficiency of the fat-soluble vitamins A, D, E, and K, because of ongoing steatorrhea.

CF should also be considered in infants and children who present with severe dehydration and hypochloremic alkalosis. Other findings that should prompt a diagnostic evaluation for CF include unexplained bronchiectasis, rectal prolapse, nasal polyps, chronic sinusitis, and unexplained pancreatitis or cirrhosis. From a respiratory standpoint, clinical manifestations include productive cough, wheezing, recurrent pneumonias, progressive obstructive airways disease, exercise intolerance, dyspnea, and hemoptysis. Chronic airway infection with bacteria, including S aureus and H influenzae, often begins in the first few months of life, even in asymptomatic infants. Eventually, Pseudomonas aeruginosa and other gram-negative opportunistic bacteria...
becomes the predominant pathogen. Chronic infection leads to airflow obstruction and progressive airway and lung destruction resulting in bronchiectasis. There is increasing appreciation that bacterial communities (or microbiota) in CF airways are diverse and that these communities may also contribute to lung health and disease.

An acute change in respiratory signs and symptoms from the subject’s baseline is generically termed a pulmonary exacerbation. Clinically, an exacerbation is typically manifested by increased cough and sputum production, decreased exercise tolerance, malaise, and anorexia. These symptoms are usually associated with decreased measures of lung function. Treatment for pulmonary exacerbations generally consists of antibiotics and augmented airway clearance.

CF should also be considered in infants and children who present with severe dehydration and hypochloremic alkalosis. Other findings that should prompt a diagnostic evaluation for CF include unexplained bronchiectasis, rectal prolapse, nasal polyps, chronic sinusitis, and unexplained pancreatitis or cirrhosis.

### B. Laboratory Findings and Imaging Studies

The diagnosis of CF is made by a sweat chloride concentration greater than 60 mmol/L in the presence of one or more typical clinical features (chronic sinopulmonary disease, pancreatic insufficiency, salt loss syndromes) or an appropriate family history (sibling or first cousin who has CF). Sweat tests should be performed at a CF Foundation–accredited laboratory. A diagnosis can also be confirmed by genotyping that reveals two disease-causing mutations. Intermediate sweat chloride values of 30–60 may be associated with mild CFTR mutations or CFTR-related metabolic syndrome (CFRMs). Patients with mild CFTR mutations typically have adequate pancreatic exocrine function, but are still at risk for severe lung disease. CFRM patients appear to have even milder disease phenotypes, but the natural history of this condition is still being defined.

### Treatment

It is strongly recommended that individuals with CF be followed at a CF Foundation–accredited CF care center (http://www.cff.org).

The cornerstone of gastrointestinal treatment is pancreatic enzyme supplementation combined with a high caloric, high protein, and high fat diet. Persons with CF are required to take pancreatic enzyme capsules immediately prior to each meal and with snacks. Individuals should also take daily multivitamins that contain vitamins A, D, E, and K. Caloric supplements are often added to the patient’s diet to optimize growth. Daily salt supplementation also is recommended to prevent hyponatremia, especially during hot weather.

Airway clearance therapy and aggressive antibiotic use form the mainstays of treatment for CF lung disease. Antibiotic therapy appears to be one of the primary reasons for the increased life expectancy of persons with CF. Respiratory treatments typically include recombinant human DNase (Pulmozyme), inhaled hypertonic saline, and for those with chronic *Pseudomonas* infection, inhaled tobramycin (TOBI) or inhaled aztreonam, and chronic oral azithromycin. These therapies have been shown to maintain lung function and reduce the need for hospitalizations and intravenous antibiotics. Early detection of *P aeruginosa* and treatment with inhaled tobramycin can often eradicate the bacteria and delay chronic infection. Bronchodilators and anti-inflammatory therapies are also frequently used. Recent clinical trials using protein-rescue therapies to improve CFTR function have shown encouraging results, and the first small-molecule drug that directly addresses the underlying defect in CF was approved by the FDA in 2012. This drug, ivacaftor, is currently approved for use in patients with the G551D CFTR mutation which affects about 4% of CF patients. Ongoing trials of this drug with others in combination regimens may extend its use to patients who are F508del homozygous or have other mutations.

#### Prognosis

A few decades ago, CF was fatal in early childhood. Now the median life expectancy is around 35 years of age. The rate of lung disease progression usually determines survival. Lung transplantation may be performed in those with end-stage lung disease. In addition, new treatments, including gene therapy trials and agents that modulate CFTR protein function, are being developed based on improved understanding of the disease at the cellular and molecular levels.
Primary ciliary dyskinesia (PCD), also known as immobile cilia syndrome, is a rare, inherited, usually autosomal recessive disorder with impaired ciliary function leading to progressive sinopulmonary disease. It is believed to occur in approximately 1 in 15,000 births. Almost half of patients with PCD have situs abnormalities, and men are usually infertile. The triad of situs inversus totalis, bronchiectasis, and chronic sinusitis is known as Kartagener syndrome.

### Clinical Findings

#### A. Symptoms and Signs

Situs inversus totalis occurs in approximately 50% of patients with PCD. Conversely, 20% of children with situs inversus totalis have PCD. Upper and lower respiratory tract manifestations are cardinal features of PCD. The majority of children with PCD present in the immediate newborn period with respiratory distress (commonly diagnosed as neonatal pneumonia or transient tachypnea of the newborn). Upper respiratory tract problems include chronic year-around nasal drainage that may begin in the first weeks of life, chronic sinusitis, nasal polyps, and chronic serous otitis media. Conductive hearing loss with chronic middle ear effusion is common. If myringotomy tubes are placed, chronic otorrhea often ensues. Lower respiratory tract features include chronic productive cough, chronic and recurrent bronchitis, and recurrent pneumonia. They are at risk to develop obstructive lung disease and bronchiectasis.

Nonrespiratory ciliopathies have been associated with PCD and include heterotaxy, asplenia, polysplenia, congenital heart disease, autosomal dominant polycystic kidney disease, retinitis pigmentosa, biliary atresia, and hydrocephalus.

#### B. Laboratory Findings and Imaging Studies

The diagnosis of PCD currently requires a compatible clinical phenotype and identification of ultrastructural and/or functional defects of the cilia. Examination of ciliary ultrastructure by transmission electron microscopy remains the cornerstone test for PCD. Cilia samples may be obtained from either the upper airways (nasal passage) or lower airways (trachea). Semen collection from older male patients can also be obtained to analyze sperm tails, which have the same ultrastructure as cilia. Significant expertise is required to produce high-quality transmission electron micrographs of cilia, and to distinguish primary (genetic) defects from secondary (acquired) defects in ciliary ultrastructure. Ciliary beat frequency or airway epithelium cultures are also used in some settings. In patients with a compatible clinical history but without visible ultrastructural defects, measurement of nasal nitric oxide has proven to be a useful screening and adjunctive diagnostic test in children ages 5 and older based on very low levels in PCD. Genetic testing is emerging for PCD and demonstrates extensive genetic heterogeneity. Some genes and gene mutations involved in PCD have been defined. Approximately 60% PCD cases have identifiable gene mutations in one of 14 known PCD genes.

### Treatment

At present, no specific therapies are available to correct the ciliary dysfunction in PCD. Treatment is not evidence-based and recommendations are largely extrapolated from CF and other suppurative lung diseases. Respiratory management includes routine pulmonary monitoring (lung function testing, respiratory cultures, chest imaging), airway clearance by combinations of physiotherapy and physical exercise, and aggressive treatment of upper and lower airways infections.

### Prognosis

The progression of lung disease in PCD is quite variable. Importantly, persons with PCD are at risk for chronic obstructive lung disease with bronchiectasis. With monitoring and aggressive treatment during times of illness, most individuals with PCD should experience a normal or near-normal life span.


American population. Mechanical ventilation for severe adenoviral respiratory infection is a strong risk factor for development of bronchiolitis obliterans.

**Clinical Findings**

**A. Symptoms and Signs**

Persons with bronchiolitis obliterans usually experience dyspnea, coughing, and exercise intolerance. This diagnosis should be considered in children with persistent cough, wheezing, crackles, or hypoxemia persisting longer than 60 days following a lower respiratory tract infection.

**B. Laboratory Findings and Imaging Studies**

Chest radiograph abnormalities include evidence of heterogeneous air trapping and airway wall thickening. Traction bronchiectasis can occur as the disease progresses. Classic findings on chest high-resolution CT include a mosaic perfusion pattern, vascular attenuation, and central bronchiectasis. This finding along with pulmonary function testing showing airway obstruction unresponsive to bronchodilators may be diagnostic in some patients with the appropriate clinical history. Although not typically required for diagnosis, ventilation-perfusion scans may show a pattern of ventilation and perfusion mismatch. Pulmonary angiograms reveal decreased vasculature in involved lung, and bronchograms show marked pruning of the bronchial tree.

**Differential Diagnosis**

Poorly treated asthma, CF, and BPD must be considered in children with persistent airway obstruction. A trial of medications (including bronchodilators and corticosteroids) may help to determine the reversibility of the process when the primary differential is between asthma and bronchiolitis obliterans. Others without classic findings on CT scan and lung function testing may require a lung biopsy.

**Complications**

Sequelae of bronchiolitis obliterans include persistent airway obstruction, recurrent wheezing, bronchiectasis, chronic atelectasis, recurrent pneumonia, and unilateral hyperlucent lung syndrome.

**Treatment**

Supportive care including supplemental oxygen for hypoxemia, routine vaccination, avoidance of environmental irritant exposure, exercise and nutritional support should be provided. Ongoing airway damage due to problems such as aspiration should be prevented. Inhaled bronchodilators may reverse airway obstruction if the disease has a reactive component. Corticosteroids (inhaled, daily, or pulse dosing) may help reverse the obstruction or prevent ongoing damage. Antibiotics should be used as indicated for pneumonia. Azithromycin has been shown to have therapeutic properties for airway injury in CF, diffuse panbronchiolitis, and in bronchiolitis obliterans syndrome (BOS) after lung transplantation, providing some rationale for a trial of this medication for bronchiolitis obliterans. Lung transplant may be an option for patients with severe, progressive disease. Early research in animal models suggests that TNF-α blockers may be useful in prevention progression of bronchiolitis obliterans.

**Prognosis**

Prognosis depends in part on the underlying cause as well as the age of onset. Postinfectious bronchiolitis obliterans tends to be nonprogressive with low mortality and the possibility of slow improvement with time. Conversely, posttransplantation or Stevens-Johnson Syndrome related bronchiolitis obliterans may have a rapidly progressive course leading to death or need for lung transplantation.

**Bronchiectasis**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Chronic cough with sputum production.
- Rhonchi or wheezes (or both) on chest auscultation.
- Diagnosis is confirmed by high-resolution CT scan.

**Pathogenesis**

Bronchiectasis is the permanent dilation of bronchi resulting from airway obstruction by retained mucus secretions or inflammation in response to chronic or repeated infection. It occurs either as a consequence of a preceding illness (severe pneumonia or foreign body aspiration) or as a manifestation of an underlying systemic disorder (CF, PCD, chronic aspiration or immunodeficiency).

**Clinical Findings**

**A. Symptoms and Signs**

Persons with bronchiectasis will typically have chronic cough, purulent sputum, fever, and weight loss. Recurrent
respiratory infections and dyspnea on exertion are also common. Hemoptyis occurs less frequently in children than in adults with bronchiectasis. On physical examination, finger clubbing may be seen. Rales, rhonchi, and decreased air entry are often noted over the bronchiectatic areas.

B. Laboratory Findings and Imaging Studies

The most common bacteria detected in cultures from the lower respiratory tract include *S pneumoniae*, *S aureus*, non-typeable *H influenzae*, and *P aeruginosa*. Nontuberculous mycobacterial species may also be detected in patients with bronchiectasis.

Chest radiographs may be mildly abnormal with slightly increased bronchovascular markings or areas of atelectasis, or they may demonstrate cystic changes in one or more areas of the lung. The extent of bronchiectasis is best defined by high-resolution CT scan of the lung, which often reveals far wider involvement of lung than expected from the chest radiograph. Airflow obstruction and air trapping often is seen on pulmonary function testing. Evaluation of lung function after use of a bronchodilator is helpful in assessing the benefit a patient may have from bronchodilators. Serial assessments of lung function help define the progression or resolution of the disease.

Differential Diagnosis

Bronchiectasis has numerous causes. It can occur following severe respiratory tract infections by bacteria (*S aureus*, *Bordetella pertussis*), viruses (adenovirus), or other organisms (*M tuberculosis*). Bronchiectasis can also be due to persistent inflammation and is commonly seen in persons with recurrent aspiration pneumonia, CF, PCD, immunodeficiency, surfactant deficiencies, and collagen-vascular conditions. Other diagnostic considerations include foreign body aspiration and allergic bronchopulmonary aspergillosis.

Treatment

Aggressive antibiotic therapy during pulmonary exacerbations and routine airway clearance are mainstays of treatment. Inhaled hyperosmolar agents (hypertonic saline) were shown in small clinical trials to improve lung function and secretion clearance in non-CF bronchiectasis. Chronic antibiotic use, anti-inflammatory therapy, hyperosmolar agents (hypertonic saline), and bronchodilators have not been proven effective in non-CF bronchiectasis, although individual patients may benefit. Chronic azithromycin was recently shown to reduce exacerbations in adults with non-CF bronchiectasis. Conversely, a large study in adults with idiopathic bronchiectasis concluded that those who received dornase alpha twice a day had more frequent exacerbations, hospitalizations, and lower lung function compared to placebo; thus, dornase alpha is not indicated in adult idiopathic bronchiectasis. Whether these results translate to children with idiopathic bronchiectasis is not known.

Surgical removal of an area of lung affected with severe bronchiectasis is considered when the response to medical therapy is poor. Other indications for operation include severe localized disease, repeated hemoptyis, and recurrent pneumonia in one area of lung. If bronchiectasis is widespread, surgical resection offers little advantage.

Prognosis

The prognosis depends on the underlying cause and severity of bronchiectasis, the extent of lung involvement, and the response to medical management. Good pulmonary hygiene and avoidance of infectious complications in the involved areas of lung may reverse cylindric bronchiectasis.

CONGENITAL MALFORMATIONS OF THE LUNG PARENCHYMAL

What follows is a brief description of selected congenital pulmonary malformations.

PULMONARY AGENESIS & HYPOPLASIA

In unilateral pulmonary agenesis (complete absence of one lung), the trachea continues into a main bronchus and often has complete tracheal rings. The left lung is affected more often than the right. With compensatory postnatal growth, the remaining lung often herniates into the contralateral chest. Chest radiographs show a mediastinal shift toward the affected side, and vertebral abnormalities may be present. Absent or incomplete lung development may be associated with other congenital abnormalities, such as absence of one or both kidneys or fusion of ribs, and the outcome is primarily related to the severity of associated lesions. About 50% of patients survive; the mortality rate is higher with agenesis of the right lung than of the left lung. This difference is probably not related to the higher incidence of associated anomalies but rather to a greater shift in the mediastinum that leads to tracheal compression and distortion of vascular structures.
Pulmonary hypoplasia is incomplete development of one or both lungs, characterized by a reduction in alveolar number and a reduction in airway branches. Pulmonary hypoplasia is present in up to 10%–15% of perinatal autopsies. The hypoplasia can be a result of an intrathoracic mass, resulting in lack of space for the lungs to grow; decreased size of the thorax; decreased fetal breathing movements; decreased blood flow to the lungs; or possibly a primary mesodermal defect affecting multiple organ systems. Congenital diaphragmatic hernia is the most common cause, with an incidence of 1:2200 births. Other causes include extralobar sequestration, diaphragmatic eventration or hypoplasia, thoracic neuroblastoma, fetal hydrops, and fetal hydrocholestrophy. Chest cage abnormalities, diaphragmatic elevation, oligohydramnios, chromosomal abnormalities, severe musculoskeletal disorders, and cardiac lesions may also result in hypoplastic lungs. Postnatal factors may play important roles. For example, infants with advanced BPD can have pulmonary hypoplasia.

**Clinical Findings**

### A. Symptoms and Signs

The clinical presentation is highly variable and is related to the severity of hypoplasia as well as associated abnormalities. Lung hypoplasia is often associated with pneumothorax in newborns. Some newborns present with perinatal stress, severe acute respiratory distress, and persistent pulmonary hypertension of the newborn secondary to primary pulmonary hypoplasia (without associated anomalies). Children with lesser degrees of hypoplasia may present with chronic cough, tachypnea, wheezing, and recurrent pneumonia.

### B. Laboratory Findings and Imaging Studies

Chest radiographic findings include variable degrees of volume loss in a small hemithorax with mediastinal shift. Pulmonary agenesis should be suspected if tracheal deviation is evident on the chest radiograph. The chest CT scan is the optimal diagnostic imaging procedure if the chest radiograph is not definitive. Ventilation-perfusion scans, angiography, and bronchoscopy are often helpful in the evaluation, demonstrating decreased pulmonary vascularity or premature blunting of airways associated with the maldeveloped lung tissue. The degree of respiratory impairment is defined by analysis of arterial blood gases.

**Treatment & Prognosis**

Treatment is supportive. The outcome is determined by the severity of underlying medical problems, the extent of the hypoplasia, and the degree of pulmonary hypertension.

---

**PULMONARY SEQUESTRATION**

Pulmonary sequestration is nonfunctional pulmonary tissue that does not communicate with the tracheobronchial tree and receives its blood supply from one or more anomalously systemic arteries. This abnormality originates during the embryonic period of lung development. It is classified as either extralobar or intralobar. Extralobar sequestration is a mass of pulmonary parenchyma anatomically separate from the normal lung, with a distinct pleural investment. Its blood supply derives from the systemic circulation (more typical), from pulmonary vessels, or from both. Rarely, it communicates with the esophagus or stomach. Pathologically, extralobar sequestration appears as a solitary thoracic lesion near the diaphragm. Abdominal sites are rare. Size varies from 0.5 to 12 cm. The left side is involved in more than 90% of cases. In contrast to intralobar sequestrations, venous drainage is usually through the systemic or portal venous system.

Histologic findings include uniformly dilated bronchioles, alveolar ducts, and alveoli. Occasionally the bronchial structure appears normal; however, often the cartilage in the wall is deficient, or no cartilage-containing structures can be found. Lymphangiectasia is sometimes found within the lesion. Extralobar sequestration can be associated with other anomalies, including bronchogenic cysts, heart defects, and diaphragmatic hernia, the latter occurring in over half of cases.

Intralobar sequestration is an isolated segment of lung within the normal pleural investment that often receives blood from one or more arteries arising from the aorta or its branches. Intralobar sequestration is usually found within the lower lobes (98%), two-thirds are found on the left side, and it is rarely associated with other congenital anomalies (< 2% vs 50% with extralobar sequestration). It rarely presents in the newborn period (unlike extralobar sequestration). Some researchers have hypothesized that intralobar sequestration is an acquired lesion secondary to chronic infection. Clinical presentation includes chronic cough, wheezing, or recurrent pneumonias. Rarely, patients with intralobar sequestration can present with hemothysis. Diagnosis is often made by angiography, which shows large systemic arteries perfusing the lesion. Recently spiral CT
CONGENITAL LOBAR EMPHYSEMA

Patients with congenital lobar emphysema—also known as infantile lobar emphysema, congenital localized emphysema, unilobar obstructive emphysema, congenital hypertrophic lobar emphysema, or congenital lobar overinflation—present most commonly with severe neonatal respiratory distress or progressive respiratory impairment during the first year of life. Rarely the mild or intermittent nature of the symptoms in older children or young adults results in delayed diagnosis. Most patients are white males. Although the cause of congenital lobar emphysema is not well understood, some lesions show bronchial cartilaginous dysplasia due to abnormal orientation or distribution of the bronchial cartilage. This leads to expiratory collapse, producing obstruction and the symptoms outlined in the following discussion.

Clinical Findings

A. Symptoms and Signs

Clinical features include respiratory distress, tachypnea, cyanosis, wheezing, retractions, and cough. Breath sounds are reduced on the affected side, perhaps with hyperresonance to percussion, mediastinal displacement, and bulging of the chest wall on the affected side.

B. Imaging Studies

Radiologic findings include overdistention of the affected lobe (usually an upper or middle lobe; > 99%), with wide separation of bronchovascular markings, collapse of adjacent lung, shift of the mediastinum away from the affected side, and a depressed diaphragm on the affected side. The radiographic diagnosis may be confusing in the newborn because of retention of alveolar fluid in the affected lobe causing the appearance of a homogeneous density. Other diagnostic studies include chest radiograph with fluoroscopy, ventilation-perfusion study, and chest CT scan followed by bronchoscopy, angiography, and exploratory thoracotomy.

Differential Diagnosis

The differential diagnosis of congenital lobar emphysema includes pneumothorax, pneumatocele, atelectasis with compensatory hyperinflation, diaphragmatic hernia, and congenital cystic adenomatoid malformation. The most common site of involvement is the left upper lobe (42%) or right middle lobe (35%). Evaluation must differentiate regional obstructive emphysema from lobar hyperinflation secondary to an uncomplicated ball-valve mechanism due to extrinsic compression from a mass (ie, bronchogenic cyst, tumor, lymphadenopathy, foreign body, pseudotumor or plasma cell granuloma, or vascular compression) or intrinsic obstruction from a mucus plug due to infection and inflammation from various causes.

Treatment

When respiratory distress is marked, a segmental or complete lobectomy is usually required. Less symptomatic older children may do equally well with or without lobectomy.

CONGENITAL PULMONARY AIRWAY MALFORMATION (CYSTIC ADENOMATOID MALFORMATION)

Congenital pulmonary adenomatoid malformations (CPAMs; previously known as congenital cystic adenomatoid malformations) are unilateral hamartomatous lesions which generally present with marked respiratory distress within the first days of life. This disorder accounts for 95% of cases of congenital cystic lung disease.

Right and left lungs are involved with equal frequency. These lesions originate in the first 5–22 weeks of gestation during the embryonic period of lung development. They appear as glandlike, space-occupying masses or have an increase in terminal respiratory structures, forming intercommunicating cysts of various sizes, lined by cuboidal or ciliated pseudostratified columnar epithelium. The lesions may have polypoid formations of mucosa, with focally increased elastic tissue in the cyst wall beneath the bronchial type of epithelium. Air passages appear malformed and tend to lack cartilage.

There are five types of such malformations.

1. Type 0, also known as acinar dysplasia or agenesis ister nal or bronchial in origin and is rare and incompatible...
with life. The lungs are small, firm and microscopically are made up entirely of irregular bronchial type structures.

2. Type 1, a large cyst lesion (bronchial or bronchiolar origin), is most common (50%–65%) and consists of single or multiple large cysts (> 2 cm in diameter) with features of mature lung tissue, including a pseudostratified epithelium. Type 1 is amenable to surgical resection. A mediastinal shift is evident on examination or chest radiograph in 80% of patients and can mimic infantile lobar emphysema. Approximately 75% of type 1 lesions are on the right side. A survival rate of 90% is generally reported. There are some reports of broncholoalveolar carcinoma in patients with type 1 CPAM although this does not necessitate urgent resection.

3. Type 2 lesions, small cyst lesions (bronchiolar origin) and (10%–40% of cases), consist of multiple small cysts (< 2 cm) resembling dilated simple bronchioles and are often (60%) associated with other anomalies, especially renal agenesis or dysgenesis, cardiac malformations, extralobar sequestration and intestinal atresia. Approximately 60% of type 2 lesions are on the left side. Mediastinal shift is evident less often (10%) than in type 1, and the survival rate is worse (40%). Microscopically the lesion is composed of dilated bronchioles lined by cuboidal to low columnar epithelium and separated by alveolar duct-like structures.

4. Type 3 lesions, adenomatoid lesion (bronchiolar/alveolar duct origin) and (5%–10% of cases), consist of small cysts (< 0.5 cm). These are the “classic” CPAM (or CCAM). They appear as bulky, firm masses with mediastinal shift and carry the risk of hydrops from mass shift resulting in caval obstruction and cardiac compression (80% of cases). The lesion will often involve the entire lobe and microscopically random bronchiolar/alveolar duct-like structures are seen. There is a striking absence of any small, medium or large pulmonary arteries within the lesion. Often the adjacent or uninvolved lung is hypoplastic. The reported survival rate is 50%.

5. Type 4 lesions, “unlined” cyst (distal acinar origin) and (10%–15% of cases), appear to be a hamartomatous malformation of the distal acinus. The cysts are large thin walled and found at the periphery of the lung. The cysts are lined by flattened epithelial (type I) cells.

Clinical Findings

A. Symptoms and Signs

Clinically, respiratory distress is noted soon after birth. Expansion of the cysts occurs with the onset of breathing and produces compression of normal lung areas with mediastinal herniation. Breath sounds are decreased. With type 3 lesions, dullness to percussion may be present. Older patients can present with a spontaneous pneumothorax or with pneumonia-like symptoms. Recently more patients are diagnosed with these lesions on prenatal ultrasound.

B. Laboratory Findings and Imaging Studies

With type 1 lesions, chest radiographs show an intrapulmonary mass of soft tissue density with scattered radiolucent areas of varying sizes and shapes, usually with a mediastinal shift and pulmonary herniation. Placement of a radiopaque feeding tube into the stomach helps in the differentiation from diaphragmatic hernia. Type 2 lesions appear similar except that the cysts are smaller. Type 3 lesions may appear as a solid homogeneous mass filling the hemithorax and causing a marked mediastinal shift. Type 4 lesions are large air-filled cysts localized to one lobe. Differentiation from sequestration is not difficult because congenital CPAM have no systemic blood supply.

Treatment

In cases of prenatal diagnosis, the treatment of these lesions is variable and does not need antenatal intervention. Up to 6%–10% of these have regressed spontaneously and thus they need to be followed serially, prenatally. Attention must be paid to the development of hydrops as a complication of these lesions. Postnatal treatment of types 1 and 3 lesions involves surgical removal of the affected lobe. Resection is often indicated because of the risk of infection and air trapping, since the malformation communicates with the tracheobronchial tree but mucous clearance is compromised. Because type 2 lesions are often associated with other severe anomalies, management may be more complex. Segmental resection is not feasible because smaller cysts may expand after removal of the more obviously affected area. CPAM have been reported to have malignant potential; therefore, expectant management with observation alone should proceed with caution. Recent development of intrauterine surgery for congenital malformations has led to promising results.
Bronchopulmonary dysplasia (BPD) remains one of the most significant sequelae of acute respiratory distress in the neonatal intensive care unit, with an incidence of about 30% for infants with a birth weight of less than 1000 g. This disease was first characterized in 1967 when Northway reported the clinical, radiologic, and pathologic findings in a group of preterm newborns that required prolonged mechanical ventilation and oxygen therapy to treat hyaline membrane disease (HMD). The progression from acute HMD to chronic lung disease was divided into four stages: acute respiratory distress shortly after birth, (stage I); clinical and radiographic worsening of the acute lung disease, often due to increased pulmonary blood flow secondary to a patent ductus arteriosus (stage II); and progressive signs of chronic lung disease (stages III and IV).

The pathologic findings and clinical course of BPD in recent years have changed due to a combination of new therapies (artificial surfactants, prenatal glucocorticoids, and protective ventilatory strategies) and increased survival of infants born at earlier gestational ages. Although the incidence of BPD has not changed, the severity of the lung disease has decreased. Pathologically this “new” BPD is a developmental disorder of the lung characterized by decreased surface area for gas exchange, reduced inflammation, and a dysmorphic vascular structure.

Pathogenesis

The precise mechanism that results in the development of BPD is unclear. Current studies indicate that these babies have abnormal lung mechanics due to structural immaturity of the alveolar-capillary network, surfactant deficiency, atelectasis, and pulmonary edema. Furthermore, mechanical ventilation causes barotrauma and supplemental oxygen may lead to toxic oxygen metabolites in a child whose antioxidant defense mechanisms are not sufficiently mature. The ongoing injuries may lead to a vicious cycle of ventilator and oxygen dependence. As a result, the lungs of extremely preterm newborns with BPD show simplified histology with fewer alveoli, early inflammation, and hypercellularity followed by healing with fibrosis. Excessive fluid administration, patent ductus arteriosus, pulmonary interstitial emphysema, pneumothorax, infection, pulmonary hypertension, and inflammatory stimuli secondary to lung injury or infection also play important roles in the pathogenesis of the disease.

Clinical Findings

A recent summary of a National Institutes of Health workshop on BPD proposed a definition of the disease that includes oxygen requirement for more than 28 days, a history of positive pressure ventilation or continuous positive airway pressure, and gestational age. The new definition accommodates several key observations regarding the disease, as follows: (1) although most of these children were born preterm and had hyaline membrane disease, full-term newborns with such disorders as meconium aspiration, diaphragmatic hernia, or persistent pulmonary hypertension also can develop BPD; (2) some extremely preterm newborns require minimal ventilator support yet subsequently develop a prolonged oxygen requirement despite the absence of severe acute manifestations of respiratory failure; (3) newborns dying within the first weeks of life can already have the aggressive, fibroproliferative pathologic lesions that resemble BPD; and (4) physiologic abnormalities (increased airway resistance) and biochemical markers of lung injury (altered protease-antiprotease ratios and increased inflammatory cells and mediators) which may be predictive of BPD are already present in the first week of life.

The clinical course of infants with BPD ranges from an oxygen requirement that gradually resolves over a few months to more severe disease requiring chronic tracheostomy and mechanical ventilation for the first few years of life. In general, patients show slow, steady improvements in oxygen or ventilator requirements but can have respiratory exacerbations leading to frequent and prolonged hospitalizations. Clinical management generally includes careful attention to growth, nutrition (infants with oxygen dependence and respiratory have high caloric requirements), metabolic status, developmental and neurologic status, along with the associated cardiopulmonary abnormalities.

Treatment

A. Medical Therapy

Early use of surfactant therapy with adequate lung recruitment increases the chance for survival without BPD, reduces the need for mechanical ventilation, and can decrease the overall mortality. Short courses of postnatal glucocorticoid
therapy have been helpful in increasing the success of weaning from the ventilator. Longer courses of postnatal glucocorticoids have been linked to an increased incidence of cerebral palsy. Inhaled corticosteroids together with occasional use of β-adrenergic agonists are commonly part of the treatment plan but the overall effect on the course of BPD is not clear.

Salt and water retention secondary to chronic hypoxemia, hypercapnia, or other stimuli may be present. Chronic or intermittent diuretic therapy is commonly used if rales or signs of persistent pulmonary edema are present; clinical studies show acute improvement in lung function with this therapy. Unfortunately, diuretics often have adverse effects, including volume contraction, hypokalemia, alkalosis, hyponatremia, and nephrocalcinosis. Potassium and arginine chloride supplements may be required.

B. Airway Evaluation

Children with significant stridor, sleep apnea, chronic wheezing, or excessive respiratory distress need diagnostic bronchoscopy to evaluate for structural lesions (eg, subglottic stenosis, vocal cord paralysis, tracheal or bronchial stenosis, tracheobronchomalacia, or airway granulomas). The contribution of gastroesophageal reflux and aspiration should be considered in the face of worsening chronic lung disease.

C. Management of Pulmonary Hypertension

Infants with BPD are at risk of developing pulmonary hypertension. In many of these children even mild hypoxemia can cause significant elevations of pulmonary arterial pressure. To minimize the harmful effects of hypoxemia, the arterial oxygen saturation should be kept above 93% in children with pulmonary hypertension, with care to avoid hyperoxia during retinal vascular development. Electrocardiographic and echocardiographic studies should be performed to monitor for the development of right ventricular hypertrophy. Management of neonatal pulmonary hypertension should involve expert consultation with a pulmonary hypertension specialist. If right ventricular hypertrophy persists or if it develops when it was not previously present, intermittent hypoxemia should be considered and further assessments of oxygenation pursued, especially while the infant sleeps. Cardiac catheterization may be necessary to diagnose unsuspected cardiac or pulmonary lesions and to measure the response of the pulmonary vasculature to vasodilators such as nitric oxide before chronic therapy is initiated. Infants with a history of intubation can develop obstructive sleep apnea secondary to a high-arched palate or subglottic narrowing. Barium esophagram, esophageal pH/impedence studies, and bronchoscopy may aid in diagnosing gastroesophageal reflux, aspiration, and airway abnormalities that contribute to the underlying pathophysiology. In infants with severe BPD, prophylactic fundoplication at the time of gastrostomy tube placement may prevent catastrophic aspiration events that could be life threatening. Long-term care also should include monitoring for systemic hypertension and the development of left ventricular hypertrophy.

D. Nutrition and Immunizations

Nutritional problems in infants with BPD may be due to increased oxygen consumption, feeding difficulties, gastroesophageal reflux, and chronic hypoxemia. Hypercaloric formulas and gastrostomy tubes are often required to ensure adequate intake while avoiding overhydration. Routine vaccinations including the influenza vaccine are recommended. With the onset of acute wheezing secondary to suspected viral infection, rapid diagnostic testing for RSV infection may facilitate early treatment. Immune prophylaxis of RSV reduces the morbidity of bronchiolitis in infants with BPD. In children older than 2 years of age with severe BPD, pneumococcal polysaccharide 23-valent vaccine should be considered in addition to standard pneumococcal vaccination.

E. Ventilation

For children with BPD who remain ventilator-dependent, attempts should be made to maintain $\text{Paco}_2$ below 60 mm Hg—even when $\text{pH}$ is normal—because of the potential adverse effects of hypercapnia on salt and water retention, cardiac function, and perhaps pulmonary vascular tone. Changes in ventilator settings in children with severe lung disease should be slow, because the effects of many of the changes may not be apparent for days.

Differential Diagnosis

The differential diagnosis of BPD includes meconium aspiration syndrome, congenital infection (eg, with cytomegalovirus or Ureaplasma), cystic adenomatoid malformation, recurrent aspiration, pulmonary lymphangiectasia, total anomalous pulmonary venous return, overhydration, and idiopathic pulmonary fibrosis.

Prognosis

Surfactant replacement therapy has had a significantly and markedly beneficial effect on reducing morbidity and mortality from BPD. Infants of younger gestational age are surviving in greater numbers. Surprisingly, the effect of neonatal care has not significantly decreased the incidence of BPD. The disorder typically develops in the most immature infants. The long-term outlook for most survivors is favorable. Follow-up studies suggest that lung function may be altered for life. Hyperinflation and damage to small airways has been reported in children 10 years after the first signs of BPD. In addition, these infants are at a risk for developing such sequelae as hypoxemia, airway hyporeactivity, exercise intolerance, pulmonary hypertension, chronic obstructive pulmonary disease, and abnormal lung...
Lower respiratory tract infections (LRTIs) are a major cause of childhood mortality in disadvantaged areas of the world. The infectious etiologies vary widely by geographic region and by the age of the child. In developed countries the majority of pneumonias are caused by viral agents and bacterial pneumonia is a less common cause. Discrimination between viral and bacterial pneumonia is challenging as neither the white blood cell count nor differential nor the chest radiograph are strong predictors. In areas where the technology is readily available chest radiography is recommended to establish with certainty the presence of pneumonia. The most common cause of bacterial pneumonia in children of all ages is *S. pneumoniae*. Bacterial pneumonia usually follows a viral lower respiratory tract infection. Children at high risk for bacterial pneumonia are those with compromised pulmonary defense systems. For example, children with abnormal mucociliary clearance, immunocompromised children, children who aspirate their own secretions or who aspirate while eating, and malnourished children are at increased risk for bacterial pneumonia.

### Clinical Findings

#### A. Symptoms and Signs

The pathogen, severity of the infection, and age of the patient may cause substantial variations in the presentation of community-acquired pneumonia (CAP). Fevers (over 39°C), tachypnea, and cough are hallmarks of CAP. Chest auscultation may reveal crackles or decreased breath sounds in the setting of consolidation or an associated pleural effusion. Some patients may have additional extrapulmonary findings, such as meningismus or abdominal pain, due to pneumonia itself. Others may have evidence of infection at other sites due to the same organism causing their pneumonia: meningitis, otitis media, sinusitis, pericarditis, epiglottitis, or abscesses.

#### B. Laboratory Findings and Imaging Studies

An elevated peripheral white blood cell count with a left shift may be a marker of bacterial pneumonia. A low white blood count (< 5000/μL) can be an ominous finding in this disease. Blood cultures should be obtained in children admitted to the hospital with pneumonia, although approximately 10% or less will be positive, even with known bacterial pneumonia. Sputum cultures may be helpful in older children capable of providing a satisfactory sample. Invasive diagnostic procedures (bronchial brushing or washing, lung puncture, or open or thoracoscopic lung biopsy) should be undertaken in critically ill patients when other means do not adequately identify the cause (see section Diagnosis of Respiratory Tract Infections).

The spectrum of potential pathogens to be considered includes aerobic, anaerobic, and acid-fast bacteria as well as *Chlamydia trachomatis*, *C. Pneumoniae*, *C. psittaci*, *Coxiella burnetii* (Q fever), *P. jiroveci*, *B. pertussis*, *M. pneumoniae*, *Legionella pneumophila*, and respiratory viruses. *S. pneumoniae* is the most prevalent bacterial pathogen. Viral antigen immunofluorescent staining (DFA) and polymerase chain reactivity (PCR) technology has improved the ability to detect a wide variety of viral infections.

Air space disease or consolidation in a lobar distribution on chest x-ray suggests bacterial pneumonia; interstitial or peribronchial infiltrates suggest a viral infection. Severity of the infection may not correlate with radiographic findings and clinical improvement precedes radiographic resolution. If a pleural effusion is suspected, radiographs should be taken in the lateral decubitus position. A diagnostic (and
possibly therapeutic) thoracocentesis should also be performed in a child with a pleural effusion.

### Differential Diagnosis

Noninfectious pulmonary disease (including gastric aspiration, foreign body aspiration, atelectasis, congenital malformations, congestive heart failure, malignancy, tumors such as plasma cell granuloma, chronic ILD, and pulmonary hemosiderosis) should be considered in the differential diagnosis of localized or diffuse infiltrates. When effusions are present, additional noninfectious disorders such as collagen diseases, neoplasm, and pulmonary infarction should also be considered.

### Complications

Empyema can occur frequently with staphylococcal, pneumococcal, and group A β-hemolytic streptococcal pneumonia. Distal sites of infection—meningitis, otitis media, sinusitis (especially of the ethmoids), and septicemia—may be present, particularly with disease due to *S. pneumoniae* or *H. influenzae*. Certain immunocompromised patients, such as those who have undergone splenectomy or who have hemoglobin SS or SC disease or thalassemia, are especially prone to overwhelming sepsis with these organisms.

### Treatment

If a bacterial pneumonia is suspected, empiric antibiotic therapy should be considered. Children less than 4 weeks of age should be treated with ampicillin and an aminoglycoside. Infants 4–12 weeks of age should be treated with IV ampicillin for 7–10 days. Children 3 months to 5 years of age should be treated with oral amoxicillin (50–90 mg/kg/dose) for 7–10 days. Children older than 5 years should be treated with a macrolide antibiotic or amoxicillin or penicillin G depending on the suspected etiology. When possible, therapy can be guided by the antibiotic sensitivity pattern of the organisms isolated. (For further discussion, see Chapter 39.) An appropriate antiviral (eg, amantadine, rimantidine, oseltamivir, zanamivir) should be considered for the child with pneumonia due to Influenza. Whether a child should be hospitalized depends on his or her age, the severity of illness, the suspected organism, and the anticipated reliability of adherence to the treatment regimen at home. All children younger than 3 months of age should be admitted for treatment. Moderate to severe respiratory distress, apnea, hypoxemia, poor feeding, clinical deterioration on treatment, or associated complications (large effusions, empyema, or abscess) indicate the need for immediate hospitalization in older children. Careful outpatient follow-up within 12 hours to 5 days is often indicated in those not admitted.

Additional therapeutic considerations include oxygen, humidification of inspired gases, hydration and electrolyte supplementation, and nutrition. Removal of pleural fluid for diagnostic purposes is indicated initially to guide antimicrobial therapy. Removal of pleural fluid for therapeutic purposes may also be indicated.

### Prognosis

In developed countries, for the immunocompetent host in whom bacterial pneumonia is adequately recognized and treated, the survival rate is high. For example, the mortality rate from uncomplicated pneumococcal pneumonia is less than 1%. If the patient survives the initial illness, persistently abnormal pulmonary function following empyema is surprisingly uncommon, even when treatment has been delayed or inappropriate.
Clinical Findings

A. Symptoms and Signs

Patients usually present with typical signs of pneumonia, including fever, tachypnea, and cough. They may have chest pain, decreased breath sounds, and dullness to percussion on the affected side and may prefer to lie on the affected side. With large effusions, there may be tracheal deviation to the contralateral side. According to a study in Canada, empyema is more likely to occur in children less than 5 years.

B. Diagnostic Studies

The white blood cell count is often elevated, with left shift. Blood cultures are sometimes positive. The tuberculin skin test is positive in most cases of tuberculosis. Thoracentesis reveals findings consistent with an exudate. Cells in the pleural fluid are usually neutrophils in bacterial disease and lymphocytes in tuberculous effusions. In bacterial disease, pleural fluid pH and glucose are often low. A pH less than 7.2 suggests active bacterial infection. The pH of the specimen should be determined in a blood gas syringe sent to the laboratory on ice. Extra heparin should not be used in the syringe as it can falsely lower the pH. Although in adults the presence of low pH and glucose indicates the need for aggressive and thorough drainage procedures, the prognostic significance of these findings in children is unknown. Gram stain, cultures, and counterimmunoelectrophoresis are often positive for the offending organism.

The presence of pleural fluid is suggested by a homogeneous density that obscures the underlying lung on chest radiograph. Large effusions may cause a shift of the mediastinum to the contralateral side. Small effusions may only blunt the costophrenic angle. Lateral decubitus radiographs may help to detect freely movable fluid by demonstrating a layering-out effect. If the fluid is loculated, no such effect is perceived. Ultrasonography can be extremely valuable in localizing the fluid and detecting loculations, especially when thoracentesis is contemplated, but availability may be limited. Chest CT scan can help determine whether the fluid is intraparenchymal or extraparenchymal and can direct further care of complicated pneumonias.

Treatment

After initial thoracentesis and identification of the organism, appropriate intravenous antibiotics and adequate drainage of the fluid remain the mainstay of therapy, but the approach is debated. Although there is a trend toward managing smaller pneumococcal empyemas without a chest tube, larger effusions require chest tube drainage. Evidence of early interventions using thoracoscopic techniques such as VATS may reduce morbidity and has been shown to shorten length of hospital stay when done by an experienced surgeon. While there is growing use of VATS as first-line therapy, it is not standard of care. Studies in adults show that aggressive management with drainage of pleural cavity fluid and release of adhesions with fibrinolytics is cost effective and decreases the length of stay. There are limited studies of fibrinolytics in children. The therapeutic choice will vary depending on the resources available and the preferences of the clinician.

Prognosis

The prognosis is related to the severity of disease but is generally excellent, with complete or nearly complete recovery expected in most instances.


Atypical Pneumonias

Viral Pneumonia

- Upper respiratory infection prodrome (fever, coryza, cough, hoarseness).
- Wheezing or rales.
- Myalgia, malaise, headache (older children).

Viral infection is a common cause of community-acquired pneumonia in children. Viral pneumonia is most common in children younger than 2 years of age. RSV, parainfluenza (1, 2, and 3) viruses, influenza (A and B) viruses, and human metapneumovirus are responsible for the large majority of cases. Severity of disease, severity of fever, radiographic findings, and the characteristics of cough or lung sounds do not reliably differentiate viral from bacterial pneumonias. Furthermore, such infections may coexist. However, substantial pleural effusions, pneumatoceles, abscesses, lobar consolidation with lobar volume expansion, and “round” pneumonias are generally inconsistent with viral disease.
Clinical Findings

A. Symptoms and Signs

An upper respiratory infection frequently precedes the onset of lower respiratory disease due to viruses. Although wheezing or stridor may be prominent in viral disease, cough, signs of respiratory distress (tachypnea, retractions, grunting, and nasal flaring), and physical findings (rales and decreased breath sounds) may not be distinguishable from those in bacterial pneumonia.

B. Laboratory Findings

The peripheral white blood cell count can be normal or slightly elevated and is not useful in distinguishing viral from bacterial disease.

Rapid viral diagnostic methods such as fluorescent antibody tests or enzyme-linked immunosorbent assay and/or polymerase chain reaction (PCR) should be performed on nasopharyngeal secretions to confirm this diagnosis in high-risk patients and for epidemiology or infection control. Rapid diagnosis of RSV infection does not preclude the possibility of concomitant infection with other pathogens.

C. Imaging Studies

Chest radiographs frequently show perihilar streaking, increased interstitial markings, peribronchial cuffing, or patchy bronchopneumonia. Lobar consolidation or atelectasis may occur, however. Hyperinflation of the lungs may occur when involvement of the small airways is prominent.

Differential Diagnosis

The differential diagnosis of viral pneumonia is the same as for bacterial pneumonia. Patients with prominent wheezing may have asthma, airway obstruction caused by foreign body aspiration, acute bacterial or viral tracheitis, or parasitic disease.

Complications

Viral pneumonia or laryngotracheobronchitis may predispose the patient to subsequent bacterial tracheitis or pneumonia as immediate sequelae. Bronchiolitis obliterans or severe chronic respiratory failure may follow adenovirus pneumonia. The results of studies evaluating the development of asthma after a viral pneumonia are variable. Bronchiectasis, chronic ILD, and unilateral hyperlucent lung (Sawyer-James syndrome) may follow measles, adenovirus, and influenza pneumonias.

Treatment

General supportive care for viral pneumonia does not differ from that for bacterial pneumonia. Patients can be quite ill and should be hospitalized according to the level of their illness. Because bacterial disease often cannot be definitively excluded, antibiotics may be indicated.

Patients at risk for life-threatening RSV infections (eg, those with BPD or other severe pulmonary conditions, congenital heart disease, or significant immunocompromise) should be hospitalized and ribavirin should be considered. Rapid viral diagnostic tests may be a useful guide for such therapy.

All children with influenza should be treated with the appropriate therapy for the specific type of influenza (A, B, H1N1). When available epidemiologic data indicate an active influenza infection in the community, rimantadine, amantadine hydrochloride, or oseltamivir phosphate should be considered early for high-risk infants and children who appear to be infected. Children with suspected viral pneumonia should be placed in respiratory isolation.

Prognosis

Although most children with viral pneumonia recover uneventfully, worsening asthma, abnormal pulmonary function or chest radiographs, persistent respiratory insufficiency, and even death may occur in high-risk patients such as newborns or those with underlying lung, cardiac, or immunodeficiency disease. Patients with adenovirus infection or those concomitantly infected with RSV and second pathogens such as influenza, adenovirus, cytomegalovirus, or P jiroveci also have a worse prognosis.


BRONCHIOLITIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Clinical syndrome characterized by one or more of the following findings: coughing, tachypnea, labored breathing, and hypoxia.
- Irritability, poor feeding, vomiting.
- Wheezing and crackles on chest auscultation.
Bronchiolitis is the most common serious acute respiratory illness in infants and young children. The diagnosis of bronchiolitis is based upon clinical findings including an upper respiratory infection that has progressed to cough, tachypnea, respiratory distress, and crackles or wheeze by physical examination. In most literature from the United States, this definition of bronchiolitis specifically applies to children younger than 2 years old. One to 3% of infants with bronchiolitis will require hospitalization, especially during the winter months. RSV is by far the most common viral cause of acute bronchiolitis. Parainfluenza, human metapneumovirus, influenza, adenovirus, Mycoplasma, Chlamydia, Ureaplasma, Bocavirus, and Pneumocystis are less common causes of bronchiolitis during early infancy.

Complications
The most common complication of bronchiolitis is super-infection with a bacterial pathogen such as Streptococcus pneumoniae leading to pneumonia. The results of studies investigating the risk for the subsequent development of chronic airway hyperreactivity (asthma) are variable. Bronchiolitis due to RSV infection contributes substantially to morbidity and mortality in children with underlying medical disorders, including chronic lung disease of prematurity, CF, congenital heart disease, and immunodeficiency.

Treatment
Although most children with RSV bronchiolitis are readily treated as outpatients, hospitalization is required in infected children with hypoxemia on room air, a history of apnea, moderate tachypnea with feeding difficulties, and marked respiratory distress with retractions. Children at high risk for hospitalization include infants (younger than 6 months of age), especially with any history of prematurity, and those with underlying chronic cardiopulmonary disorders. While in the hospital, treatment should include supportive strategies such as frequent suctioning and providing adequate fluids to maintain hydration. If hypoxemia is present, supplemental oxygen should be administered. There is no evidence to support the use of antibiotics in children with bronchiolitis unless there is evidence of an associated bacterial pneumonia. Bronchodilators and corticosteroids have not been shown to change the severity or the length of the illness in bronchiolitis and therefore are not recommended. Studies evaluating the effectiveness of hypertonic saline and the combination of oral dexamethasone and inhaled epinephrine in children with bronchiolitis seen in the emergency department and inpatient setting are ongoing.

 Patients at risk for life-threatening RSV infections (eg, children younger than 24 months of age whose gestational age is less than 35 weeks, children younger than 24 months of age with other severe pulmonary conditions, congenital heart disease, neuromuscular disease, or significant immunocompromise) should be considered for RSV prophylaxis therapy. For more detail, refer to the American Academy of Pediatrics 2009 guidelines. High-risk patients with RSV bronchiolitis may need to be hospitalized and treated with ribavirin.

Prognosis
The prognosis for the majority of infants with acute bronchiolitis is very good. With improved supportive care and prophylaxis with palivizumab, the mortality rate among high-risk infants has decreased substantially.

MYCOPLASMA PNEUMONIA (SEE ALSO CHAPTER 42)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Fever.
- Cough.
- Most common in children older than 5 years of age.

M pneumoniae is a common cause of symptomatic pneumonia in older children although it may be seen in children younger than 5 years of age. Endemic and epidemic infection can occur. The incubation period is long (2–3 weeks), and the onset of symptoms is slow. Although the lung is the primary infection site, extrapulmonary complications sometimes occur.

Clinical Findings

A. Symptoms and Signs

Fever, cough, headache, and malaise are common symptoms as the illness evolves. Although cough is usually dry at the onset, sputum production may develop as the illness progresses. Sore throat, otitis media, otitis externa, and bullous myringitis may occur. Rales and chest pain are frequently present on chest examination; decreased breath sounds or dullness to percussion over the involved area may be present.

B. Laboratory Findings and Imaging Studies

The total and differential white blood cell counts are usually normal. Enzyme immunoassay (EIA) and complement fixation are sensitive and specific for M pneumoniae. The cold hemagglutinin titer may be elevated during the acute presentation. A titer of 1:64 or higher supports the diagnosis. Acute and convalescent titers for M pneumoniae demonstrating a fourfold or greater rise in specific antibodies confirm the diagnosis. Diagnosis of mycoplasmal pneumonia by polymerase chain reaction is also available.

Chest radiographs usually demonstrate interstitial or bronchopneumonic infiltrates, frequently in the middle or lower lobes. Pleural effusions are extremely uncommon.

Complications

Extrapulmonary involvement of the blood, central nervous system, skin, heart, or joints can occur. Direct Coombs-positive autoimmune hemolytic anemia, occasionally a life-threatening disorder, is the most common hematologic abnormality that can accompany M pneumoniae infection. Coagulation defects and thrombocytopenia can also occur. Cerebral infarction, meningoencephalitis, Guillain-Barré syndrome, cranial nerve involvement, and psychosis all have been described. A wide variety of skin rashes, including erythema multiforme and Stevens-Johnson syndrome, can occur. Myocarditis, pericarditis, and a rheumatic fever-like illness can also occur.

Treatment

Antibiotic therapy with a macrolide for 7–10 days may shorten the course of illness. Ciprofloxacin is a possible alternative. Supportive measures, including hydration, antipyretics, and bed rest, are helpful.

Prognosis

In the absence of the less common extrapulmonary complications, the outlook for recovery is excellent. The extent to which M pneumoniae can initiate or exacerbate chronic lung disease is not well understood.


TUBERCULOSIS (SEE ALSO CHAPTER 42)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Positive tuberculin skin test or anergic host.
- Positive culture for M tuberculosis.
- Symptoms of active disease (if present): chronic cough, anorexia, weight loss or poor weight gain, fever, night sweats.
Tuberculosis is a widespread and deadly disease resulting from infection with *M tuberculosis*. The clinical spectrum of disease includes asymptomatic primary infection, calcified nodules, pleural effusions, progressive primary cavitating lesions, contiguous spread into adjacent thoracic structures, acute miliary tuberculosis, and acute respiratory distress syndrome, overwhelming reactivation infection in the immunocompromised host, occult lymphohematogenous spread, and metastatic extrapulmonary involvement at almost any site. Because transmission is usually through respiratory droplets, isolated pulmonary parenchymal tuberculosis constitutes more than 85% of presenting cases. Pulmonary tuberculosis is the focus of discussion here; additional manifestations of tuberculosis are discussed in Chapter 42.

Following resurgence in the 1980s and early 1990s, tuberculosis has declined among all age groups in the United States, including children. This trend has continued through 2006, the most recent year for which data are available. However, the disease remains a significant cause of morbidity and mortality worldwide.

### Clinical Findings

#### A. Symptoms and Signs

Most children with tuberculosis are asymptomatic and present with a positive tuberculosis skin test. Symptoms of active infection, if present, might include chronic cough, anorexia, weight loss or poor weight gain, fever, and night sweats. Children can also present with symptoms of airway obstruction, with secondary bacterial pneumonia or airway collapse resulting from hilar adenopathy.

Because most children infected with tuberculosis are asymptomatic, a clue to infection may be contact with an individual with tuberculosis—often an elderly relative, a caregiver, or a person previously residing in a region where tuberculosis is endemic—or a history of travel to or residence in such an area. Homeless and extremely impoverished children are also at high risk, as are those in contact with high-risk adults (patients with AIDS, residents or employees of correctional institutions or nursing homes, drug users, and healthcare workers). Once exposed, pediatric patients at risk for developing active infection include infants and those with malnutrition, AIDS, diabetes mellitus, or immunosuppression (cancer chemotherapy or corticosteroids).

The symptoms of active disease listed previously most often occur during the first year of infection. Thereafter, infection remains quiescent until adolescence, when reactivation of pulmonary tuberculosis is common. At any stage, chronic cough, anorexia, weight loss or poor weight gain, and fever are useful clinical signs of reactivation. Of note, except in patients with complications or advanced disease, physical findings are few.

#### B. Laboratory Findings and Imaging Studies

A positive tuberculin skin test is defined by the size of induration as measured by a medical provider 48–72 hours after intradermal injection of 5 tuberculin units of purified protein derivative (PPD). A positive test is defined as an induration greater than or equal to 5 mm in patients who are at high risk for developing active disease (ie, immunocompromised, those with a history of a positive test or radiograph, children younger than 4 years, and those known to have close contact with someone with active disease); greater than 10 mm in patients from or exposed to high-risk populations (ie, born in countries with a high prevalence, users of injected drugs, having poor access to health care, or living in facilities such as jails, homeless shelters, or nursing homes); and greater than 15 mm in those who are at low risk. Tine tests should not be used. Appropriate control skin tests, such as those for hypersensitivity to diphtheria-tetanus, mumps, or *Candida albicans*, should be applied in patients with suspected or proven immunosuppression or in those with possible severe disseminated disease. If the patient fails to respond to PPD, the possibility of tuberculosis is not excluded. In suspected cases, the patient, immediate family, and suspected carriers should also be tuberculin-tested. Because healing—rather than progression—is the usual course in the uncompromised host, a positive tuberculin test may be the only manifestation. The primary focus (usually single) and associated nodal involvement may not be seen radiographically. For patients born outside the United States or those who have received a previous bacillus Calmette-Guérin immunization, induration greater than 5 mm should be considered positive and further evaluated.

There are new serum immunological tests that are currently being studied in adults and children. For example, T-spot. TB (Oxford Immunotec, UK) and Quantiferon-TB Gold (Cellestis, Australia) are now being used in adults. Guidelines for interpretation of the tests in pediatrics are not available. In addition, it is not clear how to distinguish new infection from latent infections using these immunological assays.

#### C. Imaging Studies

Anteroposterior and lateral chest radiographs should be obtained in all suspected cases. Culture for *M tuberculosis* is critical for proving the diagnosis and for defining drug susceptibility. Early morning gastric lavage following an overnight fast should be performed on three occasions in infants and children with suspected active pulmonary tuberculosis before treatment is started, when the severity of illness allows. Although stains for acid-fast bacilli on this material are of little value, this is the ideal culture site. Despite the increasing importance of isolating organisms because of multiple drug resistance, only 40% of children will yield positive cultures.
D. Special Tests

Sputum cultures from older children and adolescents can also be useful. Stains and cultures of bronchial secretions can be obtained using bronchoscopy. When pleural effusions are present, pleural biopsy for cultures and histopathologic examination for granulomas or organisms provide diagnostic information. Meningeal involvement is also possible in young children, and lumbar puncture should be considered in their initial evaluation.

Diff erential Diagnosis

Fungal diseases that affect mainly the lungs, such as histoplasmosis, coccidioidomycosis, cryptococcosis, and North American blastomycosis, may resemble tuberculosis and in cases where the diagnosis is unclear, should be excluded by biopsy or appropriate serologic studies. Atypical tuberculous organisms may involve the lungs, especially in the immunocompromised patient. Depending on the presentation, diagnoses such as lymphoreticular and other malignancies, collagen-vascular disorders, or other pulmonary infections may be considered.

Complications

In addition to those complications listed in the sections on general considerations and clinical findings, lymphadenitis, meningitis, osteomyelitis, arthritis, enteritis, peritonitis, and renal, ocular, middle ear, and cutaneous disease may occur. Infants born to parents infected with M tuberculosis are at great risk for developing illness. The possibility of life-threatening airway compromise must always be considered in patients with large mediastinal or hilar lesions.

Treatment

Because the risk of hepatitis due to isoniazid is extremely low in children, this drug is indicated in those with a positive tuberculin skin test. This greatly reduces the risk of subsequent active disease and complications with minimal morbidity. Isoniazid plus rifampin treatment for 6 months, plus pyrazinamide during the first 2 months, is indicated when the chest radiograph is abnormal or when extrapulmonary disease is present. Without pyrazinamide, isoniazid plus rifampin must be given for 9 months. In general, the more severe tuberculous complications are treated with a larger number of drugs (see Chapter 42). Enforced, directly observed therapy (twice or three times weekly) is indicated when nonadherence is suspected. Recommendations for antituberculosis chemotherapy based on disease stage are continuously being updated. The most current edition of the American Academy of Pediatrics Red Book is a reliable source for these protocols.

Corticosteroids are used to control inflammation in selected patients with potentially life-threatening airway compression by lymph nodes, acute pericardial effusion, massive pleural effusion with mediastinal shift, or miliary tuberculosis with respiratory failure.

Prognosis

In patients with an intact immune system, modern antituberculous therapy offers good potential for recovery. The outlook for patients with immunodeficiencies, organisms resistant to multiple drugs, poor drug adherence, or advanced complications is guarded. Organisms resistant to multiple drugs are increasingly common. Resistance emerges either because the physician prescribes an inadequate regimen or because the patient discontinues medications. When resistance to or intolerance of isoniazid and rifampin prevents their use, cure rates are 50% or less.


ASPIRATION PNEUMONIA

History of recurrent aspiration or an aspiration event.

New-onset respiratory distress, oxygen requirement, or in some children, fever, after the aspiration or in a child with known aspiration.

Focal findings on physical examination (usually in the side).

Patients whose anatomic defense mechanisms are impaired are at risk of aspiration pneumonia (Table 19–5). Acute disease is commonly caused by bacteria present in the mouth (especially gram-negative anaerobes). Chronic aspiration often causes recurrent bouts of acute febrile pneumonia. It may also lead to chronic focal infiltrates, atelectasis, an illness resembling asthma or ILD, bronchiectasis, or failure to thrive.

Clinical Findings

A. Symptoms and Signs

Acute onset of fever, cough, respiratory distress, or hypoxemia in a patient at risk suggests aspiration pneumonia.
Table 19–5. Risk factors for aspiration pneumonia.

<table>
<thead>
<tr>
<th>Seizures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depressed sensorium</td>
</tr>
<tr>
<td>Recurrent gastroesophageal reflux, emesis, or gastrointestinal obstruction</td>
</tr>
<tr>
<td>Neuromuscular disorders with suck-swallow dysfunction</td>
</tr>
<tr>
<td>Anatomic abnormalities (laryngeal cleft, tracheoesophageal fistula, vocal cord paralysis)</td>
</tr>
<tr>
<td>Debilitating illnesses</td>
</tr>
<tr>
<td>Occult brainstem lesions</td>
</tr>
<tr>
<td>Near-drowning</td>
</tr>
<tr>
<td>Nasogastric, endotracheal, or tracheostomy tubes</td>
</tr>
<tr>
<td>Severe periodontal disease</td>
</tr>
</tbody>
</table>

Chest physical findings, such as rales, rhonchi, or decreased breath sounds, may initially be limited to the lung region into which aspiration occurred. Although any region may be affected, the right side—especially the right upper lobe in the supine patient—is commonly affected. In patients with chronic aspiration, diffuse wheezing may occur. Generalized rales may also be present. Such patients may not develop acute febrile pneumonias.

B. Laboratory Findings and Imaging Studies

Chest radiographs may reveal lobar consolidation or atelectasis and focal or generalized alveolar or interstitial infiltrates. In some patients with chronic aspiration, perihilar infiltrates with or without bilateral air trapping may be seen.

In severely ill patients with acute febrile illnesses, and especially when the pneumonia is complicated by a pleural effusion, a bacteriologic diagnosis should be made. In addition to blood cultures and cultures of the pleural fluid, cultures of tracheobronchial secretions and bronchoalveolar lavage specimens may be considered (see section Diagnosis of Respiratory Tract Infections).

In patients with chronic aspiration pneumonitis, documentation of aspiration as the cause of illness may be elusive. Barium contrast studies using liquids of increasing consistency may provide evidence of suck-swallow dysfunction or laryngeal cleft. Bolus barium swallow studies with good distention of the esophagus may help to identify an occult tracheoesophageal fistula. Gastroesophageal reflux may be a risk factor for aspiration while the child is sleeping, and an overnight or 24-hour esophageal pH probe studies may also help establish the diagnosis of gastroesophageal reflux. Although radionuclide scans are commonly used, the yield from such studies is disappointingly low. Rigid bronchoscopy and bronchoalveolar lavage specimens to search for lipid-laden macrophages can also suggest chronic aspiration.

Differential Diagnosis

In the acutely ill patient, bacterial and viral pneumonias should be considered. In the chronically ill patient, the differential diagnosis may include disorders causing recurrent pneumonia (eg, immunodeficiencies, ciliary dysfunction, or foreign body), chronic wheezing, or interstitial lung disorders (see next section), depending on the presentation.

Complications

Empyema or lung abscess may complicate acute aspiration pneumonia. Chronic aspiration may also result in bronchiectasis.

Treatment

Aspiration pneumonia leads to a chemical pneumonitis and, in some cases, supportive treatment is the only recommended therapy. Antimicrobial therapy for patients who are acutely ill from aspiration pneumonia includes coverage for gram-negative anaerobic organisms. In general, clindamycin is appropriate initial coverage. However, in some hospital-acquired infections, additional coverage for multiple resistant P aeruginosa, streptococci, and other organisms may be required.

Treatment of recurrent and chronic aspiration pneumonia may include the following: surgical correction of anatomic abnormalities; improved oral hygiene; improved hydration; and inhaled bronchodilators, chest physical therapy, and suctioning. In patients with compromise of the central nervous system, exclusive feeding by gastrostomy and (in some) tracheostomy may be required to control airway secretions. Gastroesophageal reflux, if present in these patients, also often requires surgical correction.

Prognosis

The outlook is directly related to the disorder causing aspiration.

deficits or autoimmune disorders, and those on chemotherapy or immunosuppressant therapy. Pulmonary infection is the most common form of infection in these hosts and can present with focal pneumonia or ILD. The underlying cause of the immunocompromised state often determines the spectrum of infectious agents responsible for disease (see also Chapter 33). Pneumonia in an immunocompromised host may be due to any common bacteria (streptococci, staphylococci, or M. pneumoniae) or less common pathogens such as Toxoplasma gondii, P. jiroveci, Aspergillus species, Mucor species, Candida species, Cryptococcus neoformans, gram-negative enteric and anaerobic bacteria, Nocardia species, L. pneumophila, mycobacteria, and viruses (cytomegalovirus, varicella-zoster, herpes simplex, influenza virus, respiratory syncytial virus, human metapneumovirus, or adenovirus). Multiple organisms are common and disseminated disease is possible.

**Clinical Findings**

**A. Symptoms and Signs**

Patients often present with subtle signs such as mild cough, tachypnea, or low-grade fever that can rapidly progress to high fever, respiratory distress, and hypoxemia or chILD syndrome. An obvious portal of infection, such as an intravascular catheter, may predispose to bacterial or fungal infection.

**B. Laboratory Findings and Imaging Studies**

Fungal, parasitic, or bacterial infection, especially with antibiotic-resistant bacteria, should be suspected in the neutropenic child. Cultures of peripheral blood, sputum, tracheobronchial secretions, urine, nasopharynx or sinuses, bone marrow, pleural fluid, biopsied lymph nodes, or skin lesions or cultures through intravascular catheters should be obtained as soon as infection is suspected. Currently, serum and bronchoalveolar lavage (BAL) galactomannan assays for invasive pulmonary aspergillosis are being used in some centers to help guide therapy.

Invasive methods are commonly required to make a diagnosis. Appropriate samples should be obtained soon after a patient with pneumonia fails to respond to initial treatment. The results of these procedures usually lead to important changes in empiric therapy. Sputum is often unavailable. Bronchoalveolar lavage frequently provides the diagnosis of one or more organisms and should be done early in evaluation. The combined use of a wash, brushing, and lavage has a high yield. In patients with rapidly advancing, or more peripheral disease, lung biopsy becomes more urgent. The morbidity and mortality of this procedure can be reduced by a surgeon skilled in video-assisted thoracoscopic surgical (VATS) techniques. Because of the multiplicity of organisms that may cause disease, a comprehensive set of studies should be done on lavage and biopsy material. These consist of rapid diagnostic studies, including fluorescent antibody studies for *Legionella*; rapid culture and antigen detection for viruses; Gram, acid-fast, and fungal stains; cytologic examination for viral inclusions; cultures for viruses, anaerobic and aerobic bacteria, fungi, mycobacteria, and L. pneumophila; and rapid immunofluorescent studies for *P. jiroveci*.

Chest radiographs and increasingly high-resolution CT scans may be useful in identifying the pattern and extent of disease. In *P. jiroveci* pneumonia, dyspnea and hypoxemia may be marked despite minimal radiographic abnormalities.

**Differential Diagnosis**

The organisms causing disease vary with the type of immunocompromise present. For example, the splenectomized or sickle cell disease patient may be overwhelmed by infection with encapsulated bacteria. The child with HIV/AIDS or receiving immunosuppressant therapy or chemotherapy is more likely to have *P. jiroveci* infection. The febrile neutropenic child who has been receiving adequate doses of intravenous broad-spectrum antibiotics or systemic steroid therapy may have fungal disease. The key to diagnosis is to consider all possibilities of infection.

Depending on the form of immunocompromise, perhaps only half to two-thirds of new pulmonary infiltrates in such patients represent infection. The remainder are caused by pulmonary toxicity of radiation, chemotherapy, or other drugs; pulmonary disorders, including hemorrhage, embolism, atelectasis, or aspiration; idiopathic pneumonia syndrome or acute respiratory distress syndrome in bone marrow transplant patients; recurrence or extension of primary malignant growths or immunologic disorders; transfusion reactions, leukostasis, or tumor cell lysis; or ILD, such as lymphocytic interstitial pneumonitis with HIV infection.

**Complications**

Necrotizing pneumonia, lung abscesses, and parapneumonic effusions can develop. Progressive respiratory failure, shock, multiple organ damage, disseminated infection, and death commonly occur in the infected immunocompromised host if the primary etiology is not treated effectively.

**Treatment**

Early use of broad-spectrum intravenous antibiotics is indicated early in febrile, neutropenic, or immunocompromised children. Trimethoprim-sulfamethoxazole (for *Pneumocystis*) and macrolides (for *Legionella*) are also indicated early in the treatment of immunocompromised children before an organism is identified. Further therapy should be based on studies of specimens obtained from
bronchoalveolar lavage or lung biopsy. Recent data suggest that use of noninvasive ventilation strategies early in the course of pulmonary insufficiency or respiratory failure may decrease mortality.

► Prognosis

Prognosis is based on the severity of the underlying immunocompromise, appropriate early diagnosis and treatment, and the infecting organisms. Intubation and mechanical ventilation have been associated with high mortality rates, especially in hematopoietic stem cell transplant patients.


LUNG ABSCESS

► Pathogenesis

Lung abscesses are thick-walled cavities that form from inflammation and central necrosis following an initial pulmonary infection. A primary lung abscess occurs in a previously well child or one prone to aspiration, while secondary lung abscesses develop in children with immunosuppression, underlying lung or systemic disease. Lung abscesses may also occur via embolic spread. Although organisms such as S aureus, S pneumoniae, and other staphylococci and streptococci more commonly affect the healthy host, anaerobic and gram-negative organisms as well as Nocardia, Legionella species, and fungi (Candida and Aspergillus) should also be considered in the immunocompromised host or in patients not responding to treatment.

► Clinical Findings

A. Symptoms and Signs

Symptoms and signs referable to the chest may or may not be present. High fever, malaise, and weight loss are often present. In infants, evidence of respiratory distress can be present.

B. Laboratory Findings and Imaging Studies

Elevated peripheral white blood cell count with a neutrophil predominance or an elevated erythrocyte sedimentation rate or C-reactive protein may be present. Blood cultures are rarely positive except in the overwhelmed host.

Chest radiographs usually reveal single or multiple thick-walled lung cavities. Air-fluid levels can be present. Local compressive atelectasis, pleural thickening, or adenopathy may also occur. Chest CT scan may provide better localization and understanding of the lesions.

In patients producing sputum, stains, and cultures may provide the diagnosis. Direct percutaneous aspiration of material for stains and cultures guided by fluoroscopy or ultrasonography or CT imaging should be considered in the severely compromised or ill.

► Differential Diagnosis

Loculated pyopneumothorax, an Echinococcus cyst, neoplasms, plasma cell granuloma, and infected congenital cysts and sequestrations should be considered. Pneumatoceles, non-fluid-filled cysts, are common in children with empyema and usually resolve over time.

► Complications

Although complications due to abscesses are now rare, mediastinal shift, tension pneumothorax, and spontaneous rupture can occur. Diagnostic maneuvers such as radiology-guided lung puncture to drain and culture the abscess may also cause a pneumothorax or a bronchopulmonary fistula.

► Treatment

Because of the risks of lung puncture, uncomplicated abscesses are frequently conservatively treated in the uncompromised host with appropriate broad-spectrum intravenous antibiotics directed at S aureus, S pneumonia, and other staphylococci and streptococci. Additional coverage for anaerobic gram-negative organisms and fungi should be provided for others. Prolonged therapy with 2–3 weeks of intravenous antibiotics followed by oral therapy may be required. Attempts to drain abscesses via bronchoscopy have caused life-threatening airway compromise. Surgical drainage or lobectomy is occasionally required, primarily in immunocompromised patients. However, such procedures may themselves cause life-threatening complications.

► Prognosis

Although radiographic resolution may be very slow (6 weeks–5 years), resolution occurs in most patients without risk factors for lower respiratory tract infections or loss of pulmonary function. In the immunocompromised or medically complex host, the outlook depends on the underlying disorder.
CHILDREN’S INTERSTITIAL LUNG DISEASE SYNDROME

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Occurs acutely in the neonatal period or subacutely in infancy or childhood.
- Infants and young children have different diagnoses than adolescents and adults.
- Presence of three to five of the following criteria in the absence of any identified primary etiology is suggestive of an interstitial lung disease (ILD) syndrome:
  - Symptoms of impaired respiratory function (cough, tachypnea, retractions, exercise intolerance).
  - Evidence of impaired gas exchange (resting hypoxemia or hypercarbia, desaturation with exercise).
  - Diffuse infiltrates on imaging.
  - Presence of adventitious sounds (crackles, wheezing).
  - Abnormal spirometry, lung volumes, or carbon monoxide diffusing capacity.
  - History of exposure (eg, birds, organic dusts, drug therapy, hot tubs, molds), previous lung disease, immunosuppression, symptoms of connective tissue disease; family history of familial lung disease (especially ILD) or early infant death from lung disease.

Children’s Interstitial Lung Disease (chILD) syndrome is a constellation of signs and symptoms and not a specific diagnosis. Once recognized, chILD syndrome should elicit a search for a more specific diagnosis. Known disorders can present as chILD syndrome and must be excluded as the primary cause of symptoms. These disorders include CF, cardiac disease, asthma, acute infection, immunodeficiency, neuromuscular disease, scoliosis, thoracic cage abnormality, typical BPD or premature respiratory distress syndrome, and confirmed significant aspiration on a swallow study. However, if patients present with symptoms out of proportion to the diagnosis, consideration should be given to other ILD disorders.

Clinical Findings

A. Symptoms and Signs

chILD syndrome may present acutely in the newborn period with respiratory failure or gradually over time with a chronic dry cough or a history of dyspnea on exertion. The child with more advanced disease may have dyspnea, resting tachypnea, retractions, hypoxemia, cyanosis, barrel chest, clubbing, failure to thrive, or weight loss.

B. Laboratory Findings

Initial evaluations should be directed at ruling out known conditions. Depending on the age and presentation, this should include the following: chest radiographs, modified barium swallow, pulmonary function tests, and skin tests (see section Tuberculosis); complete blood count and erythrocyte sedimentation rate; sweat chloride test for CF; electrocardiogram or echocardiogram; serum immunoglobulins and other immunologic evaluations; sputum studies (see section Pneumonia in the Immunocompromised Host); and possibly studies for Epstein-Barr virus, cytomegalovirus, M pneumoniae, Chlamydia, Pneumocystis, and Ureaplasma urealyticum.

C. Imaging Studies

Chest radiographs are normal in up to 10%–15% of patients. Frequently, specific chILD disorders can be suspected by findings on controlled volume inspiratory and expiratory high-resolution CT. Diagnoses of bronchiolitis obliterans (BO) and neuroendocrine cell hyperplasia of infancy (NEHI) can be made using CT findings in the right clinical context. Infants and children younger than age 5 years require sedation, which allows either infant pulmonary function testing or bronchoscopy to be completed at the same time. The lowest possible dose of radiation should always be used and this point should be emphasized at centers not specialized in pediatric care.

D. Special Tests

Depending on the specific ILD, pulmonary function tests may show (1) a restrictive pattern of decreased lung volumes, compliance, and carbon monoxide diffusing capacity, (2) an obstructive pattern with hyperinflation, or (3) a mixed obstructive-restrictive pattern. Exercise-induced or nocturnal hypoxemia is often the earliest detectable abnormality of lung function in children.

During the second evaluation phase, bronchoscopy is performed to exclude anatomic abnormalities, and obtain bronchoalveolar lavage for microbiologic and cytologic testing. Nasal brushings to evaluate for primary ciliary dyskinesia (see section Primary Ciliary Dyskinesia) may be obtained if this diagnosis is suspected.

In patients with static or slowly progressing disease, one can then await results of bronchoscopic studies. In patients with acute, rapidly progressive disease, this stage should be combined with video-assisted thoracoscopic lung biopsy. Lung biopsy is the most reliable method for definitive diagnosis when analyzed by pathologists experienced in chILD
disorders. A new chILD histology classification has been proposed to improve diagnostic yields. Tissue should be processed in a standard manner for special stains and cultures, electron microscopy, and immunoﬂuorescence for immune complexes if indicated. Although transbronchial biopsy may be useful in diagnosing a few diffuse disorders and graft rejection in transplantation (eg, sarcoidosis), its overall usefulness in chILD is limited at this time.

E. Special Examinations: Genetic Testing

Genomic mutational analysis of tissue or blood for surfactant proteins B and C (SP-B, SP-C) and ABCA3 is now offered in clinical laboratories and should be considered in children with diffuse lung disease or a strong family history of ILD. Recently other genetic mutations have been reported for rare chILD that offer diagnostic information. A newly recognized disorder associated with the thyroid transcription factor–1 protein (NKX2.1 gene) can result in variable phenotypes of brain, thyroid, and lung syndrome. Children with unexplained lung disease and hypotonia or developmental delays with or without hypothyroidism and newborns with severe RDS and congenital hypothyroidism should be screened for this disorder. Other genetic disorders that cause ILD include alveolar capillary dysplasia (FOXF1 found in 30% of patients), pulmonary alveolar proteinosis (GCSF [granulocyte colony-stimulating factor] receptor mutations or autoantibodies), pulmonary alveolar microlithiasis (SLC34A2), and lysinuric protein intolerance (SLC7A7).

Differential Diagnosis

chILD syndrome is composed of a group of diverse conditions that differ from adult ILD conditions. Common adult causes of ILD such as idiopathic pulmonary ﬁbrosis, which is associated with a high mortality rate, and respiratory bronchiolitis, associated with smoking, have not been found in children. Conversely, newly identiﬁed conditions unique to infancy such as neuroendocrine cell hyperplasia of infancy (NEHI) or pulmonary interstitial glycogenosis (PIG), have not been described in adults. Other chILD conditions include the genetically recognized surfactant dysfunction mutations SP-B, SP-C, ABCA3, and NKX2.1; developmental abnormalities; and growth disorders, especially in younger children. Older children are more likely to have SP-C or ABCA3 surfactant mutations, hypersensitivity pneumonitis, or collagen-vascular disease. Other known conditions must also be ruled out.

Complications

Respiratory failure or pulmonary hypertension may occur. Somatic growth deﬁciencies often require nutritional supplementation. Mortality and morbidity can be signiﬁcant in and vary by speciﬁc diagnosis.

Treatment

Therapy for known causes of ILD such as infection, aspiration, or cardiac disorders should be directed toward the primary disorder. It must be recognized that treatment for chILD conditions is anecdotal and based on case reports and small case series. In noninﬂammatory chILD syndrome conditions such as NEHI or developmental or growth abnormalities, treatment is supportive and may not require corticosteroids. For surfactant dysfunction mutations, PIG, hypersensitivity pneumonitis, and systemic collagen-vascular disease, patients are frequently treated initially with glucocorticoids. Other conditions may require oral glucocorticoids (2 mg/kg/d for 6 weeks) or monthly pulse glucocorticoids (IV doses of 10–30 mg/kg for 1–3 days). Many patients require even more protracted therapy with alternate-day prednisone. Chloroquine (5–10 mg/kg/d) may be useful in selected disorders such as desquamative interstitial pneumonitis, surfactant dysfunction mutations, or refractory disease. Cyclophosphamide is used in severe cases of diffuse alveolar hemorrhage associated with pulmonary capillaritis. In refractory cases, immunomodulatory therapies (plasmapheresis, intravenous immunoglobulin, azathioprine, cyclophosphamide, and rituximab) have been used. Finally, some patients with severe disease may require long-term mechanical ventilation or lung transplantation for survival. Children with ILD should be evaluated and cared for by an experienced multidisciplinary team. The chILD Family Foundation can provide further supportive resources for families (http://www.childfoundation.us).

Prognosis

Prognosis is guarded in children with ILD due to collagen-vascular disease, surfactant dysfunction mutations, and lung development disorders. Mortality has been reported in PIG, usually in association with a concurrent lung growth abnormality. Deaths have not been reported in NEHI.

Hypersensitivity Pneumonitis

Hypersensitivity pneumonitis, or extrinsic allergic alveolitis, is a T-cell–mediated disease involving the peripheral airways, interstitium, and alveoli and presents as a distinct
form of chILD. Both acute and chronic forms may occur. In children, the most common forms are brought on by exposure to domestic and occasionally wild birds or bird droppings (eg, pigeons, parakeets, parrots, or doves) also known as bird fanciers lung. Intensity, duration, and genetic predisposition are all important factors. However, inhalation of almost any organic dust (moldy hay, compost, logs or tree bark, sawdust, or aerosols from humidifiers or hot tubs) can cause disease. Methotrexate-induced hypersensitivity has also been described in a child with juvenile rheumatoid arthritis. Hot tub lung can be caused by exposure to aerosolized Mycobacterium avium complex. A high level of suspicion and a thorough history with attention to environmental exposures are required for diagnosis.

Clinical Findings

A. Symptoms and Signs

Episodic cough and fever can occur with acute exposures. Chronic exposure results in weight loss, fatigue, dyspnea, cyanosis, and, ultimately, respiratory failure.

B. Laboratory Findings

Acute exposure may be followed by polymorphonuclear leukocytosis with eosinophilia and evidence of airway obstruction on pulmonary function testing. Chronic disease results in a restrictive picture on lung function tests.

The serologic key to diagnosis is the finding of precipitins (precipitating IgG antibodies) to the organic materials that contain avian proteins or fungal or bacterial antigens. Ideally, to identify avian proteins, the patient’s sera should be tested with antigens from droppings of the suspected species of bird. However, exposure may invoke precipitins without causing disease.

When serologic investigations are not diagnostic, lung biopsy may be necessary. Histopathology is characterized by lymphocyte predominant interstitial infiltrates, cellular bronchiolitis, and peribronchiolar noncaseating granulomas.

Chest x-ray findings are variable and may include normal lung fields, air-space consolidation, nodular, or reticulonodular patterns. High-resolution CT of the chest is more sensitive, with classic findings of centrilobular nodules, ground-glass opacities, and air-trapping. Pulmonary fibrosis is seen in chronic disease. Lymphocytosis or M avium complex on bronchoalveolar lavage may be suggestive.

Differential Diagnosis

Patients with mainly acute symptoms must be differentiated from those with atopic asthma. Patients with chronic symptoms must be distinguished from those with collagen-vascular, immunologic, or primary interstitial lung disease.

Complications

Prolonged exposure to offending antigens may result in pulmonary hypertension due to chronic hypoxemia, irreversible restrictive lung disease due to pulmonary fibrosis, or respiratory failure.

Treatment & Prognosis

Complete elimination of exposure to the offending antigens is required. If drug-induced hypersensitivity pneumonitis is suspected, discontinuation is required. Corticosteroids may hasten recovery. With appropriate early diagnosis and identification and avoidance of offending antigens, the prognosis is excellent.


PULMONARY HEMORRHAGE

Pulmonary hemorrhage can be caused by a spectrum of disorders affecting the large and small airways and alveoli. It can occur as an acute or chronic process. If pulmonary hemorrhage is subacute or chronic, hemosiderin-laden macrophages can be found in the sputum and tracheal or gastric aspirate 48–72 hours after the bleeding begins. Many cases are secondary to bacterial, mycobacterial, parasitic, viral, or fungal infections (such as the toxigenic mold Stachybotrys chartarum). Lung abscess, bronchiectasis (CF or other causes), foreign body, coagulopathy (often with overwhelming sepsis), or elevated pulmonary venous pressure (secondary to congestive heart failure, anatomic heart lesions, or ascent to high altitude) may also cause pulmonary hemorrhage. Other causes include lung contusion from trauma, pulmonary embolus with infarction, arteriovenous fistula or telangiectasias, autoimmune vasculitis, hypersensitivity pneumonitis pulmonary sequestration, agenesis of a single pulmonary artery, and esophageal duplication or bronchogenic cyst. In children, pulmonary hemorrhage due to airway tumors (eg, bronchial adenoma or left atrial myxoma) is quite rare.

Hemorrhage involving the alveoli is termed diffuse alveolar hemorrhage. Diffuse alveolar hemorrhage may be idiopathic or drug-related or may occur in Goodpasture syndrome, rapidly progressive glomerulonephritis, and systemic vasculitides (often associated with such collagen-vascular diseases as systemic lupus erythematosus, rheumatoid arthritis, Wegener granulomatosis, polyarteritis nodosa,
Henoch-Schönlein purpura, and Behçet disease). Idiopathic pulmonary hemosiderosis refers to the accumulation of hemosiderin in the lung, especially the alveolar macrophage, as a result of chronic or recurrent hemorrhage (usually from pulmonary capillaries) that is not associated with the previously listed causes. Children and young adults are mainly affected, with the age at onset ranging from 6 months to 20 years.

**Clinical Findings**

**A. Symptoms and Signs**

Large airway hemorrhage presents with hemoptysis and symptoms of the underlying cause, such as infection, foreign body, or bronchiectasis in CF. Hemoptysis from larger airways is often bright red or contains clots. Children with diffuse alveolar hemorrhage may present with massive hemoptysis, marked respiratory distress, stridor, or a pneumonia-like syndrome. However, most patients with diffuse alveolar hemorrhage and idiopathic pulmonary hemosiderosis present with nonspecific respiratory symptoms (cough, tachypnea, and retractions) with or without hemoptysis, poor growth, and fatigue. Fever, abdominal pain, digital clubbing, and chest pain may also be reported. Jaundice and hepatosplenomegaly may be present with chronic bleeding. Physical examination often reveals decreased breath sounds, rales, rhonchi, or wheezing.

**B. Laboratory Findings and Imaging Studies**

Laboratory studies depend on the cause of hemorrhage. When gross hemoptysis is present, large airway bronchiectasis, epistaxis, foreign body, and arteriovenous malformations should be considered. Flexible bronchoscopy and imaging (MRI or CT-assisted angiography) can be used to localize the site of bleeding. Alveolar bleeding with hemoptysis is often frothy and pink. Long-standing idiopathic pulmonary hemorrhage may cause iron deficiency anemia and heme-positive sputum. Nonspecific findings may include lymphocytosis and an elevated erythrocyte sedimentation rate. Peripheral eosinophilia is present in up to 25% of patients. Chest radiographs may demonstrate perihilar infiltrates, fluffy alveolar infiltrates with or without atelectasis, and mediastinal adenopathy. Pulmonary function testing generally reveals restrictive impairment, with low lung volumes, poor compliance, and an increased diffusion capacity. Hemosiderin-laden macrophages are found in tracheal or gastric aspirates. The diagnostic usefulness of lung biopsy is controversial.

Patients with diffuse alveolar hemorrhage with an underlying systemic disease may need a lung biopsy. In patients with systemic lupus erythematosus, Wegener granulomatosis, and occasionally Goodpasture syndrome diffuse alveolar hemorrhage can occur with the histologic entity known as necrotizing pulmonary capillaritis. Lung biopsy reveals alveolar septa infiltrated with neutrophils, edema, or necrosis in addition to alveolar hemorrhage. In idiopathic pulmonary hemosiderosis, a mild form of capillaritis is associated with focal or diffuse alveolar hemorrhage. An immune-mediated process may cause idiopathic pulmonary hemosiderosis and capillaritis by biopsy in the absence of an identifiable serologic marker. Although capillaritis has been described without evidence of underlying systemic disease, the search for collagen-vascular disease, vasculitis, or pulmonary fibrosis should be exhaustive.

Serologic studies such as circulating antineutrophilic cytoplasmic autoantibodies for Wegener granulomatosis, perinuclear antineutrophilic cytoplasmic autoantibodies for microscopic polyangiitis, antinuclear antibodies for systemic lupus erythematosus, and anti–basement membrane antibodies for Goodpasture syndrome should be obtained. α1-Antitrypsin deficiency should also be considered.

Cow’s milk–induced pulmonary hemosiderosis (Heiner syndrome) can be confirmed by high titers of serum precipitins to multiple constituents of cow’s milk and positive intradermal skin tests to cow’s milk proteins. Improvement after eliminating cow’s milk also supports the diagnosis.

**Differential Diagnosis**

Bleeding from the nose or mouth can present as hemoptysis. Therefore, a complete examination of the nose and mouth is required before confirming the diagnosis of intrapulmonary bleeding. Hematemesis can also be confused with hemoptysis; confirming that the blood was produced after coughing and not with emesis should also be part of the initial evaluation. A complete past medical history including underlying systemic illness and cardiovascular anomalies may direct the search for the site of respiratory bleeding.

**Treatment**

Therapy should be aimed at direct treatment of the underlying disease. In severe bleeding, intubation with application of positive pressure during mechanical ventilation and/or endotracheal administration of epinephrine may help attenuate bleeding. Patients with cystic fibrosis or bronchiectasis from other causes who develop massive (> 240 mL) or recurrent hemoptysis, bronchial artery embolization may be necessary. An experienced interventional radiologist should be consulted immediately. Although its use requires anticoagulation, extracorporeal life support has resulted in the survival of children with severe pulmonary hemorrhage. For more chronic bleeding, supportive measures, including iron therapy, supplemental oxygen, and blood transfusions, may be needed. A diet free of cow’s milk should be tried in infants. Systemic corticosteroids have been used for various causes of diffuse alveolar hemorrhage and have been particularly successful in those secondary to collagen-vascular
disorders and vasculitis. Case reports have been published describing the variable effectiveness of steroids, chloroquine, cyclophosphamide, and azathioprine for idiopathic pulmonary hemosiderosis.

#### Prognosis

The outcome of pulmonary hemorrhage depends on the cause of the bleeding and how much blood has been lost. The course of idiopathic pulmonary hemosiderosis is variable, characterized by a waxing and waning course of intermittent intrapulmonary bleeds and the gradual development of pulmonary fibrosis over time. The severity of the underlying renal disease contributes to the mortality rates associated with Goodpasture syndrome and Wegener granulomatosis. Diffuse alveolar hemorrhage is considered a lethal pulmonary complication of systemic lupus erythematosus.


#### PULMONARY EMBOLISM

Pulmonary embolism is a rare, but severe cause of respiratory distress in children. It is commonly caused by sickle cell anemia as part of the acute chest syndrome, malignancy, rheumatic fever, infective endocarditis, schistosomiasis, bone fracture, dehydration, polycythemia, nephrotic syndrome, atrial fibrillation, and other conditions. A majority of children with pulmonary emboli referred for hematology evaluation have coagulation regulatory protein abnormalities and antiphospholipid antibodies. Emboli may result in clinical signs and symptoms dependent on the severity of pulmonary vascular obstruction. In children, tumor emboli are a more common cause of massive pulmonary embolism than embolization from a lower extremity deep venous thrombosis.

#### Clinical Findings

##### A. Symptoms and Signs

Pulmonary embolism usually presents as an acute onset of dyspnea and tachypnea. Heart palpitations, pleuritic chest pain, and a sense of impending doom may be reported. Hemoptysis is rare, but may occur along with splinting, cyanosis, and tachycardia. Massive emboli may be present with syncope and cardiac arrhythmias. Physical examination is usually normal (except for tachycardia and tachypnea) unless the embolism is associated with an underlying disorder. Mild hypoxemia, rales, focal wheezing, or a pleural friction rub may be found.

B. Laboratory Findings and Imaging Studies

Radiographic findings may be normal, but a peripheral infiltrate, small pleural effusion, or elevated hemidiaphragm can be present. If the emboli are massive, differential blood flow and pulmonary artery enlargement may be appreciated. The electrocardiogram is usually normal unless the pulmonary embolus is massive. Echocardiography is useful in detecting the presence of a large proximal embolus. A negative D-dimer has a more than 95% negative predictive value for an embolus. Ventilation-perfusion scans show localized areas of ventilation without perfusion.

Spiral CT with contrast may be helpful, but pulmonary angiography is the gold standard. A recent case series suggests that bedside chest ultrasound may aid in diagnosing pulmonary emboli, particularly in critically ill children. Further evaluation may include Doppler ultrasound studies of the legs to search for deep venous thrombosis. Coagulation studies, including assessments of antithrombin III, fibrinogen, antiphospholipid antibodies, homocystine, coagulation regulatory proteins (proteins C and S, and factor V Leiden), and the prothrombin G20210A mutation are abnormal in up to 70% of pediatric patients with pulmonary embolism.

#### Treatment

Acute treatment includes supplemental oxygen, and anticoagulation. Current recommendations include heparin therapy to maintain an activated partial thromboplastin time of greater than 1.5 times the control value for the first 24 hours. Urokinase or tissue plasminogen activator can be used to help dissolve the embolus. These therapies should be followed by warfarin therapy for at least 6 weeks with an international normalized ratio (INR) greater than 2.

hypoxemia from ventilation-perfusion mismatch, bronchial compression, and if advanced, decreased surfactant function. There are two basic types of pulmonary edema: increased pressure (cardiogenic or hydrostatic) and increased permeability (noncardiogenic or primary). Hydrostatic pulmonary edema is usually due to excessive increases in pulmonary venous pressure, which is most commonly due to congestive heart failure from multiple causes. Postobstructive pulmonary edema occurs when airway occlusion (or its sudden relief) causes a sudden drop in airway pressure which leads to increased venous return and decreased left heart blood flow. These changes result in elevated hydrostatic pressures and transudation of fluid from the pulmonary capillaries to the alveolar space.

In contrast, many lung diseases, especially acute respiratory distress syndrome, are characterized by the development of pulmonary edema secondary to changes in permeability due to injury to the alveolocapillary barrier. In these settings, pulmonary edema occurs independently of the elevations of pulmonary venous pressure.

Clinical Findings

A. Symptoms and Signs

Cyanosis, tachypnea, tachycardia, and respiratory distress are commonly present. Physical findings include rales, diminished breath sounds, and (in young infants) expiratory wheezing. More severe disease is characterized by progressive respiratory distress with marked retractions, dyspnea, and severe hypoxemia.

B. Imaging Studies

Chest radiographic findings depend on the cause of the edema. Pulmonary vessels are prominent, often with diffuse interstitial or alveolar infiltrates. Heart size is usually normal in permeability edema but enlarged in hydrostatic edema.

Treatment

Although specific therapy depends on the underlying cause, supplemental oxygen therapy, and ventilator support may be indicated. Diuretics, digoxin, and vasodilators may be indicated for congestive heart failure along with restriction of salt and water. Loop diuretics, such as furosemide, are primarily beneficial because they increase systemic venous capacitance, not because they induce diuresis. Improvement can even be seen in anuric patients. Recommended interventions for permeability edema are reduction of vascular volume and maintenance of the lowest central venous or pulmonary arterial wedge pressure possible without sacrificing cardiac output or causing hypotension (see following discussion). β-Adrenergic agonists such as terbutaline have been shown to increase alveolar clearance of lung water, perhaps through the action of a sodium-potassium channel pump. Maintaining normal albumin levels and a hematocrit concentration above 30 maintains the filtration of lung liquid toward the capillaries, avoiding low oncotic pressure.

High-altitude pulmonary edema (HAPE) occurs when susceptible individuals develop noncardiogenic edema after rapid ascent to altitudes above 3000 m. Children may develop HAPE with variation in severity. Oxygen therapy and prompt descent are the cornerstones of therapy for this illness.

CONGENITAL PULMONARY LYMPHANGIECTASIA

Structurally, congenital pulmonary lymphangiectasia appears as dilated subpleural and interlobular lymphatic channels and may present as part of a generalized lymphangiectasis (in association with obstructive cardiovascular lesions—especially total anomalous pulmonary venous return) or as an isolated idiopathic lesion. Pathologically, the lung appears firm, bulky, and noncompressible, with prominent cystic lymphatics visible beneath the pleura. On cut section, dilated lymphatics are present near the hilum, along interlobular septa, around bronchovascular bundles, and beneath the pleura. Histologically, dilated lymphatics have a thin endothelial cell lining overlying a delicate network of elastin and collagen.

Clinical Findings

Congenital pulmonary lymphangiectasia is a rare, usually fatal disease that generally presents as acute or persistent respiratory distress at birth. Although most patients do not survive the newborn period, some survive longer, and there are case reports of its diagnosis later in childhood. Congenital pulmonary lymphangiectasia may be associated with Noonan syndrome, asplenia, total anomalous pulmonary venous return, septal defects, atrioventricular canal, hypoplastic left heart, aortic arch malformations, and renal malformations. Chylothorax has been reported. Chest radiographic findings include a ground-glass appearance, prominent interstitial markings suggesting lymphatic distention, diffuse hyperlucency of the pulmonary parenchyma, and hyperinflation with depression of the diaphragm.

Prognosis

Although the onset of symptoms may be delayed for as long as the first few months of life, prolonged survival is rare.
Most deaths occur within weeks after birth. However, more recent studies have shown that respiratory symptoms do improve after the first year of life suggesting that maximal medical treatment remains warranted. In those with the most severe disease, rapid diagnosis is essential in order to expedite the option of lung transplantation.


PECTUS EXCAVATUM

Pectus excavatum is anterior depression of the chest wall that may be symmetrical or asymmetrical with respect to the midline. Its presence can be psychologically difficult for the patient. Whether or not it is cause for cardiopulmonary limitations is controversial. While subjective exertional dyspnea can be reported and may improve with repair, objective cardiopulmonary function may not change postoperatively. Therefore, the decision to repair the deformity may be based on cosmetic or physiologic considerations. Surgical literature provides more information regarding long-term outcomes following repair. Timing of repair is critical in light of growth plate maturation. Pectus excavatum may be associated with congenital heart disease.


DISORDERS OF THE CHEST WALL & DIAPHRAGM

SCOLIOSIS

Scoliosis is defined as lateral curvature of the spine and is commonly categorized as idiopathic, congenital, or neuromuscular. No pulmonary impairment is typically seen with a Cobb angle showing thoracic curvature of less than 35 degrees. Most cases of idiopathic scoliosis occur in adolescent girls and are corrected before significant pulmonary impairment occurs. Congenital scoliosis of severe degree or with other major abnormalities carries a more guarded prognosis. Patients with progressive neuromuscular disease, such as Duchenne muscular dystrophy, can be at risk for respiratory failure due to severe scoliosis and restrictive lung disease. Severe scoliosis can also lead to impaired lung function and, if uncorrected, possible death from cor pulmoneal. (See also Chapter 26.) Small studies indicate that surgical correction of neuromuscular scoliosis may lead to improved quality of life, although pulmonary function may not improve.


NEUROMUSCULAR DISORDERS

Neuromuscular disorders are discussed in detail in Chapter 25. Weakness of the respiratory and pharyngeal muscles leads to chronic or recurrent pneumonia secondary to weak cough and poor mucus clearance, aspiration and infection, persistent atelectasis, hypoventilation, and respiratory failure in severe cases. Scoliosis, which frequently accompanies longstanding neuromuscular disorders, may further compromise respiratory function. Children born with significant neuromuscular weakness may present with signs and symptoms of respiratory compromise early in life. The time to presentation for children with progressive or acquired neuromuscular disease will depend upon the progression of their disease. Typical examination findings in children at increased risk for pulmonary disease are a weak cough, decreased air exchange, crackles, wheezing, and dullness to percussion. The child also may have symptoms of obstructive sleep apnea and decreased lung function by spirometry and/or lung volume analysis. Signs of cor pulmonale (loud
pulmonary component to the second heart sound, hepatomegaly, and elevated neck veins) may be evident in advanced cases. Chest radiographs generally show small lung volumes. If chronic aspiration is present, increased interstitial infiltrates and areas of atelectasis or consolidation may be present. Arterial blood gases demonstrate hypoxemia in the early stages and compensated respiratory acidosis in the late stages. Typical pulmonary function abnormalities include low lung volumes and decreased inspiratory force generated against an occluded airway.

Treatment is supportive and includes vigorous pulmonary toilet, antibiotics with infection, and oxygen to correct hypoxemia. Consideration of bilevel positive airway pressure and mechanical airway clearance support, like mechanical inexactation, should be introduced before respiratory failure is present. Unfortunately, despite aggressive medical therapy, many neuromuscular conditions progress to respiratory failure and death. The decision to intubate and ventilate is a difficult one; it should be made only when there is real hope that deterioration, though acute, is potentially reversible or when chronic ventilation is wanted. Chronic mechanical ventilation using either noninvasive or invasive techniques is being used more frequently in patients with chronic respiratory insufficiency.

### Eventration of the Diaphragm

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Respiratory distress in a newborn.
- Recurrent pneumonia.
- Persistent elevation of the diaphragm by chest x-ray.

Eventration of the diaphragm occurs when striated muscle is replaced with connective tissue and is demonstrated on radiograph by elevation of a part or whole of the diaphragm. There are two types: congenital and acquired. The congenital type is thought to represent incomplete formation of the diaphragm in utero. The acquired type is related to atrophy of diaphragm muscles secondary to prenatal or postnatal phrenic nerve injury. The differential diagnosis of eventration includes phrenic nerve injury and partial diaphragmatic hernia.

**Clinical Findings**

**A. Symptoms and Signs**

The degree of respiratory distress depends on the amount of paradoxical motion of the diaphragm. When the diaphragm moves upward during inspiration, instability of the inferior border of the chest wall increases the work of breathing and can lead to respiratory muscle fatigue and potential failure when stressed. Symptoms include persistent increased work of breathing, particularly with feeding or failure to extubate.

**B. Laboratory Findings and Imaging Studies**

Small eventrations may be an incidental finding on a chest radiograph, commonly seen on the right side. Ultra-sound provides useful information to further define a suspected eventration. When defects are small, there is no paradoxical movement of the diaphragm and little symptomatology. When defects are large, paradoxical movement of the diaphragm may be present.

**Treatment**

Treatment is based on severity of symptoms. If symptoms persist for 2–4 weeks, the diaphragm is surgically plicated, which stabilizes it. Function returns to the diaphragm in about 50% of cases of phrenic nerve injury whether or not plication was performed. Recovery periods of up to 100 days have been reported in these cases.

**DISORDERS OF THE PLEURA & PLEURAL CAVITY**

The *parietal* pleura covers the inner surface of the chest wall. The *visceral* pleura covers the outer surface of the lungs. Disease processes can lead to accumulation of air or fluid or both in the pleural space. Pleural effusions are classified as transudates or exudates. Transudates occur when there is imbalance between hydrostatic and oncotic pressure, so that fluid filtration exceeds reabsorption (eg, congestive heart failure). Exudates form as a result of inflammation of the pleural surface leading to increased capillary permeability (eg, parapneumonic effusions). Other pleural effusions include chylothorax and hemotherox.

Thoracentesis is helpful in characterizing the fluid and providing definitive diagnosis. Recovered fluid is considered
an exudate (as opposed to a transudate) if any of the following are found: a pleural fluid–serum protein ratio greater than 0.5, a pleural fluid–serum lactate dehydrogenase ratio greater than 0.6, or a pleural fluid lactate dehydrogenase level greater than 200 U/L. Important additional studies on pleural fluid include cell count; pH and glucose; Gram stain, acid-fast and fungal stains; aerobic and anaerobic cultures; counterimmunoelectrophoresis for specific organisms; and occasionally, amylase concentration. Cytologic examination of pleural fluid should be performed to rule out leukemia or other neoplasm.


**HEMOTHORAX**

Accumulation of blood in the pleural space can be caused by surgical or accidental trauma, coagulation defects, and pleural or pulmonary tumors. A parapneumonic effusion is defined as a hemothorax when the hematocrit of the fluid is more than 50% of the peripheral blood. With blunt trauma, hemopneumothorax may be present. Symptoms are related to blood loss and compression of underlying lung parenchyma. There is some risk of secondary infection, resulting in empyema.

**Treatment**

Drainage of a hemothorax is required when significant compromise of pulmonary function is present, as with hemopneumothorax. In uncomplicated cases, observation is indicated because blood is readily absorbed spontaneously from the pleural space.

VATS has been used successfully in the management of hemothorax. Chest CT scan is helpful to select patients who may require surgery, as identification of blood and the volume of blood may be more predictive by this method than by chest radiograph.


**CHYLOTHORAX**

Accumulation of chyle, fluid of intestinal origin containing fat digestion products (mostly lipids), in the pleural space usually results from accidental or surgical trauma to the thoracic duct. The most common cause of a pleural effusion in the first few days of life is a chylothorax. In a newborn, chylothorax can be due to congenital abnormalities of the lymph vessels or secondary to birth trauma. In an older child, chylothoraces can be due to: laceration or obstruction of the thoracic duct due to trauma or any surgery involving the chest wall (cardiac surgery, scoliosis repair etc); obstruction of the vessels due to a benign or malignant mass or lymphadenopathy; or increased venous pressure due to obstruction or left ventricular failure. Symptoms of chylothorax are related to the amount of fluid accumulation and the degree of compromise of underlying pulmonary parenchyma. Thoracentesis reveals typical milky fluid (unless the patient has been fasting) containing chiefly T lymphocytes.

**Treatment**

Treatment should be conservative because many chylothoraces resolve spontaneously. Oral feedings with medium-chain triglycerides reduce lymphatic flow through the thoracic duct. Recent literature has shown somatostatin or the long-acting somatostain analogue, octreotide, as viable therapeutic options. Drainage of chylous effusions should be performed only for respiratory compromised because the fluid often rapidly reaccumulates. Repeated or continuous drainage may lead to protein malnutrition and T-cell depletion, rendering the patient relatively immunocompromised. If reaccumulation of fluid persists, surgical ligation of the thoracic duct or sclerosis of the pleural space can be attempted, although the results may be less than satisfactory.


**PNEUMOTHORAX & RELATED AIR LEAK SYNDROMES**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Sudden onset shortness of breath.
- Focal area of absent breath sounds on chest auscultation.
- Shift of the trachea away from the area with absent breath sounds.

Pneumothorax can occur spontaneously in newborns and in older children, or more commonly, as a result of birth trauma, positive pressure ventilation, underlying obstructive or restrictive lung disease, or rupture of a congenital or acquired lung cyst. Pneumothorax can also occur as an acute complication of tracheostomy. Air usually dissects from the alveolar spaces into the interstitial spaces of the lung.
Migration to the visceral pleura ultimately leads to rupture into the pleural space. Associated conditions include pneumomediastinum, pneumopericardium, pneumoperitoneum, and subcutaneous emphysema. These conditions are more commonly associated with dissection of air into the interstitial spaces of the lung with retrograde dissection along the bronchovascular bundles toward the hilum.

**Clinical Findings**

**A. Symptoms and Signs**

The clinical spectrum can vary from asymptomatic to severe respiratory distress. Associated symptoms include cyanosis, chest pain, and dyspnea. Physical examination may reveal decreased breath sounds and hyperresonance to percussion on the affected side with tracheal deviation to the opposite side. When pneumothorax is under tension, cardiac function may be compromised, resulting in hypotension or narrowing of the pulse pressure. Pneumopericardium is a life-threatening condition that presents with muffled heart tones and shock. Pneumomediastinum rarely causes other than chest pain symptoms by itself.

**B. Diagnostic Studies**

Chest radiographs usually demonstrate the presence of free air in the pleural space. If the pneumothorax is large and under tension, compressive atelectasis of the underlying lung and shift of the mediastinum to the opposite side may be demonstrated. Cross-table lateral and lateral decubitus radiographs can aid in the diagnosis of free air. Pneumopericardium is identified by the presence of air completely surrounding the heart, whereas in patients with pneumomediastinum, the heart and mediastinal structures may be outlined with air, but the air does not involve the diaphragmatic cardiac border. Chest CT scan may be helpful with recurrent spontaneous pneumothoraces to look for subtle pulmonary disease not seen on chest radiograph, but this is debated.

**Differential Diagnosis**

Acute deterioration of a patient on a ventilator can be caused by tension pneumothorax, obstruction or dislodgment of the endotracheal tube, or ventilator failure. Radiographically, pneumothorax must be distinguished from diaphragmatic hernia, lung cysts, congenital lobar emphysema, and cystic adenomatoid malformation, but this task is usually not difficult.

**Treatment**

Small (< 15%) or asymptomatic pneumothoraces usually do not require treatment and can be managed with close observation. Larger or symptomatic pneumothoraces require drainage, although inhalation of 100% oxygen to wash out blood nitrogen can be tried. Needle aspiration should be used to relieve tension acutely, followed by chest tube or pigtail catheter placement. Pneumopericardium requires immediate identification, and if clinically symptomatic, needle aspiration to prevent death, followed by pericardial tube placement.

**Prognosis**

In older patients with spontaneous pneumothorax, recurrences are common; sclerosing and surgical procedures are often required.


**MEDIASTINAL MASSES**

Children with mediastinal masses may present because of symptoms produced by pressure on the esophagus, airways, nerves, or vessels within the mediastinum, or the masses may be discovered on a routine chest radiograph. Once the mass is identified, localization to one of four mediastinal compartments aids in the differential diagnosis. The superior mediastinum is the area above the pericardium that is bordered inferiorly by an imaginary line from the manubrium to the fourth thoracic vertebra. The anterior mediastinum is bordered by the sternum anteriorly and the pericardium posteriorly, and the posterior mediastinum is defined by the pericardium and diaphragm anteriorly and the lower eight thoracic vertebrae posteriorly. The middle mediastinum is surrounded by these three compartments.

**Clinical Findings**

**A. Symptoms and Signs**

Respiratory symptoms, when present, are due to pressure on an airway (cough or wheezing) or an infection (unresolving pneumonia in one area of lung). Hemoptyisis can also occur but is an unusual presenting symptom. Dysphagia may occur secondary to compression of the esophagus. Pressure on the recurrent laryngeal nerve can cause hoarseness due to paralysis of the left vocal cord. Superior vena caval...
Differential Diagnosis

The differential diagnosis of mediastinal masses is determined by their location. Within the superior mediastinum, one may find cystic hygromas, vascular or neurogenic tumors, thymic masses, teratomas, intrathoracic thyroid tissue, mediastinal abscess, and esophageal lesions. Within the anterior mediastinum, thymic tissue (thymomas, hyperplasia, cysts and intrathoracic thyroid) and teratomas, vascular tumors, and lymphatic tissue (lymphomas, leukemia, or reactive lymphadenopathy) give rise to masses. Within the middle mediastinum one may again find lymphomas and hypertrophic lymph nodes, granulomas, bronchogenic or enterogenous cysts, metastases, and pericardial cysts. Abnormalities of the great vessels and aortic aneurysms may also present as masses in this compartment. Within the posterior mediastinum, neurogenic tumors, enterogenous cysts, thoracic meningocoeles, or aortic aneurysms may be present.

In some series, more than 50% of mediastinal tumors occur in the posterior mediastinum and are mainly neurogenic tumors or enterogenous cysts. Most neurogenic tumors in children younger than age 4 years are malignant (neuroblastoma or neuroanglioblastoma), whereas a benign ganglioneuroma is the most common histologic type in older children. In the middle and anterior mediastinum, lymphoma and leukemia are the primary concern. Definitive diagnosis in most instances relies on surgery to obtain the mass or a part of the mass for histologic examination.

Treatment & Prognosis

The appropriate therapy and the response to therapy depend on the cause of the mediastinal mass.

SLEEP-DISORDERED BREATHING

Sleep apnea is recognized as a major public health problem in adults, with the risk of excessive daytime sleepiness, driving accidents, poor work performance, and effects on mental health. Pediatric sleep disorders are less commonly recognized because of a lack of training in sleep problem recognition and the presentation, risks, and outcome all differ from those in adults. The spectrum of sleep-disordered breathing includes obstructive sleep apnea, upper airway resistance disorder, and primary snoring. Sleep apnea is defined as cessation of breathing and can be classified as obstructive (the attempt to breathe through an obstructed airway) or central (the lack of effort to breathe). Snoring, mouth breathing, and upper airway obstruction are discussed in Chapter 18.

OBSTRUCTIVE & CENTRAL SLEEP APNEA

Obstructive sleep apnea (OSA) occurs in normal children with an incidence of about 2%, increasing in children with craniofacial abnormalities, neuropathies, or other medical problems. The incidence also increases when children are medicated with hypnotics, sedatives, or anticonvulsants. While not all children who snore have sleep apnea, there is evidence that that snoring without gas exchange abnormalities has neurobehavioral consequences. Obstructive sleep apnea should be suspected whenever a child presents with frequent or habitual snoring, witnessed apnea, labored breathing, frequent nighttime arousals, failure to thrive, oxygen desaturations, life-threatening events, behavior abnormalities, obesity, or craniofacial abnormalities. Upper airway resistance syndrome is characterized by daytime fatigue or sleepiness in the presence of a snoring without gas exchange abnormalities on the polysomnogram. Symptoms are similar to obstructive sleep apnea, including snoring, change in appetite, poor performance in school, and problems with behavior. This chronic flow limitation often improves with treatment. In children, airway obstruction is often associated with adenotonsillar hypertrophy. Tonsillar hypertrophy is most common between the ages of two and seven years. Obesity is widely recognized as an etiologic component in adult OSA and has been similarly cited in children. In children, consequences of sleep apnea include failure to thrive, pulmonary hypertension, deficits of cognition, poor school performance, and psychiatric or behavioral problems.
Central apneas are seen in infants and children. These are pauses in breathing without concomitant effort. Clinical significance is uncertain, but they may be relevant if they occur frequently or gas exchange problems or sleep fragmentation occur. Healthy children have been shown to have central apneas lasting 25 seconds without clear consequences. In comparison, central hypoventilation syndrome patients have intact voluntary control of ventilation, but lack automatic control. During sleep, they will hypoventilate to the point at which they need ventilatory support that may require treatment with positive airway pressure and a rated tidal volume via a noninvasive mask or tracheostomy. Central hypoventilation may occur with low tidal volume breathing and not discreet central apneas, and requires treatment of gas exchange problems.

## Diagnostic Studies

Several studies have shown that clinical history and physical examination alone are not enough to identify children with OSA and that polysomnography should be performed in all suspected cases. This test measures sleep state with electroencephalogram leads and electromyography, airflow at the nose, chest and abdominal muscle movement, heart rate and rhythm, gas exchange (CO₂ and oxygenation), and leg movements, along with other potential data including body position, vibrations representing snoring, and esophageal pH/impedence. Polysomnography allows diagnosis of various forms of apnea, sleep fragmentation, periodic limb movement disorder, or other sleep disorders of children. Overnight oximetry is not an ideal study to diagnose obstructive sleep apnea. While it may identify subjects with severe obstructive sleep apnea, its sensitivity is low. Literature has shown normal oximetry studies in half a population of subjects with polysomnographically confirmed obstructive sleep apnea.

## Treatment

First-line therapy for obstructive sleep apnea in children is adenotonsillectomy, which improves the clinical status for most children with normal craniofacial structure. Even children with craniofacial anomalies or neuromuscular disorders may benefit, although additional treatment with continuous positive airway pressure may be indicated (Roland et al: S1–15). Down syndrome presents unique challenges: up to half of these children can still have obstructive sleep apnea despite adenotonsillectomy. Treatment of young or developmentally delayed children with apnea also presents several challenges. (See Chapter 18 for additional discussion.) Other therapies, such as, nasal steroids, leukotriene modifiers (Goldbart et al: 364–370), oral appliances, rapid maxillary expanders, and weight loss have their roles in select patient populations.

Because the presentation of sleep apnea is quite varied among children, pediatric sleep disorder centers are the referral of choice for testing and initiation of therapy.

**APPARENT LIFE-THREATENING EVENTS**

Apparent life-threatening events (ALTEs) are characterized as being frightening to the observer and commonly include some combination of apnea, color change (usually cyanosis or pallor), a marked change in muscle tone (usually extreme limpness), choking, or gagging. The observer sometimes fears the infant has died. The most frequent problems associated with an ALTE are gastrointestinal (~50%), neurologic (30%), respiratory (20%), cardiovascular (5%), metabolic and endocrine (< 5%), or diverse other problems, including child abuse. Up to 50% of ALTEs remain unexplained and are referred to as apnea of infancy. The relationship between ALTE and future risk of sudden infant death syndrome (SIDS) is not clear, as ALTE infants tend to be slightly younger and found more often while the caretaker is awake. The term apparent life-threatening event replaced “near-miss SIDS” in order to distance the event from a direct association with SIDS. Literature has reported an increased risk when extreme cardiopulmonary events were present at the time of the ALTE. About 12%–15% of both SIDS victims and infants dying unexpectedly of a known cause (SUDI) have had a prior history of ALTE, but most do not.

The mechanism for ALTEs is unknown, but because they do not occur after infancy, immaturity is felt to play a major role. Classic studies on the nervous system, reflexes, or responses to apnea or gastroesophageal reflux during sleep in infants and immature animals show profound cardiovascular changes during stimulation of the vagus nerve where adults would not be affected. More recently, an association of endogenous opioids and opioid-induced respiratory depression has been implicated as an association with ALTE in infants, and is an area of exciting research. The following section describes an approach to the patient who has undergone an ALTE, taking note of the very broad differential diagnosis and uncertainties in both evaluation and treatment.
Clinical Findings and Differential Diagnosis

A. Symptoms and Signs

Table 19–6 classifies disorders associated with ALTEs. As seen from the outset, the causes of ALTEs are multifactorial, but it is the response to the trigger that creates a symptom cluster unique to infants. A careful history is often the most helpful part of the evaluation. In a large epidemiological study of infants who later died of SIDS or SUDI, a careful history using a “baby check” score was useful in identifying infants who were seriously ill. It is useful to determine whether the infant has been ill or essentially well. A history of several days of poor feeding, temperature instability, or respiratory or gastrointestinal symptoms suggests an infectious process. Reports of “struggling to breathe” or “trying to breathe” imply airway obstruction. Association of the episodes with feeding implies discoordinated swallowing, gastroesophageal reflux, or delayed gastric emptying, or may imply an airway abnormality, but these awake episodes may lead to very different diagnoses than those episodes occurring during sleep. Episodes that typically follow crying may be related to breath-holding. Association of episodes with sleeping may also suggest seizure, gastroesophageal reflux, apnea of infancy, or sleep-disordered breathing. Attempts should be made to determine the duration of the episode, but this is often difficult. It is helpful to role-play the episode with the family. Details regarding the measures taken to resuscitate the infant and the infant’s recovery from the episode may be useful in determining severity.

The physical examination provides further direction in pursuing the diagnosis. Fever or hypothermia suggests infection. An altered state of consciousness implies a postictal state or drug overdose. Respiratory distress implies cardiac or pulmonary lesions.

Apneic episodes have been linked to child abuse in several ways. Head injury following nonaccidental trauma may be first brought to medical attention because of apnea. Other signs of abuse are usually immediately apparent in such cases. Drug overdose, either accidental or intentional, may also present with apnea. Several series document that apneic episodes may be falsely reported by parents seeking attention (i.e., Munchausen syndrome by proxy). Parents may physically interfere with a child’s respiratory efforts, in which case pinch marks on the nares are sometimes found.

B. Laboratory Findings

Most patients are hospitalized for observation in order to reduce stress on the family and allow prompt completion of the evaluation. Laboratory evaluation includes a complete blood count for evidence of infection. Diagnostic testing should be based very heavily on the history and physical examination. Laboratory evaluation might include a complete blood count, blood culture with urinalysis and urine culture for evidence of infection, especially in the face of fever, hypothermia, or an abnormal physical examination. Serum electrolytes might be considered as elevations in serum bicarbonate suggest chronic hypoventilation, whereas decreases suggest acute acidosis, perhaps due to hypoxia during the episode. Chronic acidosis suggests an inherited metabolic disorder. Arterial blood gas studies provide an initial assessment of oxygenation and acid-base status, and low PaO₂ or elevated PaCO₂ (or both) implies cardiopulmonary disease. A significant base deficit suggests that the episode was accompanied by hypoxia or circulatory impairment. Oxygen saturation measurements in the hospital assess oxygenation status during different activities and are more comprehensive than a single blood gas sample. Because apnea has been associated with respiratory infections, diagnostic studies for RSV and other viruses, pertussis, and Chlamydia may help with diagnosis. Apnea occurring with infection often precedes other physical findings.

C. Imaging Studies

The chest radiograph is examined for infiltrates suggesting acute infection or chronic aspiration and for cardiac size
as a clue to intrinsic cardiac disease. If the episode might have involved airway obstruction, the airway should be examined either directly by fiberoptic bronchoscopy or radiographically by CT or barium swallow. Barium swallow is a useful tool to rule out the possibility of anatomic abnormalities such as vascular ring and tracheoesophageal fistula. Esophageal pH monitoring is only helpful if the infant has sufficiently acidified the stomach, and can underestimate the degree of reflux for nonacid events. Impedence monitors improve this interpretation. Gastroesophageal reflux is one of the most common findings in infants with ALTE; however, it may be a marker of autonomic immaturity as opposed to a diagnosis for the event. Most infants with reflux and apnea can be given medical antireflux treatment. Infants with reflux and repeated episodes of apnea may benefit from a surgical antireflux procedure.

**D. Special Tests: Polysomnography and Other Studies**

ALTEs occur in the same age group as infants who die of sudden death (2–4 months is the peak age). Sleep-disordered breathing has been implicated as a possible cause of ALTEs and perhaps sudden death. Depending on the discretion of the clinician in appropriate scenarios, polysomnograms can be useful to determine abnormalities of cardiorespiratory function, sleep state, oxygen saturation, CO₂ retention, and seizure activity. They can be used in conjunction with pH monitoring to determine the contribution of reflux to apnea. Esophageal pressure manometry can be useful to detect subtle changes in respiratory effort related to partial obstructive breathing (hypopnea). Infants may be at more risk of adverse events from sleep-disordered breathing due to their immature nervous system.

There are several neurologic causes of ALTEs, and seizure disorder has been found to be a cause of ALTE in a significant number of cases. Apnea as the sole manifestation of a seizure disorder is unusual but may occur. In cases of repeated episodes, 24-hour electroencephalographic monitoring may be helpful in detecting a seizure disorder.

**Treatment**

Therapy is directed at the underlying cause if one is found. After blood cultures are taken, antibiotics should be given to infants who appear toxic. Seizure disorders are treated with anticonvulsants. Gastroesophageal reflux should be treated, but may not prevent future episodes of ALTE. Vascular rings and pulmonary slings must be corrected surgically because of severe morbidity and high mortality rates when untreated.

The approach to care of infants with ALTEs where no definable cause can be ascertained is controversial. Home monitoring has been used in the past as treatment, but the efficacy of monitoring has not been demonstrated in controlled trials. With more than 30 years of home monitoring, the sudden infant death rate did not change due to this intervention. Although monitors can detect central apnea or bradycardia, they do not predict which children will have future ALTEs, and they do not detect obstructive forms of breathing a common form of apnea in infants. Apnea monitors are prone to frequent false alarms, and it must be noted that many parents cannot handle the stress associated with having a monitor in the home. Parents should be taught cardiopulmonary resuscitation prior to discharge and should prevent modifiable risk factors for infant death discussed below. The decision to monitor these infants involves the participation of the family. Infants with severe initial episodes or repeated severe episodes are now thought to be at significantly increased risk. A monitor with an oxygen saturation detection capability may identify episodes earlier. The caregiver responsible for prescribing a monitor should have a plan for the data acquisition, and the discontinuation of the monitor so that the parents can be prepared. Oxygen has been used as therapy for ALTEs for several reasons. Oxygen reduces periodic breathing of infancy, an immature pattern of breathing that can cause some degree of oxygen desaturation. Second, infants have small chest capacities with increased chest wall compliance that reduces lung volume. Oxygen can increase the baseline saturation, reducing the severity of desaturation with short apneas. Respiratory stimulants such as caffeine and aminophylline have been used in specific cases of central apnea or periodic breathing. Any infant younger than 1 year of age should be evaluated for the presence of modifiable SIDS risk factors by a caregiver. Parents should be educated on how to avoid these risk factors, especially in infants at increased risk such as former preterm infants, children exposed to cigarette smoke environmentally or prior to birth, African American or Native American infants, and infants in poor socioeconomic areas. Updates on recommendations for the prevention of unexpected death in infants was recently published by the American Academy of Pediatrics (SIDS and other sleep-related infant deaths: expansion of recommendations for a safe infant sleeping environment: 1030–1039) and especially applies to infants after an ALTE. The reference should be read in full, but new recommendations include:

- Always place a baby on its back to sleep (this includes a baby with reflux).
- A baby should always sleep in its own space such as a crib, bassinet, or pack & play. A baby should not sleep on an adult bed, couch, armchair, futon, or other soft surface. Use a firm mattress designed for the crib, bassinet, or pack & play with a tight fitting sheet. The mattress should be flat, not elevated, and with no soft bedding underneath or on top.
- Share a room, but not a bed, with a baby.
- There should be nothing in a baby’s sleep space, other than the baby. Avoid overheating, overwrapping, and
covering the face and head; use appropriate baby sleep clothing or sleep sack.

- Breast-feeding a baby is recommended.
- Consider offering a pacifier to a baby at nap and sleep time.
- Avoid or limit a baby’s exposure to cigarette smoke.
- Car seats, swings, and baby slings should NOT be used for sleep.
- Avoid the use of adult beds, bed rails, and in-bed co-sleepers, which increase the risk of suffocation and entrapment.

**SUDDEN INFANT DEATH SYNDROME**

SIDS is defined as the sudden death of an infant younger than age 1 year that remains unexplained after a thorough case investigation, including performance of a complete autopsy, examination of the death scene, and review of the clinical history. The postmortem examination is an important feature of the definition because approximately 20% of cases of sudden death can be explained by autopsy findings. The incidence of SIDS in the United States has declined to less than 1 in 1000 live births over the last 15 years; however, it has leveled off. Reduction of prone sleeping after the “Back to Sleep” campaign was in large part responsible for the reduction of SIDS from a high of 2 infants per 1000 births, but new evidence shows the increase of sudden unexpected deaths of infants (SUDI) due to accidental suffocation and unsafe sleep surfaces.

**Epidemiology and Pathogenesis**

Epidemiologic and pathologic data constitute most of what is known about SIDS. The number of deaths peaks between ages 2 and 4 months. Most deaths occur between midnight and 8 AM, while the infant and often the caregiver are sleeping. In fact, the only unifying features of all SIDS cases are age and sleep. SIDS is more common among ethnic and racial minorities and socioeconomically disadvantaged populations. Racial disparity in the prevalence of prone positioning or especially in cosleeping (Fu, Moon, and Hauck: 376–382) may also be contributing to the continued disparity in SIDS rates between black and white infants. There is a 3:2 male predominance in most series. Other risk factors include low birth weight, teenage or drug-addicted mothers, multiparity, crowded living conditions, maternal smoking, and a family history of SIDS. Most of these risk factors are associated with a two- to threefold elevation of incidence but are not specific enough to be useful in predicting which infants will die unexpectedly. Recent immunization is not a risk factor.

The most consistent pathologic findings are intrathoracic petechiae and mild inflammation and congestion of the respiratory tract. More subtle pathologic findings include brainstem gliosis, extramedullary hematopoiesis, and increases in peri-adrenal brown fat. These latter findings suggest that infants who succumb to SIDS have had intermittent or chronic hypoxia before death.

The mechanism or mechanisms of death in SIDS are unknown. For example, it is unknown whether the initiating event at the time of death is cessation of breathing, cardiac arrhythmia, or asystole. Hypotheses have included upper airway obstruction, catecholamine excess, and increased fetal hemoglobin. However, maldevelopment or delay in maturation of the brainstem, which is responsible for arousal, remains the predominant theory. A history of mild symptoms of upper respiratory infection before death is not uncommon, and SIDS victims are sometimes seen by physicians a day or so before death. The postmortem examination is essential for the diagnosis of SIDS and may help the family by excluding other possible causes of death. A death scene investigation is also important in determining the cause of sudden unexpected deaths in infancy. Families must be supported following the death of an infant. The National SIDS Resource Center (http://www.sidscenter.org) provides information about psychosocial support groups and counseling for families of SIDS victims.

**Prevention**

Since 1990, SIDS rates have declined more than 60% worldwide. Population studies in New Zealand and Europe identified risk factors, which when changed had a major effect on the incidence of SIDS. Since 1994 the American Academy of Pediatrics’ “Back-to-Sleep” campaign has promoted education about SIDS risk factors in the United States. The new updated recommendations are printed above and are available on line (SIDS and other sleep-related infant deaths: expansion of recommendations for a safe infant sleeping environment: 1030–1039). Modifiable risk factors include sleeping position, bottle feeding, maternal smoking, and infant overheating. The prone sleep position could contribute to SIDS through decreased arousal or rebreathing of exhaled gases. The side position, often used in hospitals and then mimicked at home, increases risk of SIDS compared with the supine position. Maternal smoking, especially prenatal maternal smoking, increases the risk of SIDS. Investigations of tobacco effects on the autonomic nervous system of the developing fetus, pulmonary growth and function of the newborn, or its combination with viral infection all point to differences in SIDS compared with control subjects. New data demonstrates decreased risk of SIDS with the use of pacifiers and breast feeding.

The healthcare provider is instrumental in parental education regarding the modifiable risk factors for SIDS (Table 19–7). The healthcare provider should screen all infants for SIDS risk factors, and include awareness of
the child care setting, as many parents rely on others to watch their children, where the importance of risk factors may not be recognized. Hospitals should set an example by placing infants in the supine position with no blankets in the bed prior to discharge. At present, the data shows that the environment is key to the safety of the infant, and unsafe sleep environments are responsible for the recent increase in accidental suffocation, asphyxia, and entrapment.


<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Back-to-sleep” (supine sleeping position)</td>
</tr>
<tr>
<td>Firm sleep surface designed for infant sleep</td>
</tr>
<tr>
<td>Pillows/loose bedding, loose blankets should be out of the crib</td>
</tr>
<tr>
<td>Share a room, not a bed with the infant</td>
</tr>
<tr>
<td>Do not smoke during pregnancy, and smoke-free environment after birth</td>
</tr>
<tr>
<td>Consider offering a pacifier at nap and bed time</td>
</tr>
<tr>
<td>Avoid overheating, overwrapping, and head covering</td>
</tr>
<tr>
<td>Avoid commercial devices marketed to reduce the risk of SIDS</td>
</tr>
<tr>
<td>Do not use home monitors as a strategy to reduce the risk of SIDS</td>
</tr>
<tr>
<td>Encourage tummy time while awake</td>
</tr>
</tbody>
</table>


Eight in 1000 infants are born with a congenital heart defect. Advances in medical and surgical care allow more than 90% of such children to enter adulthood. Pediatric cardiac care includes not only the diagnosis and treatment of congenital heart disease but also the prevention of risk factors for adult cardiovascular disease—obesity, smoking, and hyperlipidemia. Acquired and familial heart diseases such as Kawasaki disease, viral myocarditis, cardiomyopathies, and rheumatic heart disease are also a significant cause of morbidity and mortality in children.

**Diagnosis**

**EVALUATION**

**History**

Symptoms related to congenital heart defects primarily vary according to the alteration in pulmonary blood flow (Table 20–1). The presence of other cardiovascular symptoms such as palpitations and chest pain should be determined by history in the older child, paying particular attention to the timing (at rest or activity-related), onset, and termination (gradual vs sudden), as well as precipitating and relieving factors.

**Physical Examination**

**General**

The examination begins with a visual assessment of mental status, signs of distress, perfusion, and skin color. Documentation of heart rate, respiratory rate, blood pressure (in all four extremities), and oxygen saturation is essential. Many congenital cardiac defects occur as part of a genetic syndrome (Table 20–2), and complete assessment includes evaluation of dysmorphic features that may be clues to the associated cardiac defect.

**Cardiovascular Examination**

**A. Inspection and Palpation**

Chest conformation should be noted in the supine position. A precordial bulge indicates cardiomegaly. Palpation may reveal increased precordial activity, right ventricular lift, or left-sided heave; a diffuse point of maximal impulse; or a precordial thrill caused by a grade IV/VI or greater murmur. The thrill of aortic stenosis is found in the suprasternal notch. In patients with severe pulmonary hypertension, a palpable pulmonary closure (P2) is frequently noted at the upper left sternal border.

**B. Auscultation**

1. **Heart sounds**—The first heart sound (S1) is the sound of atrioventricular (AV) valve closure. It is best heard at the lower left sternal border and is usually medium-pitched. Although S1 has multiple components, only one of these (M1—closure of the mitral valve) is usually audible.

   The second heart sound (S2) is the sound of semilunar valve closure. It is best heard at the upper left sternal border. S2 has two component sounds, A2 and P2 (aortic and pulmonic valve closure). Splitting of S2 varies with respiration, widening with inspiration and narrowing with expiration. Abnormal splitting of S2 may be an indication of cardiac disease (Table 20–3). A prominent or loud P2 is associated with pulmonary hypertension.

   The third heart sound (S3) is the sound of rapid left ventricular filling. It occurs in early diastole, after S2, and is medium- to low-pitched. In healthy children, S3 diminishes or disappears when going from supine to sitting or standing. A pathologic S3 is often heard in the presence of poor cardiac function or a large left-to-right shunt. The fourth heart sound (S4) is associated with atrial contraction and increased atrial pressure, and has a low pitch similar to that of S3.
Table 20–1. Symptoms of increased and decreased pulmonary blood flow.

<table>
<thead>
<tr>
<th>Decreased Pulmonary Blood Flow</th>
<th>Increased Pulmonary Blood Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Infant/toddler</strong></td>
<td></td>
</tr>
<tr>
<td>Cyanosis</td>
<td>Tachypnea with activity/feeds</td>
</tr>
<tr>
<td>Squatting</td>
<td>Diaphoresis</td>
</tr>
<tr>
<td>Loss of consciousness</td>
<td>Poor weight gain</td>
</tr>
<tr>
<td><strong>Older child</strong></td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>Exercise intolerance</td>
</tr>
<tr>
<td>Syncope</td>
<td>Dyspnea on exertion, diaphoresis</td>
</tr>
</tbody>
</table>

It occurs just prior to S₁ and is not normally audible. It is heard in the presence of atrial contraction into a noncompliant ventricle as in hypertrophic or restrictive cardiomyopathy or from other causes of diastolic dysfunction.

Ejection clicks are usually related to dilate great vessels or valve abnormalities. They are heard during ventricular systole and are classified as early, mid, or late. Early ejection clicks at the mid left sternal border are from the pulmonic valve. Aortic clicks are typically best heard at the apex. In contrast to aortic clicks, pulmonic clicks vary with respiration, becoming louder during inspiration. A mid to late ejection click at the apex is most typically caused by mitral valve prolapse.

2. Murmurs—A heart murmur is the most common cardiovascular finding leading to a cardiology referral. Innocent or functional heart murmurs are common, and 40%–45% of children have an innocent murmur at some time during childhood.

A. Characteristics—All murmurs should be described based on the following characteristics:

(1) Location and radiation—Where the murmur is best heard and where the sound extends.

(2) Relationship to cardiac cycle and duration—Systolic ejection (immediately following S₁ with a crescendo/decrescendo change in intensity), pansystolic (occurring throughout most of systole and of constant intensity), diastolic, or continuous. The timing of the murmur provides valuable clues as to underlying pathology (Table 20–4).

(3) Intensity—Grade I describes a soft murmur heard with difficulty; grade II, soft but easily heard; grade III, loud but without a thrill; grade IV, loud and associated with a precordial thrill; grade V, loud, with a thrill, and audible with the edge of the stethoscope; grade VI, very loud and audible with the stethoscope off the chest.

(4) Quality—Harsh, musical, or rough; high, medium, or low in pitch.

(5) Variation with position—Audible changes in murmur when the patient is supine, sitting, standing, or squatting.

B. Innocent Murmurs—The six most common innocent murmurs of childhood are

(1) Newborn murmur—Heard in the first few days of life, this murmur is at the lower left sternal border, without significant radiation. It has a soft, short, vibratory grade I–II/VI quality that often subsides when mild pressure is applied to the abdomen. It usually disappears by age 2–3 weeks.

(2) Peripheral pulmonary artery stenosis (PPS)—This murmur, often heard in newborns, is caused by the normal branching of the pulmonary artery. It is heard with equal intensity at the upper left sternal border, at the back, and in one or both axillae. It is a soft, short, high-pitched, grade I–II/VI systolic ejection murmur and usually disappears by age 2. This murmur must be differentiated from true peripheral pulmonary stenosis (Williams syndrome,
Table 20-4. Pathologic murmurs.

<table>
<thead>
<tr>
<th>Systolic Ejection</th>
<th>Pansystolic</th>
<th>Diastolic</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semilunar valve stenosis (AS/PS/truncal stenosis)</td>
<td>VSD</td>
<td>Semilunar valve regurgitation</td>
<td>Runoff lesions</td>
</tr>
<tr>
<td>ASD</td>
<td>AVVR (MR/TR)</td>
<td>AI/PI/truncal insufficiency</td>
<td>PDA/AVM/aortopulmonary collaterals</td>
</tr>
<tr>
<td>Coarctation</td>
<td>AV valve stenosis (MS/TS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AII/PI, aortic insufficiency/pulmonic insufficiency; AS/PS, aortic stenosis/pulmonic stenosis; ASD, atrial septal defect; AV, atrioventricular; MS/TS, mitral stenosis/tricuspid stenosis; AVVR, atrioventricular valve regurgitation; MR/TR, mitral regurgitation/tricuspid regurgitation; PDA/AVM, patent ductus arteriosus/arteriovenous malformation; VSD, ventricular septal defect.

Alagille syndrome, or rubella syndrome), coarctation of the aorta, and valvular pulmonary stenosis. Characteristic facial features, extracardiac physical exam findings, history, and laboratory abnormalities suggestive of the syndromes listed above are the best way to differentiate true peripheral pulmonary stenosis from benign PPS of infancy as the murmurs can be similar.

3) **Still murmur**—This is the most common innocent murmur of early childhood. It is typically heard between 2 and 7 years of age. It is the loudest midway between the apex and the lower left sternal border. Still murmur is a musical or vibratory, short, high-pitched, grade I–III early systolic murmur. It is loudest when the patient is supine. It diminishes or disappears with inspiration or when the patient is sitting. The Still murmur is louder in patients with fever, anemia, or sinus tachycardia from any reason.

4) **Pulmonary ejection murmur**—This is the most common innocent murmur in older children and adults. It is heard from age 3 years onward. It is usually a soft systolic ejection murmur, grade I–II in intensity at the upper left sternal border. The murmur is louder when the patient is supine or when cardiac output is increased. The pulmonary ejection murmur must be differentiated from murmurs of pulmonary stenosis, coarctation of the aorta, atrial septal defect (ASD), and peripheral pulmonary artery stenosis.

5) **Venous hum**—A venous hum is usually heard after age 2 years. It is located in the infraclavicular area on the right. It is a continuous musical hum of grade I–III intensity and may be accentuated in diastole and with inspiration. It is best heard in the sitting position. Turning the child’s neck, placing the child supine, and compressing the jugular vein obliterates the venous hum. Venous hum is caused by turbulence at the confluence of the subclavian and jugular veins.

6) **Innominate or carotid bruit**—This murmur is more common in the older child and adolescents. It is heard in the right supraclavicular area. It is a long systolic ejection murmur, somewhat harsh and of grade II–III intensity. The bruit can be accentuated by light pressure on the carotid artery and must be differentiated from all types of aortic stenosis.

The characteristic findings of aortic stenosis are outlined in more detail later in this chapter.

When innocent murmurs are found in a child, the physician should assure the parents that these are normal heart sounds of the developing child and that they do not represent heart disease.

**Extracardiac Examination**

**A. Arterial Pulse Rate and Rhythm**

Cardiac rate and rhythm vary greatly during infancy and childhood, so multiple determinations should be made. This is particularly important for infants (Table 20–5) whose heart rates vary with activity. The rhythm may be regular or there may be a normal phasic variation with respiration (sinus arrhythmia).

**B. Arterial Pulse Quality and Amplitude**

A bounding pulse is characteristic of run-off lesions, including patent ductus arteriosus (PDA), aortic regurgitation, arteriovenous malformation, or any condition with a low diastolic pressure (fever, anemia, or septic shock). Narrow or thready pulses occur in patients with conditions reducing cardiac output such as decompensated heart failure pericardial tamponade, or severe aortic stenosis. A reduction in pulse amplitude or blood pressure (> 10 mm Hg) with inspiration is referred to as pulsus paradoxus and is a telltale sign

Table 20-5. Resting heart rates.

<table>
<thead>
<tr>
<th>Age</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 1 mo</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>1-3 mo</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>2-24 mo</td>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>2-10 y</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>11-18 y</td>
<td>40</td>
<td>90</td>
</tr>
</tbody>
</table>
of pericardial tamponade. The pulses of the upper and lower extremities should be compared. The femoral pulse should be palpable and equal in amplitude and simultaneous with the brachial pulse. A femoral pulse that is absent or weak, or that is delayed in comparison with the brachial pulse, suggests coarctation of the aorta.

**C. Arterial Blood Pressure**

Blood pressures should be obtained in the upper and lower extremities. Systolic pressure in the lower extremities should be greater than or equal to that in the upper extremities. The cuff must cover the same relative area of the arm and leg. Measurements should be repeated several times. A lower blood pressure in the lower extremities suggests coarctation of the aorta.

**D. Cyanosis of the Extremities**

Cyanosis results from an increased concentration (> 4–5 g/dL) of reduced hemoglobin in the blood. Bluish skin color is usually, but not always, a sign. Visible cyanosis also accompanies low cardiac output, hypothermia, and systemic venous congestion, even in the presence of adequate oxygenation. Cyanosis should be judged by the color of the mucous membranes (lips). Bluish discoloration around the mouth (acrocyanosis) does not correlate with cyanosis.

**E. Clubbing of the Fingers and Toes**

Clubbing is often associated with severe cyanotic congenital heart disease. It usually appears after age 1 year. Hypoxemia with cyanosis is the most common cause, but clubbing also occurs in patients with endocarditis, chronic liver disease, inflammatory bowel diseases, chronic pulmonary disease, and lung abscess. Digital clubbing may be a benign genetic variant.

**F. Edema**

Edema of dependent areas (lower extremities in the older child and the face and sacrum in the younger child) is characteristic of elevated right heart pressure, which may be seen with tricuspid valve pathology or heart failure.

**G. Abdomen**

Hepatomegaly is the cardinal sign of right heart failure in the infant and child. Left heart failure can ultimately lead to right heart failure and therefore, hepatomegaly may also be seen in the child with pulmonary edema from lesions causing left-to-right shunting (pulmonary overcirculation) or left ventricular failure. Splenomegaly may be present in patients with long-standing heart failure (HF), and is also a characteristic of infective endocarditis. Ascites is a feature of chronic right heart failure. Examination of the abdomen may reveal shifting dullness or a fluid wave.

---

**ELECTROCARDIOGRAPHY**

The electrocardiogram (ECG) is essential in the evaluation of the cardiovascular system. The heart rate should first be determined, then the cardiac rhythm (Is the patient in a normal sinus rhythm or other rhythm as evidenced by a P wave with a consistent PR interval before every QRS complex?), and then the axis (Are the P and QRS axes normal for patient age?). Finally, assessment of chamber enlargement, cardiac intervals, and ST segments should be performed.

**Age-Related Variations**

The ECG evolves with age. The heart rate decreases and intervals increase with age. RV dominance in the newborn changes to LV dominance in the older infant, child, and adult. The normal ECG of the 1-week-old infant is abnormal for a 1-year-old child, and the ECG of a 5-year-old child is abnormal for an adult.

**Electrocardiographic Interpretation**

Figure 20–1 defines the events recorded by the ECG.

**A. Rate**

The heart rate varies markedly with age, activity, and state of emotional and physical well-being (Table 20-5).

**B. Rhythm**

Sinus rhythm should always be present in healthy children. Extra heart beats representing premature atrial and ventricular contractions are common during childhood, with atrial ectopy predominating in infants and ventricular ectopy during adolescence. Isolated premature beats in patients with normal heart structure and function are usually benign.

**C. Axis**

1. **P-wave axis**—The P wave is generated from atrial contraction beginning in the high right atrium at the site of the sinus node. The impulse proceeds leftward and inferiorly, thus leading to a positive deflection in all left-sided and inferior leads (II, III, and aVF) and negative in lead aVR.
2. **QRS axis**—The net voltage should be positive in leads I and aVF in children with a normal axis. In infants and young children, RV dominance may persist, leading to a negative deflection in lead I. Several congenital cardiac lesions are associated with alterations in the normal QRS axis (Table 20–6).

### D. P Wave

In the pediatric patient, the amplitude of the P wave is normally no greater than 3 mm and the duration no more than 0.08 second. The P wave is best seen in leads II and V₁.

### E. PR Interval

The PR is measured from the beginning of the P wave to the beginning of the QRS complex. It increases with age and with slower rates. The PR interval ranges from a minimum of 0.10 second in infants to a maximum of 0.18 second in older children with slow rates. Rheumatic heart disease, digoxin, β-blockers and calcium channel blockers can prolong the PR interval.

### F. QRS Complex

This represents ventricular depolarization, and its amplitude and direction of force (axis) reveal the relative ventricular mass in hypertrophy, hypoplasia, and infarction. Abnormal ventricular conduction (eg, right or left bundle-branch block) is also revealed.

### G. QT Interval

This interval is measured from the beginning of the QRS complex to the end of the T wave. The QT duration may be prolonged as a primary condition or secondarily due to drugs or electrolyte imbalances (Table 20–7). The normal

---

### Table 20–6. QRS axis deviation.

<table>
<thead>
<tr>
<th>Right Axis Deviation</th>
<th>Left Axis Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetralogy of Fallot</td>
<td>Atrioventricular septal defect</td>
</tr>
<tr>
<td>Transposition of the great arteries</td>
<td>Pulmonary atresia with intact ventricular septum</td>
</tr>
<tr>
<td>Total anomalous pulmonary venous return</td>
<td>Tricuspid atresia</td>
</tr>
<tr>
<td>Atrial septal defect</td>
<td></td>
</tr>
</tbody>
</table>
QT duration is rate-related and must be corrected using the Bazett formula:

\[ QTc = \frac{QT\text{ intervals (s)}}{\sqrt{R-R\text{ intervals (s)}}} \]

The normal QTc is less than or equal to 0.44 second.

### H. ST Segment

This segment, lying between the end of the QRS complex and the beginning of the T wave, is affected by drugs, electrolyte imbalances, or myocardial injury.

### I. T Wave

The T wave represents myocardial repolarization and is altered by electrolytes, myocardial hypertrophy, and ischemia.

### J. Impression

The ultimate impression of the ECG is derived from a systematic analysis of all the features above as compared with expected normal values for the child’s age.

Table 20–7. Causes of QT prolongation.

<table>
<thead>
<tr>
<th>Cardiac medications</th>
<th>Noncardiac medications</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Antiarrhythmics:</strong> class IA (quinidine, procainamide, disopyramide) class III (amiodarone, sotalol)</td>
<td><strong>Antibiotics/antivirals:</strong> azithromycin, clarithromycin, levofloxacin, amantadine</td>
</tr>
<tr>
<td><strong>Inotropes:</strong> dobutamine, dopamine, epinephrine, isoproterenol</td>
<td><strong>Antipsychotics:</strong> risperidol, thioridazine, lithium, haloperidol</td>
</tr>
<tr>
<td><strong>Sedatives:</strong> chloral hydrate, methadone</td>
<td><strong>Other:</strong> albuterol, levallorphan, ondansetron, phencytoin, pseudoephedrine</td>
</tr>
<tr>
<td><strong>Electrolyte disturbances:</strong> hypokalemia, hypomagnesemia, hypocalcemia</td>
<td><strong>Electrolyte disturbances:</strong> hypokalemia, hypomagnesemia, hypocalcemia</td>
</tr>
</tbody>
</table>

*Partial list only.

Cardiac position is either levocardia (heart predominantly in the left chest), dextrocardia (heart predominantly in the right chest), or mesocardia (midline heart). The position of the liver and stomach bubble is either in the normal position (abdominal situs solitus), inverted with the stomach bubble on the right (abdominal situs inversus), or variable with midline liver (abdominal situs ambiguous). The heart appears relatively large in normal newborns at least in part due to a prominent thymic shadow. The heart size should be less than 50% of the chest diameter in children older than age 1 year. The cardiac configuration on chest radiograph may provide useful diagnostic information (Table 20–8). Some congenital cardiac lesions have a characteristic radiographic appearance that suggests the diagnosis but should not be viewed as conclusive (Table 20–9). The pulmonary vasculature should be assessed. The presence of increased or decreased pulmonary blood flow suggests a possible congenital cardiac diagnosis, particularly in the cyanotic infant (Table 20–10).

Table 20–8. Radiographic changes with cardiac chamber enlargement.

<table>
<thead>
<tr>
<th>Chamber Enlarged</th>
<th>Change in Cardiac Silhouette on Anteroposterior Film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right ventricle</td>
<td>Apex of the heart is tipped upward</td>
</tr>
<tr>
<td>Left ventricle</td>
<td>Apex of the heart is tipped downward</td>
</tr>
<tr>
<td>Left atrium</td>
<td>Double shadow behind cardiac silhouette increase in subarcinal angle</td>
</tr>
<tr>
<td>Right atrium</td>
<td>Prominence of right atrial border of the heart</td>
</tr>
</tbody>
</table>


Evaluation of the chest radiograph for cardiac disease should focus on (1) position of the heart, (2) position of the abdominal viscera, (3) cardiac size, (4) cardiac configuration, and (5) character of the pulmonary vasculature. The standard posteroanterior and left lateral chest radiographs are used (Figure 20–2).
ECHOCARDIOGRAPHY

Dextrocardia

Dextrocardia is a radiographic term used when the heart is on the right side of the chest. When dextrocardia occurs with reversal of position of the other important organs of the chest and abdomen (eg, liver, lungs, and spleen), the condition is called situs inversus totalis, and the heart is usually normal. When dextrocardia occurs with the other organs normally located (situs solitus), the heart usually has severe defects.

Other situs abnormalities include situs ambiguous with the liver central and anterior in the upper abdomen and the stomach pushed posteriorly; bilateral right-sidedness (asplenia syndrome); and bilateral left-sidedness (polysplenia syndrome). In virtually all cases of situs ambiguous, congenital heart disease is present.

Echocardiography

Echocardiography is a fundamental tool of pediatric cardiology. Using multiple ultrasound modalities (two-dimensional imaging, Doppler, and M-mode), cardiac anatomy, blood flow, intracardiac pressures, and ventricular function can be assessed. Echocardiography is based on the physical principles of sound waves. The ultrasound frequencies utilized in cardiac imaging range from 2 to 10 million cycles/s.

M-mode echocardiography uses short bursts of ultrasound sent from a transducer. At acoustic interfaces, sound waves are reflected back to the transducer. The time it takes for the sound wave to return to the transducer is measured and the distance to the interface is calculated. That calculated distance is displayed against time, and a one-dimensional image is constructed that demonstrates cardiac motion. **Two-dimensional imaging** extends this technique by sending a rapid series of ultrasound bursts across a 90-degree sector, which allows construction of a two-dimensional image of the heart. **Doppler ultrasound** measures blood flow. The ultrasound transducer sends out a known frequency of sound which reflects off moving red blood cells. The transducer receives the reflected frequency and compares it with the transmitted frequency. The blood flow velocity can be calculated from the measured frequency shift. This information is used to estimate pressure gradients by the simplified Bernoulli equation, in which the pressure gradient is equal to four times the calculated velocity (Pressure gradient = 4(V^2)).

A transthoracic echocardiogram is obtained by placing the transducer on areas of the chest where there is minimal lung interference. At each transducer position, the beam is swept through the heart and a two-dimensional image appears on the screen. Complex intracardiac anatomy and spatial relationships can be described, making possible the accurate diagnosis of congenital heart disease. In addition to structural details, Doppler gives information about intracardiac blood flow and pressure gradients. Commonly used Doppler techniques include color flow imaging, pulsed-wave, and continuous-wave Doppler. Color flow imaging gives general information on the direction and velocity of flow. Pulsed- and continuous-wave Doppler imaging give more precise measurements of blood velocity. The role of M-mode in the ultrasound examination has decreased as other ultrasound modalities have been developed. M-mode is still used to measure LV end-diastolic and end-systolic dimensions and permits calculation of the LV-shortening fraction, a standard estimate of LV function (SF = LV end-diastolic volume – LV systolic volume/LV end-diastolic volume). Three-dimensional echocardiography, tissue Doppler, strain, and strain rate imaging are newer modalities that provide more sophisticated assessment of systolic and diastolic function and can detect early changes in myocardial function.

A typical transthoracic echocardiogram performed by a skilled sonographer takes about 30 minutes, and patients must be still for the examination. Frequently infants and children cannot cooperate for the examination and sedation is required. Transesophageal echocardiography requires general anesthesia in infants and children and is primarily used to guide interventional procedures and surgical repair.
of congenital heart disease. In cases of difficult imaging windows due to patient size, air interference or when looking for evidence of vegetations on cardiac valves, transesophageal echocardiography may be necessary.

It is important to note that fetal echocardiography plays an important role in the prenatal diagnosis of congenital heart disease. A fetal echocardiogram is recommended if the fetus is considered high risk for the development of congenital heart disease or if there is suspicion for structural heart disease or fetal arrhythmias based on the obstetric fetal ultrasound. In utero management of fetal arrhythmias and post-delivery planning for the fetus with complex heart disease has resulted in improved outcomes for this challenging group of patients.

Friedberg MK et al: Validation of 3D echocardiographic assessment of left ventricular volumes, mass, and ejection fraction in neonates and infants with congenital heart disease: a comparison study with cardiac MRI. Circ Cardiovasc Imaging 2010;3(6):735–742 [PMID: 20855861].

NUCLEAR CARDIOLOGY

Nuclear imaging is not commonly used in pediatric cardiology, but can be a useful adjunct to cardiopulmonary exercise testing in assessing both fixed and reversible areas of myocardial ischemia. It is valuable in evaluating myocardial perfusion in patients with Kawasaki disease, repaired anomalous left coronary artery or other coronary anomalies, myocardial bridging in the setting of hypertrophic cardiomyopathy (HCM), or chest pain in association with ECG changes with exercise.

MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) of the heart is valuable for evaluation and noninvasive follow-up of many congenital heart defects. It is particularly useful in imaging the thoracic vessels, which are difficult to image by transthoracic echocardiogram. Cardiac gated imaging allows dynamic evaluation of structure and blood flow of the heart and great vessels. Cardiac MRI provides unique and precise imaging in patients with newly diagnosed or repaired aortic coarctation and defines the aortic dilation in Marfan, Turner, and Loeys-Dietz syndromes. Cardiac MRI can quantify regurgitant lesions such as pulmonary insufficiency (PI) after repair of tetralogy of Fallot (ToF) and can define ventricular function, chamber size, and wall thickness in patients with inadequate echocardiographic images or cardiomyopathies. MRI is especially useful to characterize right ventricular size and function as this chamber is often difficult to image comprehensively by echocardiogram. Because it allows computer manipulation of images of the heart and great vessels, three-dimensional MRI is an ideal noninvasive way of obtaining accurate reconstructions of the heart. General anesthesia is often required to facilitate cardiac MRI performance in children less than 8 years.


CARDIOPULMONARY STRESS TESTING

Most children with heart disease are capable of normal activity. Data on cardiac function after exercise are essential to prevent unnecessary restriction of activities. The response to exercise is helpful in determining the need for and the timing of cardiovascular surgery and is a useful objective outcome measure of the results of medical and surgical interventions.

Bicycle ergometers or treadmills can be used in children as young as age 5 years. The addition of a metabolic cart enables one to assess whether exercise impairment is secondary to cardiac limitation, pulmonary limitation, deconditioning, or lack of effort. Exercise variables include the ECG, blood pressure response to exercise, oxygen saturation, ventilation, maximal oxygen consumption, and peak workload attained. Cardiopulmonary stress testing is routine in children with congenital cardiac lesions to ascertain limitations, develop exercise programs, assess the effect of therapies, and decide on the need for cardiac transplantation. Stress testing is also employed in children with structurally normal hearts with complaints of exercise-induced symptoms in order to rule out cardiac or pulmonary pathology. Significant stress ischemia or dysrhythmias warrant physical restrictions or appropriate therapy. Children with poor performance due to suboptimal conditioning benefit from a planned exercise program.


ARTERIAL BLOOD GASES

Quantitating the partial oxygen pressure (Pao 2) or O2 saturation during the administration of 100% oxygen is the most useful method of distinguishing cyanosis produced primarily by heart disease or by lung disease in sick infants. In cyanotic heart disease, the partial arterial oxygen pressure (Pao 2) increases very little when 100% oxygen is administered over the values obtained while breathing room air. However, Pao 2 usually increases significantly when oxygen is administered to a patient with lung disease. Table 20–11 illustrates the
responses seen in patients with heart or lung disease during the hyperoxic test. Although the US Department of Health and Human Services recommended newborn screening for critical congenital heart disease in 2010, implementation of comprehensive pulse oximetry screening programs are challenged by variable infrastructure and access to expert interpretation.


CARDIAC CATHETERIZATION & ANGIOCARDIOGRAPHY

Cardiac catheterization is an invasive method to evaluate anatomic and physiologic conditions in congenital or acquired heart disease. Management decisions may be made based on oximetric, hemodynamic or angiographic data obtained through a catheterization. In an increasing number of cases, intervention may be performed during a catheterization that may palliate, or even cure, a congenital heart defect without open heart surgery.

Cardiac Catheterization Data

Figure 20–3 shows oxygen saturation (in percent) and pressure (in millimeters of mercury) values obtained by cardiac catheterization in a healthy child. 3, mean pressure of 3 mm Hg in the right atrium; 5, mean pressure of 5 mm Hg in the left atrium.

Proportional to the overall cardiac output. Cardiac output is determined by saturation difference across a vascular bed, taking into account oxygen consumption and hemoglobin. This is known as the Fick principle. Cardiac output in a healthy heart varies directly with the body’s oxygen consumption and is inversely proportional to hemoglobin. The circulatory system of patients who are anemic usually tries to generate a higher cardiac output to maintain oxygen delivery to the cells of the body.

An increase in saturation across the right side of the heart (anywhere between SVC and pulmonary arteries) represents a left-to-right shunt. If oxygenated blood can mix with venous blood, the saturation rises—the degree of which correlates with the size of the shunt. Conversely, a fall in saturation across the left heart, between the pulmonary veins and the aorta, is abnormal. This represents the addition of deoxygenated blood to oxygenated blood—a right-to-left shunt.

A commonly referenced ratio in pediatric cardiology is the Qp:Qs. In a normal heart, systemic cardiac output (Qs) and pulmonary blood flow (Qp) are equal, or Qp:Qs = 1. If a step-up in saturation is noted across the right heart, suggesting a left-to-right shunt, pulmonary blood flow will exceed systemic blood flow. This can result, in cases of large shunts,

### Table 20–11. Examples of responses to 10 minutes of 100% oxygen in lung disease and heart disease.

<table>
<thead>
<tr>
<th></th>
<th>Lung Disease</th>
<th>Heart Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Room Air</td>
<td>Room Air</td>
</tr>
<tr>
<td><strong>Color</strong></td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td><strong>Oximetry</strong></td>
<td>60% → 99%</td>
<td>60% → 62%</td>
</tr>
<tr>
<td><strong>(P_{\text{ao}_2}) (mm Hg)</strong></td>
<td>35 → 120</td>
<td>35 → 38</td>
</tr>
</tbody>
</table>

\(P_{\text{ao}_2}\), partial arterial oxygen pressure.

Cardiac catheterization can be performed to evaluate the effects of pharmaceutical therapy. An example of this use of catheterization is monitoring changes in pulmonary vascular resistance during the administration of nitric oxide or prostacyclin in a child with primary pulmonary hypertension.

### Angiography

In the past, angiography was a mainstay of the initial diagnostic methods for congenital heart disease. It is still used for diagnostic purposes in selected cases, but currently is used more frequently to plan interventions or evaluate postsurgical anatomy that is poorly seen by noninvasive methods. Injection of contrast liquid via a well-positioned catheter can illuminate detailed intracardiac and intravascular anatomy more clearly than any other method. Cardiac function can be observed, and anatomic abnormalities may be easily identified. In a growing number of centers, three-dimensional reconstruction of angiograms can provide exquisite delineation of cardiac and vascular structures.

### Interventional Cardiac Catheterization

Various procedures are commonly performed in the catheterization laboratory that can improve or cure congenital malformations. Lesions that result in abnormal flow near or within the heart can be occluded, such as a patent ductus arteriosus, atrial septal defect, or ventricular septal defect. Obstruction of heart valves can be addressed through balloon valvuloplasty. Intervention may also be performed on vascular obstruction through angioplasty or stent placement in pulmonary arteries or the aorta. Systemic and pulmonary veins can be modified in a similar fashion, unfortunately with often minimal success in the latter. Devices are now available to allow patients to undergo replacement of failing heart valves without open heart surgery, and an increasing armamentarium of devices are becoming available for treatment of other defects and abnormal vasculature.

With the progression of improved noninvasive imaging, fewer diagnostic cardiac catheterization studies are performed today. The number of interventional procedures, however, is on the rise. Although the risks of cardiac catheterization are very low for elective studies in older children (< 1%), the risk of major complications in distressed or small patients is higher. Interventional procedures, particularly in unstable babies and children, increase these risks further. Increased use of registries is currently being employed to better understand efficacy rates and risks of these procedures, with the hope of optimizing the care of infants and children in the catheterization laboratory.

---

At birth, two events affect the cardiovascular and pulmonary system: (1) the umbilical cord is clamped, removing the placenta from the maternal circulation; and (2) breathing commences. As a result, marked changes in the circulation occur. During fetal life, the placenta offers low resistance to blood flow. In contrast, the pulmonary arterioles are markedly constricted and there is high resistance to blood flow in the lungs. Therefore, the majority of blood entering the right side of the heart travels from the right atrium into the left atrium across the foramen ovale (right-to-left shunt). In addition, most of the blood that makes its way into the right ventricle and then pulmonary arteries will flow from the pulmonary artery into the aorta through the ductus arteriosus (right-to-left shunt). Subsequently, pulmonary blood flow accounts for only 7%–10% of the combined in utero ventricular output. At birth, pulmonary blood flow dramatically increases with the fall in pulmonary vascular resistance and pressure. The causes of prolonged high pulmonary vascular resistance include physical factors (lack of an adequate air-liquid interface or ventilation), low oxygen tension, and vasoactive mediators such as elevated endothelin peptide levels or leukotrienes. Clamping the umbilical cord produces an immediate increase in resistance to flow in the systemic circuit.

As breathing commences, the PO2 of the small pulmonary arterioles increases, resulting in a decrease in pulmonary vascular resistance. Increased oxygen tension, rhythmic lung distention, and production of nitric oxide as well as prostacyclin play major roles in the fall in pulmonary vascular resistance at birth. The pulmonary vascular resistance falls below that of the systemic circuit, resulting in a reversal in direction of blood flow across the ductus arteriosus and marked increase in pulmonary blood flow.

Functional closure of the ductus arteriosus begins shortly after birth. The ductus arteriosus usually remains patent for 1–5 days. During the first hour after birth, a small right-to-left shunt is present (as in the fetus). However, after 1 hour, bidirectional shunting occurs, with the left-to-right direction predominating. In most cases, right-to-left shunting disappears completely by 8 hours. In patients with severe hypoxia (eg, in the syndrome of persistent pulmonary hypertension of the newborn), pulmonary vascular resistance remains high, resulting in a continued right-to-left shunt. Although flow through the ductus arteriosus usually is gone by 5 days of life, the vessel does not close anatomically for 7–14 days.

In fetal life, the foramen ovale serves as a one-way valve shunting blood from the inferior vena cava through the right atrium into the left atrium. At birth, because of the changes in the pulmonary and systemic vascular resistance and the increase in the quantity of blood returning from the pulmonary veins to the left atrium, the left atrial pressure rises above that of the right atrium. This functionally closes the flap of the foramen ovale, preventing flow of blood across the septum. The foramen ovale remains probe patent in 10%–15% of adults.

Persistent pulmonary hypertension is a clinical syndrome of full-term infants. The neonate develops tachypnea, cyanosis, and pulmonary hypertension during the first 8 hours after delivery. These infants have massive right-to-left ductal and/or foramen shunting for 3–7 days because of high pulmonary vascular resistance. Progressive hypoxia and acidosis will cause early death unless the pulmonary resistance can be lowered. Postmortem findings include increased thickness of the pulmonary arteriolar media. Increased alveolar PO2 with hyperventilation, alkalois, paralysis, surfactant administration, high-frequency ventilation, and cardiac inotropes can usually reverse this process. Inhaled nitric oxide selectively dilates pulmonary vasculature, produces a sustained improvement in oxygenation, and has resulted in improved outcomes.

In the normal newborn, pulmonary vascular resistance and pulmonary arterial pressure continue to fall during the first weeks of life as a result of demuscularization of the pulmonary arterioles. Adult levels of pulmonary resistance and pressure are normally achieved by 4–6 weeks of age. It is at this time typically that signs of pulmonary overcirculation associated with left-to-right shunt lesions (VSD or atioventricular septal defect [AVSD]) appear.

Heart failure (HF) is the clinical condition in which the heart fails to meet the circulatory and metabolic needs of the body. The term congestive heart failure is not always accurate, as some patients with significant cardiac dysfunction have symptoms of exercise intolerance and fatigue without evidence of congestion. Right and left heart failure can result from volume or pressure overload of the respective ventricle or an intrinsic abnormality of the ventricular myocardium. Causes of right ventricular volume overload include an ASD, pulmonary insufficiency, or anomalous pulmonary venous return.
Left ventricular volume overload occurs with any left-to-right shunting lesion (eg, VSD, PDA), aortic insufficiency, or a systemic arteriovenous malformation. Causes of right ventricular failure as a result of pressure overload include pulmonary hypertension, valvar pulmonary stenosis, or severe branch pulmonary artery stenosis. Left ventricular pressure overload results from left heart obstructive lesions such as aortic stenosis (subvalvar, valvar, or supravalvar) or coarctation of the aorta. Abnormalities of the right ventricular myocardium that can result in right heart failure include Ebstein's anomaly (atrialization of the right ventricle) and arrhythmogenic right ventricular dysplasia (a genetic disorder where the right ventricular myocardium is replaced by fat). Abnormalities of the left ventricular myocardium are more common and include dilated cardiomyopathy, myocarditis, or hypertrophic cardiomyopathy. As a result of elevated left atrial pressure and impaired relaxation of the left ventricle, left heart failure can lead to right heart failure. Other causes of HF in infants include AV septal defect, coronary artery anomalies, and chronic atrial tachyarrhythmias. Metabolic, mitochondrial, and neuromuscular disorders with associated cardiomyopathy present at various ages depending on the etiology. HF due to acquired conditions such as myocarditis can occur at any age. Children with HF may present with irritability, diaphoresis with feeds, fatigue, exercise intolerance, or evidence of pulmonary congestion (see Table 20–1).

**Treatment of Heart Failure**

The therapy of HF should be directed toward the underlying cause as well as the symptoms. Regardless of the etiology, neurohormonal activation occurs early when ventricular systolic dysfunction is present. Plasma catecholamine levels (eg, norepinephrine) increase causing tachycardia, diaphoresis, and, by activating the renin-angiotensin system, peripheral vasoconstriction and salt and water retention. There is no gold standard diagnostic or therapeutic approach to HF in children. Treatment must be individualized and therapies should be aimed at improving cardiac performance by targeting the three determinants of cardiac performance: (1) preload, (2) afterload, and (3) contractility.

**Inpatient Management of Heart Failure**

Patients with cardiac decompensation may require hospitalization for initiation or augmentation of HF therapy. Table 20–12 demonstrates intravenous inotropic agents used to augment cardiac output and their relative effect on heart rate, systemic vascular resistance, and cardiac index. The drug used will depend in part on the cause of the HF.

**A. Inotropic and Mechanical Support**

1. **Afterload reduction**
   - **MILRINONE**—This phosphodiesterase-3 inhibitor increases cyclic adenosine monophosphate, thereby improving the inotropic state of the heart. In addition to a dose-dependent increase in cardiac contractility, milrinone is a systemic and pulmonary vasodilator and thus an effective agent in both right and left ventricular systolic dysfunction. Milrinone reduces the incidence of low cardiac output syndrome following open-heart surgery. The usual dosage range is 0.25–0.75 mcg/kg/min.
   - **Nitroglycerin**—Nitroglycerin functions primarily as a dilator of venous capacitance vessels and causes a reduction of right and left atrial pressure. Systemic blood pressure may also fall, and reflex tachycardia may occur. Nitroglycerin is used to improve coronary blood flow and may be especially useful when cardiac output is reduced because of coronary under-perfusion following congenital heart surgery. The usual intravenous dosage range is 1–3 mcg/kg/min.

2. **Enhancement of contractility**
   - **Dopamine**—This naturally occurring catecholamine increases myocardial contractility primarily via cardiac

---

**Table 20–12. Intravenous inotropic agents.**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Renal Perfusion</th>
<th>Heart Rate</th>
<th>Cardiac Index</th>
<th>SVR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Dopamine</strong></td>
<td>2-5 mcg/kg/min</td>
<td>↑ via vasodilation</td>
<td>0</td>
<td>0</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>5-10</td>
<td>↑/↓ depending on balance of ↑ cardiac index and ↑SVR</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>&gt; 10</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td><strong>Dobutamine</strong></td>
<td>2.5–10 mcg/kg/min</td>
<td>↑ via ↑ cardiac index</td>
<td>↑</td>
<td>↑</td>
<td>↑/↓</td>
</tr>
<tr>
<td><strong>Epinephrine</strong></td>
<td>0.2–2.0 mcg/kg/min</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td><strong>Norepinephrine</strong></td>
<td>0.05–0.1 mcg/kg/min</td>
<td>↓</td>
<td>0</td>
<td>↑</td>
<td>↑/↑</td>
</tr>
<tr>
<td><strong>Isoproterenol</strong></td>
<td>0.05–2.0 mcg/kg/min</td>
<td>0</td>
<td>↑↑</td>
<td>↑</td>
<td>↓↓</td>
</tr>
</tbody>
</table>

SVR, systemic vascular resistance.
β-adrenergic activation. Dopamine also directly acts on renal dopamine receptors to improve renal perfusion. The usual dose range for HF is 3–10 mcg/kg/min.

b. Dobutamine—This synthetic catecholamine increases myocardial contractility secondary to cardiospecific β-adrenergic activation and produces little peripheral vasoconstriction. Dobutamine does not usually cause marked tachycardia, which is a distinct advantage. However, the drug does not selectively improve renal perfusion as does dopamine. The usual dose range is essentially the same as for dopamine.

3. Mechanical circulatory support—Mechanical support is indicated in children with severe, refractory myocardial failure secondary to cardiomyopathy, myocarditis, or following cardiac surgery. Mechanical support is used for a limited time while cardiac function improves or as a bridge to cardiac transplantation.

A. Extracorporeal Membrane Oxygenation (ECMO)—ECMO is a temporary means of providing oxygenation, carbon dioxide removal, and hemodynamic support to patients with cardiac or pulmonary failure refractory to conventional therapy. The blood removed from the patient via a catheter positioned in the venous system (eg, superior vena cava or right atrium) passes through a membrane oxygenator and then is delivered back to the patient through a catheter in the arterial system (eg, aorta or common carotid artery). Flow rates are adjusted to maintain adequate systemic perfusion, as judged by mean arterial blood pressure, acid-base status, end-organ function, and mixed venous oxygen saturation. The patient is monitored closely for improvement in cardiac contractility. Risks are significant and include severe internal and external bleeding, infection, thrombosis, and pump failure.

B. Ventricular Assist Devices—Use of ventricular assist devices is increasing in children as device development has progressed. These devices allow for less invasive hemodynamic support than ECMO. A cannula is usually positioned in the apex of the ventricle and removes blood from the ventricle using a battery-operated pump. Blood is then returned to the patient through a separate cannula positioned in the aorta or pulmonary artery, depending on the ventricle being supported. Biventricular support can be done if necessary. Ventricular assist carries lower risk of pump failure than ECMO, but the risk of infection, thrombosis, and bleeding complications remains.

Outpatient Management of Heart Failure

A. Medications

1. Afterload-reducing agents—Oral afterload-reducing agents improve cardiac output by decreasing systemic vascular resistance. Angiotensin-converting enzyme (ACE) inhibitors (captopril, enalapril, and lisinopril) are first-line therapy in children with HF requiring long-term treatment. These agents block angiotensin II–mediated systemic vasoconstriction and are particularly useful in children with structurally normal hearts but reduced LV myocardial function (eg, myocarditis or dilated cardiomyopathies [DCMs]). They are also useful in ameliorating mitral and aortic insufficiency and have a role in controlling refractory HF in patients with large left-to-right shunts in whom systemic vascular resistance is elevated.

2. β-Blockade—Although clearly beneficial in adults with HF, a randomized, controlled study of the use of a β-blocker (carvedilol) in children with HF did not demonstrate any significant improvement compared to placebo. However, β-blockers may still be useful adjunctive therapy in some children with refractory HF already taking ACE inhibitors. In the setting of HF, excessive circulating catecholamines are present due to activation of the sympathetic nervous system. Although beneficial acutely, this compensatory response over time produces myocardial fibrosis, myocyte hypertrophy, and myocyte apoptosis that contribute to the progression of HF. β-Blockers (eg, carvedilol and metoprolol) antagonize this sympathetic activation and may offset these deleterious effects. Side effects of β-blockers are significant and include bradycardia, hypotension, and worsening HF in some patients.

3. Diuretics—Diuretic therapy may be necessary in HF to maintain the euvolemic state and control symptoms related to pulmonary or hepatic congestion.

a. Furosemide—This rapid-acting loop diuretic may be given intravenously or orally. It removes large amounts of potassium and chloride from the body, producing hypochloremic metabolic alkalosis when used chronically. Electrolytes should be monitored during long-term therapy.

b. Thiazides—Thiazides are distal tubular diuretics used to complement furosemide in severe cases of HF.

c. Spironolactone—Spironolactone is a potassium-sparing aldosterone inhibitor. It is used frequently in conjunction with furosemide or thiazides for its enhanced diuretic function. Because it spares potassium, supplemental potassium may be avoided. Spironolactone has benefit in adults with HF regardless of its diuretic effect as aldosterone is associated with the development of fibrosis, sodium retention, and vascular dysfunction. This effect has not been proven in children.

4. Digitalis—Digitalis is a cardiac glycoside with a positive inotropic effect on the heart and an associated decrease in systemic vascular resistance. The preparation of digitalis used in clinical practice is digoxin. Large studies in adult patients with HF have not demonstrated decreased mortality of HF.
with digoxin use, but treatment is associated with reduced hospitalization rates for HF exacerbations. There are no controlled studies in children.

**A. Digitalis Toxicity**—Any dysrhythmia that occurs during digoxin therapy should be attributed to the drug until proven otherwise. Ventricular bigeminy and first-, second-, or third-degree AV block are characteristic of digoxin toxicity. A trough level should be obtained if digoxin toxicity is suspected.

**B. Digitalis Poisoning**—This acute emergency must be treated without delay. Digoxin poisoning most commonly occurs in toddlers who have taken their parents’ or grandparents’ medications. The child’s stomach should be emptied immediately by gastric lavage even if several hours have passed since ingestion. Patients who have ingested massive amounts of digoxin should receive large doses of activated charcoal. In advanced heart block, atropine or temporary ventricular pacing may be needed. Digoxin immune Fab can be used to reverse potentially life-threatening intoxication. Antiarrhythmic agents may be useful.

**5. Fluid restriction**—Fluid restriction is rarely necessary in children with HF due to the effectiveness of diuretics and the tendency of infants and children with HF to self-regulate intake. Ensuring adequate caloric intake to promote growth is a more important goal in children with HF.

**Environmental factors** such as maternal diabetes, alcohol consumption, progesterone use, viral infection, and other maternal teratogen exposure are associated with an increased incidence of cardiac malformations. However, the importance of genetics as a cause of congenital heart disease is becoming more evident as advances in the field occur. Microdeletion in the long arm of chromosome 22 (22q11) is associated with DiGeorge syndrome. These children often have conotruncal abnormalities such as truncus arteriosus, tetralogy of Fallot, double-outlet RV, or interrupted aortic arch. Alagille, Noonan, Holt-Oram, and Williams syndromes and the Trisomies 13, 18, and 21 are all commonly associated with congenital heart lesions. Understanding these associations as well as further targeted study investigating the genetic basis of other cardiac lesions will offer opportunities for early diagnosis, gene therapy, and recurrence risk counseling for families.


**ACyanotic Congenital Heart Disease**

**Defects in Septation**

**1. Atrial Septal Defect**

**Essentials of Diagnosis & Typical Features**

- Fixed, widely split S₂, RV heave.
- Grade I-II/VI systolic ejection murmur at the pulmonary area.
- Large shunts cause a diastolic flow murmur at the lower left sternal border (increased flow across the tricuspid valve).
- ECG shows rsR’ in lead V₁.
- Frequently asymptomatic.

**General Considerations**

Atrial septal defect (ASD) is an opening in the atrial septum permitting the shunting of blood between the atria. There are three major types: ostium secundum, ostium primum, and sinus venosus. Ostium secundum is the most common type and represents an embryologic deficiency in the septum secundum or too large of a central hole in the septum primum. Ostium primum defect is associated with atrioventricular septal defects. The sinus venosus defect is frequently associated with abnormal pulmonary venous return, as the location of the sinus venosus is intimately related to the right upper pulmonary vein.

Ostium secundum ASD occurs in 10% of patients with congenital heart disease and is two times more common in females than in males. The defect is most often sporadic but may be familial or have a genetic basis (Holt-Oram syndrome). After the third decade, atrial arrhythmias or pulmonary vascular disease may develop. Irreversible pulmonary hypertension resulting in cyanosis as atrial level shunting becomes right-to-left and ultimately right
heart failure can occur and is a life-limiting process (Eisenmenger syndrome).

**Clinical Findings**

**A. Symptoms and Signs**

Most infants and children with an ASD have no cardiovascular symptoms. Older children and adults can present with exercise intolerance, easy fatigability, or, rarely, heart failure. The direction of flow across the ASD is determined by the compliance of the ventricles. Because the right ventricle is normally more compliant, shunting across the ASD is left-to-right as blood follows the path of least resistance. Therefore, cyanosis does not occur unless RV dysfunction occurs, usually as a result of pulmonary hypertension, leading to reversal of the shunt across the defect.

Peripheral pulses are normal and equal. The heart is usually hyperactive, with an RV heave felt best at the mid to lower left sternal border. S₂ at the pulmonary area is widely split and often fixed. In the absence of associated pulmonary hypertension, the pulmonary component is normal in intensity. A grade I–III/VI ejection-type systolic murmur is heard best at the left sternal border in the second intercostal space. This murmur is caused by increased flow across the pulmonic valve, not flow across the ASD. A mid-diastolic murmur is often heard in the fourth intercostal space at the left sternal border. This murmur is caused by increased flow across the tricuspid valve during diastole. The presence of this murmur suggests high flow with a pulmonary-to-systemic blood flow ratio greater than 2:1.

**B. Imaging**

Radiographs may show cardiac enlargement. The main pulmonary artery may be dilated and pulmonary vascular markings increased in large defects owing to the increased pulmonary blood flow.

**C. Electrocardiography**

The usual ECG shows right axis deviation. In the right precordial leads, an rsR’ pattern is usually present. A mutation in the cardiac homeobox gene (NKX2-5) is associated with an ASD, and AV block would be seen on the ECG.

**D. Echocardiography**

Echocardiography shows a dilated right atrium and RV. Direct visualization of the exact anatomic location of the ASD by two-dimensional echocardiography, and demonstration of a left-to-right shunt through the defect by color-flow Doppler, confirms the diagnosis and has eliminated the need for cardiac catheterization prior to surgical or catheter closure of the defect. Assessment of all pulmonary veins should be made to rule out associated anomalous pulmonary venous return.

**E. Cardiac Catheterization**

Although cardiac catheterization is rarely needed for diagnostic purposes, transcatheter closure of an ostium secundum ASD is now the preferred method of treatment.

If a catheterization is performed, oximetry shows a significant step-up in oxygen saturation from the superior vena cava to the right atrium. The pulmonary artery pressure and pulmonary vascular resistance are usually normal. The Qp: Qs may vary from 1.5:1 to 4:1.

**Treatment**

Surgical or catheterization closure is generally recommended for symptomatic children with a large atrial level defect and associated right heart dilation. In the asymptomatic child with a large hemodynamically significant defect, closure is performed electively at age 1–3 years. Most defects are amenable to non-operative device closure during cardiac catheterization, but the defect must have adequate tissue rims on all sides on which to anchor the device. The mortality for surgical closure is less than 1%. When closure is performed by age 3 years, late complications of RV dysfunction and dysrhythmias are avoided.

**Course & Prognosis**

Patients usually tolerate an ASD well in the first two decades of life, and the defect often goes unnoticed until middle or late adulthood. Pulmonary hypertension and reversal of the shunt are rare late complications. Infective endocarditis (IE) is uncommon. Spontaneous closure occurs, most frequently in children with a defect less than 4 mm in diameter, therefore outpatient follow-up is recommended. Exercise tolerance and oxygen consumption in surgically corrected children are generally normal, and restriction of physical activity is unnecessary.


### 2. Ventricular Septal Defect

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Holosystolic murmur at lower left sternal border with RV heave.
- Presentation and course depend on size of defect and the pulmonary vascular resistance.
Clinical features are failure to thrive, tachypnea, and diaphoresis with feeds.

Left-to-right shunt with normal pulmonary vascular resistance.

Large defects may cause Eisenmenger syndrome if not repaired early.

General Considerations

Ventricular septal defect (VSD) is the most common congenital heart malformation, accounting for about 30% of all congenital heart disease. Defects in the ventricular septum occur both in the membranous portion of the septum (most common) and the muscular portion. VSDs follow one of four courses:

A. Small, Hemodynamically Insignificant Ventricular Septal Defects

Between 80% and 85% of VSDs are small (< 3 mm in diameter) at birth and will close spontaneously. In general, small defects in the muscular interventricular septum will close sooner than those in the membranous septum. In most cases, a small VSD never requires surgical closure. Fifty percent of small VSDs will close by age 2 years, and 90% by age 6 years, with most of the remaining closing during the school years.

B. Moderate-Sized Ventricular Septal Defects

Asymptomatic patients with moderate-sized VSDs (3–5 mm in diameter) account for 3%–5% of children with VSDs. In general, these children do not have clear indicators for surgical closure. Historically, in those who had cardiac catheterization, the ratio of pulmonary to systemic blood flow is usually less than 2:1, and serial cardiac catheterizations demonstrate that the shunts get progressively smaller. If the patient is asymptomatic and without evidence of pulmonary hypertension, these defects can be followed serially as some close spontaneously over time.

C. Large Ventricular Septal Defects with Normal Pulmonary Vascular Resistance

These defects are usually 6–10 mm in diameter. Unless they become markedly smaller within a few months after birth, they often require surgery. The timing of surgery depends on the clinical situation. Many infants with large VSDs and normal pulmonary vascular resistance develop symptoms of failure to thrive, tachypnea, diaphoresis with feeds by age 3–6 months, and require correction at that time. Surgery before age 2 years in patients with large VSDs essentially eliminates the risk of pulmonary vascular disease.

D. Large Ventricular Septal Defects with Pulmonary Vascular Obstructive Disease

The direction of flow across a VSD is determined by the resistance in the systemic and pulmonary vasculature, explaining why flow is usually left-to-right. In large VSDs, ventricular pressures are equalized, resulting in increased pulmonary artery pressure. In addition, shear stress caused by increased volume in the pulmonary circuit causes increased resistance over time. The vast majority of patients with inoperable pulmonary hypertension develop the condition progressively. The combined data of the multicenter National History Study indicate that almost all cases of irreversible pulmonary hypertension can be prevented by surgical repair of a large VSD before age 2 years.

Clinical Findings

A. Symptoms and Signs

Patients with small or moderate left-to-right shunts usually have no cardiovascular symptoms. Patients with large left-to-right shunts are usually ill early in infancy. These infants have frequent respiratory infections and gain weight slowly. Dyspnea, diaphoresis, and fatigue are common. These symptoms can develop as early as 1–6 months of age. Older children may experience exercise intolerance. Over time, in children and adolescents with persistent large left-to-right shunt, the pulmonary vascular bed undergoes structural changes, leading to increased pulmonary vascular resistance and reversal of the shunt from left-to-right to right-to-left (Eisenmenger syndrome). Cyanosis will then be present.

1. Small left-to-right shunt—No lifts, heaves, or thrills are present. The first sound at the apex is normal, and the second sound at the pulmonary area is split physiologically. A grade II–IV/V, medium- to high-pitched, harsh pansystolic murmur is heard best at the left sternal border in the third and fourth intercostal spaces. The murmur radiates over the entire precordium. No diastolic murmurs are heard.

2. Moderate left-to-right shunt—Slight prominence of the precordium with moderate LV heave is evident. A systolic thrill may be palpable at the lower left sternal border between the third and fourth intercostal spaces. The second sound at the pulmonary area is most often split but may be single. A grade III–IV/V, harsh pansystolic murmur is heard best at the lower left sternal border in the fourth intercostal space. A mitral diastolic flow murmur indicates that pulmonary blood flow and subsequently the pulmonary venous return are significantly increased by the large shunt.

3. Large ventricular septal defects with pulmonary hypertension—The precordium is prominent, and the sternum bulges. Both LV and RV heaves are palpable. S₂ is palpable in the pulmonary area. A thrill may be present at
the lower left sternal border. S₂ is usually single or narrowly split, with accentuation of the pulmonary component. The murmur ranges from grade I to IV/VI and is usually harsh and pansystolic. Occasionally, when the defect is large or ventricular pressures approach equivalency, a murmur is difficult to hear. A diastolic flow murmur may be heard, depending on the size of the shunt.

**B. Imaging**

In patients with small shunts, the chest radiograph may be normal. Patients with large shunts have significant cardiac enlargement involving both the left and right ventricles and the left atrium. The main pulmonary artery segment may be dilated. The pulmonary vascular markings are increased.

**C. Electrocardiography**

The ECG is normal in small left-to-right shunts. Left ventricular hypertrophy (LVH) usually occurs in patients with large left-to-right shunts and normal pulmonary vascular resistance. Combined ventricular enlargement occurs in patients with pulmonary hypertension caused by increased flow, increased resistance, or both. Pure RV hypertrophy occurs in patients with pulmonary hypertension secondary to pulmonary vascular obstruction induced by long-standing left-to-right shunt (Eisenmenger syndrome).

**D. Echocardiography**

Two-dimensional echocardiography can reveal the size of a VSD and identify its anatomic location. Multiple defects can be detected by combining two-dimensional and color-flow imaging. Doppler can further evaluate the VSD by estimating the pressure difference between the left and right ventricles. A pressure difference greater than 50 mm Hg in the left ventricle compared to the right ventricle confirms the absence of severe pulmonary hypertension.

**E. Cardiac Catheterization and Angiocardiography**

The ability to describe the VSD anatomy and estimate the pulmonary artery pressures on the basis of the gradient across the VSD allows for the vast majority of isolated defects to be repaired without cardiac catheterization and angiography. Catheterization is indicated in those patients with increased pulmonary vascular resistance. Angiographic examination defines the number, size, and location of the defects.

**Treatment**

**A. Medical Management**

Patients who develop symptoms can be managed with anti-congestive treatment (see section on Heart Failure, earlier), particularly diuretics and systemic afterload reduction, prior to surgery or if it is expected that the defect will close over time.

**B. Surgical Treatment**

Patients with cardiomegaly, poor growth, poor exercise tolerance, or other clinical abnormalities who have a significant shunt (> 2:1) typically undergo surgical repair at age 3–6 months. A synthetic or pericardial patch is used for primary closure. In most centers, these children have surgery before age 1 year. As a result, Eisenmenger syndrome has been virtually eliminated. The surgical mortality rate for VSD closure is below 2%.

Transcatheter closure of muscular VSDs is also a possibility. Perimembranous VSDs have also been closed in children during catheterization, but a high incidence of complete heart block after placement of the occluding device has slowed the acceptance of this approach.

**Course & Prognosis**

Significant late dysrhythmias are uncommon. Functional exercise capacity and oxygen consumption are usually normal, and physical restrictions are unnecessary. Adults with corrected defects have normal quality of life.
Sixty percent of children with Down syndrome have congenital heart disease, and of these, 35%–40% have an AVSD. AVSDs are defined as partial or complete. The physiology of the defect is determined by the location of the AV valves. If the valves are located in the midportion of the defect (complete AVSD), both atrial and ventricular components of the septal defect are present and the left- and right-sided AV valves share a common ring or orifice. In the partial form, there is a low insertion of the AV valves, resulting in a primum ASD without a ventricular defect component. In partial AVSD, there are two separate AV valve orifices and usually a cleft in the left-sided valve.

Partial AVSD behaves like an isolated ASD with variable degrees of regurgitation through the cleft in the left AV valve. The complete form causes large left-to-right shunts at both the ventricular and atrial levels with variable degrees of AV valve regurgitation. If there is increased pulmonary vascular resistance, the shunts may be bidirectional. Bidirectional shunting is more common in Down syndrome or in older children who have not undergone repair.

Clinical Findings

A. Symptoms and Signs

The partial form may produce symptoms similar to ostium secundum ASD. Patients with complete AVSD usually have symptoms such as failure to thrive, tachypnea, diaphoresis with feeding, or recurrent bouts of pneumonia.

In the neonate with the complete form, the murmur may be inaudible due to relatively equal systemic and pulmonary vascular resistance (PVR). After 4–6 weeks, as PVR drops, a nonspecific systolic murmur develops. The murmur is usually not as harsh as that of an isolated VSD. There is both right- and left-sided cardiac enlargement. S$_2$ is loud, and a pronounced diastolic flow murmur may be heard at the apex and the lower left sternal border.

If severe pulmonary vascular obstructive disease is present, there is usually dominant RV enlargement. S$_2$ is palpable at the pulmonary area and no thrill is felt. A nonspecific short systolic murmur is heard at the lower left sternal border. No diastolic flow murmurs are heard. If a right-to-left shunt is present, cyanosis will be evident.

B. Imaging

Cardiac enlargement is always present in the complete form and pulmonary vascular markings are increased. Often, only the right heart size may be increased in the partial form, although a severe mitral valve cleft can rarely lead to left heart enlargement as well.

C. Electrocardiography

In all forms of AVSD, there is extreme left axis deviation with a counterclockwise loop in the frontal plane. The ECG is an important diagnostic tool. Only 5% of isolated VSDs have this ECG abnormality. First-degree heart block occurs in over 50% of patients. Right, left, or combined ventricular hypertrophy is present depending on the particular defect and the presence or absence of pulmonary hypertension.

D. Echocardiography

Echocardiography is the diagnostic test of choice. The anatomy can be well visualized by two-dimensional echocardiography. Both AV valves are at the same level, compared with the normal heart in which the tricuspid valve is more apically positioned. The size of the atrial and ventricular components of the defect can be measured. AV valve regurgitation can be detected. The LV outflow tract is elongated (gooseneck appearance), which produces systemic outflow obstruction in some patients.

E. Cardiac Catheterization and Angiocardiography

Cardiac catheterization is not routinely used to evaluate AVSD but may be used to assess pulmonary artery pressures and resistance in the older infant with Down syndrome, as this patient group is predisposed to early-onset pulmonary hypertension. Increased oxygen saturation in the RV or the right atrium identifies the level of the shunt. Angiocardiography reveals the characteristic gooseneck deformity of the LV outflow tract in the complete form.

Treatment

Spontaneous closure of this type of defect does not occur and therefore surgery is required. In the partial form, surgery carries a low mortality rate (1%–2%), but patients require follow-up because of late-occurring LV outflow tract obstruction and mitral valve dysfunction. The complete form carries a higher mortality rate. Complete correction in the first year of life, prior to the onset of irreversible pulmonary hypertension, is obligatory.

PATENT (PERSISTENT) DUCTUS ARTERIOSUS

Continuous machinery type murmur.

Bounding peripheral pulses if large ductus present.

Presentation and course depends on size of the ductus and the pulmonary vascular resistance.
Clinical features of a large ductus are failure to thrive, tachypnea, and diaphoresis with feeds.

Left-to-right shunt with normal pulmonary vascular resistance.

**General Considerations**

PDA is the persistence of the normal fetal vessel joining the pulmonary artery to the aorta. It closes spontaneously in normal-term infants at 1–5 days of age. PDA accounts for 10% of all congenital heart disease. The incidence of PDA is higher in infants born at altitudes over 10,000 ft. It is twice as common in females as in males. The frequency of PDA in preterm infants weighing less than 1500 g ranges from 20% to 60%. The defect may occur as an isolated abnormality or with associated lesions, commonly coarctation of the aorta and VSD. Patency of the ductus arteriosus may be necessary in some patients with complex forms of congenital heart disease (eg, hypoplastic left heart syndrome [HLHS], pulmonary atresia). Prostaglandin E₂ (PGE₂) is a product of arachidonic acid metabolism and continuous intravenous infusion maintains ductal patency.

**Clinical Findings**

**A. Symptoms and Signs**

The clinical findings and course depend on the size of the shunt and the degree of pulmonary hypertension.

1. **Moderate to large patent ductus arteriosus**—Pulses are bounding, and pulse pressure is widened due to diastolic runoff through the ductus. S₁ is normal and S₂ is usually narrowly split. In large shunts, S₂ may have a paradoxical split (eg, S₂ narrows on inspiration and widens on expiration). Paradoxical splitting is caused by volume overload of the LV and prolonged ejection of blood from this chamber.

   The murmur is characteristic. It is a rough machinery murmur maximal at the second left intercostal space. It begins shortly after S₁, rises to a peak at S₂, and passes through the S₂ into diastole, where it becomes a decrescendo murmur and fades before the S₃. The murmur tends to radiate well to the anterior lung fields but relatively poorly to the posterior lung fields. A diastolic flow murmur is often heard at the apex.

2. **Patent ductus arteriosus with increased pulmonary vascular resistance**—Flow across the ductus is diminished. S₁ is single and accentuated, and no significant heart murmur is present. The pulses are normal rather than bounding.

**B. Imaging**

In an isolated PDA, the appearance of the chest radiograph depends on the size of the shunt. If the shunt is small, the heart is not enlarged. If the shunt is large, both left atrial and LV enlargement may be seen. The aorta and the main pulmonary artery segment may also be prominent.

**C. Electrocardiography**

The ECG may be normal or may show LVH, depending on the size of the shunt. In patients with pulmonary hypertension caused by increased blood flow, biventricular hypertrophy usually occurs. In pulmonary vascular obstructive disease, pure right ventricular hypertrophy (RVH) occurs.

**D. Echocardiography**

Echocardiography provides direct visualization of the ductus and confirms the direction and degree of shunting. High-velocity left-to-right flow argues against abnormally elevated pulmonary vascular resistance, and as pulmonary vascular resistance drops during the neonatal period, higher velocity left-to-right shunting is usually seen. If suprasystemic pulmonary vascular resistance is present, flow across the ductus will be seen from right to left. Associated cardiac lesions and ductal-dependent pulmonary or systemic blood flow must be recognized by echocardiography, as closure of a PDA in this setting would be contraindicated.

**E. Cardiac Catheterization and Angiography**

PDA closure in the catheterization laboratory with a vascular plug or coils is now routine in all but the smallest of neonates and infants.

**Treatment**

Surgical closure is indicated when the PDA is large and the patient is small. Caution must be given to closing a PDA in patients with pulmonary vascular obstructive disease and right-to-left shunting across the ductus as this could result in RV failure. Patients with large left-to-right shunts require repair by age 1 year to prevent the development of progressive pulmonary vascular obstructive disease. Symptomatic PDA with normal pulmonary artery pressure can be safely coil or device-occluded in the catheterization laboratory, ideally after the child has reached 5 kg.

Patients with nonreactive pulmonary vascular obstruction, pulmonary vascular resistance greater than 10 Wood units (normal, < 3), and a ratio of pulmonary to systemic resistance greater than 0.7 (normal, < 0.3) despite vasodilator therapy (eg, nitric oxide) should not undergo PDA closure. These patients are made worse by PDA closure because the flow through the ductus allows preserved RV function and maintains cardiac output to the systemic circulation. These patients can be managed with pulmonary vasodilator therapy, but eventually may require heart-lung transplant in severe cases.

Presence of a symptomatic PDA is common in preterm infants. Indomethacin, a prostaglandin synthesis inhibitor, is often used to close the PDA in premature infants.
Indomethacin does not close the PDA of full-term infants or children. The success of indomethacin therapy is as high as 80%–90% in premature infants with a birth weight greater than 1200 g, but it is less successful in smaller infants. Indomethacin (0.1–0.3 mg/kg orally every 8–24 hours or 0.1–0.3 mg/kg parenterally every 12 hours) can be used if there is adequate renal, hematologic, and hepatic function. Because indomethacin may impair renal function, urine output, BUN, and creatinine should be monitored during therapy. If indomethacin is not effective and the ductus remains hemodynamically significant, surgical ligation should be performed. If the ductus partially closes so that the shunt is no longer hemodynamically significant, a second course of indomethacin may be tried.

► Course & Prognosis

Patients with an isolated PDA and small-to-moderate shunts usually do well without surgery. However, in the third or fourth decade of life, symptoms of easy fatigability, dyspnea on exertion, and exercise intolerance appear in those patients who develop pulmonary hypertension and/or HF. Percutaneous closure can be done later in life if there has not been development of severe pulmonary vascular disease. For those with severe and irreversible pulmonary hypertension prognosis is not good and heart-lung transplant may be needed.

Spontaneous closure of a PDA may occur up to age 1 year, especially in preterm infants. After age 1 year, spontaneous closure is rare. Because endocarditis is a potential complication, some cardiologists recommend closure if the defect persists beyond age 1 year, even if it is small. Most of these patients undergo percutaneous occlusion as opposed to surgical ligation.


► General Considerations

Pulmonic valve stenosis accounts for 10% of all congenital heart disease. The pulmonary valve annulus is usually small with moderate to marked poststenotic dilation of the main pulmonary artery. Obstruction to blood flow across the pulmonary valve causes an increase in RV pressure. Pressures greater than systemic are potentially life-threatening and are associated with critical obstruction. Because of the increased RV strain, severe right ventricular hypertrophy (RVH) and eventual RV failure can occur.

When obstruction is severe and the ventricular septum is intact, a right-to-left shunt will often occur at the atrial level through a patent foramen ovale (PFO). In neonates with severe obstruction and minimal antegrade pulmonary blood flow (critical PS), left-to-right flow through the ductus is essential, making prostaglandin a necessary intervention at the time of birth. These infants are cyanotic at presentation.

► Clinical Findings

A. Symptoms and Signs

Patients with mild or even moderate valvular pulmonary stenosis are acyanotic and asymptomatic. Patients with severe valvular obstruction may develop cyanosis early. Patients with mild to moderate obstruction are usually well developed and well nourished. They are not prone to pulmonary infections. The pulses are normal. The precordium may be prominent, often with palpable RV heave. A systolic thrill is often present in the pulmonary area. In patients with mild to moderate stenosis, a prominent ejection click of pulmonary origin is heard at the third left intercostal space. The click varies with respiration, being more prominent during expiration than inspiration. In severe stenosis, the click tends to merge with S1. S2 varies with the degree of stenosis. In mild pulmonic stenosis, S2 is normal. In moderate pulmonic stenosis, S2 is more widely split and the pulmonary component is softer. In severe pulmonary stenosis, S2 is single because the pulmonary component cannot be heard. A rough systolic ejection murmur is best heard at the second left interspace. It radiates well to the back. With severe pulmonary valve obstruction, the murmur is usually short. No diastolic murmurs are audible.

B. Imaging

The heart size is normal. Poststenotic dilation of the main pulmonary artery and the left pulmonary artery often occurs.
C. Electrocardiography

The ECG is usually normal with mild obstruction. In severe obstruction, RV hypertrophy with an RV strain pattern (deep inversion of the T wave) occurs in the right precordial leads ($V_{3R}$, $V_{1}$, $V_{2}$). Right atrial enlargement may be present. Right axis deviation occurs in moderate to severe stenosis.

D. Echocardiography

The diagnosis often is made by physical examination, but the echocardiogram confirms the diagnosis, defines the anatomy, and can identify any associated lesions. The pulmonary valve has thickened leaflets with reduced valve leaflet excursion. The transvalvular pressure gradient can be estimated accurately by Doppler, which provides an estimate of RV pressure and can assist in determining the appropriate time to intervene.

E. Cardiac Catheterization and Angiocardiography

Catheterization is reserved for therapeutic balloon valvuloplasty. In severe cases with associated RV dysfunction, a right-to-left shunt at the atrial level is indicated by a lower left atrial saturation than pulmonary vein saturation. Pulmonary artery pressure is normal. The gradient across the pulmonary valve varies from 10 to 200 mm Hg. In severe cases, the right atrial pressure is elevated, with a predominant "a" wave. Angiocardiography in the RV shows a thick pulmonary valve with a narrow opening producing a jet of contrast into the pulmonary artery. Infundibular (RV outflow tract) hypertrophy may be present and may contribute to obstruction to pulmonary blood flow.

Treatment

Treatment of pulmonic stenosis is recommended for children with RV systolic pressure greater than two-thirds of systemic pressure. Immediate correction is indicated for patients with systemic or suprasystemic RV pressure. Percutaneous balloon valvuloplasty is the procedure of choice. It is as effective as surgery in relieving obstruction and causes less valve insufficiency. Surgery is needed to treat pulmonic valve stenosis when balloon pulmonic valvuloplasty is unsuccessful.

Course & Prognosis

Patients with mild pulmonary stenosis live normal lives. Even those with moderate stenosis are rarely symptomatic. Those with severe valvular obstruction may develop cyanosis in infancy as described above.

After balloon pulmonary valvuloplasty or surgery, most patients have good maximum exercise capacity unless they have significant pulmonary insufficiency (PI). Limitation of physical activity is unwarranted. The quality of life of adults with successfully treated pulmonary stenosis and minimal PI is normal. Patients with PI, a frequent side effect of intervention, may be significantly limited in exercise performance. Severe PI leads to progressive RV dilation and dysfunction, which may precipitate ventricular arrhythmias or right heart failure in adulthood. Patients with severe PI may benefit from replacement of the pulmonic valve.


2. Subvalvular Pulmonary Stenosis

Isolated infundibular (subvalvular) pulmonary stenosis is rare. More commonly it is found in combination with other lesions, such as in tetralogy of Fallot. Infundibular hypertrophy that is associated with a small perimembranous VSD may lead to a "double-chambered RV" characterized by obstruction between the inflow and outflow portion of the RV. One should suspect such an abnormality if there is a prominent precordial thrill, no audible pulmonary ejection click, and a murmur maximal in the third and fourth intercostal spaces rather than in the second intercostal space. The clinical picture is otherwise identical to that of pulmonic valve stenosis. Intervention, if indicated, is always surgical because this condition does not improve with balloon catheter dilation.

3. Supravalvular Pulmonary Stenosis

Supravalvular pulmonary stenosis is a relatively rare condition defined by narrowing of the main pulmonary artery. The clinical picture may be identical to valvular pulmonary stenosis, although the murmur is maximal in the first intercostal space at the left sternal border and in the suprasternal notch. No ejection click is audible, as the valve itself is not involved. The murmur radiates toward the neck and over the lung fields. Children with William syndrome can have supravalvular and peripheral pulmonary stenosis as well as supravalvular aortic stenosis.

4. Peripheral (Branch) Pulmonary Artery Stenosis

In peripheral pulmonary stenosis, there are multiple narrowings of the branches of the pulmonary arteries, sometimes extending into the vessels in the periphery of the lungs. Systolic murmurs may be heard over both lung fields,
anteriorly and posteriorly, radiating to the axilla. Mild, nonpathologic pulmonary branch stenosis produces a murmur in infancy that resolves by 6 months of age. William syndrome, Alagille syndrome, and congenital rubella are commonly associated with severe forms of peripheral pulmonary artery stenosis. Surgery is often unsuccessful, as areas of stenoses near and beyond the hilum of the lungs are not accessible to the surgeons. Transcatheter balloon angioplasty and even stent placement are used to treat this condition, with moderate success. In some instances, the stenoses improve spontaneously with age.

5. Ebstein Malformation of the Tricuspid Valve

In Ebstein malformation of the tricuspid valve, the septal leaflet of the tricuspid valve is displaced toward the apex of the heart and is attached to the endocardium of the RV rather than at the tricuspid annulus. As a result, a large portion of the RV functions physiologically as part of the right atrium. This "atrialized" portion of the RV is thin-walled and does not contribute to RV output. The portion of the ventricle below the displaced tricuspid valve is diminished in volume and represents the functioning RV.

C. Electrocardiography

ECG may be normal but usually shows right atrial enlargement and right bundle-branch block (RBBB). There is an association between Ebstein anomaly and Wolff-Parkinson-White (WPW) syndrome, in which case a delta wave is present (short PR with a slurred upstroke of the QRS).

D. Echocardiography

Echocardiography is necessary to confirm the diagnosis and may aid in predicting outcome. Degree of tricuspid valve displacement, size of the right atrium, and presence of associated atrial level shunt all affect outcome.

Clinical Findings

A. Symptoms and Signs

The clinical picture of Ebstein malformation varies with the degree of displacement of the tricuspid valve. In the most extreme form, the septal leaflet is markedly displaced into the RV outflow tract, causing obstruction of antegrade flow into the pulmonary artery and there is very little functioning RV as the majority of the ventricle is "atrialized." The degree of tricuspid insufficiency may be so severe that forward (antegrade) flow out the RV outflow tract is further diminished leading to a right-to-left atrial level shunt and cyanosis. At the opposite extreme when antegrade pulmonary blood flow is adequate, symptoms may not develop until adulthood when tachyarrhythmias associated with right atrial dilation or reentrant electrical pathways occur. These older patients typically have less displacement of the septal leaflet of the tricuspid valve and therefore more functional RV tissue.

B. Imaging

The chest radiograph shows cardiomegaly with prominence of the right heart border. The extent of cardiomegaly depends on the degree of tricuspid valve insufficiency and the presence and size of the atrial level shunt. Massive cardiomegaly with a "wall-to-wall heart" (the heart shadow extends across the entire chest cavity from right-to-left) occurs with severe tricuspid valve displacement and/or a restrictive atrial level defect.

Course & Prognosis

In cyanotic neonates, PGE₂ is used to maintain pulmonary blood flow via the ductus arteriosus until pulmonary vascular resistance decreases, facilitating antegrade pulmonary artery flow. If the neonate remains significantly cyanotic, surgical intervention is required.

The type of surgical repair varies and depends on the severity of the disease. For example, in order to decrease the amount of tricuspid regurgitation surgery may involve atrial plication and tricuspid valve repair. The success of the procedure is highly variable. Late arrhythmias are common due to the preexisting atrial dilation. If a significant Ebstein malformation is not treated, atrial tachyarrhythmias frequently begin during adolescence and the enlarged atrialized RV could impede LV function. Postoperative exercise tolerance improves but remains lower than age-related norms.

6. Other Rare Right-Sided Malformations

A. Absence of a Pulmonary Artery

Absence of a pulmonary artery (left or right) may be an isolated malformation or may occur in association with other congenital heart lesions. It occurs occasionally in patients with tetralogy of Fallot.

B. Absence of the Pulmonary Valve

Absence of the pulmonary valve is rare and usually associated with a VSD. In about 50% of cases, infundibular pulmonary stenosis is also present (ToF with absent pulmonary valve).


LEFT-SIDED LESIONS

1. Coarctation of the Aorta

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Absent or diminished femoral pulses.
- Upper to lower extremity systolic blood pressure gradient of > 20 mm Hg.
- Blowing systolic murmur in the back or left axilla.

**General Considerations**

Coarctation of the aorta is a narrowing in the aortic arch that usually occurs in the proximal descending aorta near the takeoff of the left subclavian artery near the ductus arteriosus. The abdominal aorta is rarely involved. Coarctation accounts for about 6% of all congenital heart disease. Three times as many males as females are affected. Many affected females have Turner syndrome (45, XO). The incidence of associated bicuspid aortic valve with coarctation is 80%–85%.

**Clinical Findings**

**A. Symptoms and Signs**

The cardinal physical finding is decreased or absent femoral pulses.Infants with severe coarctation have equal upper and lower extremity pulses from birth until the ductus arteriosus closes (ductal patency ensures flow to the descending aorta distal to the level of obstruction). Approximately 40% of children with coarctation will present as young infants. Coarctation alone, or in combination with VSD, ASD, or other congenital cardiac anomalies, is the leading cause of HF in the first month of life.

Coarctation presents insidiously in the 60% of children with no symptoms in infancy. Coarctation is usually diagnosed by a pulse and blood pressure (> 15 mm Hg) discrepancy between the arms and legs on physical examination. The pulses in the legs are diminished or absent. The left subclavian artery is occasionally involved in the coarctation, in which case the left brachial pulse is also weak. The pathognomonic murmur of coarctation is heard in the left axilla and the left back. The murmur is usually systolic but may spill into diastole, as forward flow continues across the narrow coarctation site throughout the cardiac cycle. A systolic ejection murmur is often heard at the aortic area and the lower left sternal border along with an apical ejection click if there is an associated bicuspid aortic valve.

**B. Imaging**

In the older child, radiographs may show a normal-sized heart, or more often some degree of LV enlargement. The aorta proximal to the coarctation is prominent. The aortic outline may indent at the level of the coarctation. The poststenotic segment is often dilated. This combination of abnormalities results in the “figure 3” sign on chest radiograph. Notching of the ribs caused by marked enlargement of the intercostal collaterals can be seen. In patients with severe coarctation and associated HF, marked cardiac enlargement and pulmonary venous congestion occur.

**C. Electrocardiography**

ECGs in older children may be normal or may show LVH. ECG usually shows RVH in infants with severe coarctation because the RV serves as the systemic ventricle during fetal life.

**D. Echocardiography**

Two-dimensional echocardiography and color-flow Doppler are used to visualize the coarctation directly, and continuous-wave Doppler estimates the degree of obstruction. Diastolic runoff flow is detected by continuous-wave Doppler if the obstruction is significant. In neonates with a PDA, a coarctation cannot be ruled out, as stenosis of the arch may evolve as the PDA closes. Identification of lesions such as a bicuspid aortic valve or mitral abnormalities may suggest the presence of a coarctation. In the face of poor LV systolic function, the gradient across the coarctation will be low, as the failing LV is unable to generate very much pressure proximal to the narrowing.

**E. Cardiac Catheterization and Angiocardiology**

Cardiac catheterization and angiocardiology are rarely performed for diagnosis in infants or children with coarctation, but are used if transcatheter intervention is planned.

**Treatment**

Infants with coarctation of the aorta and HF may present in extremis secondary to LV dysfunction and low cardiac output. Resuscitative measures include PGE$_2$ infusion (0.05–0.1 mcg/kg/min) to reopen the ductus arteriosus. End-organ damage distal to the coarctation is not uncommon, and inotropic support is frequently needed. Once stabilized, the infant should undergo corrective repair. In patients with poor LV function, balloon angioplasty of the coarctation is sometimes performed as a palliative measure. Recent data suggest that balloon angioplasty of the aorta can be the definitive procedure in many patients with good LV function. Surgery also has a high success rate.
The main complication of both surgery and balloon angioplasty is recurrent coarctation. Fortunately, this complication is treatable in the catheterization laboratory. In older patients, particularly those of adult size, transcatheter stent placement is effective for recurrent coarctation.

### Course & Prognosis

Children who survive the neonatal period without developing HF do well through childhood and adolescence. Fatal complications (eg, hypertensive encephalopathy or intracranial bleeding) are uncommon in childhood. Infected endarteritis is rare before adolescence, but can occur in both repaired and unrepaired coarctation. Children with coarctation corrected after age 5 years are at increased risk for systemic hypertension and myocardial dysfunction even with successful surgery. Exercise testing is mandatory for these children prior to their participation in athletic activities.


### 2. Aortic Stenosis

#### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Harsh systolic ejection murmur at the upper right sternal border with radiation to the neck.
- Thrill in the carotid arteries.
- Systolic click at the apex.
- Dilation of the ascending aorta on chest radiograph.

#### General Considerations

Aortic stenosis is defined as obstruction to outflow from the LV at or near the aortic valve producing a systolic pressure gradient of more than 10 mm Hg between the LV and the aorta. Aortic stenosis accounts for approximately 7% of congenital heart disease. There are three anatomic types of congenital aortic stenosis.

#### A. Valvular Aortic Stenosis (75%)

In critical aortic stenosis presenting in infancy, the aortic valve is usually a unicuspid diaphragm-like structure without well-defined commissures. A bicuspid aortic valve or a trileaflet valve with partially fused leaflets is another anatomic possibility that can be associated with aortic stenosis. Aortic stenosis is more common in males than in females.

#### B. Subvalvular Aortic Stenosis (23%)

In this type, a membranous or fibrous ring occurs just below the aortic valve that causes obstruction to LV outflow. The aortic valve itself and the anterior leaflet of the mitral valve are often malformed.

#### C. Supravalvular Aortic Stenosis (2%)

In this type, constriction of the ascending aorta occurs just above the coronary arteries. The condition is often familial, and two different genetic patterns are found, one with abnormal facies and mental retardation (William syndrome) and one with normal facies and no developmental delay.

#### Clinical Findings

#### A. Symptoms and Signs

Although isolated valvular aortic stenosis seldom causes symptoms in infancy, severe HF occasionally occurs when critical obstruction is present at birth. Response to medical therapy is poor; therefore, an aggressive approach using interventional catheterization or surgery is required. The physical findings vary depending on the anatomic type of lesion:

1. **Valvular aortic stenosis**—If the stenosis is severe with a gradient greater than 80 mm Hg, pulses are diminished with a slow upstroke; otherwise, pulses are usually normal. Cardiac examination reveals an LV thrust at the apex. A systolic thrill at the right base, the suprasternal notch, and over both carotid arteries may accompany moderate disease.

   A prominent aortic ejection click is best heard at the apex. The click corresponds to the opening of the aortic valve. It is separated from S₁ by a short but appreciable interval. It does not vary with respiration. S₂ at the pulmonary area is normal. A loud, rough, medium- to high-pitched ejection-type systolic murmur is evident. It is loudest at the first and second intercostal spaces, radiating well into the suprasternal notch and along the carotids. The grade of the murmur correlates well with the severity of the stenosis.

2. **Discrete membranous subvalvular aortic stenosis**—The findings are the same as those of valvular aortic stenosis except for the absence of a click. The murmur and thrill are usually somewhat more intense at the left sternal border in the third and fourth intercostal spaces. In the setting of aortic insufficiency, a diastolic murmur is commonly heard.

3. **Supravalvular aortic stenosis**—The thrill and murmur are best heard in the suprasternal notch and along the
carotids but are well transmitted over the aortic area and near the mid left sternal border. There may be a difference in pulses and blood pressure between the right and left arms if the narrowing is just distal to the takeoff of the innominate artery, with more prominent pulse and pressure in the right arm (the Coanda effect).

Of those not presenting in infancy, most patients with aortic stenosis have no cardiovascular symptoms. Except in the most severe cases, patients do well until the third to fifth decades of life. Some patients have mild exercise intolerance and fatigueability. In a small percentage of patients, significant symptoms (eg, chest pain with exercise, dizziness, and syncope) manifest in the first decade. Sudden death is uncommon but may occur in all forms of aortic stenosis with the greatest risk in patients with subvalvular obstruction.

**B. Imaging**

In most cases the heart is not enlarged. The LV, however, may be slightly prominent. In valvular aortic stenosis, dilation of the ascending aorta is frequently seen.

**C. Electrocardiography**

Patients with mild aortic stenosis have normal ECGs. Some patients with severe obstruction have LVH and LV strain but even in severe cases, 25% of ECGs are normal. Progressive LVH on serial ECGs indicates a significant obstruction. LV strain is one indication for surgery.

**D. Echocardiography**

This is a reliable noninvasive technique for the evaluation of all forms of aortic stenosis. Doppler accurately estimates the transvalvular gradient, and the level of obstruction can be confirmed by both two-dimensional echocardiographic images and by the level of flow disturbance revealed by color Doppler.

**E. Cardiac Catheterization and Angiography**

Left heart catheterization demonstrates the pressure differential between the LV and the aorta and the anatomic level at which the gradient exists. Catheterization is reserved for patients whose resting gradient has reached 60–80 mm Hg and in whom intervention is planned. For those with valvular aortic stenosis, balloon valvuloplasty is usually the first option. In subvalvular or supravalvular aortic stenosis, interventional catheterization is not effective and surgery is required.

**Treatment**

Percutaneous balloon valvuloplasty is now standard initial treatment for patients with valvular aortic stenosis. Surgery should be considered in symptomatic patients with a high resting gradient (60–80 mm Hg) despite balloon angioplasty, or coexisting aortic insufficiency. In many cases, the gradient cannot be significantly diminished by valvuloplasty without producing aortic insufficiency. Patients who develop significant aortic insufficiency require surgical intervention to repair or replace the valve. The Ross procedure is an alternative to mechanical valve placement in infants and children. In this procedure, the patient’s own pulmonic valve is moved to the aortic position, and an RV-to-pulmonary artery conduit is used to replace the pulmonic valve. Discrete subvalvular aortic stenosis is usually surgically repaired at a lesser gradient because continued trauma to the aortic valve by the subvalvular jet may damage the valve and produce aortic insufficiency. Unfortunately, simple resection is followed by recurrence in more than 25% of patients with subvalvular aortic stenosis. Supravalvar aortic stenosis may also require surgical repair and is commonly associated with William syndrome.

**Course & Prognosis**

All forms of LV outflow tract obstruction tend to be progressive. Pediatric patients with LV outflow tract obstruction—with the exception of those with critical aortic stenosis of infancy—are usually asymptomatic. Symptoms accompanying severe unoperated obstruction (angina, syncope, or HF) are rare but imply serious disease. Children whose obstruction is mild to moderate have normal oxygen consumption and maximum voluntary working capacity. Children in this category with normal resting and exercising (stress) ECGs may safely participate in vigorous physical activity, including nonisometric competitive sports. Children with severe aortic stenosis are predisposed to ventricular dysrhythmias and should refrain from vigorous activity and avoid all isometric exercise.

**References**


**3. Mitral Valve Prolapse**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- **Midsystolic click.**
- **Late systolic "whooping" or "honking" murmur.**
- **Typical symptoms include chest pain, palpitations, and dizziness.**
- **Often overdiagnosed on routine cardiac ultrasound.**
General Considerations

In this condition as the mitral valve closes during systole, it moves posteriorly or superiorly (prolapses) into the left atrium. Mitral valve prolapse (MVP) occurs in about 2% of thin female adolescents, a minority of whom have concomitant mitral insufficiency. Although MVP is usually an isolated lesion, it can occur in association with connective tissue disorders such as Marfan, Loeys-Dietz, and Ehlers-Danlos syndromes.

Clinical Findings

A. Symptoms and Signs

Most patients with MVP are asymptomatic. Chest pain, palpitations, and dizziness may be reported, but it is unclear whether these symptoms are more common in affected patients than in the normal population. Chest pain on exertion is rare and should be assessed with cardiopulmonary stress testing. Significant dysrhythmias have been reported, including increased ventricular ectopy and nonsustained ventricular tachycardia. If significant mitral regurgitation is present, atrial arrhythmias may also occur. Standard auscultation technique must be modified to diagnose MVP. A midsystolic click (with or without a systolic murmur) is elicited best in the standing position and is the hallmark of this entity. Conversely, maneuvers that increase LV volume, such as squatting or handgrip exercise, will cause delay or obliteration of the click-murmur complex. The systolic click usually is heard at the apex but may be audible at the left sternal border. A late, short systolic murmur after the click implies mitral insufficiency and is much less common than isolated prolapse. The murmur is not holosystolic, in contrast to rheumatic mitral insufficiency.

B. Imaging

Most chest radiographs are normal and are not usually indicated in this condition. In the rare case of significant mitral valve insufficiency, the left atrium may be enlarged.

C. Electrocardiography

The ECG is usually normal. Diffuse flattening or inversion of T waves may occur in the precordial leads. U waves are sometimes prominent.

D. Echocardiography

Significant posterior systolic movement of the mitral valve leaflets to the atrial side of the mitral annulus is diagnostic. Echocardiography assesses the degree of myxomatous change of the mitral valve and the degree of mitral insufficiency.

E. Other Testing

Invasive procedures are rarely indicated. Holter monitoring or event recorders may be useful in establishing the presence of ventricular dysrhythmias in patients with palpitations.

Treatment & Prognosis

Propranolol may be effective in treatment of coexisting arrhythmias. Prophylaxis for infectious endocarditis is no longer indicated, based on 2007 AHA guidelines. The natural course of this condition is not well defined. Twenty years of observation indicate that isolated MVP in childhood is usually a benign entity. Surgery for mitral insufficiency is rarely needed.

Other Congenital Left Heart Valvular Lesions

A. Congenital Mitral Stenosis

Congenital mitral stenosis is a rare disorder in which the valve leaflets are thickened and/or fused, producing a diaphragm- or funnel-like structure with a central opening. In many cases, the subvalve apparatus (papillary muscles and chordae) is also abnormal. When mitral stenosis occurs with other left-sided obstructive lesions, such as subaortic stenosis and coarctation of the aorta, the complex is called Shone syndrome. Most patients develop symptoms early in life with tachypnea, dyspnea, and failure to thrive. Physical examination reveals an accentuated S1 and a loud pulmonary closure sound. No opening snap is heard. In most cases, a presystolic crescendo murmur is heard at the apex. Occasionally, only a mid-diastolic murmur can be heard. ECG shows right axis deviation, biatrial enlargement, and RVH. Chest radiograph reveals left atrial enlargement and frequent pulmonary venous congestion. Echocardiography shows abnormal mitral valve structures with reduced leaflet excursion and left atrial enlargement. Cardiac catheterization reveals an elevated pulmonary capillary wedge pressure and pulmonary hypertension, owing to the elevated left atrial pressure.

Mitral valve repair or mitral valve replacement with a prosthetic mitral valve may be performed, even in young infants, but it is a technically difficult procedure. Mitral valve repair is the preferred surgical option, as valve replacement can have a poor outcome in infants.
**B. Cor Triatriatum**

Cor triatriatum is a rare abnormality in which the pulmonary veins join in a confluence that is not completely incorporated into the left atrium. The pulmonary vein confluence communicates with the left atrium through an opening of variable size, and may be obstructed. Patients may present in a similar way as those with mitral stenosis. Clinical findings depend on the degree of obstruction of pulmonary venous flow into the left atrium. If the communication between the confluence and the left atrium is small and restrictive to flow, symptoms develop early in life. Echocardiography reveals a linear density in the left atrium with a pressure gradient present between the pulmonary venous chamber and the true left atrium. Cardiac catheterization may be needed if the diagnosis is in doubt. High pulmonary wedge pressure and low left atrial pressure (with the catheter passed through the foramen ovale into the true left atrium) support the diagnosis. Angiocardiography identifies the pulmonary vein confluence and the anatomic left atria. Surgical repair is always required in the presence of an obstructive membrane, and long-term results are good. Coexisting mitral valve abnormalities may be noted, including a supraavalvular mitral ring or a dysplastic mitral valve.

**C. Congenital Mitral Regurgitation**

Congenital mitral regurgitation is a rare abnormality usually associated with other congenital heart lesions, such as congenitally corrected transposition of the great arteries (ccTGA), AV septal defect, and coronary artery anomalies (anomalous left coronary artery from the pulmonary artery). Isolated congenital mitral regurgitation is very rare. It is sometimes present in patients with connective tissue disorders (Marfan or Loeys-Dietz syndrome), usually related to a myxomatous prolapsing mitral valve.

**D. Congenital Aortic Regurgitation**

Congenital aortic regurgitation is rare. The most common associations are bicuspid aortic valve, with or without coarctation of the aorta; VSD with aortic cusp prolapse; and fenestration of the aortic valve cusp (one or more holes in the cusp).

**1. Bicuspid Aortic Valve**

Patients with bicuspid aortic valves have an increased incidence of aortic dilation and dissection, regardless of the presence of aortic stenosis. Histologic examination demonstrates cystic medial degeneration of the aortic wall, similar to that seen in patients with Marfan syndrome. Patients with an isolated bicuspid aortic valve require regular follow-up even in the absence of aortic insufficiency or aortic stenosis. Significant aortic root dilation requiring surgical intervention typically does not occur until adulthood.

**2. Marfan and Loeys-Dietz Syndromes**

Marfan syndrome is an autosomal dominant disorder of connective tissue caused by a mutation in the fibrillin-1 gene. Spontaneous mutations account for 25%–30% of cases, and thus family history is not always helpful. Patients are diagnosed by the Ghent criteria and must have at a minimum, major involvement of two body systems plus involvement of a third body system or a positive family history. Body systems involved include cardiovascular, ocular, musculoskeletal, pulmonary, and integumentary. Cardiac manifestations include aortic root dilation and MVP, which may be present at birth. Patients are at risk for aortic dilation and dissection and are restricted from competitive athletics, contact sports, and isometric activities. β-Blockers or ACE inhibitors are used to lower blood pressure and slow the rate of aortic dilation. More recently, studies are ongoing to evaluate the effectiveness of angiotensin receptor blockers (losartan). Elective surgical intervention is performed in patients of adult size when the aortic root dimension reaches 50 mm or if there is an increase of greater than 1 cm in root dimension in 1 year. The ratio of actual to expected aortic root dimension is used to determine the need for surgery in the young child. Surgical options include replacement of the dilated aortic root with a composite valve graft (Bentall technique) or a David procedure in which the patient’s own aortic valve is spared and a Dacron tube graft is used to replace the dilated ascending aorta. Young age at diagnosis was previously thought to confer a poor prognosis; however, early diagnosis with close follow-up and early medical therapy has more recently been associated with more favorable outcome. Ventricular dysrhythmias may contribute to the mortality in Marfan syndrome.

Loeys-Dietz syndrome is a connective tissue disorder first described in 2005. Many patients with Loeys-Dietz were thought to have Marfan syndrome in the past. Loeys-Dietz is a result of a mutation in the transforming growth factor β (TGFβ) receptor and is associated with musculoskeletal, skin, and cardiovascular abnormalities. Cardiovascular involvement includes mitral and tricuspid valve prolapse, aneurysms of the PDA, and aortic and pulmonary artery dilation. Dissection and aneurysm formation of arteries...
throughout the body can occur including in the head and neck vessels.

### 3. Turner Syndrome

Cardiovascular abnormalities are common in Turner syndrome. Patients are at risk for aortic dissection, typically during adulthood. Risk factors include hypertension regardless of cause, aortic dilation, bicuspid aortic valve, and coarctation of the aorta. There are rare reports of aortic dissection in adult Turner syndrome patients in the absence of any risk factors suggesting that there is a vasculopathic component to this syndrome. Patients with Turner syndrome require routine follow-up from adolescence onward to monitor for this potentially lethal complication.


### CORONARY ARTERY ABNORMALITIES

Several anomalies involve the origin, course, and distribution of the coronary arteries. Abnormal origin or course of the coronary arteries are often asymptomatic and can go undetected. However, in some instances these children are at risk for sudden death. The most common congenital coronary artery abnormality in infants is anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) and is discussed in more detail here.

**Anomalous Origin of the Left Coronary Artery from the Pulmonary Artery**

In this condition, the left coronary artery arises from the pulmonary artery rather than the aorta. In neonates, whose pulmonary artery pressure is high, perfusion of the left coronary artery may be adequate and the infant may be asymptomatic. By age 2 months the pulmonary arterial pressure falls, causing a progressive decrease in myocardial perfusion provided by the anomalous left coronary artery. Ischemia and infarction of the LV is the result. Immediate surgery is indicated to reimplant the left coronary artery and restore myocardial perfusion.

#### Clinical Findings

**A. Symptoms and Signs**

Neonates appear healthy and growth and development are relatively normal until pulmonary artery pressure decreases. Detailed questioning may disclose a history of intermittent abdominal pain (fussiness or irritability), pallor, wheezing, and sweating, especially during or after feeding. Presentation may be subtle, with nonspecific complaints of “fussiness” or intermittent “colic.” The colic and fussiness are probably attacks of true angina. Presentation may be fulminant at age 2–4 months with sudden, severe HF due to LV dysfunction and mitral insufficiency. On physical examination, the infants are usually well developed and well nourished. The pulses are typically weak but equal. A prominent left precordial bulge is present. A gallop and/or holosystolic murmur of mitral regurgitation is sometimes present, though frequently auscultation alone reveals no obvious abnormalities.

**B. Imaging**

Chest radiographs show cardiac enlargement, left atrial enlargement, and may show pulmonary venous congestion if left ventricular function has been compromised.

**C. Electrocardiography**

On the ECG, there is T-wave inversion in leads I and aVL. The precordial leads also show T-wave inversion from V₄–V₇. Deep and wide Q waves are present in leads I, aVL, and sometimes in V₄–V₆. These findings of myocardial infarction are similar to those in adults.

**D. Echocardiography**

The diagnosis can be made with two-dimensional echo techniques by visualizing a single large right coronary artery arising from the aorta and visualization of the anomalous left coronary artery arising from the main pulmonary artery. Flow reversal in the left coronary (heading toward the pulmonary artery, rather than away from the aorta) confirms the diagnosis. LV dysfunction, echo-bright (ischemic) papillary muscles, and mitral regurgitation are commonly seen.

**E. Cardiac Catheterization and Angiography**

Angiogram of the aorta fails to show the origin of the left coronary artery. A large right coronary artery fills directly from the aorta, and contrast flows from the right coronary system via collaterals into the left coronary artery and finally into the pulmonary artery. Angiogram of the RV or main pulmonary artery may show the origin of the anomalous vessel. Rarely, a left-to-right shunt may be detected as oxygenated blood passes through the collateral system without
delivering oxygen to the myocardium, and passes into the pulmonary artery.

Treatment & Prognosis

The prognosis of ALCAPA depends in part on the clinical appearance of the patient at presentation. Medical management with diuretics and afterload reduction can help stabilize a critically ill patient, but surgical intervention should not be delayed. Surgery involves reimplantation of the anomalous coronary button onto the aorta. The mitral valve may have to be replaced, depending on the degree of injury to the papillary muscles and associated mitral insufficiency. Although a life-threatening problem, cardiac function nearly always recovers if the infant survives the surgery and postoperative period.

Clinical Findings

A. Symptoms and Signs

Clinical findings vary with the degree of RV outflow obstruction. Patients with mild obstruction are minimally cyanotic or acyanotic. Those with severe obstruction are deeply cyanotic from birth. Few children are asymptomatic. In those with significant RV outflow obstruction, many have cyanosis at birth, and nearly all have cyanosis by age 4 months. The cyanosis usually is progressive, as subvalvular obstruction increases. Growth and development are not typically delayed, but easy fatigability and dyspnea on exertion are common. The fingers and toes show variable clubbing depending on age and severity of cyanosis. Historically, older children with ToF would frequently squat to increase systemic vascular resistance. This decreased the amount of right-to-left shunt, forcing blood through the pulmonary circuit, and would help ward off cyanotic spells. Squatting is rarely seen as the diagnosis is now made in infancy.

Hypoxemic spells, also called cyanotic or "Tet spells," are one of the hallmarks of severe ToF. These spells can occur spontaneously and at any time, but in infants occur most commonly with crying or feeding, while in older children they can occur with exercise. They are characterized by (1) sudden onset of cyanosis or deepening of cyanosis; (2) dyspnea; (3) alterations in consciousness, from irritability to syncope; and (4) decrease or disappearance of the systolic murmur (as RV outflow tract becomes completely obstructed). These episodes most commonly start at age 4–6 months. Cyanotic spells are treated acutely by administration of oxygen and placing the patient in the knee-chest position (to increase systemic vascular resistance). Intravenous morphine should be administered cautiously, but is helpful for its sedative effect. Propranolol produces β-blockade and may reduce the obstruction across the RV outflow tract through its negative inotropic action. Acidosis, if present, should be corrected with intravenous sodium bicarbonate. Chronic oral prophylaxis of cyanotic spells with propranolol may be useful to delay surgery, but the onset of Tet spells usually prompts surgical intervention. In fact, in the current era, elective surgical repair generally occurs around the age of 3 months so as to avoid the development of Tet spells.

On examination, an RV lift is palpable. S2 is predominantly aortic and single. A grade II–IV/VI, rough, systolic
ejection murmur is present at the left sternal border in the third intercostal space and radiates well to the back.

B. Laboratory Findings
Hemoglobin, hematocrit, and red blood cell count are usually elevated in older infants or children secondary to chronic arterial desaturation.

C. Imaging
Chest radiographs show a normal-size heart. The RV is hypertrophied, often shown by an upturning of the apex (boot-shaped heart). The main pulmonary artery segment is usually concave and, if there is a right aortic arch, the aortic knob is to the right of the trachea. The pulmonary vascular markings are usually decreased.

D. Electrocardiography
The QRS axis is rightward, ranging from +90 to +180 degrees. The P waves are usually normal. RVH is always present, but RV strain patterns are rare.

E. Echocardiography
Two-dimensional imaging is diagnostic, revealing thickening of the RV wall, overriding of the aorta, and a large subaortic VSD. Obstruction at the level of the infundibulum and pulmonary valve can be identified, and the size of the proximal pulmonary arteries measured. The anatomy of the coronary arteries should be visualized, as abnormal branches crossing the RV outflow tract are at risk for transection during surgical enlargement of the area.

F. Cardiac Catheterization and Angiocardiography
Cardiac catheterization is generally done mainly in those patients with hypoplastic pulmonary arteries. If a catheterization is done, it reveals a right-to-left shunt at the ventricular level in most cases. Arterial desaturation of varying degrees is present. The RV pressure is at systemic levels and the pressure tracing in the RV is identical to that in the LV if the VSD is large. The pulmonary artery pressure is invariably low. Pressure gradients may be noted at the pulmonary valvular level, the infundibular level, or both. RV angiography reveals RV outflow obstruction and a right-to-left shunt at the ventricular level. The major indications for cardiac catheterization are to establish coronary artery and distal pulmonary artery anatomy if not able to be clearly defined by echocardiography.

However, some centers prefer palliative treatment for small neonates in whom complete correction is deemed risky. Surgical palliation consists of the insertion of a GoreTex shunt from the subclavian artery to the ipsilateral pulmonary artery [modified Blalock-Taussig (BT) shunt] to replace the ductus arteriosus (which is ligated and divided) or stenting of the ductus. This secures a source of pulmonary blood flow regardless of the level of infundibular or valvular obstruction, and some believe, allows for growth of the patient’s pulmonary arteries (which are usually small) prior to complete surgical correction.

B. Total Correction
Open-heart surgery for repair of ToF is performed at ages ranging from birth to 2 years, depending on the patient’s anatomy and the experience of the surgical center. The current surgical trend is toward earlier repair for symptomatic infants. The major limiting anatomic feature of total correction is the size of the pulmonary arteries. During surgery, the VSD is closed and the obstruction to RV outflow removed. Although a valve sparing procedure is preferred, in many cases a transannular patch is placed across the RV outflow tract as the pulmonary valve is contributing to the obstruction. When a transannular patch repair is done, the patient has pulmonary insufficiency that is usually well tolerated for years. However, pulmonary valve replacement is eventually necessary once symptoms (usually exercise intolerance) and right ventricular dilation occur. Surgical mortality is low.

Course & Prognosis
Infants with severe ToF are usually deeply cyanotic at birth. These children require early surgery. Complete repair before age 2 years usually produces a good result, and patients are currently living well into adulthood. Depending on the extent of the repair required, patients frequently require additional surgery 10–15 years after their initial repair for replacement of the pulmonary valve. Transcatheter pulmonary valves are now performed in some adolescents and young adults with a history of ToF, avoiding the need for open heart surgery. Patients with ToF are at risk for sudden death due to ventricular dysrhythmias. A competent pulmonary valve without a dilated RV appears to diminish arrhythmias and enhance exercise performance.

Batra AS et al: Cardiopulmonary exercise function among patients undergoing transcatheter pulmonary valve implanta-
PULMONARY ATRESIA WITH VENTRICULAR SEPTAL DEFECT

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Symptoms depend on degree of pulmonary blood flow.
- Pulmonary blood flow via PDA and/or aortopulmonary collaterals.

Complete atresia of the pulmonary valve in association with a VSD is essentially an extreme form of TOF. Because there is no antegrade flow from the RV to the pulmonary artery, pulmonary blood flow must be derived from a PDA or from multiple aortopulmonary collateral arteries (MAPCAs). Symptoms depend on the amount of pulmonary blood flow. If flow is adequate, patients may be stable. If pulmonary flow is inadequate, severe hypoxemia occurs and immediate palliation is required. Newborns are stabilized with intravenous prostaglandin E₁ (PGE₁) to maintain the PDA while being prepared for surgery. Rarely, if the ductus does not contribute significantly to pulmonary blood flow (e.g., the MAPCAs alone are sufficient), PGE₁ may be discontinued. Once stabilized, a BT shunt, stenting of the ductus or complete repair is undertaken. The decision to perform palliation or complete repair in a newborn is dependent on surgical expertise and preference in combination with pulmonary artery anatomy. In many centers, a palliative shunt is performed in newborns with severely hypoplastic pulmonary arteries or in those with only MAPCAs as a source of pulmonary blood flow. The goal of the shunt is to augment pulmonary blood flow and encourage vascular growth, and open-heart surgical correction is planned several months later. In children with MAPCAs, relocation of the MAPCAs is performed so that they are connected to the pulmonary artery (unifocalization) to complete the repair.

Echocardiography is usually diagnostic. Cardiac catheterization and angiography often confirm the source(s) of pulmonary blood flow and document size of the distal pulmonary arteries.

Pulmonary vascular disease is common in pulmonary atresia with VSD, due both to intrinsic abnormalities of the pulmonary vasculature and to abnormal amounts of pulmonary blood flow. Even patients who have undergone surgical correction as infants are at risk. Pulmonary vascular disease is a common cause of death as early as the third decade of life.


PULMONARY ATRESIA WITH INTACT VENTRICULAR SEPTUM

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Completely different lesion from pulmonary atresia with VSD.
- Cyanosis at birth.
- Pulmonary blood flow is always ductal dependent with rare aortopulmonary collateral arteries being present.
- RV-dependent coronary arteries sometimes are present.

**General Considerations**

Although pulmonary atresia with intact ventricular septum (PA/IVS) sounds as if it might be related to pulmonary atresia with VSD, it is a distinct cardiac condition. As the name suggests, the pulmonary valve is atretic. The pulmonic annulus usually has a small diaphragm consisting of the fused valve cusps. The ventricular septum is intact. The main pulmonary artery segment is usually present and closely approximated to the atretic valve, but is somewhat hypoplastic. Although the RV is always reduced in size, the degree of reduction is variable. The size of the RV is critical to the success of surgical repair. In some children with PA/IVS, the RV is adequate for an ultimate two-ventricular repair. A normal RV has three component parts (inlet, trabecular or body, and outlet). The absence of any one of the components makes adequate RV function unlikely and a single ventricle palliative approach is necessary. Even with all three components, some RVs are inadequate.

After birth, the pulmonary flow is provided by the ductus arteriosus. MAPCAs are usually not present in this disease, in contrast to pulmonary atresia with VSD. A continuous infusion of PGE₁ must be started as soon as possible after birth to maintain ductal patency.

**Clinical Findings**

**A. Symptoms and Signs**

Neonates are usually cyanotic and become more so as the ductus arteriosus closes. A blowing systolic murmur resulting from the associated PDA may be heard at the pulmonary area. A holosystolic murmur is often heard at the lower left sternal
border, as many children develop tricuspid insufficiency if the RV is of good size and egress from that ventricle is only through the tricuspid valve. A PFO or ASD is essential for decompression of the right side of the heart.

**B. Imaging**

The heart size varies depending on the degree of tricuspid insufficiency. With severe tricuspid insufficiency, right atrial enlargement may be massive and the cardiac silhouette may fill the chest on radiograph. In patients with an associated hypoplastic tricuspid valve and or RV, most of the systemic venous return travels right-to-left across the ASD and so the heart size can be normal.

**C. Electrocardiography**

ECG reveals a left axis for age (45–90 degrees) in the frontal plane. Left ventricular forces dominate the ECG, and there is a paucity of RV forces, particularly with a hypoplastic RV. Findings of right atrial enlargement are usually striking.

**D. Echocardiography**

Echocardiography shows atresia of the pulmonary valve with varying degrees of RV cavity and tricuspid annulus hypoplasia. Patency of an intra-atrial communication and ductus are verified by echocardiography.

**E. Cardiac Catheterization and Angiocardiography**

RV pressure is often suprasystemic. Angiogram of the RV reveals no filling of the pulmonary artery. Unrestricted flow through the ASD is a necessity, since egress of blood from the right heart can only occur across the atrial defect and into the left atrium. A Rashkind balloon atrial septostomy may be required to open any inadequate existing communication across the atrial septum. Some children with pulmonary atresia and an intact ventricular septum have sinusoids between the RV and the coronary arteries. In some patients, the coronary circulation may depend on high right ventricular pressure. Any attempt to decompress the RV in patients with RV-dependent coronary circulation causes myocardial infarction and death because of the precipitous decrease in coronary perfusion, so precise coronary angiography is required to evaluate the anatomy. If the RV is tripartite, coronary circulation is not RV-dependent and an eventual two-chamber repair is planned. The pulmonary valve plate may be perforated and dilated during cardiac catheterization in the newborn to allow antegrade flow from the RV to the pulmonary artery and thus encourage RV cavity growth.

**Treatment & Prognosis**

As in all ductal-dependent lesions, PGE1 is used to stabilize the patient and maintain patency of the ductus until surgery can be performed. Surgery is usually undertaken in the first week of life. If the RV is hypoplastic, significant sinusoids are present, there is RV-dependent coronary circulation (lack of antegrade filling of the coronaries from the aorta), or the pulmonic valve cannot be opened successfully during cardiac catheterization, a BT shunt or ductal stenting is performed to establish pulmonary blood flow. Later in infancy, a communication between the RV and pulmonary artery can be created to stimulate RV cavity growth. If either RV dimension or function is inadequate for two-ventricular repair, an approach similar to that taken for a single ventricle pathway best serves these children (see section on Hypoplastic Left Heart Syndrome). Children with significant sinusoids or coronary artery abnormalities are considered for cardiac transplantation because they are at risk for coronary insufficiency and sudden death.

The prognosis in this condition is guarded.

**TRICUSPID ATRESIA**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Marked cyanosis present from birth.
- ECG with left axis deviation, right atrial enlargement, and LVH.

**General Considerations**

In tricuspid atresia, there is complete atresia of the tricuspid valve with no direct communication between the right atrium and the RV. There are two types of tricuspid atresia based on the relationship of the great arteries (normally related or transposed great arteries). The entire systemic venous return must flow through the atrial septum (either ASD or PFO) to reach the left atrium. The left atrium thus receives both the systemic venous return and the pulmonary venous return. Complete mixing occurs in the left atrium, resulting in variable degrees of arterial desaturation.

Because there is no flow to the RV, development of the RV depends on the presence of a ventricular left-to-right shunt. Severe hypoplasia of the RV occurs when there is no VSD or when the VSD is small.
Clinical Findings

A. Symptoms and Signs
Symptoms usually develop in early infancy with cyanosis present at birth in most infants. Growth and development are poor, and the infant usually exhibits exhaustion during feedings, tachypnea, and dyspnea. Patients with increased pulmonary blood flow may develop HF with less prominent cyanosis. The degree of pulmonary blood flow is most dependent on pulmonary vascular resistance. Those patients with low pulmonary vascular resistance will have increased pulmonary blood flow. A murmur from the VSD is usually present and heard best at the lower left sternal border. Digital clubbing is present in older children with longstanding cyanosis.

B. Imaging
The heart is slightly to markedly enlarged. The main pulmonary artery segment is usually small or absent. The size of the right atrium is moderately to massively enlarged, depending on the size of the communication at the atrial level. The pulmonary vascular markings are usually decreased. Pulmonary vascular markings may be increased if pulmonary blood flow is not restricted by the VSD or pulmonary stenosis.

C. Electrocardiography
The ECG shows marked left axis deviation. The P waves are tall and peaked, indicative of right atrial hypertrophy. LVH or LV dominance is found in almost all cases. RV forces on the ECG are usually low or absent.

D. Echocardiography
Two-dimensional methods are diagnostic and show absence of the tricuspid valve, the relationship between the great arteries, the anatomy of the VSD, presence of an ASD or PFO, and the size of the pulmonary arteries. Color-flow Doppler imaging can help identify atrial level shunting and levels of restriction of pulmonary blood flow, either at the VSD or in the RV outflow tract.

E. Cardiac Catheterization and Angiocardiography
Catheterization reveals a right-to-left shunt at the atrial level. Because of mixing in the left atrium, oxygen saturations in the LV, RV, pulmonary artery, and aorta are identical to those in the left atrium. Right atrial pressure is increased if the ASD is restrictive. LV and systemic pressures are normal. The catheter cannot be passed through the tricuspid valve from the right atrium to the RV. A balloon atrial septostomy is performed if a restrictive PFO or ASD is present.

Treatment & Prognosis
In infants with unrestricted pulmonary blood flow, conventional anticongestive therapy with diuretics and afterload reduction should be given until the infant begins to outgrow the VSD. Sometimes, a pulmonary artery band is needed to protect the pulmonary bed from excessive flow and development of pulmonary vascular disease.

Staged palliation of tricuspid atresia is the usual surgical approach. In infants with diminished pulmonary blood flow, PGE₁, is given until an aortopulmonary shunt (BT shunt or ductal stent) can be performed. A Glenn procedure (superior vena cava to pulmonary artery anastomosis) is done with takedown of the aortopulmonary/BT shunt at 4–6 months when saturations begin to fall, and completion of the Fontan procedure (redirection of inferior vena cava and superior vena cava to pulmonary artery) is performed when the child reaches around 15 kg.

The long-term prognosis for children treated by the Fontan procedure is unknown, although patients now are living into their late 20s and early 30s. In the short term, the best results for the Fontan procedure occur in children with low pulmonary artery pressures prior to open-heart surgery.


Hypoplastic left heart syndrome (HLHS) includes several conditions in which obstructive lesions of the left heart are associated with hypoplasia of the LV. The syndrome occurs in 1.4%–3.8% of infants with congenital heart disease. Stenosis or atresia of the mitral and aortic valves is the rule. In the neonate, survival depends on a PDA because ante-grade flow into the systemic circulation is inadequate or nonexistent. The PDA provides the only flow to the aorta and coronary arteries. Children with HLHS are usually stable at birth, but they deteriorate rapidly as the ductus closes in the first week of life. Untreated, the average age at death is the first week of life. Rarely, the ductus remains patent and infants may survive for weeks to months without PGE₁ therapy.
The diagnosis is often made prepartum by fetal echocardiography. Prepartum diagnosis aids in counseling for the expectant parents and planning for the delivery of the infant at or near a center with experience in treating HLHS.

**Clinical Findings**

A. **Symptoms and Signs**

Neonates with HLHS appear stable at birth because the ductus is patent. They deteriorate rapidly as the ductus closes, with shock and acidosis secondary to inadequate systemic perfusion. Oxygen saturation may actually increase for a period of time as the ductus closes due to increased blood flowing to the lungs.

B. **Imaging**

Chest radiograph in the first day of life may be relatively unremarkable, with the exception of a small cardiac silhouette. Later, chest radiographs demonstrate cardiac enlargement with severe pulmonary venous congestion if the PDA has begun closing or if the baby has been placed on supplemental oxygen increasing pulmonary blood flow.

C. **Electrocardiography**

The ECG shows right axis deviation, right atrial enlargement, and RVH with a relative paucity of LV forces. The small Q wave in lead V6 may be absent, and a qR pattern is often seen in lead V1.

D. **Echocardiography**

Echocardiography is diagnostic. A hypoplastic aorta and LV with atretic or severely stenotic mitral and aortic valves are diagnostic. The systemic circulation is dependent on the PDA. Color-flow Doppler imaging shows retrograde flow in the ascending aorta, as the coronary arteries are supplied by the ductus via the small native aorta.

**Treatment & Prognosis**

Initiation of PGE1 is essential and lifesaving, as systemic circulation depends on a patent ductus arteriosus. Later management depends on balancing pulmonary and systemic blood flow both of which depend on the RV. At a few days of age the pulmonary resistance falls, favoring pulmonary over-circulation and systemic underperfusion. Therapy is then directed at encouraging systemic blood flow. Despite hypoxia and cyanosis, supplemental oxygen is avoided as this will decrease pulmonary resistance and lead to further increases in pulmonary blood flow. In some centers, nitrogen is used to decrease inspired oxygen to as low as 17%. This therapy must be carefully monitored, but results in increased pulmonary arterial resistance, which encourages systemic blood flow and improves systemic perfusion. Systemic afterload reduction will also increase systemic perfusion. Adequate perfusion can usually be obtained by keeping systemic O2 saturation between 65% and 80%, or more accurately a Po2 of 40 mm Hg.

Staged surgical palliation is the most common management approach. In the Norwood procedure, the relatively normal main pulmonary artery is transected and connected to the small ascending aorta. The entire aortic arch must be reconstructed due to its small size. Then, either a BT shunt (from the subclavian artery to the pulmonary artery) or a Sano shunt (from the RV to the pulmonary artery) must be created to restore pulmonary blood flow. Children who have a Norwood procedure will later require a Glenn anastomosis (superior vena cava to pulmonary artery with takedown of the systemic-pulmonary shunt) and then a Fontan (inferior vena cava to pulmonary artery, completing the systemic venous bypass of the heart) at ages 6 months and 2–3 years, respectively. Despite advances in surgical technique and postoperative care, HLHS remains one of the most challenging lesions in pediatric cardiology, with one-year survival as low as 70%.

Orthotopic heart transplantation is also a treatment option for newborns with HLHS, but in the current era is typically only performed in infants who are considered poor Norwood candidates. Heart transplantation is more commonly utilized in the event of a failed surgical palliation or if the systemic RV fails (often in adolescence or young adulthood).

Recently, some centers offer a “hybrid” approach to HLHS as a result of collaboration between surgeons and interventional cardiologists. In the hybrid procedure, the chest is opened surgically and the branch pulmonary arteries are banded, to limit pulmonary blood flow. Then, also through the open chest, a PDA stent is placed by the interventionalist to maintain systemic output. The second stage is considered a “comprehensive Glenn,” in which the pulmonary artery bands and ductal stent are taken down, the aortic arch is reconstructed and the superior vena cava is surgically connected to the pulmonary arteries. Short term (30 day) survival after the first-stage “hybrid” is greater than 90% at the most experienced centers, but second stage risks and complications mitigate some of that initial survival advantage. Long-term follow-up data are not yet available.


**TRANSPOSITION OF THE GREAT ARTERIES**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Cyanotic newborn without respiratory distress.
- More common in males.
General Considerations

Transposition of the great arteries (TGA) is the second most common cyanotic congenital heart disease, accounting for 5% of all cases of congenital heart disease. The male-to-female ratio is 3:1. It is caused by an embryologic abnormality in the spiral division of the truncus arteriosus in which the aorta arises from the RV and the pulmonary artery from the LV. This is referred to as “ventriculoarterial discordance.” Patients may have a VSD, or the ventricular septum may be intact. Left unrepaired, transposition is associated with a high incidence of early pulmonary vascular obstructive disease. Because pulmonary and systemic circulations are in parallel, survival is impossible without mixing between the two circuits. Specifically an interatrial communication (PFO or ASD) is critically important. The majority of mixing occurs at the atrial level (some mixing can occur at the level of the ductus as well), so even in the presence of a VSD an adequate interatrial communication is needed. If the atrial communication is inadequate at birth, the patient is severely cyanotic.

Clinical Findings

A. Symptoms and Signs

Many neonates are large (up to 4 kg) and profoundly cyanotic without respiratory distress or a significant murmur. Infants with a large VSD may be less cyanotic and they usually have a prominent murmur. The findings on cardiovascular examination depend on the intracardiac defects. Obstruction to outflow from either ventricle is possible, and coarctation must be ruled out.

B. Imaging

The chest radiograph in transposition is usually nondiagnostic. Sometimes there is an “egg on a string” appearance because the aorta is directly anterior to the main pulmonary artery, giving the image of a narrow mediastinum.

C. Electrocardiography

Because the newborn ECG normally has RV predominance, the ECG in transposition is of little help, as it will frequently look normal.

D. Echocardiography

Two-dimensional imaging and Doppler evaluation demonstrate the anatomy and physiology well. The aorta arises from the RV and the pulmonary artery arises from the LV. Associated defects, such as a VSD, RV, or LV outflow tract obstruction, or coarctation, must be evaluated. The atrial septum should be closely examined, as any restriction could prove detrimental as the child awaits repair. The coronary anatomy is variable and must be defined prior to surgery.

E. Cardiac Catheterization and Angiography

A Rashkind balloon atrial septostomy is frequently performed in complete transposition if the interatrial communication is restrictive. This procedure can be done at the bedside with echocardiographic guidance in most cases. The coronary anatomy can be delineated by ascending aortography if not well seen by echocardiography.

Treatment

Early corrective surgery is recommended. The arterial switch operation (ASO) has replaced the previously performed atrial switch procedures (Mustard and Senning operations). The ASO is performed at age 4–7 days. The arteries are transected above the level of the valves and switched, while the coronaries are separately reimplanted. Small associated VSDs may be left to close on their own, but large VSDs are repaired. The ASD is also closed. Early surgical repair (<14 days of age) is vital for patients with TGA and an intact ventricular septum to avoid potential deconditioning of the LV as it pumps to the low-resistance pulmonary circulation. If a large, unrestrictive VSD is present, LV pressure is maintained at systemic levels, the LV does not become deconditioned, and corrective surgery can be delayed for a few months. Surgery should be performed by age 3–4 months in those with TGA and a VSD because of the high risk of early pulmonary vascular disease associated with this defect.

Operative survival after the ASO is greater than 95% in major centers. The main advantage of the arterial switch procedure in comparison to the atrial switch procedures (Mustard and Senning operations) is that the systemic ventricle is the LV. Patients who have undergone an atrial switch undergo surgical patch placement to baffle the venous return through the atria to the opposite ventricle. They then have an RV as their systemic ventricle, leaving them with significant late risk of RV failure and need for heart transplantation and are at risk for atrial baffle obstruction.


1. Congenitally Corrected Transposition of the Great Arteries

Congenitally corrected transposition of the great arteries (ccTGA) is a relatively uncommon congenital heart disease. Patients may present with cyanosis, heart failure, or be asymptomatic, depending on the associated lesions. In ccTGA, both atrioventricular and ventriculoarterial discordance occurs so
that the right atrium connects to a morphologic LV, which supports the pulmonary artery. Conversely, the left atrium empties via a tricuspid valve into a morphologic RV, which supports the aorta. Common associated lesions are VSD and pulmonary stenosis. A dysplastic left-sided tricuspid valve is almost always present. In the absence of associated lesions, patients with ccTGA are often undiagnosed until adulthood when they present with left-sided AV valve insufficiency or arrhythmias.

Previously, surgical repair was directed at VSD closure and relief of pulmonary outflow tract obstruction—a technique that maintained the RV as the systemic ventricle with outflow to the aorta. It is now recognized that these patients have a reduced life span due to systemic RV failure; thus other surgical techniques have been advocated. The double-switch procedure is one such technique. An atrial level switch (Mustard or Senning technique) is performed, in which pulmonary and systemic venous blood are baffled such that they drain into the contralateral ventricle (systemic venous return drains into the RV and pulmonary venous return drains into the LV). An ASO then restores the morphologic LV to its position as systemic ventricle.

Patients with ccTGA have an increased incidence of complete heart block with an estimated risk of 1% per year and an overall frequency of 50%.


### 2. Double-Outlet Right Ventricle

In this uncommon malformation, both great arteries arise from the RV. There is always a VSD that allows blood to exit the LV. Presenting symptoms depend on the relationship of the VSD to the semilunar valves. The VSD can be in variable positions, and the great arteries could be normally related or malposed. In the absence of outflow obstruction, a large left-to-right shunt exists and the clinical picture resembles that of a large VSD. Pulmonary stenosis may be present, particularly if the VSD is remote from the pulmonary artery. This physiology is similar to ToF. Alternatively, if the VSD is nearer the pulmonary artery, aortic outflow may be obstructed (called the Taussig-Bing malformation). Early primary correction is the goal. LV flow is directed to the aorta across the VSD (closing the VSD), and an RV to pulmonary artery conduit is placed to maintain unobstructed flow through the pulmonary circulation. If the aorta is far from the VSD, an arterial switch may be necessary. Echocardiography is usually sufficient to make the diagnosis and determine the orientation of the great vessels and their relationship to the VSD.


### TOTAL ANOMALOUS PULMONARY VENOUS RETURN

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Abnormal pulmonary venous connection leading to cyanosis.
- Occurs with or without a murmur and may have accentuated P2.
- Right atrial enlargement and RVH.

**General Considerations**

This malformation accounts for 2% of all congenital heart lesions. Instead of the pulmonary veins draining into the left atrium, the veins empty into a confluence that usually is located behind the left atrium. However, the confluence is not connected to the left atrium and instead the pulmonary venous blood drains into the systemic venous system. Therefore, there is complete mixing of the systemic and pulmonary venous blood at the level of the right atrium. The presentation of a patient with total anomalous pulmonary venous return (TAPVR) depends on the route of drainage into the systemic circulation and whether or not this drainage route is obstructed.

The malformation is classified as either intra-, supra-, or infracardiac. Intracardiac TAPVR occurs when the pulmonary venous confluence drains directly into the heart, usually via the coronary sinus into the right atrium (rarely direct drainage into the right atrium). Supracardiac (or supradiaphragmatic) return is defined as a confluence that drains into the right superior vena cava, innominate vein, or persistent left superior vena cava. In infracardiac (or infradiaphragmatic) return, the confluence drains below the diaphragm usually into the portal venous system which empties into the inferior vena cava. Intracardiac pulmonary venous return is very frequently obstructed. This obstruction to pulmonary venous drainage makes this lesion a potential surgical emergency. Supracardiac veins may also be obstructed, though less commonly. Rarely, the pulmonary venous confluence drains to more than one location, called mixed TAPVR.

Because the entire venous drainage from the body returns to the right atrium, a right-to-left shunt must be present at the atrial level, either as an ASD or a PFO. Occasionally, the
Clinical Findings

A. Unobstructed Pulmonary Venous Return

Patients with unobstructed TAPVR and a large atrial communication tend to have high pulmonary blood flow and typically present with cardiomegaly and HF rather than cyanosis. Oxygen saturations in the high 80s or low 90s are common. Most patients in this group have mild to moderate elevation of pulmonary artery pressure owing to elevated pulmonary blood flow. In most instances, pulmonary artery pressure does not reach systemic levels.

1. Symptoms and signs—Patients may have mild cyanosis and tachypnea in the neonatal period and early infancy. Examination discloses dusky nail beds and mucous membranes, but overt cyanosis and digital clubbing are usually absent. An RV heave is palpable, and P₂ is increased. A systolic and diastolic murmur may be heard as a result of increased flow across the pulmonary and tricuspid valves, respectively.

2. Imaging—Chest radiography reveals cardiomegaly involving the right heart and pulmonary artery. Pulmonary vascular markings are increased.

3. Electrocardiography—ECG shows right axis deviation and varying degrees of right atrial enlargement and right ventricular hypertrophy. A qR pattern is often seen over the right precordial leads.

4. Echocardiography—Demonstration by echocardiography of a discrete chamber posterior to the left atrium and a right-to-left atrial level shunt is strongly suggestive of the diagnosis. The availability of two-dimensional echocardiography plus color-flow Doppler has increased diagnostic accuracy such that diagnostic cardiac catheterization is rarely required.

B. With Obstructed Pulmonary Venous Return

This group includes many patients with infracardiac TAPVR and a few of the patients in whom venous drainage is into a systemic vein above the diaphragm. The pulmonary venous return is usually obstructed at the level of the ascending or descending vein that connects the confluence to the systemic veins to which it is draining. Obstruction can be caused from extravascular structures (such as the diaphragm), or by inherent stenosis within the ascending or descending vein.

1. Symptoms and signs—Infants usually present shortly after birth with severe cyanosis and respiratory distress and require early corrective surgery. Cardiac examination discloses a striking RV impulse. S₂ is markedly accentuated and single. Although there is often no murmur, sometimes, a systolic murmur is heard over the pulmonary area with radiation over the lung fields. Diastolic murmurs are uncommon.

2. Imaging—The heart is usually small and pulmonary venous congestion severe with associated air bronchograms. The chest radiographic appearance may lead to an erroneous diagnosis of severe lung disease. In less severe cases, the heart size may be normal or slightly enlarged with mild pulmonary venous congestion.

3. Electrocardiography—The ECG shows right axis deviation, right atrial enlargement, and RVH.

4. Echocardiography—Echocardiography shows a small left atrium and LV, a dilated right heart with high RV pressure. For infracardiac TAPVR, appearance of a vessel lying parallel and anterior to the descending aorta and to the left of the inferior vena cava may represent the vein draining the confluence caudally toward the diaphragm. Color-flow Doppler echocardiography will demonstrate a right-to-left atrial level shunt and may reveal flow disturbance, commonly near the confluence or in the liver, where flow is obstructed.

5. Cardiac catheterization and angiocardiography—If echocardiography does not confirm the anatomy, cardiac catheterization and angiography demonstrate the site of entry of the anomalous veins, determine the degree of pulmonary hypertension, and calculate pulmonary vascular resistance.

Treatment

Surgery is always required for TAPVR. If pulmonary venous return is obstructed, surgery must be performed immediately (obstructed TAPVR represents one of the few surgical emergencies in congenital heart disease). If early surgery is not required and the atrial septum is restrictive, a balloon atrial septostomy can be performed in newborns, to be followed shortly by less emergent surgical repair.

Course & Prognosis

Most children with TAPVR do well after surgery. However, some surgical survivors develop late stenosis of the pulmonary veins. Pulmonary vein stenosis is an intractable condition that is difficult to treat either with interventional catheterization or surgery and has a poor prognosis. A heart-lung transplant may be the only remaining option available to those with severe pulmonary vein stenosis. By avoiding direct suturing at the pulmonary venous ostia, the chance of recurrent stenosis at the anastomotic site is lessened. Unfortunately, any manipulation of the pulmonary veins increases the risk of stenosis.

TRUNCUS ARTERIOSUS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Early HF with or without cyanosis.
- Systolic ejection click.

General Considerations

Truncus arteriosus accounts for less than 1% of congenital heart malformations. A single great artery arises from the heart, giving rise to the systemic, pulmonary, and coronary circulations. Truncus develops embryologically as a result of failure of the division of the common truncus arteriosus into the aorta and the pulmonary artery. A VSD is always present. The number of truncal valve leaflets varies from two to six, and the valve may be insufficient or stenotic.

Truncus arteriosus is divided into subtypes by the anatomy of the pulmonary circulation. A single main pulmonary artery may arise from the base of the trunk and gives rise to branch pulmonary arteries (type 1). Alternatively, the pulmonary arteries may arise separately from the common trunk, either in close association with one another (type 2) or widely separated (type 3). This lesion can occur in association with an interrupted aortic arch.

In patients with truncus, blood from both ventricles leaves the heart through a single exit. Thus, oxygen saturation in the pulmonary artery is equal to that in the systemic arteries. The degree of systemic arterial oxygen saturation depends on the ratio of pulmonary to systemic blood flow. If pulmonary vascular resistance is normal, the pulmonary blood flow is greater than the systemic blood flow and the saturation is relatively high. If pulmonary vascular resistance is elevated because of pulmonary vascular obstructive disease or small pulmonary arteries, pulmonary blood flow is reduced and oxygen saturation is low. The systolic pressures are systemic in both ventricles.

Clinical Findings

A. Symptoms and Signs

High pulmonary blood flow characterizes most patients with truncus arteriosus. These patients are usually minimally cyanotic and present in HF. Examination of the heart reveals a hyperactive precordium. A systolic thrill is common at the lower left sternal border. A loud early systolic ejection click is commonly heard. $S_2$ is single and accentuated. A loud holosystolic murmur is audible at the left lower sternal border. A diastolic flow murmur can often be heard at the apex due to increased pulmonary venous return crossing the mitral valve. An additional diastolic murmur of truncal insufficiency may be present.

Patients with decreased pulmonary blood flow are more profoundly cyanotic early. The most common manifestations are growth retardation, easy fatigability, and HF. The heart is not hyperactive. $S_1$ and $S_2$ are single and loud. A systolic murmur is heard at the lower left sternal border. No mitral flow murmur is heard, as pulmonary venous return is decreased. A loud systolic ejection click is commonly heard. In the current era, this lesion is often diagnosed by prenatal screening echocardiography.

B. Imaging

The common radiographic findings are a boot-shaped heart, absence of the main pulmonary artery segment, and a large aorta that has a right arch 30% of the time. The pulmonary vascular markings vary with the degree of pulmonary blood flow.

C. Electrocardiography

The axis is usually normal. RVH or combined ventricular hypertrophy is commonly present.

D. Echocardiography

Images generally show override of a single great artery (similar to ToF, but no second great artery arises directly from the heart). The origin of the pulmonary arteries and the degree of truncal valve abnormality can be defined. Color-flow Doppler can aid in the description of pulmonary flow and the function of the truncal valve, both of which are critical to management. Echocardiography is critical in identifying associated lesions which will impact surgical planning, such as the presence of an interrupted aortic arch.

E. Angiocardiography

Cardiac catheterization is not routinely performed but may be of value in older infants in whom pulmonary vascular disease must be ruled out. The single most important angiogram would be from the truncal root, as both the origin of the pulmonary arteries and the amount of truncal insufficiency would be seen from one injection.

Treatment

Anticongestive measures are needed for patients with high pulmonary blood flow and congestive failure. Surgery is always required in this condition. Because of HF and the risk of development of pulmonary vascular disease, surgery is usually performed in the neonatal period or early infancy. The VSD is closed to allow LV egress to the truncal valve. The pulmonary artery (type 1) or arteries (types 2–3) are separated from the truncus as a block, and a valved conduit is fashioned from the RV to the pulmonary circulation.
**Course & Prognosis**

Children with a good surgical result generally do well. Outcome is also dependent to some degree on anatomy and integrity of the truncal valve, which becomes the "neoaortic" valve. Patients with a dysplastic valve may eventually require surgical repair or replacement of this valve. In addition, similar to patients withToF, they eventually outgrow the RV-to-pulmonary artery conduit placed in infancy and require revision of the conduit in later childhood. The risk of early pulmonary vascular obstructive disease is high in the unrepaired patient and a decision to delay open-heart surgery beyond age 4–6 months is not wise even in stable patients.


**QUALITY IMPROVEMENT IN CONGENITAL HEART DISEASE**

The National Pediatric Cardiology Quality Improvement Collaborative (NPC-QIC) was formed in response to the Joint Council on Congenital Heart Disease (JCCHD) initiative to improve outcomes of children with heart disease. The mission of the NPC-QIC is to build a collaborative network of pediatric cardiologists and an associated database to serve as the foundation for improvement projects. The inaugural project of the NPC-QIC was an improvement project aimed at improving survival and quality of life of infants with HLHS between stages 1 (Norwood) and 2 (bidirectional Glenn) of their palliative surgery.

As outcomes improve and even those with complex congenital heart disease are surviving into adulthood, the care of adults with congenital heart disease is an expanding area of need within pediatric cardiology. Subspecialty clinics addressing the needs of adults with repaired or palliated congenital heart disease are needed to assess and advise patients regarding such adult issues as the impact of pregnancy, the risks of anticoagulation during pregnancy, and appropriate adult career choices.


NPC-QIC website: http://jcchdqic.org/

**ACQUIRED HEART DISEASE**

**RHEUMATIC FEVER**

Rheumatic fever remains a major cause of morbidity and mortality in developing countries that suffer from poverty, overcrowding, and poor access to health care. Even in developed countries, rheumatic fever has not been entirely eradicated. The overall incidence in the United States is less than 1 per 100,000. Group A β-hemolytic streptococcal infection of the upper respiratory tract is the essential trigger in predisposed individuals. Only certain serotypes of group A Streptococcus cause rheumatic fever. The latest attempts to define host susceptibility implicate immune response genes that are present in approximately 15% of the population. The immune response triggered by infection of the pharynx with group A streptococci consists of (1) sensitization of B lymphocytes by streptococcal antigens, (2) formation of anti-streptococcal antibody, (3) formation of immune complexes that cross-react with cardiac sarcolemma antigens, and (4) myocardial and vascular inflammatory response.

The peak age of risk in the United States is 5–15 years. The disease is slightly more common in girls and in African Americans. The annual death rate from rheumatic heart disease in school-aged children (whites and non-whites) recorded in the 1980s was less than 1 per 100,000.

**Clinical Findings**

Two major or one major and two minor manifestations (plus supporting evidence of streptococcal infection) based on the modified Jones criteria are needed for the diagnosis of acute rheumatic fever (Table 20–13). Except in cases of rheumatic fever manifesting solely as Sydenham chorea or long-standing carditis, there should be clear evidence of a streptococcal infection such as scarlet fever, a positive throat culture for group A β-hemolytic Streptococcus, and increased antistreptolysin O or other streptococcal antibody titers. The anti-streptolysin O titer is significantly higher in rheumatic fever than in uncomplicated streptococcal infections.

**A. Carditis**

Carditis is the most serious consequence of rheumatic fever and varies from minimal to life-threatening HF. The term carditis implies pancardiac inflammation, but it may be limited to valves, myocardium, or pericardium. Valvulitis is frequently seen, with the mitral valve most commonly affected. Mitral insufficiency is the most common valvular residua of acute rheumatic carditis. Mitral stenosis after acute rheumatic fever is rarely encountered until 5–10 years after the first episode. Thus, mitral stenosis is much more commonly seen in adults than in children.

An early decrescendo diastolic murmur consistent with aortic insufficiency is occasionally encountered as the sole
valvular manifestation of rheumatic carditis. The aortic valve is the second most common valve affected in polyvalvular as well as in single-valve disease. The aortic valve is involved more often in males and in African Americans. Dominant aortic stenosis of rheumatic origin does not occur in pediatric patients. In one large study, the shortest length of time observed for a patient to develop dominant aortic stenosis secondary to rheumatic heart disease was 20 years.

B. Polyarthritis

The large joints (knees, hips, wrists, elbows, and shoulders) are most commonly involved and the arthritis is typically migratory. Joint swelling and associated limitation of movement should be present. This is one of the more common major criteria, occurring in 80% of patients. Arthralgia alone is not a major criterion.

C. Sydenham Chorea

Sydenham chorea is characterized by involuntary and purposeless movements and is often associated with emotional lability. These symptoms become progressively worse and may be accompanied by ataxia and slurring of speech. Muscular weakness becomes apparent following the onset of the involuntary movements. Chorea is self-limiting, although it may last up to 3 months. Chorea may not be apparent for months to years after the acute episode of rheumatic fever.

D. Erythema Marginatum

A macular, serpiginous, erythematous rash with a sharply demarcated border appears primarily on the trunk and the extremities. The face is usually spared.

E. Subcutaneous Nodules

These usually occur only in severe cases, and then most commonly over the joints, scalp, and spinal column. The nodules vary from a few millimeters to 2 cm in diameter and are nontender and freely movable under the skin.

Treatment & Prophylaxis

A. Treatment of the Acute Episode

1. Anti-infective therapy—Eradication of the streptococcal infection is essential. Long-acting benzathine penicillin is the drug of choice. Depending on the age and weight of the patient, a single intramuscular injection of 0.6–1.2 million units is effective; alternatively, give penicillin V, 250–500 mg orally 2–3 times a day for 10 days, or amoxicillin, 50 mg/kg (maximum 1 g) once daily for 10 days. Narrow-spectrum cephalosporins, clindamycin, azithromycin, or clarithromycin are used in those allergic to penicillin.

2. Anti-inflammatory agents

a. Aspirin—Aspirin, 30–60 mg/kg/d, is given in four divided doses. This dose is usually sufficient to effect dramatic relief of arthritis and fever. Higher dosages carry a greater risk of side effects and there are no proven short- or long-term benefits of high doses that produce salicylate blood levels of 20–30 mg/dL. The duration of therapy is tailored to meet the needs of the patient, but 2–6 weeks of therapy with reduction in dose toward the end of the course is usually sufficient. Other nonsteroidal anti-inflammatory agents used because of concerns about Reye syndrome are less effective than aspirin.

b. Corticosteroids—There is no clear evidence to support the use of corticosteroids, but they are occasionally used for those with severe carditis.

3. Therapy in heart failure—Treatment for HF is based on symptoms and severity of valve involvement and cardiac dysfunction (see section on Heart Failure, earlier).

4. Bed rest and ambulation—Bed rest is not required in most cases. Activity level should be commensurate with symptoms and children should be allowed to self-limit their activity level while affected. Most acute episodes of rheumatic fever are managed on an outpatient basis.

B. Treatment After the Acute Episode

1. Prevention—Prevention is critical, as patients who have had rheumatic fever are at greater risk of recurrence if future group A β-hemolytic streptococcal infections are inadequately treated. Follow-up visits are essential to reinforce the necessity for prophylaxis, with regular intramuscular long-acting benzathine penicillin injections preferred to oral medication due to better adherence. Long-term (possibly lifelong) prophylaxis is recommended for patients with
residual rheumatic heart disease. More commonly, with no or transient cardiac involvement, 5–10 years of therapy or discontinuance in early adulthood (age 21) (whichever is longer) is an effective approach.

The following preventive regimens are in current use:

A. **Penicillin G benzathine**—600,000 units for less than 27 kg, 1.2 million units for more than 27 kg intramuscularly every 4 weeks is the drug of choice.

B. **Penicillin V**—250 mg orally twice daily is much less effective than intramuscular penicillin benzathine G (5.5 vs 0.4 streptococcal infections per 100 patient-years).

C. **Sulfadiazine**—500 mg for less than 27 kg and 1 g for more than 27 kg, once daily. Blood dyscrasias and lesser effectiveness in reducing streptococcal infections make this drug less satisfactory than penicillin benzathine G. This is the recommended regimen for penicillin-allergic patients.

D. **Erythromycin**—250 mg orally twice a day may be given to patients who are allergic to both penicillin and sulfonamides. Azithromycin or clarithromycin may also be used.

2. **Residual valvular damage**—As described above, the mitral and aortic valves are most commonly affected by rheumatic fever and the severity of carditis is quite variable. In the most severe cases, cardiac failure or the need for a valve replacement can occur in the acute setting. In less severe cases, valve abnormalities can persist, requiring lifelong medical management and eventual valve replacement. Other patients fully recover without residual cardiac sequelae.

Although antibiotic prophylaxis to protect against endocarditis used to be recommended for those with residual valvular abnormalities, the criteria for prevention of IE were revised in 2007 and routine prophylaxis is recommended only if a prosthetic valve is in place.


**KAWASAKI DISEASE**

Kawasaki disease was first described in Japan in 1967 and was initially called mucocutaneous lymph node syndrome. The cause is unclear and there is no specific diagnostic test. Kawasaki disease is the leading cause of acquired heart disease in children in the United States. Eighty percent of patients are younger than 5 years old (median age at diagnosis is 2 years), and the male-to-female ratio is 1.5:1. Diagnostic criteria are fever for more than 5 days and at least four of the following features: (1) bilateral, painless, nonexudative conjunctivitis; (2) lip or oral cavity changes (eg, lip cracking and fissuring, strawberry tongue, and inflammation of the oral mucosa); (3) cervical lymphadenopathy greater than or equal to 1.5 cm in diameter and usually unilateral; (4) polymorphous exanthema; and (5) extremity changes (redness and swelling of the hands and feet with subsequent desquamation). Clinical features not part of the diagnostic criteria, but frequently associated with Kawasaki disease, are shown in Table 20–14.

The potential for cardiovascular complications is the most serious aspect of Kawasaki disease. Complications during the acute illness include myocarditis, pericarditis, valvular heart disease (usually mitral or aortic regurgitation), and coronary arteritis. Patients with fever for at least 5 days but fewer than four of the diagnostic features can be diagnosed with incomplete Kawasaki disease, especially if they have coronary artery abnormalities detected by echocardiography. Comprehensive recommendations regarding the evaluation for children with suspected incomplete Kawasaki disease were outlined in a 2004 Statement by the American Heart Association (see references at the end of this section).

Coronary artery lesions range from mild transient dilation of a coronary artery to large aneurysms. Aneurysms rarely form before day 10 of illness. Untreated patients have a 15%–25% risk of developing coronary aneurysms. Those at greatest risk for aneurysm formation are males, young infants (< 6 months), and those not treated with intravenous immunoglobulin (IVIG). Most coronary artery aneurysms

<table>
<thead>
<tr>
<th>System</th>
<th>Associated Signs and Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td>Vomiting, diarrhea, gallbladder hydrops, elevated transaminases</td>
</tr>
<tr>
<td>Blood</td>
<td>Elevated ESR or CRP, leukocytosis, hypoalbuminemia, mild anemia in acute phase and thrombocytosis in subacute phase (usually second to third week of illness)</td>
</tr>
<tr>
<td>Renal</td>
<td>Sterile pyuria, proteinuria</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Cough, hoarseness, infiltrate on chest radiograph</td>
</tr>
<tr>
<td>Joint</td>
<td>Arthralgia and arthritis</td>
</tr>
<tr>
<td>Neurologic</td>
<td>Mononuclear pleocytosis of cerebrospinal fluid, irritability, facial palsy</td>
</tr>
</tbody>
</table>

CRP, C-reactive protein, ESR, erythrocyte sedimentation rate.
resolve within 5 years of diagnosis; however, as aneurysms resolve, associated obstruction or stenosis (19% of all aneurysms) may develop, which may result in coronary ischemia. Giant aneurysms (> 8 mm) are less likely to resolve, and nearly 50% eventually become stenotic. Of additional concern, acute thrombosis of an aneurysm can occur, resulting in myocardial infarction that is fatal in approximately 20% of cases.

Treatment

Immediate management of Kawasaki disease includes IVIG and high-dose aspirin. This therapy is effective in decreasing the incidence of coronary artery dilation and aneurysm formation. The currently recommended regimen is 2 g/kg of IVIG administered over 10–12 hours and 80–100 mg/kg/d of aspirin in four divided doses. The duration of high-dose aspirin is institution-dependent: many centers reduce the dose once the patient is afebrile for 48–72 hours; others continue through 5 afebrile days or day 14 of the illness. Once high-dose aspirin is discontinued, low-dose aspirin (3–5 mg/kg/d) is given through the subacute phase of the illness (6–8 weeks) or until coronary artery abnormalities resolve. If fever recurs within 48–72 hours of the initial treatment course and no other source of the fever is detected, a second dose of IVIG is often recommended; however, the effectiveness of this approach has not been clearly demonstrated. A multicenter, randomized, double-blind, placebo-controlled study demonstrated no beneficial effect of pulsed corticosteroids on the development of coronary abnormalities in patients responsive to IVIG. However, corticosteroids or other anti-inflammatory therapy (eg, infliximab) should be considered for patients with persistent fever despite one or two infusions of IVIG.

Follow-up of patients with treated Kawasaki disease depends on the degree of coronary involvement. In those with no or minimal coronary artery disease at the time of diagnosis, an echocardiogram 2 weeks and again 6–8 weeks after diagnosis is sufficient. Repeat echocardiography more than 8 weeks after diagnosis in those with no coronary abnormalities is optional. The risk stratification and recommended follow-up is reviewed in Table 20–15.

Table 20–15. Long-term management in Kawasaki disease.

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Definition</th>
<th>Management Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No coronary artery changes at any stage of the illness</td>
<td>No ASA is needed beyond the subacute phase (6–8 wk). No follow-up beyond the first year.</td>
</tr>
<tr>
<td>II</td>
<td>Transient ectasia of coronary arteries during the acute phase</td>
<td>Same as above, or clinical follow-up ± ECG every 3–5 y.</td>
</tr>
<tr>
<td>III</td>
<td>Single small to medium coronary aneurysm</td>
<td>ASA until abnormality resolves. Annual follow-up with ECG and echo if &lt; 10 y and every other-year stress testing if &gt; 10 y.</td>
</tr>
<tr>
<td>IV</td>
<td>Giant aneurysm or multiple small to medium aneurysms without obstruction</td>
<td>Long-term ASA ± warfarin. Annual follow-up with ECG, echo, and stress testing.</td>
</tr>
<tr>
<td>V</td>
<td>Coronary artery obstruction</td>
<td>Long-term ASA ± warfarin ± calcium channel blocker to reduce myocardial oxygen consumption. Echo and ECG every 6 mo. Stress testing and Holter examination annually.</td>
</tr>
</tbody>
</table>

ASA, acetyl salicylic acid; ECG, electrocardiogram; echo, echocardiogram.

INFECTIVE ENDOCARDITIS

- Positive blood culture.
- Intracardiac oscillating mass, abscess, or new valve regurgitation on echocardiogram.
- Fever.
- Elevated erythrocyte sedimentation rate or C-reactive protein.

- General Considerations

Bacterial or fungal infection of the endocardium of the heart is rare and usually occurs in the setting of a preexisting abnormality of the heart or great arteries. It may occur in a normal heart during septicemia or as a consequence of infected indwelling central catheters.


The frequency of infective endocarditis (IE) appears to be increasing for several reasons: (1) increased survival in children with congenital heart disease, (2) greater use of central venous catheters, and (3) increased use of prosthetic material and valves. Pediatric patients without preexisting heart disease are also at increased risk for IE because of (1) increased survival rates for children with immune deficiencies, (2) long-term use of indwelling lines in ill newborns and patients with chronic diseases, and (3) increased intravenous drug abuse.

Patients at greatest risk are children with unrepaired or palliated cyanotic heart disease (especially in the presence of an aorta to pulmonary shunt), those with implanted prosthetic material, and patients who have had a prior episode of IE. Common organisms causing IE are viridans streptococci (30%–40% of cases), Staphylococcus aureus (25%–30%), and fungal agents (about 5%).

### Clinical Findings

#### A. History

The majority of patients with IE have a history of heart disease. There may or may not be an antecedent infection or surgical procedure (cardiac surgery, tooth extraction, tonsillectomy). Transient bacteremia occurs frequently during normal daily activities such as flossing or brushing teeth, using a toothpick and even when chewing food. Although dental and nonsterile surgical procedures also can result in transient bacteremias, these episodes are much less frequent for a given individual. This may be why a clear inciting event is often not identified in association with IE and also underlies the recent changes in guidelines for antibiotic prophylaxis to prevent IE (for details, see Wilson et al reference).

#### B. Symptoms, Signs, and Laboratory Findings

Although IE can present in a fulminant fashion with cardiovascular collapse, often it presents in an indolent manner with fever, malaise, and weight loss. Joint pain and vomiting are less common. On physical examination, there may be a new or changing murmur, splenomegaly, and hepatomegaly. Classic findings of Osler nodes (tender nodules, usually on the pulp of the fingers), Janeway lesions (nontender hemorrhagic macules on palms and soles), splinter hematomas, and Roth spots (retinal hemorrhage) are uncommonly noted in children. Laboratory findings include multiple positive blood cultures, elevated erythrocyte sedimentation rate or C-reactive protein, and hematuria. Transthoracic echocardiography can identify large vegetations in some patients, but transesophageal imaging has better sensitivity and may be necessary if the diagnosis remains in question.

### Prevention

In 2007, the AHA revised criteria for patients requiring prophylaxis for IE (Table 20–16). Only the high-risk patients listed require antibiotics before dental work (tooth extraction or cleaning) and procedures involving the respiratory tract or infected skin or musculoskeletal structures. IE prophylaxis is not recommended for gastrointestinal or genitourinary procedures, body piercing, or tattooing.

Recommended prophylaxis is under 40 kg, 50 mg/kg of oral amoxicillin for patients < 40 kg and 2000 mg for those > 40 kg. This dose is to be given 1 hour prior to procedure. If the patient is allergic to amoxicillin, alternative prophylactic antibiotics are recommended in the AHA guidelines.

### Treatment

In general, appropriate antibiotic therapy should be initiated as soon as IE is suspected and several large volume blood cultures have been obtained via separate venipunctures. Therapy can be tailored once the pathogen and sensitivities are defined. Vancomycin or a β-lactam antibiotic, with or without gentamicin, for a 6-week course is the most common regimen. If HF occurs and progresses in the face of adequate antibiotic therapy, surgical excision of the infected area and prosthetic valve replacement must be considered.

### Course & Prognosis

Factors associated with a poor outcome are delayed diagnosis, presence of prosthetic material, perioperative associated IE, and S aureus infection. Mortality for bacterial endocarditis in children ranges from 10% to 25%, with fungal infections having a much greater mortality (50% or more).

---

**Table 20–16. Conditions requiring antibiotic prophylaxis for the prevention of infective endocarditis (IE).**

<table>
<thead>
<tr>
<th>Condition</th>
<th>Prophylaxis Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosthetic cardiac valves</td>
<td>For 6 months postprocedure if CHD repair involves implanted prosthetic material</td>
</tr>
<tr>
<td>Prior episode of IE</td>
<td>Cardiac transplant with valvulopathy</td>
</tr>
<tr>
<td>Congenital heart disease (CHD)</td>
<td></td>
</tr>
<tr>
<td>Palliated cyanotic CHD</td>
<td></td>
</tr>
<tr>
<td>Repair of CHD with residual defect bordered by prosthetic material</td>
<td></td>
</tr>
</tbody>
</table>

---

PERICARDITIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Chest pain made worse by deep inspiration and decreased by leaning forward.
- Fever and tachycardia.
- Shortness of breath.
- Pericardial friction rub.
- ECG with elevated ST segments.

General Considerations

Pericarditis is an inflammation of the pericardium and is commonly related to an infectious process. The most common cause of pericarditis in children is viral infection (e.g., coxsackievirus, mumps, Epstein-Barr, adenovirus, influenza, and human immunodeficiency virus [HIV]). Purulent pericarditis results from bacterial infection (e.g., pneumococci, streptococci, staphylococci, and Haemophilus influenzae) and is less common but potentially life-threatening.

In some cases, pericardial disease occurs in association with a generalized process. Associations include rheumatic fever, rheumatoid arthritis, uremia, systemic lupus erythematosus, malignancy, and tuberculosis. Pericarditis after cardiac surgery (postpericardiotomy syndrome) is most commonly seen after surgical closure of an ASD. Postpericardiotomy syndrome appears to be autoimmune in nature with high titers of antiheart antibody and evidence of acute or reactivated viral illness. The syndrome is often self-limited and responds well to short courses of aspirin or corticosteroids.

Clinical Findings

A. Symptoms and Signs

Childhood pericarditis usually presents with sharp stabbing mid chest, shoulder, and neck pain made worse by deep inspiration or coughing, and decreased by sitting up and leaning forward. Shortness of breath and grunting respirations are common. Physical findings depend on the presence of fluid accumulation in the pericardial space (effusion). In the absence of significant accumulation, a characteristic scratchy, high-pitched friction rub may be heard. If the effusion is large, heart sounds are distant and muffled and a friction rub may not be present. In the absence of cardiac tamponade, the peripheral, venous, and arterial pulses are normal.

Cardiac tamponade occurs in association with a large effusion, or one that has rapidly accumulated. Tamponade is characterized by jugular venous distention, tachycardia, hepatomegaly, peripheral edema, and pulsus paradoxus, in which systolic blood pressure drops more than 10 mm Hg during inspiration. Decreased cardiac filling and subsequent decrease in cardiac output result in signs of right heart failure and the potential for cardiovascular collapse.

B. Imaging

In pericarditis with a significant pericardial effusion, the cardiac silhouette is enlarged. The cardiac silhouette can appear normal if the effusion has developed over an extremely short period of time.

C. Electrocardiography

The ST segments are commonly elevated in acute pericarditis and PR segment depression may be present. Low voltages or electrical alternans (alteration in QRS amplitude between beats) can be seen with large pericardial effusions.

D. Echocardiography

Serial echocardiography allows a direct, noninvasive estimate of the volume of pericardial fluid and its change over time. Cardiac tamponade is associated with compression of the atria or respiratory alteration of ventricular inflow demonstrated by Doppler imaging.

Treatment

Treatment depends on the cause of pericarditis and the size of the associated effusion. Viral pericarditis is usually self-limited and symptoms can be improved with nonsteroidal anti-inflammatory therapy. Purulent pericarditis requires immediate evacuation of the fluid and appropriate antibiotic therapy. Cardiac tamponade from any cause must be treated by immediate removal of the fluid, usually via pericardiocentesis. Pericardiocentesis should also be considered if the underlying cause is unclear or identification of the pathogen is necessary for targeted therapy. In the setting of recurrent or persistent effusions, a surgical pericardectomy or pericardial window may be necessary. Diuretics should be avoided in the patient with cardiac tamponade because they reduce ventricular preload and can exacerbate the degree of cardiac decompensation.

Prognosis

Prognosis depends to a great extent on the cause of pericardial disease. Constrictive pericarditis can develop following infectious pericarditis (especially if bacterial or tuberculous) and can be a difficult problem to manage. Cardiac tamponade will result in death unless the fluid is evacuated.

There are five classified forms of cardiomyopathy in children: (1) dilated, (2) hypertrophic, (3) restrictive, (4) arrhythmogenic right ventricular dysplasia (ARVD), and (5) left ventricular noncompaction. Discussion will be limited to the first three forms, which are the most common.

1. Dilated Cardiomyopathy

This most frequent of the childhood cardiomyopathies occurs with an annual incidence of 4–8 cases per 100,000 population in the United States and Europe. Although usually idiopathic, identifiable causes of dilated cardiomyopathy (DCM) include viral myocarditis, untreated tachyarrhythmias, left heart obstructive lesions, congenital abnormalities of the coronary arteries, medication toxicity (eg, anthracycline), and genetic (eg, dystrophin gene defects, sarcomeric mutations) and metabolic diseases (inborn errors of fatty acid oxidation and mitochondrial oxidative phosphorylation defects). Genetic causes are being discovered at an increasing rate with commercial testing now available for some of the more common genes.

Clinical Findings

A. Signs and Symptoms

As myocardial function fails and the heart dilates, cardiac output falls, and affected children develop decreased exercise tolerance, failure to thrive, diaphoresis, and tachypnea. As the heart continues to deteriorate, congestive signs such as hepatomegaly and rales develop, and a prominent gallop can be appreciated on examination. The initial diagnosis in a previously healthy child can be difficult, as presenting symptoms can resemble a viral respiratory infection, pneumonia, or asthma.

B. Imaging

Chest radiograph shows generalized cardiomegaly with or without pulmonary venous congestion.

C. Electrocardiography

Sinus tachycardia with ST-T segment changes is commonly seen on ECG. The criteria for right and left ventricular hypertrophy may also be met and the QT interval may be prolonged. Evaluation for the presence of supraventricular arrhythmias on ECG is critical, as this is one of the few treatable and reversible causes of DCM in children.

D. Echocardiography

The echocardiogram shows LV and left atrial enlargement with decreased LV-shortening fraction and ejection fraction. The calculated end-diastolic and end-systolic dimensions are increased and mitral insufficiency is commonly seen. A careful evaluation for evidence of structural abnormalities (especially coronary artery anomalies or left heart obstructive lesions) must be performed, especially in infant patients.

E. Other Testing

Cardiac catheterization is useful to evaluate hemodynamic status and coronary artery anatomy. Endomyocardial biopsies can aid in diagnosis. Biopsy specimens may show inflammation consistent with acute myocarditis, abnormal myocyte architecture, and myocardial fibrosis. Electron micrographs may reveal evidence of mitochondrial or other metabolic disorders. Polymerase chain reaction (PCR) testing may be performed on biopsied specimens to detect viral genome products in infectious myocarditis. Skeletal muscle biopsy may be helpful in patients with evidence of skeletal muscle involvement. Cardiopulmonary stress testing is useful for measuring response to medical therapy and as an objective assessment of the cardiac limitations on exercise. Cardiac MRI is increasingly used for the diagnosis of myocarditis and can detect the presence of fibrosis by delayed gadolinium enhancement.

Treatment & Prognosis

Outpatient management of pediatric DCM usually entails combinations of afterload-reducing agents and diuretics (see section on Heart Failure, earlier). In 2007, Shaddy et al published the results of a multicenter, placebo-controlled, doubleblind trial of carvedilol in children with HF. Children did not receive the same beneficial effects of β-blocker therapy as adults with HF; possibly due to the heterogenous nature of HF in children, but perhaps there are inherent differences in pediatric and adult HF. Aspirin or warfarin may be used to prevent thrombus formation in the dilated and poorly contractile cardiac chambers. Arrhythmias are more common in dilated hearts. Antiarrhythmic agents that do not suppress myocardial contractility, such as amiodarone, are used when necessary. Despite widespread use of internal defibrillators in the adult population, the technical difficulty of implanting internal defibrillators and the risk of adverse events (eg, high frequency of inappropriate discharge, vascular obstruction) in children limit their use.

Therapy of the underlying cause of cardiomyopathy is always indicated if possible. Unfortunately despite complete evaluation, a diagnosis is discovered in less than 30% of patients with DCM. If medical management is unsuccessful, cardiac transplantation is considered.

2. Hypertrophic Cardiomyopathy

The most common cause of hypertrophic cardiomyopathy (HCM) is familial hypertrophic cardiomyopathy, which is found in 1 in 500 individuals. HCM is the leading cause
of sudden cardiac death in young persons. The most common presentation is in an older child, adolescent, or adult, although it may occur in neonates. Causes of nonfamilial HCM in neonates and young children include glycogen storage disease, Noonan syndrome (including related syndromes such as LEOPARD and Costello syndrome), Friedreich ataxia, maternal gestational diabetes, mitochondrial disorders, and other metabolic disorders.

A. Familial Hypertrophic Cardiomyopathy

In the familial form, HCM is most commonly caused by a mutation in one of the several genes that encode proteins of the cardiac sarcomere (β-myosin heavy chain, cardiac tropinin T or I, α-tropomyosin, and myosin-binding protein C).

1. Clinical findings—Patients may be asymptomatic despite having significant hypertrophy, or may present with symptoms of inadequate coronary perfusion or HF such as angina, syncope, palpitations, or exercise intolerance. Patients may experience sudden cardiac death as their initial presentation, often precipitated by sporting activities. Although the cardiac examination may be normal on presentation, some patients develop a left precordial bulge with a diffuse point of maximal impulse. An LV heave or an S4 gallop may be present. If outflow tract obstruction exists, a systolic ejection murmur will be audible. A murmur may not be audible at rest but may be provoked with exercise or positional maneuvers that decrease left ventricular volume (standing), thereby increasing the outflow tract obstruction.

A. Echocardiography—The diagnosis of HCM is usually made by echocardiography and in most familial cases demonstrates asymmetrical septal hypertrophy. Young patients with metabolic or other nonfamilial causes are more likely to have concentric hypertrophy. Systolic anterior motion of the mitral valve leaflet may occur and contribute to LV outflow tract obstruction. The mitral valve leaflet may become distorted and result in mitral insufficiency. LV outflow tract obstruction may be present at rest or provoked with either amyl nitrate or monitored exercise. Systolic function is most often hypercontractile in young children but may deteriorate over time, resulting in poor contractility and LV dilation. Diastolic function is almost always abnormal.

B. Electrocardiography—The ECG may be normal, but more typically demonstrates deep Q waves in the inferolateral leads (II, III, aVF, V5, and V6) secondary to the increased mass of the hypertrophied septum. ST-segment abnormalities may be seen in the same leads. Age-dependent criteria for LVH are often present as are criteria for left atrial enlargement.

C. Other testing—Cardiopulmonary stress testing is valuable to evaluate for provokable LV outflow tract obstruction, ischemia, and arrhythmias, and to determine prognosis.

D. Cardiac catheterization—Cardiac catheterization is performed in patients with HCM who have angina, syncope, resuscitated sudden death, or a worrisome stress test. Hemodynamic findings include elevated left atrial pressure secondary to impaired diastolic filling. If midcavitary LV outflow tract obstruction is present, an associated pressure gradient will be evident. Provocation of LV outflow tract obstruction with either rapid atrial pacing or isoproterenol may be sought, but this is not commonly done in children. Angiography demonstrates a “ballerina slipper” configuration of the LV secondary to the midcavitary LV obliteration during systole. The myocardial biopsy specimen demonstrates myofiber disarray.

2. Treatment and prognosis—Treatment varies depending on symptoms and phenotype. Affected patients are restricted from competitive athletics and isometric exercise due to associated risk of sudden cardiac death. Patients with resting or latent LV outflow tract obstruction may be treated with β-blockers, verapamil, or disopyramide with variable success in alleviating obstruction. Patients with severe symptoms despite medical therapy and an LV outflow tract gradient may require additional intervention. Surgical myectomy with resection of part of the hypertrophied septum has been used in symptomatic patients with good results. At the time of myectomy, the mitral valve may require repair or replacement in patients with a long history of systolic anterior motion of the mitral valve. Ethanol ablation is used in adults with HCM and LV outflow tract obstruction. This procedure involves selective infiltration of ethanol in a coronary septal artery branch to induce a small targeted myocardial infarction. This leads to a reduction in septal size and improvement of obstruction. The long-term effects of this procedure are unknown and it is not commonly employed in children. Although dual-chamber pacing has been used in children with good relief of obstruction, larger series demonstrate no significant improvement in obstruction. Risk stratification with respect to sudden death is important in HCM. Consideration for placement of internal defibrillators in adult patients are based on the known risk factors for sudden cardiac death: severe hypertrophy (> 3 cm septal thickness in adults), documented ventricular arrhythmias, syncope, abnormal blood pressure response to exercise, resuscitated sudden death, or a strong family history of HCM with associated sudden death. The criteria for defibrillator placement in children are not as well defined.
B. Glycogen Storage Disease of the Heart

There are at least 10 types of glycogen storage disease. The type that primarily involves the heart is Pompe disease (GSD IIA) in which acid maltase, necessary for hydrolysis of the outer branches of glycogen, is absent. There is marked deposition of glycogen within the myocardium. Affected infants are well at birth, but symptoms of growth and developmental delay, feeding problems, and cardiac failure occur by the sixth month of life. Physical examination reveals generalized muscular weakness, a large tongue, and cardiomegaly without significant heart murmurs. Chest radiographs reveal cardiomegaly with or without pulmonary venous congestion. The ECG shows a short PR interval and LVH with ST depression and T-wave inversion over the left precordial leads. Echocardiography shows severe concentric LVH. Although historically children with Pompe disease usually died before age 1 year, recent enzyme replacement clinical trials have shown some promise in reversing hypertrophy and preserving cardiac function. Death may be sudden or result from progressive HF.

3. Restrictive Cardiomyopathy

Restrictive cardiomyopathy is a rare entity in the pediatric population, accounting for less than 5% of all cases of cardiomyopathy. The cause is usually idiopathic but can be familial or secondary to an infiltrative process (eg, amyloidosis).

Clinical Findings

Patients present with signs of congestive HF as a consequence of diastolic dysfunction in the setting of preserved systolic function. The left ventricle is more severely affected than the right ventricle in restrictive cardiomyopathy, but the right ventricle is also affected in most cases resulting in signs and symptoms consistent with biventricular congestion. Patients often present with exercise intolerance, fatigue, chest pain and orthopnea. Physical examination is remarkable for a prominent S4 and jugular venous distention.

A. Electrocardiography

ECG demonstrates marked right and left atrial enlargement with normal ventricular voltages. ST-T-wave abnormalities including a prolonged QTc interval may be present.

B. Echocardiography

The diagnosis is confirmed echocardiographically by the presence of normal-sized ventricles with normal systolic function and massively dilated atria. Cardiac MRI is useful in ruling out pericardial abnormalities (restrictive or constrictive pericarditis) and infiltrative disorders.

Treatment & Prognosis

Anticongestive therapy is used for symptomatic relief. The high risk of sudden death in restrictive cardiomyopathy and the propensity for rapid progression of irreversible pulmonary hypertension warrant close follow-up with early consideration of cardiac transplantation.


MYOCARDITIS

The most common causes of viral myocarditis are adenoviruses, coxsackie A and B viruses, echoviruses, parvovirus, cytomegalovirus, and influenza A virus. HIV can also cause myocarditis. The ability to identify the pathogen has been enhanced by PCR technology, which replicates identifiable segments of the viral genome from the myocardium of affected children.

Clinical Findings

A. Symptoms and Signs

There are two major clinical patterns. In the first, sudden-onset HF occurs in an infant or child who was relatively healthy in the hours to days previously. This malignant form of the disease is usually secondary to overwhelming viremia with tissue invasion in multiple organ systems including the heart. In the second pattern, the onset of cardiac symptoms is gradual and there may be a history of upper respiratory tract infection or gastroenteritis in the previous month. This more insidious form may have a late postinfectious or autoimmune component. Acute and chronic presentations occur at any age and with all types of myocarditis.

The signs of HF are variable, but in a decompensated patient with fulminant myocarditis include pale gray skin; rapid, weak, and thready pulses; and breathlessness. In those with a more subacute presentation signs include increased work of breathing such as orthopnea, difficulty with feeding in infants, exercise intolerance and edema of the face and extremities. The patient is usually tachycardic and heart sounds may be muffled and distant; an S3 or S4 gallop (or both) are common. Murmurs are usually absent, although a murmur of tricuspid or mitral insufficiency may be heard.
Moist rales are usually present at both lung bases. The liver is enlarged and frequently tender.

B. Imaging

Generalized cardiomegaly is seen on radiographs along with moderate to marked pulmonary venous congestion.

C. Electrocardiography

The ECG is variable. Classically, there is low-voltage QRS in all frontal and precordial leads with ST-segment depression and inversion of T waves in leads I, III, and aVF (and in the left precordial leads during the acute stage). Dysrhythmias are common, and AV and intraventricular conduction disturbances may be present.

D. Echocardiography

Echocardiography demonstrates four-chamber dilation with poor ventricular function and AV valve regurgitation. A pericardial effusion may be present. Patients with a more acute presentation may have less ventricular dilation than those with a longer history of HF-related symptoms.

E. Myocardial Biopsy

An endomyocardial biopsy may be helpful in the diagnosis of viral myocarditis. An inflammatory infiltrate with myocyte damage can be seen by hematoxylin and eosin staining. Viral PCR testing of the biopsy specimen may yield a positive result in 30%–40% of patients suspected to have myocarditis. However, myocarditis is thought to be a "patchy" process, so it is possible that biopsy results are falsely negative if the area of active myocarditis was missed.

F. Cardiac MRI

Cardiac MRI is increasing in use as a potential diagnostic modality for myocarditis. Abnormalities in T2-weighted imaging (consistent with myocardial edema, inflammation) and global relative enhancement (evidence of capillary leak) are evident in patients with acute myocarditis. This imaging method requires general anesthesia in infants and young children, which is associated with significant risk in those with HF and must be a consideration when ordering this test.

Treatment

The inpatient cardiac support measures outlined previously in the section on heart failure are used in the treatment of these patients. The use of digitalis in a rapidly deteriorating child with myocarditis is dangerous and should be undertaken with great caution, as it may cause ventricular dysrhythmias.

Administration of immunomodulating medications such as corticosteroids for myocarditis is controversial. If the patient’s condition deteriorates despite anticongestive measures, corticosteroids are commonly used, although conclusive data supporting their effectiveness are lacking. Subsequent to the successful use of IVIG in children with Kawasaki disease, there have been several trials of IVIG in presumed viral myocarditis. The therapeutic value of IVIG remains unconfirmed. Initiation of mechanical circulatory support in those with fulminant or severe myocarditis is another therapeutic option as a bridge to transplantation or recovery.

Prognosis

The prognosis of myocarditis is determined by the age at onset and the response to therapy. Children presenting with fulminant myocarditis and severe hemodynamic compromise have a 75% early mortality. Those at highest risk for a poor outcome are those presenting in the first year of life. Complete recovery is possible, although some patients recover clinically but have persistent LV dysfunction and require ongoing medical therapy for HF. It is possible that subclinical myocarditis in childhood is the pathophysiologic basis for some of the "idiopathic" DCMs later in life. Children with myocarditis whose ventricular function fails to return to normal may be candidates for cardiac transplantation if they remain symptomatic or suffer growth failure despite maximal medical management.


PREVENTIVE CARDIOLOGY

HYPERTENSION

Blood pressure should be determined at every pediatric visit beginning at 3 years. Because blood pressure is being more carefully monitored, systemic hypertension has become more widely recognized as a pediatric problem. Pediatric standards for blood pressure have been published. Blood pressures in children must be obtained when the child is relaxed and an appropriate-size cuff must always be used. The widest cuff that fits between the axilla and the antecubital fossa should be used (covers 60%–75% of the upper arm). Most children aged 10–11 years need a standard adult cuff (bladder width of 12 cm), and many high school students need a large adult cuff (width of 16 cm) or leg cuff (width of 18 cm). The pressure coinciding with the onset (K1) and the loss (K5) of the Korotkoff sounds determines the systolic and diastolic blood pressure, respectively. If a properly measured blood pressure exceeds the 95th percentile (Table 20-17), the measurement should be repeated several times over a 2- to 4-week interval. If it is elevated persistently, a search for the
cause should be undertaken. Although most hypertension in children is essential, the incidence of treatable causes is higher in children than in adults; these include conditions such as coarctation of the aorta, renal artery stenosis, chronic renal disease, and pheochromocytoma, as well as medication side effects (eg, steroids). If no cause is identified, and hypertension is deemed essential, antihypertensive therapy should be initiated and nutritional and exercise counseling given. β-Blockers or ACE inhibitors are the usual first-line medical therapies for essential hypertension in children.


ATHEROSCLEROSIS & DYSLIPIDEMIAS

Awareness of coronary artery risk factors in general, and atherosclerosis in particular, has risen dramatically in the general population since the mid-1970s. Although coronary artery disease is still the leading cause of death in the United States, the age-adjusted incidence of death from ischemic heart disease has been decreasing as a result of improved diet, decreased smoking, awareness and treatment of hypertension, and an increase in physical activity. The level of serum lipids in childhood usually remains constant through adolescence. Biochemical abnormalities in the lipid profile appearing early in childhood correlate with higher risk for coronary artery disease in adulthood. Low-density lipoprotein (LDL) is atherogenic, while its counterpart, high-density lipoprotein (HDL) has been identified as an anti-atherogenic factor.

Routine lipid screening of children at age 3 years remains controversial. The National Cholesterol Education Program recommends selective screening in children with high-risk family members, defined as a parent with total cholesterol greater than 240 mg/dL or a parent or grandparent with early-onset cardiovascular disease. When children have LDL levels greater than 130 mg/dL on two successive tests, dietary lifestyle counseling is appropriate. Dietary modification may decrease cholesterol levels by 5%–20%. If the patient is unresponsive to diet change and at extreme risk (eg, LDL > 160 mg/dL, HDL < 35 mg/dL, and a history of cardiovascular disease in a first-degree relative at an age < 40 years), drug therapy may be indicated. Cholestyramine, a bile acid–binding resin, is rarely used today due to poor adherence. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are more commonly used in the pediatric population. Niacin is useful for treatment of hypertriglyceridemia.


CHEST PAIN

Overview

Chest pain is a common pediatric complaint, accounting for 6 in 1000 visits to urban emergency departments and urgent care clinics. Although children with chest pain are commonly referred for cardiac evaluation, chest pain in children is rarely cardiac in origin. Other more likely causes of chest pain in children include reactive airways disease, musculoskeletal pain, esophagitis, gastritis, and functional pain.

Detailed history and physical examination should guide the pediatrician to the appropriate workup of chest pain. Rarely is there a need for laboratory tests or evaluation by a specialist. The duration, location, intensity, frequency, and

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Sea Level S</th>
<th>Dm</th>
<th>Dd</th>
<th>10,000 ft S</th>
<th>Dm</th>
<th>Dd</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>92</td>
<td>72</td>
<td>62</td>
<td>106</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>106</td>
<td>72</td>
<td>66</td>
<td>110</td>
<td>76</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>114</td>
<td>80</td>
<td>76</td>
<td>118</td>
<td>82</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>124</td>
<td>82</td>
<td>78</td>
<td>118</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>128</td>
<td>84</td>
<td>80</td>
<td>140</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
<td>84</td>
<td>80</td>
<td>140</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>132</td>
<td>84</td>
<td>80</td>
<td>140</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>136</td>
<td>86</td>
<td>80</td>
<td>140</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>132</td>
<td>84</td>
<td>80</td>
<td>140</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>14</td>
<td>132</td>
<td>84</td>
<td>80</td>
<td>140</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>136</td>
<td>86</td>
<td>80</td>
<td>140</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>16</td>
<td>140</td>
<td>92</td>
<td>80</td>
<td>140</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>17</td>
<td>140</td>
<td>92</td>
<td>80</td>
<td>140</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>18</td>
<td>140</td>
<td>92</td>
<td>80</td>
<td>140</td>
<td>90</td>
<td>80</td>
</tr>
</tbody>
</table>

*Blood pressures. S, systolic (Korotkoff sound 1; onset of tapping); Dm, diastolic muffling (Korotkoff sound 4); Dd, diastolic disappearance (Korotkoff sound 5).
radiation of the pain should be documented, and possible triggering events preceding the pain should be explored. For instance, chest pain following exertion may lead to a more elaborate evaluation for a cardiac disorder. The timing of the pain in relation to meals may suggest a gastrointestinal cause. The patient should also be asked about how pain relief is achieved. A social history to reveal psychosocial stressors and cigarette smoke exposure may be revealing. On physical examination, attention must be placed on the vital signs; general appearance of the child; the chest wall musculature; cardiac, pulmonary, and abdominal examination findings; and quality of peripheral pulses. If the pain can be reproduced through direct palpation of the chest wall, it is almost always musculoskeletal in origin.

Etiology
Cardiac disease is a rare cause of chest pain, but, if misdiagnosed, it may be life-threatening. Although myocardial infarction rarely occurs in healthy children, patients with diabetes mellitus, chronic anemia, abnormal coronary artery anatomy, or HCM may be at increased risk for ischemia. A history of Kawasaki disease with coronary involvement is a risk for myocardial infarction secondary to thrombosis of coronary aneurysms. More than 50% of children and adolescents who exhibit sequelae from Kawasaki disease arrive at the emergency department with chest pain.

Young children may mistake palpitations for chest pain. Supraventricular tachycardia (SVT), atrial flutter, premature ventricular contractions (PVCs), or ventricular tachycardia may be described as chest pain in children. Structural lesions that can cause chest pain include aortic stenosis, pulmonary stenosis, and mitral valve prolapse. Other cardiac lesions causing chest pain include DCM, myocarditis, pericarditis, rheumatic carditis, and aortic dissection.

Noncardiac chest pain may be due to a respiratory illness, reactive airway disease, pneumonia, pneumothorax, or pulmonary embolism. Gastrointestinal causes of chest pain include reflux, esophagitis, and foreign body ingestion. The most common cause of chest pain (30% of children) is inflammation of musculoskeletal structures of the chest wall. Costochondritis is caused by inflammation of the costochondral joints and is usually unilateral and reproducible on examination.

In most cases, sophisticated testing is not required. However, if a cardiac origin is suspected, a pediatric cardiologist should be consulted. Evaluation in these instances may include an ECG, chest radiograph, echocardiogram, Holter monitor, or serum troponin levels if there are known risk factors for ischemia.


CARDIAC TRANSPLANTATION
Cardiac transplantation is an effective therapeutic modality for infants and children with end-stage cardiac disease. Indications for transplantation include (1) progressive HF despite maximal medical therapy, (2) complex congenital heart diseases that are not amenable to surgical repair or palliation, or in instances in which the surgical palliative approach has an equal or higher risk of mortality compared with transplantation, and (3) malignant arrhythmias unresponsive to medical therapy, catheter ablation, or automatic implantable cardioverter-defibrillator. Approximately 300–400 pediatric cardiac transplant procedures are performed annually in the United States. Infant (< 1 year of age) transplants account for 30% of pediatric cardiac transplants. The current estimated graft half-life for children undergoing cardiac transplantation in infancy is over 19 years, while overall pediatric heart transplant graft half-life is approximately 14 years.

Careful evaluation of the recipient and the donor is performed prior to cardiac transplantation. Assessment of the recipient’s pulmonary vascular resistance is critical, as irreversible and severe pulmonary hypertension is a risk factor for post-transplant right heart failure and early death. End-organ function of the recipient may also influence post-transplant outcome and should be evaluated closely. Donor-related factors that can have an impact on outcome include cardiac function, amount of inotropic support needed, active infection (HIV and hepatitis B and C are contraindications to donation), donor size, and ischemic time to transplantation.

Immunosuppression
The ideal post-transplant immunosuppressive regimen allows the immune system to continue to recognize and respond to foreign antigens in a productive manner while avoiding graft rejection. Although there are many different regimens, calcineurin inhibitors (eg, cyclosporine and tacrolimus) remain the mainstay of maintenance immunosuppression in pediatric heart transplantation. Calcineurin inhibitors may be used in isolation in children considered to be at low risk for graft rejection. Double-drug therapy includes the addition of antimetabolite or antiproliferative medications such as azathioprine, mycophenolate mofetil, or sirolimus. Because of the significant adverse side effects of corticosteroids in children, many centers attempt to avoid chronic steroid use. Growth retardation, susceptibility to infection, impaired wound healing, hypertension, diabetes, osteoporosis, and a cushingoid appearance are some of the consequences of long-term steroid use.

Graft Rejection
Despite advances in immunosuppression, graft rejection remains the leading cause of death in the first 3 years after transplantation. The pathophysiologic mechanisms of rejection
are not entirely known. T cells are required for rejection, but multiple cell lines and mechanisms are likely involved. Because graft rejection can present in the absence of clinical symptomatology, monitoring for and diagnosing rejection in a timely fashion can be difficult. Screening regimens include serial physical examinations, electrocardiography, echocardiography, and cardiac catheterization with endomyocardial biopsy.

### Rejection Surveillance

#### A. Symptoms and Signs

Acute graft rejection may not cause symptoms in the early stages. With progression, patients may develop tachycardia, tachypnea, rales, a gallop rhythm, or hepatosplenomegaly. Infants and young children may present with irritability, poor feeding, vomiting, or lethargy. There is 50% mortality within 1 year for those suffering an episode of rejection associated with hemodynamic compromise, so early detection is critical.

#### B. Imaging

In an actively rejecting patient, chest radiographs may show cardiomegaly, pulmonary edema, or pleural effusions.

#### C. Electrocardiography

Abnormalities in conduction can be present, although the most typical finding is reduced QRS voltages. Both atrial and ventricular arrhythmias can occur in rejection.

#### D. Echocardiography

Echocardiography is a noninvasive rejection surveillance tool that is especially useful in infant recipients, but helpful in all ages. Changes in ventricular compliance and function may initially be subtle, but are progressive with increasing duration of the rejection episode. A new pericardial effusion or worsening valvular insufficiency may also indicate rejection.

#### E. Cardiac Catheterization and Endomyocardial Biopsy

Hemodynamic assessment including ventricular filling pressures, cardiac output, and oxygen consumption can be obtained via cardiac catheterization. The endomyocardial biopsy is useful in diagnosing acute graft rejection. However, because not all episodes of symptomatic rejection result in a positive biopsy result, this tool is not universally reliable. The appearance of infiltrating lymphocytes with myocellular damage on the biopsy is the hallmark of cell-mediated graft rejection and is helpful if present.

### Treatment of Graft Rejection

The goal of graft rejection treatment is to reverse the immunologic inflammatory cascade. High-dose corticosteroids are the first line of treatment. Frequently additional therapy with antithymocyte biologic preparations such as antithymocyte globulin (a rabbit-based polyclonal antibody) is needed to reverse rejection. Most rejection episodes can be treated effectively if diagnosed promptly. Usually graft function returns to its baseline state, although severe rejection episodes can result in chronic graft failure, graft loss, and patient death even with optimal therapy. Antibody mediated rejection is another form of acute rejection that is treated in a similar fashion as T-cell mediated rejection, but the addition of plasmapheresis and IVIG to the treatment regimen may improve outcomes. The diagnosis of antibody mediated rejection varies across centers, but can be a combination of clinical findings consistent with rejection in the absence of evidence of cell-mediated rejection, evidence of complement deposition on endomyocardial biopsy and new or increasing antibody production (typically anti-human lymphocyte antigen [HLA] antibodies) in the circulation.

### Course & Prognosis

The quality of life of pediatric heart transplant recipients is usually quite good. The risk of infection is low after the immediate post-transplant period in spite of chronic immunosuppression. Cytomegalovirus is the most common pathogen responsible for infection-related morbidity and mortality in heart transplant recipients. Most children tolerate environmental pathogens well. Nonadherence with lifetime immunosuppression is of great concern especially in adolescent patients. Several recent studies have identified nonadherence as the leading cause of late death. Post-transplant lymphoproliferative disorder, a syndrome related to Epstein-Barr virus infection, can result in a Burkitt-like lymphoma that usually responds to a reduction in immunosuppression, but occasionally must be treated with chemotherapy and can be fatal. The overwhelming majority of children are not physically limited and do not require restrictions related to the cardiovascular system.

The greatest long-term concern after heart transplantation is related to cardiac allograft vasculopathy (transplant coronary artery disease). Cardiac allograft vasculopathy results from intimal proliferation within the lumen of the coronary arteries that can ultimately result in complete luminal occlusion. These lesions are diffuse and often involve distal vessels and thus are usually not amenable to bypass grafting, angioplasty, or stent placement. The etiology of these lesions has an immune basis, but the specifics are not known making targeted therapy challenging. Overall, despite the concerns of immunosuppression, the risk of late rejection, and coronary disease, the majority of pediatric patients enjoy a good quality of life with survival rates that are improving. Currently, 10-year survival is around 60% overall for pediatric recipients. Newer, more specific, and more effective immunosuppressive agents are currently...
being tried in clinical studies or are being evaluated in preclinical studies, making the future promising for children after cardiac transplantation.

### QUALITY IMPROVEMENT FOR PEDIATRIC HEART TRANSPLANTATION

The Pediatric Heart Transplant Study (PHTS) group is a consortium of over 40 pediatric heart transplant centers in North America and Europe that maintains an event-driven database that is used to support research aimed at improving treatment options and outcomes for children in need of a heart transplant or who have had a transplant. This group was established in 1993 and has published over 56 manuscripts in peer-reviewed journals. Each participating center receives an annual report that details center-specific outcomes compared to the collaborative group as a whole. This report is utilized for internal quality assurance purposes and as a performance benchmark.

Canter CE et al: Indications for heart transplantation in pediatric heart disease: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young; the Councils on Clinical Cardiology, Cardiovascular Nursing, and Cardiovascular Surgery and Anesthesia; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2007 Feb 6;115(5):658–676 [PMID: 17261651].


### PRIMARY PULMONARY HYPERTENSION

#### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Often subtle with symptoms of dyspnea, fatigue, chest pain, and syncope.
- Loud pulmonary component of S₂; ECG with RVH.
- Implies exclusion of secondary causes of pulmonary hypertension.
- Rare, progressive, and often fatal disease without treatment.

#### General Considerations

Unexplained or primary pulmonary hypertension (PPH) in children is a rare disease with an estimated overall incidence of 1–2 persons per million worldwide. Pulmonary hypertension is defined as a mean pulmonary pressure greater than 25 mm Hg at rest or greater than 30 mm Hg during exercise. PPH is a diagnosis made after exclusion of all other causes of pulmonary hypertension. Secondary pulmonary hypertension is most commonly associated with congenital heart disease, pulmonary parenchymal disease, causes of chronic hypoxia (upper airway obstruction), thrombosis, liver disease, hemoglobinopathies, and collagen vascular disease. PPH is difficult to diagnose in the early stages because of its subtle manifestations. Most patients with PPH are young adult women, although the gender incidence is equal in children. Although the outcome for pediatric PPH is improving due to the advent of new therapies, prognosis remains guarded with only 72% survival at 5 years. Familial PPH occurs in 6%–12% of affected individuals. When a clear familial association is known, the disease shows evidence of genetic anticipation, presenting at younger ages in subsequent generations.

#### Clinical Findings

##### A. Symptoms and Signs

The clinical picture varies with the severity of pulmonary hypertension, and usually early symptoms are subtle, delaying the diagnosis. Initial symptoms may be dyspnea, palpitations, or chest pain, often brought on by strenuous exercise or competitive sports. Syncope may be the first symptom, which usually implies severe disease. As the disease progresses, patients have signs of low cardiac output and right heart failure. Right heart failure may be manifested by hepatomegaly, peripheral edema, and an S₃ gallop on examination. Murmurs of pulmonary regurgitation and tricuspid regurgitation may be present, and the pulmonary component of S₂ is usually pronounced.

##### B. Imaging

The chest radiograph most often reveals a prominent main pulmonary artery, and the RV may be enlarged. The peripheral pulmonary vascular markings may be normal or diminished. However, in 6% of patients with confirmed PPH, the chest radiograph is normal.

##### C. Electrocardiography

The ECG usually shows RVH with an upright T wave in V₁ (when it should be negative in young children) or a qR complex in lead V₁ or V₃R. Also present may be evidence of right axis deviation and right atrial enlargement.

##### D. Echocardiography

The echocardiogram is an essential tool for excluding congenital heart disease as a cause of pulmonary hypertension.
It frequently shows RVH and dilation. In the absence of other structural disease, any tricuspid and PI jets can be used to estimate pulmonary artery systolic and diastolic pressures, respectively. Other echocardiographic modalities such as myocardial performance index and input vascular impedance are in the early stages of use in evaluation of pulmonary hypertension.

E. Cardiac Catheterization and Angiocardiography

Cardiac catheterization is the best method for determining the severity of disease. As an invasive test, it carries with it associated risks and should be performed with caution. The procedure is performed to rule out cardiac (eg, restrictive cardiomyopathy) or vascular (eg, pulmonary vein stenosis) causes of pulmonary hypertension, determine the severity of disease, and define treatment strategies. The reactivity of the pulmonary vascular bed to short-acting vasodilator agents (oxygen, nitric oxide, or prostacyclin) can be assessed and used to determine treatment options. Angiography may show a decrease in the number of small pulmonary arteries with tortuous vessels.

F. Other Evaluation Modalities

Cardiac MRI is used in some patients to evaluate right ventricular function, pulmonary artery anatomy, and hemodynamics, as well as thromboembolic phenomena. Cardiopulmonary exercise testing using cycle ergometry correlates with disease severity. More simply, a 6-minute walk test, in which distance walked and perceived level of exertion are measured, has a strong independent association with mortality in late disease.

Treatment

The goal of therapy is to reduce pulmonary artery pressure, increase cardiac output, and improve quality of life. Cardiac catheterization data are used to determine the proper treatment. Patients responsive to pulmonary vasodilators are given calcium channel blockers such as nifedipine or diltiazem. Patients unresponsive to vasodilators initially receive one of three classes of drugs: prostanoids (such as epoprostenol), endothelin receptor antagonists (such as bosentan), or phosphodiesterase-5 inhibitors (such as tadalafil). All of these agents have distinct mechanisms of action that can reduce pulmonary vascular resistance. Warfarin is commonly used for anticoagulation to prevent thromboembolic events, usually with a goal to maintain the INR between 1.5 and 2.0.

Atrial septostomy is indicated in some patients with refractory pulmonary hypertension and symptoms. Cardiac output falls as pulmonary vascular resistance rises, so an interatrial shunt can preserve left heart output, albeit with deoxygenated blood. Lung transplantation should be considered in patients with intractable pulmonary hypertension and in those with associated anatomic lesions that contribute to high pulmonary arterial pressure, like pulmonary vein stenosis. Heart-lung transplant procedures appear to have survival benefits over isolated lung transplantation in patients with pulmonary hypertension. Recurrence of pulmonary hypertension is rare after heart-lung transplant.

Disorders of Rate & Rhythm

Cardiac rhythm abnormalities can occur in two different patient populations: (1) healthy children with structurally normal hearts who have an intrinsic abnormality of the electrical conduction system; and (2) children with congenital heart disease who are at risk for a cardiac rhythm abnormalities based on the underlying heart defect itself. In the latter population, changes in cardiac muscle cells associated with a chronic state of altered cardiac hemodynamics and any operative procedures with surgical suture lines/scar place the patients at higher risk for certain types of arrhythmias.

The evaluation and treatment of cardiac rhythm disorders have advanced significantly over the last several decades. Arguably, the most significant advancements in the last few years have continued in the area of the genetic basis of rhythm disorders such as long QT syndrome which will be discussed at the end of the chapter. Treatment for cardiac rhythm abnormalities includes clinical monitoring with no intervention, antiarrhythmic medications, invasive electrophysiology study and ablation procedures, pacemakers, and internal cardioverter/defibrillators.

Disorders of the Sinus Node

Sinus Arrhythmia

Phasic variation in the heart rate (sinus arrhythmia) is normal. Typically, the sinus rate varies with the respiratory cycle (heart rate increases with inspiration and decreases with expiration), whereas P-QRS-T intervals remain stable. Sinus arrhythmia may occur in association with respiratory distress or increased intracranial pressure, or it may be present in normal children. In isolation, it never requires treatment; however, it may be associated with sinus node dysfunction or autonomic nervous system dysfunction.
SINUS BRADYCARDIA

Sinus bradycardia is defined as a heart rate below the normal limit for age (neonates to 6 years, 60 beats/min; 7–11 years, 45 beats/min; > 12 years, 40 beats/min). Sinus bradycardia is often seen in athletic children. Causes of sinus bradycardia include hypoxia, central nervous system damage, eating disorders, and medication side effects. Symptomatic bradycardia (syncope, low cardiac output, or exercise intolerance) requires treatment (atropine, isoproterenol, or cardiac pacing).

SINUS TACHYCARDIA

The heart rate normally accelerates in response to stress such as exercise, anxiety, fever, hypovolemia, anemia, or HF. Although sinus tachycardia in the normal heart is well tolerated, symptomatic tachycardia with decreased cardiac output warrants evaluation for structural heart disease, cardiomyopathy or true tachyarrhythmias. The first evaluation should be made with a 12-lead ECG (not a one lead rhythm strip) to determine the precise mechanism of the rapid rate. Treatment may be indicated for correction of the underlying cause of sinus tachycardia (eg, transfusion for anemia or correction of hypovolemia or fever).

SINUS NODE DYSFUNCTION

Sinus node dysfunction is a clinical syndrome of inappropriate sinus nodal function and rate. The abnormality may be a true anatomic defect of the sinus node or its surrounding tissue, or it may be an abnormality of autonomic input. It is defined as one or more of the following: severe sinus bradycardia, marked sinus arrhythmia, sinus pause or arrest, chronotropic incompetence (inability of the heart rate to increase with activity or other demands), or combined bradyarrhythmias and tachyarrhythmias. It is usually associated with postoperative repair of congenital heart disease (most commonly the Mustard or Senning repair for complete TGA or the Fontan procedure), but it is also seen in normal hearts, in unoperated congenital heart disease, and in acquired heart diseases. Symptoms usually manifest between ages 2 and 17 years and consist of episodes of presyncope, syncope, palpitations, pallor, or exercise intolerance.

The evaluation of sinus node dysfunction may involve the following: baseline ECG, 24-hour ambulatory ECG monitoring, exercise stress test, and transient event monitoring. Treatment for sinus node dysfunction is indicated only in symptomatic patients. Bradyarrhythmias are treated with vagolytic (atropine) or adrenergic (aminophylline) agents or permanent cardiac pacemakers.

PREMATURE BEATS

Atrial Premature Beats

Atrial premature beats are triggered by an ectopic focus in the atrium. They are one of the most common premature beats occurring in pediatric patients, particularly during the fetal and newborn periods. The premature beat may be conducted to the ventricle and therefore followed by a QRS complex or it may be nonconducted, as the beat has occurred so early that the AV node is still refractory (Figure 20–4). A brief pause usually occurs until the next normal sinus beat occurs. As an isolated finding, atrial premature beats are benign and require no treatment.

Junctional Premature Beats

Junctional premature beats arise in the atrioventricular node or the bundle of His. They induce a normal QRS complex with no preceding P wave. Junctional premature beats are usually benign and require no specific therapy.

Ventricular Premature Beats

Ventricular premature beats are sometimes referred to as premature ventricular contractions (PVC) or as ventricular ectopy. They are relatively common, occurring in 1%–2% of patients with normal hearts. They are characterized by an early beat with a wide QRS complex, without a preceding P wave, and with a full compensatory pause following this early beat (Figure 20–5).

Ventricular premature beats originating from a single ectopic focus all have the same configuration; those of multifocal origin show varying configurations. The consecutive occurrence of two ventricular premature beats is referred to as a ventricular couplet and of three or more as ventricular tachycardia. Most ventricular premature beats in otherwise normal patients are usually benign. However, patients with frequent PVCs are usually evaluated further with tests such as a 24-hour ambulatory ECG or with exercise testing to rule out concerning arrhythmias. An echocardiogram may be performed to evaluate ventricular function. The significance of ventricular premature beats can be confirmed by having the patient exercise. As the heart rate increases, benign ventricular premature beats usually disappear. If exercise results in an increase or coupling of contractions, underlying disease may be present. Multifocal ventricular premature beats are always abnormal and may be more dangerous. They may be associated with drug overdose (tricyclic antidepressants or digoxin toxicity), electrolyte imbalance, myocarditis, or hypoxia. Treatment is directed at correcting the underlying disorder.

SUPRAVENTRICULAR TACHYCARDIA

Supraventricular tachycardia (SVT) is a term used to describe any rapid rhythm originating from the atrium, the atrioventricular node, or an accessory pathway. These tachycardias are rapid, narrow complex tachycardias. The mode of presentation depends on the heart rate, the presence of underlying cardiac structural or functional abnormalities, coexisting illness, and patient age. An otherwise healthy
child with SVT may complain of intermittent periods of rapid heartbeat. An infant with SVT may have poor feeding and increased fatigue (manifesting as less awake time). Incessant tachycardia, even if fairly slow (120–150 beats/min), may cause myocardial dysfunction and HF if left untreated. In children with preexisting HF or an underlying systemic disease such as anemia or sepsis, SVT may result in decreased heart function and further signs of hemodynamic instability much more rapidly than in a healthy child.

The mechanisms of tachycardia are generally divided into reentrant and automatic mechanisms and can be described by the location of tachycardia origination (Table 20–18).

Reentrant tachycardias represent approximately 80% of pediatric arrhythmias. Reentrant tachycardias have the following characteristics: they initiate abruptly, they have a fixed rate, they have little variation with fever or internal catecholamines, and they terminate abruptly. They can be terminated to sinus rhythm with maneuvers such as vagal maneuvers, administration of adenosine, pacing maneuvers, or DC cardioversion. (For vagal maneuvers or adenosine, the atroventricular node must be part of the reentrant circuit.)

Reentrant tachycardia mechanisms involve two connections where electrical conduction travels down one of the pathways and then backs up the other, creating a sustained repetitive circular loop. The circuit can be confined to the atrium (atrial flutter in a normal heart or intra-atrial reentrant tachycardia in a patient with congenital heart disease) (Figure 20–6). It may be confined within the AV node (AV nodal reentrant tachycardia), or it may encompass an accessory connection between atria and ventricle (accessory pathway–mediated tachycardia). If, during tachycardia, the electrical impulse travels antegrade (from atria to ventricles) through the AV node and retrograde (from ventricle to atria) back up the accessory pathway, orthodromic reciprocating tachycardia is present. If, instead, the impulse travels antegrade through the accessory pathway and retrograde up through the AV node, antidromic reciprocating tachycardia is present. This latter tachycardia would present as a wide complex tachycardia. Wolff-Parkinson-White (WPW) syndrome is a subclass of reentrant tachycardia in which, during sinus rhythm, the impulse travels antegrade down the accessory connection, bypassing the AV node and...
creating ventricular preexcitation (early eccentric activation of the ventricle with a short PR interval and slurred upstroke of the QRS, a delta wave) (Figure 20–7). Most patients with WPW have otherwise structurally normal hearts. However, WPW has been noted to occur with increased frequency in association with the following congenital cardiac lesions: tricuspid atresia, Ebstein anomaly of the tricuspid valve, HCM, and ccTGA. Different than other causes of tachycardias described above where the arrhythmia is not life-threatening, there have been rare cases of sudden collapse from WPW syndrome. The mechanism of this sudden event is the development of atrial fibrillation, conducting down a rapid accessory pathway to the ventricle leading to ventricular fibrillation and sudden death. For this reason, most centers recommend that even asymptomatic patients undergo an invasive procedure to assess the conduction properties of the WPW accessory pathway (described under treatment for tachyarrhythmias).

Improved surgical survival for patients with congenital heart disease has created a new, increasingly prevalent, chronic arrhythmia which is similar to atrial flutter in a normal heart structure. These arrhythmias have been referred to by many names: intra-atrial reentrant tachycardia, incisional tachycardia, macroreentry, or postoperative atrial flutter. In this tachycardia, electrically isolated corridors of atrial myocardium (eg, the tricuspid valve–inferior vena cava isthmus, or the region between an atrial incision and the crista terminalis) act as pathways for sustained reentrant circuits of electrical activity. These tachycardias are chronic, medically refractory, and clinically incapacitating.

The automatic tachycardias represent approximately 20% of childhood arrhythmias. The characteristics of these types of arrhythmias include gradual onset, rate variability, variations in rate with fever or increasing internal catecholamines, and gradual offset. Maneuvers such as vagal maneuvers, adenosine, and attempt pacing can alter the rhythm temporarily but they do not result in termination of the rhythm to sinus rhythm as would be seen in the reentrant tachycardias. Automatic tachycardias can be episodic or incessant. They are usually under autonomic influence.

---

**Table 20–18.** Mechanism of supraventricular tachycardia.

<table>
<thead>
<tr>
<th>Site of Origination</th>
<th>Automatic Mechanisms</th>
<th>Reentrant Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinus node</td>
<td>Sinus tachycardia</td>
<td>Sinoatrial node reentry</td>
</tr>
<tr>
<td>Atrium</td>
<td>Ectopic atrial tachycardia</td>
<td>Atrial flutter Intra-atrial reentrant tachycardia</td>
</tr>
<tr>
<td></td>
<td>Multifocal atrial tachycardia</td>
<td>Atrial fibrillation</td>
</tr>
<tr>
<td>Atrioventricular node</td>
<td>Junctional ectopic tachycardia</td>
<td>Atrioventricular nodal reentrant tachycardia (AVNRT)</td>
</tr>
<tr>
<td>Accessory pathways</td>
<td>Concealed accessory pathways Wolff-Parkinson-White (WPW) syndrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent form of junctional reciprocating tachycardia (PJRT) Mahaim fiber tachycardia</td>
<td></td>
</tr>
</tbody>
</table>


▲ Figure 20–5. Lead V5 rhythm strip with unifocal premature ventricular contractions in a bigeminy pattern. The arrow shows a ventricular couplet.
When they are incessant, they are usually associated with HF and a clinical picture of DCM. Automatic tachycardias are created when a focus of cardiac tissue develops an abnormally fast spontaneous rate of depolarization. For ectopic atrial tachycardia, the ECG demonstrates a normal QRS complex preceded by an abnormal P wave (Figure 20–8). Junctional ectopic tachycardia does not have a P wave preceding the QRS waves and may be associated with AV dissociation or 1:1 retrograde conduction.


**Clinical Findings**

**A. Symptoms and Signs**

Presentation varies with age. Infants tend to turn pale and mottled with onset of tachycardia and may become irritable. With long duration of tachycardia, symptoms of HF develop. Older children complain of dizziness, palpitations, fatigue, and chest pain. Heart rates range from 240–300 beats/min in the younger child to 150–180 beats/min in the teenager. HF is less common in children than in infants. Tachycardia may be associated with either congenital heart defects or acquired conditions such as cardiomyopathies and myocarditis.

**B. Imaging**

Chest radiographs are normal during the early course of tachycardia and therefore are usually not obtained. If HF is present, the heart is enlarged and pulmonary venous congestion is evident.

**C. Electrocardiography**

ECG is the most important tool in the diagnosis of SVT and to define the precise tachycardia mechanism. Findings include a heart rate that is rapid and out of proportion to the patient’s physical status (eg, a rate of 140 beats/min with an abnormal P wave while quiet and asleep). For reentrant mechanisms, the rhythm would be extremely regular with little variability. For automatic mechanisms, the rhythm would be irregular with a gradual increasing and decreasing of
the rate. The QRS complex is usually the same as during normal sinus rhythm. However, the QRS complex is occasionally widened (SVT with aberrant ventricular conduction), in which case the condition may be difficult to differentiate from ventricular tachycardia. The presence of P waves and their association with the QRS are important in determining tachycardia mechanism. With automatic tachycardias, there is often a 1:1 or 2:1 A:V relationship with P waves preceding the QRS. With reentrant tachycardias, such as accessory pathway–mediated tachycardias, a small retrograde P wave can often be seen just after the QRS. With atrioventricular nodal reentrant tachycardia, P waves cannot be identified as they are occurring at the same time as the QRS.

### Treatment

#### A. Acute Treatment

During the initial episodes of SVT, patients require close monitoring. Correction of acidosis and electrolyte abnormalities is also indicated. The following acute treatments are effective in terminating tachycardia only for patients with reentrant SVT. Acute treatment for automatic SVT is aimed at rate control, usually with a β-blocker.

1. **Vagal maneuvers**—The “diving reflex” produced by placing an ice bag on the nasal bridge for 20 seconds (for infants) or by immersing the face in ice water (for children or adolescents) will increase parasympathetic tone and terminate some tachycardias. The Valsalva maneuver, which can be performed by older compliant children, may also terminate reentrant tachycardias.

2. **Adenosine**—Adenosine transiently blocks AV conduction and terminates tachycardias that incorporate the AV node or may aid in the diagnosis of arrhythmias confined to the atrium by causing a pause in ventricular conduction, so one can identify the presence of multiple P waves. The dose is 100–250 mcg/kg by rapid intravenous bolus. It is antagonized by aminophylline and should be used with caution in patients with sinus node dysfunction or asthma.

3. **Transesophageal atrial pacing**—Atrial overdrive pacing and termination can be performed from a bipolar electrode-tipped catheter positioned in the esophagus adjacent to the left atrium. Overdrive pacing at rates approximately 30% faster than the tachycardia rate will interrupt a reentrant tachycardia circuit and restore sinus rhythm.

4. **Direct current cardioversion**—Direct current cardioversion (0.5–2 synchronized J/kg) should be used immediately when a patient presents in cardiovascular collapse. This will convert a reentrant mechanism to sinus. Automatic tachycardia will not respond to cardioversion.

#### B. Chronic Treatment

Once the patient has been diagnosed with SVT and the mechanism has been evaluated, then long-term treatment options can be considered. Options include monitoring clinically for tachycardia recurrences, medical management.
with antiarrhythmic medications, or an invasive electrophysiology study and ablation procedure. In infancy and early childhood, antiarrhythmic medications are the mainstay of therapy. Medications such as digoxin and β-blockers are the first-line therapies. Other antiarrhythmic medications (eg, verapamil, flecainide, propafenone, sotalol, and amiodarone) have increased pharmacologic actions and are extremely effective. However, these medications also have serious side effects, including induction of arrhythmias and sudden death, and should be used only under the direction of a pediatric cardiologist.

Tachycardias, both automatic and reentrant, can be more definitively addressed with an invasive electrophysiology study and ablation procedure. This is a nonsurgical transvascular catheter technique that desiccates an arrhythmia focus or accessory pathway and permanently cures an arrhythmia. The ablation catheters can utilize either a heat source (radiofrequency) or a cool source (cryoablation). The latter has been reported to be safer around the normal conduction pathway and thus decreases the risk of inadvertent atrioventricular block. The success rate from an ablation procedure in a patient with a normal heart structure is > 90%, with a recurrence risk of < 10%. The procedure can be performed in infants or adults. In children younger than age 4 years, the risks of procedural complications or failed ablation are potentially higher, and the procedure should be reserved for those whose arrhythmias are refractory to medical management. The high success rate, low complication and low recurrence rates, in addition to the elimination of the need for chronic antiarrhythmic medications have made ablation procedures the primary treatment option in most pediatric cardiovascular centers. In patients with congenital heart disease, electrophysiology study and ablation procedures are also utilized to address arrhythmia substrates. The success rate of these procedures is lower than in patients with a normal heart structure, often reported in the 75%–80% range.

**Prognosis**

SVT in infants and children generally carries an excellent prognosis. It can be treated with medical management or with the potentially curative ablation procedures. There are, however, rare cases of incessant SVT leading to HF and there is reported sudden collapse from atrial fibrillation in the presence of WPW. All patients with complaints of rapid heartbeats or other symptoms where there is a concern for tachyarrhythmia should be referred for evaluation.


**VENTRICULAR TACHYCARDIA**

Ventricular tachycardia is uncommon in childhood (Figure 20–9). It is usually associated with underlying abnormalities of the myocardium (myocarditis, cardiomyopathy, myocardial tumors, or postoperative congenital heart disease) or toxicity (hypoxia, electrolyte imbalance, or drug toxicity). On occasion, it can be secondary to a primary electrical abnormality in an otherwise normal heart. Sustained ventricular tachycardia can be an unstable situation,
and, if left untreated, it could degenerate into ventricular fibrillation and sudden collapse.

Ventricular tachycardia must be differentiated from accelerated idioventricular rhythm. The latter is a sustained ventricular tachycardia occurring in neonates with normal hearts, with a ventricular tachycardia rate within 10% of the preceding sinus rate. This is a self-limiting arrhythmia that requires no treatment. Because of the consequences of sustained ventricular tachycardia, however, a symptomatic patient with a wide complex tachycardia should be considered to have ventricular tachycardia (not an accelerated idioventricular rhythm) until proven otherwise.

Acute termination of ventricular tachycardia involves restoration of the normal myocardium when possible (correction of electrolyte imbalance, drug toxicity, etc) and direct current cardioversion (1–4 J/kg), cardioversion with lidocaine (1 mg/kg), or with amiodarone (5 mg/kg load). Chronic suppression of ventricular arrhythmias with anti-arrhythmic drugs has many side effects (including proarrhythmia and death), and it must be initiated in the hospital under the direction of a pediatric cardiologist. If the etiology of the tachycardia is a primary electrical abnormality, then catheter ablation procedures can be offered in select patients as a potentially curative treatment option. Ablation for ventricular tachycardia in the pediatric population is much less commonly performed compared to ablation for SVT.


Vetter VL et al: Cardiovascular monitoring of children and adolescents with heart disease receiving medications for attention deficit/hyperactivity disorder [corrected]: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young Congenital Cardiac Defects Committee and the Council on Cardiovascular Nursing. Circulation 2008 May 6;117(18):2407–2423 [PMID: 18427125].

SUDDEN DEATH

Everyone in a family, school, and community are affected when an otherwise healthy child dies suddenly and unexpectedly. There are several cardiac causes of sudden death. Long QT syndrome and HCM are two of the most common cause of sudden death in young athletes. Other causes include dilated or restrictive cardiomyopathies, arrhythmogenic RV dysplasia, congenital structural anomalies of the coronary arteries, and primary arrhythmias such as catecholamine sensitive ventricular tachycardia or Brugada syndrome. Many of these causes are genetic and thus family members of the patient may also be unknowingly affected. Arrhythmias in patients with postoperative congenital heart disease are important causes of morbidity and mortality and may present as sudden death events.

Because of the genetic nature of some of the causes of sudden death, it is necessary to conduct a detailed family history looking for seizures, syncope, or early sudden death. Family members should be examined with an arrhythmia screen consisting of a physical examination, ECG, and echocardiography to detect arrhythmias or cardiomyopathies.


Long QT syndrome is a malignant disorder of cardiac conduction where cardiac repolarization is prolonged (QTc measurement on ECG) and this predisposes the patient to sudden episodes of syncope, seizures, or sudden death (5% per year if untreated). The mechanism is a pause-dependent initiation of torsades de pointes, a multifocal ventricular tachycardia. It can be congenital or acquired. Congenital long QT syndrome is inherited in an autosomal dominant (more common) or recessive pattern or it may occur spontaneously (less likely). The recessive inheritance pattern is associated with congenital deafness and the Jervell and Lange-Nielsen syndrome. Congenital long QT syndrome is caused by a defect in one of several genes that code for ion channels in cardiac myocytes. As many as 10 genes have been identified and these defects explain 75% of the patient population with symptoms and signs consistent with long QT. The diagnosis of long QT syndrome is suspected in a patient or a family with a history of sudden syncope, seizures, documented dysrrhythmia, or cardiac arrest. Evaluation includes an ECG which shows a long QTc measurement, 24-hour ambulatory ECG, and possibly an exercise test. There is a commercially available genetic test for the primary genes which cause long QT syndrome. This test is most helpful in determining who in a family has long QT syndrome. Unfortunately, this test cannot completely rule it out as there continues to be a 25% false negative rate.

The mainstay of treatment for long QT syndrome has been exercise restriction, treatment with β-blockade, and possibly the placement of an internal cardioverter/defibrillator. Within the next several years, more gene-specific therapies are anticipated to be developed.

Long QT syndrome can also be acquired, resulting from altered ventricular repolarization secondary to myocardial toxins, ischemia, or inflammation. This condition also predisposes a patient to ventricular arrhythmias. Numerous medications can also cause QT prolongation.
DISORDERS OF ATRIOVENTRICULAR CONDUCTION

General Considerations

The atrioventricular node is the electrical connection between the atrium and the ventricles. Atrioventricular blocks involve a slowing or disruption of this connection and are described according to the degree of this slowing or disruption. The term "heart block" has been utilized, although "atrioventricular block" is more precise.

First-Degree Atrioventricular Block

First-degree atrioventricular block is an ECG diagnosis of prolongation of the PR interval. The block does not, in itself, cause problems. It may be associated with structural congenital heart defects, namely AV septal defects and ccTGA, and with diseases such as rheumatic carditis. The PR interval is prolonged in patients receiving digoxin therapy.

Second-Degree Atrioventricular Block

Mobitz type I (Wenckebach) atrioventricular block is recognized by progressive prolongation of the PR interval until there is no QRS following a P wave (Figure 20–10). Mobitz type I block occurs in normal hearts at rest and is usually benign. In Mobitz type II block, there is no progressive lengthening of the PR interval before the dropped beat (Figure 20–11). Mobitz type II block is frequently associated with organic heart disease, and a complete evaluation is necessary.

Complete Atrioventricular Block

In complete atrioventricular block, the atria and ventricles beat independently. Ventricular rates can range from 40 to 80 beats/min, whereas atrial rates are faster (Figure 20–12). The most common form of complete atrioventricular block is congenital complete atrioventricular block which occurs in a fetus or infant with an otherwise normal heart. There is a very high association with maternal systemic lupus erythematosus antibodies and therefore it is recommended to screen the mother of an affected infant even if the mother has no symptoms of collagen vascular disease. Congenital complete atrioventricular block is also associated with some forms of congenital heart disease (congenitally corrected transposition of the great vessels and AV septal defect). Acquired complete atrioventricular block may be secondary to acute myocarditis, drug toxicity, electrolyte imbalance, hypoxia, and cardiac surgery.

Clinical Findings

The primary finding in infants and children with complete atrioventricular block is a significantly low heart rate for age. The diagnosis is often made prenatally when fetal bradycardia is documented. An ultrasound is then conducted as well as a fetal echocardiogram of the heart. With the fetal echocardiogram, atrial and ventricular contractions can be distinguished and the atrial rate is documented as being higher than the ventricular rate with no relationship to each other. If the heart rates are sufficiently low, then there will be low cardiac output, decreased cardiac function, and the

Figure 20–10. Lead I rhythm strip with Mobitz type I (Wenckebach) second-degree heart block. There is progressive lengthening of the PR interval prior to the nonconducted P wave (arrows).
development of hydrops fetalis. Postnatal adaptation largely depends on the heart rate; infants with heart rates less than 55 beats/min are at significantly greater risk for low cardiac output, HF, and death. Wide QRS complexes and a rapid atrial rate are also poor prognostic signs. Most patients have an innocent flow murmur from increased stroke volume. In symptomatic patients, the heart can be quite enlarged, and pulmonary edema may be present.

Complete atrioventricular block can also occur in older patients. Patients may be asymptomatic or may present with presyncope, syncope, or fatigue. Complete cardiac evaluation, including ECG, echocardiography, and Holter monitoring, is necessary to assess the patient for ventricular dysfunction and to relate any symptoms to concurrent arrhythmias.

**Treatment**

When diagnosis of complete atrioventricular block is made in a fetus, the treatment depends on gestational age, ventricular rate, and the presence or absence of hydrops. Some centers have advocated the administration of steroids, intravenous immune globulin (IVIG), and/or β-adrenergic stimulation.
treatment of the mother in some instances (fetuses that have associated heart failure). Emergent delivery is sometimes warranted. Postnatal treatment for neonates or older patients who present with significant symptoms and require immediate intervention includes temporary support by the infusions of isoproterenol, temporary transvenous pacing wires, or by temporary transcutaneous pacemakers if needed. The relationship of complete congenital atrioventricular block to auto-antibody production and cardiomyopathy is the basis for the consideration of immune modulation with steroids and IVIG in neonates in addition to their mothers. Long-term treatment involves the placement of a permanent pacemaker.


SYNCOPE (FAINTING)

Syncope is a sudden transient loss of consciousness that resolves spontaneously. The common form of syncope (simple fainting) occurs in 15% of children and is a disorder of control of heart rate and blood pressure by the autonomic nervous system that causes hypotension or bradycardia. It is often associated with rapid rising and postural hypotension, prolonged standing, or hypovolemia. Patients exhibit vagal symptoms such as pallor, nausea, or diaphoresis. Syncope, also known as autonomic dysfunction, can be evaluated with head-up tilt table testing. The patient is placed supine on a tilt table, and then—under constant heart rate and blood pressure monitoring—is tilted to the upright position. If symptoms develop, they can be classified as vasodepressor (hypotension), cardioinhibitory (bradycardia), or mixed.

Syncope is usually self-limited (can recur over approximately 6 months to 2 years) and can be controlled with dietary salt and volume loading to prevent hypovolemia. In refractory cases, medications to manipulate the autonomic nervous system have been useful. Fludrocortisone (0.1 mg/kg/d) is a mineralocorticoid that causes renal salt resorption and thus increases intravascular volume. Although β-blockers have been used for treatment of syncope, there is a paucity of data regarding their effectiveness. Vagolytic agents (disopyramide, 2.5 mg/kg four times daily) help control hyper-vagotonia, and the selective serotonin reuptake inhibitors have also been effective in alleviating symptoms. Syncope that occurs during exercise or stress or is associated with a positive family history is a warning sign that a serious underlying dysrhythmia may be present, calling for further investigation.
Gastrointestinal Tract

Edward Hoffenberg, MD
David Brumbaugh, MD
Glenn T. Furuta, MD
Gregg Kobak, MD
Edwin Liu, MD
Jason Soden, MD
Robert Kramer, MD

DISORDERS OF THE ESOPHAGUS

GASTROESOPHAGEAL REFLUX & GERD

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Uncomplicated gastroesophageal reflux (GER) refers to recurrent postprandial spitting and vomiting in healthy infants that resolves spontaneously.
- Gastroesophageal reflux disease (GERD) is present when reflux causes secondary symptoms or complications.
- Esophageal manifestations of GERD include symptoms (heartburn, regurgitation) and mucosal complications (esophagitis, stricture, Barrett esophagus).
- GERD has been implicated in pathogenesis of many extraesophageal symptoms, including upper and lower airway findings. In most settings, objective confirmation of extraesophageal reflux complications is challenging.
- Upper gastrointestinal (GI) radiograph is useful to rule out other anatomical GI diseases, but it should not be considered an evaluation for reflux or reflux disease.

Clinical Findings

A. Infants With Gastroesophageal Reflux

Gastroesophageal (GE) reflux is common in young infants and is a physiological event. Frequent postprandial regurgitation, ranging from effortless to forceful, is the most common infant symptom. Infant GER is usually benign, and it is expected to resolve by 12–18 months of life.

Reflux of gastric contents into the esophagus occurs during spontaneous relaxations of the lower esophageal sphincter that are unaccompanied by swallowing. Low pressures in the lower esophageal sphincter or developmental immaturity of the sphincter are not causes of GER in infants. Factors promoting reflux in infants include small stomach capacity, frequent large-volume feedings, short esophageal length, supine positioning, and slow swallowing response to the flow of refluxed material up the esophagus. Infants’ individual responses to the stimulus of reflux, particularly the maturity of their self-settling skills, are important factors determining the severity of reflux-related symptoms.

An important point in evaluating infants with GER is to determine whether the vomited material contains bile. Bile-stained emesis in an infant requires immediate evaluation as it may be a symptom of intestinal obstruction (malrotation with volvulus, intussusception).

Other symptoms may be associated with GERD in infants, although these situations are far less common than benign, physiologic GER. These clinical presentations include failure to thrive, food refusal, pain behavior, GI bleeding, upper or lower airway-associated respiratory symptoms, or Sandifer syndrome.

B. Older Children With Reflux

GERD is diagnosed when reflux causes persistent symptoms with or without inflammation of the esophagus. Older children with GERD complain of adult-type symptoms of regurgitation into the mouth, heartburn, and dysphagia. Esophagitis can occur as a complication of GERD and requires endoscopy with biopsy for diagnostic confirmation. Children with asthma, cystic fibrosis, developmental handicaps, hiatal hernia, and repaired tracheoesophageal fistula are at increased risk of GERD and esophagitis.

C. Extraesophageal Manifestations of Reflux Disease

GERD is implicated in the pathogenesis of several disorders unrelated to inherent esophageal mucosal injury. In infants, GERD has been linked to the occurrence of apnea or apparent...
life-threatening events (ALTEs), although the majority of pathologic cases are not reflux associated. Upper airway symptoms (hoarseness, sinusitis, laryngeal erythema, and edema), lower airway symptoms (asthma, recurrent pneumonia, recurrent cough), dental erosions, and Sandifer syndrome have all been linked to GERD, although proof of cause-and-effect relationship in many clinical circumstances can be challenging.

D. Diagnostic Studies

History and physical examination alone should help differentiate infants with benign, recurrent vomiting (physiologic GER) from those who have red flags for GERD or other underlying primary conditions that may present with recurrent emesis at this age. Warning signs that warrant further investigation in the infant with recurrent vomiting include bilious emesis, GI bleeding, onset of vomiting after 6 months, failure to thrive, diarrhea, fever, hepatosplenomegaly, abdominal tenderness or distension, or neurologic changes. Infants with suspected physiologic GER do not require further evaluations unless there is clinical concern for complicated GERD or nonreflux diagnoses.

An upper GI series should be considered when anatomic etiologies of recurrent vomiting are considered, but should not be considered to be a test for GERD.

In older children with heartburn or frequent regurgitation, a trial of acid-suppressant therapy may be both diagnostic and therapeutic. If a child has symptoms requiring ongoing acid suppressant therapy, or if symptoms fail to improve with empiric therapy, consider referral to a pediatric gastroenterologist to assist in evaluation for complicated GERD, or nonreflux diagnoses including esophagitis (EoE).

Esophagoscopy and mucosal biopsies are useful to evaluate for mucosal injury secondary to GERD (Barrett esophagus, stricture, erosive esophagitis), or to evaluate for nonreflux diagnoses that present with reflux-like symptoms, including EoE. Endoscopic evaluation is not requisite for the evaluation of all infants and children with suspected GERD.

Intraluminal esophageal pH monitoring (pH probe) and combined multiple intraluminal impedance and pH monitoring (pH impedance probe) are indicated to quantify reflux, and to evaluate for objective evidence of symptom associations with regards to atypical reflux presentations. pH probe studies quantify esophageal acid exposure, and pH impedance studies also add detection of bolus fluid transit, including both acidic and nonacidic reflux. pH impedance studies in particular may have higher diagnostic yield in evaluating for respiratory or atypical complications of reflux disease, or in evaluating for breakthrough reflux symptoms while a patient is on acid-suppressant therapy.

▶ Treatment & Prognosis

Reflux resolves spontaneously in 85% of affected infants by 12 months of age, coincident with assumption of erect posture and initiation of solid feedings. Until then, regurgitation volume may be reduced by offering small feedings at frequent intervals and by thickening feedings with rice cereal (2–3 tsp/oz of formula). Prethickened "antireflux" formulas are available. In infants with unexplained crying/fussy behavior, there is no evidence to support empiric use of acid suppression.

Acid suppression may be used to treat suspected esophageal or extraesophageal complications of acid reflux in infants and older children. Therapeutic options include histamine-2 (H₂)-receptor antagonists or proton pump inhibitors (PPIs). PPI therapy has been shown to significantly heal both esophageal mucosal injury and symptoms from GERD within an 8- to 12-week period. There is no sufficient evidence to support the routine use of prokinetic agents for treatment of pediatric GERD.

Spontaneous resolution is less likely in older children with GERD. In addition, children with underlying neurodevelopmental disorders are at risk for persistent GERD. Episodic symptoms may be controlled with intermittent use of acid blockers. Patients with persistent symptoms may require chronic acid suppression. Complications of reflux esophagitis or chronic GERD include feeding dysfunction, esophageal stricture, and anemia (see Figure 21-1). Barrett esophagus, a precancerous condition, is uncommon in children, but it may occur in patients with an underlying primary diagnosis that offers high risk for GERD.

Antireflux surgery (Nissen fundoplication) may be considered in a child with GERD who (1) fails medical therapy (2) is dependent on persistent, aggressive medical therapy, (3) is nonadherent to medical therapy, and (4) has persistent, severe respiratory complications of GERD or

▶ Figure 21-1. Esophagitis associated with gastroesophageal reflux disease. Mucosa is erythematous with loss of vascular pattern.
other life-threatening complications of GERD. Potential complications after antireflux surgery include dumping syndrome, gas bloat syndrome, persistent retching/gagging, or wrap failure.


EOSINOPHILIC ESOPHAGITIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

► Feeding dysfunction, dysphagia, esophageal food impaction, and heartburn.
► Must rule out other causes for esophageal eosinophilia before assigning diagnosis of eosinophilic esophagitis (EoE).
► Esophagoscopy may reveal white eosinophilic exudates, ringlike esophageal folds, and esophageal stricture. Esophageal mucosal biopsy shows dense eosinophilic infiltrate of the epithelium.
► Elimination of food allergens or swallowed topical steroids are effective treatments for EoE.

► Clinical Findings

A. Symptoms and Signs

This recently recognized entity occurs in all ages and most frequently affects boys. Common initial presentations in young children include feeding dysfunction and vague nonspecific symptoms of GERD such as abdominal pain, vomiting, and regurgitation. If a history of careful and lengthy chewing, long mealtimes, washing food down with liquid or avoiding highly textured foods is encountered, one may suspect EoE. In adolescent’s symptoms of solid food dysphagia, heartburn and acute and recurrent food impactions predominate. If a child’s symptoms are unresponsive to medical and/or surgical management of GERD, EoE should be strongly considered as a diagnostic possibility. A family or personal history of atopy, asthma, dysphagia, or food impaction is not uncommon.

► Differential Diagnosis

The most common differential conditions are peptic esophagitis, congenital esophageal stricture, and Candidal esophagitis. EoE may be part of a generalized eosinophilic gastroenteropathy, a very rare, steroid-responsive entity. Patients with eosinophilic gastroenteropathy can also present with gastric outlet obstruction or intestinal caused by large local infiltrates of eosinophils in the antrum, duodenum, and cecum.

► Diagnosis

The diagnosis of EoE is based on clinical and histopathological features. Symptoms referable to esophageal dysfunction must be seen in association with esophageal eosinophilia.
and a normal gastric and duodenal mucosa. Other causes for esophageal eosinophilia, in particular, GERD, must be ruled out.

**Treatment**

Dietary exclusion of offending allergens (elemental diet, removal of allergenic foods) is effective treatment. Such diets are useful in young children, but adherence in older children can be difficult. Topical corticosteroids also offer an effective treatment choice. Steroids are puffed in the mouth and swallowed from a metered dose pulmonary inhaler; this method of administration is completely opposite of how topical steroids are administered for the treatment of asthma. Two puffs of fluticasone from an inhaler twice daily using an age-appropriate metered dose is a common recommendation. Patients should not rinse their mouth or eat for 30 minutes to maximize the effectiveness. Systemic corticosteroids benefit most patients with more acute or severe symptoms. Esophageal dilation may be required to treat strictures. The association of EoE and esophageal malignancy has not been identified. Parent and family support is available at American Partnership for Eosinophilic Disorders APFED.org.


**ACHALASIA OF THE ESOPHAGUS**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Gradual onset of distal esophageal obstruction.
- Dysphagia, esophageal food impaction, chronic pulmonary aspiration.
- Failure of lower esophageal relaxation during swallowing with abnormalities of esophageal peristalsis.
- High resting pressure of the lower esophageal sphincter.

**Clinical Findings**

**A. Symptoms and Signs**

Achalasia most commonly occurs in children who are older than 5 years, but cases during infancy have been reported.

Common symptoms in one recent study were emesis (84.6%), dysphagia (69.2%), weight loss (46.0%), and chronic cough (46.1%). Patients may eat slowly and often require large amounts of fluid when ingesting solid food. Dysphagia is relieved by repeated forceful swallowing or vomiting. Familial cases occur in Allgrove syndrome (alacrima, adrenal insufficiency, and achalasia, associated with a defect in the AAAS gene on 12q13, encoding the ALADIN protein) and familial dysautonomia. Though no genetic or pathophysiologic basis has been identified, there have been recent case reports of achalasia in pediatric autism patients. Chronic cough, wheezing, recurrent aspiration pneumonitis, anemia, and poor weight gain are common.

**B. Imaging and Manometry**

Barium esophagram shows a dilated esophagus with a tapered “beak” at the GE junction. Esophageal dilation may not be present in infants because of the short duration of distal obstruction. Fluoroscopy shows irregular tertiary contractions of the esophageal wall, indicative of disordered esophageal peristalsis. Achalasia has also been identified incidentally in patients undergoing GE scintigraphy. Esophageal manometry classically shows high resting pressure of the lower esophageal sphincter, failure of sphincter relaxation after swallowing, and abnormal esophageal peristalsis, though these findings may be sporadic, with some partial or normal relaxations present in some swallows. High-resolution manometry testing in adult patients suggests varying subtypes of achalasia, which may predict likelihood of response to different therapies.

**C. Differential Diagnosis**

Congenital or peptic esophageal stricture, esophageal webs, and esophageal masses may mimic achalasia. EoE commonly presents with symptoms of dysphagia and food impaction, similar to achalasia. Cricopharyngeal achalasia or spasm is a rare cause of dysphagia in children, but it shares some clinical features of primary achalasia involving the lower esophageal sphincter. Intestinal pseudo-obstruction, multiple endocrine neoplasia type 2b, systemic amyloidosis, and postvagotomy syndrome cause esophageal dysmotility and symptoms similar to achalasia. Teenage girls may be suspected of having an eating disorder. In Chagas disease, caused by the parasite *Trypanosoma cruzi*, nNOS and ganglion cells are diminished or absent in the muscular layers of the lower esophageal sphincter causing an acquired achalasia.

**Treatment & Prognosis**

Endoscopic injection of botulinum toxin paralyzes the lower esophageal sphincter and temporarily relieves obstruction...
but has relapse rates of greater than 50%. Pneumatic dilation of the lower esophageal sphincter produces temporary relief of obstruction that may last weeks to years. Pediatric trials are limited, but a recent single center experience of endoscopic dilation showed a long-term success rate of up to 87% with one to three dilations. Because of concerns that dilation may increase inflammation between the esophageal mucosal and muscular layers, however, some have advocated surgical myotomy as the best initial treatment. While, long-lasting functional relief is achieved by surgically dividing the lower esophageal sphincter (Heller myotomy), recurrence risk of obstructive symptoms following myotomy in children has been reported to be as high as 27%. Postoperative GERD is common, leading some to perform a fundoplication or place diaphragm valves at the same time as myotomy. In adult achalasia, per-oral endoscopic myotomy (POEM) has been increasingly utilized as a less invasive alternative to surgical treatment, with isolated case reports in children. In a large retrospective pediatric study, general response rates of pneumatic dilation compared to Heller myotomy were not significantly different, though recent studies suggest that children over 6 may have better outcomes with pneumatic dilation. Self-expanding metal stents have been used with success in over 6 may have better outcomes with pneumatic dilation. Because of the shorter duration of esophageal obstruction in children, there is less secondary dilation of the esophagus. Thus, the prognosis for return or retention of some normal esophageal motor function after surgery is better than in adults.


**CAUSTIC BURNS OF THE ESOPHAGUS**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Reported history of ingestion, with or without evidence of oropharyngeal injury.
- Odynophagia, drooling, and food refusal typical of esophageal injury.
- Endoscopic evaluation of severity and extent of injury at 24–48 hours postingestion.
- Significant risk for development of esophageal strictures, especially in second- and third-degree lesions.

**Clinical Findings**

**A. Symptoms and Signs**

Ingestion of caustic solids or liquids (pH < 2 or pH > 12) produces esophageal lesions ranging from superficial inflammation to deep necrosis with ulceration, perforation, mediastinitis, or peritonitis. Acidic substances typically lead to limited injury because of the small volume ingested due to the sour taste. In addition, acid ingestions often lead to superficial coagulative necrosis with eschar formation. Conversely, the more benign taste of alkali ingestions may allow for larger volume ingestions, subsequent liquefactive necrosis that can lead to deeper mucosal penetration. Beyond the pH, factors that determine the severity of injury from a caustic ingestion include the amount ingested, the physical state of the agent, and the duration of mucosal exposure time. For these reasons, powdered or gel formulations of dishwashing detergent are especially dangerous, because of their innocuous taste, high pH, and tendency to stick to the mucosa. Symptoms of hoarseness, stridor, and dyspnea suggest associated airway injury, while odynophagia, drooling, and food refusal are typical with more severe esophageal injury. The lips, mouth, and airway should be examined in suspected caustic ingestion, although up to 12% of children without oral lesions can have significant esophageal injury.

**B. Imaging Studies**

Esophagoscopy is often a routine part of the evaluation in caustic ingestions to determine the severity and extent of the esophageal injury. Timing of endoscopy is important, however, as endoscopy may not indicate the true severity of injury if it is performed too early (< 24–48 hours) and may increase the risk of perforation if it is performed too late (> 72 hours) due to formation of granulation tissue. Grading
of esophageal lesions into first degree (superficial injury, erythema only), second degree (transmucosal with erythema, ulceration, and sloughing), and third degree (transmural with circumferential sloughing and deep mucosal ulceration) can help predict prognosis. Circumferential lesions should be particularly noted, since they carry the highest risk of stricture formation. In a recent large single-center study, 34% of over 200 ingestions in children were grade 2 or 3, with 50% of these eventually requiring one or more endoscopic dilations for stricture formation. If dilation is felt to be necessary, it should not be performed in the acute phase of injury. Elevation of white blood cell count was found in a recent pediatric study to be a sensitive, but not specific, indicator of high-grade injury. In addition, despite the lack of clinical findings, esophageal lesions have been found in up to 35% and gastric lesions in up to 14% of patients. Because of the relative lack of good prognostic indicators of significant injury, most clinical guidelines recommend endoscopic evaluation as part of standard management in pediatric caustic ingestions. Plain radiographs of the chest and abdomen may be performed if there is clinical suspicion of perforation. Contrast studies of the esophagus should be performed when endoscopic evaluation is not available, as they are unlikely to detect grades 1 and 2 lesions. Some centers have advocated conservative management with upper GI series within 3 weeks of injury, reserving endoscopic evaluation for those with evidence of stricture.

**Treatment & Prognosis**

Clinical observation is always prudent, as it is often difficult to predict the severity of esophageal injury at presentation. Vomiting should not be induced and administration of buffering agents should be avoided to prevent an exothermic reaction in the stomach. Intravenous corticosteroids (eg, methylprednisolone, 1–2 mg/kg/d) are given immediately to reduce oral swelling and laryngeal edema. Many centers advocate continued corticosteroids for the first week to decrease the risk of stricture formation; however, meta-analysis has not been able to show a clinical benefit from this practice. Intravenous fluids are necessary if dysphagia prevents oral intake. Treatment may be stopped if there are only first-degree burns at endoscopy. Whereas speculation suggest that broad-spectrum antibiotic coverage with third-generation cephalosporins may decrease stricture formation by preventing bacterial colonization into necrotic tissue, the use of antibiotics in cases of perforation is mandatory. Acid-blockade is often used to decrease additional injury from acid reflux.

Esophageal strictures develop in areas of anatomic narrowing (thoracic inlet, GE junction, or point of compression where the left bronchus crosses the esophagus), where contact with the caustic agent is more prolonged. Strictures occur only with full-thickness esophageal necrosis and prevalence of stricture formation varies from 10% to 50%. Shortening of the esophagus is a late complication that may cause hiatal hernia. Repeated esophageal dilations may be necessary as a stricture develops, with one review showing 35% requiring more than seven dilations. In that series of 175 patients, there was long-term success in only 16% of patients, with 4.5% having complications of perforation and a 2.8% mortality rate. In complicated cases esophageal stenting may be beneficial during early management. Newer, fully covered, self-expanding, removable esophageal stents, now available in pediatric sizes, may offer additional options for recurrent caustic strictures. Alternatively, in a multicenter analysis, endoscopic administration of topical mitomycin-C was effective in treatment of refractory caustic strictures of the esophagus. Animal models utilizing 5-fluorouracil in the early management of caustic esophageal injuries have also shown promise in preventing fibrosis and stricture formation. Surgical replacement of the esophagus by colonic interposition or gastric tube may be needed for long strictures resistant to dilation.

---

**FOREIGN BODIES IN THE ALIMENTARY TRACT**

### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- **Dysphagia, odynophagia, drooling, regurgitation, and chest/abdominal pain** are typical symptoms of esophageal foreign body.
- **Esophageal foreign bodies** should be removed within 24 hours of ingestion.
- **Esophageal button batteries** must be removed emergently because of their ability to cause lethal injury.
- **Most foreign bodies** in the stomach will pass spontaneously.
Older infants and toddlers engage their environment, in part, by placing items in their mouth. As a result, foreign body ingestions are a common occurrence in pediatrics. Fortunately, 80%–90% of foreign bodies pass spontaneously with only 10%–20% requiring endoscopic or surgical management. At presentation the most common symptoms of an ingested foreign body are dysphagia, odynophagia, drooling, regurgitation, and chest or abdominal pain. Respiratory symptoms, such as cough, become prominent for foreign bodies retained in the esophagus for more than 1 week. A high index of suspicion should be maintained for toddlers presenting with these symptoms, even without a witnessed ingestion. If the ingestion is witnessed, the timing of the event is important to note as it will have implications for the timing of any necessary endoscopic procedures for removal.

The most common foreign body ingested by children is the coin (Figure 21–3). Ingested foreign bodies tend to lodge in narrowed areas—valleculae, thoracic inlet, GE junction, pylorus, ligament of Treitz, and ileocecal junction, or at the site of congenital or acquired intestinal stenoses. The evaluation of a swallowed foreign body starts with plain radiography. Radio-opaque objects will be easily visualized. Non–radio-opaque objects, such as plastic toys, may not appear on standard radiograph. If there is particular concern, based on patient symptoms, for a retained esophageal foreign body that is non–radio-opaque, a contrast esophagram is a useful test. Use of contrast, however, may delay or increase the risk of anesthesia due to aspiration concerns.

Esophageal foreign bodies should be removed within 24 hours to avoid ulceration, which can lead to serious complications such as erosion into a vessel or stricture formation. Disk-shaped button batteries lodged in the esophagus are especially concerning and should be removed immediately. Button batteries may cause an electrical thermal injury in as little as 2 hours and have resulted in death from subsequent aortoenteric fistula formation, even weeks after battery removal. Button batteries in the stomach will generally pass uneventfully, but they should be monitored closely to ensure prompt passage. With larger batteries (> 20 mm) and in younger children (< 5 years of age) endoscopic evaluation with gastric batteries may still be considered in order to evaluate the esophagus for signs of injury and risk of aortoesophageal fistula. Rates of significant injury and death due to swallowed button batteries have increased in recent years with the transition toward production of higher-voltage lithium batteries.

Esophageal food impaction should always raise the question of underlying esophagitis. In particular, EoE has been shown to be present in up to 75% of pediatric patients presenting initially with esophageal food impaction.

Smooth foreign bodies in the stomach, such as buttons or coins, may be monitored without attempting removal for up to several months if the child is free of symptoms. Straight pins, screws, and nails are examples of objects with a blunt end that is heavier than the sharp end. These asymmetrically weighted objects will generally pass without incident and so need for endoscopic removal must be considered on a case-by-case basis. In contrast, double-sided sharp objects that are weighted equally on each end, such as fishbones and wooden toothpicks, should be removed as they can migrate through the wall of the GI tract into the pericardium, liver, and inferior vena cava. Large, open safety pins should be removed from the stomach because they may not pass the pyloric sphincter and may cause perforation. Objects longer than 5 cm may be unable to pass the ligament of Treitz and should be removed. Magnets require consideration for removal only if there has been more than one ingested, or if a single magnet was ingested along with a metallic object, because of the risk of fistula or erosion of mucosal tissue trapped between two adherent foreign bodies. Rare earth metal magnets, or neodymium magnets, are very powerful small magnets that are sold in bulk and have caused multiple cases of bowel perforation necessitating surgical intervention. Ingestion of multiple magnets should lead to immediate endoscopic removal if technically feasible. If not, their migration through the GI tract should be followed radiographically until they are passed.

The use of balanced electrolyte lavage solutions containing polyethylene glycol may help the passage of small, smooth foreign bodies lodged in the intestine. Lavage is especially useful in hastening the passage of foreign bodies that may contain an absorbable toxic material such as a heavy metal. Failure of a small, smooth foreign body to exit the stomach after several days suggests the possibility of gastric outlet obstruction.
Most foreign bodies can be removed from the esophagus or stomach by a skilled endoscopist. In some circumstances an alternative technique can be used. An experienced radiologist using fluoroscopy can utilize a Foley catheter with balloon inflated below the foreign body to extract esophageal coins in the upper esophagus while the awake patient is placed in the Trendelenburg position. Contraindications include precarious airway, history that foreign body has been present for several days, and previous esophageal surgery.


Pyloric Stenosis

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Postnatal muscular hypertrophy of the pylorus.
- Progressive gastric outlet obstruction, nonbilious vomiting, dehydration, and alkalosis in infants younger than 12 weeks.
- Upper GI contrast radiographs or abdominal ultrasound are diagnostic.

The cause of postnatal pyloric muscular hypertrophy with gastric outlet obstruction is unknown. The incidence is 1–8 per 1000 births, with a 4:1 male predominance. A positive family history is present in 13% of patients. Recent studies suggest that erythromycin in the neonatal period is associated with a higher incidence of pyloric stenosis in infants younger than 30 days, though the mean age at diagnosis in a large population-based study was 43.1 days. Epidemiological studies identify no increased risk of pyloric stenosis with macrolide antibiotic exposure via breast milk.

Clinical Findings

A. Symptoms and Signs

Projectile postprandial vomiting usually begins between 2 and 4 weeks of age but may start as late as 12 weeks. Vomiting starts at birth in about 10% of cases and onset of symptoms may be delayed in preterm infants. Vomitus is...
rarely bilious but may be blood-streaked. Infants are usually hungry and nurse avidly. Constipation, weight loss, fretfulness, dehydration, and finally apathy occur. The upper abdomen may be distended after feeding, and prominent gastric peristaltic waves from left to right may be seen. An oval mass, 5–15 mm in longest dimension can be felt on deep palpation in the right upper abdomen, especially after vomiting. This palpable “olive,” however, was only present in 13.6% of patients studied.

B. Laboratory Findings

Hypochloremic alkalosis with potassium depletion is the classic metabolic findings, though low chloride may be seen in as few as 23% and alkalosis in 14.4%. These findings may not be as common in younger infants and their absence should not dissuade from the diagnosis in the appropriate clinical setting. Dehydration causes elevated hemoglobin and hematocrit. Mild unconjugated bilirubinemia occurs in 2%–5% of cases.

C. Imaging

Ultrasoundography shows a hypoechoic muscle ring greater than 4-mm thick with a hyperdense center and a pyloric channel length greater than 15 mm. A barium upper GI series reveals retention of contrast in the stomach and a long narrow pyloric channel with a double track of barium. The hypertrophied muscle mass produces typical semilunar filling defects in the antrum. Isolated pylorospasm is common in young infants and by itself is insufficient to make a diagnosis of pyloric stenosis. Infants presenting younger than 21 days may not fulfill these classic ultrasonographic criteria and may require clinical judgment to interpret “borderline” measures of pyloric muscle thickness.

Treatment & Prognosis

Ramstedt pyloromyotomy is the treatment of choice and consists of incision down to the mucosa along the pyloric length. The procedure can be performed laparoscopically, with similar efficacy and improved cosmetic results compared to open procedures. An alternative, double Y, form of pyloromyotomy may promote more rapid resolution of vomiting and increased weight gain in the first postoperative week compared to the traditional Ramstedt procedure. Treatment of dehydration and electrolyte imbalance is mandatory before surgical treatment, even if it takes 24–48 hours. Use of IV cimetidine and other acid-blocking agents has been shown in small studies to rapidly correct metabolic alkalosis, allowing more rapid progression to surgery and resolution of symptoms. Patients often vomit postoperatively as a consequence of gastritis, esophagitis, or associated GE reflux. The outlook after surgery is excellent, though patients may show as much as a four times greater risk for development of chronic abdominal pain of childhood. The postoperative barium radiograph remains abnormal for many months despite relief of symptoms.

GASTRIC & DUODENAL ULCER

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Localized erosions of gastric or duodenal mucosa.
- Pain and bleeding are the most common symptoms.
- Underlying severe illness, Helicobacter pylori infection, and nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common causes.
- Diagnosis by endoscopy.

General Considerations

Gastric and duodenal ulcers occur at any age. Boys are affected more frequently than girls. In the United States, most childhood gastric and duodenal ulcers are associated with underlying illness, toxins, or drugs that cause breakdown in mucosal defenses.

Worldwide, the most common cause of gastric and duodenal ulcer is mucosal infection with the bacterium H pylori. Between 10% and 20% of North American children have antibodies against H pylori. Antibody prevalence increases with age, poor sanitation, crowded living conditions, and family exposure. In some developing countries, over 90% of schoolchildren have serologic evidence of past or present infection. Infection is thought to be acquired in childhood, but only in a small percentage of infected persons will infection lead to nodular gastritis, peptic ulcer, or in the case of long-standing infection, gastric lymphoid tumors, and adenocarcinoma of the stomach. Some bacterial virulence factors have been identified, but the host and bacterial characteristics that contribute to disease progression are still largely unknown. In contrast to ulcers secondary to H pylori, non–H pylori ulcers tend to occur as frequently in girls as boys,
present at a younger age, and are more likely to recur. In a large study of over 1000 children undergoing endoscopy, 5.4% had ulcers, with 47% of these due to *H pylori*, 16.5% related to NSAIDs, and 35.8% unrelated to either HP or NASIDs. Recent evidence suggests that the prevalence of non-*H pylori* peptic ulcers is increasing.

Illnesses predisposing to secondary ulcers include central nervous system (CNS) disease, burns, sepsis, multiorgan system failure, chronic lung disease, Crohn disease (CrD), cirrhosis, and rheumatoid arthritis. The most common drugs causing secondary ulcers are aspirin, alcohol, and NSAIDs. NSAID use may lead to ulcers throughout the upper GI tract but most often in the stomach and duodenum. Severe ulcerative lesions in full-term neonates have been found to be associated with maternal antacid use in the last month of pregnancy.

### Clinical Findings

#### A. Symptoms and Signs

In children younger than 6 years, vomiting and upper GI bleeding are the most common symptoms of gastric and duodenal ulcer. Older children are more likely to complain of epigastric abdominal pain. The first attack of acute *H pylori* gastritis may be accompanied by vomiting and hematemesis. Ulcers in the pyloric channel may cause gastric outlet obstruction. Chronic blood loss may cause iron-deficiency anemia. Deep penetration of the ulcer may erode into a mucosal arteriole and cause acute hemorrhage. Penetrating duodenal ulcers (especially common during cancer chemotherapy, immunosuppression, and in the intensive care setting) may perforate the duodenal wall, resulting in peritonitis or abscess.

#### B. Diagnostic Studies

Upper GI endoscopy is the most accurate diagnostic examination. The typical endoscopic appearance of an ulcer is a white exudative base with erythematous margins (Figure 21–4). Endoscopy also provides the mechanism for testing of other causes of peptic symptoms such as esophagitis, eosinophilic GI disease, and celiac disease (CD). Endoscopic diagnosis of active *H pylori* infection may be achieved by histologic examination of gastric biopsies or measurement of urease activity on gastric tissue specimens. Additional noninvasive methods of diagnosis of active *H pylori* infection include evaluation of breath for radiolabeled carbon dioxide after administration of radiolabeled urea by mouth and detection of *H pylori* antigen in the stool. False-negative results for the latter two tests have been described when the patient is taking a PPI. Serum antibodies against *H pylori* have poor sensitivity and specificity, and do not prove that there is active infection or that treatment is needed. For severe or recurrent ulcerations not caused by *H pylori*, stress, or medications, a serum gastrin level may be considered to evaluate for a gastrin-secreting tumor (Zollinger-Ellison syndrome), though mild to moderate elevation in gastrin levels can be seen with use of PPI drugs. Upper GI barium radiographs may show an ulcer crater. Radiologic signs suggestive of peptic disease in adults (duodenal spasticity and thick irregular folds) are not reliable indicators in children.

#### Treatment

Acid suppression or neutralization is the mainstay of noninfectious ulcer therapy. Liquid antacids in the volumes needed to neutralize gastric acid are usually unacceptable to children. H₂-receptor antagonists and PPIs are more effective and usually produce endoscopic healing in 4–8 weeks.

As an adjunct therapy, 7- to 14-day courses of sucralfate may be helpful as a mucosal protective agent to speed healing and decrease symptoms. Bland “ulcer diets” do not speed healing, but foods causing pain should be avoided. Caffeine should be avoided because it increases gastric acid secretion. Aspirin, alcohol, NSAIDs, and other gastric irritants should be avoided as well.

Treatment of symptomatic *H pylori* infection requires eradication of the organism, a goal that remains elusive in children. The optimal medical regimen is still undetermined. The most common regimen is a triple combination of amoxicillin, clarithromycin, and PPI. Quadruple combinations, involving an additional antibiotic, may yield higher
eradication rates. Alternative antibiotics include metronidazole, imidazole, tetracycline, and levofloxacin. Bismuth subsalicylate is commonly used as a substitute for the PPI. Regimens are typically continued for a minimum of 10 days. Sequential therapy, which involves induction with amoxicillin plus PPI for 5 days followed by clarithromycin/metronidazole/PPI for 5 days, may also yield higher eradication rates than standard triple combination therapy. Resistance to antibiotics is common and varies by region of the world. Regional antibiotic resistance patterns for *H. pylori* should be a guide in selecting a treatment regimen for symptomatic infection. Test of cure can be achieved by either the urease breath test or fecal *H. pylori* antigen test.

Endoscopic therapy of bleeding ulcers may be considered for severe or refractory lesions posing a risk for significant morbidity or mortality. Therapeutic options include injection therapy, application of monopolar or bipolar electrocoagulation, placement of clipping devices, or use of argon plasma coagulation.

**CONGENITAL DIAPHRAGMATIC HERNIA**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- **Congenital diaphragmatic hernia (CDH)** typically is diagnosed prenatally by screening ultrasound.
- **Pulmonary hypoplasia and cardiovascular dysfunction** are clinical challenges in the postnatal period.
- **After surgical repair, chronic pulmonary disease and GER** can be lifelong morbidities.

Herniation of abdominal contents through the diaphragm usually occurs through a posterolateral defect involving the left side of the diaphragm (foramen of Bochdalek). In about 5% of cases, the diaphragmatic defect is retrosternal (foramen of Morgagni). In eventration of the diaphragm, a subtype of CDH, a leaf of the diaphragm with hypoplastic muscular elements balloons into the chest and leads to similar but milder symptoms. Hernias result from failure of the embryologic diaphragmatic anlagen to fuse and divide the thoracic and abdominal cavities at 8–10 weeks’ gestation. The herniation of abdominal contents into the thoracic cavity can lead to pulmonary hypoplasia and significant cardiovascular dysfunction after birth, in particular severe persistent pulmonary hypertension.

Diagnosis of CDH is typically made prenatally by ultrasound. Associated congenital malformations, most commonly cardiovascular, are commonly seen. With the advent of improved care of cardiopulmonary disease in the newborn period, including the use of inhaled nitric oxide, high-frequency oscillatory ventilation and extracorporeal membrane oxygenation, survival has improved for infants with CDH and is as high as 70%–90% in some centers. Fetal surgery with tracheal occlusion has been attempted to improve fetal pulmonary development. Operative repair of the diaphragmatic defect is usually performed in the newborn period once cardiopulmonary stabilization is achieved, with increasing utilization of laparoscopic and thoracoscopic minimally invasive approaches. Occasionally, diaphragmatic hernia is first identified in an older infant or child during incidental radiograph or routine physical examination. These children usually have a much more favorable prognosis than neonates. CDH survivors are often found to have significant chronic pulmonary disease as well as GER, the latter possibly resulting from abnormal intrinsic innervation of the lower esophagus.

**CONGENITAL DUODENAL OBSTRUCTION**

**General Considerations**

Obstruction is generally classified into intrinsic and extrinsic causes, although rare cases of simultaneous intrinsic and extrinsic anomalies have been reported. Extrinsic duodenal obstruction is usually due to congenital peritoneal bands associated with intestinal malrotation, annular pancreas, or duodenal duplication. In rare cases, a preduodenal portal vein has been associated with extrinsic obstruction as well. Intrinsic obstruction is caused by stenosis, mucosal diaphragm (so-called wind sock deformity), or duodenal atresia. In atresia, the duodenal lumen may be obliterated by a membrane or completely interrupted with a fibrous cord between the two segments. Atresia is more often distal to the ampulla of Vater than proximal. In about two-thirds of patients with congenital duodenal obstruction, there are other associated anomalies.

**Imaging Studies**

Diagnosis of congenital duodenal obstructions is often made prenatally by ultrasound. Prenatal diagnosis predicts complete
obstruction in 77% of cases and is associated with polyhydramnios, prematurity, and higher risk of maternal-fetal complications. Presence of a “double bubble” on ultrasound, in association with an echogenic band in the second portion of the duodenum was found to be 100% sensitive and specific for an annular pancreas. Postnatal abdominal plain radiographs show gaseous distention of the stomach and proximal duodenum (the “double-bubble” radiologic sign). With protracted vomiting, there is less air in the stomach and less abdominal distention. Absence of distal intestinal gas suggests atresia or severe extrinsic obstruction, whereas a pattern of intestinal air scattered over the lower abdomen may indicate partial duodenal obstruction. Barium enema may be helpful in determining the presence of malrotation or atresia in the lower GI tract, as well as evaluating for radiographic evidence of Hirschsprung disease, which may also present with abdominal distension and vomiting.

Clinical Findings

A. Duodenal Atresia

Maternal polyhydramnios is common and often leads to prenatal diagnosis by ultrasonography. Vomiting (usually bile-stained) and epigastric distention begin within a few hours of birth. Meconium may be passed normally. Duodenal atresia is often associated with other congenital anomalies (30%), including esophageal atresia, intestinal atresias, and cardiac and renal anomalies. Prematurity (25%–50%) and Down syndrome (20%–30%) are also associated with duodenal atresia.

B. Duodenal Stenosis

In this condition, duodenal obstruction is not complete. Onset of obvious obstructive symptoms may be delayed for weeks or years. Although the stenotic area is usually distal to the ampulla of Vater, the vomitus does not always contain bile. Duodenal stenosis or atresia is the most common GI tract malformation in children with Down syndrome, occurring in 3.9%.

C. Annular Pancreas

Annular pancreas is a rotational defect in which normal fusion of the dorsal and ventral pancreatic anlagen does not occur, and a ring of pancreatic tissue encircles the duodenum. The presenting symptom is duodenal obstruction. Down syndrome and congenital anomalies of the GI tract occur frequently. Polyhydramnios is common. Symptoms may develop late in childhood or even in adulthood if the obstruction is not complete in infancy. Treatment consists of duodenoduodenostomy or duodenojejunostomy without operative dissection or division of the pancreatic annulus. Pancreatic function is normal.

Treatment & Prognosis

In almost all settings, surgical intervention (either laparoscopic or open) is required for congenital duodenal obstructive lesions. Typically, duodenoduodenostomy is performed to bypass the area of stenosis or atresia. For duodenal stenoses, however, there have been isolated reports of successful endoscopic treatment with balloon dilation. Thorough surgical exploration is typically done to ensure that no lower GI tract anomalies are present. More recent reports document the safety and utility of a laparoscopic approach. The mortality rate is increased in infants with prematurity, Down syndrome, and associated congenital anomalies. Duodenal dilation and hypomotility from antenatal obstruction may cause duodenal dysmotility with obstructive symptoms even after surgical treatment. Placement of transanastomotic feeding tubes at the time of the initial repair has been found to result in more rapid progression to full enteral feeds and decreased need for parenteral nutrition (PN). The overall prognosis for these patients is good, with the majority of their mortality risk due to associated anomalies other than duodenal obstruction.

DISORDERS OF THE SMALL INTESTINE

INTESTINAL ATRESIA & STENOSIS

Excluding anal anomalies, intestinal atresia or stenosis accounts for one-third of all cases of neonatal intestinal obstruction (see Chapter 1). Antenatal ultrasound can identify intestinal atresia in utero; polyhydramnios occurs in most affected pregnancies. Sensitivity of antenatal ultrasound is greater in more proximal atresias. Other congenital anomalies may be present in up to 54% of cases and 52% are delivered preterm. In apparently isolated atresia cases, occult congenital cardiac anomalies have been reported in as many as 30%. In one large population-based study, the prevalence was 2.9 per 10,000 births, although there is some
evidence that the prevalence may be increasing. The localization
and relative incidence of atresias and stenoses are listed in Table
21–1. Although jejunal and ileal atresias are often grouped
 together, there are data to suggest that jejunal atresias are asso-
ciated with increased morbidity and mortality compared to ileal
atresia. These differences may be related to increased compli-
ance of the jejunal wall, resulting in more proximal dilation and
subsequent loss in peristaltic activity.

Bile-stained vomiting and abdominal distention begin
in the first 48 hours of life. Multiple sites in the intestine
may be affected and the overall length of the small intest-
tine may be significantly shortened. Radiographic features
include dilated loops of small bowel and absence of colonic
gas. Barium enema reveals narrow-caliber microcolon
because of lack of intestinal flow distal to the atresia. In
over 10% of patients with intestinal atresia, the mesen-
tery is absent, and the SMA cannot be identified beyond the
origin of the right colic and ileocolic arteries. The ileum
coils around one of these two arteries, giving rise to the so-
called Christmas tree deformity on contrast radiographs.
The tenuous blood supply often compromises surgical
anastomoses. The differential diagnosis of intestinal atresia
includes Hirschsprung disease, paralytic ileus secondary
to sepsis, midgut volvulus, and meconium ileus. Surgery
is mandatory. Postoperative complications include short
bowel syndrome (SBS) in 15% and small bowel hypomotil-
ity secondary to antenatal obstruction. Overall mortality
has been reported at 8%, with increased risk in low-birth-
weight and premature infants.

Walker K et al: A population-based study of the outcome after
small bowel atresia/stenosis in New South Wales and the

INTESTINAL MALROTATION

General Considerations

The midgut extends from the duodenojejunal junction to the
mid-transverse colon. It is supplied by the superior mesen-
teric artery (SMA), which runs in the root of the mesentery.
During gestation, the midgut elongates into the umbilical
sac, returning to an intra-abdominal position during the
10th week of gestation. The root of the mesentery rotates in
a counterclockwise direction during retraction causing the
colon to cross the abdominal cavity ventrally. The cecum
moves from the left to the right lower quadrant, and the
duodenum crosses dorsally becoming partly retroperitoneal.
When rotation is incomplete, the dorsal fixation of the mes-
entery is defective and shortened, so that the bowel from the
ligament of Treitz to the mid-transverse colon may rotate
around its narrow mesenteric root and occlude the SMA
(volvulus). From autopsy studies it is estimated that up to
1% of the general population may have intestinal malrota-
tion, which is diagnosed in the first year of life in 70%–90% of
patients.

Clinical Findings

A. Symptoms and Signs

Malrotation with volvulus accounts for 10% of neonatal
intestinal obstructions. Most infants present in the first
3 weeks of life with bile-stained vomiting or with overt small
bowel obstruction. Intrauterine volvulus may cause intestinal
obstruction or perforation at birth. The neonate may present
with ascites or meconium peritonitis. Later presenting signs
include intermittent intestinal obstruction, malabsorption,
protein-losing enteropathy, or diarrhea. Associated congeni-
tal anomalies, especially cardiac, occur in over 25% of symp-
tomatic patients. Many of these may be found in a subgroup
of malrotation patients with heterotaxy syndromes, with

Table 21–1. Localization and relative frequency of congenital gastrointestinal atresias and stenoses.

<table>
<thead>
<tr>
<th>Area Involved</th>
<th>Type of Lesion</th>
<th>Relative Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pylorus</td>
<td>Atresia; web or diaphragm</td>
<td>1</td>
</tr>
<tr>
<td>Duodenum</td>
<td>Atresia, stenosis; web or diaphragm</td>
<td>45</td>
</tr>
<tr>
<td>Jejunooileal</td>
<td>Atresia (multiple in 6%–29%); stenosis</td>
<td>50</td>
</tr>
<tr>
<td>Colon</td>
<td>Atresia (usually associated with atresias of the small bowel)</td>
<td>5–9</td>
</tr>
</tbody>
</table>
associated asplenia or polysplenia. Older children and adults with undiagnosed malrotation typically present with chronic GI symptoms of nausea, vomiting, diarrhea, abdominal pain, dyspepsia, bloating, and early satiety.

B. Imaging

An upper GI series is considered the gold standard for diagnosis, with a reported sensitivity of 96%, and classically shows the duodenojejunal junction and the jejunum on the right side of the spine. The diagnosis of malrotation can be further confirmed by barium enema, which may demonstrate a mobile cecum located in the midline, right upper quadrant, or left abdomen. Plain films of the abdomen in the newborn period may show a “double-bubble” sign, resulting in a misdiagnosis of duodenal atresia. CT scan and ultrasound of the abdomen may be used to make the diagnosis as well and are characterized by the “whirlpool sign” denoting midgut volvulus. Reversal of the normal position of the SMA and superior mesenteric vein (SMV) may be seen in malrotation, though normal position may be found in up to 29% of patients. Identification of the third portion of the duodenum within the retroperitoneum makes malrotation very unlikely.

Treatment & Prognosis

Surgical treatment of malrotation is the Ladd procedure. In young infants the Ladd procedure should be performed even if volvulus has not occurred. The duodenum is mobilized, the short mesenteric root is extended, and the bowel is then fixed in a more normal distribution. Treatment of malrotation discovered in children older than 12 months is uncertain. Because volvulus can occur at any age, surgical repair is usually recommended, even in asymptomatic children. Laparoscopic repair of malrotation is possible but is technically difficult and is never performed in the presence of volvulus.

Midgut volvulus is a surgical emergency. Bowel necrosis results from occlusion of the SMA. When necrosis is extensive, it is recommended that a first operation include only reduction of the volvulus with lysis of mesenteric bands. Resection of necrotic bowel should be delayed if possible until a second-look operation 24–48 hours later can be undertaken in the hope that more bowel can be salvaged. The prognosis is guarded if perforation, peritonitis, or extensive intestinal necrosis is present. Mid-gut volvulus is one of the most common indications for small bowel transplant in children, responsible for 10% of cases in a recent series.


SHORT BOWEL SYNDROME

General Considerations

Short bowel syndrome (SBS) is defined as a condition resulting from reduced intestinal absorptive surface that leads to alteration in intestinal function that compromises normal growth, fluid/electrolyte balance, or hydration status. The vast majority of pediatric patients with SBS have undergone neonatal surgical resection of intestine. The most common etiologies in children are necrotizing enterocolitis (45%); intestinal atresias (23%); gastrochisis (15%); volvulus (15%); and, less commonly, congenital short bowel, long-segment Hirschsprung disease, and ischemic bowel. In many instances, infants with SBS require PN in order to provide adequate caloric, fluid, and electrolyte delivery in the setting of insufficient intestinal absorptive function. The requirement of supplemental PN for more than 2–3 months in the setting of SBS or any other underlying disorder qualifies the diagnosis of intestinal failure (IF).

The goal in management of the patient with SBS is to promote growth and adaptation of the intestine such that adequate nutrition can be delivered and absorbed enterally. Many factors, including patient’s gestational age, postsurgical anatomic (including residual small bowel length and presence of ileocecal valve and/or colon), presence of small bowel bacterial overgrowth, and underlying surgical disease, influence the process and likelihood of bowel adaptation and achievement of enteral autonomy. Although no specific anatomic bowel length measurements offer 100% certainty in predicting clinical outcomes in SBS, residual small intestine less than 30 cm offers at least some prediction that a patient may require long-term, if not indefinite, PN. Serum citrulline level may serve as a reliable biomarker in order to help predict functional intestinal mass.

Symptoms & Signs

Typical symptoms for the patient with SBS are related to their underlying malabsorptive state, including diarrhea, dehydration, electrolyte or micronutrient deficiency states, and growth failure. Patients with SBS are also at risk for small bowel obstruction, bowel dilation and dysmotility (with secondary small bowel bacterial overgrowth), hepatobiliary disorders including cholelithiasis, nephrolithiasis due to calcium oxalate stones, oral feeding challenges, and...
GI mucosal inflammatory problems including noninfectious colitis and anastomotic ulcerations. For patients with IF, complications related to underlying PN therapy are common and can be life threatening. PN-associated liver disease (PNALD) is a progressive cholestatic liver injury that occurs in pediatric patients on PN and may progress to end-stage liver disease in 10% of affected patients. Recurrent catheter-related bloodstream infections are relatively common in pediatric patients with SBS and IF. Other complication-related central venous catheters including occlusions may require intervention.

**Treatment & Prognosis**

Goal in management of SBS is to promote growth and adaptation while minimizing and/or treating complications of the underlying intestinal disorder or PN therapy. Intestinal rehabilitation for the child with SBS and IF refers to the multidisciplinary team approach to individual patient care, involving gastroenterology, nutrition, and surgery, and has been shown to improve outcomes. Enteral nutrition should be catered to favor absorption, commonly requiring continuous delivery of an elemental formula through a gastrostomy tube. Commonly prescribed pharmacologic adjuncts include acid suppressive therapy, antimotility and antibiotic agents, and antibiotics for the treatment of small bowel bacterial overgrowth. Emerging therapies targeted to promote bowel adaptation include glucagon-like peptide 2 analogues, which show promise in potentially increasing absorption and bowel adaptation in early trials.

Management for the patient with SBS and IF should include strategies to manage or prevent complications related to PN therapy, including infection and liver disease. Antimicrobial lock solutions using either ethanol or antibiotics may have a role in reducing rate of infection. Compelling evidence over the past several years suggests that modification of parenteral lipid solution, either through reduction in dose of soy-based intralipid or replacement with a fish-oil based lipid solution (Omegaven), improves outcomes associated with PNALD in pediatric patients.

Autologous bowel reconstructive surgery (bowel lengthening) should be considered in a patient who is failing to advance enterally and has anatomy amendable to surgical intervention, typically with regards to adequate bowel dilation. Both the serial transverse enteroplasty (STEP) procedure and longitudinal intestinal lengthening and tailoring (Bianchi) procedure have been successful in allowing weaning from TPN in up to 50% of patients in reported series. In recent years, the STEP procedure has gained favor as being potentially less technically demanding and repeatable, if the bowel dilates sufficiently after the initial procedure.

When medical, nutritional, and surgical managements fail, intestinal transplantation may be considered for a child with refractory and life-threatening complications of IF. Current outcome data after pediatric intestinal transplantation suggest 1- and 3-year survival rates of 83% and 60%, respectively.

**Intussusception**

- **Intussusception is the most common cause of bowel obstruction in the first 2 years of life.**
- **The most common location for intussusception is ileocolic and 85% of cases are idiopathic.**
- **Ultrasound is the most sensitive and specific diagnostic modality for intussusception.**
- **Air enema is the best therapeutic approach in the stable patient, with successful reduction in 75% of cases.**

Intussusception is the invagination of one segment of intestine into another segment. Although intussusception can occur anywhere along the small and large bowel, most commonly the intussusception starts just proximal to the ileocecal valve and extends for varying distances into the colon. The terminal ileum telescopes into the colon. Swelling, hemorrhage, incarceration, vascular compromise, and necrosis of the intussuscepted ileum may occur, as well as intestinal perforation and peritonitis. Intussusception is the most frequent cause of intestinal obstruction in the first 2 years of life. It is three times more common in males than in females. In 85% of cases the cause is idiopathic but the likelihood of identifying a cause of intussusception increases with the age of the patient. Implicated primary causes of intussusception include small bowel polyp, Meckel diverticulum, omphalomesenteric remnant, duplication, Henoch-Schönlein purpura, lymphoma, lipoma, parasites, foreign bodies, and viral enteritis with hypertrophy of Peyer patches. Intussusception of the small bowel can occur in patients with CD and cystic fibrosis related to the bulk of stool in the terminal ileum. In children older than 6 years, lymphoma is the most common cause of intussusception.
Clinical Findings

Characteristically, a previously healthy infant 3–12 months of age develops recurring paroxysms of abdominal pain with screaming and drawing up of the knees. Vomiting and diarrhea occur soon afterward (90% of cases), and bloody bowel movements with mucus appear within the next 12 hours (50%). The child is characteristically lethargic between paroxysms and may be febrile. The abdomen is tender and often distended. A sausage-shaped mass may be palpated, usually in the upper mid abdomen. The likelihood of bowel compromise increases with the duration of symptoms. In older children, sudden attacks of abdominal pain may be related to chronic recurrent intussusception with spontaneous reduction.

Diagnosis & Treatment

The constellation of abdominal pain, lethargy, vomiting, with a suspicious abdominal radiograph was found to have a sensitivity of 95% in identifying intussusceptions in children. Abdominal radiographs alone, however, are poorly sensitive for the diagnosis of intussusception. Abdominal ultrasound carries sensitivity for diagnosis of intussusception of 98%–100%. Barium enema and air enema are both diagnostic and therapeutic. Reduction of the intussusception by barium enema should not be attempted if signs of strangulated bowel, perforation, or toxicity are present. Air insufflation of the colon under fluoroscopic guidance is a safe alternative to barium enema that has excellent diagnostic sensitivity and specificity without the risk of contaminating the abdominal cavity with barium. Rates of perforation with either liquid or air enema approach 75%. The rate of perforation with either liquid or air enema is approximately 1%. Care is required in patient selection for either air or barium enema because if ischemic damage to the intestine is suspected based on symptom severity (shock or sepsis), the risk of perforation increases and surgical reduction is preferred. Surgery is thus required for extremely ill patients, in patients with evidence of bowel perforation, or in those in whom hydrostatic or pneumatic reduction has been unsuccessful (25%). Surgery has the advantage of identifying a lead point such as Meckel diverticulum, lymphoma, or small bowel polyp. Surgical reduction of intussusception is associated with a lower recurrence rate than pneumatic reduction.

Prognosis

The likelihood of successful reduction by enema decreases if symptom duration is greater than 24 hours. Similarly, of those requiring surgical reduction, the risk of subsequent bowel resection increased from 17% to 39% in patients with symptoms greater than 24 hours. The mortality rate with treatment is 1%–2%. The patient should be observed carefully after hydrostatic or pneumatic reduction because intussusception recurs within 24 hours in 10% of patients. Intussusception in patients older than 5 years confers a greater risk of persistent symptoms, having an underlying lead point and recurrence of intussusception.
**Treatment**

Incarceration of an inguinal hernia is more likely to occur in boys and in children younger than 10 months. Manual reduction of incarcerated inguinal hernias can be attempted after the sedated infant is placed in the Trendelenburg position with an ice bag on the affected side. Manual reduction is contraindicated if incarceration has been present for more than 12 hours or if bloody stools are noted. Surgery is indicated if a hernia has ever incarcerated. Hydroceles frequently resolve by age 2 years. Controversy remains about whether the side opposite a unilateral hernia should be surgically explored. Exploration of the unaffected groin can document an open processus vaginalis, but patency does not always guarantee that herniation will occur, especially in patients older than 1 year, in whom the risk of contralateral hernia is about 10%.


**UMBILICAL HERNIA**

Umbilical hernias are more common in full-term, African American infants. Small bowel may incarcerate in small-diameter umbilical hernias. Most umbilical hernias regress spontaneously if the fascial defect has a diameter of less than 1 cm. Hernias persisting after age 4 years should be treated surgically. Reducing the hernia and strapping the skin over the abdominal wall defect does not accelerate healing.

**PATENT OMPHALOMESENTERIC DUCT**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Persistent umbilical discharge in an infant may represent a patent omphalomesenteric duct.
- Ultrasound is the preferred diagnostic method for patent omphalomesenteric duct.
- Surgical excision of the omphalomesenteric remnant is required.

The omphalomesenteric duct connects the fetal yolk sac to the developing gut. This duct is usually obliterated early in embryologic development, but failure of this process can lead to a variety of structures that originate from the embryonic duct remnant connecting the ileum to the undersurface of the umbilicus. If the remnant is patent, it can lead to herniation of intestinal contents into the umbilical cord or lead to fecal discharge from the umbilicus. A fibrous cord may become the focal point for an intestinal obstruction. Mucocele umbilical discharge may indicate a mucocoele in the omphalomesenteric remnant with an opening at the umbilicus. A closed mucocoele may protrude through the umbilicus and appear as a polypoid mass that may be mistaken for an umbilical granuloma because it is firm and bright red. Cauterization of a mucocoele is not recommended. Surgical excision of omphalomesenteric remnants is indicated. Ultrasound examination or abdominal computed tomography (CT) can help confirm the diagnosis of omphalomesenteric duct remnants.


**MECKEL DIVERTICULUM**

Meckel diverticulum is the most common form of omphalomesenteric duct remnant and is usually located on the antimesenteric border of the mid to distal ileum. It occurs in 1.5% of the population and in the majority of cases causes no symptoms. Familial cases have been reported. If complications occur, they are three times more common in males than in females. More than 50% of complications occur in the first 2 years of life.

**Clinical Findings**

A. Symptoms and Signs

Forty to 60% of symptomatic patients have painless episodes of maroon or melanotic rectal bleeding. Bleeding is due to deep ileal ulcers adjacent to the diverticulum caused by acid secreted by heterotopic gastric tissue and may be voluminous enough to cause shock and anemia. Occult bleeding is less common. Intestinal obstruction occurs in 25% of symptomatic patients as a result of ileocolonic intussusception. Intestinal volvulus may occur around a fibrous remnant of the vitelline duct extending from the tip of the diverticulum to the abdominal wall. In some patients, entrapment of bowel under a band running between the diverticulum and the base of the mesentery occurs. Meckel diverticula may be trapped in an inguinal hernia. Diverticulitis occurs in 10%–20% of symptomatic patients and is clinically indistinguishable from acute appendicitis. Perforation and peritonitis may occur.

B. Imaging

Diagnosis of Meckel diverticulum is made with a Meckel scan. Technetium-99 (99mTc)-pertechnetate is taken up by the heterotopic gastric mucosa in the diverticulum and
CHAPTER 21

outlines the diverticulum on a nuclear scan. Giving pentagastrin or cimetidine before administering the radionuclide increases 99mTc-pertechnetate uptake and retention by the heterotopic gastric mucosa, and can increase the sensitivity of the test.

**Treatment & Prognosis**

Treatment is surgical. At laparoscopy or laparotomy, the ileum proximal and distal to the diverticulum may reveal ulcerations and heterotopic gastric tissue adjacent to the neck of the diverticulum. The prognosis for Meckel diverticulum is good.

**ACUTE APPENDICITIS**

**General Considerations**

Acute appendicitis is the most common indication for emergency abdominal surgery in childhood. The frequency increases with age and peaks between 15 and 30 years. Obstruction of the appendix by fecalith (25%) is a common predisposing factor. Parasites may rarely cause obstruction (especially ascarids) and most of the remaining cases are idiopathic.

The incidence of perforation is high in childhood (40%), especially in children younger than 2 years, in whom pain is often poorly localized and symptoms nonspecific. To avoid delay in diagnosis, it is important to maintain close communication with parents and perform a thorough initial physical examination with sequential examinations at frequent intervals over several hours to correctly interpret the evolving symptoms and signs.

**Clinical Findings**

**A. Symptoms and Signs**

The typical patient has fever and periumbilical abdominal pain, which then localizes to the right lower quadrant with signs of peritoneal irritation. Anorexia, vomiting, constipation, and diarrhea also occur. Contrary to the vomiting of acute gastroenteritis which usually precedes abdominal pain, vomiting in appendicitis usually follows the onset of pain and is often bilious. The clinical picture is frequently atypical, especially in young children and infants. A rectal examination may clarify the site of tenderness or reveal a localized appendiceal mass. Serial examinations are critical in differentiating appendicitis from the many other conditions that transiently mimic its symptoms.

**B. Laboratory Findings**

The white blood cell count is seldom higher than 15,000/μL. Pyuria, fecal leukocytes, and guaiac-positive stool are sometimes present. The combination of elevated C-reactive protein (CRP) and leukocytosis has been reported to have positive predictive value of 92% for acute appendicitis, although having normal values for both measures does not exclude the diagnosis. Levels of interleukin 6 (IL-6) show promise as a potential biomarker for acute appendicitis, usually peaking within 24 hours of onset of pain.

**C. Imaging**

A radio-opaque fecalith reportedly is present in two-thirds of cases of ruptured appendix. In experienced hands, ultrasonography of the appendix shows a noncompressible, thickened appendix in 93% of cases. A localized fluid collection adjacent to or surrounding the appendix may also be seen. Abdominal CT after rectal instillation of contrast with thin cuts in the area of the appendix may be diagnostic. An otherwise normal abdominal CT scan with a nonvisualized appendix has still been reported to have a negative predictive value of 99%. Analysis of diagnostic strategies for pediatric patients with suspected appendicitis has shown abdominal ultrasound, followed by CT scan for negative studies, to be the most cost-effective compared to CT or ultrasound alone. Indium-labeled white blood cell scan may localize to an inflamed appendix. Enlarged mesenteric lymph nodes are a nondiagnostic finding.

**Differential Diagnosis**

The presence of pneumonia, pleural effusion, urinary tract infection, right-sided kidney stone, cholecystitis, perihepatitis, and pelvic inflammatory disease may mimic appendicitis. Acute gastroenteritis with *Yersinia enterocolitica* may present as pseudoappendicitis in 17% of cases. Other medical and surgical conditions causing acute abdomen should also be considered (see Table 21–7).

**Treatment & Prognosis**

Exploratory laparotomy or laparoscopy is indicated when the diagnosis of acute appendicitis cannot be ruled out after a period of close observation. Postoperative antibiotic therapy is reserved for patients with gangrenous or perforated appendix. A single intraoperative dose of cefoxitin or cefotetan is recommended for all patients to prevent postoperative infection. Nonoperative management of perforated appendicitis with antibiotic therapy and image-guided drainage of abdominal abscesses has become more commonplace. Failure of nonoperative management may occur in up to 38% of patients and is more commonly associated with bandemia on admission and persistent fever after the initial 24 hours of antibiotics. The mortality rate is less than 1% during childhood, despite the high incidence of perforation. In uncomplicated nonruptured appendicitis, a laparoscopic approach is associated with a shortened hospital stay.
DUPLICATIONS OF THE GASTROINTESTINAL TRACT

Enteric duplications are congenital spherical or tubular structures found most commonly in the ileum. Other common locations of duplication are the duodenum, rectum, and esophagus. Duplications usually contain fluid and sometimes blood if necrosis has taken place. Most duplications are attached to the mesenteric side of the gut and generally do not communicate with the intestinal lumen. The epithelial lining of the duplication is usually of the same type as the bowel from which it originates. Some duplications (neuroenteric cysts) are attached to the spinal cord and are associated with hemivertebrae and anterior or posterior spina bifida.

Symptoms of vomiting, abdominal distention, colicky pain, rectal bleeding, partial or total intestinal obstruction, or an abdominal mass may start in infancy. Diarrhea and malabsorption may result from bacterial overgrowth in communicating duplications. Physical examination may reveal a rounded, smooth, movable mass, and barium radiograph or CT of the abdomen may show a noncalcified cystic mass displacing other organs. 99mTc-pertechnetate scan may help identify duplications containing gastric mucosa. Duplications of the ileum can give rise to an intussusception. Prompt surgical treatment is indicated.

DISORDERS OF THE COLON

CONGENITAL AGANGLIONIC MEGACOLON (HIRSCHSPRUNG DISEASE)

General Considerations

Hirschsprung disease results from an absence of ganglion cells in the mucosal and muscular layers of the colon. Neural crest cells fail to migrate into the mesodermal layers of the gut during gestation, possibly secondary to abnormal end-organ cell surface receptors or local deficiency of nitric oxide synthesis. The absence of ganglion cells results in failure of the colonic muscles to relax in front of an advancing bolus. In 80% of individuals, aganglionosis is restricted to the rectosigmoid colon (short-segment disease); in 15%–20%, aganglionosis extends proximal to the sigmoid colon (long-segment disease); in about 5%, aganglionosis affects the entire large intestine (total colonic aganglionosis). Segmental aganglionosis is possible but rare.

The aganglionic segment has normal or slightly narrowed caliber with dilation of the normal colon proximal to the obstructing aganglionic segment. The mucosa of the dilated colonic segment may become thin and inflamed, causing diarrhea, bleeding, and protein loss (enterocolitis).

A familial pattern has been described, particularly in total colonic aganglionosis. The incidence of Hirschsprung disease is 1 in 5000 live births; it is four times more common in boys than girls. A chromosomal abnormality is present in approximately 12% of individuals with Hirschsprung disease. Mutations in the ret proto-oncogene have been identified in about 15% of nonsyndromic cases. The most common chromosomal abnormality is associated Down syndrome, which occurs in 2%–10% of all individuals.
passed during the diagnostic radiograph. The left colon is narrow but usually functional.

B. Laboratory Findings
Ganglion cells are absent in both the submucosal and muscular layers of involved bowel. Special stains may show nerve trunk hypertrophy and increased acetylcholinesterase activity. Ganglionated bowel above the aganglionic segment is sometimes found to contain more than normal numbers of ganglion cells in abnormal locations (neuronal dysplasia).

C. Imaging
Plain abdominal radiographs may reveal dilated proximal colon and absence of gas in the pelvic colon. Barium enema using a catheter without a balloon and with the tip inserted barely beyond the anal sphincter usually demonstrates a narrow distal segment with a sharp transition to the proximal dilated (normal) colon. Transition zones may not be seen in neonates since the normal proximal bowel has not had time to become dilated. Retention of barium for 24–48 hours is not diagnostic of Hirschsprung disease in older children as it typically occurs in retentive constipation as well.

D. Special Examinations
Rectal manometric testing reveals failure of reflex relaxation of the internal anal sphincter after distention of the rectum in all patients with Hirschsprung disease, regardless of the length of the aganglionic segment. In occasional patients, a nonrelaxing internal anal sphincter is the only abnormality. This condition is often called “ultrashort segment Hirschsprung disease.”

Differential Diagnosis
Hirschsprung disease accounts for 15%–20% of cases of neonatal intestinal obstruction. It must be differentiated from the small left colon syndrome by biopsy. In childhood, Hirschsprung disease must be differentiated from retentive constipation, hypothyroidism, intestinal pseudo-obstruction, and other motility disorders. In older infants and children, it can also be confused with CD because of the striking abdominal distention and failure to thrive.

Treatment & Prognosis
Treatment is surgical. Depending on the child’s size and state of health, a diverting colostomy (or ileostomy) may be performed or the surgeon may undertake a primary repair. In unstable infants, resection of the aganglionic segment may be postponed. At the time of definitive surgery, the transition zone between ganglionated and nonganglionated bowel is identified. Aganglonic bowel is resected, and a pull-through of ganglionated bowel to the preanal rectal remnant is made. The three most commonly performed repairs are the Swenson, Duhamel, and Soave procedures. Several surgical techniques, including laparoscopic pull-through, are in use. In children with ultrashort segment disease, an internal anal sphincter myotomy, or botulinum toxin injection of the internal anal sphincter may control symptoms.

Complications after surgery include fecal retention, fecal incontinence, anastomotic breakdown, or anastomotic stricture. Postoperative obstruction may result from inadvertent retention of a distal aganglionic colon segment or postoperative destruction of ganglion cells secondary to vascular impairment. Neuronal dysplasia of the remaining bowel may produce a pseudo-obstruction syndrome. Enterocolitis occurs postoperatively in 15% of patients.

**CONSTITUTION**

Chronic constipation in childhood is defined as two or more of the following characteristics for 2 months: (1) fewer than three bowel movements per week; (2) more than one episode of encopresis per week; (3) impaction of the rectum with stool; (4) passage of stool so large it obstructs the toilet; (5) retentive posturing and fecal withholding; and (6) pain with defecation. Retention of feces in the rectum results in encopresis (involuntary fecal leakage) in 60% of children with constipation. Most constipation in childhood is a result of voluntary or involuntary retentive behavior (chronic retentive constipation). About 2% of healthy primary school children have chronic retentive constipation. The ratio of males to females may be as high as 4:1.

**Clinical Findings**

Infants younger than 3 months often grunt, strain, and turn red in the face while passing normal stools. Failure to appreciate this normal developmental pattern may lead to the unwise use of laxatives or enemas. Many infants who strain are displaying symptoms of infant dyschezia. The diagnostic criteria for infant dyschezia are at least 10 minutes of straining and crying before successful passage of soft stools in an otherwise healthy infant younger than 6 months. Infants and children may, however, develop the ability to ignore the sensation of rectal fullness and retain stool. Many factors reinforce this behavior, which results in impaction of the rectum and overflow incontinence or encopresis. Among
these are painful defecation; skeletal muscle weakness; psychological issues, especially those relating to abuse, control and authority; modesty and distaste for school bathrooms; medications; and other factors listed in Table 21–2. The dilated rectum gradually becomes less sensitive to fullness, thus perpetuating the problem.

**Differential Diagnosis**

One must distinguish between chronic retentive constipation from Hirschsprung disease as summarized in Table 21–3.

**Treatment**

A careful diet history is important to ensure that the child is consuming adequate dietary fiber and maintaining an adequate fluid intake. If diet change alone is ineffective, medications may be required. Treatment is usually begun with osmotic stool softeners such as milk of magnesia, lactulose, or polyethylene glycol solution (MiraLax). Stimulant laxatives such as standardized extract of senna fruit (Senokot syrup, ExLax) can be used for those with chronic difficulties in which there are concerns about a dilated colon resulting in inefficient emptying. If encopresis is present, treatment should start with relieving fecal impaction. Disimpaction can be achieved in several ways, including medications such as hypertonic phosphate or saline enemas, mineral oil (2–3 mL/kg/d), and nonabsorbable osmotic agents such as polyethylene glycol (MiraLax, 1 g/kg/d) and milk of magnesia (1–2 mL/kg/d). Effective stool softeners should thereafter be given regularly in doses sufficient to induce two or three loose bowel movements per day. After several weeks to months of regular loose stools, stool softeners can be tapered and stopped. For many children with retentive constipation, behavioral modification is an integral part of management. Regular toilet sitting, ensuring proper foot placement while sitting on the toilet and addressing any underlying fears about toileting by the child. Mineral oil should not be given to nonambulatory infants, physically handicapped or bed-bound children, or any child with GE reflux. Aspiration of mineral oil may cause lipid pneumonia. A multiple vitamin supplement is recommended while mineral oil is given. Recurrence of encopresis is common and should be treated promptly to eliminate the fecal impaction and avoid the cycle of impaction, soiling, and retentive behaviors.

**Table 21–2. Causes of constipation.**

<table>
<thead>
<tr>
<th>Functional or retentive causes</th>
<th>Abnormalities of myenteric ganglion cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary causes</td>
<td>Hirschsprung disease</td>
</tr>
<tr>
<td>Undernutrition, dehydration</td>
<td>Waardenburg syndrome</td>
</tr>
<tr>
<td>Excessive milk intake</td>
<td>Multiple endocrine neoplasia 2a</td>
</tr>
<tr>
<td>Lack of bulk</td>
<td>Hypo- and hyperganglionosis</td>
</tr>
<tr>
<td>Cathartic abuse</td>
<td>von Recklinghausen disease</td>
</tr>
<tr>
<td>Drugs</td>
<td>Multiple endocrine neoplasia 2b</td>
</tr>
<tr>
<td>Narcotics</td>
<td>Intestinal neuronal dysplasia</td>
</tr>
<tr>
<td>Antihistamines</td>
<td>Chronic intestinal pseudo-obstruction</td>
</tr>
<tr>
<td>Some antidepressants</td>
<td>Spinal cord defects</td>
</tr>
<tr>
<td>Vincristine</td>
<td>Metabolic and endocrine disorders</td>
</tr>
<tr>
<td>Structural defects of gastrointestinal tract</td>
<td>Hypothyroidism</td>
</tr>
<tr>
<td>Anus and rectum</td>
<td>Hyperparathyroidism</td>
</tr>
<tr>
<td>Fissure, hemorrhoids, abscess</td>
<td>Renal tubular acidosis</td>
</tr>
<tr>
<td>Anterior ectopic anus</td>
<td>Diabetes insipidus (dehydration)</td>
</tr>
<tr>
<td>Anal and rectal stenosis</td>
<td>Vitamin D intoxication (hypercalcemia)</td>
</tr>
<tr>
<td>Presacral teratoma</td>
<td>Idiopathic hypercalcemia</td>
</tr>
<tr>
<td>Small bowel and colon</td>
<td>Skeletal muscle weakness or incoordination</td>
</tr>
<tr>
<td>Tumor, stricture</td>
<td>Cerebral palsy</td>
</tr>
<tr>
<td>Chronic volvulus</td>
<td>Muscular dystrophy/myotonia</td>
</tr>
<tr>
<td>Intussusception</td>
<td>Smooth muscle diseases</td>
</tr>
<tr>
<td>Scleroderma and dermatomyositis</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>Chronic intestinal pseudo-obstruction</td>
</tr>
</tbody>
</table>

Table 21-3. Differentiation of retentive constipation and Hirschsprung disease.

<table>
<thead>
<tr>
<th></th>
<th>Retentive Constipation</th>
<th>Hirschsprung Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>2-3 y</td>
<td>At birth</td>
</tr>
<tr>
<td>Abdominal distention</td>
<td>Rare</td>
<td>Present</td>
</tr>
<tr>
<td>Nutrition and growth</td>
<td>Normal</td>
<td>Poor</td>
</tr>
<tr>
<td>Soiling and retentive behavior</td>
<td>Intermittent or constant</td>
<td>Rare</td>
</tr>
<tr>
<td>Rectal examination</td>
<td>Ampulla full</td>
<td>Ampulla may be empty</td>
</tr>
<tr>
<td>Rectal biopsy</td>
<td>Ganglion cells present</td>
<td>Ganglion cells absent</td>
</tr>
<tr>
<td>Rectal manometry</td>
<td>Normal rectoanal reflex</td>
<td>Nonrelaxation of internal anal sphincter after rectal distention</td>
</tr>
<tr>
<td>Barium enema</td>
<td>Distended rectum</td>
<td>Narrow distal segment with proximal megacolon</td>
</tr>
</tbody>
</table>


**ANAL FISSURE**

Anal fissure is a slit-like tear in the squamous epithelial mucosa of the anal canal between the anocutaneous junction and the dentate line that usually occurs secondary to the passage of large, hard fecal masses. Anal stenosis, anal crypt abscess, and trauma can be contributory factors. Most anal fissures are single in number and occur at the posterior midline. Multiple fissures of the anal canal, lateral fissures, or those that extend proximal to the dentate line should raise the suspicion of a more serious underlying disease process including sexual abuse. Anal fissures may be the presenting sign of CrD disease in older children.

The infant or child with anal fissure typically cries with defecation and will try to hold back stools. Sparse, bright red bleeding is seen on the outside of the stool or on the toilet tissue following defecation. The fissure can often be seen if the patient is examined in a knee-chest position with the buttocks spread apart. When a fissure cannot be identified, it is essential to rule out other causes of rectal bleeding such as juvenile polyp, perianal inflammation due to group A β-hemolytic streptococcus, or inflammatory bowel disease (IBD). Anal fissures should be treated promptly to break the constipation, fissure, pain, retention, and constipation cycle. A stool softener should be given. Anal dilation relieves sphincter spasm. Warm sitz baths after defeation may be helpful. Rarely, silver nitrate cauterization or surgery is indicated. Anal surgery should be avoided in patients with Crohn disease because of the high risk of recurrence and progression after surgery.

**CONGENITAL ANORECTAL ANOMALIES**

1. **Anterior Displacement of the Anus**

   Anterior displacement of the anus is a common anomaly of infant girls. Its usual presentation in infants is constipation and straining with stool. On physical examination, the anus looks normal but is ventrally displaced, located close to the vaginal fourchette (in females) or to the base of the scrotum (in males). The diagnosis is made in girls if the distance from the vaginal fourchette to the center of the anal opening is less than 34% of the total distance from fourchette to coccyx. In boys, the diagnosis is made if the distance from the base of the scrotum to the anal aperture is less than 46% of the total distance from scrotum to coccyx. Often on internal digital examination a posterior “rectal shelf” will be appreciated. In severe anterior displacement, when the anal opening is located less than 10% of the distance from the vaginal fourchette to the coccyx, the anal sphincter muscle may not completely encircle the anal opening and severe obstipation similar to that seen in imperforate anus may occur. Indeed, extreme anterior displacement of the anus may be a form of imperforate anus. Surgery is not needed in most cases. Stool softeners or occasional glycerin suppositories usually relieve straining. This problem improves significantly by age 3–4 years as normal toddler lordosis disappears.

2. **Anal Stenosis**

   Anal stenosis usually presents in the newborn period. The anal aperture may be very small and filled with a dot of meconium. Defecation is difficult, with ribbonlike stools, blood and mucus per rectum, fecal impaction, and abdominal distention. Anal stenosis occurs in about 3 of 10,000 live births, with slightly more males affected. Anal stenosis may not be apparent at birth because the anus looks normal. Rectal bleeding in a straining infant often leads to a rectal examination which reveals a tight ring in the anal canal. Dilation of the anal ring is usually curative but may have to be repeated daily for several weeks.

3. **Imperforate Anus**

   Imperforate anus typically develops during the fifth to seventh week of pregnancy and occurs in 1 of 5000 live births, slightly more common males. Almost 50% of babies with...
imperforate anus have additional defects, often in association with a particular syndrome.

Defects are generally classified as low (rectoperineal malformation); the rectum may not connect to the anus, a membrane may be present over the anal opening, the anal opening may be narrow or misplaced, or a high lesion where the rectum may connect to part of the urinary tract or the reproductive system through a fistula. Infants with low imperforate anus fail to pass meconium. There may be a greenish bulging membrane obstructing the anal aperture. Perforation of the anal membrane is a relatively simple surgical procedure. A skin tag shaped like a “bucket handle” is seen on the perineum of some males below which a stenotic aperture can be seen. The aperture is sometimes surrounded by normal anal musculature, but in many cases the aperture is a rectoperineal fistula and the anal musculature is displaced posteriorly or is absent. Eighty to 90% of patients with low imperforate anus are continent after surgery.

In high imperforate anus, physical examination usually shows no anal musculature. There may be a rectoperineal, rectovesicular, rectourethral, or rectovaginal fistula; hypoplastic buttocks; cloacal anomalies; and sometimes evidence of distal neurologic deficit. It is critical in these cases to fully evaluate the complex anatomy and neurologic function before attempting corrective surgery. A diverting colostomy is usually performed to protect the urinary tract and relieve obstruction. After reparative surgery, only 30% of patients with high imperforate anus achieve fecal continence.

In recent years there has been an alarming increase in the incidence, morbidity, and mortality of *C difficile* reported in Europe, Canada, and the United States. At least a portion of this increase seems to be due to the expansion of a new strain of *C difficile*, identified as the North American Pulsed Field type 1 (NAP1) *C difficile*, which has been found to have increased toxin production, sporulation, and antibiotic resistance. Surveillance from children’s hospitals seems to mirror the increase in incidence of *C difficile* in adults but not necessarily the increase in morbidity and mortality. Pediatric hospitalizations in the United States due to *C difficile* have almost doubled between 1997 and 2006. The NAP1 strain was identified in 19% of *C difficile* isolates in a recent pediatric study.

**Clinical Findings**

*Clostridium difficile* in children leads to a spectrum of clinical symptoms, ranging from asymptomatic colonization to persistent, watery diarrhea to pseudomembranous colitis. Recognizing that antibiotic exposure remains a critical risk factor, the onset of colitis ranges from 1 to 14 days after initiation of antibiotic therapy to as many as 30 days after antibiotics have been discontinued. Clindamycin was one of the first antibiotics associated with pseudomembranous colitis, but now all antibiotics are now recognized to be potential causes, although erythromycin seems less likely than most. In pediatric patients, amoxicillin and cephalosporins are commonly associated with pseudomembranous enterocolitis, probably because of their widespread use.

The patient with pseudomembranous colitis characteristically has fever, abdominal distention, tenesmus, diarrhea, and generalized abdominal tenderness. Chronic presentations with low-grade fever, diarrhea, and abdominal pain have
been described. Diarrheal stools contain sheets of neutrophils and sometimes gross blood. Plain abdominal radiographs show a thickened colon wall and ileus. Endoscopically, the colon appears to be covered by small, raised white plaques (pseudomembranes) with areas of apparently normal bowel in between (Figure 21–5). Biopsy specimens show “exploding crypts or volcano lesion”—an eruption of white cells that appears to be shooting out of affected crypts. Stool cultures often show overgrowth of *Staphylococcus aureus*, which is probably an opportunistic organism growing in the necrotic tissue. *C difficile* can be cultured in specialized laboratories. Identification of stool toxins is the usual method of diagnosis. Use of real-time polymerase chain reaction (PCR) for toxin identification has been replacing more traditional enzyme immunoassay (EIA) methods of stool toxin detection, because of improved sensitivity. Interpretation of *C difficile* diagnostic testing in infants remains controversial because asymptomatic colonization is well recognized in the first year of life.

**Treatment**

Standard treatment of pseudomembranous colitis consists of stopping antibiotics and instituting therapy with oral metronidazole (30 mg/kg/d) or vancomycin (30–50 mg/kg/d). Vancomycin is many times more expensive than metronidazole and no more efficacious. Metronidazole can be given intravenously in patients with vomiting or ileus. With increasing virulence and antibiotic resistance being reported, alternative therapies, such as rifaximin and nitazoxanide, are being used and show similar response rates as oral vancomycin. Relapse occurs after treatment in 10%–50% of patients because of exsporulation of residual spores in the colon. Spores are very hardy and may remain viable on inanimate surfaces for up to 12 months. Retreatment with the same antibiotic regimen is usually effective, but multiple relapses are possible and may be a significant management problem. Adjunctive strategies, such as *Saccharomyces boulardii* probiotic therapy, cholestyramine as a toxin-binder and pulsed courses of antibiotics have been used for refractory disease. Fecal bacteriotherapy, known popularly as fecal transplantation, is now a widely accepted and nearly 100% effective treatment for the treatment of recurrent *C difficile* infection in adults but experience remains limited in children.

**DISORDERS OF THE PERITONEAL CAVITY**

**PERITONITIS**

Primary bacterial peritonitis accounts for less than 2% of childhood peritonitis. The most common causative organisms are *Escherichia coli*, other enteric organisms, hemolytic streptococci, and pneumococci. Primary peritonitis occurs in patients with splenectomy, splenic dysfunction, or ascites (nephrotic syndrome, advanced liver disease, kwashiorkor). It also occurs in infants with pylonephritis or pneumonia. Secondary peritonitis is much more common. It is associated with peritoneal dialysis, penetrating abdominal trauma, or ruptured viscus. The organisms associated with secondary peritonitis vary with the cause. Organisms not commonly pathogenic such as *Staphylococcus epidermidis* and *Candida* may cause secondary peritonitis in patients receiving peritoneal dialysis. Multiple enteric organisms may be isolated after penetrating abdominal injury, bowel perforation, or ruptured appendicitis. Intra-abdominal abscesses may form in pelvic, subhepatic, or subphrenic areas, but discrete localization of infection is less common in young infants than in adults.
Symptoms of peritonitis include abdominal pain, fever, nausea, vomiting, acidosis, and shock. Respirations are shallow. The abdomen is tender, rigid, and distended, with involuntary guarding. Bowel sounds may be absent. Diarrhea is fairly common in primary peritonitis and less so in secondary peritonitis. Most peritonitis is an acute medical emergency. In patients receiving peritoneal dialysis, peritonitis can be a chronic infection causing milder symptoms.

Leukocyte count is high initially (> 20,000/μL) with a predominance of immature forms, and later it may fall to neutropenic levels, especially in primary peritonitis. Abdominal imaging can confirm the presence of ascites. Bacterial peritonitis should be suspected if paracentesis fluid contains more than 500 leukocytes/μL or more than 32 mg/dL of lactate; if it has a pH less than 7.34; or if the pH is over 0.1 pH unit less than arterial blood pH. Diagnosis is made by Gram stain and culture, preferably of 5–10 mL of fluid for optimal yield. The blood culture is often positive in primary peritonitis.

Antibiotic treatment and supportive therapy for dehydration, shock, and acidosis are indicated. Surgical treatment of the underlying cause of secondary peritonitis is critical. Removal of infected peritoneal dialysis catheters in patients with secondary peritonitis is sometimes necessary and almost always required if Candida infection is present.


CHYLOUS ASCITES

Neonatal chylous ascites may be due to congenital infection or developmental abnormality of the lymphatic system (intestinal lymphangiectasia). If the thoracic duct is involved, chylothorax may be present. Later in life, chylous ascites may result from congenital lymphangiectasia, retroperitoneal or lymphatic tumors, peritoneal bands, abdominal trauma, or infection, or it may occur after cardiac or abdominal surgery. It may be associated with intestinal malrotation.

Clinical Findings

A. Symptoms and Signs

Both congenital and acquired lymphatic obstructions cause chylous ascites, diarrhea, and failure to thrive. The abdomen is distended, with a fluid wave and shifting dullness. Unilateral or generalized peripheral edema may be present.

B. Laboratory Findings

Laboratory findings include hypoalbuminemia, hypogammaglobulinemia, and lymphopenia. Ascitic fluid contains lymphocytes and has the biochemical composition of chyle if the patient has just been fed; otherwise, it is indistinguishable from ascites secondary to cirrhosis.

Differential Diagnosis

Chylous ascites must be differentiated from ascites due to liver disease and in the older child, from constrictive pericarditis, chronically elevated right heart pressure, malignancy, infection, or inflammatory diseases causing lymphatic obstruction. In the newborn, urinary ascites from anatomic abnormalities of the kidney or collecting system must be considered. A simple test to diagnose urinary ascites is a urea nitrogen or creatinine concentration of abdominal fluid. Neither of these is present in chylous or hepatic ascites.

Complications & Sequelae

Chylous ascites caused by intestinal lymphatic obstruction is associated with fat malabsorption and protein loss. Intestinal loss of albumin and γ-globulin may lead to edema and increase the risk of infection. Rapidly accumulating chylous ascites may cause respiratory complications. The primary infections and malignancies causing chylous ascites may be life threatening.

Treatment & Prognosis

Little can be done to correct congenital abnormalities due to hypoplasia, aplasia, or ectasia of the lymphatics unless they are surgically resectable. More recently, somatostatin and fibrin glue have been tried with varying success. Treatment is supportive, consisting mainly of a very high-protein diet and careful attention to infections. Shunting of peritoneal fluid into the venous system is sometimes effective. A fat-free diet supplemented with medium-chain triglycerides decreases the formation of chylous ascites. Total PN (TPN) may rarely be necessary. Infusions of albumin generally provide only temporary relief and are rarely used for chronic management. In the neonate, congenital chylous ascites may spontaneously disappear following one or more paracenteses and a medium-chain triglyceride diet.

JUVENILE POLYPS

Juvenile polyps belong to the hamartomatous category of polyps and are usually pedunculated and solitary (Figure 21–6). The head of the polyp is composed of hyperplastic glandular and vascular elements, often with cystic transformation. Juvenile polyps are benign, and 80% occur in the rectosigmoid. These are the most common type of intestinal polyps in children. Their incidence is highest between ages 3 and 5 years. They are rare before age 1 year and usually occur before age 10. The painless passage of small amounts of bright red blood with mucus on a normal or constipated stool is the most frequent manifestation. Abdominal pain is rare, but low-lying polyps may prolapse during defecation. Colonoscopy is diagnostic and therapeutic when polyps are suspected. After removal of the polyp by electrocautery, nothing further should be done if histologic findings confirm the diagnosis. There is a slight risk of developing further juvenile polyps. Other polyposis syndromes are summarized in Table 21–4.

Rarely, many juvenile polyps may be present in the colon, causing anemia, diarrhea with mucus, and protein loss. An individual may be diagnosed with juvenile polyposis syndrome if there are more than five juvenile polyps in the colon, multiple juvenile polyps elsewhere in the GI tract, or any number of juvenile polyps with a family history of juvenile polyposis syndrome. Other types of hamartomatous polyp syndromes include Peutz–Jeghers syndrome and the PTEN hamartoma tumor syndrome. Peutz–Jeghers syndrome is associated with polyps commonly in the small intestine and colon but can also be seen in the stomach and in other organs. There is a distinctive mucocutaneous pigmentation (freckling) that appears early on but can disappear by age 5, along the vermilion border of the lips, buccal mucosa, and hands and feet. Besides of the higher risk of both GI and non-GI malignancies, routine cancer surveillance is necessary. In addition, 50% will develop intussusception at some point in their lifetime. PTEN hamartoma syndrome involves a spectrum of hamartomatous conditions that are associated with mutations in the PTEN gene. This includes nearly all Cowden syndrome and some Bannayan-Riley-Ruvalcaba syndrome and Proteus syndrome. Besides hamartomas and other benign tumors throughout the body, there is an increased risk of intestinal and extraintestinal cancers.

CANCERS OF THE ESOPHAGUS, SMALL BOWEL, & COLON

Esophageal cancer is rare in childhood. Cysts, leiomyomas, and hamartomas predominate. Caustic injury of the esophagus increases the very long-term risk of squamous cell carcinoma. Chronic peptic esophagitis is associated with Barrett esophagus, a precancerous lesion. Simple GE reflux in infancy without esophagitis is not a risk for cancer of the esophagus.

The most common gastric or small bowel cancer in children is lymphoma or lymphosarcoma. Intermittent abdominal pain, abdominal mass, intussusception, or a celiac-like picture may be present. Carcinoid tumors are usually benign and most often an incidental finding in the appendix. Metastasis is rare. The carcinoid syndrome (flushing, sweating, hypertension, diarrhea, and vomiting), associated with serotonin secretion, only occurs with metastatic carcinoid tumors.

Adenocarcinoma of the colon is rare in childhood. The transverse colon and rectosigmoid are the two most commonly affected sites. The low 5-year survival rate relates to the nonspecificity of presenting complaints and the large
percentage of undifferentiated types. Children with a family history of colon cancer, chronic ulcerative colitis (UC), or familial polyposis syndromes are at greater risk.

### MESENTERIC CYSTS

Mesenteric and omental cysts are rare intra-abdominal masses in children. These cysts may be small or large, single or multiloculated. They are thin-walled and contain serous, chylous, or hemorrhagic fluid. They are commonly located in the small bowel mesentery but are also found in the mesocolon. Most mesenteric cysts cause no symptoms and are found incidentally. Traction on the mesentery may lead to colicky abdominal pain, which can be mild and recurrent but may appear acutely with vomiting. Volvulus may occur around a cyst, and hemorrhage into a cyst may be mild or hemodynamically significant. A rounded mass can occasionally be palpated or seen on radiograph displacing adjacent intestine. Abdominal ultrasonography is usually diagnostic. Surgical removal is indicated.

### INTESTINAL HEMANGIOMAS AND VASCULAR MALFORMATIONS

Hemangiomas and vascular malformations of the GI tract are uncommon causes of GI bleeding in children and adults. Like their skin counterparts, intestinal hemangiomas are typically not present at birth and then appear in the first 2 months of life, undergoing a rapidly proliferating growth phase during the first year, during which they are most likely to cause symptomatic bleeding, before involution thereafter. Vascular malformations include capillary, arterial, venous, and mixed lesions, and are present from birth with risk of bleeding throughout life. The physically largest subtype of vascular lesion is the cavernous malformation, which may protrude into the lumen as a polypoid lesion or may invade the intestine from mucosa to serosa.
Clinical Presentation

These vascular lesions are most often found in the small intestine and may cause acute or occult blood loss. They may also cause intussusception, local stricture, or intramural hematoma. Thrombocytopenia and consumptive coagulopathy are occasional complications of rapidly growing hemangiomas during their rapid proliferation phase. Typically intestinal vascular lesions are found in isolation, but associated syndromes include the blue rubber bleb nevus syndrome, the Osler-Rendu-Weber syndrome, and the Klippel-Trenaunay-Weber syndrome. The diagnosis of GI bleeding can be challenging, particularly when bleeding is occult. The physical examination is typically not helpful unless there are other skin hemangiomas present in the young child that may point to an intestinal hemangioma. Vascular protocols with CT or magnetic resonance imaging (MRI) may identify larger vascular lesions. Endoscopic techniques remain crucial to the diagnosis of intestinal vascular lesions. Video capsule endoscopy and small bowel enteroscopy have allowed for diagnosis and potential therapy of small bowel vascular lesions that were previously inaccessible endoscopically.

Treatment

Rapidly proliferating hemangiomas of the skin and liver have been treated medically with corticosteroids, propranolol, interferon, and vincristine. There is relatively little experience with using these medical techniques for intestinal hemangiomas. Endoscopic techniques for treatment of vascular lesions include banding, submucosal injections of sclerosants, and electrocautery methods. Surgical resection of the vascular lesion and surrounding bowel may be required for lesions in the mid-small bowel that are not accessible by endoscopy or for large lesions that are not amenable to endoscopic therapies.


1. Rotavirus Infection

The incubation period for rotavirus is 1–3 days. Symptoms caused by rotavirus are similar to other viral pathogens. Vomiting is the first symptom in 80%–90% of patients, followed within 24 hours by low-grade fever and watery diarrhea. Diarrhea usually lasts 4–8 days but may last longer in young infants or immunocompromised patients. Rotavirus cannot be definitively diagnosed on clinical grounds alone. Rotavirus antigens can be identified in stool or virus can be seen by scanning electron microscopy. The specific identification of rotavirus is not required in every case, however, as treatment is nonspecific. Additionally laboratory testing is also generally unnecessary, but, when obtained, it will usually show a normal white blood cell count. Hyper- or hypotension may occur with dehydration. Metabolic acidosis can occur from bicarbonate loss in the stool, ketosis from poor intake, and in severe cases lactic acidemia occurs from hypotension and hypoperfusion. Stools do not contain blood or white blood cells.

Treatment is nonspecific and supportive, aimed at replacement of fluid and electrolyte deficits, along with ongoing losses, especially in small infants. (Oral and intravenous therapy are discussed in Chapter 45.) The use of oral rehydration solutions is appropriate in most cases. The use of clear liquids or hypocaloric (dilute formula) diets for more than 48 hours is not advisable. Early initiation of refeeding is recommended. Intestinal lactase levels may be reduced during rotavirus infection. Therefore, the brief use of a lactose-free diet may be associated with a shorter period of diarrhea but is not critical to successful recovery in healthy infants. Reduced fat intake during recovery may decrease nausea and vomiting.

Antidiarrheal medications are ineffective (kaolin-pectin combinations) and in some circumstances can be dangerous (loperamide, tincture of opium, diphenoxylate with atropine). Bismuth subsalicylate preparations may reduce stool volume but are not critical to recovery. Oral immunoglobulin or specific antiviral agents have occasionally been useful in limiting duration of disease in immunocompromised patients.

Most children are infected with rotavirus more than once, with the first infection being the most severe. Some protective immunity is imparted by the first infection. Prevention of infection occurs primarily by good hygiene and prevention of fecal-oral contamination. As treatment for rotavirus is nonspecific, prevention of illness is critical.
The American Academy of Pediatrics issued guidelines in January 2007 recommending the routine use of bovine-based pentavalent rotavirus vaccine to be given orally to infants at 2, 4, and 6 months of age.

2. Other Viral Infections Causing Acute Diarrhea

Other viral pathogens causing diarrhea in children can be identified in stool by electron microscopy, viral culture, or enzyme-linked immunosassay. Depending on the geographic location, enteric adenoviruses (serotypes 40 and 41) or caliciviruses are the next most common viral pathogens in infants. The symptoms of enteric adenovirus infection are similar to those of rotavirus, but infection is not seasonal and the duration of illness may be longer. The Norwalk agent (now called norovirus), a calicivirus, is a small RNA virus that mainly causes vomiting but can also cause diarrhea in older children and adults, usually in common source outbreaks. The duration of symptoms is short, usually 24–48 hours. Other potentially pathogenic viruses include astroviruses, corona-like viruses, and other small round viruses.

Cytomegalovirus rarely causes diarrhea in immunocompetent children but may cause erosive colitis or enteritis in immunocompromised hosts. Cytomegalovirus enteritis is particularly common after solid-organ and bone marrow transplant and in the late stages of human immunodeficiency virus (HIV) infection. Probiotics are moderately effective in treating acute viral gastroenteritis in healthy children. Probiotics should be used with extreme caution, however, in immunocompromised, chronically debilitated, or seriously ill children.

1. Causes of Chronic Diarrhea

A. Antibiotic Therapy

Acute and chronic diarrhea is reported in up to 60% of children receiving antibiotics. Only a small fraction of these patients have C. difficile–related pseudomembranous enterocolitis. Eradication of normal gut flora and overgrowth of other organisms may cause antibiotic-associated diarrhea. Most antibiotic-associated diarrhea is watery, is not associated with systemic symptoms, and decreases when antibiotic therapy is stopped. Recent data suggest that the use of probiotics may decrease the incidence and severity of this diarrhea by helping to restore intestinal microbial balance.

B. Extraintestinal Infections

Infections of the urinary tract and upper respiratory tract (especially otitis media) are at times associated with diarrhea, though the mechanism is incompletely understood. Antibiotic treatment of the primary infection, toxins released by infecting organisms, and local irritation of the rectum (in patients with bladder infection) may play a role.

C. Malnutrition

Malnutrition is associated with an increased frequency of enteric infections. Decreased bile acid synthesis, decreased pancreatic enzyme output, decreased disaccharidase activity, altered motility, and changes in the intestinal flora all may contribute to diarrhea. In addition, severely malnourished children are at higher risk of enteric infections because of depressed immune functions, both cellular and humoral.

D. Diet and Medications

Relative deficiency of pancreatic amylase in young infants causes osmotic diarrhea after starchy foods. Fruit juices, especially those high in fructose or sorbitol, produce diarrhea because these osmotically active sugars are poorly absorbed. Intestinal irritants (spices and foods high in fiber)
and histamine-containing or histamine-releasing foods (eg, citrus fruits, tomatoes, fermented cheeses, red wines, and scombroid fish) may also cause diarrhea.

Laxative abuse in association with eating disorders or münchausen syndrome by proxy can cause unpredictable diarrhea. A high concentration of magnesium in the stool may indicate overuse of milk of magnesia or other magnesium-containing laxatives. Detection of other laxative preparations in the stool or circulation requires sophisticated analysis not available in most laboratories. A high index of suspicion and careful observation may be required to make this diagnosis.

E. Allergic Diarrhea

Diarrhea resulting from allergy to dietary proteins is a frequently entertained but rarely proven diagnosis. GI symptoms from cow’s milk protein allergy are more common in infants younger than 12 months.

In contrast to the self-limited cow’s milk protein hypersensitivity of infancy, infants, and older children may develop more severe diarrhea caused by a systemic allergic reaction. For instance, food protein–induced enterocolitis syndrome (FPIES) is a life-threatening condition occurring during infancy manifested by large volume diarrhea, acidosis, and shock as a result of an allergic reaction to common food proteins such as milk and soy. Patients require hospitalization for volume resuscitation and strict avoidance of allergens. Reintroduction of allergens should be performed in a controlled setting by an experienced allergist.

Infants and children may develop an enteropathy secondary to milk protein, resulting in flattening of small bowel villi, steatorrhea, hypoproteinemia, occult blood loss, and chronic diarrhea. Skin testing is not reliable since it detects circulating antibodies, not the T-cell–mediated responses that are probably responsible for food sensitivity reactions. Double-blind oral challenge with the suspected food under careful observation is often necessary to confirm this intestinal protein allergy. Small bowel biopsy findings are nonspecific. The diagnosis is often confirmed by either double-blind oral challenge with the suspected food or dietary elimination of the food followed by disappearance of occult blood in the stool and improvement in other symptoms. Consultation with an allergist is recommended for long-term management of patients with this disease.

Anaphylactic, immunoglobulin E (IgE)–mediated reactions to foods can occur in both young and older children. After ingestion, the patient quickly develops vomiting, then diarrhea, pallor, and hypotension. In these cases, radioallergosorbent test (RAST) and skin testing are positive. Food challenges should be undertaken in a setting in which resuscitation can be performed as there is often a progressively more severe reaction with subsequent ingestions. The close association between ingestion and symptoms usually leaves little doubt about the diagnosis.

F. Chronic Nonspecific Diarrhea

Chronic nonspecific diarrhea, also called toddler’s diarrhea, is the most common cause of loose stools in otherwise thriving children. The typical patient is a healthy, thriving child aged 6–20 months who has three to six loose stools per day during the waking hours. They do not have blood in their stools. They grow normally and may have a family history of functional bowel disease. No organic etiology is found for their diarrhea, with stool tests for blood, white blood cells, fat, parasites, and bacterial pathogens being negative. Diarrhea may worsen with a low-residue, low-fat, or high-carbohydrate diet and during periods of stress and infection. Excessive fruit juice ingestion seems to worsen symptoms. This syndrome resolves spontaneously usually by age 3½ years or after potty training. Possible causes of this diarrhea include abnormalities of bile acid absorption in the terminal ileum, excess intake of osmotically active carbohydrates, and abnormal motor function. A change in dietary fiber (either increasing fiber if deficient or decreasing fiber if excessive), a slight increase in dietary fat, and restriction of osmotically active carbohydrates like fruit juices will usually help control symptoms. If these measures fail, loperamide (0.1–0.2 mg/kg/d in two or three divided doses) can be used as needed for symptomatic relief.

G. Immunologic Causes of Chronic Diarrhea

Chronic diarrhea is common in immune deficiency states, especially immunoglobulin A (IgA) deficiency and T-cell abnormalities. It can be due to an autoimmune enteropathy associated with the immune deficient state or could be due to chronic infection. The infectious causes of the diarrhea include common bacterial, viral, fungal, or parasitic organisms usually considered nonpathogenic (rotavirus, Blastocystis hominis, Candida), or unusual organisms (cytomegalovirus, Cryptosporidium, Isospora belli, Mycobacterium spp, microsporidia).

Between 50% and 60% of patients with common variable immune deficiency have enteropathy characterized by intestinal villous atrophy. Lymphomnodular hyperplasia of the small intestine is also prominent. Patients with congenital or Bruton-type agammaglobulinemia usually have diarrhea and abnormal intestinal morphology. Patients with isolated IgA deficiency can have chronic diarrhea, a celiac disease-like picture, lymphoid nodular hyperplasia, and are prone to giardiasis. Patients with isolated defects of cellular immunity, combined cellular and humoral immune incompetence, and HIV infection may have severe chronic diarrhea leading to malnutrition but often the cause cannot be identified. Chronic granulomatous disease may be associated with intestinal symptoms suggestive of chronic IBD. Specific treatments are available for many of the unusual pathogens causing diarrhea in the immunocompromised host. Thus, a vigorous diagnostic search for specific pathogens is warranted in these
individuals. In addition, treatment must be directed toward correcting the immunologic defect.

**H. Other Causes of Chronic Diarrhea**

Most infections of the GI tract are acute and resolve spontaneously or with specific antibiotic therapy. Organisms most prone to cause chronic or recurrent diarrhea in immunocompetent children are *Giardia lamblia*, *Entamoeba histolytica*, *Salmonella* species, and *Yersinia*. Infection with these organisms requires a small inoculum. Some patients may develop a postinfectious diarrhea, with persistent diarrhea present despite the eradication of the offending organism, either viral or bacterial. Bacterial overgrowth of the small bowel in patients with SBS, those undergoing chemotherapy, or with anatomic abnormalities may experience chronic diarrhea.

Pancreatic insufficiency due to cystic fibrosis or Shwachman–Diamond Syndrome may result in chronic diarrhea, typically in conjunction with failure to thrive. Certain tumors of childhood (neuroblastoma, ganglieneuroma, metastatic carcinoma, pancreatic VIPoma, or gastrinoma) may secrete substances such as gastrin and vasoactive intestinal polypeptide (VIP) that promote small intestinal secretion of water and electrolytes. Conditions that result in increased or disordered intestinal motility such as hyperthyroidism or irritable bowel syndrome may also present with diarrhea. Children may present with large volume, chronic and intermittent watery diarrhea that does not cease when they discontinue oral feedings.

**GASTROINTESTINAL BLEEDING**

Vomiting blood and passing blood per rectum are alarming symptoms. The history, physical examination, and initial evaluation are key to identifying the bleeding source. In large-volume, acute GI bleeding the primary focus, however, should first center on stabilizing the patient to ensure adequate hemodynamic support.

**Table 21–5. Identification of sites of gastrointestinal bleeding.**

<table>
<thead>
<tr>
<th>Symptom or Sign</th>
<th>Location of Bleeding Lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effortless bright red blood from the mouth</td>
<td>Nasopharyngeal or oral lesions; tonsillitis; esophageal varices (Mallory-Weiss syndrome)</td>
</tr>
<tr>
<td>Vomiting of bright red blood or of “coffee grounds”</td>
<td>Lesion proximal to ligament of Treitz</td>
</tr>
<tr>
<td>Melanotic stool</td>
<td>Lesion proximal to ligament of Treitz, upper small bowel. Blood loss in excess of 50–100 mL/24 h</td>
</tr>
<tr>
<td>Bright red or dark red blood in stools</td>
<td>Lesion in the ileum or colon. (Massive upper gastrointestinal bleeding may also be associated with bright red blood in stool.)</td>
</tr>
<tr>
<td>Streak of blood on outside of a stool</td>
<td>Lesion in the rectal ampulla or anal canal</td>
</tr>
</tbody>
</table>

Gastrointestinal bleeding. A careful history of the specifics surrounding the bleeding is critical. Is the blood in emesis, stool, or both? How much blood is there and what is its color and character? History of NSAID use and other medications should be ascertained. Inquir as to associated dysphagia, epigastric pain, or retrosternal pain should be made and, if present, suggest GER or a peptic cause of bleeding. Table 21–6 gives further clues in the presentation to help identify the source of bleeding.

Other important aspects of the history include foreign-body/caustic ingestion, history of chronic illnesses (especially liver/biliary disease), personal or family history of food allergy/atopy, current and recent medications, associated symptoms (pain, vomiting, diarrhea, fever, weight loss), and family history of GI disorders (IBD, CD, liver disease, bleeding/coagulation disorder). In addition to these historical features, the age of the patient offers additional clues to determine the likely etiology. In the presence of massive upper GI bleeding in the toddler, a high index of suspicion for button battery ingestion must be maintained despite the lack of any known history of ingestion. Table 21–7 lists causes of GI bleeding by age and presentation.

**Physical Examination**

The most important aspect of the examination and initial assessment is to determine if the child acutely or chronically ill and initiate supportive measures as rapidly as necessary. The physical examination should be thorough. Physical signs of portal hypertension, intestinal obstruction, or coagulopathy are particularly important. The nasal passages should be inspected for signs of recent epistaxis, the vagina for menstrual blood, and the anus for fissures and hemorrhoids.
Skin examination should assess for hemangiomas, eczema, petechiae, or purpura.

A systolic blood pressure below 100 mm Hg and a pulse rate above 100 beats/min in an older child suggest at least a 20% reduction of blood volume. A pulse rate increase of 20 beats/min or a drop in systolic blood pressure greater than 10 mm Hg when the patient sits up is also a sensitive index of volume depletion. Tachycardia may be the initial indication of persistent bleeding.

### Laboratory Findings

Initial laboratory tests should include a complete blood cell count (CBC), prothrombin time (PT), and partial thromboplastin time (PTT), at minimum. In specific cases it may be prudent to add a liver profile (with suspected variceal bleeding), erythrocyte sedimentation rate (ESR)/CRP (with possible IBD), blood urea nitrogen (BUN)/creatinine (for possible hemolytic uremic syndrome), and stool culture/C difficile toxin assay (for acute bloody diarrhea suggestive of infectious colitis). Low mean corpuscular volume (MCV) in association with anemia suggests chronic GI losses and may warrant addition of iron studies as well. Serial determination of vital signs and hematocrit are essential to assess ongoing bleeding. Detection of blood in the gastric aspirate confirms a bleeding site proximal to the ligament of Treitz. However, its absence does not rule out the duodenum as the source. Testing the stool for occult blood will help monitor ongoing loss of blood. In a large

<table>
<thead>
<tr>
<th>Table 21–6. Differential diagnosis of gastrointestinal bleeding in children by symptoms and age at presentation.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Infant</strong></td>
</tr>
<tr>
<td>Hematemesys</td>
</tr>
<tr>
<td>Painless melena</td>
</tr>
<tr>
<td>Melena with pain, obstruction, peritonitis, perforation</td>
</tr>
<tr>
<td>Hematochezia with diarrhea, crampy abdominal pain</td>
</tr>
<tr>
<td>Hematochezia without diarrhea or abdominal pain</td>
</tr>
</tbody>
</table>

*aEctopic gastric tissue in jejunum or ileum without Meckel diverticulum.

*bClassically, “currant jelly” stool.

*cOften accompanied by vomiting and right upper quadrant pain.

In severe bleeding, the ABCs of resuscitation should be performed. Adequate IV access is critical in these cases to ensure that fluid boluses and blood products are able to be delivered. If a hemorrhagic diathesis is detected, vitamin K should be given intravenously and additional blood products should be administered as needed to correct any underlying coagulopathy. In severe bleeding, the need for volume replacement is monitored by measurement of central venous pressure. In less severe cases, vital signs, serial hematocrits, and gastric aspirates are sufficient.

In suspected upper GI bleeding, gastric lavage with saline should be performed, but there is no value of lavage in controlling bleeding. After stabilization, upper intestinal endoscopy may be considered to identify the bleeding site. Endoscopy is superior to barium contrast study for lesions such as esophageal varices, stress ulcers, and gastritis. A large retrospective study of endoscopy performed for upper GI bleeding in children found that a definitive source for bleeding was identified in 57%, with a suspected source in another 30%. Risk factors for a nondiagnostic endoscopy in this series were a history of bleeding of less than 1 month and a delay of greater than 48 hours between presentation and endoscopy. Acid suppression with intravenous H₂-antagonists or, preferably PPIs, may be helpful in suspected peptic causes of bleeding. Colonoscopy may identify the source of bright red rectal bleeding, but it should be performed as an emergency procedure only if the extent of bleeding warrants immediate investigation and if plain abdominal radiographs show no signs of intestinal obstruction. Colonoscopy on an unprepped colon is often inadequate for making a diagnosis. Capsule endoscopy may help identify the site of bleeding if colonoscopy and upper endoscopy findings are negative. Push or balloon enteroscopy may be helpful to perform therapeutic interventions, obtain biopsies, or mark small bowel lesions (prior to laparotomy/laparoscopy) identified on capsule endoscopy.

Persistent vascular bleeding (varices [Figure 21–7], vascular anomalies) may be relieved temporarily using intravenous octreotide, 1–4 mcg/kg/h. Sustained infusion of octreotide may be used for up to 48 hours if needed with careful monitoring of glucose homeostasis. A single-center review of cases of massive variceal bleeding in children found a significant decrease in transfusion requirements with the use of octreotide. Bleeding from esophageal varices may be stopped by compression with a Sengstaken-Blakemore tube. Endoscopic sclerosis or banding of bleeding varices is effective treatment.

If gastric decompression, acid suppressive therapy, and transfusion are ineffective in stopping ulcer bleeding, endoscopic therapy with argon plasma coagulation, local injection of epinephrine, electrocautery, or application of hemostatic clips may be employed. If bleeding remains refractory to therapy, emergency surgery may be necessary. In some cases, angiography and selective embolization have been used successfully in unidentified and refractory bleeding.

### Table 21–7. Differential diagnosis of acute abdomen.

<table>
<thead>
<tr>
<th>Gastrointestinal causes</th>
<th>Hepatobiliary causes</th>
<th>Urologic/gynecologic causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendicitis</td>
<td>Cholecystitis</td>
<td>Acute cystitis</td>
</tr>
<tr>
<td>Bowel obstruction</td>
<td>Cholangitis</td>
<td>Nephrolithiasis</td>
</tr>
<tr>
<td>Perforated ulcer</td>
<td>Hepatic abscess</td>
<td>Ruptured ectopic pregnancy</td>
</tr>
<tr>
<td>Ischemic colitis</td>
<td>Splenic rupture</td>
<td>Ovarian torsion</td>
</tr>
<tr>
<td>Volvulus</td>
<td>Splenic infarction</td>
<td>Testicular torsion</td>
</tr>
<tr>
<td>Intussusception</td>
<td></td>
<td>Acute salpingitis</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incarcerated hernia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxic megacolon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal vasculitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-abdominal abscess</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other causes		
Diabetes ketoacidosis		
Lead poisoning		
Porphyria		
Abdominal sickle cell crisis		

Pelvic inflammatory disease

Study of over 600 cases of pediatric upper GI bleeding, only 4% who were found to have significant drop in hemoglobin levels required transfusion or emergent endoscopic or surgical intervention. In this series having one or more risk factors, including melena, hematochezia, unwell appearance, and/or large amount of fresh blood in the emesis, had a sensitivity of 100% in identifying the significant bleeds.

**Imaging Studies**

In infants with acute onset of bloody stools, multiple-view plain x-rays of the abdomen are helpful in assessing for pneumatosis intestinalis or signs of obstruction. Children younger than 2, with a history and examination suggestive of intussusception, should undergo air or water-soluble contrast enema. Painless, large-volume bleeding may prompt performance of a ⁹⁹Tc-pertectnetate nuclear scan to assess for a Meckel diverticulum. Pretreatment with an H₂-receptor antagonist may be helpful in increasing the sensitivity of this study; however, a negative scan does not preclude the diagnosis. CT scan of the abdomen with oral and IV contrast may be indicated to look for structural and inflammatory causes of bleeding. More recently, CT enterography has been proposed as a useful tool in cases of lower GI bleeding in children. Persistent bleeding without a clear source may prompt consideration of a radioisotope-tagged red blood cell (RBC) scan with ⁹⁹Tc-sulfur colloid, though the bleeding must be active at the time of the study, with a rate of at least 0.1 mL/min. Angiography is generally less sensitive, requiring 1–2 mL/min.

**Treatment**

In severe bleeding, the ABCs of resuscitation should be performed. Adequate IV access is critical in these cases to
Vomiting is an extremely complex activity and is triggered by stimulation of chemoreceptors and mechanoreceptors in the wall of the GI tract, activated by contraction, distension, and physical damage. The vomiting center, paraventricular nuclei, in the brain controls the emetic response. These nuclei receive afferent input from many sources, abdominal splanchnic nerves, the vagus nerve, vestibulolabyrinthine receptors, the cerebral cortex, and chemoreceptor trigger zone (CTZ). Vagal afferents from the gut to brain are stimulated by ingested drugs and toxins, mechanical stretch, inflammation, and local neurotransmitters. Additionally, local feedback loops in the gut also appear capable of initiating vomiting. Once the vomiting response is triggered, a pattern of somatic muscle action occurs with abdominal, thoracic, and diaphragm muscles contracting against a closed glottis. The resulting increased intra-abdominal pressure reverses the negative pressure of the esophagus and forces gastric contents upward. The vomiting response also alters intestinal motility by generating a retroperistaltic contractile complex that moves intestinal contents toward the esophagus.

Vomiting is the presenting symptom of many pediatric conditions. It is the pediatrician’s difficult job to find the underlying cause. The most common cause of vomiting in childhood is probably acute viral gastroenteritis. However, obstruction and acute or chronic inflammation of the GI tract and associated structures are also major causes. CNS inflammation, pressure, or tumor may cause vomiting. Metabolic derangements associated with inborn errors of metabolism, sepsis, and drug intoxication can stimulate either the CTZ or the brain directly to promote vomiting. Regurgitation associated with GE reflux of infants should be distinguished from vomiting. Occasionally, regurgitated fluid stimulates the pharyngeal afferents and provokes gagging or even a complete vomiting complex.

Control of vomiting with medication is rarely necessary in acute gastroenteritis, but it may relieve nausea and vomiting and decrease the need for intravenous fluids and/or hospitalization. Antihistamines and anticholinergics are appropriate for motion sickness because of their labyrinthine effects. 5-HT3-receptor antagonists (ondansetron, granisetron) are useful for vomiting associated with surgery and chemotherapy. Benzodiazepines, corticosteroids, and substituted benzamides are also used in chemotherapy-induced vomiting. Butyrophenones (droperidol, haloperidol) are powerful drugs that block the D2 receptor in the CTZ and are used for intractable vomiting in acute gastritis, chemotherapy, and after surgery. Phenothiazines are helpful in chemotherapy, cyclic vomiting, and acute GI infection but are not recommended for outpatient use because of extrapyramidal side effects.


1. Cyclic Vomiting Syndrome

Clinical Findings

Cyclic vomiting syndrome (CVS) is defined as three or more recurrent episodes of stereotypical vomiting in children usually older than 1 year. The emesis is forceful and frequent,
occurring up to six times per hour for up to 72 hours or more. Episode frequency ranges from two to three per month to less than one per year. Nausea, retching, and small-volume bilious emesis continue even after the stomach is emptied. Hematemesis secondary to forceful vomiting and a Mallory-Weiss tear may occur. Patients experience abdominal pain, anorexia, and, occasionally, diarrhea. Autonomic symptoms, such as pallor, sweating, temperature instability, and lethargy are common and give the patient a very ill appearance. The episodes end suddenly, often after a period of sleep. In some children, dehydration, electrolyte imbalance, and shock may occur. Between episodes, the child is completely healthy.

The cause of CVS is unknown; however, a relationship to migraine headaches has long been recognized. Family history is positive for migraine in 50%–70% of cases and many patients develop migraine headaches as adults. Research suggests that abnormalities of neurotransmitters and hormones provoke CVS. About one-quarter of patients have typical migraine symptoms during episodes: premonitory sensation, headache, photophobia, and phonophobia. Identifiable triggers are similar to migraines and include infection, positive or negative emotional stress, diet (chocolate, cheese, monosodium glutamate), menses, sleep deprivation, or motion sickness.

**Differential Diagnosis**

Conditions that mimic CVS include drug toxicity, increased intracranial pressure, seizures, brain tumor, Chiari malformation, recurrent sinusitis, choledochal cyst, gallstones, recurrent small bowel obstruction, IBD, familial pancreatitis, obstructive uropathy, recurrent urinary infection, diabetes, mitochondrial diseases, disorders of fatty and organic acid metabolism, adrenal insufficiency, and münchausen syndrome by proxy. Although tests for GE reflux are often positive in these patients, it is unlikely that GE reflux and CVS are related.

**Treatment**

Avoidance of triggers prevents episodes in some patients. Sleep can also end an episode although some children awaken and resume vomiting. Diphenhydramine or lorazepam is used at the onset of spells in some children to reduce nausea and induce sleep. Early use of antimigraine medications (sumatriptan), antiemetics (ondansetron), or antihistamines can abort spells in some patients. Once a spell is well established, intravenous fluids are often required to end it. With careful supervision, some children with predictable spells can receive intravenous fluids at home. Several approaches usually are tried before an effective therapy is found. Preventing spells with prophylactic propranolol, amitriptyline, or antihistamines such as cyproheptadine is often effective in some patients with frequent or disabling spells. Some patients have been successfully treated with anticonvulsants.
abdominal tenderness elicited during palpation may be out of proportion to visible signs of distress.

**B. Laboratory Findings**

Complete blood count, sedimentation rate, and stool test for occult blood are usually a sufficient evaluation. Extraintestinal sources such as kidney, spleen, and genitourinary tract may require assessment. In the adolescent female patient, ultrasound of the abdomen and pelvis may be helpful to detect gallbladder or ovarian pathology. If the pain is atypical, further testing suggested by symptoms and family history should be done. This may include additional imaging studies or endoscopic analysis.

### Differential Diagnosis

Abdominal pain secondary to disorders causing acute abdomen are listed in Table 21–7. Pinworms, mesenteric lymphadenitis, and chronic appendicitis are improbable causes of recurrent abdominal pain. H pylori infection does not cause recurrent abdominal pain. Lactose intolerance usually causes abdominal distention, gas, and diarrhea with milk ingestion. At times, however, abdominal discomfort may be the only symptom. Abdominal migraine and cyclic vomiting are less common conditions with an episodic character often associated with vomiting. The incidence of peptic gastritis, esophagitis, duodenitis, and ulcer disease is probably underappreciated.

### Treatment & Prognosis

Treatment consists of reassurance based on a thorough history and physical examination and a sympathetic, age-appropriate explanation of the nature of functional pain. It is important to acknowledge that the child is experiencing pain. The concept of "visceral hyperalgesia" or increased pain signaling from physiologic stimuli such as gas, acid secretion, or stool is one that parents can understand and helps them respond appropriately to the child's complaints. Another analogy might be to compare a child's abdominal pain to usual headaches that another person may experience, and is rarely relieved without definitive treatment. Pain is often accompanied by nausea, vomiting, diarrhea, fever, and anorexia. Pain may be localized or generalized. The abdomen may be distended and tense, and bowel sounds reduced or obstructive. Patients appear ill and are reluctant to be examined or moved. The acute abdomen is usually a result of infection of the intra-abdominal or pelvic organs, but it also occurs with intestinal obstruction, intestinal perforation, inflammatory conditions, trauma, and some metabolic disorders. Some of the conditions causing acute abdomen are listed in Table 21–8. Reaching a timely and accurate diagnosis is critical and requires skill in physical diagnosis,
recognition of the symptoms of a large number of conditions, and a judicious selection of laboratory and radiologic tests. (Acute appendicitis is discussed earlier in the section Disorders of the Small Intestine.)

MALABSORPTION SYNDROMES

Malabsorption of ingested food has many causes (see Table 21–8). Shortened length (usually via surgical resection) and mucosal damage (CD) both reduce surface area. Impaired motility interferes with normal propulsive movements, which affects mixing of food with pancreatic and biliary secretions and permits anaerobic bacterial overgrowth. Bacterial overgrowth may lead to increased carbohydrate fermentation with resultant acidic diarrhea. A second mechanism is bacterial bile acid deconjugation leading to fat malabsorption as seen in intestinal pseudo-obstruction or postoperative blind loop syndrome. Impaired intestinal lymphatic (congenital lymphangiectasia) or venous drainage also causes malabsorption. Diseases reducing pancreatic exocrine function (cystic fibrosis, Shwachman syndrome) or the production and flow of biliary secretions cause nutrient malabsorption. Malabsorption of specific nutrients may also be genetically determined (disaccharidase deficiency, glucose-galactose malabsorption, and abetalipoproteinemia).

Clinical Findings

Diarrhea, vomiting, anorexia, abdominal pain, failure to thrive, and abdominal distention are common. Stools associated with fat malabsorption are characterized as bulky, foul, greasy, and pale; in contrast, those seen with osmotic diarrhea are loose, watery, and acidic. Stool microscopic examination for neutral fat (pancreatic insufficiency as in cystic fibrosis) and fatty acids (as in mucosal injury, liver disease) may be useful.

Quantifying fat malabsorption by timed stool collection compares amount of ingested to excreted fat. Stool loss of 10%–15% of ingested fat is normal in infancy, while loss of 5% of ingested fat is normal for 1- to 10-year-olds. Fat-soluble vitamin deficiency occurs with long-standing fat malabsorption and is manifested by prolonged PT (vitamin K) and low levels of serum carotene (vitamin A), vitamin E, and vitamin D. Loss of serum proteins across the intestinal mucosa is suggested by elevated fecal α₁-antitrypsin levels. Disaccharidase or monosaccharide malabsorption manifests by stool pH less than 5.5 due to lactic acid and reducing substances in the stool. Specific enzyme deficiencies may be evaluated by breath hydrogen test, or small intestinal biopsy showing normal histology and measurement of specific disaccharidase activity. Other screening tests suggesting a specific diagnosis include sweat chloride concentration (cystic fibrosis), intestinal mucosal biopsy (CD, lymphangiectasia, IBD), liver and gallbladder function tests, and pancreatic secretion after stimulation with secretin and cholecystokinin. Some of the most common disorders associated with malabsorption in pediatric patients are detailed as follows.

1. Protein-Losing Enteropathy

Loss of plasma proteins into the GI tract occurs in association with intestinal inflammation, intestinal graft-versus-host disease, acute and chronic intestinal infections, venous and lymphatic obstruction or malformations, and infiltration of the intestine or its lymphatics and vasculature by malignant cells. Chronic elevation of venous pressure in children with the Fontan procedure and elevated right-sided heart pressures may produce protein-losing enteropathy.

Clinical Findings

Signs and symptoms are mainly those caused by hypoproteinemia and in some instances by fat malabsorption: edema, ascites, poor weight gain, anemia, and specific vitamin (fat-soluble vitamins A, D, E, K) and mineral deficiencies. Serum albumin and globulins may be decreased. Fecal α₁-antitrypsin is elevated (> 3 mg/g dry weight stool; slightly higher in breast-fed infants). Disorders associated with protein-losing enteropathy are listed in Table 21–9. In the presence of intestinal bleeding, fecal α₁-antitrypsin measurements are falsely high.

<table>
<thead>
<tr>
<th>Cardiac disease</th>
<th>Disorders associated with protein-losing enteropathy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
<td></td>
</tr>
<tr>
<td>Constrictive pericarditis</td>
<td></td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td></td>
</tr>
<tr>
<td>Post-Fontan procedure with elevated right atrial pressure</td>
<td></td>
</tr>
<tr>
<td>Lymphatic disease</td>
<td></td>
</tr>
<tr>
<td>Primary congenital lymphangiectasia</td>
<td></td>
</tr>
<tr>
<td>Secondary lymphangiectasia</td>
<td></td>
</tr>
<tr>
<td>Malrotation</td>
<td></td>
</tr>
<tr>
<td>Malignancy: lymphoma, retroperitoneal tumor</td>
<td></td>
</tr>
<tr>
<td>Other: sarcoid, arsenic poisoning</td>
<td></td>
</tr>
<tr>
<td>Inflammation</td>
<td></td>
</tr>
<tr>
<td>Giant hypertrophic gastritis (Ménétrier disease), often secondary to cytomegalovirus infection or Helicobacter pylori</td>
<td></td>
</tr>
<tr>
<td>Infection: TB, Clostridium difficile, parasite (eg, Giardia), bacteria (eg, Salmonella)</td>
<td></td>
</tr>
<tr>
<td>Allergic enteropathy</td>
<td></td>
</tr>
<tr>
<td>Celiac disease</td>
<td></td>
</tr>
<tr>
<td>Radiation enteritis</td>
<td></td>
</tr>
<tr>
<td>Graft-vs-host disease</td>
<td></td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td></td>
</tr>
<tr>
<td>Hirschsprung disease</td>
<td></td>
</tr>
<tr>
<td>Necrotizing enterocolitis</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
</tr>
<tr>
<td>Systemic lupus erythematosus and mixed connective tissue disorder</td>
<td></td>
</tr>
</tbody>
</table>
Differential Diagnosis

Hypoalbuminemia may be due to increased catabolism, poor protein intake, impaired hepatic protein synthesis, or congenital malformations of lymphatics outside the GI tract. Protein losses in the urine from nephritis and nephrotic syndrome may also cause hypoalbuminemia.

Treatment

Albumin infusion, diuretics, and a high-protein, low-fat diet may control symptoms. Nutritional deficiencies should be addressed. Treatment must be directed toward identifying and treating the underlying cause.

2. Celiac Disease (Gluten Enteropathy)

Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten, a protein in wheat, rye, and barley. CD presents anytime after gluten is introduced in the diet, with symptoms of abdominal pain, diarrhea, vomiting, distention, and sometimes constipation. Other manifestations include oral ulcers, a pruritic rash (dermatitis herpetiformis), growth and pubertal delay, iron-deficiency anemia, decreased bone mineralization, and arthritis. Disease frequency in Western populations approaches 1 in 100. Associated conditions include type 1 diabetes (4%–10%), Down syndrome (5%–12%), Turner syndrome (4%–8%), IgA deficiency (2%–8%), autoimmune thyroiditis (8%), and family history of CD (4%–10%). Almost all CD patients express HLA-DQ2 or DQ8 tissue antigens.

Clinical Findings

A. Symptoms and Signs

1. Gastrointestinal manifestations—The classic form of CD consists of GI symptoms with onset soon after gluten-containing foods are introduced in the diet, usually between 6 and 24 months of age. Chronic diarrhea, abdominal distention, irritability, anorexia, vomiting, and poor weight gain are typical. Celiac crisis, with dehydration, hypotension, hypokalemia, and explosive diarrhea, is rare. Older children may have chronic abdominal pain, chronic constipation, bloating, and diarrhea that mimic symptoms of lactose intolerance, functional abdominal pain, or irritable bowel syndrome.

2. Nongastrointestinal manifestations—Adolescents may present with delayed puberty or short stature, and in females, delayed menarche. CD should be considered in children with unexplained iron-deficiency anemia, decreased bone mineral density, elevated liver function enzymes, arthritis, or epilepsy with cerebral calcifications. Asymptomatic individuals are identified on screening, such as those with type 1 diabetes. The need for early screening and treatment in asymptomatic individuals is unclear.

B. Laboratory Findings

1. Serologic and genetic testing—Screening tests exist with excellent sensitivity and specificity. In IgA-sufficient patients these are the IgA antitissue transglutaminase, IgA antiedomysial and IgA/IgG antideamidated gliadin peptide antibodies. In the presence of IgA deficiency, IgG-based antitissue transglutaminase and antiendomysium antibodies are available. Genetic testing for HLA-DQ2 and DQ8 has a high negative predictive value, and is useful in assessing risk for CD in family members, but not for screening for the presence of CD.

2. Stools—Stools may have increased levels of partially digested fat and may be acidic from secondary lactose intolerance.

3. Hypoalbuminemia—Hypoalbuminemia can be severe enough to lead to edema.

4. Anemia—Anemia with low MCV and evidence of iron deficiency is common.

C. Biopsy Findings

Patients should remain on a diet containing gluten until biopsy. Characteristic duodenal biopsy findings on light microscopy are villous atrophy with increased numbers of intraepithelial lymphocytes. Findings may be patchy.

Differential Diagnosis

The differential diagnosis includes food allergies, Crohn disease, postinfectious diarrhea, immunodeficiencies, graft-versus-host disease, and hypergastrinemia (Zollinger-Ellison syndrome).

Treatment

A. Diet

Treatment is dietary gluten restriction for life. All sources of wheat, rye, and barley are eliminated. Most, but not all, patients tolerate oats. The intestinal mucosa should normalize by 6–12 months while lactose intolerance resolves often within a few weeks. Supplemental calories, vitamins, and minerals are indicated only in the acute phase. CD-related antibody titers decrease on a gluten-free diet.

B. Corticosteroids

Corticosteroids are indicated only in patients with celiac crisis with profound anorexia, malnutrition, diarrhea, edema, abdominal distention, and hypokalemia.

Prognosis

Enteropathy-associated T-cell lymphoma of the small bowel occurs with increased frequency in adults with long-standing...
untreated disease. Individuals with poor adherence to gluten-free diet may be at increased risk for fractures, iron-deficiency anemia, and infertility.

American Celiac Disease Alliance: www.americanceliac.org.

3. Disaccharidase Deficiency

Starches and the disaccharides sucrose and lactose are the most important dietary carbohydrates. Dietary disaccharides and the oligosaccharide products of pancreatic amylase action on starch require hydrolysis by intestinal brush border disaccharidases for absorption. Disaccharidase levels are higher in the jejunum and proximal ileum than in the distal ileum and duodenum. Characteristics of primary disaccharidase deficiency include permanent disaccharide intolerance, absence of intestinal injury, and frequent positive family history. Because disaccharidases are located on the luminal surface of intestinal enterocytes, mucosal damage, such as from acute viral enteritis, causes transient secondary disaccharidase deficiency.

A. Lactase Deficiency

Congenital lactase deficiency is extremely rare. All human ethnic groups are lactase-sufficient at birth. Genetic or familial lactase deficiency appears after 5 years of age. In Asians, Alaskan natives, and Native Americans, genetic lactase deficiency develops in virtually 100%. In Africans, the incidence in most tribes is over 80%. In African Americans, the incidence is about 70%, and among Caucasian Americans, between 30% and 60%. Acquired or secondary lactase deficiency caused by intestinal injury due to viral infection, inflammatory disease, radiation, and drugs is common, but transient, resolving within a few weeks.

Lactose ingestion in deficient individuals causes variable degrees of diarrhea, abdominal distention, flatulence, and abdominal pain depending on the residual enzyme activity and the dose of lactose. Stools are liquid or frothy with a pH less than 5.5 owing to the presence of organic acids. Reducing substances are present in fresh stools. Diagnostic tests include genetic testing, lactose breath test with a rise in breath hydrogen content due to fermentation of undigested lactose by normal colonic flora, and a lactose load test in which blood glucose fails to rise more than 10 mg/dL after ingestion of 1 g/kg of lactose. Symptoms resolve when dietary lactose is restricted or lactase supplementation is added to milk products or taken with meals to enhance lactose hydrolysis.

B. Sucrase-Isomaltase Deficiency

This condition is inherited in an autosomal recessive fashion and is most common in Greenland, Iceland, and among Alaskan natives. The condition is rare in other groups. Abdominal distention, failure to thrive, and watery diarrhea are the presenting symptoms. Stools are usually watery and acidic. Because sucrose is not a reducing sugar, stool may test negative for reducing substances unless the sucrose is hydrolyzed by colon bacteria. Diagnosis is made by oral sucrose tolerance testing (1 g/kg) with elevated breath hydrogen content, or by testing a snap frozen intestinal biopsy for enzyme activity. There are partial enzyme deficiencies. Treatment is avoidance of sucrose and starches rich in amyllopectin, or the use of sacrosidase enzyme supplement.

CSID parent support group: www.csidinfo.com.
QOL Medical, LLC: www.sucraid.net.

4. Glucose-Galactose Malabsorption

Glucose-galactose malabsorption is a rare disorder in which the sodium-glucose transport protein is defective. Transport of glucose in the intestinal epithelium and renal tubule is impaired. Diarrhea begins with the first feedings, accompanied by reducing sugar in the stool and acidosis. Small bowel histologic findings are normal. Glycosuria and aminoaciduria may occur. The glucose tolerance test is abnormally flat. Fructose is well tolerated. Diarrhea subsides promptly on withdrawal of glucose and galactose from the diet. The acquired, transient form of glucose-galactose malabsorption occurs mainly in infants younger than 6 months, usually following acute viral or bacterial enteritis.

In the congenital disease, exclusion of glucose and galactose from the diet is mandatory. A carbohydrate-free base formula is used with added fructose. The prognosis is good if diagnosed early. Tolerance for glucose and galactose improves with age. In the secondary (acquired) form, prolonged PN may be required until healing.


5. Dietary Fructose Intolerance

Fructose malabsorption occurs when fructose is in excess of glucose, often with consumption of high-fructose corn syrup. Malabsorbed fructose is fermented by colonic bacteria, and excess hydrogen and other gases are produced.
Symptoms include abdominal pain, bloating, flatulence, and diarrhea. These symptoms may mimic irritable bowel syndrome. The capacity for human fructose absorption has a wide range and may be inducible by dietary consumption. Diagnosis is made with a fructose breath hydrogen test and is bolstered by the occurrence of symptoms during the test.

6. Intestinal Lymphangiectasia

This form of protein-losing enteropathy results from a congenital ectasia of the bowel lymphatic system often associated with abnormalities of the lymphatics in the extremities. Obstruction of lymphatic drainage of the intestine leads to rupture of the intestinal lacteals with leakage of lymph into the lumen of the bowel. Fat loss in the stool may be significant. Chronic loss of lymphocytes and immunoglobulins increases the susceptibility to infections.

Clinical Findings

Peripheral edema, diarrhea, abdominal distention, chylous effusions, and repeated infections are common. Laboratory findings include reduced serum albumin, decreased immunoglobulin levels, lymphocytopenia, and anemia. Serum calcium and magnesium are frequently depressed as these cations are lost in complex with unabsorbed fatty acids. Lymphocytes may be seen on a stool smear. Fecal α1-antitrypsin is elevated. Radiographic studies reveal an edematous small bowel wall, and biopsy findings reveal dilated lacteals in the villi and lamina propria. If only the lymphatics of the deeper layers of bowel or intestinal mesenteries are involved, laparotomy may be necessary to establish the diagnosis. Capsule (camera) endoscopy shows diagnostic brightness secondary to the fat-filled lacteals.

Differential Diagnosis

Other causes of protein-losing enteropathy must be considered, although an associated lymphedematous extremity strongly favors this diagnosis.

Treatment & Prognosis

A high-protein diet (6–7 g/kg/d may be needed) enriched with medium-chain triglycerides as a fat source usually allows for adequate nutrition and growth in patients with intestinal mucosal lymphangiectasia. The serum albumin may not normalize. Vitamin and calcium supplements should be given. Parenteral nutritional supplementation may be needed temporarily. Surgery may be curative if the lesion is localized to a small area of the bowel or in cases of constrictive pericarditis or obstructing tumors. IV albumin and immune globulin may also be used to control symptoms but are usually not needed chronically. The prognosis is not favorable, although remission may occur with age. Malignant degeneration of the abnormal lymphatics may occur, and intestinal lymphoma of the B-cell type may be a long-term complication.

7. Cow’s Milk Protein Intolerance

Milk protein intolerance refers to nonallergic food sensitivity and is more common in males than females and in young infants with a family history of atopy. The estimated prevalence is 0.5%–1.0%. Symptoms may occur while the infant is still exclusively breast-fed. The most common form is a healthy infant with flecks of blood in the stool. Infants may present with loose mucoid stools that are blood streaked but otherwise appear well. These symptoms typically occur as a result of cow’s milk protein that is either present in formula or breast milk. A family history of atopy is common in these infants. Skin testing is not reliable and not indicated. Treatment consists of eliminating the source of the protein; in the breast-fed infant, maternal avoidance of milk protein will usually reduce signs of colitis. Substituting a protein hydrolysate formula for cow’s milk-based formula may reduce symptoms. A more severe form of FPIES may require steroids. Allergic colitis in young infants is self-limited, usually disappearing by 8–12 months of age. Since no long-term consequences of this problem have been identified, some suggest that if the symptoms are mild and the infant is thriving, no treatment may be indicated. Colonoscopy is not required for diagnosis, but rectal biopsies, if performed, show mild lymphonodular hyperplasia, mucosal edema, and eosinophilia.

In older children, milk protein sensitivity may induce eosinophilic gastroenteritis with protein-losing enteropathy, iron deficiency, hypoalbuminemia, and hypogammaglobulinemia. A celiac-like syndrome with villous atrophy, malabsorption, hypoalbuminemia, occult blood in the stool, and anemia can occur.

8. Pancreatic Insufficiency

The most common cause of pancreatic exocrine insufficiency in childhood is cystic fibrosis. Decreased secretion of pancreatic digestive enzymes is caused by obstruction of the exocrine ducts by thick secretions, which destroys...
pancreatic acinar cells. Destruction of acinar cells may occur before birth. Some genotypes of cystic fibrosis have partially or completely preserved pancreatic exocrine function. Other conditions associated with exocrine pancreatic insufficiency are discussed in Chapter 22.

9. Other Genetic Disorders Causing Malabsorption

A. Abetalipoproteinemia

Abetalipoproteinemia is an autosomal recessive condition in which the secretion of triglyceride-rich lipoproteins from the small intestine (chylomicrons) and liver (very low-density lipoproteins) is abnormal. Profound steatosis of the intestinal enterocytes (and hepatocytes) and severe fat malabsorption occur. Deficiencies of fat-soluble vitamins develop with neurologic complications of vitamin E deficiency and atypical retinitis pigmentosa. Serum cholesterol level is very low, and red cell membrane lipids are abnormal, causing anacanthosis of red blood cells, which may be the key to diagnosis.

B. Acrodermatitis Enteropathica

Acrodermatitis enteropathica is an autosomal recessive condition in which the intestine has a selective inability to absorb zinc. The condition usually becomes obvious at the time of weaning from breast-feeding and is characterized by rash on the extremities, rashes around the body orifices, eczema, profound failure to thrive, steatorrhea, diarrhea, and immune deficiency. Zinc supplementation by mouth results in rapid improvement.

INFLAMMATORY BOWEL DISEASE

▶ General Considerations

Inflammatory bowel disease (IBD), a chronic relapsing inflammatory disease, is most commonly differentiated into Crohn disease (CrD) and ulcerative colitis (UC). The etiology is multifactorial, involving a complex interaction of environmental and genetic factors leading to maladaptive immune responses to flora in the GI tract. The genetic association is clear, with 5%–30% of patients identifying a family member with IBD, and a 10–20 relative risk of a sibling developing IBD. The 15%–36% concordance rate for monozygotic twins indicates that genetics is important but not sufficient for development of IBD.

▶ Clinical Findings

A. Symptoms and Signs

Most commonly, inflammation causes abdominal pain, diarrhea, bloody stools, fever, anorexia, fatigue, and weight loss. CrD may also cause a strictureing process with abdominal pain and intestinal obstruction, or as a penetrating/fistulizing process with abscess, perianal disease, or symptoms similar to acute appendicitis. UC usually presents with crampy abdominal pain, diarrhea, and blood in the stool.

CrD can affect any part of the GI tract from the lips to the anus. In pediatrics, CrD most often affects the terminal ileum and colon although it may have a patchy distribution with skip areas of uninvolved bowel. UC is limited to the colon, and in children it usually involves the entire colon (pancolitis) without skip areas. The younger the age of onset, the more likely the course will be severe.

Extraintestinal manifestations are common in both forms of IBD and may precede the intestinal complaints. These include uveitis, recurrent oral aphthous ulcers, arthritis, growth and pubertal delay, liver involvement (typically primary sclerosing cholangitis), rash (erythema nodosa and pyoderma gangrenosum), and iron-deficiency anemia.

B. Diagnostic Testing

Diagnosis is based on typical presentation, course, radiographic, endoscopic, and histologic findings, and exclusion of other disorders. No single test is diagnostic. Patients with IBD often have low hemoglobin, iron, and serum albumin levels, and elevated ESR and CRP and fecal calprotectin. IBD-related serum antibodies are present in most, with antibodies to *Saccharomyces cerevisiae* (ASCA) in 60% of patients with CrD, while serum perinuclear antineutrophil cytoplasmic antibodies (pANCA) are present in approximately 70% of UC patients. These, and other IBD-related antibodies, may be helpful in differentiating CrD from UC, but they are neither sensitive nor specific enough to be diagnostic. Barium upper GI radiographs with small bowel follow-through may reveal small bowel disease, especially terminal ileal thickening with separation of bowel loops, and enteric fistulas. Abdominal imaging with US, CT, or magnetic resonance may show mucosal and mural edema and exclude other etiologies.

Upper endoscopy and ileocolonoscopy are the most useful diagnostic modalities, revealing severity and extent of upper intestinal, ileal, and colonic involvement. Video capsule provides images of the entire small bowel. Granulomas are found in only 25%–50% of CrD cases. Deep linear ulcers, white exudate (Figure 21–8), aphthous lesions (Figure 21–9), patchy involvement, and perianal disease suggest CrD. Superficial and continuous involvement of the colon sparing the upper GI tract are most consistent with UC. Both forms of IBD may have mild gastritis and/or duodenitis.

▶ Differential Diagnosis

When extraintestinal symptoms predominate, CrD can be mistaken for rheumatoid arthritis, systemic lupus erythematosus, CD, or hypopituitarism. The acute onset of ileocolitis may be mistaken for intestinal obstruction, appendicitis,
lymphoma, amebiasis, or tuberculosis. Malabsorption symptoms suggest CD, peptic ulcer, Giardia infection, food protein allergy, anorexia nervosa, or growth failure from endocrine causes. Perianal disease may suggest child abuse. Crampy diarrhea and blood in the stool can also occur with infection such as *Shigella*, *Salmonella*, *Yersinia*, *Campylobacter*, *E histolytica*, entero invasive *E coli* (*E coli* O157), *Aeromonas hydrophila*, *Giardia*, and *C difficile*, and, if immunocompromised, CMV. Mild IBD mimics irritable bowel syndrome, or lactose intolerance. Eosinophilic gastroenteropathy and vasculitic lesions should also be considered. Behçet disease should be considered if there are deep intestinal ulcers, and is characterized by oral aphthous ulcerations along with at least two of the following: genital ulcers, synovitis, posterior uveitis, meningoencephalitis, and pustular vasculitis. Chronic granulomatous disease and sarcoidosis also cause granulomas.

**Complications**

**A. Crohn Disease**

Nutritional complications from chronic active disease, malabsorption, anorexia, protein-losing enteropathy, bile salt malabsorption, or secondary lactose intolerance include failure to thrive, short stature, decreased bone mineralization, and specific nutrient deficiencies, including iron, calcium, zinc, vitamin B₁₂, and vitamin D. In addition, corticosteroid therapy may impact growth and bone mineral density. Most patients achieve reasonable final adult height. Intestinal obstruction, fistulae, abdominal abscess, perianal disease, pyoderma gangrenosum, arthritis, and amyloidosis occur. Crohn colitis carries a risk for adenocarcinoma of the colon.

**B. Ulcerative Colitis**

Even with the typical features and course of UC, up to 3%–5% of patients may have an ultimate diagnosis of CrD. Arthritis, uveitis, pyoderma gangrenosum, and malnutrition all occur. Growth failure and delayed puberty are less common than in CrD while liver disease (chronic active hepatitis, sclerosing cholangitis) is more common. Adenocarcinoma of the colon occurs with an incidence of 1%–2% per year after the first 7–8 years of disease in patients with pancolitis and is significantly higher in patients with both UC and sclerosing cholangitis.

**Treatment**

**A. Medical Treatment**

Therapy for pediatric IBD involves induction of remission, maintenance of remission, and addressing nutritional deficiencies to promote normal growth and development. Treatment includes anti-inflammatory, immunomodulatory, antidiarrheal, antibiotic, and biological options. No
medical therapy is uniformly effective in all patients. In severe CrD, growth hormone may be needed to attain full height potential.

1. Diet—Ensuring adequate nutrition for normal growth as well as for puberty can be challenging. In addition to total calories, micronutrient, calcium, and vitamin deficiencies should be replenished. Restrictive or bland diets are counterproductive because they usually result in poor intake. A high-protein, high-carbohydrate diet with normal amounts of fat is recommended. A diet with decreased fiber may reduce symptoms during active colitis or partial intestinal obstruction; however, once the colitis is controlled, increased fiber may benefit mucosal health via bacterial production of fatty acids. Low-lactose diet or lactase replacement may be needed temporarily for small bowel CrD. Ileal disease may require antibiotics to treat bacterial overgrowth and extra fat-soluble vitamins due to increased losses. Supplemental calories in the form of liquid diets or enteral (nasogastric [NG] tube supplements) are well tolerated and promote catch-up growth in severe CrD. Bowel rest with liquid or elemental diet or PN is a therapy for CrD, and it promotes linear growth and sexual development. Diet therapies are less effective in UC.

2. Aminosalicylates (ASA)—Multiple preparations of 5-ASA derivatives are available and are used to induce and maintain remission in mild CrD and UC. Common preparations including 5-ASA products such as sulfasalazine (50 mg/kg/d), or balsalazide (0.75–2.5 g PO tid) or mesalamine products, are available in tablets, granules, and delayed release formulations targeting specific locations in the GI tract (adult dose range 2.4–4.8 g/d). Side effects include skin rash; nausea; headache and abdominal pain; hair loss; diarrhea; and rarely nephritis, pericarditis, serum sickness, hemolytic anemia, aplastic anemia, and pancreatitis. Sulfasalazine, in which sulf a delivers the 5-ASA, may cause sulfa-related side effects including photosensitivity and rash.

3. Corticosteroids—Patients with moderate to severe CrD and UC generally respond quickly to corticosteroids. Methylprednisolone (1 mg/kg/d) may be given intravenously when disease is severe. For moderate disease, prednisone (1 mg/kg/d, orally in one to two divided doses) is given until symptomatic response, followed by gradual tapering over 4–8 weeks. A flare is common during the taper, requiring reinduction and a slower taper course. Steroid dependence is an indication for use of an immunomodulator. Ileoceleal CrD is effectively treated with budesonide (9 mg QAM), with less side effects than systemic steroids, due to “single-pass” clearance by the liver. Corticosteroid enemas and foams are useful topical agents for distal proctitis or left-sided colitis. While on systemic corticosteroids, consideration should be given to calcium and vitamin D supplementation as well as acid suppression to prevent gastritis.

4. Immunomodulators: azathioprine (AZA), 6-mercaptopurine (6MP), and methotrexate (MTX)—If IBD is moderate to severe, or the patient is steroid-dependent, immunomodulators are effective in maintaining remission and reducing the need for corticosteroids. AZA (2–3 mg/kg/d PO) or 6MP (1–2 mg/kg/d PO) provides effective maintenance therapy for moderate to severe CrD. The optimal dose of AZA or 6MP depends on the enzyme thiopurine methyltransferase (TPMT), which should be assessed before starting therapy to determine dosing. For individuals deficient in TPMT, MTX should be used; for intermediate enzyme activity, dose is reduced by 50%. In cases where adherence may be an issue, or where dose adjustments may be necessary, AZA or 6MP metabolites may be measured in red blood cells by specialized testing. Maximum therapeutic efficacy may not be seen for 2–3 months after beginning treatment. Side effects include pancreatitis, hepatotoxicity, and bone marrow suppression.

MTX, effective in CrD but not UC, has a more rapid onset of action, usually 2–3 weeks, and is given in weekly doses, orally or intramuscularly. Most common side effect is nausea, while serious adverse events include bone marrow, liver, lung, and kidney toxicities. MTX is well known to cause fetal death and deformities.

5. Antibiotics—Metronidazole (15–30 mg/kg/d in three divided doses) and ciprofloxacin have been used to treat perianal CrD and bacterial overgrowth. Peripheral neuropathy may occur with prolonged use of metronidazole.

6. Biologicals—Infliximab, a chimeric monoclonal antibody against tumor necrosis factor-α (TNFα) is used for moderate to severe CrD and UC, and for fistulizing disease. Adalimumab and certolizumab are similar injectable agents. Recurrence of disease often occurs within 12 months of stopping therapy. Use of biologics is associated with risk for infusion reactions, injection site reactions, and increased risk for opportunistic infections and for malignancy. Rarely, hepatosplenic T-cell lymphoma is associated with use of biological with AZA/6MP.

7. Other agents—Cyclosporine or tacrolimus may be used as a “bridge” to more definitive therapy (such as colectomy for UC). Thalidomide has been used, especially in patients with oral and vaginal ulcers secondary to CrD, but is a known teratogen. Probiotics and prebiotics are frequently used but with very limited data on efficacy.

8. Surveillance—After 7–8 years of colitis, cancer screening with routine colonoscopy and multiple biopsies is recommended. Persistent metaplasia, aneuploidy, or dysplasia indicates need for colectomy.

B. Surgical Treatment

1. Crohn disease—Ileoceleal resection is the most common surgery but is not curative. Indications for surgery in CrD include stricture, obstruction, uncontrollable bleeding,
perforation, abscess, fistula, and failure of medical management. Up to 50% of patients with \( \text{CrD} \) eventually require a surgical procedure, and repeated surgery is common.

2. **Ulcerative colitis**—Total colectomy is curative and is recommended for patients with steroid dependence or steroid resistance, uncontrolled hemorrhage, toxic megacolon, high-grade dysplasia, or malignant tumors. Colectomy may also be performed for prevention of colorectal cancer after 7–8 years of disease. Colectomy usually requires a temporary ileostomy with J-pouch formation. After ileostomy take-down, pouchitis develops in up to 25% of patients, manifested by diarrhea and cramping, but it usually responds to metronidazole or ciprofloxacin. Liver disease associated with \( \text{UC} \) (sclerosing cholangitis) is not improved by colectomy.

### Quality Improvement

The ImproveCareNow network develops collaborative, data-driven improvements in the health of children with IBD. Remission rates have increased to greater than 75%.


### Web Resources

- [http://www.ccfa.org](http://www.ccfa.org)
- [http://www.improvecarenow.org](http://www.improvecarenow.org)
- [http://www.naspghan.org/wmspage.cfm?parm1=354](http://www.naspghan.org/wmspage.cfm?parm1=354)
- [http://www.ucandcrohns.org/](http://www.ucandcrohns.org/)

### General Reference


LIVER DISORDERS

PROLONGED NEONATAL CHOLESTATIC JAUNDICE

Key clinical features of disorders causing prolonged neonatal cholestasis are (1) jaundice with elevated serum conjugated (or direct) bilirubin fraction (> 2 mg/dL or > 20% of total bilirubin), (2) variably acholic stools, (3) dark urine, and (4) hepatomegaly.

Prolonged neonatal cholestasis (conditions with decreased bile flow) is caused by both intrahepatic and extrahepatic diseases. Specific clinical clues (Table 22–1) distinguish these two major categories of jaundice in 85% of cases. Histologic examination of percutaneous liver biopsy specimens increases the accuracy of differentiation to 95% (Table 22–2).

INTRAHEPATIC CHOLESTASIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Elevated total and conjugated bilirubin.
- Hepatomegaly and dark urine.
- Patency of extrahepatic biliary tree.

General Considerations

Intrahepatic cholestasis is characterized by impaired hepatocyte secretion of bile and patency of the extrahepatic biliary system. A specific cause can be identified in about 60% of cases. Patency of the extrahepatic biliary tract is suggested by pigmented stools and lack of bile duct proliferation and portal tract bile plugs on liver biopsy. It can be confirmed least invasively by hepatobiliary scintigraphy using technetium-99m (99mTc)-dimethyliminodiacetic acid (diethylIDA [DIDA]). Radioactivity in the bowel within 4–24 hours is evidence of bile duct patency, as is finding bilirubin in duodenal aspirates. However, these tests are rarely needed in the clinical setting. Patency can also be determined, when clinically indicated, by cholangiography carried out either intraoperatively, percutaneously by transhepatic cholecystography, or by endoscopic retrograde cholangiopancreatography (ERCP) using a pediatric-size side-viewing endoscope. Magnetic resonance cholangiopancreatography in infants is of limited use and highly dependent on the operator and equipment.

1. Perinatal or Neonatal Hepatitis Resulting from Infection

This diagnosis is considered in infants with jaundice, hepatomegaly, vomiting, lethargy, fever, and petechiae. It is important to identify perinatally acquired viral, bacterial, or protozoal infections (Table 22–3). Infection may occur transplacentally, by ascent through the cervix into amniotic fluid, from swallowed contaminated fluids (maternal blood, urine, vaginal secretions) during delivery, from blood transfusions administered in the early neonatal period, or from breast milk or environmental exposure. Infectious agents associated with neonatal intrahepatic cholestasis include herpes simplex virus, varicella virus, enteroviruses (coxackievirus and echovirus), cytomegalovirus (CMV), rubella virus, adenovirus, parvovirus, human herpesvirus type 6 (HHV-6), hepatitis B virus (HBV), human immunodeficiency virus (HIV), Treponema pallidum, and Toxoplasma gondii. Although hepatitis C may be transmitted vertically, it rarely causes neonatal cholestasis. The degree of liver cell injury caused by these agents is variable, ranging from massive hepatic necrosis (herpes simplex, enteroviruses) to...
Table 22–1. Characteristic clinical features of intrahepatic and extrahepatic neonatal cholestasis.

<table>
<thead>
<tr>
<th></th>
<th>Intrahepatic</th>
<th>Extrahepatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preterm infant, small for gestational age, appears ill</td>
<td>Full-term infant, seems well</td>
<td></td>
</tr>
<tr>
<td>Hepatosplenomegaly, other organ or system involvement</td>
<td>Hepatomegaly (firm to hard)</td>
<td></td>
</tr>
<tr>
<td>Stools with some pigment</td>
<td>Acholic stools</td>
<td></td>
</tr>
<tr>
<td>Associated cause identified (infections, metabolic, familial, etc)</td>
<td>Polysplenia or asplenia syndromes, midline liver</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Findings

A. Symptoms and Signs

Clinical symptoms typically present in the first 2 weeks of life, but may appear as late as age 2–3 months. Jaundice may be noted as early as the first 24 hours of life. Poor oral intake, poor sucking reflex, lethargy, hypotonia, and vomiting are frequent. Stools may be normal to pale in color, but are seldom acholic. Dark urine stains the diaper. Firm hepatomegaly is present and splenomegaly is variably present. Macular, papular, vesicular, or petechial rashes may occur. In less severe cases, failure to thrive may be the primary problem. Unusual presentations include neonatal liver failure, hypoproteinemia, anasarca (nonhemolytic hydrops), and hemorrhagic disease of the newborn.

B. Diagnostic Studies

Neutropenia, thrombocytopenia, and signs of mild hemolysis are common. Mixed hyperbilirubinemia, elevated aminotransferases with near-normal alkaline phosphatase, prolongation of clotting studies, mild acidosis, and elevated cord serum IgM suggest congenital infection. Nasopharyngeal washings, urine, stool, serum, and cerebrospinal fluid (CSF) should be cultured for virus and tested for pathogen-specific nucleic acid. Specific IgM antibody may be useful, as are long-bone radiographs to determine the presence of “celery stalking” in the metaphyseal regions of the humeri, femurs, and tibias. When indicated, computed tomography (CT) scans can identify intracranial calcifications (especially with CMV and toxoplasmosis). Hepatobiliary scintigraphy shows decreased hepatic clearance of the circulating isotope with intact excretion into the gut. Careful ophthalmologic examination may be useful for diagnosis of herpes simplex virus, CMV, toxoplasmosis, and rubella.

A percutaneous liver biopsy is useful in distinguishing intrahepatic from extrahepatic cholestasis, but may not identify a specific infectious agent (see Table 22–2). Exceptions are the typical inclusions of CMV in hepatocytes or bile duct epithelial cells, the presence of intranuclear acidophilic inclusions of herpes simplex or varicella-zoster virus, the presence of adenovirus basophilic intranuclear inclusions, or positive immunohistochemical stains for several viruses. Variable degrees of lobular disarray characterized by focal necrosis, multinucleated giant-cell transformation, and ballooned pale hepatocytes with loss of cordlike arrangement of liver cells are usual. Intrahepatic and canalicular cholestasis may be prominent. Portal changes are not striking, but modest neoductular proliferation and mild fibrosis may occur. Viral cultures, immunohistochemical stains, or polymerase chain reaction (PCR) testing of biopsy material may be helpful.

Differential Diagnosis

Great care must be taken to distinguish infectious causes of intrahepatic cholestasis from genetic or metabolic disorders because the clinical presentations are similar and may overlap. Galactosemia, hereditary fructose intolerance, and tyrosinemia must be investigated promptly, because specific dietary or drug therapy is available. These infants may also have concomitant bacteremia. α1-antitrypsin deficiency, cystic fibrosis, bile acid synthesis defects, progressive familial intrahepatic cholestasis, mitochondrial respiratory chain disorders, and neonatal iron storage disease must also be considered. Specific physical features may suggest Alagille, arthrogryposis/renal dysfunction/cholestasis (ARC) syndrome or Zellweger syndrome. Idiopathic neonatal hepatitis can be indistinguishable from infectious causes.
Patients with intrahepatic cholestasis frequently appear ill, whereas infants with extrahepatic cholestasis do not typically appear ill, have stools that are usually completely acholic, and have an enlarged, firm liver. Histologic findings are described in Table 22–2.

**Treatment**

Most forms of viral neonatal hepatitis are treated symptomatically. However, infections with herpes simplex virus, varicella, CMV, parvovirus, and toxoplasmosis have specific treatments (see Table 22–3). Penicillin for suspected syphilis, specific antiviral therapy, or antibiotics for bacterial hepatitis need to be administered promptly. Fluids and adequate nutritional intake are encouraged. Intravenous dextrose is needed if feedings are not well tolerated. The consequences of cholestasis are treated as indicated (Table 22–4). Vitamin K orally or by injection and vitamins D and E orally should be provided. Choleretics (ursodeoxycholic acid [UDCA] or cholestyramine) are used if cholestasis persists. Corticosteroids are contraindicated.

**Prognosis**

Multiple organ involvement is commonly associated with neonatal infectious hepatitis and has a poor outcome. Hepatic or cardiac failure, intractable acidosis, or intracranial hemorrhage may be fatal in herpesvirus, adenovirus, or enterovirus infections, and occasionally in CMV or rubella infection. HBV rarely causes fulminant neonatal hepatitis; most infected infants are immunotolerant to hepatitis B. Although persistent liver disease with any virus can result in mild chronic hepatitis, portal fibrosis, or cirrhosis, the neonatal liver usually recovers without fibrosis after acute infections. Chronic cholestasis, although rare following infections, may lead to dental enamel hypoplasia, failure to thrive, biliary rickets, severe pruritus, and xanthoma.
Table 22–4. Treatment of complications of chronic cholestatic liver disease.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Treatment</th>
<th>Dose</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrahepatic cholestasis</td>
<td>Phenobarbital</td>
<td>3–10 mg/kg/d</td>
<td>Drowsiness, irritability, interference with vitamin D metabolism</td>
</tr>
<tr>
<td></td>
<td>Cholestyramine or colestipol hydrochloride</td>
<td>250–500 mg/kg/d</td>
<td>Constipation, acidosis, binding of drugs, increased steatorrhea</td>
</tr>
<tr>
<td></td>
<td>Ursodeoxycholic acid</td>
<td>15–20 mg/kg/d</td>
<td>Transient increase in pruritus</td>
</tr>
<tr>
<td>Pruritus</td>
<td>Phenobarbital</td>
<td>3–10 mg/kg/d</td>
<td>Drowsiness, irritability, interference with vitamin D metabolism</td>
</tr>
<tr>
<td></td>
<td>Cholestyramine or colestipol</td>
<td>250–500 mg/kg/d</td>
<td>Constipation, acidosis, binding of drugs, increased steatorrhea</td>
</tr>
<tr>
<td></td>
<td>Antihistamines: diphenhydramine hydrochloride</td>
<td>5–10 mg/kg/d</td>
<td>Drowsiness</td>
</tr>
<tr>
<td></td>
<td>Hydroxyzine</td>
<td>2–5 mg/kg/d</td>
<td>Skin burn</td>
</tr>
<tr>
<td></td>
<td>Ultraviolet light B</td>
<td>Exposure as needed</td>
<td>Hepatotoxicity, marrow suppression</td>
</tr>
<tr>
<td></td>
<td>Rifampin</td>
<td>10 mg/kg/d</td>
<td>Transient increase in pruritus</td>
</tr>
<tr>
<td></td>
<td>Ursodeoxycholic acid</td>
<td>15–20 mg/kg/d</td>
<td>Irritability, vomiting</td>
</tr>
<tr>
<td></td>
<td>Naltrexone</td>
<td>1 mg/kg/day</td>
<td></td>
</tr>
<tr>
<td>Steatorrhea</td>
<td>Formula containing medium-chain triglycerides (eg, Pregestimil or Alimentum)</td>
<td>120–150 kcal/kg/d for infants</td>
<td>Expensive</td>
</tr>
<tr>
<td></td>
<td>Oil supplement containing medium-chain triglycerides</td>
<td>1–2 mL/kg/d</td>
<td>Diarrhea, aspiration</td>
</tr>
<tr>
<td>Malabsorption of fat-soluble vitamins</td>
<td>Vitamin A</td>
<td>10,000–25,000 U/d</td>
<td>Hepatitis, pseudotumor cerebri, bone lesions</td>
</tr>
<tr>
<td></td>
<td>Vitamin D</td>
<td>800–5000 U/d (up to 1000 U/kg/d for infants)</td>
<td>Hypercalcemia, hypercalciuria</td>
</tr>
<tr>
<td></td>
<td>25-hydroxy-cholecalciferol (25-OH vitamin D)</td>
<td>3–5 mcg/kg/d</td>
<td>Hypercalcemia, hypercalciuria</td>
</tr>
<tr>
<td></td>
<td>1,25-dihydroxy-cholecalciferol (1,25 OH₂ vitamin D)</td>
<td>0.05–0.2 mcg/kg/d</td>
<td>Hypercalcemia, hypercalciuria</td>
</tr>
<tr>
<td></td>
<td>Vitamin E (oral)</td>
<td>25–200 IU/kg/d</td>
<td>Potentiation of vitamin K deficiency</td>
</tr>
<tr>
<td></td>
<td>Vitamin E (oral, TPGS®)</td>
<td>15–25 IU/kg/d</td>
<td>Muscle calcifications</td>
</tr>
<tr>
<td></td>
<td>Vitamin K (oral)</td>
<td>1–2 mg/kg/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vitamin K (intramuscular)</td>
<td>2.5 mg twice per week to 5 mg/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2–5 mg each 4 wk</td>
<td></td>
</tr>
<tr>
<td>Malabsorption of other nutrients</td>
<td>Multiple vitamin</td>
<td>One to two times the standard dose</td>
<td>Hypercalcemia, hypercalciuria</td>
</tr>
<tr>
<td></td>
<td>Calcium</td>
<td>25–100 mg/kg/d</td>
<td>Gastrointestinal intolerance</td>
</tr>
<tr>
<td></td>
<td>Phosphorus</td>
<td>25–50 mg/kg/d</td>
<td>Interference with copper and iron absorption</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>1 mg/kg/d</td>
<td></td>
</tr>
</tbody>
</table>

*α-Tocopheryl polyethylene glycol-1000 succinate.


2. Specific Infectious Agents

A. Neonatal Hepatitis B Virus Disease

Vertical transmission of HBV may occur at any time during perinatal life. Most cases of neonatal disease are acquired from mothers who are asymptomatic carriers of HBV. Although HBV has been found in most body fluids, including breast milk, neonatal transmission occurs primarily from exposure to maternal blood at delivery and only occasionally transplacentally (<5%–10% of cases). In chronic hepatitis B surface antigen (HBsAg)–carrier mothers, neonatal acquisition risk is greatest if the mother (1) is also hepatitis B "e" antigen (HBeAg)–positive and hepatitis B "e" antibody (HBeAb)–negative, (2) has high serum levels of hepatitis B
core antibody (HBCAb), or (3) has high blood levels of HBV DNA, indicating circulating infectious virus.

Neonatal HBV liver disease is extremely variable. The infant has a 70%–90% chance of acquiring HBV at birth from an HBSAg/HBeAg-positive mother if the infant does not receive prophylaxis. Most infected infants develop a prolonged asymptomatic immunotolerant stage of HBV infection. Fulminant hepatic necrosis and liver failure rarely occur in infants. Other patients develop chronic hepatitis with focal hepatocyte necrosis and a mild portal inflammatory response. Cholestasis is intracellular and canalicular. Chronic hepatitis may persist for many years, with serologic evidence of persisting antigenemia (HBSAg) and mildly elevated or normal serum aminotransferases. Chronic hepatitis may rarely progress to cirrhosis within 1–2 years. Most infected infants have only mild biochemical evidence, if any, of liver injury and do not appear ill. Most infants remain asymptomatic in an immune-tolerant stage of HBV infection for a variable period of time and become an inactive carrier, develop chronic hepatitis or remain immune tolerant through childhood (see section on Hepatitis B).

To prevent perinatal transmission, all infants of mothers who are HBSAg-positive (regardless of HBeAg status) should receive hepatitis B immunoglobulin (HBIG) and hepatitis B vaccine within the first 24 hours after birth and vaccine again at ages 1 and 6 months (see Chapter 10). This prevents HBV infection in 85%–95% of infants. HBIG can provide some protection when given as late as 72 hours after birth. If not given at birth it can be administered as late as 7 days postpartum as long as the infant has received the vaccine. Universal HBV immunization at birth, with two follow-up doses, is recommended for all infants regardless of maternal HBV status. Universal screening of pregnant women for HbsAg is conducted to determine which infants will need HBIG.

B. Neonatal Bacterial Hepatitis

Most bacterial liver infections in newborns are acquired by transplacental invasion from amnionitis with ascending spread from maternal vaginal or cervical infection. Onset is abrupt, usually within 48–72 hours after delivery, with signs of sepsis and often shock. Jaundice appears early with direct hyperbilirubinemia. The liver enlarges rapidly, and the histologic picture is that of diffuse hepatitis with or without microabscesses. The most common organisms involved are Escherichia coli, Listeria monocytogenes, and group B streptococci. Neonatal liver abscesses caused by E coli or Staphylococcus aureus may result from omphalitis or umbilical vein catheterization. Bacterial hepatitis and neonatal liver abscesses require specific antibiotics in optimal doses and combinations and, rarely, surgical or radiologic interventional drainage. Deaths are common, but survivors show no long-term consequences of liver disease.

C. Neonatal Jaundice with Urinary Tract Infection

Urinary tract infections typically present with cholestasis between the second and fourth weeks of life. Lethargy, fever, poor appetite, jaundice, and hepatomegaly may be present. Except for mixed hyperbilirubinemia, other liver function tests (LFTs) are mildly abnormal. Leukocytosis is present, and infection is confirmed by urine culture. The liver impairment is caused by the action of endotoxin and cytokines on bile secretion.

Treatment of the infection leads to resolution of the cholestasis without hepatic sequelae. Metabolic liver diseases, such as galactosemia and tyrosinemia, may present with gram-negative bacterial urinary tract infection and must be excluded.


3. Intrahepatic Cholestasis Resulting from Inborn Errors of Metabolism, Familial, & “Toxic” Causes

These cholestatic syndromes caused by specific enzyme deficiencies, other genetic disorders, or certain toxins share findings of intrahepatic cholestasis (ie, jaundice, hepatomegaly, and normal to completely acholic stools). Specific clinical conditions have characteristic clinical signs.

A. Enzyme Deficiencies and Other Inherited Disorders

Establishing the specific diagnosis as early as possible is important because dietary or pharmacologic treatment may be available (Table 22–5). Reversal of liver disease and clinical symptoms may be prompt and maintained in several disorders as long as the diet is maintained. As with other genetic disorders, parents of the affected infant should be offered genetic counseling. For some disorders, prenatal genetic diagnosis is available.

Cholestasis caused by metabolic diseases (eg, galactosemia, hereditary fructose intolerance, and tyrosinemia) is frequently accompanied by vomiting, lethargy, poor feeding, hypoglycemia, or irritability. The infants often appear septic; gram-negative bacteria can be cultured from blood in 25%–50% of symptomatic cases, especially in patients with galactosemia and cholestasis. Neonatal screening programs for galactosemia usually detect the disorder before cholestasis develops. Other metabolic and genetic causes of
Table 22–5. Metabolic and genetic causes of neonatal cholestasis.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Inborn Error</th>
<th>Hepatic Pathology</th>
<th>Diagnostic Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galactosemia</td>
<td>Galactose-1-phosphate uridylyltransferase</td>
<td>Cholestasis, steatosis, necrosis, pseudocacini, fibrosis</td>
<td>Galactose-1-phosphate uridylyltransferase assay of red blood cells or genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Fructose intolerance</td>
<td>Fructose-1-phosphate aldolase</td>
<td>Steatosis, necrosis, pseudocacini, fibrosis</td>
<td>Liver fructose-1-phosphate aldolase assay or genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Tyrosinemia</td>
<td>Fumarylacetoacetase</td>
<td>Necrosis, steatosis, pseudocacini, portal fibrosis</td>
<td>Urinary succinylacetone, fumarylacetoacetase assay of red blood cells</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>Cystic fibrosis transmembrane conductance regulator gene</td>
<td>Cholestasis, neoductular proliferation, excess bile duct mucus, portal fibrosis</td>
<td>Sweat test and genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Hypopituitarism</td>
<td>Deficient production of pituitary hormones</td>
<td>Cholestasis, giant cells</td>
<td>Thyroxin, TSH, cortisol levels</td>
</tr>
<tr>
<td>α&lt;sub&gt;1&lt;/sub&gt;-Antitrypsin deficiency</td>
<td>Abnormal α&lt;sub&gt;1&lt;/sub&gt;-antitrypsin molecule (PiZZ or PiSZ phenotype)</td>
<td>Giant cells, cholestasis, steatosis, neoductular proliferation, fibrosis, PAS-diastase-resistant cytoplasmic globules</td>
<td>Serum α&lt;sub&gt;1&lt;/sub&gt;-antitrypsin phenotype or genotype</td>
</tr>
<tr>
<td>Gaucher disease</td>
<td>β-Glucosidase</td>
<td>Cholestasis, cytoplasmic inclusions in Kupffer cells (foam cells)</td>
<td>β-Glucosidase assay in leukocytes or genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Niemann-Pick type C disease</td>
<td>Lysosomal sphingomyelinase</td>
<td>Cholestasis, cytoplasmic inclusions in Kupffer cells</td>
<td>Sphingomyelinase assay of leukocytes or liver or fibroblasts (type C); genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Glycogen storage disease type IV</td>
<td>Branching enzyme</td>
<td>Fibrosis, cirrhosis, PAS-diastase-resistant cytoplasmic inclusions</td>
<td>Branching enzyme analysis of leukocytes or liver, genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Neonatal hemochromatosis</td>
<td>Transplacental alloimmunization</td>
<td>Giant cells, portal fibrosis, hemosiderosis, cirrhosis</td>
<td>Histology, iron stains, lip biopsy, chest and abdominal MRI</td>
</tr>
<tr>
<td>Peroxisomal disorders (eg, Zellweger syndrome)</td>
<td>Deficient peroxisomal enzymes or assembly</td>
<td>Cholestasis, necrosis, fibrosis, cirrhosis, hemosiderosis</td>
<td>Plasma very-long-chain fatty acids, qualitative bile acids, plasmalogen, piceolic acid, liver electron microscopy, genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Abnormalities in bile acid metabolism</td>
<td>Several enzyme deficiencies defined</td>
<td>Cholestasis, necrosis, giant cells</td>
<td>Urine, serum, duodenal fluid analyzed for bile acids by fast atom bombardment-mass spectroscopy</td>
</tr>
<tr>
<td>Byler disease and syndrome (PFIC types I and II)</td>
<td>FIC&lt;sub&gt;1&lt;/sub&gt; (ATP8B1) and BSEP (ABCB11) genes</td>
<td>Cholestasis, necrosis, giant cells, fibrosis</td>
<td>Histology, family history, normal cholesterol, low or normal γ-glutamyl transpeptidase, genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Arthrogryposis/renal dysfunction/cholestasis syndrome</td>
<td>VPS33B and VIPAR genes</td>
<td>Cholestasis, fibrosis</td>
<td>Genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>MDR3 deficiency (PFIC type III)</td>
<td>MDR3 (ABCB4) gene</td>
<td>Cholestasis, bile duct proliferation, portal fibrosis</td>
<td>Bile phospholipid level, genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Alagille syndrome (syndromic paucity of interlobular bile ducts)</td>
<td>JAGGED1 gene and NOTCH2 mutations</td>
<td>Cholestasis, paucity of interlobular bile ducts, increased copper levels</td>
<td>Three or more clinical features, liver histology, genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Mitochondrial hepatopathies (respiratory chain diseases and mtDNA depletion syndrome)</td>
<td>POLG, BCST1, SC01, D6U0K, and MPV17 and other gene mutations</td>
<td>Cholestasis, steatosis, portal fibrosis, abnormal mitochondria on electron microscopy</td>
<td>mtDNA depletion studies, respiratory chain studies on liver or muscle, genotyping&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>a</sup>Performed on leukocyte DNA.

IV, intravenous; MDR3, multiple-drug resistance protein type 3; MRI, magnetic resonance imaging; mtDNA, mitochondrial DNA; PAS, periodic acid-Schiff; PFIC, progressive familial intrahepatic cholestasis; TSH, thyroid-stimulating hormone.
neonatal intrahepatic cholestasis are outlined in Table 22–5. Treatment of these disorders is discussed in Chapter 36.

B. “Toxic” Causes of Neonatal Cholestasis

1. Neonatal ischemic-hypoxic conditions—Perinatal events that result in hypoperfusion of the gastrointestinal system are sometimes followed within 1–2 weeks by cholestasis. This occurs in preterm infants with respiratory distress, severe hypoxia, hypoglycemia, shock, and acidosis. When these perinatal conditions develop in association with gastrointestinal lesions, such as ruptured omphalocele, gastroschisis, or necrotizing enterocolitis, a subsequent cholestatic picture is common (25%–50% of cases). Liver function studies reveal mixed hyperbilirubinemia, elevated alkaline phosphatase and γ-glutamyl transpeptidase (GGT) values, and variable elevation of the aminotransferases. Stools are seldom persistently acholic.

The mainstays of treatment are choleretics (UDCA), introduction of enteral feedings using special formulas as soon as possible, and nutrient supplementation until the cholestasis resolves (see Table 22–4). As long as no severe intestinal problem is present (eg, short gut syndrome or intestinal failure), resolution of the hepatic abnormalities is the rule, although this may take many weeks.

2. Prolonged parenteral nutrition—Cholestasis may develop after 1–2 weeks in premature newborns receiving parenteral nutrition. Even full-term infants with significant intestinal atresia, resections, or dysmotilility may develop parenteral nutrition–associated cholestasis. Contributing factors include toxicity of intravenous lipid emulsions, diminished stimulation of bile flow from prolonged absence of feedings, frequent episodes of sepsis, small intestinal bacterial overgrowth with translocation of intestinal bacteria and their cell wall products, missing nutrients or antioxidants, photooxidation of amino acids, infusion of lipid hydroperoxides or plant sterols, and the “physiologic cholestatic” propensity of the premature infant. Activation of innate immune pathways in the liver appears to be involved. Histology of the liver may be identical to that of biliary atresia. Early introduction of feedings has reduced the frequency of this disorder. The prognosis is generally good; however, in infants with intestinal failure occasional cases progress to cirrhosis, liver failure, and hepatoma. These infants may require liver and intestinal, or multivisceral, transplantation. Oral erythromycin as a pro-motility agent may reduce the incidence of cholestasis in very-low-birth-weight infants. Intravenous fish oil–based lipid emulsions or reduction in soy-oil-based lipid emulsions may reverse features of cholestasis.

3. Inspissated bile syndrome—This syndrome is the result of accumulation of bile in canaliculi and in the small- and medium-sized bile ducts in hemolytic disease of the newborn (Rh, ABO) and in some infants receiving parenteral nutrition. The same mechanisms may cause intrinsic obstruction of the common bile duct. An ischemia-reperfusion injury may also contribute to cholestasis in Rh incompatibility. Stools may become acholic and levels of bilirubin, primarily conjugated, may reach 40 mg/dL. If inspissation of bile occurs within the extrahepatic biliary tree, differentiation from biliary atresia may be difficult. Although most cases improve slowly over 2–6 months, persistence of complete cholestasis for more than 1–2 weeks requires further studies (ultrasonography, hepatobiliary iminodiacetic acid [HIDA] scanning, liver biopsy) with possible cholangiography. Irrigation of the common bile duct is sometimes necessary to dislodge the obstructing inspissated biliary material.

4. Idiopathic Neonatal Hepatitis (Giant-Cell Hepatitis)

This idiopathic type of cholestatic jaundice, which has a typical liver biopsy appearance, accounts for 20%–30% of cases of neonatal intrahepatic cholestasis but is decreasing in frequency as new causes of cholestasis are discovered. The degree of cholestasis is variable, and the disorder may be indistinguishable from extrahepatic causes in 10% of cases. Many cases of this disorder have been shown in recent years to have specific etiologies. Viral infections, α1-antitrypsin deficiency, Alagille syndrome, Niemann-Pick type C disease (NPC), progressive familial intrahepatic cholestasis (PFIC), citrin deficiency, neonatal hemochromatosis, and bile acid synthesis defects may present with similar clinical and histologic features. In idiopathic neonatal hepatitis, PFIC types I and II and ARC syndrome, and disease due to bile acid synthesis defects, the GGT levels are normal or low. Electron microscopy of the liver biopsy and genotyping will help distinguish NPC and PFIC.

Intrauterine growth retardation, prematurity, poor feeding, emesis, poor growth, and partially or intermittently acholic stools are characteristic of intrahepatic cholestasis. Serious hemorrhage from vitamin K deficiency may also be present. Patients with neonatal lupus erythematosus may present with giant-cell hepatitis; however, thrombocytopenia, rash, or congenital heart block is usually also present.

Ng PC et al: High-dose oral erythromycin decreased the incidence of parenteral nutrition-associated cholestasis in preterm infants. Gastroenterology 2007;132:1726 [PMID: 17484870].
In cases of suspected idiopathic neonatal hepatitis (diagnosed in the absence of infectious, known genetic, metabolic, and toxic causes), patency of the biliary tree may need to be verified to exclude extrahepatic surgical disorders. HIDA scanning and ultrasonography may be helpful in this regard if stools are acholic. Liver biopsy findings are usually diagnostic after age 6–8 weeks (see Table 22–2), but may be misleading before age 6 weeks. Failure to detect patency of the biliary tree, nondiagnostic liver biopsy findings, or persisting complete cholestasis (acholic stools) are indications for minilaparotomy and intraoperative cholangiography performed by an experienced surgeon, ERCP, percutaneous cholecystography, or magnetic resonance cholangiopancreatography (MRCP). Occasionally, a small but patent (hypoplastic) extrahepatic biliary tree is demonstrated (as in Alagille syndrome); it is probably the result, rather than the cause, of diminished bile flow. Surgical reconstruction of hypoplastic biliary trees in Alagille syndrome should not be attempted.

Therapy should include choleretics, a special formula with medium-chain triglycerides (eg, Pregestimil, Alimentum) or breast milk (if growth is adequate), and supplemental fat-soluble vitamins in water-soluble form (see Table 22–4). This therapy is continued as long as significant cholestasis remains (conjugated bilirubin > 1 mg/dL). Fat-soluble vitamin serum levels and INR should be monitored at regular intervals while supplements are given and repeated at least once after their discontinuation.

Eighty percent of patients recover without significant hepatic fibrosis. However, failure to resolve the cholestatic picture by age 6–12 months is associated with progressive liver disease and evolving cirrhosis, most likely caused by a yet to be defined underlying genetic/metabolic disorder. This may occur with either normal or diminished numbers of interlobular bile ducts (paucity of interlobular ducts). Liver transplantation has been successful when signs of hepatic decompensation are noted (rising bilirubin, coagulopathy, intractable ascites).


5. Paucity of Interlobular Bile Ducts

Forms of intrahepatic cholestasis caused by decreased numbers of interlobular bile ducts (< 0.5 bile ducts per portal tract) may be classified according to whether they are associated with other malformations. Alagille syndrome (syndromic paucity or arteriohepatic dysplasia) is caused by mutations in the gene JAGGED1, located on chromosome 20p, which codes for a ligand of the notch receptor, or more rarely in the gene NOTCH2. Alagille syndrome is recognized by the characteristic facies, which becomes more obvious with age. The forehead is prominent. The eyes are set deep and sometimes widely apart (hypertelorism). The chin is small and slightly pointed and projects forward. The ears are prominent. The stool color varies with the severity of cholestasis. Pruritus begins by age 3–6 months. Firm, smooth hepatomegaly may be present or the liver may be of normal size. Cardiac murmurs are present in 95% of patients, and butterfly vertebrae (incomplete fusion of the vertebral body or anterior arch) are present in 50%. Xanthomas develop as hypercholesterolemia becomes a problem. Occasionally, early cholestasis is mild and not recognized or the patient presents with complex congenital heart disease (eg, tetralogy of Fallot).

Conjugated hyperbilirubinemia may be mild to severe (2–15 mg/dL). Serum alkaline phosphatase, GGT, and cholesterol are markedly elevated, especially early in life. Serum bile acids are always elevated, aminotransferases are mildly increased, but clotting factors and other liver proteins are usually normal.

Cardiac involvement includes peripheral pulmonary artery, branch pulmonary artery, or pulmonary valvular stenoses, atrial septal defect, coarctation of the aorta, and tetralogy of Fallot. Up to 10%–15% of patients have intracranial vascular or cystic abnormalities or may develop intracranial hemorrhage or stroke early in childhood.

Eye findings (posterior embryotoxon or a prominent Schwalbe line in 90%) and renal abnormalities (dysplastic kidneys, renal tubular ectasia, single kidney, RTA, hematuria) are also characteristic and occur in about 40% of patients. Growth retardation with normal to increased levels of growth hormone (growth hormone resistance) is common. Some patients may rarely have pancreatic insufficiency that may contribute to the fat malabsorption. Although variable, the intelligence quotient is frequently low. Hypogonadism with microopenis may be present. A weak, high-pitched voice may develop. Neurologic disorders resulting from vitamin E deficiency (areflexia, ataxia, ophthalmoplegia) eventually develop in many unsupplemented children and may be profound.

In the nonsyndromic form, paucity of interlobular bile ducts occurs in the absence of the extrahepatic malformations may also occur in conditions such as α1-antitrypsin deficiency, Zellweger syndrome, in association with lymphedema (Aagenaes syndrome), PFIC, cystic fibrosis, CMV or rubella infection, and inborn errors of bile acid metabolism.

High doses (250 mg/kg/d) of cholestyramine may control pruritus, lower cholesterol, and clear xanthomas. UDCA (15–20 mg/kg/d) appears to be more effective and causes fewer side effects than cholestyramine. Rifampicin may also reduce pruritus. Naltrexone (1 mg/kg/d) is occasionally required.
Partial biliary diversion or ileal exclusion surgery may reduce pruritus in about half of severe cases. Nutritional therapy to prevent wasting and deficiencies of fat-soluble vitamins is of particular importance because of the severity of cholestasis (see Table 22–4).

Prognosis is more favorable in the syndromic than in the nonsyndromic varieties. In the former, only 30%–40% of patients have severe complications of disease, whereas over 70% of patients with nonsyndromic varieties progress to cirrhosis. Many of this latter group may have forms of PFIC. In Alagille syndrome, cholestasis may improve by age 2–4 years, with minimal residual hepatic fibrosis. Survival into adulthood despite raised serum bile acids, aminotransferases, and alkaline phosphatase occurs in about 50% of cases. Several patients have developed hepatocellular carcinoma. Hypogonadism has been noted; however, fertility is not obviously affected in most cases. Cardiovascular anomalies and intracranial vascular lesions may shorten life expectancy. Some patients have persistent, severe cholestasis, rendering their quality of life poor. Recurrent bone fractures may result from metabolic bone disease. Liver transplantation has been successfully performed under these circumstances. Intracranial hemorrhage, moya moya disease, or stroke may occur in up to 10%–12% of affected children.

With partial biliary diversion or ileal exclusion surgery, many patients show improved growth and liver histology, reduction in symptoms and, thus, avoid liver transplantation. Following liver transplantation, chronic diarrhea and fatty liver may complicate recovery.

PFIC type II is caused by mutations in the bile salt export pump (BSEP) gene, which codes for the adenosine triphosphate–dependent canalicular bile salt transport protein. These patients are clinically and biochemically similar to PFIC type I patients, but liver histology includes numerous “giant cells.” There is an increased incidence of hepatocellular carcinoma in these patients with severe gene mutations. Treatment is similar to PFIC type I although close monitoring for hepatocellular carcinoma is essential. Following liver transplantation, recurrent disease has been described in patients who developed immune-mediated BSEP dysfunction.

PFIC type III is caused by mutations in the multiple drug resistance protein type 3 (MDR3) gene, which encodes a canalicular protein that pumps phospholipid into bile. Serum GGT and bile acid levels are both elevated, bile duct proliferation and portal tract fibrosis are seen in liver biopsies (resembling biliary atresia), and bile phospholipid levels are low. Treatment is similar to that for other forms of PFIC except that partial biliary diversion is not recommended.

Bile acid synthesis defects are clinically similar to PFIC types I and II, with low serum levels of GGT and cholesterol; however, the serum level of total bile acids is inappropriately normal or low and urine bile acid analysis may identify a synthesis defect. Treatment of bile acid synthesis defects is with oral cholic acid and UDCA. About 1/3 of PFIC patients have negative genotyping for the above genes and most likely have yet-to-be discovered genetic etiologies.

**6. Progressive Familial Intrahepatic Cholestasis (PFIC; Byler Disease and Byler Syndrome)**

PFIC is a group of disorders presenting as pruritus, diarrhea, jaundice, fat-soluble vitamin deficiencies, and failure to thrive in the first 6–12 months of life. PFIC type I (Byler disease), caused by mutations in the gene coding FIC1, an aminophospholipid floppase, is associated with low to normal serum levels of GGT and cholesterol and elevated levels of bilirubin, aminotransferases, and bile acids. Pancreatitis and hearing loss may develop. Liver biopsy demonstrates cellular cholestasis, sometimes with a paucity of interlobular bile ducts and centrilobular fibrosis that progresses to cirrhosis. Giant cells are absent. Electron microscopy shows diagnostic granular “Byler bile” in canaliculi. Treatment includes administration of UDCA, partial biliary diversion or ileal exclusion if the condition is unresponsive to UDCA, and liver transplantation if unresponsive to these therapies.

Extrahepatic neonatal cholestasis is characterized by complete and persistent cholestasis (acholic stools) in the first 3 months of life; lack of patency of the extrahepatic biliary tree proved by intraoperative, percutaneous, or endoscopic cholangiography; firm to hard hepatomegaly; and typical features on histologic examination of liver biopsy tissue (see Table 22–2). Causes include biliary atresia, choledochal cyst,
spontaneous perforation of the extrahepatic ducts, and intrinsic or extrinsic obstruction of the common duct.

1. Biliary Atresia

General Considerations

Biliary atresia is the progressive fibroinflammatory obliteration of the lumen of all, or part of, the extrahepatic biliary tree presenting within the first 3 months of life. Biliary atresia occurs in 1:6600 (Taiwan)–1:18,000 (Europe) births, and in the United States the incidence is approximately 1:12,000. The incidence is highest in Asians, African Americans, and preterm infants, and there is a slight female predominance. There are at least two types of biliary atresia: the perinatal form (80% of cases), in which a perinatal insult, such as a virus infection, is believed to initiate inflammatory obstruction and fibrosis of the biliary tree, and the fetal-embryonic form (20% of cases), in which the extrahepatic biliary system did not develop normally. In the perinatal form, meconium and initial stools are usually normal in color, suggesting early patency of the ducts. Evidence obtained from surgically removed remnants of the extrahepatic biliary tree suggests an inflammatory sclerosing cholangiopathy. Recent research supports an autoimmune reaction that is responsible for progressive intrahepatic bile duct injury and fibrosis. In the fetal-embryonic type, the bile duct presumably did not develop normally and is associated with other nonhepatic congenital anomalies. The association of biliary atresia with the polysplenia syndrome (heterotaxia, preduodenal portal vein, interruption of the inferior vena cava, polysplenia, and midline liver) and asplenia syndrome supports an embryonic origin of biliary atresia in these cases.

Clinical Findings

A. Symptoms and Signs

Jaundice may be noted in the newborn period or develops about age 2–3 weeks. Urine stains the diaper; and stools are often pale yellow, buff-colored, gray, or acholic. Seepage of bilirubin products across the intestinal mucosa may give some yellow coloration to the stools. Hepatomegaly is common, and the liver may feel firm to hard. By age 2–6 months, the growth curve reveals poor weight gain. Symptoms of portal hypertension (splenomegaly, ascites, variceal bleeding) may develop in the first year of life. Pruritus, digital clubbing, failure to thrive, bone fractures, and bleeding complications may also occur later in childhood.

B. Laboratory Findings and Imaging

No single laboratory test will consistently differentiate biliary atresia from other causes of complete obstructive jaundice. Although biliary atresia is suggested by persistent elevation of serum GGT or alkaline phosphatase levels, these findings have also been reported in severe neonatal hepatitis, α₁-antitrypsin deficiency, and bile duct paucity. Furthermore, these tests will not differentiate the location of the obstruction within the extrahepatic system. Generally, the aminotransferases are only modestly elevated in biliary atresia. Serum proteins and blood clotting factors are not affected early in the disease. Ultrasonography of the biliary system should be performed to exclude the presence of choledochal cyst and intra-abdominal anomalies; a triangular cord sign in the hepatic porta suggests biliary atresia. A HIDA scan showing lack of intestinal excretion is always present in biliary atresia, but may be seen with multiple other causes of intrahepatic cholestasis. Liver biopsy specimens (particularly if obtained after age 6–8 weeks) can differentiate intrahepatic causes of cholestasis from biliary atresia in over 90% of cases (see Table 22–2).

Differential Diagnosis

The major diagnostic dilemma is distinguishing between this entity and bile duct paucity, metabolic liver disease (particularly α₁-antitrypsin deficiency), choledochal cyst, or intrinsic bile duct obstruction (stones, bile plugs). Although spontaneous perforation of extrahepatic bile ducts leads to jaundice and acholic stools, the infants in such cases are usually quite ill with chemical peritonitis from biliary ascites, and hepatomegaly is not found.

If the diagnosis of biliary atresia cannot be excluded by the diagnostic evaluation and percutaneous liver biopsy, surgical exploration should be performed as soon as possible. Laparotomy or laparoscopy must include liver biopsy and an operative cholangiogram if a gallbladder is present. The presence of yellow bile in the gallbladder implies patency of the proximal extrahepatic duct system. Radiographic visualization of cholangiographic contrast in the duodenum excludes obstruction to the distal extrahepatic ducts.

Treatment

In the absence of surgical correction or transplantation, biliary cirrhosis, hepatic failure, and death occur uniformly by age 18–24 months.

The standard procedure at the time of diagnosis of biliary atresia is the hepatoportoenterostomy (Kasai procedure). Occasionally, portocholecystostomy (gallbladder Kasai procedure) may be performed if the gallbladder is present and the passage from it to the duodenum is patent. These procedures are best done in specialized centers where experienced surgical, pediatric, and nursing personnel are available. Surgery should be performed as early as possible (ideally before 45 days of life); the Kasai procedure should generally not be undertaken in infants older than age 4 months, because the likelihood of bile drainage at this age is very low. Orthotopic liver transplantation is now indicated for patients who do not undergo the Kasai procedure, who fail...
to drain bile after the Kasai procedure, or who progress to end-stage biliary cirrhosis despite surgical treatment. The 3- to 5-year survival rate following liver transplantation for biliary atresia is at least 80%–90%. Biliary atresia is the leading indication for pediatric liver transplantation.

Whether or not the Kasai procedure is performed, supportive medical treatment consists of vitamin and caloric support (vitamins A, D, E, and K and formulas containing medium-chain triglycerides [Pregestimil or Alimentum]) (see Table 22-4). Monitoring of fat-soluble vitamin levels is essential to ensure adequate supplementation. Suspected bacterial infections (eg, ascending cholangitis) should be treated promptly with broad-spectrum antibiotics, and any bleeding tendency should be corrected with intramuscular vitamin K. Ascites can be managed initially with reduced sodium intake and spironolactone. Choleretics and bile acid–binding products (cholestyramine, aluminum hydroxide gel) are of little use. The value of UDCA remains to be determined. Antibiotic prophylaxis reduces the recurrence rate of cholangitis. The role of post-Kasai corticosteroids is controversial.

**Prognosis**

When bile flow is sustained following portoenterostomy (serum total bilirubin < 2 mg/dL by 3 months of age), the 10-year survival rate without liver transplantation is up to 35%. Death is usually caused by liver failure, sepsis, intractable variceal bleeding or respiratory failure secondary to intractable ascites. Esophageal variceal hemorrhage develops in 40% of patients, yet terminal hemorrhage is unusual. Occasional long-term survivors develop hepatopulmonary syndrome (intrapulmonary right to left shunting of blood resulting in hypoxia) or portopulmonary hypertension (pulmonary arterial hypertension in patients with portal hypertension). Liver transplantation has dramatically changed the outlook for these patients.


**Clinical Features**

A. Symptoms and Signs

Choledochal cysts are cystic lesions of all or part of the extrahepatic biliary system and in rare cases the cystic malformation can include the intrahepatic bile duct branches. In most cases, the clinical manifestations, basic laboratory findings, and histopathologic features on liver biopsy are indistinguishable from those associated with biliary atresia. In older children, choledochal cyst presents as recurrent episodes of right upper quadrant abdominal pain, fevers, vomiting, obstructive jaundice, pancreatitis, or as a right abdominal mass. Infants and children with choledochal cysts are at increased risk for developing bacterial cholangitis. Choledochal cysts cause only 2%–5% of cases of extrahepatic neonatal cholestasis; the incidence is higher in girls and patients of Asian descent. Neonatal symptomatic cysts may be associated with atresia of the distal common duct—accounting for the diagnostic dilemma—and may simply be part of the spectrum of biliary atresia.

B. Imaging Studies

Ultrasoundography or magnetic resonance imaging (MRI) reveals the presence of a cyst.

**Treatment**

Timely surgery is indicated for neonates once abnormalities in clotting factors have been corrected and bacterial cholangitis, if present, has been treated with intravenous antibiotics. Excision of the cyst and choledocho–Roux-en-Y jejunal anastomosis are recommended. In some cases, because of technical problems, only the mucosa of the cyst can be removed with jejunal anastomosis to the proximal bile duct. Anastomosis of cyst to jejunum or duodenum is not recommended due to the continued risks of cholangitis and bile duct carcinoma (cholangiocarcinoma).

**Prognosis**

The prognosis depends on the presence or absence of associated evidence of atresia and the appearance of the intrahepatic ducts. If atresia is found, the prognosis is similar to that described in the preceding section. If an isolated extrahepatic cyst is encountered, the outcome is generally excellent, with resolution of the jaundice and return to normal liver architecture. However, bouts of ascending cholangitis may occur, particularly if intrahepatic cysts are present or stricture of the anastomotic site develops. The risk of cholangiocarcinoma developing within the cyst is about 5%–15% in adulthood; therefore, cystectomy or excision of cyst mucosa should be undertaken whenever possible.

---

2. Choledochal Cyst

**ESSENTIALS OF DIAGNOSIS**

- Abnormal abdominal ultrasound with cyst of the biliary tree.
3. Spontaneous Perforation of the Extrahepatic Bile Ducts

The sudden appearance of obstructive jaundice, acholic stools, and abdominal enlargement with ascites in a sick newborn is suggestive of this condition. The liver is usually normal in size, and a yellow-green discoloration can often be discerned under the umbilicus or in the scrotum. In 24% of cases, stones or sludge obstructs the common bile duct. HIDA scan or ERCP shows leakage from the biliary tree, and ultrasonography confirms ascites or fluid around the bile duct.

Treatment is surgical. Simple drainage, without attempts at overseeing the perforation, is sufficient in primary perforations. A diversion anastomosis is constructed in cases associated with choledochal cyst or stenosis. The prognosis is generally good.

Other Neonatal Hyperbilirubinemic Conditions (Noncholestatic Nonhemolytic)

Two other groups of disorders are associated with hyperbilirubinemia: (1) unconjugated hyperbilirubinemia, present in breast milk jaundice, Lucey-Driscoll syndrome, congenital hypothyroidism, upper intestinal obstruction, Gilbert disease, Crigler-Najjar syndrome, and drug-induced hyperbilirubinemia; and (2) conjugated noncholestatic hyperbilirubinemia, present in the Dubin-Johnson syndrome andRotor syndrome.

1. Unconjugated Hyperbilirubinemia
   A. Breast Milk Jaundice

Persistent elevation of the indirect bilirubin fraction (>80% of total bilirubin) may occur in up to 36% of breast-fed infants. Enhanced β-glucuronidase activity in breast milk is one factor that increases absorption of unconjugated bilirubin. Substances (eg, L-aspartic acid) in casein hydrolysate formulas inhibit this enzyme. The increased enterohepatic shunting of unconjugated bilirubin exceeds the normal conjugating capacity in the liver of these infants. The mutation for Gilbert syndrome (UDP-glucuronyltransferase 1A1 [UGT1A1]) predisposes to breast milk jaundice and to more prolonged jaundice. Neonates who carry the 211 and 388 variants in the UGT1A1 and OATP 2 genes, respectively, and feed with breast milk, are at high risk to develop severe hyperbilirubinemia. Low volumes of ingested breast milk may also contribute to jaundice in the first week of life. Finally, breast milk may suppress UGT1A1 expression in the infant’s intestines which may also lead to unconjugated hyperbilirubinemia.

Hyperbilirubinemia does not usually exceed 20 mg/dL, with most cases in the range of 10–15 mg/dL. Jaundice is noticeable by the fifth to seventh day of breast feeding. It may accentuate the underlying physiologic jaundice—especially early, when total fluid intake may be less than optimal. Except for jaundice, the physical examination is normal; urine does not stain the diaper, and the stools are golden yellow.

The jaundice peaks before the third week of life and clears before age 3 months in almost all infants, even when breast feeding is continued. All infants who remain jaundiced past age 2–3 weeks should have measurement of conjugated bilirubin to exclude cholestasis and hepatobiliary disease.

Kernicterus has rarely been reported in association with this condition. In special situations, breast feeding may be discontinued temporarily and replaced by formula feedings for 2–3 days until serum bilirubin decreases by 2–8 mg/dL. Cow’s milk formulas inhibit the intestinal reabsorption of unconjugated bilirubin. When breast feeding is reinstituted, the serum bilirubin may increase slightly, but not to the previous level.

Phototherapy is not indicated in the healthy full-term infant with this condition unless bilirubin levels meet high-risk levels as defined by the American Academy of Pediatrics.

B. Congenital Hypothyroidism

Although the differential diagnosis of indirect hyperbilirubinemia should always include congenital hypothyroidism, the diagnosis is usually suggested by clinical and physical clues or, more commonly, from the newborn screening results. The jaundice clears quickly with replacement thyroid hormone therapy, although the mechanism is unclear.

## Other Neonatal Hyperbilirubinemic Conditions (Noncholestatic Nonhemolytic)

Two other groups of disorders are associated with hyperbilirubinemia: (1) unconjugated hyperbilirubinemia, present in breast milk jaundice, Lucey-Driscoll syndrome, congenital hypothyroidism, upper intestinal obstruction, Gilbert disease, Crigler-Najjar syndrome, and drug-induced hyperbilirubinemia; and (2) conjugated noncholestatic hyperbilirubinemia, present in the Dubin-Johnson syndrome and Rotor syndrome.

### 1. Unconjugated Hyperbilirubinemia

#### A. Breast Milk Jaundice

Persistent elevation of the indirect bilirubin fraction (>80% of total bilirubin) may occur in up to 36% of breast-fed infants. Enhanced β-glucuronidase activity in breast milk is one factor that increases absorption of unconjugated bilirubin. Substances (eg, L-aspartic acid) in casein hydrolysate formulas inhibit this enzyme. The increased enterohepatic shunting of unconjugated bilirubin exceeds the normal conjugating capacity in the liver of these infants. The mutation for Gilbert syndrome (UDP-glucuronyltransferase 1A1 [UGT1A1]) predisposes to breast milk jaundice and to more prolonged jaundice. Neonates who carry the 211 and 388 variants in the UGT1A1 and OATP 2 genes, respectively, and feed with breast milk, are at high risk to develop severe hyperbilirubinemia. Low volumes of ingested breast milk may also contribute to jaundice in the first week of life. Finally, breast milk may suppress UGT1A1 expression in the infant’s intestines which may also lead to unconjugated hyperbilirubinemia.

Hyperbilirubinemia does not usually exceed 20 mg/dL, with most cases in the range of 10–15 mg/dL. Jaundice is noticeable by the fifth to seventh day of breast feeding. It may accentuate the underlying physiologic jaundice—especially early, when total fluid intake may be less than optimal. Except for jaundice, the physical examination is normal; urine does not stain the diaper, and the stools are golden yellow.

The jaundice peaks before the third week of life and clears before age 3 months in almost all infants, even when breast feeding is continued. All infants who remain jaundiced past age 2–3 weeks should have measurement of conjugated bilirubin to exclude cholestasis and hepatobiliary disease.

Kernicterus has rarely been reported in association with this condition. In special situations, breast feeding may be discontinued temporarily and replaced by formula feedings for 2–3 days until serum bilirubin decreases by 2–8 mg/dL. Cow’s milk formulas inhibit the intestinal reabsorption of unconjugated bilirubin. When breast feeding is reinstituted, the serum bilirubin may increase slightly, but not to the previous level. Phototherapy is not indicated in the healthy full-term infant with this condition unless bilirubin levels meet high-risk levels as defined by the American Academy of Pediatrics.

### B. Congenital Hypothyroidism

Although the differential diagnosis of indirect hyperbilirubinemia should always include congenital hypothyroidism, the diagnosis is usually suggested by clinical and physical clues or, more commonly, from the newborn screening results. The jaundice clears quickly with replacement thyroid hormone therapy, although the mechanism is unclear.

## References


C. Upper Intestinal Obstruction

The association of indirect hyperbilirubinemia with high intestinal obstruction (eg, duodenal atresia, annular pancreas, pyloric stenosis) in the newborn has been observed repeatedly; the mechanism is unknown. Diminished levels of hepatic glucuronol transferase are found on liver biopsy in pyloric stenosis, and genetic studies suggest that this indirect hyperbilirubinemia may be an early sign of Gilbert syndrome.

Treatment is that of the underlying obstructive condition (usually surgical). Jaundice disappears once adequate nutrition is achieved.


D. Gilbert Syndrome

Gilbert syndrome is a common form of familial hyperbilirubinemia present in 3%–7% of the population. It is associated with a partial reduction of hepatic bilirubin uridine diphosphate-glucuronol transferase activity. Affected infants may have more rapid increase in jaundice in the newborn period, accentuated breast milk jaundice, and jaundice with intestinal obstruction. During puberty and beyond, mild fluctuating jaundice, especially with illness and vague constitutional symptoms, is common. Shortened red blood cell survival in some patients is thought to be caused by reduced activity of enzymes involved in heme biosynthesis (protoporphyrinogen oxidase). Reduction of hyperbilirubinemia has been achieved in patients by administration of phenobarbital (5–8 mg/kg/d), although this therapy is not justified.

The disease is inherited as an abnormality of the promoter region of uridine diphosphate-glucuronyl transferase-1 (UDGTTI); however, another factor appears to be necessary for disease expression. The homozygous (16%) and heterozygous states (40%) are common. Males are affected more often than females (4:1) for reasons that are not clear. Serum unconjugated bilirubin is generally less than 3–6 mg/dL, although unusual cases may exceed 8 mg/dL. The findings on liver biopsy and most LFTs are normal in both types.


E. Crigler-Najjar Syndrome

Infants with type 1 Crigler-Najjar syndrome usually develop rapid severe unconjugated hyperbilirubinemia (> 30–40 mg/dL) with neurologic consequences (kernicterus). Consanguinity is often present. Prompt recognition of this entity and treatment with exchange transfusions are required, followed by phototherapy. Some patients have no neurologic signs until adolescence or early adulthood, at which time deterioration may occur suddenly. For diagnosis of this condition, it may be useful to obtain a duodenal bile specimen, which characteristically will be colorless and contain a predominance of unconjugated bilirubin, small amounts of monoconjugates, and only traces of unconjugated bilirubin. Phenobarbital administration does not significantly alter these findings, nor does it lower serum bilirubin levels. UGT genetic testing is available. The deficiency in UGT1A1 is inherited in an autosomal recessive pattern. A combination of aggressive phototherapy and cholestyramine may keep bilirubin levels below 25 mg/dL. The use of tin protoporphyrin or tin mesoporphyrin remains experimental. Orlistat therapy may decrease bilirubin in a subset of patients. Liver transplantation is curative and may prevent kernicterus if performed early. Auxiliary orthotopic transplantation also relieves the jaundice while the patient retains native liver. Hepatocyte transplantation is experimental and future gene therapy may be possible.

A milder form (type 2) with both autosomal dominant and recessive inheritance is rarely associated with neurologic complications. Hyperbilirubinemia is less severe, and the bile is pigmented and contains small amounts of bilirubin monoglucuronide and diglucuronide. Patients with this form respond to phenobarbital (4 mg/kg/d in infants) with lowering of serum bilirubin levels. An increased proportion of monoconjugated and diconjugated bilirubin in the bile follows phenobarbital treatment. Liver biopsy findings and LFTs are consistently normal in both types.


F. Drug-Induced Hyperbilirubinemia

Vitamin K₃ (menadione) may elevate indirect bilirubin levels by causing hemolysis. Vitamin K₃ (phytonadione)
can be used safely in neonates. Carbamazepine can cause conjugated hyperbilirubinemia in infancy. Rifampin and antiretroviral protease inhibitors may cause unconjugated hyperbilirubinemia. Pancuronium bromide and chloral hydrate have been implicated in causing neonatal jaundice. Other drugs (eg, ceftriaxone, sulfonamides) may displace bilirubin from albumin, potentially increasing the risk of kernicterus—especially in the sick premature infant.

2. Conjugated Noncholestatic Hyperbilirubinemia (Dubin-Johnson Syndrome & Rotor Syndrome)

These diagnoses are suspected when persistent or recurrent conjugated hyperbilirubinemia and jaundice occur and liver function tests are normal. The basic defect in Dubin-Johnson syndrome is in the multiple organic anion transport protein 2 (MRP2) of the bile canalculus, causing impaired hepatocyte excretion of conjugated bilirubin into bile. A variable degree of impairment in uptake and conjugation complicates the clinical picture. Transmission is autosomal recessive, so a positive family history is occasionally obtained. In Rotor syndrome, the defect lies in hepatic uptake and storage of bilirubin. OATP1B1 and OATP1B3 are the two transporters that are deficient. Bile acids are metabolized normally, so that cholestasis does not occur. Bilirubin values range from 2 to 5 mg/dL, and other LFTs are normal.

In Rotor syndrome, the liver is normal; in Dubin-Johnson syndrome, it is darkly pigmented on gross inspection and may be enlarged. Microscopic examination reveals numerous dark-brown pigment granules consisting of polymers of epinephrine metabolites, especially in the centrilobular regions. However, the amount of pigment varies within families, and some jaundiced family members may have no demonstrable pigmentation in the liver. Otherwise, the liver is histologically normal. Oral cholecystography fails to visualize the gall-bladder in Dubin-Johnson syndrome, but is normal in Rotor syndrome. Differences in the excretion patterns of bromosulfophthalein, in results of HIDA cholecintigraphy, in urinary coproporphyrin I and III levels, and in the serum pattern of monoglucuronide and diglucuronide conjugates of bilirubin can help distinguish between these two conditions. Genotyping of MRP2 is available but for the Rotor syndrome this is only available on a research basis. Choleretic agents (eg, UDCA) may help reduce the cholestasis in infants with Dubin-Johnson syndrome.

HEPATITIS A

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Gastrointestinal upset (anorexia, vomiting, diarrhea).
- Jaundice.
- Liver tenderness and enlargement.
- Abnormal LFTs.
- Local epidemic of hepatitis A infection.
- Positive anti-hepatitis A virus (HAV) IgM antibody.

Pathogenesis

Hepatitis A virus (HAV) infection occurs in both epidemic and sporadic fashion (Table 22–6). Fecal-oral route is the mode of transmission in epidemic outbreaks from contaminated food or water supplies, including by food handlers. HAV viral particles are found in stools during the acute phase of hepatitis A infection. Sporadic cases usually result from contact with an infected individual. Transmission through blood products obtained during the viremic phase is a rare event, although it has occurred in a newborn nursery.

Prevention

Isolation of the patient during initial phases of illness is indicated, although most patients with hepatitis A are noninfectious by the time the disease becomes overt. Stool, diapers, and other fecally stained clothing should be handled with care for 1 week after the appearance of jaundice.

Passive-active immunization of exposed susceptible persons < 12 months old; over 40 years of age: anyone who is immunocompromised or who has chronic liver disease is recommended with immune globulin, 0.02 mL/kg intramuscularly. Illness is prevented in > 85% of individuals if immune globulin is given within 2 weeks of exposure. For individuals 12 months to 40 years old HAV vaccine is recommended following exposure. Infants < 12 months old traveling to endemic disease areas should receive HAV vaccine or 0.02 or 0.06 mL/kg (for trip > 3 months) of immune globulin as prophylaxis. Older individuals should receive the HAV vaccine. All children older than 12 months with chronic liver disease should receive two doses of HAV vaccine 6 months apart. It is currently recommended that all children 12–18 months of age receive HAV vaccination in the United States. If an emigrant child from an endemic area is adopted, the immediate family members should be immunized. Lifelong immunity to HAV follows infection.
Table 22–6. Hepatitis viruses.

<table>
<thead>
<tr>
<th></th>
<th>HAV</th>
<th>HBV</th>
<th>HCV</th>
<th>HDV</th>
<th>HEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of virus</td>
<td>Enterovirus (RNA)</td>
<td>Hepadnavirus (DNA)</td>
<td>Flavivirus (RNA)</td>
<td>Deltavirus (RNA)</td>
<td>Hepevirus (RNA)</td>
</tr>
<tr>
<td>Transmission routes</td>
<td>Fecal-oral</td>
<td>Parenteral, sexual, vertical</td>
<td>Parenteral, sexual, vertical</td>
<td>Parenteral, sexual</td>
<td>Fecal-oral</td>
</tr>
<tr>
<td>Incubation period (days)</td>
<td>15–40</td>
<td>45–160</td>
<td>30–150</td>
<td>20–90</td>
<td>14–65</td>
</tr>
<tr>
<td>Diagnostic test</td>
<td>Anti-HAV IgM</td>
<td>HBsAg, anti-HBc IgM, DNA PCR</td>
<td>Anti-HCV, RNA PCR</td>
<td>Anti-HDV antibody</td>
<td>Anti-HEV IgM HEV PCR</td>
</tr>
<tr>
<td>Mortality rate (acute)</td>
<td>0.1%–0.2%</td>
<td>0.5%–2%</td>
<td>1%–2%</td>
<td>2%–20%</td>
<td>1%–2% (10%–20% in pregnant women)</td>
</tr>
<tr>
<td>Carrier state</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Vaccine available</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes (HBV)</td>
<td>Yes (experimental)</td>
</tr>
<tr>
<td>Treatment</td>
<td>None</td>
<td>Interferon-α (pegylated interferon in adults), nucleoside analogues (lamivudine &gt; 2 y old, tenofovir &gt; 12 y, adefovir &gt; 12; entecavir or telbivudine &gt; 16)</td>
<td>Pegylated interferon plus ribavirin</td>
<td>Treatment for HBV</td>
<td>None</td>
</tr>
</tbody>
</table>

HAV, hepatitis A virus; HBc, hepatitis B core; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HDV, hepatitis D (delta) virus; HEV, hepatitis E virus; PCR, polymerase chain reaction.

Hepatitis Virus Abbreviations

- HAV: Hepatitis A virus
- Anti-HAV IgM: IgM antibody to HAV
- HBV: Hepatitis B virus
- HBsAg: HBV surface antigen
- HBeAg: HBV e antigen
- Anti-HBs: Antibody to HBsAg
- Anti-HBe: Antibody to HBeAg
- Anti-HBc: Antibody to HBcAg
- Anti-HBc IgM: IgM antibody to HBcAg
- Anti-HCV: Antibody to HCV
- HDV: Hepatitis D (delta) virus
- Anti-HDV: Antibody to HDV
- HEV: Hepatitis E virus
- Anti-HEV: Antibody to HEV

Clinical Findings

A. History

Historical risk factors may include direct exposure to a previously jaundiced individual or recently arrived individual from a high prevalence country, consumption of seafood, contaminated water or imported fruits or vegetables, attendance in a day care center, or recent travel to an area of endemic infection. Following an incubation period of 15–40 days, nonspecific symptoms usually precede the development of jaundice by 5–10 days. In developing countries, hepatitis A is common and most children are exposed to HAV by age 10 years, while only 20% are exposed by age 20 years in developed countries.

B. Symptoms and Signs

The overt form of the disease is easily recognized by the clinical manifestations. However, two-thirds of children are asymptomatic, and two-thirds of symptomatic children are anicteric. Therefore, the presenting symptoms in children with HAV resemble gastroenteritis. Fever, anorexia, vomiting, headache, and abdominal pain are typical and dark urine precedes jaundice, which peaks in 1–2 weeks and then begins to subside. The stools may become light- or clay-colored. Clinical improvement can occur as jaundice develops.
Tender hepatomegaly and jaundice are typically present; splenomegaly is variable.

C. Laboratory Findings

Serum aminotransferases and conjugated and unconjugated bilirubin levels are elevated. Although unusual, hypoalbuminemia, hypoglycemia, and marked prolongation of PT (international normalized ratio [INR] > 2.0) are serious prognostic findings. Diagnosis is made by a positive anti-HAV IgM, whereas anti-HAV IgG persists after recovery.

Percutaneous liver biopsy is rarely indicated. “Balloon cells” and acidophilic bodies are characteristic histologic findings. Liver cell necrosis may be diffuse or focal, with accompanying infiltration of inflammatory cells containing polymorphonuclear leukocytes, lymphocytes, macrophages, and plasma cells, particularly in portal areas. Some bile duct proliferation may be seen in the perilobular portal areas alongside areas of bile stasis. Regenerative liver cells and proliferation of reticuloendothelial cells are present. Occasionally massive hepatocyte necrosis portends a poor prognosis.

Differential Diagnosis

Before jaundice appears, the symptoms are those of non-specific viral enteritis. Other diseases with somewhat similar onset include pancreatitis, infectious mononucleosis, leptospirosis, drug-induced hepatitis, Wilson disease, autoimmune hepatitis (AIH), and infection with other hepatitis viruses. Acquired CMV disease may also mimic HAV, although lymphadenopathy is usually present in the former.

Treatment

No specific treatment measures are required although bed rest is reasonable for the child who appears ill. Sedatives and corticosteroids should be avoided. During the icteric phase, lower-fat foods may diminish gastrointestinal symptoms, but do not affect overall outcome. Drugs and elective surgery should be avoided. Hospitalization is recommended for children with coagulopathy, encephalopathy, or severe vomiting.

Prognosis

Ninety-nine percent of children recover without sequelae. Persons with underlying chronic liver disease have an increased risk of death. In rare cases of acute liver failure due to HAV hepatitis, the patient may die within days to weeks and requires evaluation for liver transplantation. The prognosis is poor if hepatic coma or ascites develop; liver transplantation is indicated under these circumstances and is life-saving. Incomplete resolution can cause a prolonged hepatitis; however, resolution invariably occurs without long-term hepatic sequelae. Rare cases of aplastic anemia following acute infectious hepatitis have been reported. A benign relapse of symptoms may occur in 10%–15% of cases after 6–10 weeks of apparent resolution.

Hepatitis B

Gastrointestinal upset, anorexia, vomiting, diarrhea.

Jaundice, tender hepatomegaly, abnormal LFTs.

Serologic evidence of hepatitis B disease: HBsAg, HBeAg, anti-HBc IgM.

History of parenteral, sexual, or household exposure or maternal HBsAg carriage.

General Considerations

In contrast to HAV, hepatitis B virus (HBV) infection has a longer incubation period of 45–160 days (see Table 22–6). HBV is a DNA virus that is either acquired perinatally from a carrier mother, or later in life from exposure to contaminated blood through shared needles, needle sticks, skin piercing, tattoos, or sexual transmission. Transmission via blood products has been almost eliminated by donor-screening and donor blood testing protocols.

Pathophysiology

The HBV particle is composed of a core that is found in the nucleus of infected liver cells and a double outer shell (surface antigen). The surface antigen in blood is termed HBsAg, which elicits an antibody (anti-HBs). The core antigen is termed HBCAg and its antibody is anti-HBc. Anti-HBc IgM antibody indicates recent viral infection. Another important antigen-antibody system associated with HBV disease is the “e” (envelope) antigen system. HBeAg, a truncated soluble form of HBCAg, correlates with active virus replication. Persistence of HBeAg is a marker of infectivity, whereas the
appearance of anti-HBe generally implies a lower level of viral replication. However, HBV mutant viruses (precore mutant) may replicate with negative HBeAg tests and positive tests for anti-HBe antibody (HBeAg-negative chronic hepatitis) and are associated with a more virulent form of hepatitis. Circulating HBV DNA (measured by PCR) also indicates viral replication.

**Prevention**

HBV vaccination is the preferred method for prevention. Universal immunization of all infants born in the United States and of adolescents is now recommended, as it is in most other countries. Other control methods include screening of blood donors and pregnant women, use of properly sterilized needles and surgical equipment, avoidance of sexual contact with carriers, general adoption of safe sex practices, and vaccination of household contacts, sexual partners, medical personnel, and those at high risk. For postexposure prophylaxis, HBV vaccine alone (see Chapter 10) or together with administration of hepatitis B immune globulin (HBIG) (0.06 mL/kg intramuscularly, given as soon as possible after exposure, up to 7 days). The risk of vertical transmission is dramatically reduced with the combination of newborn vaccination and HBIG administration.

**Clinical Findings**

**A. Symptoms and Signs**

Most infants and young children are completely asymptomatic, especially if the infection is acquired vertically. Symptoms of acute HBV infection include slight fever (which may be absent), malaise, and mild gastrointestinal upset. Visible jaundice is usually the first significant finding and is accompanied by darkening of the urine and pale or clay-colored stools. Hepatomegaly is frequently present. Occasionally an antigen-antibody complex presentation antedates the appearance of icterus, and is characterized by macular rash, urticaria, and arthritis. HBV infection more rarely presents as a glomerulonephritis or nephrotic syndrome from immune complexes.

**B. Laboratory Findings**

The diagnosis of acute HBV infection is confirmed by the presence of HBSAg and anti-HBc IgM. Recovery from acute infection is accompanied by HBSAg clearance and appearance of anti-HBs and anti-HBc IgG. Individuals who are immune by vaccination are positive for anti-HBs, but negative for anti-HBc IgG. Chronic infection is defined as the presence of HBSAg for at least 6 months. Vertical transmission to newborns is documented by positive HBSAg. LFT results are similar to those discussed earlier for hepatitis A. Liver biopsy is most useful in chronic infection to determine the degree of fibrosis and inflammation. Renal involvement may be suspected on the basis of urinary findings suggesting glomerulonephritis or nephrotic syndrome. The various phases of chronic HBV infection are shown in Table 22–7.

**Differential Diagnosis**

The differentiation between HAV and HBV disease is aided by a history of parenteral exposure, an HBSAg-positive parent, or an unusually long period of incubation. HBV and hepatitis C virus (HCV) infection or Epstein-Barr virus (EBV) infection are differentiated serologically. The history may suggest a drug-induced hepatitis, especially if a serum sickness prodrome is reported. Autoimmune hepatitis Wilson disease, hemochromatosis, nonalcoholic fatty liver disease (NAFLD), α1-antitrypsin deficiency, and drug-induced hepatitis should also be considered.

**Treatment**

Supportive measures such as bed rest and a nutritious diet are used during the active symptomatic stage of acute HBV infection. Corticosteroids are contraindicated. No other treatment is needed for acute HBV infection. For acute infection complicated by acute liver failure, nucleos(t)ide therapy may be

---

**Table 22–7. Phases of chronic hepatitis B infection.**

<table>
<thead>
<tr>
<th>Phase</th>
<th>HBeAg/Anti-HBeAg</th>
<th>HBSAg/Anti-HBsAg</th>
<th>ALT</th>
<th>HBV DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immune tolerant</td>
<td>Positive/negative</td>
<td>Positive/negative</td>
<td>Normal</td>
<td>&gt; 20,000 IU/mL</td>
</tr>
<tr>
<td>Immune active</td>
<td>Positive/negative</td>
<td>Positive/negative</td>
<td>Elevated</td>
<td>High</td>
</tr>
<tr>
<td>Chronic HBSAg carrier</td>
<td>Negative/positive</td>
<td>Positive/negative</td>
<td>Normal</td>
<td>&lt; 2000 IU/mL</td>
</tr>
<tr>
<td>HBeAg negative hepatitis/ reactivation</td>
<td>Negative/positive</td>
<td>Positive/negative</td>
<td>Elevated</td>
<td>&gt; 2000 IU/mL</td>
</tr>
<tr>
<td>HBSAg clearance</td>
<td>Negative/positive</td>
<td>Negative/positive</td>
<td>Normal</td>
<td>Undetectable</td>
</tr>
</tbody>
</table>
helpful. For patients with chronic infection who persist in the immunoactive phase for more than 6 months or with HBeAg-negative chronic hepatitis, there are currently two approved treatment options. Treatment with α-interferon (5–6 million U/m² of body surface area injected subcutaneously three times a week for 4–6 months) inhibits viral replication in 30%–40% of patients, normalizes the ALT level, and leads to the disappearance of HBeAg and the appearance of anti-HBe. Side effects are common. Younger children may respond better than older children. Orally administered nucleoside analog therapy (lamivudine 3 mg/kg/d up to 100 mg/d for children > 2 years old or adefovir 10 mg/d or tenofovir 300 mg/d for children > 12 years old and entecavir [0.5 mg once daily] or telbivudine [600 mg once daily] for children > 16 years old) leads to a successful response in 25% of treated children, with minimal side effects, but may require long-term treatment. However, resistant organisms can emerge, more frequently with lamivudine. Pegylated interferon, several oral antiviral agents (with much lower rates of resistance), and combination therapy are promising options being tested in children. Immunotolerant children and chronic carriers do not respond to therapy. Liver transplantation is successful in acute liver failure due to hepatitis B; however, re-infection is common following liver transplantation for chronic hepatitis B unless long-term HBIG or antivirals are used.

**Prognosis**

The prognosis for acute HBV infection is good in older children, although acute liver failure (< 0.1%) or chronic hepatitis and cirrhosis (up to 10%) may supervene. The course of the acute disease is variable, but jaundice seldom persists for more than 2 weeks. HBsAg disappears in 95% of cases at the time of clinical recovery. Chronic infection is particularly common in children with vertical transmission, Down syndrome, or leukemia, and in those undergoing chronic hemodialysis. Persistence of neonatally acquired HBsAg occurs in 70%–90% of infants without immunoprophylaxis or vaccination. The presence of HBeAg in the HBsAg carrier indicates ongoing viral replication. However, 1%–2% of children infected at birth will show spontaneous seroconversion of HBeAg each year. If HBV infection is acquired later in childhood, HBV is cleared and recovery occurs in 90%–95% of patients. Chronic HBV disease predisposes the patient to development of hepatocellular carcinoma. Once chronic HBV infection is established, surveillance for development of hepatocellular carcinoma with serum α-fetoprotein is performed biannually and ultrasonography yearly. Routine HBV vaccination of newborns in endemic countries has reduced the incidence of acute liver failure, chronic hepatitis, and hepatocellular carcinoma in children.


**Hepatitis C**

**General Considerations**

Hepatitis C virus (HCV) is the most common cause of non-B chronic hepatitis (see Table 22–6). Risk factors in adults and adolescents include illicit use of intravenous drugs, occupational or sexual exposure and a history of transfusion of blood products prior to 1992. The risk from transfused blood products has diminished greatly (from 1–2:100 to < 1:100,000 units of blood) since the advent of blood testing for ALT and anti-HCV. In the past, children with hemophilia or on chronic hemodialysis were also at significant risk. Most cases in children are now associated with transmission from an infected mother (vertical transmission) or rarely from other household contacts. Vertical transmission from HCV-infected mothers occurs more commonly with mothers who are HIV-positive (15%–20%) compared with those who are HIV-negative (5%–6%). Approximately 0.2% of children, 0.4% of adolescents and 1.5% of adults in the United States have serologic evidence of infection. Transmission of the virus from breast milk is very rare. HCV rarely causes fulminant hepatitis in children or adults in Western countries, but different serotypes do so in Asia.

HCV is a single-stranded RNA flavivirus. At least seven genotypes of HCV exist. Several well-defined HCV antigens are the basis for serologic antibody tests. The third-generation enzyme-linked immunosorbent assay (ELISA) test for anti-HCV is highly accurate. Anti-HCV is generally present when symptoms occur; however, test results may be negative in the first few months of infection. The presence of HCV RNA in serum indicates active infection.

**Prevention**

At present, the only effective means of prevention is avoidance of exposure through elimination of risk-taking behaviors such as illicit use of intravenous drugs. There is no effective prevention for vertical transmission, but avoidance of fetal scalp monitoring in infant of mothers with HCV has been suggested. Elective Caesarean section is not recommended for HCV-monoinfected women, as it confers no reduction in the rate of mother-to-infant HCV transmission. Breastfeeding does not promote HCV transmission from mother to infant. It is advised to avoid breastfeeding if the nipples are bleeding, if mastitis is present or if the mother is experiencing a flare of hepatitis with jaundice postpartum. There is no vaccine, and no benefit from using immune globulin in infants born to infected mothers.


Clinical Findings

A. Symptoms and Signs

Most childhood cases, especially those acquired vertically, are asymptomatic despite development of chronic hepatitis. The incubation period is 1–5 months, with insidious onset of symptoms. Flu-like prodromal symptoms and jaundice occur in less than 25% of cases. Hepatosplenomegaly may or may not be evident in chronic hepatitis. Ascites, clubbing, palmar erythema, or spider angiomas are rare and indicate progression to cirrhosis.

B. Laboratory Findings

Since anti-HCV IgG crosses the placenta, testing anti-HCV IgG is not informative until the infant is 18 months old, at which time antibody testing should be performed. Patients > 18 months of age with positive anti-HCV IgG should have subsequent testing for serum HCV RNA in order to determine active infection. Serum HCV RNA can be tested prior to 18 months of age, but should not be tested before 2 months old. If serum HCV RNA is positive in infancy, it should be rechecked when the infant is 12 months of age in order to determine presence of chronic hepatitis. Fluctuating mild to moderate elevations of aminotransferases over long periods are characteristic of chronic HCV infection; however, normal aminotransferases are common in children.

Percutaneous liver biopsy should be considered in chronic cases. Histologic examination shows portal triaditis with chronic inflammatory cells, occasional lymphocyte nodules in portal tracts, mild macrovesicular steatosis, and variable bridging necrosis, fibrosis, and cirrhosis; most children have mild to moderate fibrosis on liver biopsy. Cirrhosis in adults generally requires 20–30 years of chronic HCV infection, but it has occasionally developed sooner in children.

Differential Diagnosis

HCV disease should be distinguished from HAV and HBV disease by serologic testing. Other causes of cirrhosis in children should be considered in cases of chronic illness, such as Wilson disease, α1-antitrypsin deficiency, autoimmune hepatitis, drug-induced hepatitis, or steatohepatitis.

Treatment

In 2012, triple therapy was implemented for adults with chronic HCV. Triple therapy includes pegylated interferon-α, ribavirin and a protease inhibitor (boceprevir or telaprevir). Triple therapy has been associated with successful eradication of virus in up to 80% of treatment-naive genotype 1 cases. Indications for treatment of chronic infection in children are unclear, but generally include chronic hepatitis and fibrosis. The current approved therapy for treatment of children consists of pegylated interferon-α 2a or 2b (104 mcg/m² BSA weekly for 2a and 60 mcg/m² BSA weekly for 2b) and ribavirin (15 mg/kg/d). The sustained virological response rates of this double therapy are approximately 40% in genotype 1 (most common in United States) and approximately 80% for genotypes 2 and 3. Clinical trials of triple therapy for children with genotype 1 HCV are under investigation. End-stage liver disease secondary to HCV responds well to liver transplantation, although re-infection of the transplanted liver is very common and occasionally rapidly progressive. Pre- and post-transplant antiviral therapy may reduce the risk of reinfection.

Prognosis

Following an acute infection with HCV, 70%–80% of adults and older children develop a chronic infection. Twenty percent of adults with chronic HCV develop cirrhosis by 30 years. Infants infected by vertical transmission have a high rate of spontaneous resolution approaching 25%–40%. Most have spontaneous resolution by 24 months of age, but some may have spontaneous resolution as late as 7 years after vertical infection. The majority of children with chronic HCV have mild inflammation and fibrosis on liver biopsy, although cirrhosis may develop rapidly in rare cases or after decades. The longer-term outcome in children is less well defined. Limited 30-year follow-up of infants exposed to HCV by transfusion suggests a lower rate of progression to cirrhosis compared to adults. The prognosis for infants infected at birth with concomitant HIV infection is unknown, but the course appears benign for the first 10 years of life. In adults, chronic HCV infection has been associated with mixed cryoglobulinemia, polyarteritis nodosa, a sicca-like syndrome, and membranoproliferative glomerulonephritis, as well as hepatocellular carcinoma.

Hepatitis D (Delta Agent)

The hepatitis D virus (HDV) is a 36-nm defective virus that requires the presence of HBsAg to be infectious (see Table 22–6). Thus, HDV infection can occur only in the presence of HBV infection. Transmission is by...
parenteral exposure or intimate contact. HDV is rare in North America. HDV can infect simultaneously with HBV, causing acute hepatitis, or can superinfect a patient with chronic HBV infection, predisposing the individual to chronic hepatitis or fulminant hepatitis. In children, the association between chronic HDV coinfection with HBV and chronic hepatitis and cirrhosis is strong. Vertical HDV transmission is rare. HDV can be detected by anti-HDV IgG, which indicates active or previous infection; active infection is confirmed by detecting HDV RNA by PCR or by detecting HDV IgM antibody. Treatment is directed at therapy for HBV infection.


**HEPATITIS E**

Hepatitis E virus (HEV) infection is a cause of enterically transmitted, epidemic hepatitis (see Table 22–6). It is rare in the United States. HEV is a hepevirus that is transmitted via the fecal-oral route. It occurs predominantly in developing countries in association with waterborne epidemics, and has only a 3% secondary attack rate in household contacts. Areas reporting epidemics include Southeast Asia, China, the Indian subcontinent, the Middle East, northern and western Africa, Mexico, and Central America, with sporadic cases in the United States and Europe. Recent reports suggest zoonotic transmission occurs in low endemic regions. Its clinical manifestations resemble HAV infection except that symptomatic disease is rare in children, more common in adolescents and adults, and is associated with a high mortality (10%–20%) in pregnant women, particularly in the third trimester. HEV infection in individuals with chronic liver disease can cause acute deterioration. Zoonotic transmission from pigs, boars, and deer can lead to chronic infection and cirrhosis in immunocompromised individuals. Outside of these settings chronic disease is not reported. Diagnosis is established by detecting anti-HEV IgM antibody or by HEV PCR. A recombinant vaccine is being tested. There is no effective treatment.


**OTHER HEPATITIS VIRUSES**

Other undiscovered viruses may cause cases of acute liver failure (ALF)/severe hepatitis in children, in some cases in association with aplastic anemia. Aplastic anemia occurs in a small proportion of patients recovering from hepatitis and in 10%–20% of those undergoing liver transplantation for ALF of unknown etiology. Parvovirus has been associated with severe hepatitis; the prognosis is relatively good in children. Infectious mononucleosis (EBV) is commonly associated with acute hepatitis and rare cases of EBV-associated ALF have been reported. CMV, adenovirus, herpes simplex virus, HHV-6, HIV, brucella, Q-fever, and leptospirosis are other infectious causes of acute hepatitis.


**ACUTE LIVER FAILURE**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Acute hepatitis with deepening jaundice.
- Extreme elevation of AST and ALT.
- Prolonged PT and INR.
- Encephalopathy and cerebral edema.
- Asterixis and fetor hepaticus.

**General Considerations**

Acute Liver Failure (ALF) is defined as acute liver dysfunction associated with significant hepatic synthetic dysfunction evidenced by a vitamin K-resistant coagulopathy (INR > 2.0) within 8 weeks after the onset of liver injury. This is often associated with encephalopathy, but in young children, encephalopathy may be difficult to detect or absent. Without liver transplantation, mortality is approximately 50% in children. In many cases, an identifiable cause is not found, but is postulated to be an unusually virulent infectious agent or aggressive host immune response. Common identifiable causes of ALF are shown in Table 22–8. Patients with immunologic deficiency diseases and those receiving immunosuppressive drugs are vulnerable to herpes viruses. In children with HIV infection, nucleoside reverse transcriptase inhibitors have triggered lactic acidosis and liver failure. In patients with underlying respiratory chain defects, valproic acid may trigger ALF.
Clinical Findings

A. History

In some patients, ALF presents with the rapid development of deepening jaundice, bleeding, confusion, and progressive coma, while others are asymptomatic at the onset and then suddenly become severely ill during the second week of the disease. Jaundice, fever, anorexia, vomiting, and abdominal pain are the most common symptoms. A careful history of drug and toxin exposure may identify a drug-induced cause.

B. Symptoms and Signs

Children may present with flu-like symptoms, including malaise, myalgias, jaundice, nausea, and vomiting. Tender hepatomegaly is common, which may be followed by progressive shrinking of the liver, often with worsening hepatic function. Signs of chronic liver disease (splenomegaly, spider hemangioma) should suggest an underlying chronic liver disease. Hyper-reflexia and positive extensor plantar responses are seen before the onset of encephalopathy. Impairment of renal function, manifested by either oliguria or anuria, is an ominous sign.

C. Laboratory Findings

Characteristic findings include elevated serum bilirubin levels (usually > 15–20 mg/dL), sustained elevations of AST and ALT (> 3000 U/L), low serum albumin, hypoglycemia, and prolonged PT and INR. Blood ammonia levels become elevated, whereas blood urea nitrogen is often very low. Prolonged PT from disseminated intravascular coagulation (DIC) can be differentiated by determination of factor V (low in ALF and DIC) and VIII (normal to high in ALF and low in DIC). Rapid decreases in AST and ALT, together with shrinking hepatomegaly, due to massive necrosis and collapse, combined with worsening coagulopathy portend a poor prognosis. A high AST and ALT with normal bilirubin suggests acetaminophen toxicity or metabolic causes.

Differential Diagnosis

Severe hepatitis, with or without coagulopathy, due to infections, metabolic disease, autoimmune hepatitis or drug toxicity can initially mimic ALF. Acute leukemia, cardiomyopathy, and Budd-Chiari syndrome can mimic severe hepatitis. Patients with Reye syndrome or urea cycle defects are typically anicteric.

Complications

The development of renal failure and depth of hepatic coma are major prognostic factors. Patients in stage 4 coma (unresponsiveness to verbal stimuli, decorticate or decerebrate posturing) rarely survive without liver transplantation and may have residual central nervous system deficits even after transplant. Cerebral edema, which usually accompanies coma, is frequently the cause of death. Extreme prolongation of PT or INR greater than 3.5 predicts poor recovery except with acetaminophen overdose. Sepsis, hemorrhage, renal failure, and cardiorespiratory arrest are common terminal events.

Treatment

Excellent critical care is paramount, including careful management of hypoglycemia, bleeding and coagulopathy, hyperammonemia, cerebral edema, and fluid balance, while systematically investigating for potentially treatable causes. Several therapies have failed to affect outcome, including exchange transfusion, plasmapheresis with plasma exchange, total body washout, charcoal hemoperfusion, and hemodialysis using a special high-permeability membrane. Spontaneous survival may occur in up to 50% of patients. Liver transplant may be lifesaving in patients without signs of spontaneous recovery, with 60%–80% 1- to 3-year survival. Therefore, early transfer of patients in ALF to centers where liver transplantation can be performed is recommended. Criteria for deciding when to perform transplantation are not firmly established; however, serum bilirubin over 20 mg/dL, INR greater than 4, and factor V levels less than 20% indicate a poor prognosis. Living related donors may be required for transplantation in a timely fashion. The prognosis is better for acetaminophen ingestion, particularly
when N-acetylcysteine treatment is given. Corticosteroids may be harmful, except in autoimmune hepatitis for which steroids may reverse ALF. Acyclovir is essential in herpes simplex or varicella-zoster virus infection. For hyperammonemia, oral antibiotics such as neomycin or rifaximin, and lactulose (1–2 mL/kg three or four times daily) are used to reduce blood ammonia levels and trap ammonia in the colon.

Close monitoring of fluid and electrolytes is mandatory and requires a central venous line. Adequate dextrose should be infused (6–8 mg/kg/min) to maintain normal blood glucose and cellular metabolism. Diuretics, sedatives, and tranquilizers should be used sparingly. Early signs of cerebral edema are treated with infusions of mannitol (0.5–1.0 g/kg). Comatose patients should be intubated, given mechanical ventilatory support, and monitored for signs of infection. Coagulopathy is treated with fresh-frozen plasma, recombinant factor VIIa, other clotting factor concentrates, platelet infusions, or exchange transfusion for bleeding or procedures. Hemodialysis may help stabilize a patient while awaiting liver transplantation. Monitoring for increased intracranial pressure (hepatic coma stages 3 and 4) in patients awaiting liver transplantation is advocated by some. Continuous venous-venous dialysis may be helpful to maintain fluid balance.

**Prognosis**

The prognosis is primarily dependent on the etiology and depth of coma. Only 20%–30% of children with stage 3 or 4 hepatic encephalopathy will have a spontaneous recovery. Children with acute acetaminophen toxicity have a high rate of spontaneous survival, while 40% of children with indeterminate ALF (of unknown etiology) will have a spontaneous recovery. Data from a recent large study suggest that the spontaneous recovery rate is about 40%–50% when all causes of ALF are combined; 30% of patients will receive a liver transplant; and 20% will die without a transplant. Exchange transfusions or other modes of heroic therapy do not improve survival figures. Indeterminate ALF, non-acetaminophen drug-induced ALF, and ALF in infants are associated with a poorer prognosis. Acetaminophen and autoimmune hepatitis etiologies of ALF and rising levels of factors V and VII, coupled with rising levels of serum α-fetoprotein, may signify a more favorable prognosis. The 1-year survival rate in patients who undergo liver transplantation for ALF is 60%–85%.

**AUTOIMMUNE HEPATITIS**

### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Acute or chronic hepatitis.
- Hypergammaglobulinemia.
- Positive antinuclear antibodies (ANA), anti-smooth muscle antibodies (ASMA), anti-liver-kidney microsomal (LKM) antibodies, or anti-soluble liver antigen antibodies (SLA).
- Clinical Findings
  - **A. History**
    - Autoimmune hepatitis (AIH) is a progressive inflammatory disorder of unknown etiology. It is characterized histologically by portal tract inflammation that extends into the parenchyma; serologically by the presence of non-organ specific autoantibodies; biochemically by elevated aminotransferases and serum IgG; and clinically by response to immunosuppressive treatment in the absence of other known causes of liver disease. Pediatric patients may complain of a gradual onset of jaundice that may be asymptomatic or associated with fever, malaise, and abdominal pain or distension. Other complaints at the time of presentation may include a recurrent rash, arthritis, chronic diarrhea or amenorrhea. A family history of autoimmune disease is often present and a high prevalence of seroimmunologic abnormalities has also been noted in relatives.
  - **B. Symptoms and Signs**
    - Asymptomatic hepatomegaly and/or splenomegaly may be found on examination, in association with elevated liver tests. In more advanced cases, jaundice and ascites may develop. Cutaneous signs of chronic liver disease may be noted (eg, spider angiomas, palmar erythema, and digital clubbing). Occasionally patients present with acute liver failure (ALF).
C. Laboratory Findings

LFTs reveal moderate elevations of serum AST, ALT, and alkaline phosphatase. Serum bilirubin may be mildly elevated and albumin may be low. Serum IgG levels are generally elevated in the range of 2–6 g/dL. Two subtypes of disease have been described based on the autoantibodies present: type 1—ANA &/or ASMA (anti-actin); type 2—anti-LKM (anti-cytochrome P-450). Type 1 AIH is the most common form of AIH in the United States. Type 2 AIH presents at a younger age and is more likely to present with ALF compared to type 1. A genetic susceptibility to AIH is suggested by the increased incidence of the histocompatibility alleles HLA DR*0301 (type 1) or HLA DR*0701 (type 2). Liver biopsy reveals the typical histological picture of interface hepatitis: a dense infiltration of the portal tracts consisting mainly of lymphocytes and plasma cells that extends into the liver lobules with destruction of the hepatocytes at the periphery of the lobule and erosion of the limiting plate. There may be bridging fibrosis or cirrhosis evident as well.

Differential Diagnosis

Laboratory and histologic findings differentiate other types of chronic hepatitis (eg, HBV, HCV; steatohepatitis; Wilson disease; α1-antitrypsin deficiency; primary sclerosing cholangitis [PSC]). PSC occasionally presents in a manner similar to AIH, including the presence of autoantibodies. Ten to fifteen percent of pediatric patients have an “overlap syndrome” of AIH and PSC. Anti-HCV antibodies can be falsely positive and should be confirmed by HCV PCR. Drug-induced (minocycline, isoniazid, methyldopa, pemoline) chronic hepatitis should be ruled out. In addition, minocycline has been reported as a potential “trigger” of type 1 AIH.

Complications

Untreated disease that continues for months to years eventually results in cirrhosis, with complications of portal hypertension and liver synthetic dysfunction. Persistent malaise, fatigue, amenorrhea, and anorexia parallel disease activity. Bleeding from esophageal varices and development of ascites usually signal impending hepatic failure.

Treatment

Corticosteroids (prednisone, 2 mg/kg/d maximum 60 mg) decrease the mortality rate during the early active phase of the disease. Recent data in adults suggests budesonide may be as efficacious as prednisone with less steroid side effects. Azathioprine or 6-mercaptopurine (6-MP), 1–2 mg/kg/d, is of value in decreasing the side effects of long-term corticosteroid therapy, but should not be used alone during the induction phase of treatment. Steroids are reduced over a 3- to 12-month period, and azathioprine is continued for at least 1–2 years if AST and ALT remain consistently normal. Whether a patient should be weaned completely off steroids is controversial. Liver biopsy is performed before stopping azathioprine or 6-MP therapy; if inflammation persists, then azathioprine or 6-MP is continued. Thiopurine methyltransferase activity in red blood cells should be assessed prior to starting azathioprine or 6-MP, to prevent extremely high blood levels and severe bone marrow toxicity. Relapses are treated with a course of steroids. Many patients require chronic azathioprine or 6-MP therapy. Cyclosporine, tacrolimus, or methotrexate may be helpful in poorly responsive cases. Mycophenolate mofetil can be substituted for azathioprine or 6-MP. Liver transplantation is indicated when disease progresses to decompensated cirrhosis despite therapy or in cases presenting in ALF that do not respond to steroid therapy.

Prognosis

The overall prognosis for AIH is improved significantly with early therapy. Some studies report cures (normal histologic findings) in 15%–20% of patients. Relapses (seen clinically and histologically) occur in 40%–50% of patients after cessation of therapy; remissions follow repeat treatment. Survival for 10 years is common despite residual cirrhosis. Of children with AIH, 20%–50% eventually require liver transplantation. Complications of portal hypertension (bleeding varices, ascites, spontaneous bacterial peritonitis, and hepatopulmonary syndrome) require specific therapy. Liver transplantation is successful 70%–90% of the time. Disease recurs after transplantation 10%–50% of the time and is treated similarly to pretransplant disease.

NONALCOHOLIC FATTY LIVER DISEASE

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Hepatomegaly in patient with BMI > 95th percentile.
- Elevated ALT > AST.
- Detection of fatty infiltration of the liver on ultrasound.
- Histologic evidence of fat in the liver.
- Insulin resistance.

Nonalcoholic fatty liver disease (NAFLD), a clinicopathologic condition of abnormal hepatic fat deposition in the
absence of alcohol, is the most common cause of abnormal liver function tests in the United States. NAFLD ranges from bland steatosis, to fat and inflammation, with or without scarring (also referred to as nonalcoholic steatohepatitis, NASH) to cirrhosis. Trends in NAFLD parallel trends in obesity, with up to 10% of all children, and 38% of obese children affected in the United States. Many children with NAFLD are also affected by type 2 diabetes mellitus, hypertension, hyperlipidemia and the metabolic syndrome. Most children are 11-13 years of age at diagnosis, with males (ratio of 2:1) and Hispanics at highest risk.

**Prevention**

The most effective therapy is prevention of the overweight or obese state.

**Clinical Findings**

A. History

Most patients with NAFLD are asymptomatic and discovered upon routine screening. Some may complain of fatigue or right upper quadrant pain. Obesity and insulin resistance are known risk factors.

B. Symptoms and Signs

Patients with NAFLD may present with asymptomatic soft hepatomegaly, though abdominal adiposity may make this difficult to assess. Physical findings of insulin resistance (acanthosis nigricans and a buffalo hump) are frequently present.

C. Laboratory Findings

Serum aminotransferases will not identify bland steatosis, so NAFLD patient may have completely normal AST and ALT. If elevated, the AST and ALT are typically elevated less than 1.5 times the upper limit of normal, with an ALT:AST ratio of > 1. Alkaline phosphatase and GGT may be mildly elevated, but bilirubin is normal. Hyperglycemia and hyperlipidemia are also common. If performed, the liver biopsy may show micro- or macrovesicular steatosis, hepatocyte ballooning, Mallory bodies, and lobular or portal inflammation. In addition, varying degrees of fibrosis from portal focused to cirrhosis may be present. There are no established reliable biochemical predictors of the degree of hepatic fibrosis, but new biomarkers, like patatin-like phospholipase domain-containing 3 polymorphisms and cytokeratin-18, show promise in research laboratories.

D. Imaging

Ultrasonography or CT scan can be used to confirm fatty infiltration of the liver. Ultrasound is the preferred methodology due to lower cost and lack of radiation exposure, though it may be insensitive in severe central adiposity or if less than 30% steatosis is present. Currently, radiologic imaging cannot distinguish bland steatosis from the more severe NASH, nor reliably identify fibrosis. Transient elastography is a research tool that shows promise in estimating hepatic fibrosis.

**Differential Diagnosis**

Steatohepatitis is also associated with Wilson disease, hereditary fructose intolerance, tyrosinemia, HCV hepatitis, cystic fibrosis, fatty acid oxidation defects, kwashiorkor, Reye syndrome, respiratory chain defects, total parenteral nutrition associated liver disease and toxic hepatopathy (ethanol and others).

**Complications**

Untreated, NAFLD with hepatic inflammation can progress to cirrhosis with complications that include portal hypertension. Dyslipidemia, hypertension, and insulin resistance are more common in children and adolescents with NAFLD.

**Treatment**

Multiple potential therapies, including metformin, UDCA, and lipid lowering agents have been tested without therapeutic success. Therefore, treatment is focused on lifestyle modifications, through both dietary changes and exercise, to induce slow weight loss. A 10% decrease in body weight can significantly improve NAFLD. Vitamin E, an antioxidant, has shown promise in clinical trials in improving histologically confirmed NASH.

**Prognosis**

Although untreated, NAFLD can progress to cirrhosis and liver failure; there is a very high response rate to weight reduction. However, success in achieving long-term weight reduction is low in children and adults.


\( \alpha_1 \)-ANTITRYPSIN DEFICIENCY LIVER DISEASE

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Serum \( \alpha_1 \)-antitrypsin level < 50–80 mg/dL.
- Identification of a specific protease inhibitor (PI) phenotype (PIZZ, PISZ) or genotype.
- Detection of diastase-resistant glycoprotein deposits in periportal hepatocytes.
- Histologic evidence of liver disease.
- Family history of early-onset pulmonary disease or liver disease.

**General Considerations**

The disease is caused by a deficiency in \( \alpha_1 \)-antitrypsin, a protease inhibitor (PI) system, predisposing patients to chronic liver disease, and an early onset of pulmonary emphysema. It is most often associated with the PI phenotypes ZZ and SZ. The accumulation of misfolded aggregates of \( \alpha_1 \)-antitrypsin protein in the liver causes the liver injury by unclear mechanisms.

**Clinical Findings**

**A. Symptoms and Signs**

\( \alpha_1 \)-Antitrypsin deficiency should be considered in all infants with neonatal cholestasis. About 10%–20% of affected individuals present with neonatal cholestasis. Serum GGT is usually elevated. Jaundice, acholic stools, and malabsorption may also be present. Infants are often small for gestational age, and hepatosplenomegaly may be present. The family history may be positive for emphysema or cirrhosis. The disease can also present in older children, where hepatomegaly or physical findings suggestive of cirrhosis and portal hypertension should lead to consideration of \( \alpha_1 \)-antitrypsin deficiency. Recurrent pulmonary disease (bronchitis, pneumonia) may be present in some older children. Very few children have significant pulmonary involvement. Most affected children are completely asymptomatic, with no laboratory or clinical evidence of liver or lung disease.

**B. Laboratory Findings**

Levels of the \( \alpha_1 \)-globulin fraction may be less than 0.2 g/dL. \( \alpha_1 \)-Antitrypsin level is low (< 50–80 mg/dL) in homozygotes (ZZ). Specific Pi phenotyping should be done to confirm the diagnosis. Genotyping is also available. LFTs often reflect underlying hepatic pathologic changes. Hyperbilirubinemia (mixed) and elevated aminotransferases, alkaline phosphatase, and GGT are present early. Hyperbilirubinemia generally resolves, while aminotransferase and GGT elevation may persist. Signs of cirrhosis and hypersplenism may develop even when LFTs are normal.

Liver biopsy findings after age 6 months show diastase-resistant, periodic acid–Schiff staining intracellular globules, particularly in periportal zones. These may be absent prior to age 6 months, but when present are characteristic of \( \alpha_1 \)-antitrypsin deficiency.

**Differential Diagnosis**

In newborns, other specific causes of neonatal cholestasis need to be considered, including biliary atresia. In older children, other causes of insidious cirrhosis (eg, HBV or HCV infection, AIH, Wilson disease, cystic fibrosis, and glycogen storage disease) should be considered.

**Complications**

Of all infants with PiZZ \( \alpha_1 \)-antitrypsin deficiency, only 15%–20% develop liver disease in childhood, and many have clinical recovery. Thus, other genetic or environmental modifiers must be involved. An associated abnormality in the microsomal disposal of accumulated aggregates may contribute to the liver disease phenotype. The complications of portal hypertension, cirrhosis, and chronic cholestasis predominate in affected children. Occasionally, children develop paucity of interlobular bile ducts. Early-onset pulmonary emphysema occurs in young adults (age 30–40 years), particularly in smokers. An increased susceptibility to hepatocellular carcinoma has been noted in cirrhosis associated with \( \alpha_1 \)-antitrypsin deficiency.

**Treatment**

There is no specific treatment for the liver disease of this disorder. Replacement of the protein by transfusion therapy is used to prevent or treat pulmonary disease in affected adults. The neonatal cholestatic condition is treated with choleretics, medium-chain triglyceride–containing formula, and water-soluble preparations of fat-soluble vitamins (see Table 22–4). UCDA may reduce AST, ALT, and GGT, but its effect on outcome is unknown. Portal hypertension, esophageal bleeding, ascites, and other complications are treated as described elsewhere. Hepatitis A and B vaccines should be given to children with \( \alpha_1 \)-antitrypsin deficiency. Genetic counseling is indicated when the diagnosis is made. Diagnosis by prenatal screening is possible. Liver transplantation, performed for development of end-stage liver disease, cures the deficiency and prevents the development of pulmonary disease. Passive and active cigarette smoke exposure should be eliminated to help prevent pulmonary manifestations, and obesity should be avoided.
**Prognosis**

Of those patients presenting with neonatal cholestasis, approximately 10%–25% will need liver transplantation in the first 5 years of life, 15%–25% during childhood or adolescence, and 50%–75% will survive into adulthood with variable degrees of liver fibrosis. A correlation between histologic patterns and clinical course has been documented in the infantile form of the disease. Liver failure can be expected 5–15 years after development of cirrhosis. Recurrence or persistence of hyperbilirubinemia along with worsening coagulation studies indicates the need for evaluation for liver transplantation. Decompensated cirrhosis caused by this disease is an indication for liver transplantation. Pulmonary involvement is prevented by liver transplantation. Heterozygotes may have a slightly higher incidence of liver disease. The exact relationship between low levels of serum α₁-antitrypsin and the development of liver disease is unclear. Emphysema develops because of a lack of inhibition of neutrophil elastase, which destroys pulmonary connective tissue.


**WILSON DISEASE (HEPATOLENTICULAR DEGENERATION)**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Acute or chronic liver disease.
- Deteriorating neurologic status.
- Kayser-Fleischer rings.
- Elevated liver copper.
- Abnormalities in levels of ceruloplasmin and serum and urine copper.

**General Considerations**

Wilson disease is caused by mutations in the gene *ATP7B* on chromosome 13 coding for a specific P-type adenosine triphosphatase involved in copper transport. This results in impaired bile excretion of copper and incorporation of copper into ceruloplasmin by the liver. The accumulated hepatic copper causes oxidant (free-radical) damage to the liver. Subsequently, copper accumulates in the basal ganglia and other tissues. The disease should be considered in all children older than age 2 years with evidence of liver disease (especially with hemolysis) or with suggestive neurologic signs. A family history is often present, and 25% of patients are identified by screening asymptomatic homozygous family members. The disease is autosomal recessive and occurs in 1:30,000 live births in all populations.

**Clinical Findings**

**A. Symptoms and Signs**

Hepatic involvement may present as acute liver failure, acute hepatitis, chronic liver disease, choledolithiasis, fatty liver disease, or as cirrhosis with portal hypertension. Findings may include jaundice, hepatomegaly early in childhood, splenomegaly, and Kayser-Fleischer rings. The disease is considered after 3–4 years of age. The later onset of neurologic or psychiatric manifestations after age 10 years may include tremor, dysarthria, and drooling. Deterioration in school performance can be the earliest neurologic expression of disease. The Kayser-Fleischer ring is a brown band at the junction of the iris and cornea, generally requiring slit-lamp examination for detection. Absence of Kayser-Fleischer rings does not exclude this diagnosis.

**B. Laboratory Findings**

The laboratory diagnosis can be challenging. Plasma ceruloplasmin levels (measured by the oxidase method) are usually less than 20 mg/dL. (Normal values are 23–43 mg/dL.) Low values, however, occur normally in infants younger than 3 months, and in at least 10%–20% of homozygotes the levels may be within the lower end of the normal range (20–30 mg/dL), particularly if immunoassays are used to measure ceruloplasmin. Rare patients with higher ceruloplasmin levels have been reported. Serum copper levels are low, but the overlap with normal is too great for satisfactory discrimination. In acute fulminant Wilson disease, serum copper levels are elevated markedly, owing to hepatic necrosis and release of copper. The presence of anemia, hemolysis, very high serum bilirubin levels (> 20–30 mg/dL), low alkaline phosphatase, and low uric acid are characteristic of acute Wilson disease. Urine copper excretion in children older than 3 years is normally less than 30 mcg/dL, in Wilson disease, it is generally greater than 100 mcg/d although it can be as low as > 40 mcg/dL. Finally, the tissue content of copper from a liver biopsy, normally less than 40–50 mcg/g dry tissue, is greater than 250 mcg/g in most Wilson disease patients, but may be as low as > 75 mcg/g when characteristic liver histology is present.
Glycosuria and aminoaciduria have been reported. Hemolysis and gallstones may be present; bone lesions simulating those of osteochondritis dissecans have also been found. 

The coarse nodular cirrhosis, macroversicular steatosis, and glycogenated nuclei in hepatocytes seen on liver biopsy may distinguish Wilson disease from other types of cirrhosis. Early in the disease, vacuolation of liver cells, steatosis, and lipofuscin granules can be seen, as well as Mallory bodies. The presence of Mallory bodies in a child is strongly suggestive of Wilson disease. Stains for copper may sometimes be negative despite high copper content in the liver. Therefore, quantitative liver copper levels must be determined biochemically on biopsy specimens. Electron microscopy findings of abnormal mitochondria may be helpful.

**Differential Diagnosis**

During the icteric phase, acute or chronic viral hepatitis, α1-antitrypsin deficiency, AIH, and drug-induced hepatitis are the usual diagnostic possibilities. NASH may have similar histology and be confused with Wilson disease in overweight patients. Later, other causes of cirrhosis and portal hypertension require consideration. Laboratory testing for plasma ceruloplasmin, 24-hour urine copper excretion, liver quantitative copper concentration, and a slit-lamp examination of the cornea will differentiate Wilson disease from the others. Urinary copper excretion during penicillamine challenge (500 mg twice a day in the older child or adult) may also be helpful. Genetic testing of ATP7B is available and may be helpful if two disease causing mutations are present. Other copper storage diseases that occur in early childhood include Indian childhood cirrhosis, Tyrolean childhood cirrhosis, and idiopathic copper toxicosis. However, ceruloplasmin concentrations are normal to elevated in these conditions.

**Complications**

Cirrhosis, hepatic coma, progressive neurologic degeneration, and death are the rule in the untreated patient. The complications of portal hypertension (variceal hemorrhage, ascites) may be present at diagnosis. Progressive central nervous system disease and terminal aspiration pneumonia were common in untreated older people. Acute hemolytic disease may result in acute renal failure and profound jaundice as part of the presentation of fulminant hepatitis.

**Treatment**

Copper chelation with D-penicillamine or trientine hydrochloride, 750–1500 mg/d orally, is the treatment of choice, whether or not the patient is symptomatic. The target dose for children is 20 mg/kg/d; begin with 250 mg/d and increase the dose weekly by 250 mg increments. Strict dietary restriction of copper intake is not practical. Supplementation with zinc acetate (25–50 mg orally, three times daily) may reduce copper absorption but must not be given at same time as copper chelators. Copper chelation or zinc therapy is continued for life, although doses of chelators may be reduced transiently at the time of surgery or early in pregnancy. Vitamin B6 (25 mg) is given daily during therapy with penicillamine to prevent optic neuritis. In some countries, after a clinical response to penicillamine or trientine, zinc therapy is substituted and continued for life. Tetrathiomolybdate is being tested as an alternative therapy. Noncompliance with any of the drug regimens (including zinc therapy) can lead to sudden fulminant liver failure and death.

Liver transplantation is indicated for all cases of acute fulminant disease with hemolysis and renal failure, for progressive hepatic decompensation despite several months of therapy, and severe progressive hepatic insufficiency in patients who inadvisedly discontinue penicillamine, triene, or zinc therapy.

**Prognosis**

The prognosis of untreated Wilson disease is poor. The fulminant presentation is fatal without liver transplantation. Copper chelation reduces hepatic copper content, reverses many of the liver lesions, and can stabilize the clinical course of established cirrhosis. Neurologic symptoms generally respond to therapy. All siblings should be immediately screened and homozygotes given treatment with copper chelation or zinc acetate therapy, even if asymptomatic. Recent data suggest that zinc monotherapy may not be as effective for hepatic Wilson disease as copper chelation. Genetic testing (haplotype analysis or ATP7B genotyping) is available clinically if there is any doubt about the diagnosis and for family members.


**DRUG-INDUCED LIVER DISEASE**

**General Considerations**

Drug-induced liver injury (DILI) may be predictable or and unpredictable. Predictable hepatotoxins cause liver injury in
a dose dependent manner. Unpredictable hepatotoxins cause liver injury in an idiosyncratic manner, which may be influenced by the genetic and environmental characteristics of particular individuals. DILI has been described in a wide variety of medications including antihypertensives, acamaminophen, anabolic steroids, antibiotics, anticonvulsants, antidepressants, antituberculosis medications, antipsychotics, antivirals, herbals, dietary supplements, and weight loss agents.

**Symptoms**

Many people with DILI are asymptomatic and detected because aminotransferases are performed for other reasons. If symptomatic, indicating more severe DILI, patients may have malaise, anorexia, nausea and vomiting, right upper quadrant pain, jaundice, acholic stools, and dark urine. Some may have severe pruritus. If the DILI is a hypersensitivity reaction, fever and rash may also occur.

**Diagnosis**

No specific testing for DILI is available, with diagnosis requiring a causality assessment. This assessment should determine if the patient was exposed to the drug during a logical time period; if the drug has previously been reported to cause DILI; and if the symptom complex is consistent with DILI. In addition, other explanations for liver injury should be sought, including viral hepatitis, autoimmune hepatitis, and alcohol abuse.

**Treatment**

Primary therapy is discontinuation of the offending drug, and avoiding re-exposure. This typically results in rapid and complete resolution of symptoms. However, DILI severe enough to cause acute liver failure has a poor prognosis without urgent liver transplant. Specific therapies for some DILI exist, such as N-acetylcysteine for acetaminophen poisoning. The use of ursodeoxycholic acid may speed resolution of jaundice. The use of corticosteroids for DILI remains controversial.

**General Considerations**

Cirrhosis is a histologically defined condition of the liver characterized by diffuse hepatocyte injury and regeneration, an increase in connective tissue (bridging fibrosis), and disorganization of the lobular and vascular architecture (regenerative nodules). It may be micronodular or macronodular in appearance. It is the vasculature distortion that leads to increased resistance to blood flow, producing portal hypertension and its consequences.

Many liver diseases may progress to cirrhosis. In children, the two most common forms of cirrhosis are postnecrotic and biliary, each of which has different causes, symptoms, and treatments. Both forms can eventually lead to liver failure and death.

**Clinical Findings**

**A. History**

Many children with cirrhosis may be asymptomatic early in the course. Malaise, loss of appetite, failure to thrive, and nausea are frequent complaints, especially in anicteric varieties. Easy bruising may be reported. Jaundice may or may not be present.

**B. Symptoms and Signs**

The first indication of underlying liver disease may be splenomegaly, ascites, gastrointestinal hemorrhage, or hepatic encephalopathy. Variable hepatomegaly, spider angiomas, warm skin, palmar erythema, or digital clubbing may be present. A small, shrunken liver may present. Most often, the liver is enlarged slightly, especially in the subxiphoid region, where it has a firm to hard quality and an irregular edge. Splenomegaly generally precedes other complications of portal hypertension. Ascites may be detected as shifting dullness or a fluid wave. Gynecomastia may be noted in males. Digital clubbing occurs in 10%–15% of cases. Pretibial edema often occurs, reflecting underlying hypoproteinemia. In adolescent girls, irregularities of menstruation or/and amenorrhea may be early complaints.

In biliary cirrhosis, patients often have jaundice, dark urine, pruritus, hepatomegaly, and sometimes xanthomas, in addition to the previously mentioned clinical findings. Malnutrition and failure to thrive due to steatorrhea may be more apparent in this form of cirrhosis.

**C. Laboratory Findings**

Mild abnormalities of AST and ALT are often present, with a decreased level of albumin and a variable increase in the level of γ-globulins. PT is prolonged and may be unresponsive to vitamin K administration. Burr and target red cells may be noted on the peripheral blood smear. Anemia, thrombocytopenia, and leukopenia are present if hypersplenism exists.
However, blood tests may be normal in patients with cirrhosis. In biliary cirrhosis, elevated conjugated bilirubin, bile acids, GGT, alkaline phosphatase, and cholesterol are common.

D. Imaging
Hepatic ultrasound, CT, or MRI examination may demonstrate abnormal hepatic texture and nodules. In biliary cirrhosis, abnormalities of the biliary tree may be apparent.

E. Pathologic Findings
Liver biopsy findings of regenerating nodules and surrounding fibrosis are hallmarks of cirrhosis. Pathologic features of biliary cirrhosis also include canalicular and hepatocyte cholestasis, as well as plugging of bile ducts. The interlobular bile ducts may be increased or decreased, depending on the cause and the stage of the disease process.

Differential Diagnosis
In the pediatric population, postnecrotic cirrhosis is often a result of acute or chronic liver disease (eg, viral hepatitis [HBV, HCV], autoimmune or drug-induced hepatitis, idiopathic neonatal giant-cell hepatitis); more recently, NAFLD; or certain inborn errors of metabolism (see Table 22–5). The evolution to cirrhosis may be insidious, with no recognized icteric phase, as in some cases of HBV or HCV infection, autoimmune hepatitis, Wilson disease, or α1-antitrypsin deficiency. At the time of diagnosis of cirrhosis, the underlying liver disease may be active, with abnormal LFTs; or it may be quiescent, with normal LFTs. Most cases of biliary cirrhosis result from congenital abnormalities of the bile ducts (biliary atresia, choledochal cyst), tumors of the bile duct, Caroli disease, PFIC, PSC, paucity of the intrahepatic bile ducts, and cystic fibrosis. Occasionally, cirrhosis may follow a hypersensitivity reaction to certain drugs such as phenytoin. Parasites (Opisthorchis sinensis, Fasciola, and Ascaris) may be causative in children living in endemic areas.

Complications
Major complications of cirrhosis in childhood include progressive nutritional disturbances, hormonal disturbances, and the evolution of portal hypertension and its complications. Hepatocellular carcinoma occurs with increased frequency in the cirrhotic liver, especially in patients with the chronic form of hereditary tyrosinemia or after longstanding HBV or HCV disease.

Treatment
At present, there is no proven medical treatment for cirrhosis, but whenever a treatable condition is identified (eg, Wilson disease, galactosemia, AIH) or an offending agent eliminated (HBV, HCV, drugs, toxins), disease progression can be altered; occasionally regression of fibrosis has been noted. Recent evidence suggests that cirrhosis from HCV may be reversed by successful antiviral therapy. Children with cirrhosis should receive the hepatitises A and B vaccines, and they should be monitored for the development of hepatocellular carcinoma with serial serum α-fetoprotein determinations annually and abdominal ultrasound for hepatic nodules at least annually. Liver transplantation may be appropriate in patients with: cirrhosis caused by a progressive disease; evidence of worsening hepatic synthetic function; or complications of cirrhosis that are no longer manageable.

Prognosis
Postnecrotic cirrhosis has an unpredictable course. Without transplantation, affected patients may die from liver failure within 10–15 years. Patients with a rising bilirubin, a vitamin K–resistant coagulopathy, or diuretic refractory ascites usually survive less than 1–2 years. The terminal event in some patients may be generalized hemorrhage, sepsis, or cardiorespiratory arrest. For patients with biliary cirrhosis, the prognosis is similar, except for those with surgically corrected lesions that result in regression or stabilization of the underlying liver condition. With liver transplantation, the long-term survival rate is 70%–90%.


PORTAL HYPERTENSION

Essentials of Diagnosis & Typical Features

- Splenomegaly.
- Recurrent ascites.
- Variceal hemorrhage.
- Hypersplenism.

General Considerations
Portal hypertension is defined as an increase in the portal venous pressure to more than 5 mm Hg greater than the inferior vena cava pressure. Portal hypertension is most
commonly a result of cirrhosis. Portal hypertension without cirrhosis may be divided into prehepatic, suprahepatic, and intrahepatic causes. Although the specific lesions vary somewhat in their clinical signs and symptoms, the consequences of portal hypertension are common to all.

A. Prehepatic Portal Hypertension

Prehepatic portal hypertension from acquired abnormalities of the portal and splenic veins accounts for 30%–50% of cases of variceal hemorrhage in children. A history of neonatal omphalitis, sepsis, dehydration, or umbilical vein catheterization may be present. Causes in older children include local trauma, peritonitis (pyelophlebitis), hypercoagulable states, and pancreatitis. Symptoms may occur before age 1 year, but in most cases the diagnosis is not made until age 3–5 years. Patients with a positive neonatal history tend to be symptomatic earlier.

A variety of portal or splenic vein malformations, some of which may be congenital, have been described, including defects in valves and atretic segments. Cavernous transformation is probably the result of attempted collateralization around the thrombosed portal vein rather than a congenital malformation. The site of the venous obstruction may be anywhere from the hilum of the liver to the hilum of the spleen.

B. Suprahepatic Vein Occlusion or Thrombosis (Budd-Chiari Syndrome)

No cause can be demonstrated in most instances in children, while tumor, medications, and hypercoagulable states are common causes in adults. The occasional association of hepatic vein thrombosis in inflammatory bowel disease favors the presence of endogenous toxins traversing the liver. Vasculitis leading to endophlebitis of the hepatic veins has been described. In addition, hepatic vein obstruction may be secondary to tumor, abdominal trauma, hyperthermia, or sepsis, or it may occur following the repair of an omphalocoele or gastrochisis. Congenital venal caval bands, webs, a membrane, or stricture above the hepatic veins are sometimes causative. Hepatic vein thrombosis may be a complication of oral contraceptive medications. Underlying thrombotic conditions (deficiency of antithrombin III, protein C or S, or factor V Leiden; antiphospholipid antibodies; or mutations of the prothrombin gene) are common in adults.

C. Intrahepatic Portal Hypertension

1. Cirrhosis—See previous section.

2. Veno-occlusive disease (acute stage)—This entity occurs most frequently in bone marrow or stem cell transplant recipients. Additional causes include the high-dose thiopurines, ingestion of pyrrolizidine alkaloids (“bush tea”) or other herbal teas, and a familial form of the disease occurring in congenital immunodeficiency states. The acute form of the disease generally occurs in the first month after bone marrow transplantation and is heralded by the triad of weight gain (ascites), tender hepatomegaly, and jaundice.

3. Congenital hepatic fibrosis—This is a rare autosomal recessive cause of intrahepatic presinusoidal portal hypertension (see Table 22–10). Liver biopsy is generally diagnostic, demonstrating Von Meyenburg complexes (abnormal clusters of ectatic bile ducts). On angiography, the intrahepatic branches of the portal vein may be duplicated. Autosomal recessive polycystic kidney disease is frequently associated with this disorder.

4. Other rare causes—Hepatoportal sclerosis (idiopathic portal hypertension, noncirrhotic portal fibrosis), focal nodular regeneration of the liver, and schistosomal hepatic fibrosis are also rare causes of intrahepatic presinusoidal portal hypertension.

Clinical Findings

A. Symptoms and Signs

For prehepatic portal hypertension, splenomegaly in an otherwise well child is the most constant physical sign. Recurrent episodes of abdominal distention resulting from ascites may be noted. The usual presenting symptoms are hematemeses and melena.

The presence of prehepatic portal hypertension is suggested by the following: (1) an episode of severe infection in the newborn period or early infancy—especially omphalitis, sepsis, gastroenteritis, severe dehydration, or prolonged or difficult umbilical vein catheterizations; (2) no previous evidence of liver disease; (3) a history of well-being prior to onset or recognition of symptoms; and (4) normal liver size and tests with splenomegaly.

Most patients with suprahepatic portal hypertension present with abdominal pain, tender hepatomegaly of acute onset, and abdominal enlargement caused by ascites. Jaundice is present in only 25% of patients. Vomiting, hematemesis, and diarrhea are less common. Cutaneous signs of chronic liver disease are often absent, as the obstruction is usually acute. Distended superficial veins on the back and the anterol abdomen, along with dependent edema, are seen when inferior vena cava obstruction affects hepatic vein outflow. Absence of hepatojugular reflux (jugular distention when pressure is applied to the liver) is a helpful clinical sign.

The symptoms and signs of intrahepatic portal hypertension generally those of cirrhosis (see earlier section on Cirrhosis).

B. Laboratory Findings and Imaging

Most other common causes of splenomegaly or hepatosplenomegaly may be excluded by appropriate laboratory tests. Cultures, EBV and hepatitis serologies, blood smear examination, bone marrow studies, and LFTs may be necessary. In prehepatic portal hypertension, LFTs are generally normal.
In Budd-Chiari syndrome and veno-occlusive disease, mild to moderate hyperbilirubinemia with modest elevations of aminotransferases and PT are often present. Significant early increases in fibrinolytic parameters (especially plasminogen activator inhibitor 1) have been reported in veno-occlusive disease. Hypersplenism with mild leucopenia and thrombocytopenia is often present. Upper endoscopy may reveal varices in symptomatic patients.

Doppler-assisted ultrasound scanning of the liver, portal vein, splenic vein, inferior vena cava, and hepatic veins may assist in defining the vascular anatomy. In prehepatic portal hypertension, abnormalities of the portal or splenic vein may be apparent, whereas the hepatic veins are normal. When non-cirrhotic portal hypertension is suspected, angiography often is diagnostic. Selective arteriography of the superior mesenteric artery or MRI is recommended prior to surgical shunting to determine the patency of the superior mesenteric vein.

For suprahepatic portal hypertension, an inferior vena cavaogram using catheters from above or below the suspected obstruction may reveal an intrinsic filling defect, an infiltrating tumor, or extrinsic compression of the inferior vena cava by an adjacent lesion. A large caudate lobe of the liver suggests Budd-Chiari syndrome. Care must be taken in interpreting extrinsic pressure defects of the subdiaphragmatic inferior vena cava if ascites is significant.

Simultaneous wedged hepatic vein pressure and hepatic venography are useful to demonstrate obstruction to major hepatic vein ostia and smaller vessels. In the absence of obstruction, reflux across the sinusoids into the portal vein branches can be accomplished. Pressures should also be taken from the right heart and supradiaphragmatic portion of the inferior vena cava to eliminate constrictive pericarditis and pulmonary hypertension from the differential diagnosis.

### Differential Diagnosis

All causes of splenomegaly must be included in the differential diagnosis. The most common ones are infections, immune thrombocytopenic purpura, blood dyscrasias, lipodosis, reticuloendotheliosis, cirrhosis of the liver, and cysts or hemangiomas of the spleen. When hematemesis or melena occurs, other causes of gastrointestinal bleeding are possible, such as gastric or duodenal ulcers, tumors, duplications, and inflammatory bowel disease.

Because ascites is almost always present in suprahepatic portal hypertension, cirrhosis resulting from any cause must be excluded. Other suprahepatic (cardiac, pulmonary) causes of portal hypertension must also be ruled out. Although ascites may occur in prehepatic portal hypertension, it is uncommon.

### Complications

The major manifestation and complication of portal hypertension is bleeding from esophageal varices. Fatal exsanguination is uncommon, but hypovolemic shock or resulting anemia may require prompt treatment. Hypersplenism with leukopenia and thrombocytopenia occurs, but seldom causes major symptoms.

Without treatment, complete and persistent hepatic vein obstruction in suprahepatic portal hypertension leads to liver failure, coma, and death. A nonportal type of cirrhosis may develop in the chronic form of hepatic veno-occlusive disease in which small- and medium-sized hepatic veins are affected. Death from renal failure may occur in rare cases of congenital hepatic fibrosis.

### Treatment

Definitive treatment of noncirrhotic portal hypertension is generally lacking. Aggressive medical treatment of the complications of prehepatic portal hypertension is generally quite effective. Excellent results with either porto-systemic shunt or the mesorex (mesenterico—left portal bypass) shunt. When possible, the mesorex shunt is the preferred technique. Veno-occlusive disease may be prevented somewhat by the prophylactic use of UCDA or defibrotide prior to conditioning for bone marrow transplantation. Treatment with defibrotide and withdrawal of the suspected offending agent, if possible, may increase the chance of recovery. Transjugular intrahepatic portosystemic shunts have been successful in bridging to recovery in veno-occlusive disease. For suprahepatic portal hypertension, efforts should be directed at correcting the underlying cause, if possible. Either surgical or angiographic relief of obstruction should be attempted if a defined obstruction of the vessels is apparent. Liver transplantation, if not contraindicated, should be considered early if direct correction is not possible. In most cases, management of portal hypertension is directed at management of the complications (Table 22–9).

### Prognosis

For prehepatic portal hypertension, the prognosis depends on the site of the block, the effectiveness of variceal eradication, the availability of suitable vessels for shunting procedures, and the experience of the surgeon. In patients treated by medical means, bleeding episodes seem to diminish with adolescence.

The prognosis in patients treated by medical and supportive therapy may be better than in the surgically treated group, especially when surgery is performed at an early age, although no comparative study has been done. Portacaval encephalopathy is unusual after shunting except when protein intake is excessive, but neurologic outcome may be better in patients who receive a mesorex shunt when compared with medical management alone.

The mortality rate of hepatic vein obstruction is very high (95%). In veno-occlusive disease, the prognosis is better, with complete recovery possible in 50% of acute forms and 5%–10% of subacute forms.
Table 22–9. Treatment of complications of portal hypertension.

<table>
<thead>
<tr>
<th>Complication</th>
<th>Diagnosis</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding esophageal varices</td>
<td>Endoscopic verification of variceal bleeding.</td>
<td>Endosclerosis or variceal band ligation. Octreotide, 30 mcg/m² BSA/h intravenous. Pediatric Sengstaken-Blakemore tube. Surgical portosystemic shunt, TIPS, surgical variceal ligation, selective venous embolization, OLT. Propranolol may be useful to prevent recurrent bleeding.</td>
</tr>
<tr>
<td>Ascites</td>
<td>Clinical examination (fluid wave, shifting dullness), abdominal ultrasonography.</td>
<td>Sodium restriction (1-2 mEq/kg/d), spironolactone (3-5 mg/kg/d), furosemide (1-2 mg/kg/d), intravenous albumin (0.5-1 g/kg per dose), paracetamol, peritoneovenous (LeVeen) shunt, TIPS, surgical portosystemic shunt, OLT.</td>
</tr>
<tr>
<td>Hepatic encephalopathy</td>
<td>Abnormal neurologic examination, elevated plasma ammonia.</td>
<td>Protein restriction (0.5-1 g/kg/d), intravenous glucose (6-8 mg/kg/min), neomycin (2-4 g/m² BSA PO in four doses), rifaximin (200 mg three times a day in children &gt; 12 y), lactulose (1 mL/kg per dose [up to 30 mL] every 4-6 h PO), plasmapheresis, hemodialysis, OLT.</td>
</tr>
<tr>
<td>Hypersplenism</td>
<td>Low WBC count, platelets, and/or hemoglobin. Splenomegaly.</td>
<td>No intervention, partial splenic embolization, surgical portosystemic shunt, TIPS, OLT. Splenectomy may worsen variceal bleeding.</td>
</tr>
</tbody>
</table>

BSA, body surface area; OLT, orthotopic liver transplantation; TIPS, transjugular intrahepatic portosystemic shunt; WBC, white blood cell.

In order of sequential management.


**BILIARY TRACT DISEASE**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Episodic right upper quadrant abdominal pain.
- Elevated bilirubin, alkaline phosphatase, and GGT.
- Stones or sludge seen on abdominal ultrasound.

**1. Cholelithiasis**

**General Considerations**

Gallstones may develop at all ages in the pediatric population and in utero. Gallstones may be divided into cholesterol stones (> 50% cholesterol) and pigment (black [sterile bile] and brown [infected bile]) stones. Pigment stones predominate in the first decade of life, while cholesterol stones account for up to 90% of gallstones in adolescence. For some patients, gallbladder dysfunction is associated with biliary sludge formation, which may evolve into “sludge balls” or tumefaction bile and then into gallstones. The process is reversible in many patients.

**Clinical Findings**

**A. History**

Most symptomatic gallstones are associated with acute or recurrent episodes of moderate to severe, sharp right upper quadrant or epigastric pain. The pain may radiate subternally or to the right shoulder. On rare occasions, the presentation may include a history of jaundice, back pain, or generalized abdominal discomfort, when it is associated with pancreatitis, suggesting stone impaction in the common duct or ampulla hepatopancreatica. Nausea and vomiting may occur during attacks. Pain episodes often occur postprandially, especially after ingestion of fatty foods. The groups at risk for gallstones include patients with known or suspected hemolytic disease; females; teenagers with prior pregnancy; obese individuals; individuals with rapid weight loss; children with portal vein thrombosis; certain racial or ethnic groups, particularly Native Americans (Pima Indians) and Hispanics; infants and children with ileal disease (Crohn disease) or prior ileal resection; patients with cystic fibrosis or Wilson disease; infants on prolonged parenteral hyperalimentation and those with bile acid transporter defects. Other, less certain risk factors include a positive family history, use of birth control pills, and diabetes mellitus.
B. Symptoms and Signs

During acute episodes of pain, tenderness is present in the right upper quadrant or epigastrium, with a positive inspiratory arrest (Murphy sign), usually without peritoneal signs. While rarely present, scleral icterus is helpful. Evidence of underlying hemolytic disease in addition to icterus may include pallor (anemia), splenomegaly, tachycardia, and high-output cardiac murmur. Fever is unusual in uncomplicated cases.

C. Laboratory Findings

Laboratory tests are usually normal unless calculi have lodged in the extrahepatic biliary system, in which case the serum bilirubin and GGT (or alkaline phosphatase) may be elevated. Amylase and lipase levels may be increased if stone obstruction occurs at the ampulla hepatopancreatica.

D. Imaging

Ultrasound evaluation is the best imaging technique, showing abnormal intraluminal contents (stones, sludge) as well as anatomic alterations of the gallbladder or dilation of the biliary ductal system. The presence of an anechoic acoustic shadow differentiates calculi from intraluminal sludge or sludge balls. Plain abdominal radiographs will show calculi with a high calcium content in the region of the gallbladder in up to 15% of patients. Lack of visualization of the gallbladder with hepatobiliary scintigraphy suggests chronic cholecystitis. In selected cases, ERCP, MRCP, or endoscopic ultrasound may be helpful in defining subtle abnormalities of the bile ducts and locating intraductal stones.

Differential Diagnosis

Other abnormal conditions of the biliary system with similar presentation are summarized in Table 22–10. Liver disease (hepatitis, abscess, or tumor) can cause similar symptoms or signs. Peptic disease, reflux esophagitis, paraesophageal hiatal hernia, cardiac disease, and pneumomediastinum must be considered when the pain is epigastric or substernal in location. Renal or pancreatic disease is a possible explanation if the pain is localized to the right flank or mid back. Subcapsular or supracapsular lesions of the liver (abscess, tumor, or hematoma) or right lower lobe infiltrate may also be a cause of nontraumatic right shoulder pain.

Complications

Major problems are related to stone impaction in either the cystic or common duct, which may lead to stricture formation or perforation. Acute distention and subsequent perforation of the gallbladder may occur when gallstones cause obstruction of the cystic duct. Stones impacted at the level of the ampulla hepatopancreatica often cause gallstone pancreatitis.

Treatment

Symptomatic cholelithiasis is treated by laparoscopic cholecystectomy or open cholecystectomy in selected cases. Intraoperative cholangiography via the cystic duct is recommended so that the physician can be certain the biliary system is free of retained stones. Calculi in the extrahepatic bile ducts may be removed at ERCP.

Gallstones developing in premature infants on parenteral nutrition can be followed by ultrasound examination. Most of the infants are asymptomatic, and the stones will resolve in 3–36 months. Gallstone dissolution using cholestrolitholytics (UCDA) or mechanical means (lithotripsy) has not been approved for children. Asymptomatic gallstones do not usually require treatment, as less than 20% will eventually cause problems.

Prognosis

The prognosis is excellent in uncomplicated cases that come to standard cholecystectomy.


2. Primary Sclerosing Cholangitis

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Pruritus and jaundice.
- Elevated GGT.
- Associated with inflammatory bowel disease.
- Abnormal ERCP or MRCP.

General Considerations

Primary sclerosing cholangitis (PSC) is a progressive liver disease characterized by chronic inflammation and fibrosis of the intrahepatic and/or extrahepatic bile ducts, leading to fibrotic strictures and saccular dilations of all or parts of the biliary tree. The etiology of PSC is likely multifactorial, including genetic predispositions, with alteration in innate and autoimmunity. PSC is more common in males, and has a strong relationship to inflammatory bowel disease, particularly ulcerative colitis. A PSC like condition can also be seen with histiocytosis X, autoimmune hepatitis, IgG4...
### Table 22–10. Biliary tract diseases of childhood.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Symptoms</th>
<th>Signs</th>
<th>Laboratory abnormalities</th>
<th>Diagnostic studies most useful</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Acute Hydrops Transient Dilation of Gallbladder</strong>&lt;sup&gt;a,b&lt;/sup&gt;</td>
<td>Absent in premature infants. Vomiting, abdominal pain in older children.</td>
<td>RUQ abdominal mass. Tenderness in some.</td>
<td>Most are normal. Increased WBC count during sepsis (may be decreased in premature infants). Abnormal LFTs in hepatitis.</td>
<td>Gallbladder US.</td>
<td>Treatment of associated condition. Needle or tube cystostomy rarely required. Cholecystectomy seldom indicated.</td>
</tr>
<tr>
<td><strong>Choledochal Cyst</strong>&lt;sup&gt;c&lt;/sup&gt; (see Figure 22–1)</td>
<td>Abdominal pain, vomiting, jaundice.</td>
<td>Icterus, acholic stools, dark urine in neonatal period. RUQ abdominal mass or tenderness in older children.</td>
<td>Conjugated hyperbilirubinemia, elevated GGT, slightly increased AST. Elevated pancreatic serum amylase common.</td>
<td>Gallbladder US, hepatobiliary scintigraphy, MRCP, or ERCP.</td>
<td>Surgical resection and choledochojejunostomy, then cholecystectomy.</td>
</tr>
<tr>
<td><strong>Acalculous Cholecystitis</strong>&lt;sup&gt;d&lt;/sup&gt;</td>
<td>Acute severe abdominal pain, vomiting, fever.</td>
<td>Tenderness in mid and right upper abdomen. Occasional palpable mass in RUQ.</td>
<td>Elevated WBC count, normal or slight abnormality of LFTs.</td>
<td>Scintigraphy to confirm nonfunction of gallbladder. US or abdominal CT scan to rule out other neighboring disease.</td>
<td>Broad-spectrum antibiotic coverage, then cholecystectomy.</td>
</tr>
<tr>
<td><strong>Biliary Dyskinesia</strong>&lt;sup&gt;g&lt;/sup&gt;</td>
<td>Intermittent RUQ pain.</td>
<td>Usually normal exam.</td>
<td>Usually normal.</td>
<td>Normal US, CCK stimulated hepatobiliary scintigraphy demonstrating a very reduced ejection fraction.</td>
<td>Cholecystectomy in well selected cases. Biliary sphincterotomy in rare cases.</td>
</tr>
</tbody>
</table>

**Predisposing or associated conditions**
- Premature infants with prolonged fasting or systemic illness.
- Congenital lesion. Female sex. Asians. Rarely with Caroli disease or congenital hepatic fibrosis.
- Systemic illness, sepsis (Streptococcus, Salmonella, Klebsiella, etc), HIV infection. Gallbladder stasis, obstruction of cystic duct (stones, nodes, tumor).
- Congenital lesion. Female sex. Asians. Rarely with Caroli disease or congenital hepatic fibrosis.
- Systemic illness, sepsis (Streptococcus, Salmonella, Klebsiella, etc), HIV infection. Gallbladder stasis, obstruction of cystic duct (stones, nodes, tumor).
- Congenital lesion. Also found in congenital hepatic fibrosis or with choledochal cyst. Female sex. Autosomal recessive polycystic kidney disease.
- Congenital lesion. Also found in congenital hepatic fibrosis or with choledochal cyst. Female sex. Autosomal recessive polycystic kidney disease.

**Symptoms**
- Abdominal pain, vomiting, jaundice.
- Acute severe abdominal pain, vomiting, fever.
- Recurrent abdominal pain, vomiting. Fever, jaundice when cholangitis occurs.
- Hematemesis, melena from bleeding esophageal varices.
- Intermittent RUQ pain.

**Laboratory abnormalities**
- Most are normal. Increased WBC count during sepsis (may be decreased in premature infants). Abnormal LFTs in hepatitis.
- Conjugated hyperbilirubinemia, elevated GGT, slightly increased AST. Elevated pancreatic serum amylase common.
- Elevated WBC count, normal or slight abnormality of LFTs.
- Abnormal LFTs. Increased WBC count with cholangitis. Urine abnormalities if associated with congenital hepatic fibrosis.
- Low platelet and WBC count (hypersplenism), slight elevation of AST, GGT. Inability to concentrate urine.
- Usually normal.

**Diagnostic studies most useful**
- Gallbladder US.
- Gallbladder US, hepatobiliary scintigraphy, MRCP, or ERCP.
- Scintigraphy to confirm nonfunction of gallbladder. US or abdominal CT scan to rule out other neighboring disease.
- Transhepatic cholangiography, MRCP, ERCP, scintigraphy, US, intravenous pyelography.
- Normal US, CCK stimulated hepatobiliary scintigraphy demonstrating a very reduced ejection fraction.
|---------------|--------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|

AST, aspartate aminotransferase; CCK, cholecystokinin; CT, computed tomography; EBV, Epstein-Barr virus; ERCP, endoscopic retrograde cholangiopancreatography; GGTX, Y-glutamyl transpeptidase; HIV, human immunodeficiency virus; LFT, liver function test; MRCP, magnetic resonance cholangiopancreatography; RUQ, right upper quadrant; US, ultrasound; WBC, white blood cell.

e Lefere M et al: Caroli disease: review of eight cases with emphasis on magnetic resonance imaging features. Eur J Gastroenterol Hepatol 2011;23:378 [PMID: 21543986].
autoimmune pancreatitis, sicca syndromes, congenital and acquired immunodeficiency syndromes, and cystic fibrosis.

**Clinical Findings**

**A. Symptoms and Signs**

PSC often has an insidious onset and may be asymptomatic. Clinical symptoms may include abdominal pain, fatigue, pruritus, jaundice, and weight loss. Acholic stools and steatorrhea can occur. Physical findings include hepatomegaly, splenomegaly, and jaundice.

**B. Laboratory Findings**

The earliest finding may be asymptomatic elevation of the GGT. Subsequent laboratory abnormalities include elevated levels of alkaline phosphatase and bile acids. Later, cholestatic jaundice and elevated AST and ALT may occur. Patients with associated inflammatory bowel disease often test positive for perinuclear antineutrophil cytoplasmic antibodies. Other markers of autoimmune liver disease (ANA and ASMA) are often found, but are not specific for PSC. Sclerosing cholangitis due to cryptosporidia is common in immunodeficiency syndromes.

**C. Imaging**

Ultrasound may show saccular dilation of normal intrahepatic bile ducts with segmental strictures, described as “beads on a string.” MRCP is the diagnostic study of choice, demonstrating irregularities of the biliary tree. ERCP may be more sensitive for the diagnosis of irregularities of the intrahepatic biliary tree and allow for therapeutic interventions.

**Differential Diagnosis**

The differential diagnosis includes infectious hepatitis, secondary cholangitis, AIH, metabolic liver disease, cystic fibrosis, choledochal cyst, or other anomalies of the biliary tree, including Caroli disease, choledochal cyst, and congenital hepatic fibrosis (see Table 22–10).

**Complications**

Complications include secondary bacterial cholangitis, pancreatitis, biliary fibrosis, and cirrhosis. Slow progression to end-stage liver disease with liver failure is common, and patients are at increased risk of cholangiocarcinoma.

**Treatment**

Treatment of PSC focuses on supportive care. Ursodeoxycholic acid is often used in pediatrics, though high doses may worsen disease in adults. Oral vancomycin has been used, though very little data support its use. Patients with autoimmune sclerosing cholangitis or IgG4 cholangitis may benefit from treatment with corticosteroids and azathioprine. Antibiotic treatment of cholangitis and dilatation and stenting of dominant bile duct strictures can reduce symptoms. Liver transplantation is effective for patients with end-stage complications, but the disease may recur in up to 10% after transplant.

**Prognosis**

The majority of patients will eventually require liver transplantation, and PSC is the fifth leading indication for liver transplantation in the United States. The median duration from the time of diagnosis to end-stage liver disease is 12–15 years.

3. Other Biliary Tract Disorders

For a schematic representation of the various types of choledochal cysts, see Figure 22–1. For summary information on acute hydrops, choledochal cyst, acalculous cholecystitis, Caroli disease, biliary dyskinesia, and congenital hepatic fibrosis, see Table 22–10.

**PYOGENIC & AMEBIC LIVER ABSCESS**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Fever and painful enlarged liver.
- Ultrasound of liver demonstrating an abscess.
- Positive serum ameba antibody or positive bacterial culture of abscess fluid.

**General Considerations**

Pyogenic liver abscesses are rare in developed countries, but remain a significant issue in developing countries. The most common cause is *S aureus*, with enteric bacteria less common; fungal abscesses also occur. The resulting lesion tends to be solitary and located in the right hepatic lobe. Unusual causes
include omphalitis, subacute infective endocarditis, pyelonephritis, Crohn disease, and perinephric abscess. In immunocompromised patients, Staphylococcus aureus, gram-negative organisms, and fungi may seed the liver from the arterial system. Multiple pyogenic liver abscesses are associated with severe sepsis. Children receiving anti-inflammatory and immunosuppressive agents and children with defects in white blood cell function (chronic granulomatous disease) are prone to pyogenic hepatic abscesses, especially those caused by S. aureus.

Amebic liver abscess can occur when Entamoeba histolytica invasion occurs via the large bowel, although a history of diarrhea (colitis-like picture) is not always obtained.

**Clinical Findings**

**A. History**

With any liver abscess, nonspecific complaints of fever, chills, malaise, and abdominal pain are frequent. Amebic liver abscess is rare in children. An increased risk is associated with travel in areas of endemic infection (Mexico, Southeast Asia) within 5 months of presentation.

**B. Symptoms and Signs**

Weight loss is very common, especially when diagnosis is delayed. A few patients have shaking chills and jaundice. The dominant complaint is a constant dull pain over an enlarged liver that is tender to palpation. An elevated hemidiaphragm with reduced or absent respiratory excursion may be demonstrated on physical examination and confirmed by fluoroscopy.

Fever and abdominal pain are the two most common symptoms of amebic liver abscess. Abdominal tenderness and hepatomegaly are present in over 50%. An occasional prodrome may include cough, dyspnea, and shoulder pain when rupture of the abscess into the right chest occurs.

**C. Laboratory Findings**

Laboratory studies show leukocytosis and, at times, anemia. LFTs may be normal or reveal mild elevation of transaminases and alkaline phosphatase. Early in the course, LFTs may suggest mild hepatitis. Blood cultures may be positive. The distinction between pyogenic and amebic abscesses is best made by indirect hemagglutination test for specific antibody (which is positive in more than 95% of patients with amebic liver disease) and the prompt clinical response of the latter to antiamoebic therapy (metronidazole). Examination of material obtained by needle aspiration of the abscess using ultrasound guidance is often diagnostic.

**D. Imaging**

Ultrasound liver scan is the most useful diagnostic aid in evaluating pyogenic and amebic abscesses, detecting lesions as small as 1–2 cm. MRI, CT, or nuclear scanning with gallium or technetium sulfur colloid may be useful in differentiating tumor or hydatid cyst. Consolidation of the right lower lobe is common (10%–30% of patients) in amebic abscess.

**Differential Diagnosis**

Hepatitis, hepatoma, hydatid cyst, gallbladder disease, or biliary tract infections can mimic liver abscess. Subphrenic abscesses, empyema, and pneumonia may give a similar picture. Inflammatory disease of the intestines or of the biliary system may be complicated by liver abscess.

**Complications**

Spontaneous rupture of the abscess may occur with extension of infection into the subphrenic space, thorax, peritoneal cavity, and, occasionally, the pericardium. Bronchopleural fistula with large sputum production and hemoptysis can develop in severe cases. Simultaneously, the amebic liver abscess may be secondarily infected with bacteria (in 10%–20% of patients). Metastatic hematogenous spread to the lungs and the brain has been reported.
Treatment

Ultrasound- or CT-guided percutaneous needle aspiration for aerobic and anaerobic culture with simultaneous placement of a catheter for drainage, combined with appropriate antibiotic therapy, is the treatment of choice for solitary pyogenic liver abscess. Multiple liver abscesses may also be treated successfully by this method. Surgical intervention may be indicated if rupture occurs outside the capsule of the liver or if enterohemorrhage fistulae are suspected.

Amebic abscesses in uncomplicated cases should be treated promptly with oral metronidazole, 35–50 mg/kg/d, in three divided doses for 10 days. Intravenous metronidazole can be used for patients unable to take oral medication. Failure to improve after 72 hours of drug therapy suggests superimposed bacterial infection or an incorrect diagnosis. At this point, needle aspiration or surgical drainage is indicated. Once oral feedings can be tolerated, a luminal amebicide such as iodoquinol should be initiated. Resolution of the abscess cavity occurs over 3–6 months.

Prognosis

With drainage and antibiotics, the cure rate is about 90%. Mortality rates have improved, but remain at 15% for pyogenic liver abscess, especially with extrahepatic complications, and less than 1% for amebic abscess.

Clinical Findings

A. History

Noticeable abdominal distension, with or without pain, is the most constant feature. A parent may note a bulge in the upper abdomen or report feeling a hard mass. Constitutional symptoms (eg, anorexia, weight loss, fatigue, fever, and chills) may be present. Jaundice or pruritus may be present if obstruction of the biliary tree occurs. Virilization has been reported as a consequence of gonadotropin activity of tumors. Feminization with bilateral gynecomastia may occur in association with high estradiol levels in the blood, the latter a consequence of increased aromatization of circulating androgens by the liver. Leydig cell hyperplasia without spermatogenesis has also been reported.

B. Symptoms and Signs

Weight loss, pallor, and abdominal pain associated with a large abdomen are common. Physical examination reveals hepatomegaly with or without a definite tumor mass, usually to the right of the midline. In the absence of cirrhosis, signs of chronic liver disease are usually absent. However, evidence of virilization or feminization in prepubertal children may be noted.

C. Laboratory Findings

Normal LFTs are the rule. Anemia frequently occurs, especially in cases of hepatoblastoma. Cystathioninuria has been reported.

LIVER TUMORS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Abdominal enlargement and pain, weight loss, anemia.
- Hepatomegaly with or without a definable mass.
- Mass lesion on imaging studies.
- Laparotomy and tissue biopsy.

General Considerations

Primary neoplasms of the liver represent 0.3%–5% of all solid tumors in children. Of these, two-thirds are malignant, with hepatoblastoma being most common (79% of all pediatric liver cancers). Hepatoblastoma typically occurs in children ages 6 months to 3 years, with a male predominance. Most children present with a symptomatic abdominal mass, though with more advanced disease, weight loss, anorexia, abdominal pain and emesis may occur. Children with Beckwith-Wiedemann Syndrome and familial adenomatosis polyposis coli are at increased risk of hepatoblastoma, and should undergo routine screening with a-fetoprotein determinations and abdominal ultrasound until the age of 5 years. In addition, low-birthweight infants (< 1000 grams) have a 15 times increased risk of hepatoblastoma, as compared to infants > 2500 grams. Pathologic differentiation from hepatocellular carcinoma, the other major malignant tumor of the liver, may be difficult.

Hepatocellular carcinoma most commonly occurs between the ages of 10–12 years and is more common in males. Children are more likely to be symptomatic, with abdominal distension, pain, and advanced disease, including anorexia and weight loss, at presentation. Patients with chronic HBV or HCV infection, cirrhosis, glycogen storage disease type 1, tyrosinemia, and α-antitrypsin deficiency are at increased risk for developing hepatocellular carcinoma. The late development of hepatocellular carcinoma in patients receiving androgens for treatment of Fanconi syndrome and aplastic anemia must also be kept in mind. The use of anabolic steroids by body-conscious adolescents poses a risk of hepatic neoplasia. In addition, Wilms tumors, neuroblastoma and lymphoma may all metastasize to the liver.

α-Fetoprotein levels are typically elevated, especially in hepatoblastoma. Estradiol levels are sometimes elevated. Tissue diagnosis is best obtained at laparotomy, although ultrasound- or CT-guided needle biopsy of the liver mass can be used.

**D. Imaging**

Ultrasonography, CT, and MRI are useful for diagnosis, staging, and following tumor response to therapy. A scintigraphic study of bone and chest CT are generally part of the pre-operative workup to evaluate metastatic disease.

**Differential Diagnosis**

In the absence of a palpable mass, the differential diagnosis is that of hepatomegaly with or without anemia or jaundice. Hematologic and nutritional conditions should be ruled out, as well as HBV and HCV infection, α₁-antitrypsin deficiency disease, lipid storage diseases, histiocytosis X, glycogen storage disease, tyrosinemia, congenital hepatic fibrosis, cysts, adenoma, focal nodular hyperplasia, and hemangiomas. If fever is present, hepatic abscess (pyogenic or amebic) must be considered. Veno-occlusive disease and hepatic vein thrombosis are rare possibilities. Tumors in the left lobe may be mistaken for pancreatic pseudocysts.

**Complications**

Progressive enlargement of the tumor, abdominal discomfort, ascites, respiratory difficulty, and widespread metastases (especially to the lungs and the abdominal lymph nodes) are the rule. Rupture of the neoplastic liver and intraperitoneal hemorrhage has been reported. Progressive anemia and emaciation predispose the patient to an early septic death.

**Treatment**

For tumors that are resectable, an aggressive surgical approach with complete resection of the lesion offers the only chance for cure. Individual lung metastases should also be surgically resected. Radiotherapy and chemotherapy have been disappointing in the treatment of hepatocellular carcinoma, although hepatoblastomas are generally more responsive. Chemotherapy may be used for initial cyto-reduction of tumors (especially hepatoblastoma) found to be unresectable at the time of primary surgery (see Chapter 31 for additional discussion). Second-look celiotomy has, in some cases, allowed resection of the tumor, resulting in a reduced mortality rate. Liver transplantation can be an option in hepatoblastoma with unresectable disease limited to the liver, with an 85% 10-year survival. For hepatocellular carcinoma, the survival rate is poor due to the typically advanced stage at diagnosis. The survival rate may be better for those patients in whom the tumor is incidental to another disorder (tyrosinemia, biliary atresia, cirrhosis) or is less than a total of 7 cm diameter without vascular invasion. In HBV-endemic areas, childhood HBV vaccination has reduced the incidence of hepatocellular carcinoma.

**Prognosis**

If the tumor is completely removed, the survival rate is 90% for hepatoblastoma and 33% for hepatocellular carcinoma. If metastases that cannot be surgically resected are present, survival is reduced to 40% for hepatoblastoma. In well-selected candidates with unresectable hepatoblastoma, survival after liver transplantation approaches 65%.

LIVER TRANSPLANTATION

Orthotopic liver transplantation is indicated in children with end-stage liver disease, acute fulminant hepatic failure, or complications from metabolic liver disorders. Approximately 600 pediatric liver transplants are performed annually, with excellent 1 year (83%–91%) and 5 year (82%–84%) survival rates. The multitude of immunosuppression options, ability to individualize immunosuppression, improved candidate selection, refinements in surgical techniques, anticipatory monitoring for complications (eg, CMV and EBV infections, hypertension, renal dysfunction, and dyslipidemias) and experience in postoperative management have all contributed to improved outcomes over time. The major indications for childhood transplantation are shown in Table 22–11.

Children who are potential candidates for liver transplantation should be referred to a pediatric transplant center early for evaluation. In addition to full-sized cadaveric organs, children may also receive reduced segment or split cadaveric livers and live donor donation, all of which have expanded the potential donor pool. Lifetime immunosuppression therapy, using combinations of tacrolimus, cyclosporine, prednisone, azathioprine, mycophenolate mofetil, or sirolimus, with its incumbent risks, is generally necessary to prevent rejection. Small studies have examined the potential for complete immunosuppression withdrawal, with a more definitive multicenter study currently underway. Currently, the minimal amount of immunosuppression that will prevent allograft rejection should be chosen. The overall quality of life for children with a transplanted liver appears to be excellent. There is an increased risk (up to 25%) of renal dysfunction and low intelligence scores. The lifelong
Table 22–11. Indications for pediatric liver transplantation.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Percent of Pediatric Transplants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biliary atresia (failed Kasai or decompensated cirrhosis)</td>
<td>39.6</td>
</tr>
<tr>
<td>Metabolic diseases (α1-antitrypsin deficiency, urea cycle enzyme defects, Wilson disease, tyrosinemia)</td>
<td>14.6</td>
</tr>
<tr>
<td>Nonbiliary atresia cholestatic disorders (eg, Alagille syndrome, PFIC)</td>
<td>13.6</td>
</tr>
<tr>
<td>Acute liver failure</td>
<td>13.2</td>
</tr>
<tr>
<td>Cirrhosis (autoimmune hepatitis, hepatitis B and C)</td>
<td>8.0</td>
</tr>
<tr>
<td>Hepatic malignancies (unresectable hepatoblastoma, HCC, others)</td>
<td>5.8</td>
</tr>
<tr>
<td>Other</td>
<td>5.2</td>
</tr>
</tbody>
</table>

PFIC, progressive familial intrahepatic cholestasis.

The rate of hospitalization for acute pancreatitis in children is 0.02–0.09/1000 US population. The incidence of pediatric acute pancreatitis seems to be increasing. Most cases of acute pancreatitis are the result of drugs, viral infections, systemic diseases, abdominal trauma, or obstruction of pancreatic flow. More than 20% are idiopathic. Causes of pancreatic obstruction include stones, choledochal cyst, tumors of the duodenum, pancreas divisum, and ascariasis. Acute pancreatitis has been seen following treatment with sulfasalazine, thiazides, valproic acid, azathioprine, mercaptopurine, asparaginase, antiretroviral drugs (especially didanosine), high-dose corticosteroids, and other drugs. It may also occur in cystic fibrosis, systemic lupus erythematosus, α1-antitrypsin deficiency, diabetes mellitus, Crohn disease, glycogen storage disease type I, hyperlipidemia types I and V, hyperparathyroidism, Henoch-Schönlein purpura, Reye syndrome, organic acidopathies, Kawasaki disease, or chronic renal failure; during rapid refeeding in cases of malnutrition; following spinal fusion surgery; and in families. Alcohol-induced pancreatitis should be considered in the teenage patient.

### Clinical Findings

#### A. History

An acute onset of persistent (hours to days), moderate to severe upper abdominal and midabdominal pain occasionally referred to the back, frequently associated with vomiting, or nausea is the common presenting picture.

#### B. Symptoms and Signs

The abdomen is tender, but not rigid, and bowel sounds are diminished, suggesting peritoneal irritation. Abdominal distention is common in infants and younger children and classic symptoms of abdominal pain, tenderness and nausea are less common in this age group. Jaundice is unusual. Ascites may be noted, and a left-sided pleural effusion is present in some patients. Periumbilical and flank bruising indicate hemorrhagic pancreatitis.

#### C. Laboratory Findings

An elevated serum amylase or lipase (more than three times normal) is the key laboratory finding. The elevated serum lipase persists longer than serum amylase. Infants younger than 6 months may not have an elevated amylase or lipase. In this setting, an elevated immunoreactive trypsinogen may be more sensitive. Pancreatic lipase can help differentiate nonpancreatic causes (eg, salivary, intestinal, or tuboovarian) of serum amylase elevation. Leukocytosis, hyperglycemia (serum glucose > 300 mg/dL), hypocalcemia, falling hematocrit, rising blood urea nitrogen, hypoxemia,
and acidosis may all occur in severe cases and imply a poor prognosis.

D. Imaging

Plain radiographic films of the abdomen may show a localized ileus (sentinel loop). Ultrasonography is primarily used to assess for biliary tract disease leading to pancreatitis, but can show decreased echodensity of the pancreas in comparison with the left lobe of the liver. The pancreas is often difficult to image with ultrasound due to overlying gas. CT scanning images the pancreas more consistently and is better for detecting pancreatic phlegmon, pseudocyst, necrosis, or abscess formation. The computed tomography severity index (CTSI) is useful in identifying patients at increased risk for serious complications. ERCP or MRCP may be useful in confirming patency of the main pancreatic duct in cases of abdominal trauma; in recurrent acute pancreatitis; or in revealing stones, ductal strictures, and pancreas divisum.

Differential Diagnosis

Other causes of acute upper abdominal pain include gastritis; peptic ulcer disease; duodenal ulcer; hepatitis; liver abscess; cholelithiasis; cholecystitis; choledocholithiasis; acute gastroenteritis or atypical appendicitis; pneumonia; volvulus; intussusception; and nonaccidental trauma.

Complications

Early complications include shock, fluid and electrolyte disturbances, ileus, acute respiratory distress syndrome, and hypocalcemia. Hypervolemia due to renal insufficiency related to renal tubular necrosis may occur. The gastrointestinal, neurologic, musculoskeletal, hepatobiliary, dermatologic, and hematologic systems may also be involved. Early predictors of a more aggressive course include renal dysfunction, significant fluid requirements, and multisystem organ dysfunction and a high CTSI. Five to 20% of patients can develop a pseudocyst 1–4 weeks later that may be asymptomatic or present with recurrence of abdominal pain and rise in the serum amylase. Up to 60%–70% of pseudocysts resolve spontaneously. Infection, hemorrhage, rupture, or fistulization may occur. Phlegmon formation is rare in children, but when present may extend from the gland into the retroperitoneum or into the lesser sac. Most regress, but some require drainage. Infection may occur in this inflammatory mass. Pancreatic abscess formation, which is rare (3%–5%), develops 2–3 weeks after the initial insult. Fever, leukocytosis, and pain suggest this complication; diagnosis is made by ultrasound or CT scanning. Chronic pancreatitis, exocrine or endocrine pancreatic insufficiency, and pancreatic lithiasis are rare sequelae of acute pancreatitis.

Treatment

Medical management includes careful attention to fluid, electrolytes, and respiratory status. Gastric decompression may be helpful if there is significant vomiting. Pain should be controlled with opioids. Acid suppression may be helpful. Nutrition is provided by the parenteral or enteral (jejunal or gastric) route. Broad-spectrum antibiotic coverage is useful only in necrotizing pancreatitis. Drugs known to produce acute pancreatitis should be discontinued. Surgical treatment is reserved for traumatic disruption of the gland, intraductal stone, other anatomic obstructive lesions, and unresolved or infected pseudocysts or abscesses. Early endoscopic decompression of the biliary system reduces the morbidity associated with pancreatitis caused by obstruction of the common bile duct.

Prognosis

In the pediatric age group, the prognosis is surprisingly good with conservative management.

CHRONIC PANCREATITIS

Chronic pancreatitis is differentiated from acute pancreatitis in that the pancreas remains structurally or functionally abnormal after an attack.

The causes are multiple and can be divided into toxic-metabolic (eg, alcohol, chronic renal failure, hypercalcemia), idiopathic, genetic (increasingly recognized in children and adolescents), autoimmune, recurrent and severe acute pancreatitis, and obstructive pancreatitis (eg, pancreas divisum, choledochal cyst).

Clinical Findings

A. History

The diagnosis is often delayed by the nonspecificity of symptoms and the lack of persistent laboratory abnormalities. There is usually a prolonged history of recurrent upper abdominal pain of variable severity. Radiation of the pain into the back is a frequent complaint.
B. Symptoms and Signs
Fever and vomiting are rare. Diarrhea, due to steatorrhea, and symptoms of diabetes may develop later in the course. Malnutrition due to acquired exocrine pancreatic insufficiency may also occur.

C. Laboratory Findings
Serum amylase and lipase levels are usually elevated during early acute attacks, but are often normal in the chronic phase. Pancreatic insufficiency may be diagnosed by demonstration of a low fecal pancreatic elastase 1. Mutations of the cationic trypsinogen gene, the pancreatic secretory trypsin inhibitor, the cystic fibrosis transmembrane conductance regulator gene (CFTR) and chymotrypsin C are associated with recurrent acute and chronic pancreatitis. Elevated blood glucose and glycohemoglobin levels and glycosuria frequently occur in protracted disease. Sweat chloride should be checked for cystic fibrosis, α1-antitrypsin level or phenotype, and serum calcium for hyperparathyroidism.

D. Imaging
Radiographs of the abdomen may show pancreatic calcifications in up to 30% of patients. Ultrasound or CT examination demonstrates an abnormal gland (enlargement or atrophy), ductal dilation, and calculi in up to 80%. CT is the initial imaging procedure of choice. MRCP or ERCP can show ductal dilation, stones, strictures, or stenotic segments. Endoscopic ultrasound in the diagnosis and staging of chronic pancreatitis is being evaluated.

Differential Diagnosis
Other causes of recurrent abdominal pain must be considered. Specific causes of pancreatitis such as autoimmune pancreatitis, hyperparathyroidism; systemic lupus erythematosus; infectious disease; α1-antitrypsin deficiency; and ductal obstruction by tumors, stones, or helminths must be excluded by appropriate tests.

Complications
Disabling abdominal pain, steatorrhea, malnutrition, pancreatic pseudocysts, and diabetes are the most frequent long-term complications. Pancreatic carcinoma occurs more frequently in patients with chronic pancreatitis, and in up to 40% of patients with hereditary pancreatitis by age 70.

Treatment
Medical management of acute attacks is indicated (see section on Acute Pancreatitis, earlier). If ductal obstruction is strongly suspected, endoscopic therapy (balloon dilation, stenting, stone removal, or sphincterotomy) should be pursued. Relapses occur in most patients. Pancreatic enzyme therapy should be used in patients with pancreatic insufficiency. Antioxidant therapy is being investigated. Pseudocysts may be marsupialized to the surface or drained into the stomach or into a loop of jejunum if they fail to regress spontaneously. Lateral pancreaticojjunostomy or the Frey procedure can reduce pain in pediatric patients with a dilated pancreatic duct and may prevent or delay progression of functional pancreatic impairment. Pancreatectomy and islet cell autotransplantation has been used in selected cases of chronic pancreatitis.

Prognosis
In the absence of a correctable lesion, the prognosis is not good. Disabling episodes of pain, pancreatic insufficiency, diabetes, and pancreatic cancer may ensue. Narcotic addiction and suicide are risks in teenagers with disabling disease.

GASTROINTESTINAL & HEPATOBILIARY MANIFESTATIONS OF CYSTIC FIBROSIS
Cystic fibrosis is a disease with protean manifestations. Although pulmonary and pancreatic involvement dominate the clinical picture for most patients (see Chapter 19), various other organs can be involved. Table 22–12 lists the important gastrointestinal, pancreatic, and hepatobiliary conditions that may affect patients with cystic fibrosis along with their clinical findings, incidence, most useful diagnostic studies, and preferred treatment.
<table>
<thead>
<tr>
<th>Organ</th>
<th>Condition</th>
<th>Symptoms</th>
<th>Age at Presentation</th>
<th>Incidence (%)</th>
<th>Diagnostic Evaluation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esophagus</td>
<td>Gastroesophageal reflux, esophagitis</td>
<td>Pyrosis, dysphagia, epigastric pain, hematemesis. Hematemesis, melena.</td>
<td>All ages. Childhood and adolescents.</td>
<td>10-20</td>
<td>Endoscopy and biopsy, overnight pH study. Endoscopy.</td>
<td>H₂ blockers, PPIs, surgical antireflux procedure. Endosclerosis, band ligation, drugs (see text), TIPS, surgical shunt, liver transplantation (see Table 22-9).</td>
</tr>
<tr>
<td>Stomach</td>
<td>Gastritis</td>
<td>Upper abdominal pain, vomiting, hematemesis.</td>
<td>School age and older.</td>
<td>10-25</td>
<td>Endoscopy and biopsy.</td>
<td>H₂ blockers, PPIs.</td>
</tr>
<tr>
<td></td>
<td>Hiatal hernia</td>
<td>Reflux symptoms (see above), epigastric pain.</td>
<td>School age and older.</td>
<td>3-5</td>
<td>UGI; endoscopy.</td>
<td>As above. Surgery in some.</td>
</tr>
<tr>
<td></td>
<td>Distal intestinal obstruction syndrome</td>
<td>Abdominal pain, acute and recurrent; distention; occasional vomiting.</td>
<td>Any age, usually school age through adolescence.</td>
<td>5-10</td>
<td>Palpable mass in right lower quadrant, radiologic studies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intussusception</td>
<td>Acute, intermittent abdominal pain; distention; emesis.</td>
<td>Infants through adolescence.</td>
<td>1-3</td>
<td>Radiographic studies, barium enema.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rectal prolapse</td>
<td>Anal discomfort, rectal bleeding.</td>
<td>Infants and children to age 4-5 y.</td>
<td>15-25</td>
<td>Visual mass protruding from anus.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbohydrate intolerance</td>
<td>Abdominal pain, flatulence, continued diarrhea with adequate enzyme replacement therapy.</td>
<td>Any age.</td>
<td>10-25</td>
<td>Intestinal mucosal biopsy and disaccharidase analysis. Lactose breath hydrogen test.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small bowel bacterial overgrowth</td>
<td>Abdominal pain, flatulence, continued diarrhea with adequate enzyme replacement therapy.</td>
<td>Any age: Higher risk with previous intestinal surgery.</td>
<td>Unknown</td>
<td>Culture of duodenal fluid, glucose breath hydrogen test.</td>
<td></td>
</tr>
<tr>
<td>Organ</td>
<td>Condition</td>
<td>Symptoms</td>
<td>Age at Presentation</td>
<td>Incidence (%)</td>
<td>Diagnostic Evaluation</td>
<td>Management</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Total exocrine insufficiency</td>
<td>Diarrhea, steatorrhea, malnutrition, failure to thrive. Fat-soluble vitamin deficiency.</td>
<td>Neonate through infancy.</td>
<td>85–90</td>
<td>72-h fecal fat evaluation, fecal pancreatic elastase, direct pancreatic function tests.</td>
<td>Pancreatic enzyme replacement, may need elemental formula, fat-soluble vitamin supplements.</td>
</tr>
<tr>
<td>Pancreatic sufficiency (partial exocrine insufficiency)</td>
<td>Occasional diarrhea, mild growth delay.</td>
<td>Any age.</td>
<td>10–15</td>
<td>72-h fecal fat evaluation, direct pancreatic function tests, fecal pancreatic elastase. Increased serum lipase and amylase, CT, MRCP, ERCP.</td>
<td>Pancreatic enzyme replacement in selected patients. Fat-soluble vitamin supplements as indicated by biochemical evaluation. Endoscopic removal of sludge or stones if present, endoscopic papillotomy.</td>
<td></td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>Recurrent abdominal pain, vomiting.</td>
<td>Older children through adolescence. Primarily in patients with partial pancreatic sufficiency.</td>
<td>0.1</td>
<td>72-h fecal fat evaluation, direct pancreatic function tests, fecal pancreatic elastase. Increased serum lipase and amylase, CT, MRCP, ERCP.</td>
<td>Pancreatic enzyme replacement in selected patients. Fat-soluble vitamin supplements as indicated by biochemical evaluation. Endoscopic removal of sludge or stones if present, endoscopic papillotomy.</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>Weight loss, polyuria, polydipsia.</td>
<td>Older children through adolescence.</td>
<td>5–7</td>
<td>Glucose tolerance test and insulin levels.</td>
<td>Diet, insulin.</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>Steatosis</td>
<td>Hepatomegaly, often in setting of malnutrition, elevated ALT.</td>
<td>Neonates and infants, but can be seen at all ages. Infants and older patients. Prevalence uncertain.</td>
<td>20–60</td>
<td>US showing homogeneous increased echogenicity. Liver biopsy.</td>
<td>Improved nutrition, replacement of pancreatic enzymes, vitamins, and essential fatty acids. As above. Ursodeoxycholic acid.</td>
</tr>
<tr>
<td></td>
<td>Hepatic fibrosis</td>
<td>Hepatomegaly, firm liver. May have abnormal AST, ALT.</td>
<td>Infants and older patients. Prevalence uncertain.</td>
<td>10–70</td>
<td>US showing heterogeneous echogenicity. Liver biopsy.</td>
<td>Improved nutrition, ursodeoxycholic acid, endosclerosis or band ligation of varices, or partial splenic embolization, liver transplantation. Nutritional support, special formula with medium-chain triglyceride-containing oil, pancreatic enzyme replacement, vitamin supplements.</td>
</tr>
<tr>
<td></td>
<td>Cirrhosis</td>
<td>Hepatosplenomegaly, hematemesis from esophageal varices; hypersplenism, jaundice, ascites late in course. Cholestatic jaundice hepatomegaly; often seen with meconium ileus.</td>
<td>Infants through adolescence.</td>
<td>5–10</td>
<td>US showing nodular liver, signs of portal hypertension. Liver biopsy, endoscopy.</td>
<td>Improved nutrition, ursodeoxycholic acid, endosclerosis or band ligation of varices, or partial splenic embolization, liver transplantation. Nutritional support, special formula with medium-chain triglyceride-containing oil, pancreatic enzyme replacement, vitamin supplements.</td>
</tr>
<tr>
<td></td>
<td>Neonatal jaundice</td>
<td></td>
<td>Neonates.</td>
<td>0.1–1</td>
<td>Sweat chloride test, liver biopsy</td>
<td></td>
</tr>
<tr>
<td>Gallbladder</td>
<td>Microgallbladder</td>
<td>None.</td>
<td>Congenital—present at any age. School age through adolescence.</td>
<td>30</td>
<td>US or hepatobiliary scintigraphy. US.</td>
<td>None needed.</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>-------</td>
<td>---------------------------------------------------------------</td>
<td>----</td>
<td>--------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Cholelithiasis</td>
<td>Recurrent right upper quadrant abdominal pain, rarely jaundice.</td>
<td>School age through adolescence.</td>
<td>1–10</td>
<td>US.</td>
<td>Surgery if symptomatic and low-risk, trial of cholelitholytics in others.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extrahepatic bile ducts</th>
<th>Intraluminal obstruction (sludge, stones, tumor)</th>
<th>Jaundice, hepatomegaly, abdominal pain.</th>
<th>Neonates, then older children through adolescence. Older children to adults.</th>
<th>Rare in neonates (&lt;0.1) Rare (&lt; 1)</th>
<th>US and hepatobiliary scintigraphy, MRCP. As above.</th>
<th>Surgery in neonates; ERCP in older patients or surgery. Surgical biliary drainage procedure or ERCP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraluminal obstruction (intrapancreatic compression, tumor)</td>
<td>As above.</td>
<td>As above.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALT, alanine aminotransferase; AST, aspartate aminotransferase; CT, computed tomography; ERCP, endoscopic retrograde cholangiopancreatography; MRCP, magnetic resonance cholangiopancreatography; PPI, proton pump inhibitor; TIPS, transjugular intrahepatic portosystemic shunt; UGI, upper gastrointestinal; US, abdominal ultrasound.
SYNDROMES WITH PANCREATIC EXOCRINE INSUFFICIENCY

Several syndromes are associated with exocrine pancreatic insufficiency. Patients present with a history of failure to thrive, diarrhea, fatty stools, and an absence of respiratory symptoms. Laboratory findings include a normal sweat chloride; low fecal pancreatic elastase 1; and low to absent pancreatic lipase, amylase, and trypsin levels on duodenal intubation. Each disorder has several associated clinical features that aid in the differential diagnosis. In Shwachman-Diamond syndrome, pancreatic exocrine hypoplasia with widespread fatty replacement of the glandular acinar tissue is associated with neutropenia because of maturational arrest of the granulocyte series. Bone marrow failure is seen in one third. Metaphyseal dysostosis and an elevated fetal hemoglobin level are common; immunoglobulin deficiency and hepatic dysfunction are also reported. CT examination of the pancreas demonstrates the widespread fatty replacement. Genotyping of the SBDS gene is available. Serum immunoreactive trypsinogen levels are extremely low.

Other associations of exocrine pancreatic insufficiency include (1) aplastic alae, aplasia cutis, deafness (Johanson-Blizzard syndrome); (2) sideroblastic anemia, developmental delay, seizures, and liver dysfunction (Pearson bone marrow pancreas syndrome); (3) duodenal atresia or stenosis; (4) malnutrition; and (5) pancreatic hypoplasia or agenesis. The complications and sequelae of exocrine pancreatic insufficiency are malnutrition, diarrhea, and growth failure. The degree of steatorrhea may lessen with age. Intragastric lipolysis by lingual lipase may compensate in patients with low or absent pancreatic function. In Shwachman-Diamond syndrome, short stature and bony dysplasias are problematic. Increased numbers of infections may result from chronic neutropenia and the reduced neutrophil mobility that is present in many patients. An increased incidence of leukemia has been noted in these patients; thus patients with myelodysplasia syndrome should be considered for hematopoietic stem cell transplantation.

Pancreatic enzyme and fat-soluble vitamin replacement are required therapy in most patients. The prognosis appears to be good for those able to survive the increased number of bacterial infections early in life and lack severe associated defects.

ISOLATED EXOCRINE Pancreatic ENZYME DEFECT

Normal premature infants and most newborns produce little, if any, pancreatic amylase following meals or exogenous hormonal stimulation. This temporary physiologic insufficiency may persist for the first 3–6 months of life and be responsible for diarrhea when complex carbohydrates (cereals) are introduced into the diet.

Congenital pancreatic lipase deficiency and congenital colipase deficiency are extremely rare disorders, causing diarrhea and variable malnutrition with malabsorption of dietary fat and fat-soluble vitamins. The sweat chloride level is normal and neutropenia is absent. Treatment is oral replacement of pancreatic enzymes and a low-fat diet or formula containing medium-chain triglycerides.

Exocrine pancreatic insufficiency of proteolytic enzymes (eg, trypsinogen, trypsin, chymotrypsin) is caused by enterokinase deficiency, a duodenal mucosal enzyme required for activation of the pancreatic proenzymes. These patients present with malnutrition associated with hypoproteinemia and edema, but do not have respiratory symptoms and have a normal sweat test. They respond to pancreatic enzyme replacement therapy and feeding formulas that contain a casein hydrolysate (eg, Nutramigen, Pregestimil).

PANCREATIC TUMORS

Pancreatic tumors, whether benign or malignant, are rare. In the setting of malignancy, the majority of patients present with abdominal pain. Pancreatic tumors most often arise from ductal or acinar epithelium (malignant adenocarcinoma) or from islet (endocrine) components within the gland, such as the benign insulinoma (adenoma) derived from β cells. Other pancreatic tumors originate from these pluripotential endocrine cells (eg, gastrinoma, VIPoma, glucagonoma), and produce diverse symptoms, because they release biologically active polypeptides from this ectopic location. The clinical features of these tumors are summarized in Table 22–13. The differential diagnosis of pancreatic tumors includes Wilms tumor, neuroblastoma,
**Table 22–13.** Pancreatic tumors.

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Age</th>
<th>Major Findings</th>
<th>Diagnosis</th>
<th>Treatment</th>
<th>Associated Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulinoma</td>
<td>Any age</td>
<td>Hypoglycemia, seizures; high serum insulin; weight gain; abdominal pain and mass infrequent</td>
<td>CT scan, MRI, PET, EUS, SRS</td>
<td>Surgery, diazoxide, SSTA</td>
<td>MEN1</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>Any age</td>
<td>Epigastric pain, mass, weight loss, anemia, biliary obstruction</td>
<td>Ultrasound, CT scan, MRI, EUS</td>
<td>Surgery</td>
<td>Chronic pancreatitis</td>
</tr>
<tr>
<td>Gastrinoma</td>
<td>Older than age 5–8 y</td>
<td>Male sex, gastric hypersecretion, peptic symptoms, multiple ulcers, gastrointestinal bleeding, anemia, diarrhea</td>
<td>Elevated fasting gastrin and postsecretin suppression test (&gt; 300 pg/mL), CT scan, MRI, EUS, SRS, laparotomy</td>
<td>PPI, surgical resection, total gastrectomy, SSTA</td>
<td>Zollinger-Ellison syndrome, MEN1, neurofibromatosis</td>
</tr>
<tr>
<td>VIPoma</td>
<td>Any age (more common 2–4 y old)</td>
<td>Secretory diarrhea, hypokalemia, hypochlorhydria, weight loss, flushing</td>
<td>Elevated VIP levels (&gt; 75 pg/mL); sometimes, elevated serum gastrin and pancreatic polypeptide; CT, EUS, SRS</td>
<td>Surgery, SSTA, IV fluids</td>
<td></td>
</tr>
<tr>
<td>Glucagonoma</td>
<td>Older patients</td>
<td>Diabetes, necrolytic migratory erythema, diarrhea, anemia, thrombotic events, depression</td>
<td>Elevated glucagon, hyperglycemia, gastrin, VIP, CT, MRI, EUS, SRS</td>
<td>Surgery, SSTA</td>
<td></td>
</tr>
</tbody>
</table>

CT, computed tomography; EUS, endoscopic ultrasound; IV, intravenous; MEN1, multiple endocrine neoplasia syndrome type I; MRI, magnetic resonance imaging; PPI, proton pump inhibitor; PET, Positron emission tomography; SRS, somatostatin-receptor scintigraphy; SSTA, somatostatin analogue; VIP, vasoactive intestinal polypeptide.

and malignant lymphoma. In older children, endoscopic ultrasonography can aid in localizing these tumors.


**REFERENCES**

REGULATION OF BODY FLUIDS, ELECTROLYTES, & TONICITY

Total body water (TBW) constitutes 50%–75% of the total body mass, depending on age, sex, and fat content. After an initial postnatal diuresis, the TBW slowly decreases to the adult range near puberty (Figure 23–1). TBW is divided into the intracellular and extracellular spaces. Intracellular fluid (ICF) accounts for two-thirds of the TBW and extracellular fluid (ECF) for one-third. The ECF is further compartmentalized into plasma (intravascular) volume and interstitial fluid (ISF).

The principal constituents of plasma are sodium, chloride, bicarbonate, and protein (primarily albumin). The ISF is similar to plasma but lacks significant amounts of protein (Figure 23–2). Conversely, the ICF is rich in potassium, magnesium, phosphates, sulfates, and protein.

An understanding of osmotic shifts between the ECF and ICF is fundamental to understanding disorders of fluid balance. Iso-osmolality is generally maintained between fluid compartments. Because the cell membrane is water-permeable, abnormal fluid shifts occur if the concentration of solutes that cannot permeate the cell membrane in the ECF does not equal the concentration of such solutes in the ICF. Thus, NaCl, mannitol, and glucose (in the setting of hyperglycemia) remain restricted to the ECF space and contribute effective osmoles by obligating water to remain in the ECF compartment. In contrast, a freely permeable solute such as urea does not contribute effective osmoles because it is not restricted to the ECF and readily crosses cell membranes. Tonicity, or effective osmolality, differs from measured osmolality in that it accounts only for osmotically active impermeable solutes rather than all osmotically active solutes, including those that are permeable to cell membranes. Osmolality may be estimated by the following formula:

$$\text{mOsm/kg} = 2(Na^+, \text{mEq/L}) + \frac{\text{Glucose, mg/dL}}{18} + \frac{\text{BUN, mg/dL}}{2.8}$$

Although osmolality and osmolarity differ, the former being an expression of osmotic activity per weight (kg) and the latter per volume (L) of solution, for clinical purposes they are similar and occasionally used interchangeably. Oncotic pressure, or colloid osmotic pressure, represents the osmotic activity of macromolecular constituents such as albumin in the plasma and body fluids. The importance of albumin in maintaining intravascular volume status is reflected in the setting of the nephrotic syndrome, protein losing enteropathy, and other low serum albumin states wherein fluids accumulate in the interstitial compartment leading to pitting edema.

The principal mechanisms that regulate ECF volume and tonicity are thirst, vasopressin or antidiuretic hormone (ADH), aldosterone, and atrial natriuretic factor (ANF), the latter three exerting their influence by their effects on renal water and sodium handling.

Thirst

Water intake is commonly determined by cultural factors rather than by thirst. Thirst is not physiologically stimulated until plasma osmolality reaches 290 mOsm/kg, a level at which ADH levels are sufficient to induce maximal antidiuresis. Thirst provides control over a wide range of fluid volumes and can even be a response to an absence of or lack of responsiveness to ADH, which results in the production of copious, dilute urine, as in central or nephrogenic diabetes insipidus, or other ADH unresponsive states such as obstructive uropathy. One who cannot perceive thirst develops profound problems with fluid balance.

Antidiuretic Hormone

In the kidney, ADH increases water reabsorption in the cortical and medullary collecting ducts, leading to formation of concentrated urine. In the absence of ADH, dilute urine is produced. Under normal conditions, ADH secretion is regulated by the tonicity of body fluids rather than the fluid
**Figure 23–1.** Body water compartments related to age. (Modified, with permission, from Friis-Hansen B: Body water compartments in children: changes during growth and related changes in body composition. Pediatrics 1961;28:169.)

**Figure 23–2.** Composition of body fluids. ECF, extracellular fluid; ICF, intracellular fluid; ISF, interstitial fluid.
volume and becomes detectable at a plasma osmolality of 280 mOsm/kg or greater. However, tonicity may be sacrificed to preserve ECF volume, as in the case of hyponatremic dehydration, wherein ADH secretion and renal water retention are maximal.

**Aldosterone**

Aldosterone is released from the adrenal cortex in response to decreased effective circulating volume and stimulation of the renin-angiotensin-aldosterone axis or in response to increasing plasma K⁺. Aldosterone enhances renal tubular reabsorption of Na⁺ in exchange for K⁺, and to a lesser degree H⁺. At a constant osmolality, retention of Na⁺ leads to expansion of ECF volume and suppression of aldosterone release.

**Atrial Natriuretic Factor**

ANF, a polypeptide hormone secreted principally by the cardiac atria in response to atrial dilation, plays an important role in regulation of blood volume and blood pressure. ANF inhibits renin secretion and aldosterone synthesis and causes an increase in glomerular filtration rate and renal sodium excretion. ANF also guards against excessive plasma volume expansion in the face of increased ECF volume by shifting fluid from the vascular to the interstitial compartment. ANF inhibits angiotensin II– and norepinephrine-induced vasoconstriction and acts in the brain to decrease the desire for salt and inhibit the release of ADH. Thus, the net effect of ANF is a decrease in blood volume and blood pressure associated with natriuresis and diuresis.

Disturbances in acid-base balance are initially stabilized by chemical buffering, compensated for by pulmonary or renal regulation of CO₂ or, respectively, and ultimately corrected when the primary cause of the acid-base disturbance is eliminated.

Renal regulation of acid-base balance is accomplished by the reabsorption of filtered, primarily in the proximal tubule, and the excretion of H⁺ or HCO₃⁻ in the distal nephron to match the net input of acid or base. When urine is alkalized, HCO₃⁻ enters the kidney and is ultimately lost in the urine. Alkalization of the urine may occur when an absolute or relative excess of bicarbonate exists. However, urinary alkalization will not occur if there is a deficiency of Na⁺ or K⁺, because HCO₃⁻ must also be retained to maintain electroneutrality. In contrast, the urine may be acidified if an absolute or relative decrease occurs in systemic HCO₃⁻. In this setting, proximal tubular HCO₃⁻ reabsorption and distal tubular H⁺ excretion are maximal. A “paradoxical aciduria” with low urinary pH may be seen in the setting of hypokalemic metabolic alkalosis and systemic K⁺ depletion wherein H⁺ is exchanged and excreted in preference to K⁺ in response to mineralocorticoid. Some of the processes involved in acid-base regulation are shown in Figure 23–3.

**ACID-BASE BALANCE**

The pH of arterial blood is maintained between 7.38 and 7.42 to ensure that pH-sensitive enzyme systems function normally. Acid-base balance is maintained by interaction of the lungs, kidneys, and systemic buffering systems. Over 50% of the blood’s buffering capacity is provided by the carbonic acid–bicarbonate system, roughly 30% by hemoglobin, and the remainder by phosphates and ammonium. The carbonic acid–bicarbonate system, depicted chemically as

\[ \text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{H}^+ + \text{HCO}_3^- \]

interacts via the lungs and kidneys, and in conjunction with the nonbicarbonate systems, to stabilize systemic pH. The concentration of dissolved CO₂ in blood is established by the respiratory system and that of HCO₃⁻ by the kidneys.

![Figure 23–3. Maintaining metabolic stability via compensatory mechanisms.](image-url)
FLUID & ELECTROLYTE MANAGEMENT

Therapy of fluid and electrolyte disorders is directed toward providing maintenance fluid and electrolyte requirements, replenishing prior losses, and replacing persistent abnormal losses. Therapy should be phased to (1) rapidly expand the ECF volume and restore tissue perfusion, (2) replenish fluid and electrolyte deficits while correcting attendant acid-base abnormalities, (3) meet the patient’s nutritional needs, and (4) replace ongoing losses.

The cornerstone of therapy involves an understanding of maintenance fluid and electrolyte requirements. Maintenance requirements call for provision of enough water, glucose, and electrolytes to prevent deterioration of body stores for a euvolemic patient. During short-term parenteral therapy, sufficient glucose is provided to prevent ketosis and limit protein catabolism, although this usually provides little more than 20% of the patient’s true caloric needs. Prior to the administration of maintenance fluids, it is important to consider the patient’s volume status and to determine whether intravenous fluids are truly needed.

Various models have been devised to facilitate calculation of maintenance requirements based on body surface area, weight, and caloric expenditure. A system based on caloric expenditure is most helpful, because 1 mL of water is needed for each kilocalorie expended. The system presented in Table 23–1 is based on caloric needs and is applicable to children weighing more than 3 kg.

As depicted in Table 23–1, a child weighing 30 kg would need 1700 kcal or 1700 mL of water daily. If the child received parenteral fluids for 2 days, the fluid would usually contain 5% glucose, which would provide 340 kcal/d, or 20% of the maintenance caloric needs. Maintenance fluid requirements take into account normal insensible water losses and water lost in sweat, urine, and stool, and assume the patient to be afebrile, at their true dry weight, and relatively inactive. Thus, if excessive losses occur, standard “maintenance fluids” will be inadequate. In contrast, if losses are reduced for any reason, standard “maintenance fluid” administration would be excessive. Maintenance requirements are greater for low-birth-weight and preterm infants. Table 23–2 lists other factors that commonly alter fluid and caloric needs.

Electrolyte losses occur primarily through the urinary tract and to a lesser degree via the skin and stool. Although maintenance sodium and potassium electrolyte needs have historically been approximated to be in the 3 mEq Na/100 kcal and 2 mEq K/100 kcal range, respectively, leading to the common use of intravenous fluids with 30–40 mEq/L of sodium (1/4 normal saline) and 20 mEq/L of potassium, over the past 10 years Moritz and Ayus have drawn attention to the very serious problem of hospital-acquired hyponatremia in children with the use of hypotonic IV solutions. It is notable, that hyponatremia is the most common electrolyte abnormality in children and affects ~ 25% of hospitalized pediatric patients. It is also important to emphasize that the astute clinician will bear in mind the dynamic nature of clinical context in treating patients. A child with profound water loss stools and hypernatremia who is placed on hypotonic IV fluids and whose diarrhea ceases, but is continued on hypotonic solution without close monitoring of serum electrolytes is at grave risk for the devastating clinical consequences that may develop in the setting of hyponatremia, such as seizures and neurologic impairment. Although stress-induced nonosmotic release of vasopressin and associated increased free water retention is certainly a factor in the development of hospital-acquired hyponatremia in children, 3 mEq Na/100 kcal underestimates daily sodium needs by about half. True needs more closely approximate 5–6 mEq/100 kcal in these clinical situations. In recent years, there also has been a trend for total parenteral nutrition solution sodium, and other electrolytes to be calculated and ordered on a milliequivalents-per-kilogram basis rather than the more classic milliequivalents-per-liter basis (eg, 0.2 or 0.45 normal). It is extremely important to understand

<table>
<thead>
<tr>
<th>Table 23–1. Caloric and water needs per unit of body weight.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Body Weight (kg)</strong></td>
</tr>
<tr>
<td>3-10</td>
</tr>
<tr>
<td>11-20</td>
</tr>
<tr>
<td>&gt; 20</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Table 23–2. Alterations of maintenance fluid requirements.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Factor</strong></td>
</tr>
<tr>
<td>Fever</td>
</tr>
<tr>
<td>Hyperventilation</td>
</tr>
<tr>
<td>Sweating</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
</tr>
<tr>
<td>Gastrointestinal loss and renal disease</td>
</tr>
</tbody>
</table>

*Do not correct for 38°C; correct 24% for 39°C."
that if the administered fluid volume is decreased in this setting, as the child is weaned from supplemental IV fluids to enteral intake, the sodium and other electrolytes will need to be reduced accordingly to avoid progressively increasing IV fluid tonicity that can result in hypernatremia or other electrolyte derangements.

It is helpful to monitor the patient’s daily weight, urinary output, fluid input, and urine specific gravity. However, if stress-induced nonosmotic release of ADH is operative in a given patient, serial monitoring of the urine specific gravity may give the false impression that the child is still dehydrated when they are fluid replete, but still generating a concentrated urine. If fluid or electrolyte balance is abnormal, serial determination of serum electrolyte concentrations, blood urea nitrogen, and creatinine are necessary. In patients with significant burns, anuria, oliguria, or persistent abnormal stool or urine losses (eg, from a stoma, or polyuria secondary to a renal concentrating defect), it is important to measure output, and if needed its electrolyte components, so appropriate replacement can be provided.

**DEHYDRATION**

Depletion of body fluids is one of the most commonly encountered problems in clinical pediatrics. Children have a high incidence of gastrointestinal diseases, including gastroenteritis, and may demonstrate gastrointestinal symptoms in nongastrointestinal conditions, such as pneumonia or meningitis. Infants and young children often decrease their oral intake when ill, and their high ratio of surface area to weight promotes significant evaporative losses. Renal concentrating mechanisms do not maximally conserve water in early life, and fever may significantly increase fluid needs. Dehydration decreases ECF volume, leading to decreased tissue perfusion, progressive uremia and abnormal renal function studies, compensatory tachycardia, and lactic acidosis. The clinical effects of dehydration relate to the degree of dehydration and to the relative amounts of salt and water lost. Caregivers must be particularly aware of dehydration occurring in breast-fed newborn infants who go home soon after birth and whose mothers fail to produce enough milk. This problem is more common in the hot summer months and has been associated with severe dehydration, brain damage, and death.

The clinical evaluation of a child with dehydration should focus on the composition and volume of fluid intake; the frequency and amount of vomiting, diarrhea, and urine output; the degree and duration of fever; the nature of any administered medications; and the existence of underlying medical conditions. A recently recorded weight, if known, can be very helpful in calculating the magnitude of dehydration. Important clinical features in estimating the degree of dehydration include the capillary refill time, postural blood pressure, and heart rate changes; dryness of the lips and mucous membranes; lack of tears; lack of external jugular venous filling when supine; a sunken fontanelle in an infant; oliguria; and altered mental status (Table 23–3). Children generally respond to a decrease in circulating volume with a compensatory increase in pulse rate and may maintain

<table>
<thead>
<tr>
<th>Clinical Signs</th>
<th>Degree of Dehydration</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Decrease in body weight</strong></td>
<td>Mild: 3%-5%</td>
</tr>
<tr>
<td><strong>Skin</strong></td>
<td>Turgor</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td><strong>Hemodynamic Signs</strong></td>
<td>Pulse 2-3 s</td>
</tr>
<tr>
<td><strong>Fluid Loss</strong></td>
<td>Urinary output Mild oliguria</td>
</tr>
<tr>
<td><strong>Tears</strong></td>
<td>Absent</td>
</tr>
<tr>
<td><strong>Urinary Indices</strong></td>
<td>Specific gravity &gt; 1.020</td>
</tr>
</tbody>
</table>
their blood pressure in the face of severe dehydration. A low or falling blood pressure is, therefore, a late sign of shock in children, and when present should prompt emergent treatment. Salient laboratory parameters include a high urine specific gravity (in the absence of an underlying renal concentrating defect as seen in diabetes insipidus or chronic obstructive or reflux nephropathy), a relatively greater elevation in blood urea nitrogen than in serum creatinine, a low urinary 
\[\text{Na}^+\] excretion (< 20 mEq/L), and an elevated hematocrit or serum albumin level secondary to hemococoncentration.

Emergent intravenous therapy is indicated when there is evidence of compromised perfusion (inadequate capillary refill, tachycardia, poor color, oliguria, or hypotension). The initial goal is to rapidly expand the plasma volume and to prevent circulatory collapse. A 20-mL/kg bolus of isotonic fluid should be given intravenously as rapidly as possible. Either colloid (5% albumin) or crystalloid (normal saline or Ringer lactate) may be used. Colloid is particularly useful in hypernatremic patients in shock, in malnourished infants, and in neonates. If no intravenous site is available, fluid may be administered intraosseously through the marrow space of the tibia. If there is no response to the first fluid bolus, a second bolus may be given. When adequate tissue perfusion is demonstrated by improved capillary refill, decreased pulse rate and urine output, and improved mental status, deficit replacement may be instituted. If adequate perfusion is not restored after 40 mL/kg of isotonic fluids, other pathologic processes must be considered such as sepsis, occult hemorrhage, or cardiogenic shock. Isotonic dehydration may be treated by providing half of the remaining fluid deficit over 8 hours and the second half over the ensuing 16 hours in the form of 5% dextrose with 0.45% saline containing 20 mEq/L of KCl. In the presence of metabolic acidosis, potassium acetate may be considered. Maintenance fluids and replacement of ongoing losses should also be provided. Typical electrolyte compositions of various body fluids are depicted in Table 23–4, although it may be necessary to measure the specific constituents of a patient’s fluid losses to guide therapy. If the patient is unable to eat for a prolonged period, nutritional needs must be met through hyperalimentation or enteral tube feedings.

Oral rehydration may be provided to children with mild to moderate dehydration. Clear liquid beverages found in the home, such as broth, soda, juice, and tea are inappropriate for the treatment of dehydration. Commercially available solutions provide 45–75 mEq/L of Na+, 20–25 mEq/L of K+, 30–34 mEq/L of citrate or bicarbonate, and 2%–2.5% of glucose. Frequent small aliquots (5–15 mL) should be given to provide approximately 50 mL/kg over 4 hours for mild dehydration and up to 100 mL/kg over 6 hours for moderate dehydration. Oral rehydration is contraindicated in children with altered levels of consciousness or respiratory distress who cannot drink freely; in children suspected of having an acute surgical abdomen; in infants with greater than 10% volume depletion; in children with hemodynamic instability; and in the setting of severe hyponatremia ([Na+] < 120 mEq/L) or hypernatremia ([Na+] > 160 mEq/L). Failure of oral rehydration due to persistent vomiting or inability to keep up with losses mandates intravenous therapy. Successful oral rehydration requires explicit instructions to caregivers and close clinical follow-up of the child.

The type of dehydration is characterized by the serum [Na+]. If relatively more solute is lost than water, the [Na+] falls, and hyponatremic dehydration ([Na+] < 130 mEq/L) ensues. This is important clinically because hypotonicity of the plasma contributes to further volume loss from the ECF into the intracellular space. Thus, tissue perfusion is more significantly impaired for a given degree of hyponatremic dehydration than for a comparable degree of isotonic or hypertonic dehydration. It is important to note, however, that significant solute losses also occur in hypernatremic dehydration. Furthermore, because plasma volume is somewhat protected in hypernatremic dehydration, it poses the risk of the clinician underestimating the severity of dehydration. Typical fluid and electrolyte losses associated with each form of dehydration are shown in Table 23–5.

Table 23–4. Typical electrolyte compositions of various body fluids.

<table>
<thead>
<tr>
<th>Type of Dehydration</th>
<th>H2O (mL/kg)</th>
<th>Na+ (mEq/kg)</th>
<th>K+ (mEq/kg)</th>
<th>Cl- and pH (mEq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotonic</td>
<td>100–150</td>
<td>8–10</td>
<td>8–10</td>
<td>16–20</td>
</tr>
<tr>
<td>Hypotonic</td>
<td>50–100</td>
<td>10–14</td>
<td>10–14</td>
<td>20–28</td>
</tr>
<tr>
<td>Hypertonic</td>
<td>120–180</td>
<td>2–5</td>
<td>2–5</td>
<td>4–10</td>
</tr>
</tbody>
</table>

Adapted, with permission, from Winters RW: Principles of Pediatric Fluid Therapy. Little, Brown, 1982.
HYponatremia may be factitious in the presence of high plasma lipids or proteins, which decrease the percentage of plasma volume that is water. Hyponatremia in the absence of hypotonicity also occurs when an osmotically active solute, such as glucose or mannitol, is added to the ECF. Water drawn from the ICF dilutes the serum [Na+] despite isotonicity or hypertonicity.

Patients with hyponatremic dehydration generally demonstrate typical signs and symptoms of dehydration (see Table 23–3), because the vascular space is compromised as water leaves the ECF to maintain osmotic neutrality. The treatment of hyponatremic dehydration is fairly straightforward. The magnitude of the sodium deficit may be calculated by the following formula:

\[
\text{Na}^+ \text{ deficit} = (\text{Na}^+ \text{ desired} - \text{Na}^+ \text{ observed}) \times \text{Bodyweight (kg)} \times 0.6
\]

Half of the deficit is replenished in the first 8 hours of therapy, and the remainder is given over the following 16 hours. Maintenance and replacement fluids should also be provided. The deficit plus maintenance calculations often approximate 5% dextrose with 0.45% or higher saline. The rise in serum [Na+] should not exceed 0.5–1.0 mEq/L/h or 20 mEq/L/24 h unless the patient demonstrates central nervous system (CNS) symptoms that warrant more rapid initial correction. The dangers of too rapid correction of hyponatremia include cerebral dehydration and injury due to fluid shifts from the ICF compartment.

Hypovolemic hyponatremia also occurs in cerebral salt-wasting associated with CNS insults, a condition characterized by high urine output and elevated urinary [Na+] (> 80 mEq/L) due to an increase in ANF, and is a diagnosis of exclusion requiring a natriuresis in a patient with a contracted effective circulatory blood volume in the absence of other causes for Na+ excretion. This must be distinguished from the syndrome of inappropriate secretion of ADH (SIADH), which may also manifest in CNS conditions and pulmonary disorders. In contrast to cerebral salt-wasting, SIADH is characterized by euvoolemia or mild volume expansion and relatively low urine output due to ADH-induced water retention. Urinary [Na+] is high in both conditions, though generally not as high as in SIADH. It is important to distinguish between these two conditions, because the treatment of the former involves replacement of urinary salt and water losses, whereas the treatment of SIADH involves water restriction. It is also important to remember that in SIADH patients are not necessarily oliguric, and that their urine does not need to be maximally concentrated but merely inappropriately concentrated for their degree of serum tonicity.

In cases of severe hyponatremia (serum [Na+] < 120 mEq/L) with CNS symptoms, intravenous 3% NaCl may be given over 1 hour to raise the [Na+] to 120 mEq/L to alleviate CNS manifestations and sequelae. In general, 6 mL/kg of 3% NaCl will raise the serum [Na+] by about 5 mEq/L. If 3% NaCl is administered, estimated Na+ and fluid deficits should be adjusted accordingly. Further correction should proceed slowly, as outlined earlier.

Hypervolemic hyponatremia may occur in edematous disorders such as nephrotic syndrome, congestive heart failure, and cirrhosis, wherein water is retained in excess of salt. Treatment involves restriction of Na+ and water and correction of the underlying disorder. Hypervolemic hyponatremia due to water intoxication is characterized by a maximally dilute urine (specific gravity < 1.003) and is also treated with water restriction.

HYpernatremia

Although diarrhea is commonly associated with hypernatremic or isonatremic dehydration, hypernatremia may develop in the presence of persistent fever or decreased fluid intake or in response to improperly mixed rehydration solutions. Extreme care is required to treat hypernatremic dehydration appropriately. If the serum [Na+] falls precipitously, the osmolality of the ECF drops more rapidly than that of the CNS. Water shifts from the ECF compartment into the CNS to maintain osmotic neutrality. If hypertonicity is corrected too rapidly (a drop in [Na+] of > 0.5–1 mEq/L/h), cerebral edema, seizures, and CNS injury may occur. Thus, following the initial restoration of adequate tissue perfusion using isotonic fluids, a gradual decrease in serum [Na+] is desired (10–15 mEq/L/d). This is commonly achieved using 5% dextrose with 0.2% saline to replace the calculated fluid deficit over 48 hours. Maintenance and replacement fluids should also be provided. If the serum [Na+] is not correcting appropriately, the free water deficit may be estimated as 4 mL/kg of free water for each milliequivalent of serum [Na+] above 145 mEq/L and provided as 5% dextrose over 48 hours. If metabolic acidosis is also present, it must be corrected slowly to avoid CNS irritability. Potassium is provided as indicated—as the acetate salt if necessary. Electrolyte concentrations should be assessed every 2 hours in order to control the decline in serum [Na+]. Elevations of blood glucose and blood urea nitrogen may worsen the hyperosmolar state in hypernatremic dehydration and should also be monitored closely. Hyperglycemia is often associated with hypernatremic dehydration and may necessitate lower intravenous glucose concentrations (eg, 2.5%).

Patients with diabetes insipidus, whether nephrogenic or central in origin, are prone to develop profound hypernatremic dehydration as a result of unremitting urinary-free water losses (urine specific gravity < 1.010), particularly during superimposed gastrointestinal illnesses associated with vomiting or diarrhea. Treatment involves restoration of fluid and electrolyte deficits as described earlier as well as replacement...
of excessive water losses. Formal water deprivation testing to distinguish responsiveness to ADH should only be done during daylight hours after restoration of normal fluid volume status.

However, if a child presents with marked dehydration and a serum Na+ greater than 150 mEq/L, it may prove helpful and timely to obtain a plasma vasopressin level at the time of their initial presentation. The evaluation and treatment of nephrogenic and central diabetes insipidus are discussed in detail in Chapters 24 and 34, respectively.

Hyponatremic hypernatremia (salt poisoning), associated with excess total body salt and water, may occur as a consequence of providing improperly mixed formula, excessive NaCl or NaHCO3, administration, or as a feature of primary hyperaldosteronism. Treatment includes the use of diuretics, and potentially, concomitant water replacement or even dialysis.

**POTASSIUM DISORDERS**

The predominantly intracellular distribution of potassium is maintained by the actions of Na+-K+-ATPase in the cell membranes. Potassium is shifted into the ECF and plasma by acidemia and into the ICF in the setting of alkalosis, hypochloremia, or in conjunction with insulin-induced cellular glucose uptake. The ratio of intracellular to extracellular K+ is the major determinant of the cellular resting membrane potential and contributes to the action potential in neural and muscular tissue. Abnormalities of K+ balance are potentially life-threatening. In the kidney, K+ is filtered at the glomerulus, reabsorbed in the proximal tubule, and excreted in the distal tubule. Distal tubular K+ excretion is regulated primarily by the mineralocorticoid aldosterone. Renal K+ excretion is primarily dependent on the urinary flow rate, and continues for significant periods even after the intake of K+ is decreased. Thus, by the time urinary [K+] decreases, the systemic K+ pool has been depleted significantly. In general, the greater the urine flow the greater the urinary K+ excretion.

The causes of net K+ loss are primarily renal in origin. Gastrointestinal losses through nasogastric suction or vomiting reduce total body K+ to some degree. However, the resultant volume depletion results in an increase in plasma aldosterone, promoting renal excretion of K+ in exchange for Na+ reclamation to preserve circulatory volume. Diuretics (especially thiazides), mineralocorticoids, and intrinsic renal tubular diseases (eg, Bartter syndrome) enhance the renal excretion of K+. Systemic K+ depletion in hypokalemic metabolic acidosis may lead to "paradoxic aciduria" and low urine pH wherein H+ is preferentially exchanged for Na+ in response to aldosterone. Clinically, hypokalemia is associated with neuromuscular excitability, decreased peristalsis or ileus, hyporeflexia, paralysis, rhabdomyolysis, and arrhythmias. Electrocardiographic changes include flattened T waves, a shortened PR interval, and the appearance of U waves. Arrhythmias associated with hypokalemic metabolic acidosis include premature ventricular contractions; atrial, nodal, or ventricular tachycardia; and ventricular fibrillation. Hypokalemia increases responsiveness to digitalis and may precipitate overt digitalis toxicity. In the presence of arrhythmias, extreme muscle weakness, or respiratory compromise, intravenous K+ should be given. If the patient is hypophosphatemic ([PO4<sup>-3</sup>]< 2 mg/dL), a phosphate salt may be used. The first priority in the treatment of hypokalemia is the restoration of an adequate serum [K+]. Providing maintenance amounts of K+ is usually sufficient; however, when the serum [K+] is dangerously low and K+ must be administered intravenously, it is imperative that the patient have a cardiac monitor. Intravenous K+ should generally not be given faster than at a rate of 0.3 mEq/kg/h. Oral K+ supplements may be needed for weeks to replenish depleted body stores.

Hyperkalemia—due to decreased renal K+ excretion, mineralocorticoid deficiency or unresponsiveness, or K+ release from the ICF compartment—is characterized by muscle weakness, paresthesias, and tetany; ascending paralysis; and arrhythmias. Electrocardiographic changes associated with hyperkalemia include peaked T waves, widening of the QRS complex, and arrhythmias such as sinus bradycardia or sinus arrest, atrioventricular block, nodal or idioventricular rhythms, and ventricular tachycardia or fibrillation. The severity of hyperkalemia depends on the electrocardiographic changes, the status of the other electrolytes, and the stability of the underlying disorder. A rhythm strip should be obtained when significant hyperkalemia is suspected. If the serum [K+] is less than 6.5 mEq/L, discontinuing K+ supplementation may be sufficient if there is no ongoing K+ source, such as cell lysis, and if urine output continues. If the serum [K+] is greater than 7 mEq/L or if potentiating factors such as hyponatremia, digitalis toxicity, and renal failure are present, more aggressive therapy is needed. If electrocardiographic changes or arrhythmias are present, treatment must be initiated promptly. Intravenous 10% calcium gluconate (0.2–0.5 mL/kg over 2–10 minutes) will rapidly ameliorate depolarization and may be repeated after 5 minutes if electrocardiographic changes persist. Calcium should be given only with a cardiac monitor in place and should be discontinued if bradycardia develops. The intravenous administration of a diuretic that acts in the loop of Henle, such as furosemide (1–2 mg/kg), will augment renal K+ excretion and can be very helpful in lowering serum and total body [K+]. Administering Na+ and increasing systemic pH with bicarbonate therapy (1–2 mEq/kg) will shift K+ from the ECF to the ICF compartment, as will therapy with a β-agonist such as albuterol. In non-diabetic patients, 0.5 g/kg of glucose over 1–2 hours will enhance endogenous insulin secretion, lowering serum [K+] 1–2 mEq/L. Administration of intravenous glucose and insulin may be needed as a
simultaneous drip (0.5–1 g/kg glucose and 0.3 units of regular insulin per gram of glucose) given over 2 hours with monitoring of the serum glucose level every 15 minutes.

The therapies outlined above provide transient benefits. Ultimately, K⁺ must be reduced to normal levels by reestablishing adequate renal excretion using diuretics or optimizing urinary flow, using ion exchange resins such as sodium polystyrene sulfonate orally or as a retention enema (0.2–0.5 g/kg orally or 1 g/kg as an enema), or by dialysis.

When evaluating a disturbance in acid-base balance, the systemic pH, partial carbon dioxide pressure (PCO₂), serum HCO₃⁻, and anion gap must be considered. The anion gap, Na⁺ – (Cl⁻ + HCO₃⁻), is an expression of the unmeasured anions in the plasma and is normally 12 ± 4 mEq/L. An increase above normal suggests the presence of an unmeasured anion, such as occurs in diabetic ketoacidosis, lactic acidosis, salicylate intoxication, and so on. Although the base excess (or deficit) is also used clinically, it is important to recall that this expression of acid-base balance is influenced by the renal response to respiratory disorders and cannot be interpreted independently (as in a compensated respiratory acidosis, wherein the base excess may be quite large). Recently, there has been greater interest in the Stewart approach to acid-base disturbances and the calculation of the “strong ion difference,” which is beyond the scope of the present discussion. The interested reader is referred to the review by Gunnerson and Kellum listed in the references at the end of this chapter.

**METABOLIC ACIDOSIS**

Metabolic acidosis is characterized by a primary decrease in serum [HCO₃⁻] and systemic pH due to the loss of HCO₃⁻ from the kidneys or gastrointestinal tract, the addition of an acid (from external sources or via altered metabolic processes), or the rapid dilution of the ECF with nonbicarbonate-containing solution (usually normal saline). When HCO₃⁻ is lost through the kidneys or gastrointestinal tract, Cl⁻ must be reabsorbed with Na⁺ disproportionally, resulting in a hyperchloremic acidosis with a normal anion gap. Thus, a normal anion gap acidosis in the absence of diarrhea or other bicarbonate-rich gastrointestinal losses suggests the possibility of renal tubular acidosis and should be evaluated appropriately. (See Chapter 24.) In contrast, acidosis that results from addition of an unmeasured acid is associated with a widened anion gap. Examples are diabetic ketoacidosis, lactic acidosis, starvation, uremia, toxin ingestion (salicylates, ethylene glycol, or methanol), and certain inborn errors of organic or amino acid metabolism. Dehydration may also result in a widened anion gap acidosis as a result of inadequate tissue perfusion, decreased O₂ delivery, and subsequent lactic and keto acid production. Respiratory compensation is accomplished through an increase in minute ventilation and a decrease in PCO₂. The patient’s history, physical findings, and laboratory features should lead to the appropriate diagnosis.

The ingestion of unknown toxins or the possibility of an inborn error of metabolism (see Chapter 36) must be considered in children without an obvious cause for a widened anion gap acidosis. Unfortunately, some hospital laboratories fail to include ethylene glycol or methanol in their standard toxicology screens, so assay of these toxins must be requested specifically. This is of critical importance when therapy with fomepizole (4-methylpyrazole) must be considered for either ingestion—and instituted promptly to obviate profound toxicity. Ethylene glycol (eg, anti-freeze) is particularly worrisome because of its sweet taste and accounts for a significant number of toxin ingestions. Screening by fluorescence of urine under a Wood lamp is relatively simple but does not replace specific laboratory assessment. Salicylate intoxication has a stimulatory effect on the respiratory center of the CNS; thus, patients may initially present with respiratory alkalosis or mixed respiratory alkalosis and widened anion gap acidosis.

Most types of metabolic acidosis will resolve with correction of the underlying disorder, improved renal perfusion, and acid excretion. Intravenous NaHCO₃ administration may be considered in the setting of metabolic acidosis when the pH is less than 7.0 or the [HCO₃⁻] is less than 5 mEq/L.
but only if adequate ventilation is ensured. The dose (in milliequivalents) of NaHCO₃ may be calculated as

\[
\text{Weight (kg) } \times \text{Base deficit } \times 0.3
\]

and given as a continuous infusion over 1 hour. The effect of NaHCO₃ in lowering serum potassium and ionized calcium concentrations must also be considered and monitored.

**METABOLIC ALKALOSIS**

Metabolic alkalosis is characterized by a primary increase in [HCO₃⁻] and pH resulting from a loss of strong acid or gain of buffer base. The most common cause for a metabolic alkalosis is the loss of gastric juice via nasogastric suction or vomiting. This results in a Cl⁻-responsive alkalosis, characterized by a low urinary [Cl⁻] (< 20 mEq/L) indicative of a volume-contracted state that will be responsive to the provision of adequate Cl⁻ salt (usually in the form of normal saline). Cystic fibrosis may also be associated with a Cl⁻-responsive alkalosis due to the high losses of NaCl through the sweat, whereas congenital Cl⁻-losing diarrhea is a rare cause of Cl⁻-responsive metabolic alkalosis. Chloride-resistant alkaloses are characterized by a urinary [Cl⁻] greater than 20 mEq/L and include Bartter syndrome, Cushing syndrome, and primary hyperaldosteronism, conditions associated with primary increases in urinary [Cl⁻], or volume-expanded states lacking stimuli for renal Cl⁻ reabsorption. Thus, the urinary [Cl⁻] is helpful in distinguishing the nature of a metabolic alkalosis, but must be specifically requested in many laboratories because it is not routinely included in urine electrolyte panels. The serum [K⁺] is also low in these settings (hypokalemic metabolic alkalosis) owing to a combination of increased mineralocorticoid activity associated with volume contraction, the shift of K⁺ to the ICF compartment, and preferential reabsorption of Na⁺ rather than K⁺ to preserve intravascular volume. A hypokalemic alkalosis seen in the setting of primary mineralocorticoid excess would be expected to be associated with systemic hypertension clinically, as observed in an adrenal adenoma.

**RESPIRATORY ACIDOSIS**

Respiratory acidosis develops when alveolar ventilation is decreased, increasing Pco₂ and lowering systemic pH. The kidneys compensate for respiratory acidosis by increasing HCO₃⁻ reabsorption, a process that takes several days to fully manifest. Patients with acute respiratory acidosis frequently demonstrate air hunger with retractions and the use of accessory respiratory muscles. Respiratory acidosis occurs in upper or lower airway obstruction, ventilation-perfusion disturbances, CNS depression, and neuromuscular defects. Hypercapnia is not as detrimental as the hypoxia that usually accompanies these disorders. The goal of therapy is to correct or compensate for the underlying pathologic process to improve alveolar ventilation. Bicarbonate therapy is not indicated in a pure respiratory acidosis, because it will worsen the acidosis by shifting the equilibrium of the carbonic acid–bicarbonate buffer system to increase Pco₂.

**RESPIRATORY ALKALOSIS**

Respiratory alkalosis occurs when hyperventilation results in a decrease in Pco₂ and an increase in systemic pH. Depending on the acuity of the respiratory alkalosis, there may be an associated compensatory loss of bicarbonate by the kidneys manifested as a low serum bicarbonate level and a normal anion gap that may be misinterpreted as a normal anion gap acidosis if all acid-base parameters are not considered. Patients may experience tingling, paresthesias, dizziness, palpitations, syncope, or even tetany and seizures due to the associated decrease in ionized calcium. Causes of respiratory alkalosis include psychobehavioral disturbances, CNS irritation from meningitis or encephalitis, salicylate intoxication, and iatrogenic over ventilation in patients who are mechanically ventilated. Therapy is directed toward the causal process. Rebreathing into a paper bag will decrease the severity of symptoms in acute hyperventilation.


EVALUATION OF THE KIDNEY & URINARY TRACT

HISTORY
When renal disease is suspected, the history should include
1. Family history of cystic disease, hereditary nephritis, deafness, dialysis, or renal transplantation
2. Preceding acute or chronic illnesses (e.g., urinary tract infection [UTI], pharyngitis, impetigo, or endocarditis)
3. Rashes or joint pains
4. Growth delay or failure to thrive
5. Polyuria, polydipsia, enuresis, urinary frequency, or dysuria
6. Documentation of hematuria, proteinuria, or discolored urine
7. Pain (abdominal, costovertebral angle, or flank) or trauma
8. Sudden weight gain or edema
9. Drug or toxin exposure
10. Data pertaining to the newborn with suspected urinary tract disease: prenatal ultrasonographic studies, birth asphyxia, Apgar scores, oligohydramnios, dysmorphic features, abdominal masses, voiding patterns, anomalous development, and umbilical artery catheterization

PHYSICAL EXAMINATION
Important aspects of the physical examination include the height, weight, skin lesions (café au lait or ash leaf spots), pallor, edema, or skeletal deformities. Anomalies of the ears, eyes, or external genitalia may be associated with renal anomalies or disease. The blood pressure should be measured in a quiet setting. The cuff should cover two-thirds of the child’s upper arm, and peripheral pulses should be noted. The abdomen should be palpated, with attention to the kidneys, abdominal masses, musculature, and the presence of ascites. An ultrasonic device is useful for measurements in infants.

LABORATORY EVALUATION OF RENAL FUNCTION

Serum Analysis
The standard indicators of renal function are serum levels of urea nitrogen and creatinine; their ratio is normally about 10:1. This ratio may increase when renal perfusion or urine flow is decreased, as in urinary tract obstruction or dehydration. Because serum urea nitrogen levels are more affected by these and other factors (e.g., nitrogen intake, catabolism, use of corticosteroids) than are creatinine levels, the most reliable single indicator of glomerular function is the serum level of creatinine. For example, an increase in serum creatinine from 0.5 to 1.0 mg/dL represents a 50% decrease in glomerular filtration rate. The serum creatinine level of small children should be well under 0.8 mg/dL. Only larger adolescents should have levels exceeding 1 mg/dL. Less precise but nonetheless important indicators of possible renal disease are abnormalities of serum electrolytes, pH, calcium, phosphorus, magnesium, albumin, or complement.

Glomerular Filtration Rate
The endogenous creatinine clearance (Ccr) in milliliters per minute estimates the glomerular filtration rate (GFR). A 24-hour urine collection is the “classic” approach for determining creatinine clearance; however, it is often difficult to obtain in the pediatric population. The procedure for collecting a timed urine specimen should be explained carefully so that the parent or patient understands fully the rationale of (1) first emptying the bladder (discarding that urine) and noting the time; and (2) putting all urine subsequently voided into the
collection receptacle, including the last void, 24 hours later. Reliability of the 24-hour collection can be checked by measuring the total 24-hour creatinine excretion in the specimen. Total daily creatinine excretion (creatinine index) should be 14–20 mg/kg. Creatinine indices on either side of this range suggest collections that were either inadequate or excessive. Calculation by the following formula requires measurements of plasma creatinine (Pcr) in mg/mL, urine creatinine (Ucr) in mg/mL, and urine volume (V) expressed as mL/min:

\[
C_{cr} = \frac{U_{cr} \times V}{P_{cr}}
\]

Creatinine is a reflection of body muscle mass. Because accepted ranges of normal Ccr are based on adult parameters, correction for size is needed to determine normal ranges in children. Clearance is corrected to a standard body surface area of 1.73 m² in the formula:

\[
“Corrected” \ C = \frac{\text{Patient’s } C_{cr} \times 1.73 \ m^2}{\text{Patient’s body surface area}}
\]

Although 80–125 mL/min/1.73 m² is the normal range for Ccr, estimates at the lower end of this range may indicate problems.

The Schwartz formula is a reliable formula for quick approximation of Ccr based on plasma creatinine level and length in centimeters:

\[
C_{cr} (\text{mL/min/1.73 m²}) = k \times \frac{\text{height (cm)}}{P_{cr} (\text{mg/dL})}
\]

where k is a constant: 0.45 for infants 1–52 weeks old, 0.55 for children 1–13 years old, 0.55 for females 1–18 years old, and 0.7 for males 13–18 years old.

**Urine Concentrating Ability**

Inability to concentrate urine causes polyuria, polydipsia, or enuresis and is often the first sign of chronic renal failure, and, in some cases, raises the possibility of diabetes insipidus. The first morning void should be concentrated (specific gravity 1.020 or higher), presuming cessation of drinking anything through the night. Thus, determination of the specific gravity of a first morning void is an easy and helpful test of the kidney’s concentrating ability.

**Urinalysis**

Commercially available dipsticks can be used to screen the urine for blood leukocytes, nitrites, protein, and specific gravity and to approximate the urine pH. Positive results for blood should always be confirmed by microscopy, which is also the only way to determine if there is significant crystalluria. Significant proteinuria (> 150 mg/dL) detected by dipstick should be confirmed by quantitation, either with a 24-hour urine collection or by the protein/creatinine ratio of a random specimen.

In children with asymptomatic hematuria or proteinuria, the search for renal origins will yield the most results. Isolated proteinuria may also reflect urologic abnormalities, benign excretion, or glomerular alterations. RBC casts suggest glomerulonephritis (GN), but the absence of casts does not rule out this disease. Anatomic abnormalities such as cystic disease may also cause hematuria.

Benign hematuria, including benign familial hematuria, is diagnosed by exclusion. In this group are children whose hematuria is caused by asymptomatic hypercalciuria. Figure 24–1 suggests an approach to the renal workup of hematuria. GN is discussed in more detail later in this chapter.

Combined proteinuria and hematuria is characteristic of more significant glomerular disease. Quantitation of proteinuria is customarily accomplished by a timed collection (eg, over a 24-hour period). However, given the frequency of errors in collection in the pediatric population, the degree of proteinuria may be estimated by the ratio of protein mg/dL/creatinine mg/dL in a random urine sample. A protein/creatinine ratio above 0.2 is abnormal. If the laboratory reports this as mg protein/gram of creatinine, normal is 200 or less.

In the evaluation of asymptomatic proteinuria, orthostatic or postural proteinuria should be ruled out. This can be accomplished simply by comparing the protein/creatinine ratio of urine formed in the supine position (the first morning void accumulated in the bladder while sleeping) to a sample obtained during daily ambulation. If the “supine” sample is normal and proteinuria is occurring only during upright posture, this demonstrates postural (benign) proteinuria. If both samples are abnormal, proteinuria would be considered “persistent.”

An approach to the workup of isolated proteinuria, including nephrotic syndrome, is shown in Figure 24–2. Note that corticosteroid therapy is included in the algorithm because this may be initiated for nephrotic syndrome prior to referral. Other renal lesions with proteinuric manifestations are discussed later in this chapter.

**Special Tests of Renal Function**

Measurements of urinary sodium, creatinine, and osmolality are useful in differentiating prerenal from renal causes of renal insufficiency, such as acute tubular necrosis. Prolonged underperfusion causes varying increases in serum creatinine and blood urea nitrogen (BUN) concentrations, prompting the need to differentiate between this state and acute tubular necrosis (see section Acute Renal Failure). The physiologic response to decreased renal perfusion is decreased urinary output, increased urine osmolality, increased urinary solutes (eg, creatinine), and decreased urinary sodium (usually < 20 mEq/L).

The presence of certain substances in urine may suggest tubular dysfunction. For example, urine glucose should be less than 5 mg/dL. Hyperphosphaturia occurs with significant tubular abnormalities (eg, Fanconi syndrome). Measurement of the phosphate concentration of a 24-hour urine specimen...
and evaluation of tubular reabsorption of phosphorus (TRP) will help document renal tubular diseases as well as hyperparathyroid states. TRP (expressed as percentage of reabsorption) is calculated as follows:

$$TRP = 100 \left[ 1 - \frac{S_{cr} \times U_{PO_4}}{S_{PO_4} \times U_{cr}} \right]$$

where $S_{cr}$ = serum creatinine; $U_{cr}$ = urine creatinine; $S_{PO_4}$ = serum phosphate; and $U_{PO_4}$ = urine phosphate. All values for creatinine and phosphate are expressed in milligrams per deciliter for purposes of calculation. A TRP value of 80% or more is considered normal, although it depends somewhat on the value of $S_{PO_4}$.

The urinary excretion of amino acids in generalized tubular disease reflects a quantitative increase rather than a qualitative change. Diseases affecting proximal tubular reabsorption of bicarbonate—including isolated renal tubular acidosis (RTA), Fanconi syndrome (which occurs in diseases such as cystinosis), and chronic renal failure—are discussed later in the chapter.

### LABORATORY EVALUATION OF IMMUNOLOGIC FUNCTION

Many parenchymal renal diseases are thought to have immune causation, although the mechanisms are largely unknown. Examples include (1) deposition of circulating antigen-antibody complexes that are directly injurious or incite injurious responses and (2) formation of antibody

![Figure 24–1. Approach to the renal workup of hematuria.](image-url)
Initial data: History of renal or urologic disease or exercise-induced
Physical examination: BP, edema
Laboratory tests: Serum BUN, Cr, electrolytes, U/A, 24-h urinary
protein excretion or protein/Cr ratio (if nephrotic syndrome: albumin,
cholesterol, triglycerides)

> 20 RBC/hpf or
RBC casts
(see Figure 24–1)

Nonnephrotic

Abnormal
initial data

Normal
initial data

Orthostatic
proteinuria

Degree of
proteinuria

> 1.5 g
< 1.5 g

Follow-up

Medical
renal
disease

Nephrotic syndrome

Congenital

Idiopathic

Orthostatic
proteinuria

Ultrasound

Abnormal
anatomy

Follow

Normal

“Medical
renal
disease”

Nonorthostatic
proteinuria

Urology referral/
intervention

Follow-up

Nephrology referral

Reflux: Obtain VCU

Obstructio

Obtain renal scan
with “washout”

Surgical

Nonsurgical

Course alters (eg,
↑proteinuria,
↓renal function,
↑BP)

RADIOGRAPHIC EVALUATION

Renal ultrasonography is a useful noninvasive tool for evaluating
renal parenchymal disease, urinary tract abnormalities,
or renal blood flow. Excretory urography is used to assess the

directed against the glomerular basement membrane (rare in children).

C3 and C4 complement components should be measured when
immune-mediated renal injury or chronic GN is suspected.
Where clinically indicated, antinuclear antibodies,
hepatitis B surface antigen, and rheumatoid factor should be
obtained. In rare cases, cold-precipitable proteins (cryoglobulins),
C3 “nephritic” factor, or antiglomerular basement
membrane (anti-GBM) antibody measurements may help
confirm a specific diagnosis. At some point in the workup,
the diagnosis may be supported or confirmed by histologic
examination of renal tissue.

▲ Figure 24–2. Approach to the workup of isolated proteinuria. BP, blood pressure; Cr, creatinine; hpf, high-power
field; RBC, red blood cell; U/A, urinalysis; VCU, voiding cystourethrogram. Rules out benign postural proteinuria with
urine protein/creatinine ratio of first morning void (recumbent urine) versus day void (upright). Will normalize within a
month in poststreptococcal glomerulonephritis.
anatomy and function of the kidneys, collecting system, and bladder. Radioisotope studies provide information about renal anatomy, blood flow, and integrity and function of the glomerular, tubular, and collecting systems. Renal stones are best seen by computed tomography. Voiding cystourethrography or cystoscopy is indicated when vesicoureteral reflux (VUR) or bladder outlet obstruction is suspected. Cystoscopy is rarely useful in the evaluation of asymptomatic hematuria or proteinuria in children.

Renal arteriography or venography is indicated to define vascular abnormalities (eg, renal artery stenosis) prior to surgical intervention or transluminal angiography. Less invasive measures such as ultrasonography and Doppler studies can demonstrate renal blood flow or thromboses. More specific identification of stenoses of the renal artery is accomplished by magnetic resonance arteriography.

**RENAL BIOPSY**

Histologic information is valuable for diagnosis, to guide treatment, and to inform prognosis. Satisfactory evaluation of renal tissue requires examination by light, immunofluorescence, and electron microscopy. The need for a renal biopsy should be determined by a pediatric nephrologist.

### CONGENITAL ANOMALIES OF THE URINARY TRACT

**RENAL PARENCHYMAL ANOMALIES**

About 10% of children have congenital anomalies of the genitourinary tract, which range in severity from asymptomatic to lethal. Some asymptomatic abnormalities may have significant complications. For example, patients with “horsehoe” kidney (kidneys fused in their lower poles), although not representing renal parenchymal disease or reduction in kidney function, have a higher incidence of renal calculi. Unilateral agenesis or multicystic dysplasia is usually accompanied by compensatory hypertrophy of the contralateral kidney and thus should be compatible with normal renal function, requiring no specific nephrology referral or follow-up. Supernumerary and ectopic kidneys are usually of no significance. Abnormal genitourinary tract development is associated with varying degrees of renal dysgenesis and dysfunction ranging from mild to severe; an example of the latter is in utero bilateral renal agenesis, which is associated with severe oligohydramnios, pulmonary hypoplasia, abnormal (Potter) facies, and perinatal death.

**1. Renal Dysgenesis**

Renal dysgenesis is a spectrum of anomalies. In simple hypoplasia, which may be unilateral or bilateral, the affected kidneys are smaller than normal. In some forms of dysgenesis, immature, undifferentiated renal tissue persists. In some situations, the number of normal nephrons is insufficient to sustain life once the child reaches a critical body size. The lack of adequate renal tissue may not be readily discernible in the newborn period in the presence of normal urine production. Often, discovery of renal insufficiency in an infant is coincident with blood work drawn for other purposes showing an elevated serum creatinine.

Other forms of renal dysgenesis include oligomeganephronia (characterized by the presence of only a few large glomeruli) and the cystic dysplasias (characterized by the presence of renal cysts). This group includes microcystic disease (congenital nephrosis). A simple cyst within a kidney, different from either autosomal recessive or dominant polycystic kidney disease, is clinically unimportant. An entire kidney lost to multicystic development with concomitant hypertrophy and normal function of the contralateral side should also be of no clinical consequence.

**2. Polycystic Kidney Disease**

Both forms of polycystic kidney disease (autosomal dominant [ADPKD] or recessive [ARPKD]) are increasingly diagnosed by prenatal ultrasound. In its most severe form (ARPKD), the cystic kidneys are nonfunctional in utero, and, therefore, newborns can have Potter facies and other complications of oligohydramnios. In infancy and childhood, kidney enlargement by cysts may initially be recognized by abdominal palpation of renal masses. Hypertension is an early problem in ARPKD. The rate of the progression of renal insufficiency varies, as does growth failure, other complications of chronic renal failure, and early development of end-stage renal disease. In ADPKD, two genes, ADPKD1 and ADPKD2, account for 80% and 10% of cases, respectively. Susceptibility of family members is detected by gene linkage studies. Renal ultrasound identifies cysts in about 80% of affected children by age 5 years. Children with this diagnosis need monitoring for the development and treatment of hypertension, which usually develops in the teenage years. These patients would not be expected to develop renal insufficiency, if any, until later in adult years.

**3. Medullary Cystic Disease (Juvenile Nephronophthisis)**

Medullary cystic disease is characterized by cysts of varying sizes in the renal medulla with tubular and interstitial nephritis. Children present with renal failure and signs of tubular dysfunction (decreased concentrating ability, Fanconi syndrome). This lesion should not be confused with medullary sponge kidney (renal tubular ectasia), a frequently asymptomatic disease occurring in adults.
DISTAL URINARY TRACT ANOMALIES

1. Obstructive Uropathy

Obstruction at the ureteropelvic junction may be the result of intrinsic muscle abnormalities, aberrant vessels, or fibrous bands. The lesion can cause hydronephrosis and usually presents as an abdominal mass in the newborn. Obstruction can occur in other parts of the ureter, especially at its entrance into the bladder, causing proximal hydroureter and hydronephrosis. Renal radionuclide scan with furosemide “wash-out” will reveal or rule out obstruction as the cause of the hydronephrosis. Whether intrinsic or extrinsic, urinary tract obstruction should be relieved surgically as soon as possible to minimize damage to the kidneys.

Severe bladder malformations such as exstrophy are clinically obvious and a surgical challenge. More subtle—but urgent in terms of diagnosis—is obstruction of urine flow from vestigial posterior urethral valves. This anomaly, which occurs almost exclusively in males, usually presents in newborns with anuria or a poor voiding stream secondary to severe obstruction of urine flow. The kidneys and bladder may be easily palpable. Leakage (ureteric perforation, although rare) proximal to the obstruction may produce urinary ascites. Surgical drainage of urine is urgently required to prevent irreversible damage.

Prune belly syndrome is an association of urinary tract anomalies with cryptorchidism and absent abdominal musculature. Although complex anomalies, especially renal dysplasia, usually cause early death or the need for dialysis or transplantation, some patients have lived into the third decade with varying degrees of renal insufficiency. Timely urinary diversion is essential to sustain renal function.

Other complex malformations and external genital anomalies such as hypospadias are beyond the scope of this text. The challenge presented by urologic abnormalities resulting in severe compromise and destruction of renal tissue is to preserve all remaining renal function and treat the complications of progressive chronic renal failure. Involvement of a specialist in pediatric urology in early management is essential.

2. Reflux Nephropathy

The retrograde flow of urine from the bladder into the ureter (vesicoureteral reflux) may cause renal scarring and subsequent renal insufficiency or hypertension, or both, especially in the presence of UTI. A finding of hydronephrosis on renal ultrasound is suggestive of vesicoureteral reflux. Its presence can be confirmed or eliminated by a voiding cystourethrogram, which would also be obtained to rule out reflux in the evaluation of UTI. Low-grade reflux may resolve in the absence of infection, in which case antibiotic prophylaxis (advised with any degree of reflux) is undertaken while awaiting signs of spontaneous resolution. Surgery may be required for chronic severe reflux.

HEMATURIA & GLOMERULAR DISEASE

MICROHEMATURIA

Children with painful hematuria should be investigated for UTI or direct injury to the urinary tract. Dysuria is common in cystitis or urethritis; associated back pain suggests the possibility of pyelonephritis; colicky flank pain may indicate the passage of a stone. Bright red blood or clots in the urine are associated with bleeding disorders, trauma, and arteriovenous malformations. Abdominal masses suggest the presence of urinary tract obstruction, cystic disease, or tumors of the renal or perirenal structures.

Asymptomatic hematuria is a challenge because clinical and diagnostic data are required to decide whether to refer the child to a nephrologist. The diagnosis of hematuria should not rely solely on a urine “dipstick” evaluation, but should be verified by a microscopic RBC count. Ruling out hypercalciuria as a cause of hematuria by a random urine calcium/creatinine ratio is one of the initial steps in the evaluation of hematuria. A value above 0.2 requires verification with a 24-hour collection. Hypercalciuria is excretion of calcium in excess of 4 mg/kg/d. Figure 24–1 delineates the outpatient approach to renal hematuria. The concern regarding the differential diagnosis is the possible presence of glomerular disease.

GLOMERULONEPHRITIS

The various types of glomerulonephritis (GN) have similar manifestations. Table 24–1 lists the most commonly encountered disorders in the differential diagnosis of childhood GN, including their clinical and histopathologic abnormalities. Severe glomerular histopathologic and clinical entities, such as anti-GBM antibody disease (Goodpasture syndrome), Wegener granulomatosis, and idiopathic, rapidly progressive GN, may be considered in the differential diagnosis of acute GN, but these disorders are exceedingly rare in children.

1. Acute Poststreptococcal Glomerulonephritis

The diagnosis of acute poststreptococcal glomerulonephritis is supported by a recent history (7–14 days previously) of group A β-hemolytic streptococcal infection, typically involving the pharynx or skin. If a positive culture is not available, recent infection may be supported by an elevated antistreptolysin O titer or by high titers of other antistreptococcal antibodies. Other infections can cause similar glomerular injury; thus, “postinfection” glomerulonephritis...
(GN) may be a better term for this type of acute glomerulonephritis (AGN). In most cases, recovery is expected and usually complete within weeks. If the diagnosis is in question, or if the renal function of a patient with postinfection GN progressively deteriorates, a renal biopsy should be performed and treatment with corticosteroids initiated.

The clinical presentation of GN is gross hematuria generally accompanied by varying degrees of increase in serum creatinine, edema, and hypertension. Urine may be coffee-colored or tea-colored. Microscopic examination of urine reveals RBCs too numerous to count. Microscopy may reveal RBC casts. If present, these are diagnostic of GN, but their absence does not exclude the diagnosis. Edema is often seen (periorbital, facial, extremities), caused by sodium and water retention resulting from alteration in glomerular function. Symptoms are usually nonspecific. In cases accompanied by hypertension (a common finding), headache may be present. Fever is uncommon. Severe glomerular injury (which usually occurs in severe, acute presentations of the more chronic or destructive forms of GN) may be accompanied by massive proteinuria (nephrotic syndrome), anasarca, ascites, and severe compromise of renal function.

<table>
<thead>
<tr>
<th>Entity</th>
<th>Clinical Course</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postinfection glomerulonephritis (GN). Onset occurs 10–14 d after acute illness, commonly streptococcal. Characteristics include acute onset, tea-colored urine, mild to severe renal insufficiency, and edema.</td>
<td>Acute phase is usually over in 2 wk. Complete resolution occurs in 95% of cases. Severity of renal failure and hypertension varies. Microhematuria may persist to 18 mo. Hypocomplementemia resolves in 1–30 d.</td>
<td>Excellent. Chronic disease is rare. Severe proteinuria, atypical presentation or course, or persistent hypocomplementemia suggest another entity.</td>
</tr>
<tr>
<td>Membranoproliferative GN. Presentation ranges from mild microhematuria to acute GN syndrome. Diagnosis is made by renal biopsy. Etiology is unknown. Types I and II are most common. Lesion is chronic.</td>
<td>Course can be mild to severe (rapid deterioration in renal function); may mimic postinfection GN. Proteinuria can be severe. Complement depression is intermittent to persistent. Hypertension is usually significant.</td>
<td>Type I may respond to corticosteroids. Type II (dense deposit disease) is less responsive to treatment; function decrease varies from immediate to as long as 15 y in 30%–50% of untreated cases. Generally good; a small percentage develops chronic renal failure. Proteinuria in the nephrotic range is a poor sign. There is no universally accepted medication therapy.</td>
</tr>
<tr>
<td>IgA nephropathy. Classic presentation is asymptomatic gross hematuria during acute unrelated illness, with microhematuria between episodes. Occasional instances of acute GN syndrome occur. Etiology is unknown. Diagnosis is made by biopsy.</td>
<td>90% of cases resolve in 1–5 y. Gross hematuric episodes resolve with recovery from acute illness. Severity of renal insufficiency and hypertension varies. Proteinuria occurs in more severe, atypical cases.</td>
<td>Generally good; a small percentage develops chronic renal failure. Proteinuria in the nephrotic range is a poor sign. There is no universally accepted medication therapy.</td>
</tr>
<tr>
<td>Henoch-Schönlein purpura GN. Degree of renal involvement varies. Asymptomatic microhematuria is most common, but GN syndrome can occur. Renal biopsy is recommended in severe cases; it can provide prognostic information.</td>
<td>Presentation varies with severity of renal lesion. In rare cases, may progress rapidly to serious renal failure. Hypertension varies. Proteinuria in the nephrotic range and severe decline in function can occur.</td>
<td>Overall, prognosis is good. Patients presenting with &gt;50% reduction in function or proteinuria exceeding 1 g/24 h may develop chronic renal failure. Severity of renal biopsy picture can best guide approach in such cases. There is no universally accepted medication therapy.</td>
</tr>
<tr>
<td>GN of systemic lupus erythematosus (SLE). Microhematuria and proteinuria are rarely first signs of this systemic disease. Renal involvement varies, but severe GN may ensue with remissions and exacerbations throughout the course.</td>
<td>Renal involvement is mild to severe. Clinical complexity depends on degree of renal insufficiency and other systems involved. Serum complement is depressed. Hypertension is significant. Manifestations of the severity of the renal lesion guide therapeutic intervention.</td>
<td>Renal involvement accounts for most significant morbidity in SLE. Control of hypertension affects renal prognosis. Medication is guided by symptoms, serology, and renal lesion. End-stage renal failure can occur.</td>
</tr>
<tr>
<td>Hereditary GN (eg, Alport syndrome). Transmission is autosomal-dominant/X-linked, with family history marked by end-stage renal failure, especially in young males. Deafness and eye abnormalities are associated.</td>
<td>There is no acute syndrome. Females are generally less affected but are carriers. Hypertension and increasing proteinuria occur with advancing renal failure. There is no known treatment.</td>
<td>Progressive proteinuria and hypertension occur early, with gradual decline in renal function in those most severely affected. Disease progresses to end-stage renal failure in most males.</td>
</tr>
</tbody>
</table>
Typical poststreptococcal GN has no specific treatment. Antibiotic therapy is indicated if an infection is still present. Disturbances in renal function and resulting hypertension may require close monitoring, reduction in salt intake, diuretics, or other antihypertensive drugs. In severe cases of renal failure, hemodialysis or peritoneal dialysis may be necessary. Corticosteroids may also be administered in an attempt to influence the course of the GN.

The acute abnormalities generally resolve in 2–3 weeks. Low levels of serum complement (C3) may normalize as early as 24 hours or as late as 30 days after onset. Other complement-consuming glomerulonephritides include membranoproliferative GN (chronic GN with persistent complement depression) and lupus GN. In poststreptococcal GN, although microscopic hematuria may persist for as long as a year, 85% of children recover completely. Persistent deterioration in renal function, urinary abnormalities beyond 18 months, persistent hypocomplementemia, and nephrotic syndrome are ominous signs. If any of these is present, a renal biopsy is indicated.

2. IgA Nephropathy

When asymptomatic gross hematuria appears to accompany a minor acute febrile illness or other stressful occurrence, the diagnosis of IgA nephropathy may be entertained. In contrast to postinfection GN, IgA nephropathy is not associated with prior streptococcal infection, complement is not depressed, and in 50% of cases, serum immunoglobulin A is elevated. Often there are no associated symptoms or signs. Gross hematuria resolves within days, and there are no serious sequelae in 85% of cases. Treatment is not indicated, and the prognosis is good in most cases. Prognosis is guarded, however, if severe proteinuria, hypertension, or renal insufficiency is present or develops. In such instances, although no treatment is universally accepted, corticosteroids and other immunosuppressive drugs are used. Omega-3 fatty acids from fish oils are thought to be helpful.

3. Henoch-Schönlein Purpura

The diagnosis of Henoch-Schönlein purpura rests on the presence of a typical maculopapular and purpuric rash found primarily, but not exclusively, on the dorsal surfaces of the lower extremities and buttocks. Most children have abdominal pain, and bloody diarrhea may be present. Joint pain is common, and, depending on the extent of renal involvement, hypertension may be present. Joint and abdominal pain responds to treatment with corticosteroids. Renal involvement ranges from mild GN with microhematuria to severe GN and varying degrees of renal insufficiency. GN with massive proteinuria and renal insufficiency carries a poor prognosis. Twenty percent of such cases result in end-stage renal failure. There is no universally accepted treatment, but corticosteroids are often administered (see Chapter 30).

4. Membranoproliferative Glomerulonephritis

The most common “chronic” form of GN in childhood is membranoproliferative GN. The diagnosis is established from the histologic appearance of the glomeruli on biopsy tissue. There are two major histologic types of membranoproliferative GN. Clinically, type II carries the worse prognosis, as end-stage renal failure develops in most cases. Type I more often responds to treatment with corticosteroids. C3 is depressed (in both types) and may be useful as a marker of response to treatment.

5. Lupus Glomerulonephritis

The diagnosis of systemic lupus erythematosus (SLE) is based on its numerous clinical features and abnormal laboratory findings that include a positive antinuclear antibody test, depressed serum complement, and increased serum double-stranded DNA. Renal involvement is indicated by varying degrees of hematuria and proteinuria. More severe cases are accompanied by renal insufficiency and hypertension. Significant renal involvement requires treatment with various combinations of immunosuppressive drugs including prednisone (as a primary drug), azathioprine, cyclophosphamide, mycophenolate, tacrolimus, and rituximab, a monoclonal antibody against the B-cell surface antigen CD20. End-stage renal failure develops in 10%–15% of patients with childhood SLE.

6. Hereditary Glomerulonephritis

The most commonly encountered hereditary GN is Alport syndrome, characterized by hearing loss and GN, occurring predominantly in males. It is a chronic form of GN and thus does not present with the clinical features typically seen in patients with acute processes. A family history is generally present, but there is a spontaneous mutation rate of about 18%. In individuals with the progressive form of GN, end-stage renal failure occurs, usually in the second to third decade of life. Although currently there is no treatment for this disorder, careful management of associated hypertension may slow the process.

ACUTE INTERSTITIAL NEPHRITIS

Acute interstitial nephritis is characterized by diffuse or focal inflammation and edema of the renal interstitium and secondary involvement of the tubules. The condition is most commonly drug related (eg, β-lactam–containing antibiotics, such as methicillin).

Fever, rigor, abdominal or flank pain, and rashes may occur in drug-associated cases. Urinalysis usually reveals leukocyturia and hematuria. Hansel staining of the urinary sediment often demonstrates eosinophils. The inflammation can cause significant deterioration of renal function. If the diagnosis is unclear because of the absence of a history of drug or toxin exposure or the absence of eosinophils in the urine, a renal biopsy may be performed to demonstrate the characteristic tubular and interstitial inflammation. Immediate identification and removal of the causative agent is imperative and may be all that is necessary. Treatment with corticosteroids is helpful in patients with progressive renal insufficiency or nephrotic syndrome. Severe renal failure requires supportive dialysis.


PROTEINURIA & RENAL DISEASE

Urine is rarely completely protein-free, but the average excretion is well below 150 mg/24 h. Small increases in urinary protein can accompany febrile illnesses or exertion and in some cases occur while in the upright posture.

An algorithm for investigation of isolated proteinuria is presented in Figure 24–2. In idiopathic nephrotic syndrome without associated features of GN, treatment with corticosteroids may be initiated. Nephrologic advice or follow-up should be sought, especially in patients with difficult or frequently relapsing unexplained proteinuria.

CONGENITAL NEPHROSIS

Congenital nephrosis is a rare autosomal recessive disorder. The kidneys are pale and large and may show microcystic dilations (microcystic disease) of the proximal tubules and glomerular abnormalities, including proliferation, crescent formation, and thickening of capillary walls. The pathogenesis is not well understood.

Infants with congenital nephrosis commonly have low birth weight, a large placenta, wide cranial sutures, and delayed ossification. Mild edema may be seen after the first few weeks of life. Anasarca follows, and the abdomen can become greatly distended by ascites. Massive proteinuria associated with typical-appearing nephrotic syndrome and hyperlipidemia is the rule. Hematuria is common. If the patient lives long enough, progressive renal failure occurs. Most affected infants succumb to infections by a few months of life.

Treatment prior to dialysis and transplantation has little to offer other than nutritional support and management of the chronic renal failure.

IDIOPATHIC NEPHROTIC SYNDROME OF CHILDHOOD (MINIMAL CHANGE DISEASE)

Nephrotic syndrome is characterized by proteinuria, hypoproteinemia, edema, and hyperlipidemia. It may occur as a result of any form of glomerular disease and may rarely be associated with a several extrarenal conditions. In young children, the disease usually takes the form of idiopathic nephrotic syndrome of childhood (nil disease, lipoid nephrosis, minimal change disease), which has characteristic clinical and laboratory findings, but no well-understood cause.

Clinical Findings

Affected patients are generally younger than age 6 years at onset. Typically, periorbital swelling and oliguria are noted, often following an influenza-like syndrome. Within a few days, increasing edema—even anasarca—becomes evident. Most children have few complaints other than vague malaise or abdominal pain. With significant "third spacing" of plasma volume, however, some children may present with hypotension. With marked edema, dyspnea due to pleural effusions may also occur.

Despite heavy proteinuria, the urine sediment is usually normal, although microscopic hematuria may be present. Plasma albumin concentration is low, and lipid levels increased. When azotemia occurs, it is usually secondary to intravascular volume depletion.

Glomerular morphology is unremarkable except for fusion of foot processes of the glomerular basement membrane. This nonspecific finding is associated with many proteinuric states.

Complications

Infections (eg, peritonitis) sometimes occur, and Streptococcus pneumoniae is frequently the cause. Hypercoagulability may be present, and thromboembolic phenomena are commonly reported. Hypertension can be noted, and renal insufficiency can result from decreased renal perfusion.

Treatment & Prognosis

As soon as the diagnosis of idiopathic nephrotic syndrome is made, corticosteroid treatment should be started. Prednisone, 2 mg/kg/d (maximum, 60 mg/d), is given for 6 weeks as a single daily dose. The same dose is then administered on an alternate-day schedule for 6 weeks; thereafter, the dose is tapered gradually and discontinued over the ensuing 2 months. The goal of this regimen is the disappearance of proteinuria. If remission is not achieved during the initial phase of corticosteroid treatment, additional nephrologic consultation should be obtained. If remission is achieved,
only to be followed by relapse, the treatment course may be repeated. A renal biopsy is often considered when there is little or no response to treatment. One should take into account that the histologic findings may not alter the treatment plan, which is designed to eliminate the nephrotic syndrome regardless of underlying renal histology. Unless the edema causes symptoms such as respiratory compromise due to ascites, diuretics should be used with extreme care. Patients may have decreased circulating volume and are also at risk for venous thrombosis. Careful restoration of compromised circulating volume with intravenous 25% albumin infusion and administration of a diuretic such as furosemide is helpful in mobilizing edema. Infections such as peritonitis should be treated promptly to reduce morbidity. Immunization with pneumococcal conjugate and polysaccharide vaccines is advised.

A favorable response of proteinuria to corticosteroids and subsequent favorable response during relapse suggests a good prognosis. Failure to respond or early relapse usually heralds a prolonged series of relapses. This not only may indicate the presence of more serious nephropathy, but presents a challenge in choosing future therapy for those either severely corticosteroid “dependent” and/or in danger of increasing steroid side effects. Historically, chlorambucil or cyclophosphamide drug therapy added to corticosteroid treatment have been utilized in an attempt to achieve corticosteroid discontinuance while maintaining remission. Such drugs are often used effectively, but only in children who respond well to corticosteroids in the first place. Because of potential significant side effects associated with these drugs, tacrolimus or cyclosporine is now added instead for the treatment of steroid dependent cases. Increasing reports and experience suggest that cases in which nephrotic syndrome is poorly responsive to or “dependent” upon corticosteroids, even with an added agent such as tacrolimus, may respond to rituximab. Patients who do not respond to corticosteroids or who relapse frequently should be referred to a pediatric nephrologist, if such referral was not made earlier in the course.

**FOCAL GLOMERULAR SCLEROSIS**

Focal glomerular sclerosis is one cause of corticosteroid-resistant or frequent relapsing nephrotic syndrome. The cause is unknown. The diagnosis is made by renal biopsy, which shows normal-appearing glomeruli as well as some partially or completely sclerosed glomeruli. The lesion has serious prognostic implications because as many as 15%–20% of cases can progress to end-stage renal failure. The response to corticosteroid treatment is variable. In difficult cases, especially when prolonged use of steroids is resulting in significant undesirable side effects, other immunosuppressive agents such as cyclosporin A or tacrolimus have been used in addition to corticosteroids to try to achieve longer remission with corticosteroid discontinuance. Recurrence of focal glomerular sclerosis resulting in nephrotic syndrome may occur after renal transplantation. The recurrence is usually treated with plasmapheresis and/or rituximab; the latter agent is also showing encouraging utility in treating the nephrotic syndrome of membranous or mesangial nephropathy as well as refractory nephrotic syndrome associated with other forms of glomerular disease or vasculitis.

**MESANGIAL NEPHROPATHY (MESANGIAL GLOMERULONEPHRITIS)**

Mesangial nephropathy is another form of corticosteroid-resistant nephrotic syndrome. The renal biopsy shows a distinct increase in the mesangial matrix of the glomeruli. Very often the expanded mesangium contains deposits of IgM demonstrable on immunofluorescent staining. The cause is unknown. Corticosteroid therapy may induce remission, but relapses are common. Choices for treating this type of nephrotic syndrome are the same as noted earlier.

**MEMBRANOUS NEPHROPATHY (MEMBRANOUS GLOMERULONEPHRITIS)**

Although largely idiopathic in nature, membranous nephropathy can be found in association with hepatitis B antigenemia, SLE, congenital and secondary syphilis, renal vein thrombosis; with immunologic disorders such as autoimmune thyroiditis; and with administration of drugs such as penicillamine. The pathogenesis is unknown, but the glomerular lesion is thought to be the result of prolonged deposition of circulating antigen-antibody complexes.

The onset of membranous nephropathy may be insidious or may resemble that of idiopathic nephrotic syndrome of childhood (see earlier section). It occurs more often in older children and adults. The proteinuria of membranous nephropathy responds poorly to corticosteroid therapy, although low-dose corticosteroid therapy may reduce or delay development of chronic renal insufficiency. The diagnosis is made by renal biopsy.


**DISEASES OF THE RENAL VESSELS**

**RENA VEIN THROMBOSIS**

In newborns, renal vein thrombosis may complicate sepsis or dehydration. It may be observed in infants of diabetic mothers, may be associated with umbilical vein catheterization, or may result from any condition that produces a hypercoagulable state (eg, clotting factor deficiency, SLE,
or thrombocytosis). Renal vein thrombosis is less common in older children and adolescents. It may develop following trauma or without any apparent predisposing factors. Spontaneous renal vein thrombosis has been associated with membranous glomerulonephropyhp. Nephrotic syndrome may either cause or result from renal vein thrombosis.

#### Clinical Findings

Renal vein thrombosis in newborns is generally characterized by the sudden development of an abdominal mass. If the thrombosis is bilateral, oliguria may be present; urine output may be normal with a unilateral thrombus. In older children, flank pain, sometimes with a palpable mass, is a common presentation.

No single laboratory test is diagnostic of renal vein thrombosis. Hematoma usually is present; proteinuria is less constant. In the newborn, thrombocytopenia may be found, but it is rare in older children. The diagnosis is made by ultrasonography and Doppler flow studies.

#### Treatment

Anticoagulation with heparin is the treatment of choice in newborns and older children. In the newborn, a course of heparin combined with treatment of the underlying problem is usually all that is required. Management in other cases is less straightforward. The tendency for recurrence and embolization has led some to recommend long-term anticoagulation. If an underlying membranous GN is suspected, biopsy should be performed.

#### Course & Prognosis

The mortality rate in newborns from renal vein thrombosis depends on the underlying cause. With unilateral renal venous thromboses at any age, the prognosis for adequate renal function is good. Renal vein thrombosis may rarely recur in the same kidney or occur in the other kidney years after the original episode of thrombus formation. Extension into the vena cava with pulmonary emboli is possible.

#### RENAL ARTERIAL DISEASE

Arterial disease (eg, fibromuscular hyperplasia, congenital stenosis) is a rare cause of hypertension in children. Although few clinical clues are specific to underlying arterial lesions, they should be suspected in children with severe hypertension, with onset at or before age 10 years, or with delayed visualization on nuclear scan of the kidneys. The diagnosis is established by renal arteriography with selective renal vein renin measurements. Some of these lesions may be approached by transluminal angioplasty or surgery (see section Hypertension), but repair may be technically impossible in small children. Although thrombosis of renal arteries is rare, it should be considered in a patient with acute onset of hypertension and hematuria in an appropriate setting (eg, in association with hyperviscosity or umbilical artery catheterization). Early diagnosis and treatment provides the best chance of reestablishing renal blood flow.


#### HEMOLYTIC-UREMIC SYNDROME

Hemolytic-uremic syndrome is the most common glomerular vascular cause of acute renal failure in childhood. The diarrhea-associated form is usually the result of infection with Shiga toxin-producing (also called verotoxin-producing) strains of *Shigella* or *Escherichia coli*. Ingestion of under-cooked ground beef or unpasteurized foods is a common source. There are many serotypes, but the most common pathogen in the United States is *E coli* O157:H7. Bloody diarrhea is the usual presenting complaint, followed by hemolysis and renal failure. Circulating verotoxin causes endothelial damage, which leads to platelet deposition, microvascular occlusion with subsequent hemolysis, and thrombocytopenia. Similar microvascular endothelial activation may also be triggered by drugs (eg, cyclosporin A); by viruses (human immunodeficiency virus [HIV]); and by pneumococcal infections, in which bacterial neuraminidase exposes the Thomsen-Friedenreich antigen on RBCs, platelets, and endothelial cells, thereby causing platelet aggregation, endothelial damage, and hemolysis. Rare cases are caused by genetic factors (eg, congenitally depressed C3 complement and factor H deficiency).

#### Clinical Findings

Hemolytic-uremic syndrome due to *Shigella* or *E coli* begins with a prodrome of abdominal pain, diarrhea, and vomiting. Oliguria, pallor, and bleeding manifestations, principally gastrointestinal, occur next. Hypertension and seizures develop in some children—especially those who develop severe renal failure and fluid overload. There may also be significant endothelial involvement in the central nervous system (CNS).

Anemia is profound, and RBC fragments are seen on blood smears. A high reticulocyte count confirms the hemolytic nature of the anemia, but may not be noted in the presence of renal failure. Thrombocytopenia is profound, but other coagulation abnormalities are less consistent. Serum fibrin split products are often present, but fulminant disseminated intravascular coagulation is rare. Hematuria and proteinuria are often present. The serum complement level is normal except in those cases related to congenital predisposition.

#### Complications

These usually result from renal failure. Neurologic problems, particularly seizures, may result from hyponatremia, hypertension, or CNS vascular disease. Severe bleeding,
transfusion requirements, and hospital-acquired infections must be anticipated.

**Treatment**

Meticulous attention to fluid and electrolyte status is crucial. The use of antimotility agents and antibiotics for hemolytic-uremic syndrome caused by gastrointestinal infection is believed to worsen the disease. Antibiotics may upregulate and cause the release of large amounts of bacterial Shiga toxin. Timely dialysis improves the prognosis. Since prostacyclin-stimulating factor, a potent inhibitor of platelet aggregation, may be absent in some cases, plasma infusion or plasmapheresis has been advocated in severe cases (generally in those cases with severe CNS involvement). Platelet inhibitors have also been tried, but the results have not been impressive, especially late in the disease. Nonetheless, using a platelet inhibitor early in the disease in an attempt to halt platelet consumption and microvascular occlusion may obviate the need for platelet transfusions and reduce the progression of renal failure. RBC and platelet transfusions may be necessary. Although the risk of volume overload is significant, this can be minimized by dialysis. Erythropoietin (epoetin alfa) treatment may reduce RBC transfusion needs. Although no therapy is universally accepted, strict control of hypertension, adequate nutrition support, and the timely use of dialysis reduce morbidity and mortality. If renal failure is “nonoliguric,” and if urine output is sufficient to ensure against fluid overload and electrolyte abnormalities, management of renal failure without dialysis is possible.

**Course & Prognosis**

Most commonly, children recover from the acute episode within 2–3 weeks. Some residual renal disease (including hypertension) occurs in about 30%, and end-stage renal failure occurs in about 15%. Thus, follow-up of children recovering from hemolytic-uremic syndrome should include serial determinations of renal function for 1–2 years and monitoring of blood pressure for 5 years. Mortality (about 3%–5%) is most likely in the early phase, primarily resulting from CNS or cardiac complications.

---

**Table 24–2. Classification of renal failure.**

<table>
<thead>
<tr>
<th>Prerenal</th>
<th>Renal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration due to gastroenteritis, malnutrition, or diarrhea</td>
<td>Hemolytic-uremic syndrome</td>
</tr>
<tr>
<td>Hemorrhage, aortic or renal vessel injury, trauma, cardiac disease or surgery, renal arterial thrombosis</td>
<td>Acute glomerulonephritis</td>
</tr>
<tr>
<td>Diabetic acidosis</td>
<td>Prolonged renal hypoperfusion</td>
</tr>
<tr>
<td>Hypovolemia associated with capillary leak or nephrotic syndrome</td>
<td>Nephrotoxins</td>
</tr>
<tr>
<td>Shock</td>
<td>Acute tubular necrosis or vasomotor nephropathy</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Renal (cortical) necrosis</td>
</tr>
<tr>
<td>Intravascular coagulation: septic shock, hemorrhage</td>
<td>Diseases of renal vessels</td>
</tr>
<tr>
<td>Sepsis with shock</td>
<td>Iatrogenic (eg, drug toxicity)</td>
</tr>
<tr>
<td>Drowning, especially fresh water</td>
<td>Sepsis with shock</td>
</tr>
<tr>
<td>Crystaluria: sulfonamide or uric acid</td>
<td>Drowning, especially fresh water</td>
</tr>
<tr>
<td>Hypercalcemia from cancer treatment</td>
<td>Crystaluria: sulfonamide or uric acid</td>
</tr>
<tr>
<td>Hepatic failure</td>
<td>Hypercalcemia from cancer treatment</td>
</tr>
</tbody>
</table>

**Postrenal**

<table>
<thead>
<tr>
<th>Postrenal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstruction due to tumor, hematoma, posterior urethral valves, ureteropelvic junction stricture, ureterovesical junction stricture, ureterocele</td>
</tr>
<tr>
<td>Stones</td>
</tr>
<tr>
<td>Trauma to a solitary kidney or collecting system</td>
</tr>
<tr>
<td>Renal vein thrombosis</td>
</tr>
</tbody>
</table>

---

**Clinical Findings**

The hallmark of early acute renal failure is oliguria with subsequent variable rise in serum creatinine and BUN; these observations are more likely to be the initial concern in a hospitalized patient. Although an exact etiologic diagnosis may be unclear at the onset, classifying oliguria as outlined in Table 24–2 is helpful in determining if an immediately reversible cause is present.

Entities that should be quickly addressed and corrected, for example, volume depletion, urinary tract obstruction or hypotension should be considered first. Once normal renal perfusion and lack of urinary tract obstruction is ensured,
if there is no clinical evidence for de novo renal disease or exposure to nephrotoxic agents, a diagnosis of acute tubular necrosis (vasomotor nephropathy, ischemic injury) may be entertained.

A. Prerenal Causes

The most common cause of acute decreased renal function in children is compromised renal perfusion. It is usually secondary to dehydration, although abnormalities of renal vasculature and poor cardiac performance may also be considered. Table 24–3 lists the urinary indices helpful in distinguishing these “prerenal” conditions from true renal parenchymal insult, such as in acute tubular necrosis.

B. Renal Causes

Causes of renal failure intrinsic to the kidneys include acute glomerulonephritides, hemolytic-uremic syndrome, acute interstitial nephritis, and nephrotoxic injury. The diagnosis of acute tubular necrosis (vasomotor nephropathy)—which is reserved for those cases in which renal ischemic insult is believed to be the likely cause—should be considered when correction of pre-renal or postrenal problems does not improve renal function and there is no evidence of de novo renal disease.

C. Postrenal Causes

Postrenal failure, usually found in newborns with urologic anatomic abnormalities, is accompanied by varying degrees of renal insufficiency. One should always keep in mind the possibility of acute urinary tract obstruction in acute renal failure, especially in the setting of anuria of acute onset. Whatever the cause, ensuring urine drainage is the first step toward reversibility of oliguria.

Complications

The severity of the complications of acute renal failure depends on the degree of renal functional impairment and oliguria. Common complications include (1) fluid overload (hypertension, congestive heart failure, and pulmonary edema), (2) electrolyte disturbances (hyperkalemia), (3) metabolic acidosis, (4) hyperphosphatemia, and (5) elevations in BUN and creatinine.

Treatment

Prerenal and/or postrenal factors should be excluded or rectified. Normal circulating volume should be maintained and normal blood pressure and cardiac performance established with appropriate fluids. Strict measurement of input and output must be maintained, with input adjusted as reduction in output dictates. Placement of a Foley bladder catheter can aid in timely measurement of and adjustment to changes in output. However, in cases where oligo/anuric renal failure is well established (ie, insignificant urine volume), the foreign body should be removed to minimize bladder infection risk. Measurement of central venous pressure may be indicated. Administration of pressor drugs to correct hypotension may be needed. Increasing urine output with diuretics, such as furosemide (1–5 mg/kg, per dose, intravenously, maximum of 200 mg), can be attempted. The effective dose will depend on the amount of functional compromise (if < 50% function, initiate attempt at diuresis with maximum dose). If a response does not occur within 1 hour and the urine output remains low (< 0.5 mL/kg/h), the furosemide dose, if not already maximized, should be increased up to 5 mg/kg. In some cases, the addition of a long-acting thiazide diuretic, such as metolazone, may improve the response. If no diuresis occurs with maximum dosing, further administration of diuretics should cease.

If these maneuvers stimulate some urine flow but biochemical evidence of acute renal failure persists, the resulting nonoliguric acute renal failure should be more manageable. Fluid overload and dialysis may be averted. However, if the medications and nutrients required exceed the renal capacity for excretion, and there is no increase in urine output with the use of maximum doses of diuretics (loop diuretic plus a thiazide diuretic) dialysis is indicated. Institution of dialysis before more severe complications of acute renal failure develop is likely to improve clinical management and outcome. It is important to adjust medication dosage according to the degree of renal function.

A. Acute Dialysis: Indications

Immediate indications for dialysis are (1) severe hyperkalemia; (2) unrelenting metabolic acidosis (usually in a situation where fluid overload prevents sodium bicarbonate administration); (3) fluid overload with or without severe hypertension or congestive heart failure (a situation in which volume concerns would seriously compromise administration of adequate nutritional support or of necessary intravenous medications); and (4) symptoms of uremia, usually
manifested in children by CNS depression. In cases in which one is concerned about the so-called “uremic” bleeding, it is important to keep in mind that despite the use of the clinical term uremia, it is not the blood urea nitrogen which contributes to platelet dysfunction in renal failure. Accumulation of metabolic end products that contribute to bleeding correlate better with the amount of renal function as reflected by the serum creatinine. This is especially true in cases in which the BUN, which is potentially affected by many things in an ill patient, appears to be disproportionately elevated with respect to the serum creatinine.

B. Methods of Dialysis

Peritoneal dialysis is generally preferred in children because of ease of performance and patient tolerance. Although peritoneal dialysis is technically less efficient than hemodialysis, hemodynamic stability and metabolic control can be better sustained because this technique can be applied on a relatively continuous basis. Hemodialysis should be considered (1) if rapid removal of toxins is desired, (2) if the size of the patient makes hemodialysis less technically cumbersome and hemodynamically well tolerated, or (3) if impediments to efficient peritoneal dialysis are present (eg, ileus, adhesions). Furthermore, if vascular access and usage of anticoagulation are not impediments, a slow, continuous hemodialytic process, continuous renal replacement therapy (CRRT), may be applied, with either heparin or citrate used for anticoagulation. CRRT is also a very useful approach in patients already being supported with extracorporeal membrane oxygenation (ECMO).

C. Complications of Dialysis

Complications of peritoneal dialysis include peritonitis, volume depletion, and technical complications such as dialysate leakage and respiratory compromise from intra-abdominal dialysate fluid. Peritonitis can be avoided by strict aseptic technique. Peritoneal fluid cultures are obtained as clinically indicated. Leakage is reduced by good catheter placement technique and appropriate intra-abdominal dialysate volumes. Adjustment of the electrolyte concentration of dialysate is important to maintain electrolyte balance. Potassium (absent from standard dialysate solutions) can be added to the dialysate as required. Phosphate is also absent because hyperphosphatemia is an expected problem in renal failure. Nonetheless, if phosphate intake is inadequate, hypophosphatemia must be addressed. Correction of fluid overload is accomplished by using high osmolar dialysis fluids. Higher dextrose concentrations (maximum 4.25%) can correct fluid overload rapidly at the risk of causing hyperglycemia. Fluid removal may also be increased with more frequent exchanges of the dialysate, but rapid osmotic transfer of water may result in hypernatremia.

Even in small infants, hemodialysis can rapidly correct major metabolic and electrolyte disturbances as well as volume overload. The process is highly efficient, but the speed of the changes can cause problems such as hemodynamic instability. Anticoagulation with heparin is required. Careful monitoring of the appropriate biochemical parameters is important. Note that during or immediately following the procedure, blood sampling will produce misleading results because equilibration between extravascular compartments and the blood will not have been achieved. Vascular access must be obtained and carefully monitored. Hemodialysis is generally intermittent and utilized as clinically indicated. If need be, CRRT may be used to maintain more minute-to-minute, continuous metabolic and fluid control especially in the very hemodynamically unstable or septic patient. With this technique, either heparin or citrate may be used for anticoagulation, with the choice based upon which is more suitable for the situation.

Course & Prognosis

The course and prognosis of acute renal failure vary with the etiology. If severe oliguria occurs in acute tubular necrosis, it usually lasts about 10 days. Anuria or oliguria lasting longer than 3 weeks makes the diagnosis of acute tubular necrosis unlikely and favors alternative diagnoses such as vascular injury, severe ischemia (cortical necrosis), GN, or obstruction. The diuretic phase begins with an increase in urinary output to large volumes of isosthenuric urine containing sodium levels of 80–150 mEq/L. During the recovery phase, signs and symptoms subside rapidly, although polyuria may persist for several days or weeks. Urinary abnormalities usually disappear completely within a few months. If renal recovery does not ensue, arrangements are made for chronic dialysis and eventual renal transplantation.


CHRONIC RENAL FAILURE

Chronic renal failure in children most commonly results from developmental abnormalities of the kidneys or urinary tract. Infants with renal agenesis are not expected to survive. Depending on the degree of dysgenesis (including multicystic development), the resulting renal function will determine outcome. Abnormal development of the urinary tract may not permit normal renal development. Obstructive uropathy or severe VUR nephropathy, without (or despite) surgical intervention, continues to cause a significant amount of progressive renal insufficiency in children. In older children, the
Complications

Any remaining unaffected renal tissue can compensate for gradual loss of functioning nephrons in progressive chronic renal failure, but complications of renal insufficiency appear when compensatory ability is overwhelmed. In children who have developmentally reduced function and are unable to concentrate the urine, polyuria and dehydration are more likely to be problems than fluid overload. Output may be expected to gradually diminish as renal failure progresses to end stage; however, some children can continue to produce generous quantities of urine (but not of good quality) even though they require dialysis. A salt-wasting state can also occur. In contrast, children who develop chronic renal failure due to glomerular disease or renal injury will characteristically retain sodium and water and develop hypertension.

Metabolic acidosis and growth retardation occur early in chronic renal failure. Disturbances in calcium, phosphorus, and vitamin D metabolism leading to renal osteodystrophy and rickets require prompt attention. Increases in parathyroid hormone occur in response to decreased serum calcium from lack of renally activated vitamin D and/or rising serum phosphorus. The increase in parathyroid hormone, which improves renal tubular excretion of phosphorous, can maintain a normal serum calcium and serum phosphate level early in the course, but at the expense of the skeleton. The increase in parathyroid hormone will also be reflected in an increase in alkaline phosphatase. Anemia due to decreased erythropoietin production can occur relatively early on as well.

Symptoms such as anorexia, nausea, and malaise occur late in chronic renal failure (generally less than 30% renal function). These symptoms can be avoided if chronic renal failure has been detected early and associated complications treated, but may require initiation of renal replacement therapy. CNS abnormalities such as confusion and lethargy are very late symptoms, followed even later by stupor and coma. Other late complications of untreated renal failure are platelet dysfunction and bleeding tendencies. Pericarditis, congestive heart failure, pulmonary edema, and hypertension may occur.

Treatment

A. Management of Complications

Treatment of chronic renal failure is primarily aimed at controlling the associated complications. Hypertension, hyperkalemia, hyperphosphatemia, acidosis, and anemia are among the early problems. Acidosis may be treated with sodium citrate solutions, as long as the added sodium will not aggravate hypertension. Sodium restriction is advisable when hypertension is present. Hyperphosphatemia is controlled by dietary restriction and dietary phosphate binders (eg, calcium carbonate). Vitamin D should be given to maintain normal serum calcium. When the BUN level exceeds approximately 50 mg/dL, or if the child is lethargic or anorexic, dietary protein should be restricted. Potassium restriction will be necessary as the GFR falls to a level where urinary output decreases sharply. Diet must be maintained to provide the child’s daily requirements.

Renal function must be monitored regularly (creatinine and BUN), and serum electrolytes, calcium, phosphorus, alkaline phosphatase, and hemoglobin and hematocrit levels monitored to guide changes in fluid and dietary management as well as dosages of phosphate binder, citrate buffer, vitamin D, blood pressure medications, and epoetin alfa. Growth failure may be treated with human recombinant growth hormone. These treatments require careful monitoring to minimize symptoms while the need for chronic dialysis and transplantation continues to be assessed.

Care must be taken to avoid medications that aggravate hypertension; increase the body burden of sodium, potassium, or phosphate; or increase production of BUN. Successful management relies greatly on education of the patient and family.

Attention must also be directed toward the psychosocial needs of the patient and family as they adjust to chronic illness and the eventual need for dialysis and kidney transplantation.

B. Dialysis and Transplantation

Chronic peritoneal dialysis (home-based) and hemodialysis provide life-saving treatment for children prior to renal transplantation. The best measure of the success of chronic dialysis in children is the level of physical and psychosocial rehabilitation achieved, such as continued participation in day-to-day activities and school attendance. Although catch-up growth rarely occurs, patients can grow at an acceptable rate even though they may remain in the lower percentiles. Use of epoetin alfa, growth hormone, and better control of renal osteodystrophy contribute to improved outcome.

At present, the graft survival rate for living-related kidney transplants is 90% at 1 year, 85% at 2 years, and 75% at 5 years. With cadaveric transplantation, graft survivals are 76%, 71%, and 62%, respectively. Overall, the mortality rate is 4% for recipients of living-related donors and 6.8% for recipients of cadaver organs. These percentages are affected by the increased mortality, reported to be as high as 75%, in infants younger than age 1 year, primarily due to technical issues and complications of immunosuppression. A body weight of at least 15 kg is associated with a significantly improved survival rate. Adequate growth and well-being are directly related to acceptance of the graft, the degree of normal function, and the side effects of medications.
HYPERTENSION

Hypertension in children is commonly of renal origin. It is anticipated as a complication of known renal parenchymal disease, but it may be found on routine physical examination in an otherwise normal child. Increased understanding of the roles of water and salt retention and overactivity of the renin-angiotensin system has done much to guide therapy; nevertheless, not all forms of hypertension can be explained by these two mechanisms.

The causes of renal hypertension in the newborn period include (1) congenital anomalies of the kidneys or renal vasculature, (2) obstruction of the urinary tract, (3) thrombosis of renal vasculature or kidneys, and (4) volume overload. Some instances of apparent paradoxic elevations of blood pressure have been reported in clinical situations in which chronic diuretic therapy is used, such as in bronchopulmonary dysplasia. Hypertensive infants and older children should be examined for renal, vascular, or aortic abnormalities (eg, thrombosis, neurofibromatosis, coarctation) as well as some endocrine disorders, including pheochromocytoma, glucocorticoid-remedial aldosteronism, primary hyperaldosteronism, pseudohypaldosteronism (Liddle syndrome), and pseudohypaldosteronism (Gordon syndrome).

Clinical Findings

A child is normotensive if the average recorded systolic and diastolic blood pressures are lower than the 90th percentile for age and sex. The 90th percentile in the newborn period is approximately 85–90/55–65 mm Hg for both sexes. In the first year of life, the acceptable levels are 90–100/60–67 mm Hg. Incremental increases with growth occur, gradually approaching young adult ranges of 100–120/65–75 mm Hg in the late teens. Careful measurement of blood pressure requires correct cuff size and reliable equipment. The cuff should be wide enough to cover two-thirds of the upper arm and should encircle the arm completely without an overlap in the inflatable bladder. Although an anxious child may have an elevation in blood pressure, abnormal readings must not be too hastily attributed to this cause. Repeat measurement is helpful, especially after the child has been consoled.

Routine laboratory studies include serum BUN, creatinine and electrolytes, a complete blood count, urinalysis, and urine culture. Abnormal BUN and creatinine would support underlying renal disease as the cause and serum electrolytes demonstrating hypokalemic alkalosis may represent either hyperaldosteronism or pseudohypaldosteronism in which case urine sodium and chloride should be measured. Renal ultrasonography with Doppler flow is helpful in determining the possible presence of renal scarring, urinary tract obstruction or renovascular flow disturbances as a cause of hypertension. A renal biopsy (which rarely reveals the cause of hypertension unless clinical evidence of renal disease is present) should be undertaken with special care in the hypertensive patient and preferably after pressures have been controlled by therapy. Figure 24–3 presents a suggested approach to the outpatient workup of hypertension.

Treatment

A. Acute Hypertensive Emergencies

A hypertensive emergency exists when CNS signs of hypertension appear, such as papilledema or encephalopathy. Retinal hemorrhages or exudates also indicate a need for prompt and effective control. In children, end-organ abnormalities secondary to hypertension commonly are not present. Treatment varies with the clinical presentation. The primary classes of useful antihypertensive drugs are (1) diuretics, (2) α- and β-adrenergic blockers, (3) angiotensin-converting enzyme inhibitors, (4) calcium channel blockers, and (5) vasodilators.

Whatever method is used to control emergent hypertension, medications for sustained control should also be initiated so that normal blood pressure will be maintained when the emergent measures are discontinued (Table 24–4). Acute elevations of blood pressure not exceeding the 95th percentile for age may be treated with oral antihypertensives, aiming for progressive improvement and control within 48 hours.

1. Sublingual nifedipine—This calcium channel blocker is rapid acting, and, in appropriate doses, should not result in hypotensive blood pressure levels. The liquid from a 10-mg capsule can be drawn into a syringe and the dosage approximated. The exact dosage for children who weigh less than 10–30 kg is difficult to ascertain by this method, but 5 mg is a safe starting point. Because the treatment is given for rising blood pressure, it is unlikely that the effects will be greater than desired. Larger children with malignant hypertension require 10 mg. In such cases, the capsule may simply be pierced and the medication squeezed under the patient’s tongue. In children who are able to swallow capsules, and are large enough for a 10-mg dose, the child may bite the capsule, then swallow it for rapid onset of the drug. IV medication to achieve sustained control should be initiated as soon as possible.

2. Sodium nitroprusside—Sodium nitroprusside is considered one of the most rapidly effective IV medications to gain control of malignant hypertension but long-term usage is limited by fear of possible thiocyanate toxicity especially in...
renal failure. As with other vasodilators, it will result in reflex tachycardia requiring the addition of a β-blocker, and fluid retention requiring addition of a diuretic.

3. Furosemide—Administered at 1–5 mg/kg intravenously, this diuretic reduces blood volume and enhances the effectiveness of antihypertensive drugs.

4. Labetalol or Esmolol—IV forms of β-blockers can be very effective if there are no cardiac or respiratory contraindications to their use.

5. Intravenous hydralazine—This vasodilator is sometimes effective. Dosage varies according to the severity of the hypertension and should begin at about 0.15 mg/kg.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Oral Dose</th>
<th>Major Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nifedipine</td>
<td>0.25–0.5 mg/kg SL</td>
<td>Flushing, tachycardia</td>
</tr>
<tr>
<td>Labetalol</td>
<td>1–3 mg/kg/h IV</td>
<td>Secondary to β-blocking activity</td>
</tr>
<tr>
<td>Sodium nitroprusside</td>
<td>0.5–10 mg/kg/min IV drip</td>
<td>Cyanide toxicity, sodium and water retention</td>
</tr>
<tr>
<td>Furosemide</td>
<td>1–5 mg/kg IV</td>
<td>Secondary to severe volume contraction, hypokalemia</td>
</tr>
<tr>
<td>Esmolol hydrochloride</td>
<td>Load 500 mcg/kg/over 1 minute followed by continuous 50–200 mcg/kg, titrate</td>
<td>Secondary to β-blocking</td>
</tr>
<tr>
<td>Hydralazine</td>
<td>0.1–0.2 mg/kg IV</td>
<td>Sodium and water retention, tachycardia, flushing</td>
</tr>
</tbody>
</table>

*Many more side effects than those listed have been reported. IV, intravenous; SL, sublingual.

Table 24–5. Antihypertensive drugs for ambulatory treatment.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Oral Dose</th>
<th>Major Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochlorothiazide</td>
<td>2–4 mg/kg/24 h as single dose or in 2 divided doses</td>
<td>Potassium depletion, hyperuricemia</td>
</tr>
<tr>
<td>Furosemide</td>
<td>1–5 mg/kg per dose, 2–3 doses per day</td>
<td>Potassium and volume depletion</td>
</tr>
<tr>
<td>Hydralazine</td>
<td>0.75 mg/kg/24 h in 4–6 divided doses</td>
<td>Lupus erythematosus, tachycardia, headache</td>
</tr>
<tr>
<td>Amlodipine</td>
<td>0.2–0.5 mg/kg/d in 2 divided doses</td>
<td>Fatigue, headache, facial flushing</td>
</tr>
<tr>
<td>Propranolol</td>
<td>0.2–5 mg/kg per dose, 2–3 doses per day</td>
<td>Syncope, cardiac failure, hypoglycemia</td>
</tr>
<tr>
<td>Minoxidil</td>
<td>0.15 mg/kg per dose, 2–3 doses per day</td>
<td>Tachycardia, angina, fluid retention, hirsutism</td>
</tr>
<tr>
<td>Captopril</td>
<td>0.3–2 mg/kg per dose, 2–3 doses per day</td>
<td>Rash, hyperkalemia, glomerulopathy</td>
</tr>
<tr>
<td>Lisinopril</td>
<td>0.5–1 mg/kg/d in 2 divided doses</td>
<td>Hyperkalemia, cough</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>0.5–1 mg/kg/d, 3 doses per day</td>
<td>Flushing, tachycardia</td>
</tr>
</tbody>
</table>

*Many more side effects than those listed have been reported.

Will cause physiologic responses requiring addition of β-blocker and diuretic.

B. Sustained Hypertension

Several choices are available for treatment (Table 24–5). A single drug such as a β-blocker (unless contraindicated, eg, in reactive airway disease) may be adequate to treat mild hypertension. Diuretics are useful to treat renal insufficiency, but the disadvantages of possible electrolyte imbalance must be considered. Single-drug therapy with an angiotensin-converting enzyme inhibitor is useful, especially because most hypertension in children is renal in origin. Calcium channel blockers are increasingly useful, and appear well tolerated in children. The use of the vasodilator type of antihypertensive drug requires concomitant administration of a diuretic to counter the effect of vasodilation on increasing renal sodium and water retention and a β-blocker to counter reflex tachycardia. Minoxidil, considered the most powerful of the orally administered vasodilators, can be extremely efficacious in the treatment of severe, sustained hypertension, but its effect is greatly offset by these other effects. Hirsutism is also a significant side effect. Hydralazine hydrochloride may still be the most common vasodilator in pediatric use—but, again, the necessity of using two additional drugs for maximum benefit relegates use to severe situations calling for management with three or four drugs. The advice of a pediatric nephrologist should be sought.

INHERITED OR DEVELOPMENTAL DEFECTS OF THE KIDNEYS

There are many developmental, hereditary, or metabolic defects of the kidneys and collecting system. The clinical consequences include metabolic abnormalities, failure to thrive, nephrolithiasis, renal glomerular or tubular dysfunction, and chronic renal failure. Table 24–6 lists some of the major entities.

DISORDERS OF THE RENAL TUBULES

Three subtypes of renal tubular acidosis (RTA) are recognized: (1) the classic form, called type I or distal RTA; (2) the
bicarbonate-wasting form, called type II or proximal RTA; and (3) type IV, or hyperkalemic RTA (rare in children), which is associated with hyporeninemic hypoaldosteronism. Types I and II and their variants are encountered most frequently in children. Type III is a combination of types I and II.

Other primary tubular disorders in childhood, such as glycinuria, hypouricemia, or renal glycosuria, may result from a defect in a single tubular transport pathway (see Table 24–6).

### Table 24–6. Inherited or developmental defects of the urinary tract.

<table>
<thead>
<tr>
<th>Cystic diseases of genetic origin</th>
<th>Various storage diseases (eg, Gm0, monosialogangliosidosis, Hurler syndrome, Niemann-Pick disease, familial metachromatic leukodystrophy, glycogenosis type I [von Gierke disease], glycogenosis type II [Pompe disease])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycystic disease</td>
<td>Hereditary amyloidosis (familial Mediterranean fever, heredofamilial urticaria with deafness and neuropathy, primary familial amyloidosis with polyneuropathy)</td>
</tr>
<tr>
<td>Autosomal recessive form (infantile)</td>
<td></td>
</tr>
<tr>
<td>Autosomal dominant form (adult)</td>
<td></td>
</tr>
<tr>
<td>Other syndromes that include either form</td>
<td></td>
</tr>
<tr>
<td>Cortical cysts</td>
<td></td>
</tr>
<tr>
<td>Several syndromes are known to have various renal cystic manifestations, including “simple” cysts, may not have significant effect on renal functional status or be associated with progressive disease</td>
<td></td>
</tr>
<tr>
<td>Medullary cysts</td>
<td></td>
</tr>
<tr>
<td>Medullary sponge kidney</td>
<td></td>
</tr>
<tr>
<td>Medullary cystic disease (nephronophthisis)</td>
<td></td>
</tr>
<tr>
<td>Hereditary and familial cystic dysplasia</td>
<td></td>
</tr>
<tr>
<td>Congenital nephrosis</td>
<td>“Finnish” disease</td>
</tr>
</tbody>
</table>

Dysplastic renal diseases	
Renal aplasia (unilateral, bilateral)	
Renal hypoplasia (unilateral, bilateral, total, segmental)	
Multicystic renal dysplasia (unilateral, bilateral, multilocular, postobstructive)	
Familial and hereditary renal dysplasias	
Oligomeganehronia	

<table>
<thead>
<tr>
<th>Hereditary diseases associated with nephritis</th>
<th>Hereditary nephritis with deafness and ocular defects (Alport syndrome)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nail-patella syndrome</td>
</tr>
<tr>
<td></td>
<td>Familial hyperprolinemia</td>
</tr>
<tr>
<td></td>
<td>Hereditary nephrotic syndrome</td>
</tr>
<tr>
<td></td>
<td>Hereditary osteolysis with nephropathy</td>
</tr>
<tr>
<td></td>
<td>Hereditary nephritis with thoracic asphyxiant dystrophy syndrome</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hereditary diseases associated with intrenal deposition of metabolites</th>
<th>Angiokeratoma corporis diffusum (Fabry disease)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrophosphatania atactica polymeutritiformis (Refsum disease)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hereditary renal diseases associated with tubular transport defects</th>
<th>Hartnup disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fanconi anemia</td>
</tr>
<tr>
<td></td>
<td>Oculocerebrorenal syndrome of Lowe</td>
</tr>
<tr>
<td></td>
<td>Cystinosis (infantile, adolescent, adult types)</td>
</tr>
<tr>
<td></td>
<td>Wilson disease</td>
</tr>
<tr>
<td></td>
<td>Galactosemia</td>
</tr>
<tr>
<td></td>
<td>Hereditary fructose intolerance</td>
</tr>
<tr>
<td></td>
<td>Renal tubular acidosis (many types)</td>
</tr>
<tr>
<td></td>
<td>Hereditary tyrosinemia</td>
</tr>
<tr>
<td></td>
<td>Renal glycosuria</td>
</tr>
<tr>
<td></td>
<td>Vitamin D-resistant rickets</td>
</tr>
<tr>
<td></td>
<td>Pseudohyoparathyroidism</td>
</tr>
<tr>
<td></td>
<td>Vasopressin-resistant diabetes insipidus</td>
</tr>
<tr>
<td></td>
<td>Hypouricemia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hereditary diseases associated with lithiasis</th>
<th>Hyperoxaluria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l-Glyceric aciduria</td>
</tr>
<tr>
<td></td>
<td>Xanthinuria</td>
</tr>
<tr>
<td></td>
<td>Lesch-Nyhan syndrome and variants, gout</td>
</tr>
<tr>
<td></td>
<td>Nephropathy due to familial hyperparathyroidism</td>
</tr>
<tr>
<td></td>
<td>Cystinuria (types I, II, III)</td>
</tr>
<tr>
<td></td>
<td>Glycinuria</td>
</tr>
</tbody>
</table>

Miscellaneous	Hereditary intestinal vitamin B12 malabsorption
	Total and partial lipodystrophy
	Sickle cell anemia
	Bartter syndrome

### 1. Distal Renal Tubular Acidosis (Type I)

The most common form of distal RTA in childhood is the hereditary form. The clinical presentation is one of failure to thrive, anorexia, vomiting, and dehydration. Hyperchloremic metabolic acidosis, hypokalemia, and a urinary pH exceeding 6.5 are found. Acidosis is more severe in the presence of a bicarbonate “leak.” This variant of distal RTA with bicarbonate wasting has been called type III but for clinical purposes need not be considered as a distinct entity. Concomitant hypercalcuria may lead to rickets, nephrocalcinosis, nephrolithiasis, and renal failure.

Other situations that may be responsible for distal RTA are found in some of the entities listed in Table 24–6.

Distal RTA results from a defect in the distal nephron, in the tubular transport of hydrogen ion, or in the maintenance of a steep enough gradient for proper excretion of hydrogen ion. This defect can be accompanied by degrees of bicarbonate wasting.
The classic test for distal RTA is an acid load from NH₄Cl. The test is cumbersome and can produce severe acidosis. A clinical trial of alkali administration should be used to rule out proximal (type II) RTA. The dose of alkali required to achieve a normal plasma bicarbonate concentration in patients with distal RTA is low (seldom exceeding 2–3 mEq/kg/24 h)—in contrast to that required in proximal RTA (> 10 mEq/kg/24 h). Higher doses are needed, however, if distal RTA is accompanied by bicarbonate wasting. Correction of acidosis can result in reduced complications and improved growth.

Distal RTA is usually permanent, although it sometimes occurs as a secondary complication. If the defect is not caused by a significant tubular disorder and renal damage is prevented, the prognosis with treatment is good.

2. Proximal Renal Tubular Acidosis (Type II)

Proximal RTA, the most common form of RTA in childhood, is characterized by an alkaline urine pH, loss of bicarbonate in the urine, and mildly reduced serum bicarbonate concentration. This occurs as a result of a lower than normal bicarbonate threshold, above which bicarbonate appears in the urine. Thus, urinary acidification can occur when the concentration of serum bicarbonate drops below that threshold, and bicarbonate disappears from the urine; this ability to eventually acidify the urine thus reflects normal distal tubular function.

Proximal RTA is often an isolated defect, and in the newborn can be considered an aspect of renal immaturity. Onset in infants is accompanied by failure to thrive, hyperchloremic acidosis, hypokalemia, and, rarely, nephrocalcinosis. Secondary forms result from reflux or obstructive uropathy or occur in association with other tubular disorders (see Table 24–6). Proximal RTA requires more than 3 mEq/kg of alkali per day to correct the acidosis. Serum bicarbonate should be monitored weekly until a level of at least 20 mEq/L is attained.

Citrate solutions (eg, Bicitra, Polycitra) are somewhat more easily tolerated than sodium bicarbonate. Bicitra contains 1 mEq/mL of Na⁺ and citrate. Polycitra contains 2 mEq/mL of citrate and 1 mEq each of Na⁺ and K⁺. The required daily dosage is divided into three doses. Potassium supplementation may be required, because the added sodium load presented to the distal tubule may exaggerate potassium losses.

The prognosis is excellent in cases of isolated defects, especially when the problem is related to renal immaturity. Alkali therapy can usually be discontinued after several months to 2 years. Growth should be normal, and the gradual increase in the serum bicarbonate level to greater than 22 mEq/L heralds the presence of a raised bicarbonate threshold in the tubules. If the defect is part of a more complex tubular abnormality (Fanconi syndrome with attendant phosphaturia, glycosuria, and amino aciduria), the prognosis depends on the underlying disorder or syndrome.

Oculocerebrorenal Syndrome (Lowe Syndrome)

Lowe syndrome results from various mutations in the ORC1 gene, which codes for a Golgi apparatus phosphatase. Affected males have anomalies involving the eyes, brain, and kidneys. The physical stigmata and degree of mental retardation vary with the location of the mutation. In addition to congenital cataracts and buphthalmos, the typical facies includes prominent epicantal folds, frontal promience, and a tendency to scaphocephaly. Muscle hypotonia is a prominent finding. The renal abnormalities are of tubule function and include hypophosphatemic rickets with low serum phosphorus levels, low normal serum calcium levels, elevated serum alkaline phosphatase levels, RTA, and aminoaciduria. Treatment includes alkali therapy, phosphate replacement, and vitamin D. Antenatal diagnosis is possible.

Hypokalemic Alkalosis (Bartter Syndrome, Gitelman Syndrome, & Liddle Syndrome)

Bartter syndrome is characterized by severe hypokalemic, hypochloremic metabolic alkalosis, extremely high levels of circulating renin and aldosterone, and a paradoxical absence of hypertension. On renal biopsy, a striking juxtaglomerular hyperplasia is seen.

A neonatal form of Bartter syndrome is thought to result from mutations in two genes affecting either Na⁺–K⁺ or K⁺ transport. These patients have life-threatening episodes of fever and dehydration with hypercalcemia and early-onset nephrocalcinosis. Classic Bartter syndrome presenting in infancy with polyuria and growth retardation (but not nephrocalcinosis) is thought to result from mutations in a chloride channel gene. Gitelman syndrome occurs in older children and features episodes of muscle weakness, tetany, hypokalemia, and hypomagnesemia. These children have hypocaliuria. In Liddle syndrome, the presenting significant clinical abnormality may at first be hypertension, although hypokalemia may also be evident. Serum renin and aldosterone are low and serum sodium is elevated.

Treatment with prostaglandin inhibitors and potassium-conserving diuretics (eg, amiloride combined with magnesium supplements) and potassium and magnesium where indicated is beneficial in Bartter syndrome and Gitelman syndrome. Although the prognosis is guarded, a few patients seem to have less severe forms of the disease that are compatible with long survival times. Treatment in Liddle syndrome is with a low sodium diet and potassium sparing diuretics, excluding spironolactone, since it acts by regulation of aldosterone.
**NEPHROGENIC DIABETES INSIPIDUS**

The symptoms of nephrogenic diabetes insipidus are polyuria, polydipsia, and failure to thrive. In some children, particularly if the solute intake is unrestricted, adjustment to an elevated serum osmolality may develop. These children are particularly susceptible to episodes of dehydration, fever, vomiting, and convulsions.

The diagnosis can be suspected on the basis of a history of polydipsia and polyuria insensitive to the administration of vasopressin, desmopressin acetate, or lypressin. The diagnosis is confirmed by performing a vasopressin test. Carefully monitored water restriction does not increase the tubular reabsorption of water (TcH2O) to above 3 mL/min/m². Urine osmolality remains lower than 450 mOsm/kg, whereas serum osmolality rises and total body weight falls. Before weight reduction of more than 5% occurs or before serum osmolality exceeds 320 mOsm/kg, vasopressin should be administered.

In infants, it is usually best to allow water as demanded and to restrict salt. Serum sodium levels should be evaluated at intervals to avoid hyperosmolality from inadvertent water restriction. In later childhood, sodium intake should continue to be restricted to 2.0–2.5 mEq/kg/24 h.

Treatment with hydrochlorothiazide is helpful, and many patients show improvement with administration of prostaglandin inhibitors such as indomethacin or tolmetin.

---

**NEPHROLITHIASIS**

Renal calculi in children may result from inborn errors of metabolism, such as cystine in cystinuria, glycine in hyperglycinuria, urates in Lesch-Nyhan syndrome, and oxalates in oxalosis. Stones may occur secondary to hypercalciuria in distal tubular acidosis, and large stones are quite often seen in children with spina bifida who have paralyzed lower limbs or any situation where immobilization promotes calcium mobilization from bones. Treatment is limited to that of the primary condition, if possible. Most cases of nephrolithiasis have no basis in a metabolic disturbance, however, and are initially addressed with attention toward maintaining optimal hydration. Surgical removal of stones or lithotripsy should be considered only for obstruction, intractable severe pain, and chronic infection.

---

1. **Cystinuria**

Cystinuria, like Hartnup disease and several other disorders, is primarily an abnormality of amino acid transport across both the enteric and proximal renal tubular epithelium. There are at least three biochemical types. In the first type, the bowel transport of basic amino acids and cystine is...
impaired, but transport of cysteine is not impaired. In the renal tubule, basic amino acids are again rejected by the tubule, but cystine absorption appears to be normal. The reason for cystinuria remains obscure. Heterozygous individuals have no aminoaciduria. The second type is similar to the first except that heterozygous individuals excrete excess cystine and lysine in the urine, and cystine transport in the bowel is normal. In the third type, only the nephron is involved. The only clinical manifestations are related to stone formation: ureteral colic, dysuria, hematuria, proteinuria, and secondary UTI. Urinary excretion of cystine, lysine, arginine, and ornithine is increased.

The most reliable way to prevent stone formation is to maintain a constantly high free-water clearance. This involves generous fluid intake. Alkalization of the urine is helpful. If these measures do not prevent significant renal lithiasis, the use of tiopronin (Thiola) is recommended.


2. Primary Hyperoxaluria

Oxalate in humans is derived from the oxidative deamination of glycine to glyoxylate, from the serine-glycolate pathway, and from ascorbic acid. At least two enzymatic blocks have been described. Type I is a deficiency of liver-specific peroxisomal alanine–glyoxylate aminotransferase. Type II is glyoxylate reductase deficiency.

Excess oxalate combines with calcium to form insoluble deposits in the kidneys, lungs, and other tissues, beginning during childhood. The joints are occasionally involved, but the main effect is on the kidneys, where progressive oxalate deposition leads to fibrosis and eventual renal failure.

Pyridoxine supplementation and a low-oxalate diet have been tried as therapy, but the overall prognosis is poor, and most patients succumb to uremia by early adulthood. Renal transplantation is not very successful because of destruction of the transplant kidney. However, encouraging results have been obtained with concomitant liver transplantation, correcting the metabolic defect.

Hyperoxaluria may also be a consequence of severe ileal disease or ileal resection.

 │ URINARY TRACT INFECTIONS │
| It is estimated that 8% of girls and 2% of boys will acquire UTIs in childhood. Girls older than age 6 months have UTIs far more commonly than boys, whereas uncircumcised boys younger than 3 months of age have more UTIs than girls. Circumcision reduces the risk of UTI in boys. The density of distal urethral and periurethral bacterial colonization with uropathogenic bacteria correlates with the risk of UTI in children. Most UTIs are ascending infections. Specific adhesins present on the fimbria of uropathogenic bacteria allow colonization of the uroepithelium in the urethra and bladder and increase the likelihood of UTI. The organisms most commonly responsible for UTI are fecal flora, most commonly E. coli (> 85%), Klebsiella, Proteus, other gram-negative bacteria, and, less frequently, Enterococcus or coagulase-negative staphylococci. |

Pathogenesis

Dysfunctional voiding, which is uncoordinated relaxation of the urethral sphincter during voiding, leads to incomplete emptying of the bladder, increasing the risk of bacterial colonization. Similarly, any condition that interferes with complete emptying of the bladder, such as constipation, vesicoureteral reflux, urinary tract obstruction, or neurogenic bladder, increases the risk of UTI. Poor perineal hygiene, structural abnormalities of the urinary tract, catheterization, instrumentation of the urinary tract, and sexual activity increase the risk as well.

The inflammatory response to pyelonephritis may produce renal parenchymal scars. Such scars in infancy and childhood may contribute to hypertension, renal disease, and renal failure later in life.

Clinical Findings

A. Symptoms and Signs

Newborns and infants with UTI have nonspecific signs, including fever, hypothermia, jaundice, poor feeding, irritability, vomiting, failure to thrive, and sepsis. Strong, foul-smelling or cloudy urine may be noted. Preschool children may have abdominal or flank pain, vomiting, fever, urinary frequency, dysuria, urgency, or enuresis. School-aged children commonly have classic signs of cystitis (frequency, dysuria, and urgency) or pyelonephritis (fever, vomiting, and flank pain). Costovertebral tenderness is unusual in young children, but may be demonstrated by school-aged children. Physical examination should include attention to blood pressure determination, abdominal examination, and a genitourinary examination. Urethritis, poor perineal hygiene, herpes simplex virus, or other genitourinary infections may be apparent on examination.

B. Laboratory Findings

Screening urinalysis indicates pyuria (> 5 WBCs/high-power field) in most children with UTI, but some children can have sterile pyuria without UTI. White cells from the urethra or vagina may be present in urine or may be in the urine because of a renal inflammatory process. The leukocyte esterase test correlates well with pyuria, but has a similar false-positive rate. The detection of urinary nitrite by dipstick is highly correlated with enteric organisms being
cultured from urine. Most young children (70%) with UTI have negative nitrite tests, however. They empty their bladders frequently, and it requires several hours for bacteria to convert ingested nitrates to nitrite in the bladder.

The gold standard for diagnosis remains the culture of a properly collected urine specimen. Collection of urine for urinalysis and culture is difficult in children due to frequent contamination of the sample. In toilet-trained, cooperative, older children, a midstream, clean-catch method is satisfactory. Although cleaning of the perineum does not improve specimen quality, straddling of the toilet to separate the labia in girls, retraction of the foreskin in boys, and collecting midstream urine significantly reduce contamination. In infants and young children, bladder catheterization or suprapubic collection is necessary in most cases to avoid contaminated samples. Bagged urine specimens are helpful only if negative. Specimens that are not immediately cultured should be refrigerated and kept cold during transport. Any growth is considered significant from a suprapubic culture. Quantitative recovery of 10⁵ cfu/mL or more is considered significant from clean-catch specimens, and 10⁴–10⁵ is considered significant from catheterized specimens. Usually the recovery of multiple organisms indicates contamination.

Asymptomatic bacteriuria is detected in 0.5%–1.0% of children who are screened with urine culture. Asymptomatic bacteriuria, as seen commonly in children requiring chronic bladder catheterization, is believed to represent colonization of the urinary tract with nonuropathogenic bacteria. Treatment in such cases may increase the risk of symptomatic UTI by eliminating nonpathogenic colonization. Screening urine cultures in asymptomatic children are, therefore, generally discouraged.

C. Imaging

Because congenital urologic abnormalities increase the risk of UTI, a renal ultrasound, which is a noninvasive study, is recommended for children with UTI. In cases where hydronephrosis and/or frank evidence of urinary tract obstruction is demonstrated, a voiding cystourethrogram (VCUG) is performed to demonstrate vesicoureteral reflux or a renal scan can be done to confirm obstruction and demonstrate the amount of functioning renal tissue. VUR is a congenital abnormality present in about 1% of the population beyond infancy and is graded using the international scale (I—reflux into ureter; II—reflux to the kidneys; III—reflux to kidneys with dilation of ureter only; IV—reflux with dilation of ureter and mild blunting of renal calyces; V—reflux with dilation of ureter and blunting of renal calyces). Reflux is detected in 30%–50% of children presenting with a UTI at 1 year of age and younger. The natural history of reflux is to improve, and 80% of reflux of grades I, II, or III will resolve or significantly improve within 3 years following detection provided there is prophylaxis against infection.

VCUG should be done selectively on children with a first UTI; candidates for VCUG should include those in whom a urologic abnormality is suspected due to weak stream, dribbling, or perineal abnormalities. Boys with a first UTI may have posterior urethral valves, an important congenital abnormality that requires surgery. Children older than 3 years of age who are otherwise healthy and growing well usually can be followed clinically and do not need an immediate VCUG for a first UTI, but a renal ultrasound is recommended. The yield of VCUG in sexually active teenagers is very low.

Ultrasound examination of kidneys should be done acutely in children presenting with pyelonephritis and repeated in those who have not improved after 3–5 days of antimicrobial treatment appropriate for the susceptibility of the organism. The examination is done to detect renal or perirenal abscesses or obstruction of the kidneys.

Treatment

A. Antibiotic Therapy

Management of UTI is influenced by clinical assessment. Very young children (younger than 3 months) and children with dehydration, toxicity, or sepsis should be admitted to the hospital and treated with parenteral antimicrobials. Older infants and children who are not seriously ill can be treated as outpatients. Initial antimicrobial therapy is based on prior history of infection and antimicrobial use, as well as location of the infection in the urinary tract.

Uncomplicated cystitis can be treated with amoxicillin, trimethoprim–sulfamethoxazole, or a first-generation cephalosporin. These antimicrobials are concentrated in the lower urinary tract, and high cure rates are common. There are significant differences in the rates of antimicrobial resistance, so knowledge of the rates in the local community is important. More seriously ill children are initially treated parenterally with a third-generation cephalosporin or amikoglycoside. The initial antimicrobial choice is adjusted after culture and susceptibility results are known. The recommended duration of antimicrobial therapy for uncomplicated cystitis is 7–10 days. For sexually mature teenagers with cystitis, fluoroquinolones such as ciprofloxacin and levofloxacin for 3 days are effective and cost-effective. Short-course therapy of cystitis is not recommended in children, because differentiating upper and lower tract disease may be difficult and higher failure rates are reported in most studies of short-course therapy.

Acute pyelonephritis is usually treated for 10 days. In nontoxic children older than 3 months of age who are not vomiting, oral treatment with an agent such as cefixime can be used. In sicker children, parenteral therapy may be required initially. Most of these children can complete therapy orally once symptomatic improvement has occurred.
A repeat urine culture 24–48 hours after beginning therapy is not needed if the child is improving and doing well.

**B. Follow-Up**

Children with UTI should be followed with screening urinalysis 1 and 2 months after resolution of UTI. Dipstick nitrite determination can be used at home by parents on first morning voided urine in children with frequently recurring UTI.

**C. Prophylactic Antimicrobials**

Selected children with frequently recurring UTI may benefit from prophylactic antimicrobials. In children with high-grade VUR, prophylactic antimicrobials may be beneficial in reducing UTI, as an alternative to surgical correction, or in the interval prior to surgical therapy. Many experts recommend surgical correction of higher-grade reflux, particularly grade V. Trimethoprim-sulfamethoxazole and nitrofurantoin are approved for prophylaxis. The use of broader-spectrum antimicrobials leads to colonization and infection with resistant strains.

Children with dysfunctional voiding generally do not benefit from prophylactic antimicrobials; rather, addressing the underlying dysfunctional voiding is most important.


Neurologic & Muscular Disorders

Sita Kedia, MD
Kelly Knupp, MD
Teri Schreiner, MD MPH
Michele L. Yang, MD
Paul M. Levisohn, MD
Paul G. Moe, MD

HISTORY & EXAMINATION

1. History

Even in an era of increasingly sophisticated neurodiagnostic testing, the assessment of the child with a possible neurologic disorder begins with history, general physical exam as well as detailed neurologic examination. The standard pediatric history and physical examination are presented in Chapter 9. A careful history will allow the clinician to establish the nature and course of the illness. The progression of the illness, that is, acute, chronic, progressive or static, episodic or continuous, will help to determine the approach to the evaluation. When the developmental history is vague, other resources such as extended family members and baby books may provide clarification of prior development. Episodic events such as headaches or seizures warrant emphasis on precise details preceding and during these events. Often spells can be videotaped and this can provide important details that will assist in diagnosis.

2. Neurologic Examination

A general physical examination is an essential aspect of the assessment. Growth parameters and head circumference should be charted (see Chapter 3). A developmental assessment using an appropriate screening tool is part of every neurologic evaluation of the infant and young child and can be used to document a child’s developmental status. Chapter 3 delineates age-appropriate developmental landmarks (see Tables 3–1 and 3–2). Multiple instruments are available for screening infants and children. Among these The Ages & Stages Questionnaires®, Third Edition (ASQ-3), a parent-completed screening tool, is widely used when assessing infants and young children. The Modified Checklist for Autism in Toddlers (M-CHAT™) is a screening tool for assessing toddlers between 16 and 30 months of age for risk of autism spectrum disorders. The specifics of the neurologic examination are determined by the age of the child and the ability to cooperate in the examination. Expected newborn-infant reflexes and automations and other examination suggestions pertinent to that age group are included in Chapter 2. The hallmark of neurologic diagnosis is localization, defining where in the nervous system the “lesion” is. While not all childhood neurologic disorders are easily localized, the part of the nervous system involved, for example, central versus neuromuscular, can often be defined and will act as a guide for evaluation and diagnosis. Table 25–1 outlines components of the neurologic examination. Much of the examination of the frightened infant or toddler is by necessity observational. An organized approach to the examination is thus imperative. Playing games will engage a toddler or preschooler: throwing and catching a ball, stacking blocks, hopping, jogging, counting, and drawing (circles, lines) can reduce anxiety and allow assessment of fine and gross motor coordination, balance, and handedness. In the older child, “casual” conversation can reveal both language and cognitive competence as will drawing, writing, calculating, and spelling.

DIAGNOSTIC TESTING

1. Electroencephalography

Electroencephalography (EEG) is a noninvasive method for recording cerebral activity. The background patterns of the EEG vary by both age and clinical state of the subject, for example, infant, toddler, adolescent; awake, drowsy, or asleep. Intermittent activity often reflects disordered central nervous system (CNS) function. The EEG has its greatest clinical applicability in the evaluation of seizure disorders. An EEG may demonstrate “epileptiform activity,” that is,
patterns that indicate risk for seizures and epilepsy, though not necessarily diagnostic of such. At times, however, the findings on an EEG are diagnostic, as in the hypsarrhythmic pattern of infantile spasms (West syndrome) or generalized three-cycle-per-second spike-wave pattern of absence epilepsy. Synchronized video recording with EEG has increased the utility of the test in assessing episodic disorders. EEG can be very useful in the evaluation of altered mental status and in some encephalopathies.

The EEG itself, in isolation, is rarely diagnostic but is one part of the child’s clinical picture. Routine EEG, obtained in the outpatient setting, is usually brief (< 30 minutes). Therefore, events of interest are usually not recorded. If the child is unable to cooperate, it may be impossible to obtain a study or the study may be uninterpretable due to artifact from movement, crying, etc. Medications used for sedation of an uncooperative child, especially barbiturates and benzodiazepines, may produce artifact in the tracing, which can confuse interpretation and may decrease the likelihood of recording abnormalities such as epileptiform discharges. Children without a history of epilepsy may have an abnormal EEG. EEG findings such as those occasionally seen in migraine, learning disabilities, or behavior disorders are often nonspecific and do not reflect structural brain damage. When questions arise regarding the clinical significance of EEG findings, consultation with a pediatric neurologist is appropriate.

Due to more prolonged recording duration, ambulatory EEG obtained over 24–48 hours can be useful in assessing events to ascertain if they are due to epileptic seizures.

<table>
<thead>
<tr>
<th>Table 25–1. Neurologic examination: toddler age and up.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Category</strong></td>
</tr>
<tr>
<td>Mental status</td>
</tr>
<tr>
<td>Cranial nerves</td>
</tr>
<tr>
<td>Motor</td>
</tr>
<tr>
<td>Station</td>
</tr>
<tr>
<td>Gait</td>
</tr>
<tr>
<td>Coordination (truncal, limb)</td>
</tr>
<tr>
<td>Sensory</td>
</tr>
</tbody>
</table>
Likewise, recording the EEG during nocturnal polysomnographic studies can help differentiate between nonepileptic sleep-related events from nocturnal epileptic seizures arising from sleep.

Prolonged bedside EEG recordings are useful in the assessment of patients with altered mental status, suspected nonconvulsive status epilepticus, and drug-induced coma (for the treatment of increased intracranial pressure or status epilepticus), as well as infants with hypoxic ischemic encephalopathy. The EEG is less commonly used for determining so-called brain death (electrocerebral inactivity).

Continuous video-EEG monitoring, obtained as an inpatient, allows assessment of the patient with medically intractable epilepsy. The children are admitted to a specialized unit (epilepsy monitoring unit [EMU]) for up to a week or more. When children are admitted to the hospital, medications are often reduced or discontinued, increasing the likelihood of recording an event. Localization of the seizure focus by recording during seizures can lead to resective surgery for the patient who has failed medical therapy. Correlating video with EEG has also proven useful in characterizing spells that may or may not be seizures.

2. Evoked Potentials

Visual, auditory, or somatosensory evoked potentials (evoked responses) can be obtained by repetitive stimulation of the retina by light flashes, the cochlea by sounds, or a nerve by galvanic stimuli, which results in cortical response when recorded from the scalp surface using averaging techniques. The presence or absence of evoked potential waves and their latencies from the time of the stimuli are determined and can be useful in some specific situations although they are not routinely obtained for evaluation of neurologic disorders.

However, auditory evoked responses are now the standard for screening hearing in the neonate. Intraoperative somatosensory evoked potentials are often used during spine surgery to assist the surgeon during placement of instrumentation for identification of potentially reversible spinal cord injury. Similar techniques are used in other surgeries when there is risk of nerve injury such as craniofacial surgeries.

3. Lumbar Puncture

Assessing cerebral spinal fluid is a necessity in some clinical situations. Spinal fluid is usually obtained by inserting a small-gauge needle (eg, No. 22) through the L3–L4 intervertebral space into the thecal sac while the patient is lying in a lateral recumbent position. Radiographic guidance and sedation may be necessary in some patients. After an opening pressure is measured, fluid is removed to examine for evidence of infection, inflammation, or evidence of metabolic disorders (Table 25–2). Fluid is often sent for red and white cell counts, for determination of the concentrations of protein and glucose, for viral polymerase chain reaction (PCR), and for viral and bacterial cultures. In some cases, additional information is obtained with special staining techniques for mycobacteria and fungus and by testing for specific viral agents, antibody titer determinations, cytopathologic study, lactate and pyruvate concentrations, and amino acid and neurotransmitter analysis. Lumbar puncture is imperative when bacterial meningitis is suspected. Caution must be exercised, however, when signs of increased intracranial pressure (eg, papilledema) or focal neurologic signs are present that might indicate a substantial risk of precipitating tentorial or tonsillar herniation.

4. Genetic/Metabolic Testing

The diagnostic yield of genetic and metabolic evaluation of children with global developmental delay or intellectual disability (GDD/ID) depends on the specific testing done. Microarray testing is diagnostic in almost 8% of children with GDD/ID and in appropriate clinical situations; tests for metabolic disorders have a yield of up to 5%. Thus, focused assessments for genetic disorders should be part of the evaluation of the child with GDD/ID.

5. Electromyography & Nerve Conduction Velocity Testing

Electromyography (EMG) and nerve conduction velocity testing (NCV) are used for assessment of neuromuscular disorders such as spinal muscular atrophy, the Guillain-Barre syndrome, defects in neuromuscular transmission such as myasthenia gravis and infantile botulism, myopathies, acquired and hereditary neuropathies, and leukodystrophies, disorders associated with central as well as peripheral demyelination.

NCV is performed by introducing a small current into peripheral nerves using small discs overlying the nerves. The conduction velocity of the stimulus is calculated. EMG records spontaneous and volitional electrical activity of skeletal muscle tissue. It requires placement of tiny needles into selected muscles. While uncomfortable, the tests are not painful and sedation is only rarely necessary. For more details, refer to section “Disorders of Childhood Affecting Muscles” in the chapter.

PEDIATRIC NEURORADIOLOGIC PROCEDURES

1. Computed Tomography

CT scanning is a noninvasive technique, which allows visualization of intracranial contents by obtaining a series of cross-sectional (axial) roentgenograms. Serial images are obtained, which allow computation of x-ray absorption and computation of images which appear as serial slices. Current scanning techniques allow rapid acquisition of data, often without sedation. CT scanning is of high
### Table 25–2. Characteristics of cerebrospinal fluid in the normal child and in central nervous system infections and inflammatory conditions.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Initial Pressure (mm H₂O)</th>
<th>Appearance</th>
<th>Cells/μL</th>
<th>Protein (mg/dL)</th>
<th>Glucose (mg/dL)</th>
<th>Other Tests</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>&lt;160</td>
<td>Clear</td>
<td>0–5 lymphocytes; first 3 mo, 1–3 PMNs; neonates, up to 30 lymphocytes, rare RBCs</td>
<td>15–35 (lumbar), 5–15 (ventricular); up to 150 (lumbar) for short time after birth; to 6 mo up to 65</td>
<td>50–80 (two-thirds of blood glucose); may be increased after seizure</td>
<td>CSF-IgG index &lt; 0.7; LDH 2–27 U/L</td>
<td>CSF protein in first month may be up to 170 mg/dL in small-for-date or premature infants; no increase in WBCs due to seizure</td>
</tr>
<tr>
<td>Bloody tap</td>
<td>Normal or low</td>
<td>Bloody (sometimes with clot)</td>
<td>One additional WBC/700 RBCs; RBCs not crenated</td>
<td>Up to hundreds</td>
<td>Decreased; may be none</td>
<td>Smear and culture mandatory; LDH &gt; 24 U/L; lactate, IL-8, TNF elevated, correlate with prognosis</td>
<td>Spin down fluid, supernatant will be clear and colorless¹</td>
</tr>
<tr>
<td>Bacterial meningitis, acute</td>
<td>200–750+</td>
<td>Opalescent to purulent</td>
<td>Up to thousands, mostly PMNs; early, few cells</td>
<td>250–500, mostly lymphocytes; early, more PMNs</td>
<td>45–500; parallels cell count; increases over time</td>
<td>Decreased; may be none</td>
<td>Smear and culture may be negative if antibiotics have been in use</td>
</tr>
<tr>
<td>Bacterial meningitis, partially treated</td>
<td>Usually increased</td>
<td>Clear or opalescent</td>
<td>Usually increased; PMNs usually predominate</td>
<td>Elevated</td>
<td>Normal or decreased</td>
<td>LDH usually &gt; 24 U/L; PCR may still be positive</td>
<td>Smear and culture may be negative if antibiotics have been in use</td>
</tr>
<tr>
<td>Tuberculous meningitis</td>
<td>150–750+</td>
<td>Opalescent; fibrin web or pellicle</td>
<td>10–500; early, more PMNs; then mostly lymphocytes</td>
<td>Elevated and increasing</td>
<td>Decreased</td>
<td>Smear for acid-fast organism; CSF culture and inoculation; PCR</td>
<td>Consider AIDS, a common comorbidity of tuberculosis</td>
</tr>
<tr>
<td>Fungal meningitis</td>
<td>Increased</td>
<td>Variable; often clear</td>
<td>None to a few hundred, mostly lymphocytes; PMNs predominate early</td>
<td>20–125</td>
<td>Normal; may be low in mumps, herpes, or other viral infections</td>
<td>CSF, stool, blood, throat washings for viral cultures; LDH &lt; 28 U/L; PCR for HSV, CMV, EBV, enterovirus, etc</td>
<td>Acute and convalescent antibody titers for some viruses; in mumps, up to 1000 lymphocytes; serum amylase often elevated; up to 1000 cells present in enteroviral infection</td>
</tr>
<tr>
<td>Aseptic meningitis-encephalitis (viral meningitis, or parameningeal disease); encephalitis is similar</td>
<td>Normal or slightly increased</td>
<td>Clear unless cell count &gt; 300/μL</td>
<td>None to a few hundred, mostly lymphocytes; PMNs predominate early</td>
<td>20–125</td>
<td>Normal; may be low in mumps, herpes, or other viral infections</td>
<td>CSF, stool, blood, throat washings for viral cultures; LDH &lt; 28 U/L; PCR for HSV, CMV, EBV, enterovirus, etc</td>
<td>Acute and convalescent antibody titers for some viruses; in mumps, up to 1000 lymphocytes; serum amylase often elevated; up to 1000 cells present in enteroviral infection</td>
</tr>
</tbody>
</table>

(Continued)
Table 25–2. Characteristics of cerebrospinal fluid in the normal child and in central nervous system infections and inflammatory conditions. (continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Initial Pressure (mm H₂O)</th>
<th>Appearance</th>
<th>Cells/µL</th>
<th>Protein (mg/dL)</th>
<th>Glucose (mg/dL)</th>
<th>Other Tests</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parainfectious encephalomyelitis (ADEM)</td>
<td>80–450, usually increased</td>
<td>Usually clear</td>
<td>0-50+, mostly lymphocytes; lower numbers, even 0, in MS</td>
<td>15–75</td>
<td>Normal</td>
<td>CSF-IgG index, oligoclonal bands variable; in MS, moderate increase</td>
<td>No organisms; fulminant cases resemble bacterial meningitis</td>
</tr>
<tr>
<td>Polyneuritis</td>
<td>Normal and occasionally increased</td>
<td>Early: normal; late: xanthochromic if protein high</td>
<td>Normal; occasionally slight increase</td>
<td>Early: normal; late: 45–1500</td>
<td>Normal</td>
<td>CSF-IgG index may be increased; oligoclonal bands variable</td>
<td>Try to find cause (viral infections, toxins, lupus, diabetes, etc)</td>
</tr>
<tr>
<td>Meningeal carcinomatosis</td>
<td>Often elevated</td>
<td>Clear to opalescent</td>
<td>Cytologic identification of tumor cells</td>
<td>Often mildly to moderately elevated</td>
<td>Often depressed</td>
<td>Cytology</td>
<td>Seen with leukemia, medulloblastoma, meningeal melanosis, histiocytosis X</td>
</tr>
<tr>
<td>Brain abscess</td>
<td>Normal or increased</td>
<td>Usually clear</td>
<td>5–500 in 80%; mostly PMNs</td>
<td>Usually slightly increased</td>
<td>Normal; occasionally decreased</td>
<td>Imaging study of brain (MRI)</td>
<td>Cell count related to proximity to meninges; findings as in purulent meningitis if abscess ruptures</td>
</tr>
</tbody>
</table>

ADEM, acute disseminated encephalomyelitis; AIDS, acquired immunodeficiency syndrome; CMV, cytomegalovirus; CSF, cerebrospinal fluid; EBV, Epstein-Barr virus; HSV, herpes simplex virus; IL-8, interleukin 8; LDH, lactate dehydrogenase; MRI, magnetic resonance imaging; MS, multiple sclerosis; PCR, polymerase chain reaction; PMN, polymorphonuclear neutrophil; RBC, red blood cell; TNF, tumor necrosis factor; WBC, white blood cell.

*CSF-IgG index = (CSF IgG/serum IgG)/(CSF albumin/serum albumin).

*Many studies document pitfalls in using these ratios due to WBC lysis. Clinical judgment and repeat lumbar punctures may be necessary to rule out meningitis in this situation.

*CSF WBC (predicted) = CSF RBC \( \times \) (blood WBC/blood RBC). O:P ratio = (observed CSF WBC)/(predicted CSF WBC). Also, do WBC:RBC ratio. If O:P ratio ≤ 0.01, and WBC:RBC ratio ≤ 1:100, meningitis is absent.
sensitivity (88%–96% of lesions larger than 1–2 cm can be seen) but low specificity (tumor, infection, or infarct may look the same). It is particularly useful for assessment of head trauma, allowing excellent visualization of intracranial blood. It allows visualization of the ventricular system to assess hydrocephalus. It is useful in determining presence of intracranial calcifications such as those associated with intrauterine infections, with tubers in patients with tuberous sclerosis complex, etc. Intravenous injection of iodized contrast media may be helpful in some situations but is not routinely used. CT angiography (CTA) is possible using contrast and specialized techniques to visualize vascular anatomy and can replace catheter angiography in evaluation of stroke. Radiation exposure is approximately the same as that from a skull radiographic series and must be considered when obtaining a CT scan.

### 2. Magnetic Resonance Imaging

MRI is a noninvasive technique that provides high-resolution images of soft tissues. MRI uses the magnetic properties of certain nuclei to produce diagnostically useful signals (Table 25–3). The technique is based on detecting the response (resonance) of hydrogen proton to electromagnetic radiation. The strength of MRI signals varies with the relationship of water to protein and lipid in tissue. MRI can provide information about the histological, physiologic, and biochemical status of tissues as well as gross anatomic features. Sedation is often necessary for MRI scans in children who are unable to lie still for 45 minutes to avoid any movement artifact.

MRI is used to assess a wide variety of neurologic disorders such as tumors, edema, ischemic and hemorrhagic lesions, vascular disorders, inflammation, demyelination, CNS infection, metabolic disorders, and degenerative processes. Because bone does not produce artifact in the images, the posterior fossa contents can be studied far better with MRI than with CT scans allowing brainstem, blood vessels, and the cranial nerves imaging.

Magnetic resonance angiography (MRA) or venography (MRV) is used to visualize large extra- and intracranial blood vessels (arterial and venous) without injection of dye, though they are not as sensitive as conventional angiography. The lack of radiation exposure is an advantage over CTA (see previous section). Perfusion-weighted imaging and diffusion-weighted imaging (DWI) (measuring random motion of water molecules) are used to evaluate brain ischemic penumbra and cytotoxic edema in acute stroke as well as toxic and metabolic brain disorders.

MR spectroscopy (MRS) assesses biochemical changes in CNS tissue, measuring signals of increased cellular activity and oxidative metabolism. For example, MRS can be used to identify brain tumors.

Newer applications of MRI allow for functional assessment of the CNS. Functional MRI (fMRI) is used to localize various brain functions such as language and motor by assessing blood oxygenation changes in an area of interest during language or motor tasks. The axonal tracts of neurologic pathways such as the optic radiations, or motor system, can be identified using diffusion tensor imaging (DTI). These techniques generally require a team involving a neuropsychologist and radiologist to derive specific paradigms for testing and evaluation of imaging, as well as a cooperative patient.

### 3. Positron Emission Tomography

Positron emission tomography (PET) is a nuclear medicine imaging technique that utilizes radiolabeled substrates such as intravenously administered fluorodeoxyglucose to measure the metabolic rate at given sites within the brain, producing three-dimensional reconstructions for localization of CNS function. These scans may be coregistered with a traditional CT scan or MRI allowing more precise localization of functional processes. It is proving to be very useful in preoperative evaluation for epilepsy surgery. PET is most often performed in the interictal state. The information from PET scan complements EEG, single-photon emission computerized tomography (SPECT), and MRI findings to aid in defining the epileptogenic zone (“focus”). PET coregistered with CT scans or MRI scans is used for assessing systemic tumors and is becoming increasingly available for use in evaluation of the CNS.

### 4. Single-Photon Emission Computerized Tomography

An application of nuclear medicine imaging, SPECT scans image cerebral blood flow using a radioactive tracer (typically technetium-99m) to produce multiple cuts similar to those obtained in CT scans. This allows virtual three-dimensional visualization of vascular blood flow. It is useful in assessment of

---

**Table 25–3. Utility of MRI protocols.**

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Useful For</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Anatomy, myelination</td>
</tr>
<tr>
<td>T2</td>
<td>Pathologic changes; myelination</td>
</tr>
<tr>
<td>FLAIR</td>
<td>Pathologic changes</td>
</tr>
<tr>
<td>T1 with gadolinium</td>
<td>disruption of blood-brain barrier</td>
</tr>
<tr>
<td>Perfusion-weighted imaging</td>
<td>Cerebral blood flow/stroke</td>
</tr>
<tr>
<td>DWI</td>
<td>Acute ischemia (stroke)</td>
</tr>
<tr>
<td>ADC</td>
<td>Acute cerebral ischemia</td>
</tr>
</tbody>
</table>

ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery.
patients for epilepsy surgery, aiding in identification of increased blood flow in a seizure focus during a seizure. In children with brain tumors, SPECT can help in differentiating tumor recurrence from post-treatment changes, in assessing the response to treatment, in directing biopsy, and in planning therapy. Regional cerebral blood flow can be assessed in children with strokes due to vascular stenosis and moyamoya disease.

5. Ultrasonography

Ultrasonography (US) offers a pictorial display of the varying densities of tissues in a given anatomic region by recording the echoes of ultrasonic waves reflected from it. US allows assessment of brain structures quickly with easily portable equipment, without ionizing radiation, and at about one-fourth the cost of CT scanning. Sedation is usually not necessary, and the procedure can be repeated as often as needed without risk to the patient. Ultrasonography has been used for in-utero diagnosis of hydrocephalus and other anomalies. In neonates, the thin skull and the open anterior fontanel have facilitated imaging of the brain, and ultrasonography is used to screen and follow infants at risk for intracranial hemorrhage. Other uses in neonates include detection of hydrocephalus, periventricular ischemic lesions, major brain and spine malformations, and calcifications. US of the neonatal spine can be used to determine the presence of anomalies at the lumbosacral level. Once the fontanels start to close, this modality is no longer useful due to inability to penetrate bone.

6. Cerebral Angiography

Arteriography remains useful in the diagnosis of cerebrovascular disorders, particularly cerebrovascular accidents and potentially operable vascular malformations. In some brain tumors, arteriography may be used to define the nature of tumors and for surgical planning. Since cerebral angiography uses traditional x-ray to produce images, there is significant exposure to ionizing radiation.

7. Myelography

Radiographic examination of the spine may be indicated in cases of spinal cord tumors, myelitis, or various forms of spinal dysraphism and in the rare instance of herniated disks in children. MRI has largely replaced sonography, CT, and myelography for examination of the spinal cord.


Table 25–4. Gradation of coma.

<table>
<thead>
<tr>
<th></th>
<th>Deep Coma</th>
<th>Light Coma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 4</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Response to pain</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Tone/posture</td>
<td>Flaccid</td>
<td>Decerebrate</td>
</tr>
<tr>
<td>Tendon reflexes</td>
<td>0</td>
<td>+/−</td>
</tr>
<tr>
<td>Pupil response</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Response to verbal stimuli</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other corneal reflex</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Gag reflex</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

but does not respond to voice”). These descriptions help subsequent observers quantify unconsciousness and evaluate changes in the patient’s condition.

The neurologic substrate for consciousness is the ascending reticular activating system in the brainstem, which extends the thalamus and paraventricular nucleus of the hypothalamus. Large lesions of the cortex, especially bilateral lesions, can also cause coma.

- **Persistent vegetative state** denotes a chronic condition in which there is preservation of the sleep-wake cycle but no awareness of self or the environment and no recovery of mental function. Sleep-wake cycles are present.
- **Minimally conscious state** denotes patients that do not meet criteria for persistent vegetative state. These patients occasionally may have purposeful movements.
- **Brain death** refers to patients in coma without brainstem reflexes or spontaneous respiration.

Conditions mistaken for coma:

- **Locked-in syndrome** describes patients who are conscious but have no access to motor or verbal expression because of massive loss of motor function of the pontine portion of the brainstem. Vertical eye movements may be preserved.
- **Akinetic-mutism**: Patient is aware, but does not initiate movement or follow commands. Caused by lesions of the frontal lobes.
- **Catatonia** refers to patients with psychiatric illness. Patients retain ability to maintain trunk and limb postures.

### Treatment

#### A. Emergency Measures

The clinician must first stabilize the child using the ABCs of resuscitation. The airway must be kept open with positioning; endotracheal intubation is often considered. Breathing and adequate air exchange can be assessed by auscultation. Hand bag respiratory assistance with oxygen may be needed. Circulation must be ensured by assessing pulse and blood pressure. An intravenous line is always necessary. Fluids, plasma, blood, or even a dopamine drip (1–20 mcg/kg/min) may be required in cases of hypotension. Initial intravenous fluids should contain glucose until further assessment disproves hypoglycemia as a cause. An extremely hypothermic or febrile child may require vigorous warming or cooling to save life. The assessment of vital signs may signal the diagnosis. Slow, insufficient respirations suggest poisoning by hypnotic drugs; apnea may indicate diphenoxylate hydrochloride poisoning. Rapid, deep respirations suggest acidosis, possibly metabolic, as with diabetic coma; toxin exposure, such as that due to aspirin; or neurogenic causes, as in Reye syndrome. Hyperthermia may indicate infection or heat stroke; hypothermia may indicate cold exposure, ethanol poisoning, or hypoglycemia (especially in infancy).

The signs of impending brain herniation are another priority of the initial assessment. Bradycardia, high blood pressure, and irregular breathing are signs of severely increased intracranial pressure. Third nerve palsy (with the eye deviated down and out, and a “blown” pupil [unilateral pupillary dilation]) is a sign of impending temporal lobe or brainstem herniation. These signs suggest a need for hyperventilation to reduce cerebral edema, consideration of mannitol, prompt neurosurgical consultation, and head CT. If brainstem herniation or increased pressure is possible, intracranial monitoring may be necessary. Initial treatment of impending herniation includes keeping the patient’s head up (15–30 degrees) and providing moderate hyperventilation. The use of mannitol, diuretics, barbiturates, hypothermia, and drainage of cerebrospinal fluid (CSF) are more heroic measures covered in detail in Chapter 14.
Table 25–5. Some causes of coma in childhood.

<table>
<thead>
<tr>
<th>Mechanism of Coma</th>
<th>Likely Cause</th>
<th>Newborn Infant</th>
<th>Older Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoxia</td>
<td>Birth asphyxia, HIE</td>
<td>Carbon monoxide (CO) poisoning</td>
<td></td>
</tr>
<tr>
<td>Asphyxia</td>
<td>Meconium aspiration, infection (especially respiratory syncytial virus)</td>
<td>Croup, tracheitis, epiglottitis</td>
<td></td>
</tr>
<tr>
<td>Respiratory obstruction</td>
<td>Hydrops fetalis</td>
<td>Hemolysis, blood loss</td>
<td></td>
</tr>
<tr>
<td>Severe anemia</td>
<td>Birth asphyxia, HIE</td>
<td>Birth asphyxia, HIE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meconium aspiration, infection (especially respiratory syncytial virus)</td>
<td>Meconium aspiration, infection (especially respiratory syncytial virus)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrops fetalis</td>
<td>Hydrops fetalis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birth asphyxia, HIE</td>
<td>Birth asphyxia, HIE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meconium aspiration, infection (especially respiratory syncytial virus)</td>
<td>Meconium aspiration, infection (especially respiratory syncytial virus)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrops fetalis</td>
<td>Hydrops fetalis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birth asphyxia, HIE</td>
<td>Birth asphyxia, HIE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meconium aspiration, infection (especially respiratory syncytial virus)</td>
<td>Meconium aspiration, infection (especially respiratory syncytial virus)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrops fetalis</td>
<td>Hydrops fetalis</td>
<td></td>
</tr>
<tr>
<td>Ischemia</td>
<td>Shunting lesions, hypoplastic left heart</td>
<td>Shunting lesions, aortic stenosis, myocarditis, blood loss, infection</td>
<td></td>
</tr>
<tr>
<td>Cardiac Shock</td>
<td>Birth contusion, hemorrhage, nonaccidental trauma (NAT)</td>
<td>Falls, auto accidents, athletic injuries</td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>Birth contusion, hemorrhage, nonaccidental trauma (NAT)</td>
<td>Falls, auto accidents, athletic injuries</td>
<td></td>
</tr>
<tr>
<td>Vascular (CVA or stroke, often of unknown cause)</td>
<td>Intraventricular hemorrhage, sinus thrombosis</td>
<td>Arterial or venous occlusion with congenital heart disease, head or neck trauma</td>
<td></td>
</tr>
<tr>
<td>Neoplasm (structural cause)</td>
<td>Rare this age. Choroid plexus papilloma with severe hydrocephalus</td>
<td>Brainstem glioma, increased pressure with posterior fossa tumors</td>
<td></td>
</tr>
<tr>
<td>Drugs (toxidrome)</td>
<td>Maternal sedatives; injected pudendal and paracervical analgesics</td>
<td>Overdose, salicylates, lithium, sedatives, psychotropic agents</td>
<td></td>
</tr>
<tr>
<td>Epilepsy</td>
<td>Constant minor motor seizures; electrical seizure without motor manifestations</td>
<td>Nonconvulsive or, absence status, postictal state; drugs given to stop seizures</td>
<td></td>
</tr>
<tr>
<td>Toxins (toxidrome)</td>
<td>Maternal sedatives or injections</td>
<td>Arsenic, alcohol, CO, pesticides, mushroom, lead</td>
<td></td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>Birth injury, diabetic proven, toxemic proven</td>
<td>Diabetes, “prediabetes,” hypoglycemic agents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birth injury, diabetic proven, toxemic proven</td>
<td>Diabetes, “prediabetes,” hypoglycemic agents</td>
<td></td>
</tr>
<tr>
<td>Increased intracranial pressure (metabolic or structural cause)</td>
<td>Anoxic brain damage, hydrocephalus, metabolic disorders (urea cycle; amino-, organic acidurias)</td>
<td>Toxic encephalopathy, Reye syndrome, head trauma, tumor of posterior fossa</td>
<td></td>
</tr>
<tr>
<td>Hepatic causes</td>
<td>Hepatic failure, inborn metabolic errors in bilirubin conjugation</td>
<td>Hepatic failure</td>
<td></td>
</tr>
<tr>
<td>Renal causes, hypertensive encephalopathy</td>
<td>Hypoplastic kidneys</td>
<td>Nephritis, acute (AGN) and chronic; uremia, uremic syndrome</td>
<td></td>
</tr>
<tr>
<td>Hypothermia, hyperthermia</td>
<td>Iatrogenic (head cooling)</td>
<td>Cold weather exposure, drowning; heat stroke</td>
<td></td>
</tr>
<tr>
<td>Hypercapnia</td>
<td>Congenital lung anomalies, bronchopulmonary dysplasia</td>
<td>Cystic fibrosis (hypercapnia, anoxia)</td>
<td></td>
</tr>
<tr>
<td>Electrolyte changes</td>
<td>Iatrogenic (NaHCO₃, use), salt poisoning (formula errors)</td>
<td>Diarrhea, dehydration</td>
<td></td>
</tr>
<tr>
<td>Hyper- or hyponatremia</td>
<td>SIADH, adenogenital syndrome, dialysis (iatrogenic)</td>
<td>Lactic acidosis</td>
<td></td>
</tr>
<tr>
<td>Hyper- or hypoalbuminemia</td>
<td>Epilepsia, metabolic errors, adenogenital syndrome</td>
<td>Infection, diabetic coma, poisoning (eg, aspirin), hyperglycemic nonketotic coma</td>
<td></td>
</tr>
<tr>
<td>Severe acidosis, lactic acidosis</td>
<td>Disseminated intravascular coagulation (DIC)</td>
<td>DIC, leukemia, thrombotic thrombocytopenic purpura</td>
<td></td>
</tr>
<tr>
<td>Purpuric</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


A history obtained from parents, witnesses, or ambulance personnel is desirable. An important point is whether the child is known to have a chronic illness, such as diabetes, hemophilia, epilepsy, or cystic fibrosis. Recent acute illness raises the possibility of coma caused by viral or bacterial meningitis. Trauma is a common cause of coma. Lack of a history of trauma, especially in infants, does not rule it out. Abusive head trauma or an unwatched fall may have occurred. In coma of unknown cause, poisoning is always a possibility, especially in toddlers. Absence of a history of ingestion of a
toxic substance or of medication in the home does not rule out poisoning as a cause.

Often the history is obtained concurrently with a brief pediatric and neurologic screening examination. After the assessment of vital signs, the general examination proceeds with a trauma assessment. Palpation of the head and fontanel, inspection of the ears for infection or hemorrhage, and a careful examination for neck stiffness are indicated. If circumstances suggest head or neck trauma, the head and neck must be immobilized so that any fracture or dislocation will not be aggravated. The skin must be inspected for perichiae or purpura that might suggest bacteremia, infection, bleeding disorder, or traumatic bruising. Examination of the chest, abdomen, and limbs is important to exclude enclosed hemorrhage or traumatic fractures.

Neurologic examination quantifies the stimulus response and depth of coma, such as responsiveness to verbal or painful stimuli. Are the eye movements spontaneous, or is it necessary to do the doll’s eye maneuver (rotating the head rapidly to see whether the eyes follow in a patient without neck trauma)? Motor and sensory examinations assess reflex asymmetries, Babinski sign, and evidence of spontaneous posturing or posturing induced by noxious stimuli (eg, decorticate or decerebrate posturing).

If the cause of the coma is not obvious, emergency laboratory tests must be obtained. Table 25–5 lists some of the causes of coma in children. Most comas (90%) in children have a medical (vs structural) cause. Infection is a common cause (30%). An immediate blood glucose, complete blood count, urine obtained by catheterization if necessary, pH and electrolytes (including bicarbonate), serum urea nitrogen, and aspartate aminotransferase and ammonia are initial screens. Urine, blood, and even gastric contents must be saved for toxin screen if the underlying cause is not obvious. Blood culture and lumbar puncture often are necessary to rule out CNS infection. However, papilledema is a relative contraindication to lumbar puncture. Often, a blood culture is obtained, antibiotics started, and imaging study of the brain done prior to a diagnostic lumbar puncture. If meningitis is suspected and a lumbar puncture is delayed or believed to be hazardous, antibiotics should be started and the diagnostic lumbar puncture done later. Tests that are helpful in obscure cases of coma include oxygen and carbon dioxide partial pressures, serum and urine osmolality, porphyrins, lead levels, general toxicology screen, serum amino acids, and urine organic acids. Hashimoto encephalopathy is a controversial, yet potentially treatable consideration. A formal metabolic consultation is also useful in this setting.

If head trauma or increased pressure is suspected, an emergency CT scan or MRI is necessary. CT is usually helpful as an initial screening examination, but MRI is more sensitive in finding anoxic brain injury early in the course. Bone windows on the former study or skull radiographs can be done at the same sitting. The absence of skull fracture does not rule out coma caused by closed head trauma. Injury that results from shaking a child is one example. Treatment of head injury associated with coma is discussed in detail in Chapter 12.

Rarely, an emergency EEG aids in diagnosing the cause of coma. Nonconvulsive status epilepticus or a focal finding as seen with herpes encephalitis (periodic lateralized epileptiform discharges) and focal slowing as seen with stroke or cerebritis are cases in which the EEG might be helpful. The EEG also may correlate with the stage of coma and add prognostic information. An EEG should be ordered if seizures are suspected. If obvious motor seizures have occurred, treatment for status epilepticus is given with intravenous drugs (see later section on Seizure Disorders).

B. General Measures

Vital signs must be monitored and maintained. The patient’s response to vocal or painful stimuli and orientation to time, place, and situation are monitored. Posture and movements of the limbs, either spontaneously or in response to pain, are serially noted. Pupillary size, equality, and reaction to light, and movement of the eyes to the doll’s eye maneuver or ice water caloric tests should be recorded (in patients without spine injury). Intravenous fluids can be tailored to the situation, as for treatment of acidosis, shock, or hypovolemia. Nasogastric suction is initially important. The bladder should be catheterized for monitoring urine output and for urinalysis.

Prognosis

About 50% of children with nontraumatic causes of coma have a good outcome. In studies of adults assessed on admission or within the first days after the onset of coma, an analysis of multiple variables was most helpful in assessing prognosis. Abnormal neuro-ophthalmologic signs (eg, the absence of pupillary reaction or of eye movement in response to the doll’s eye maneuver or ice water caloric testing and the absence of corneal responses) were unfavorable. Delay in the return of motor responses, tone, or eye opening was also unfavorable. In children, the assessment done on admission is about as predictive as one done in the succeeding days. Approximately two-thirds of outcomes can be successfully predicted at an early stage on the basis of coma severity, extracranial movements, pupillary reactions, motor patterns, blood pressure, temperature, and seizure type. In patients with severe head trauma, a Glasgow Coma Scale ≤ 5, hypothermia, hyperglycemia, and coagulation disorders are factors associated with an increased risk of mortality. Other characteristics, such as the need for assisted respiration, the presence of increased intracranial pressure, and the duration of coma, are not significantly predictive. Published reports suggest that an anoxic (in contrast to traumatic, metabolic, or toxic) coma, such as that caused by near drowning, has a much poorer outlook.
A seizure is a sudden, transient disturbance of brain function, manifested by involuntary motor, sensory, autonomic, or psychic phenomena, alone or in any combination, often accompanied by alteration or loss of consciousness. Seizures can be caused by any factor that disturbs brain function. They may occur after a metabolic, traumatic, anoxic, or infectious insult to the brain (classified as symptomatic seizures), or spontaneously without prior known CNS insult. Genetic mutations are increasingly identified in many patients without prior known cause of seizures.

Repeated seizures without an evident acute symptomatic cause or provocation (eg, fever) are defined as epilepsy. The incidence is highest in the newborn period and higher in childhood than in later life, with another peak in the elderly. Prevalence flattens out after age 10–15 years. The chance of having a second seizure after an initial unprovoked episode in a child is about 50%. The risk of recurrence after a second unprovoked seizure is 85%. Sixty-five to seventy percent of children with epilepsy will achieve seizure remission with appropriate medication.

### Classification

The International League Against Epilepsy (ILAE) has established classifications of seizures and epilepsy syndromes. These were revised in 2010. Seizures are classified as either focal, previously called partial (with suspected seizure onset that can be localized to one part of the brain), or generalized (likely involving the whole brain or a network of the brain).

There are several types of generalized seizures that are recognized with the new classification: generalized tonic-clonic, absence (typical, atypical and with special features), myoclonic, myoclonic atonic, tonic, clonic, and atonic seizures. Focal seizures are no longer classified as simple and complex; this prior classification was based on loss of awareness which can be difficult to assess with some seizures, particularly if language areas are involved. With the new nomenclature, description of the seizure is most beneficial with suggested terms such as “without impairment of consciousness,” “with motor involvement,” or “hypomotor” seizure. This will allow better description and thus better classification of seizures.

Epilepsy syndromes are defined by the nature of the seizures typically present, age of onset, EEG findings, and other clinical factors. The prior terminology of idiopathic, symptomatic, and cryptogenic is no longer in use with the new ILAE classification system. The recommended terms are now “genetic,” to indicate a known or presumed genetic etiology. “Structural/metabolic” to indicate a known structural or metabolic etiology to an epilepsy syndrome; an example would be tuberous sclerosis or underlying stroke; and lastly “unknown” for those patients for whom a cause has not yet been identified.

### 1. Seizures & Epilepsy in Childhood

Characterizing the seizure is necessary for accurate diagnosis, which will determine the nature of further evaluation and treatment and help in prognostication (Tables 25–6 and 25–7).

### Clinical Findings

#### A. History, Symptoms, and Signs

Seizures are stereotyped paroxysmal clinical events; the key to diagnosis is usually in the history. Not all paroxysmal events are epileptic. A detailed description of seizure onset is important in determining if an event is a seizure and if there is localized onset (partial or focal seizure). Events prior to, during, and after the seizure need to be described, although observers often recall little except generalized convulsive activity because of its dramatic appearance. An aura may...
Table 25–6. Seizures by age at onset, pattern, and preferred treatment.

<table>
<thead>
<tr>
<th>Seizure Type</th>
<th>Age at Onset</th>
<th>Clinical Manifestations</th>
<th>Causative Factors</th>
<th>EEG Pattern</th>
<th>Other Diagnostic Studies</th>
<th>Treatment and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal seizures</td>
<td>Birth–2 wk</td>
<td>Can be any seizure type, can be very subtle.</td>
<td>Neurologic insults (hypoxia/ischemia; intracranial hemorrhage) present more in first 3 d or after 8th day; metabolic disturbances alone between 3rd and 8th days; hypoglycemia, hypocalcemia, hyper- and hyponatremia. Drug withdrawal. Pyridoxine dependency. Other metabolic disorders. CNS infections. Structural abnormalities. Genetic causes increasing recognized.</td>
<td>May correlate poorly with clinical seizures. Focal spikes or slow rhythms, multifocal discharges. Electroclinical dissociation may occur: electrical seizure without clinical manifestations.</td>
<td>Lumbar puncture; CSF PCR for herpes, enterovirus; serum Ca2+, PO43−, serum and CSF glucose, Mg2+, BUN, amino acid screen, blood ammonia, organic acid screen, TORCHS, other metabolic testing if suspected. Ultrasound or CT/MRI for suspected intracranial hemorrhage and structural abnormalities.</td>
<td>Benzodiazepines, phenobarbital, IV or IM; if seizures not controlled, add phenytoin IV. Recent experience with levetiracetam and topiramate. Treat underlying disorder. Seizures due to brain damage often resistant to anticonvulsants. When cause in doubt, stop protein feedings until enzyme deficiencies of urea cycle or amino acid metabolism ruled out.</td>
</tr>
<tr>
<td>Epileptic spasms</td>
<td>3–18 mo, usually about 6 mo</td>
<td>Abrupt, usually but not always symmetrical adduction or flexion of limbs with flexion of head and trunk; or abduction and extensor movements (similar to Moro reflex). Occur in clusters typically upon awakening. Associated irritability and regression in development.</td>
<td>Etiology identified in approximately two-thirds fitting structural/metabolic or genetic. Tuberous sclerosis in 5%–10%. TORCHS, homeobox gene mutations, ARX, and other genetic mutations.</td>
<td>Hypsarrhythmia (chaotic high-voltage slow waves or random spikes [90%]); other abnormalities in 10%. Rarely normal at onset. EEG normalization early in course usually correlates with reduction of seizures; not helpful prognostically regarding mental development.</td>
<td>Funduscopic and skin examination, amino and organic acid screen. Chromosomes TORCHS screen, CT, or MRI scan should be done to (1) establish definite diagnosis, (2) aid in genetic counseling. Trial of pyridoxine. Occasionally, surgical resection of cortical malformation. Consider gene panels.</td>
<td>ACTH. Vigabatrin, especially if tuberous sclerosis. B6 (pyridoxine) trial. In resistant cases, topiramate, zonisamide, valproic acid, lamotrigine, ketogenic diet. Early treatment leads to improved outcome.</td>
</tr>
<tr>
<td>Febrile convulsions</td>
<td>3 mo–5 y (maximum 6–18 mo); most common childhood seizure (incidence 2%)</td>
<td>Usually generalized seizures, &lt; 15 min; rarely focal in onset. May lead to status epilepticus. Recurrence risk of second febrile seizure 30% (50% if younger than 1 y of age); recurrence risk is same after status epilepticus.</td>
<td>Nonneurologic febrile illness (temperature rises to 39°C or higher). Risk factors: positive family history, day care, slow development, prolonged neonatal hospitalization.</td>
<td>Normal interictal EEG, especially when obtained 8–10 d after seizure. Therefore, not useful unless complicating features.</td>
<td>Lumbar puncture in infants or whenever suspicion of meningitis exists.</td>
<td>Treat underlying illness, fever. Diazepam orally, 0.3–0.5 mg/kg, divided 3 times daily during illness may be considered. Diastat rectally for prolonged (&gt;5 min) seizure. Prophylaxis with phenobarbital or valproic acid rarely needed.</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Seizure Type Epilepsy Syndrome</th>
<th>Age at Onset</th>
<th>Clinical Manifestations</th>
<th>Causative Factors</th>
<th>EEG Pattern</th>
<th>Other Diagnostic Studies</th>
<th>Treatment and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lennox-Gastaut syndrome</td>
<td>Any time in childhood (usually 2-7 y)</td>
<td>Mixed seizures including tonic, myoclonic (shocklike violent contractions of one or more muscle groups, singly or irregularly repetitive); rare atonic (&quot;drop attacks&quot;) and atypical absence with episodes of absence status epilepticus.</td>
<td>Multiple causes, usually resulting in diffuse neuronal damage. History of infantile spasms; prenatal or perinatal brain damage; viral meningoencephalitis; CNS degenerative disorders; structural cerebral abnormalities (eg, migrational abnormalities).</td>
<td>Atypical slow (1-2.5 Hz) spike-wave complexes and bursts of high-voltage generalized spikes, often with diffusely slow background frequencies. Electrodecremental and fast spikes during sleep.</td>
<td>As dictated by index of suspicion: genetic testing; inherited metabolic disorders, neuronal ceroid lipofuscinosis, others. MRI scan, WBC lysosomal enzymes. Skin or conjunctival biopsy for electron microscopy, nerve conduction studies if degenerative disease suspected.</td>
<td>Difficult to treat. Topiramate, ethosuximide, felbamate, levetiracetam, zonisamide, valproate, clonazepam, rufinamide, clobazam (approval pending) ketogenic diet, vagus nerve stimulation. Avoid phenytoin, carbamazepine, oxcarbazepine, gabapentin.</td>
</tr>
<tr>
<td>Doose Syndrome</td>
<td>Any time in childhood (usually 2-7 y)</td>
<td>Mixed seizures, including with tonic, myoclonic atonic, atypical absence, tonic seizures and generalized tonic-clonic seizures.</td>
<td>Rarely is etiology found, likely genetic, &lt; 5% with SCN1A, large percentage with family history of febrile seizures.</td>
<td>Generalized spike wave discharges, central theta slowing.</td>
<td>Genetic testing.</td>
<td>Can be difficult to treat, consider topiramate, felbamate, levetiracetam, zonisamide, valproate, rufinamide, ketogenic diet, VNS, avoid phenytoin, carbamazepine, oxcarbazepine, and gabapentin.</td>
</tr>
<tr>
<td>Dravet Syndrome</td>
<td>First to second year of life</td>
<td>Initially prolonged febrile seizure that may be hemiconvulsions, after 1 year of age with multiple seizure types typically sensitive to change in temperature</td>
<td>85% with SCN1a, others with SCN1B, GABA receptor mutations.</td>
<td>Multifocal epileptiform discharges, generalized epileptiform discharges, mild slowing.</td>
<td>Genetic testing also associated with abnormal gait in adolescent requiring supportive therapy.</td>
<td>Can be difficult to treat, consider topiramate, zonisamide, valproic acid, levetiracetam, ketogenic diet, clobazam, stiripentol. Avoid Na channel blockers such as phenytoin, carbamazepine, oxcarbazepine.</td>
</tr>
<tr>
<td>Childhood absence epilepsy</td>
<td>3-12 y</td>
<td>Lapses of consciousness or vacant stares, lasting about 3-10 s, often in clusters. Automatisms of face and hands; clonic activity in 30%-45%. Often confused with complex partial seizures but no aura or postictal confusion. Some risk for developing generalized tonic clonic seizures.</td>
<td>Unknown. Genetic component. Abnormal thalamocortical circuitry.</td>
<td>3/s bilaterally synchronous, symmetrical, high-voltage spikes and waves provoked by hyperventilation. EEG always abnormal. EEG normalization correlates closely with control of seizures.</td>
<td>Hyperventilation often provokes attacks. Imaging studies rarely of value.</td>
<td>Ethosuximide most effective and best tolerated; valproic acid. Lamotrigine, in resistant cases, zonisamide, topiramate, levetiracetam, acetazolamide, ketogenic diet.</td>
</tr>
<tr>
<td>Juvenile absence epilepsy</td>
<td>10-15 y</td>
<td>Absence seizures less frequent than in childhood absence epilepsy. May have greater risk of convulsive seizures.</td>
<td>Unknown (idiopathic), possibly genetic.</td>
<td>3-Hz spike wave and atypical generalized discharges.</td>
<td>Not always triggered by hyperventilation.</td>
<td>Same as childhood absence epilepsy but may be more difficult to treat successfully.</td>
</tr>
<tr>
<td>Seizure Type</td>
<td>Age</td>
<td>Description</td>
<td>Diagnosis and Evaluation</td>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>------------</td>
<td>-----------------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focal seizures</td>
<td>Any age</td>
<td>Seizure may involve any part of body; may spread in fixed pattern.</td>
<td>Often unknown; birth trauma, inflammatory process, vascular accidents, meningoencephalitis, malformations of cortical development (dysplasia), etc. If seizures are coupled with new or progressive neurologic deficits, a structural lesion (eg, brain tumor) is likely. If epilepsy partialis continua (simple partial status epilepticus), Rasmussen syndrome is likely.</td>
<td>Oxcarbazepine, carbamazepine, lamotrigine, gabapentin, topiramate, levetiracetam, zonisamide, lacosamide, and phenytoin. Valproic acid useful adjunct. If medications fail, surgery may be an option.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benign epilepsy of childhood with centrotemporal spikes (BECTS/rolandic epilepsy)</td>
<td>5–16 y</td>
<td>Simple partial seizures of face, tongue, hand. With or without secondary generalization. Usually nocturnal. Similar seizure patterns may be observed in patients with focal cortical lesions. Almost always remits by puberty.</td>
<td>Seizure history or abnormal EEG findings in relatives of 40% of affected probands and 18%-20% of parents and siblings, suggesting transmission by a single autosomal dominant gene, possibly with age-dependent penetrance.</td>
<td>Often no medication is necessary, especially if seizure is exclusively nocturnal and infrequent. Oxcarbazepine, carbamazepine or others. (See complex partial seizures.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juvenile myoclonic epilepsy (of Janz)</td>
<td>Late childhood and adolescence, peaking at 13 y</td>
<td>Mild myoclonic jerks of neck and shoulder flexor muscles after awakening. Usually generalized tonic-clonic seizures as well. Often absence seizures. Intelligence usually normal. Rarely resolves but usually remits on medications.</td>
<td>Interictal EEG shows variety of spike-and-wave sequences or 4–6-Hz multispike-and-wave complexes (“fast spikes”).</td>
<td>Lamotrigine, valproic acid, topiramate, levetiracetam, zonisamide.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalized tonic-clonic seizures (grand mal) (GTCS)</td>
<td>Any age</td>
<td>Loss of consciousness; tonic-clonic movements, often preceded by vague aura or cry. Incontinence in 15%. Postictal confusion and somnolence. Often mixed with or masking other seizure patterns.</td>
<td>Bilaterally synchronous, symmetrical multiple high-voltage spikes, spikes waves (eg, 3/s). EEG often normal in those younger than age 4 y. Focal spikes may become “secondarily generalized.”</td>
<td>Imaging; metabolic and infectious evaluation may be appropriate.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACTH, adrenocorticotropic hormone; BUN, blood urea nitrogen; CNS, central nervous system; CSF, cerebrospinal fluid; CT, computed tomography; EEG, electroencephalogram; IM, intramuscularly; IV, intravenously; MRI, magnetic resonance imaging; PCR, polymerase chain reaction; PET, positron emission tomography; SPECT, single-photon emission tomography; TORCHS, toxoplasmosis, other infections, rubella, cytomegalovirus, herpes simplex, and syphilis; WBC, white blood cell.
Families may not immediately recall the details of the event but asking specific questions can help provide the details needed to determine the seizure type and, if partial, the site of onset. Did the patient become extremely pale before falling? Was the patient able to respond to queries during the episode? Was the patient unconscious or was there just impaired awareness? Did the patient fall stiffly or gradually slump to the floor? Was there an injury? How long did the tonic stiffening or clonic jerking last? Where in the body did the clonic activity take place? Which direction were head and eyes turned? Postictal states can be helpful in diagnosis. After complex partial and generalized convulsive seizures, postictal sleep typically occurs, but postictal changes are not seen after generalized absence seizures. Was there loss of speech after the seizure (suggesting left temporal lobe seizure) or was the patient able to respond and speak in short order? The parent may report lateralized motor activity (eg, the child’s eyes may deviate to one side or the child may experience dystonic posturing of a limb). Motor activity without impaired awareness supports the diagnosis of focal seizures as do impaired awareness and automatisms previously defined as a complex partial seizure.

In contrast, generalized seizures usually manifest with acute loss of consciousness, usually with generalized motor activity. Tonic posturing, tonic-clonic activity, or myoclonus (spasms) may occur. In children with generalized absence seizures, behavioral arrest may be associated with automatisms such as blinking, chewing, or hand movements, making it difficult to differentiate between absence seizures and partial seizures.

Description of the semiology of the event may help determine if the child experienced an epileptic seizure or a nonepileptic event mimicking or misinterpreted as an epileptic seizure. Frequently, the child presenting with a presumed first seizure has experienced unrecognized seizures before the event that brings the child to medical attention. In particular, partial and absence seizures may not be recognized except in retrospect.

Thus, careful questioning regarding prior events is important in the child being evaluated for new onset of seizures.

### B. Diagnostic Evaluation

The extent and urgency of the diagnostic evaluation is determined, in general, by the child’s age, the severity and type of seizure, whether the child is ill or injured, and the clinician’s suspicion about the underlying cause. Seizures in early infancy are often symptomatic. Therefore, the younger the child, the more extensive must be the diagnostic assessment.

It is generally accepted that every child with new onset of unprovoked seizures should be evaluated with an EEG and MRI, although this need not be done emergently. An EEG is very unlikely to yield clinically useful information in the child with a febrile seizure. Other diagnostic studies should be used selectively.

Metabolic abnormalities are seldom found in the well child with seizures. Unless there is a high clinical suspicion of...
serious medical conditions (eg, uremia, hyponatremia, hypocalcemia, etc), “routine” laboratory tests rarely yield clinically significant information. Special studies may be necessary in circumstances that suggest an acute systemic etiology for a seizure, for example, in the presence of apparent renal failure, sepsis, or substance abuse. Emergent imaging of the brain is usually not necessary in the absence evidence of trauma or of acute abnormalities on examination.

C. Electroencephalography

Appropriate use of EEG requires awareness of its limitations as well as its utility. The limitations of EEG even with epilepsy, for which it is most useful, are considerable. A routine EEG captures electrical activity during a very short period of time, usually 20–30 minutes. Thus, it is useful primarily for defining interictal activity (except for the fortuitous recording of a clinical seizure or in situations when seizures are easily provoked such as childhood absence epilepsy). A seizure is a clinical phenomenon; an EEG showing epileptiform activity may confirm and clarify the clinical diagnosis (for instance, defining an epilepsy syndrome), but it is only occasionally diagnostic.

1. Diagnostic value—The greatest value of the EEG in convulsive disorders is to help characterize seizure types and epilepsy syndromes. This can aid in prognostication and in selecting appropriate therapy (see Table 25–6). It is sometimes difficult to distinguish between hypomotor seizures due to generalized absence epilepsy vs localization-related epilepsy. The differing EEG patterns of these seizures will then prove most helpful. The presence of a mixed seizure EEG pattern in a child with clinically generalized convulsive seizures or only focal seizures may lead to identification of specific epilepsy syndromes and help the clinician select anticonvulsants effective for the seizure types identified by the EEG. Similarly, the EEG may help in diagnosing seizures in a young infant with minimal or atypical clinical manifestations; it may show hypsarrhythmia (high-amplitude spikes and slow waves with a chaotic background) in infantile spasms or the 1–4/s slow spike-wave pattern of the Lennox-Gastaut syndrome. The EEG may show focal slowing that, if constant, particularly when there are corresponding focal seizure manifestations and abnormal neurologic findings, will alert the physician to the presence of a structural lesion. In this case, brain imaging may establish the cause and help determine further investigation and treatment.

The EEG need not be abnormal in a child with epilepsy. Normal EEGs are seen following a first generalized seizure in one-third of children younger than age 4 years. The initial EEG is normal in about 20% of older children with epilepsy and in about 10% of adults with epilepsy. These percentages are reduced when serial tracings are obtained especially if sleep-deprived. Focal spikes and generalized spike-wave discharges are seen in 30% of close nonepileptic relatives of patients with epilepsy.

2. Prognostic value—EEG following febrile seizures is almost always normal and is not clearly predictive of subsequent seizures and therefore is not useful in these situations. Hypsarrhythmia or slow spike and wave patterns support the diagnosis of infantile spasms and Lennox-Gastaut syndrome, respectively. Both are expressions of diffuse brain dysfunction (epileptic encephalopathy) and are generally of grave significance. Central-temporal (rolandic spikes) and occipital spike-wave activity (occipital paroxysms) are the EEG correlates of idiopathic focal epilepsies of childhood.

Following successful treatment, an abnormal EEG may become normal and may aid in the decision to discontinue medications but is not always present. Normalization can also be seen in infants with infantile spasms who have been successfully treated and, less commonly, in children with other epileptic encephalopathies.

EEG should be repeated when the severity and frequency of seizures increase despite adequate anticonvulsant therapy, when the clinical seizure pattern changes significantly, or when progressive neurologic deficits develop. Emergence of new focal or diffuse slowing may indicate a progressive lesion or a neurodegenerative disorder.

The EEG may be helpful in determining when to discontinue anticonvulsant therapy. The presence or absence of epileptiform activity on the EEG prior to withdrawal of anticonvulsants after a seizure-free period of 2 years on medications has been shown to correlate with the degree of risk of seizure recurrence. However, persistent focal epileptiform discharges are common in children with so-called benign epilepsy until they resolve spontaneously in adolescence and may not be considered a reason to not reduce anticonvulsants.

Differential Diagnosis

It is extremely important to be accurate in the diagnosis of epilepsy and not to make the diagnosis without ample proof. To the layperson, epilepsy often has connotations of brain damage and limitation of activity. A person so diagnosed may be excluded from certain occupations in later life. It is often very difficult to change an inaccurate diagnosis of many years’ standing.

Misinterpretation of behaviors in children is the most common reason for misdiagnosis. Psychogenic nonepileptic seizures are much less common in children than in adults but must be considered even in the young or cognitively impaired child. The most commonly misinterpreted behaviors are inattention in school-aged children with attention disorders, stereotypies in children with autistic spectrum disorder, sleep-related movements, habit movements such as head-banging and so-called infantile masturbation (sometimes referred to as gratification movements), and gastroesophageal reflux in very young (often impaired) infants. Some of the common nonepileptic events that mimic seizure disorder are listed in Table 25–8.
### Table 25-8. Nonepileptic paroxysmal events.

<table>
<thead>
<tr>
<th><strong>Breath-holding attacks (cyanotic and pallid) (see below)</strong></th>
<th><strong>Gastroesophageal reflux (Sandifer syndrome)</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanotic: Age 6 mo–3 y. Always precipitated by trauma and fright. Cyanosis; sometimes stiffening, tonic (or jerking-tonic) convulsion (anoxic seizure). Patient may sleep following attack. Family history positive in 30%. Electroencephalogram (EEG) is not useful. No medication treatment is useful but interpretation and reassurance are very important. Pallid: Usually, there is no apparent precipitant although fright may precipitate. Pallor may be followed by seizure (anoxic-ischemic). Varically mediated (heart-slowing), like adult syncope. EEG is not useful.</td>
<td>Seen more commonly in children with cerebral palsy or brain damage; reflux of acid gastric contents may cause pain that cannot be described by child. Unusual posturing (dystonic or other) of head and neck or trunk may occur, an apparent attempt to stretch the esophagus or close the opening. There is no loss of consciousness, but eye rolling, apnea, and occasional vomiting may simulate a seizure. An upper gastrointestinal series, cine of swallowing, sometimes even an EEG (normal during episode) may be necessary to distinguish from seizures.</td>
</tr>
<tr>
<td>Ages 3–10 y. Usually occur in first sleep cycle (30–90 min after going to sleep), with crying, screaming, and autonomic discharge (pupils dilated, perspiring, etc.). May last only a few minutes or be more prolonged. Child goes back to sleep and has no recall of event next day. Sleep studies (polysomnogram and EEG) are normal. Sleep talking and walking and short “sit-ups” in bed are fragmentary arousals. If a spell is recorded, EEG shows arousal from deep sleep, but behavior seems wakeful. Child needs to be protected from injury and gradually settled down and taken back to bed. Medications may be considered in rare instances.</td>
<td>Up to 50% of patients with nonepileptic seizures also have epilepsy. Episodes may involve writhing, pelvic thrusting, tonic movements, bizarre jerking and thrashing, or even apparently sudden unresponsiveness. Often, there is ongoing psychological trauma. Children may be developmentally delayed. Spells must often be seen or recorded with a videorecorder to distinguish from epilepsy but are sometimes so bizarre they are easily differentiated. A normal EEG during a spell is a key diagnostic feature. Sometimes, psychogenic seizures can be precipitated by suggestion with injection of normal saline in a controlled situation but this is generally felt to be ethically inappropriate since it involves lying to the patient regarding the reason for the procedure. Combative ness is common; self-injury and incontinence, rare.</td>
</tr>
<tr>
<td><strong>Parasomnias (night terrors, sleep talking, walking, “sit-ups”)</strong></td>
<td><strong>Conversion reaction/psychogenic nonepileptic seizures</strong></td>
</tr>
<tr>
<td>Simple or complex stereotyped jerks or movements, coughs, grunts, sniffs. Worse at repose or with stress. May be suppressed during physician visit. Family history often positive for tics or for obsessive compulsive disorder. Diagnosis is clinical. Magnetic resonance imaging (MRI) and EEG are negative. Medications may benefit.</td>
<td>Rarely in infants, repetitive rocking or rubbing motions may simulate seizures. Infant may look out of contact, be poorly responsive to environment, and have autonomic expressions (eg, perspiration, dilated pupils) that may be confused with seizures. Observation by a skilled individual, sometimes even in a hospital setting, may be necessary to distinguish from seizures. EEG is normal between and during attacks. Interpretation and reassurance are the only necessary treatment.</td>
</tr>
<tr>
<td><strong>Nightmares</strong></td>
<td><strong>Temper tantrums and rage attacks</strong></td>
</tr>
<tr>
<td>Nightmares or vivid dreams occur in subsequent cycles of sleep, often in early morning hours, and generally are partially recalled the next day. The bizarre and frightening behavior may sometimes be confused with complex partial seizures but occurs during REM (rapid eye movement) sleep, whereas epilepsy usually does not. In extreme or difficult cases, an all-night sleep EEG may help differentiate seizures from nightmares. Frontal lobe epilepsy with sleep related “hypermotor” seizures should be considered.</td>
<td>Child often reports amnesia for events during spell. Attacks are usually precipitated by frustration or anger, often directed either verbally or physically, and subside with behavior modification and isolation. EEGs are generally normal but seldom obtained during an attack. It should be noted that directed violence is very uncommon following partial seizures but severe agitation can occur.</td>
</tr>
<tr>
<td><strong>Migraine</strong></td>
<td><strong>Benign paroxysmal vertigo</strong></td>
</tr>
<tr>
<td>On occasion, migraine can be associated with an acute confusional state. Usual migraine prodrome of spots before the eyes, dizziness, visual field defects, followed by headache and then agitation confusion is present. History of other, more typical migraine with severe headache and vomiting without confusion may aid in diagnosis. Severe headache with vomiting as child comes out of spell may aid in distinguishing the attack from epilepsy. However, partial seizures, while brief, may be associated with more prolonged postictal agitation and confusion. Other seizure manifestations are practically never seen (eg, tonic-clonic movements, falling, complete loss of consciousness). EEG in migraine is usually normal and seldom has epileptiform abnormalities often seen in patients with epilepsy. Migraine and epilepsy are sometimes linked: Benign occipital epilepsy may present with migraine-like visual aura and headache. There may be migraine-caused cortical ischemia which leads to later headache. Postictal headache can be confused with migraine.</td>
<td>Brief attacks of vertigo in which child often appears frightened and pale and clutches parent. Attacks last 5–30 s. Sometimes, nystagmus is identified. There is no loss of consciousness. Usually, child is well and returns to play immediately afterward. Attacks may occur in clusters, and then disappear for months. Attacks are usually seen in infants and preschoolers aged 2–5 y. EEG is normal. If caloric tests can be obtained (often very difficult in this age group), abnormalities with hypofunction of one side are sometimes seen. Medications are usually not desirable or necessary.</td>
</tr>
<tr>
<td><strong>Benign nocturnal myoclonus</strong></td>
<td><strong>Staring spells</strong></td>
</tr>
<tr>
<td>Common in infants and may last even up to school age. Focal or generalized jerks (the latter also called hynic or sleep jerks) may persist from onset of sleep on and off all night. A video record for physician review can aid in diagnosis. EEG taken during jerks is normal, proving that these jerks are not epilepsy. Treatment is reassurance.</td>
<td>Teachers often make referral for absence or “petit mal” seizures in children who stare or seem preoccupied at school. Helpful in the history is the lack of these spells at home (eg, before breakfast, a common time for absence seizures). Lack of other epilepsy in child or family history often is helpful. These children often have difficulties with school and cognitive or learning disabilities. Child can generally be brought out of spell by a firm command or touch. EEG is sometimes necessary to confirm that absence seizures are not occurring. A 24-h ambulatory EEG to record attacks during child’s everyday school activities is occasionally necessary.</td>
</tr>
<tr>
<td><strong>Shuddering</strong></td>
<td></td>
</tr>
<tr>
<td>Shuddering or shivering attacks can occur in infancy and may be a forerunner of essential tremor in later life. Often, family history is positive for tremor. Shivering may be very frequent. EEG is normal. There is no clouding or loss of consciousness.</td>
<td></td>
</tr>
</tbody>
</table>
Complications & Sequelae

A. Psychosocial Impact

Emotional disturbances, especially depression but also anxiety, anger, and feelings of guilt and inadequacy, often occur in the patient as well as the parents of a child with epilepsy. Actual or perceived stigma as well as issues regarding “disclosure” are common. There is an increased risk of suicide in people with epilepsy. Schools often limit activities of children with epilepsy inappropriately and stigmatize children by these limitations.

Epilepsy with onset in childhood has an impact on adult function. Adults with early onset of epilepsy are less likely to complete high school, have less adequate employment, and are less likely to marry. This is also true of populations with well-controlled epilepsy. Persistent epilepsy results in significant dependence; even when epilepsy is successfully treated, patients with long-standing epilepsy often do not become independent due to driving restrictions and safety concerns.

B. Cognitive Delay

Untreated seizures can have an impact on cognition and memory. Clearly, epileptic encephalopathy (ie, regression in cognitive ability and development associated with uncontrolled seizures) does occur, particularly in young children with catastrophic epilepsies such as infantile spasms (West syndrome), Dravet syndrome, and Lennox-Gastaut syndrome. The impact of persistent partial seizures on development is less clear although persistent temporal lobe seizures in adults are associated with cognitive dysfunction. It is not likely that interictal epileptiform activity contributes to cognitive impairment in older children, although increased epileptiform burden has been demonstrated to cause mild cognitive problems in some disorders previously thought to be benign, such as benign epilepsy with central temporal spikes (BECTS). Continuous epileptiform activity in sleep is associated with Landau-Kleffner syndrome (acquired epileptic aphasia) and the syndrome of Electroencephalographic Status Epilepticus in Sleep (ESES) which are associated with cognitive decline.

Pseudodementia may occur in children with poorly controlled epilepsy because their seizures interfere with their learning. Depression is a common cause of impaired cognitive function in children with epilepsy. Anticonvulsants are less likely to cause such interference at usual therapeutic doses, although phenobarbital topiramate and zonisamide may produce cognitive impairment, reversible on discontinuing the medication. Psychosis can also occur after seizures or as a side effect of medications.

C. Injury and Death

Children with epilepsy are at far greater risk of injuries than the general pediatric population. Physical injuries, especially lacerations of the forehead and chin, are frequent in astatic or akinetic seizures (so-called drop attacks), necessitating protective headgear. In all other seizure disorders in childhood, injuries as a direct result of an attack are not as common although drowning, injuries related to working in kitchens, and falls from heights remain potential risks for all children with active epilepsy. It is therefore extremely important to stress “seizure precautions,” in particular, water safety. Bathrooms are a particularly dangerous room for people with uncontrolled epilepsy as the room is usually small and has many hard surfaces. Showers are recommended over bathing as they decrease the likelihood of drowning. Appropriate supervision is recommended.

The greatest fear of a parent of a child with new-onset of epilepsy is the possibility of death or brain injury. There is an increased risk of premature death in patients with symptomatic epilepsy, especially those who have not achieved seizure control. Most of the mortality in children with epilepsy is related to the underlying neurologic disorder, not the seizures. Sudden unexpected death with epilepsy (SUDEP) is a rare event in children. Although children with epilepsy have an increased risk of death, SUDEP occurs in only 1–2:10,000 patient-years. The greatest risk for SUDEP is in children with medically uncontrolled epilepsy, especially with symptomatic epilepsy (associated with identifiable CNS etiology). There is no current proven strategy to prevent SUDEP other than seizure control. The mechanism for SUDEP is unclear but is probably most commonly related to either cardiac arrhythmia induced by a seizure or sudden respiratory insufficiency. Vigorous attempts to control intractable seizure disorders remain the most important approach. Identifying life-threatening disorders (eg, identifying patients with cardiac arrhythmias, especially prolonged QT syndrome) as the cause of misdiagnosed epilepsy is clearly of utmost importance. While SUDEP is rare, increased mortality in children with epilepsy should be mentioned when counseling families.

Treatment

The ideal treatment of acute seizures is the correction of specific causes. However, even when a biochemical disorder, a tumor, meningitis, or another specific cause is being treated, anticonvulsant drugs are often still required.

A. First Aid

Caregivers should be instructed to protect the patient against self-injury. Turning the child to the side is useful for preventing aspiration. Thrusting a spoon handle, tongue depressor, or finger into the clenched mouth of a convulsing patient or trying to restrain tonic-clonic movements may cause worse injuries than a bitten tongue or bruised limb and could potentially become a choking hazard. Parents are often concerned that cyanosis will occur during generalized convulsive seizures but it is rare for clinically significant hypoxia
to occur. Mouth-to-mouth resuscitation is rarely necessary and is unlikely to be effective.

For prolonged seizures (those lasting over 5 minutes), acute home treatment with benzodiazepines such as rectal diazepam gel (Diastat) or intranasal midazolam may be administered to prevent the development of status epilepticus and has proven to be safe even when administered by nonmedical professionals, including teachers and day care providers, when appropriately instructed.

B. Antiepileptic Drug (AED) Therapy

1. Drug selection—Treat with the drug appropriate to the clinical situation, as outlined in Table 25–9.

2. Treatment strategy—The child with a single seizure has a 50% chance of recurrence. Thus, it is usually not necessary to initiate AED therapy until the diagnosis of epilepsy is established, that is, there is a second seizure. The seizure type and epilepsy syndrome as well as potential side effects will determine which drug to initiate (see Table 25–9). Start with one drug in moderate dosage and increase the dosage until seizures are controlled. If seizures are not controlled on the maximal tolerated dosage of one major AED, gradually switch to another before using two-drug therapy. Polytherapy (ie, the use of more than two medications concurrently) is rarely sufficiently effective to warrant the considerable risk of adverse side effects from the synergistic impact of multiple medications.

Dosages and usual target serum levels of commonly prescribed AEDs are listed in Table 25–9. Individual variations must be expected, both in tolerance and efficacy. The therapeutic range may also vary somewhat with the method used to determine levels, and published levels are not always reflective of clinical efficacy and tolerability.

3. Long-term management and discontinuation of treatment—AEDs should be continued until the patient is free of seizures for at least 1–2 years. In about 75% of patients, seizures will not recur following discontinuation of medication after 2 years of remission. Variables such as younger age at onset, normal EEG, undetermined etiology, and ease of controlling seizures carry a favorable prognosis, whereas identified etiology, later onset, continued epileptiform EEG, difficulty in establishing initial control of the seizures, polytherapy, generalized tonic-clonic or myoclonic seizures, as well as an abnormal neurologic examination are associated with a higher risk of recurrence. Most AEDs (with the exception of barbiturates and clonazepam) can be withdrawn over 6–8 weeks. There does not appear to be an advantage to slower withdrawal.

Recurrent seizures affect up to 25% of children who attempt withdrawal from medications. Recurrence of seizures is most likely within 6–12 months of discontinuing medications. Therefore, seizure safety precautions will need to be reinstituted, including driving restriction. If seizures recur during or after withdrawal, AED therapy should be reinstituted and maintained for at least another 1–2 years. The vast majority of children will again achieve remission of their seizures.

C. Alternative Treatments

1. Adrenocorticotropic hormone (ACTH) and corticosteroids—ACTH is indicated for treatment of infantile spasms. The utility of other immunotherapy is less clear. Duration of ACTH therapy is guided by cessation of clinical seizures and normalization of the EEG. Oral corticosteroids and intravenous immune globulin (IVIG) are occasionally used for pharmacoresistant epilepsy. However, dosing regimens and indications are not well established.

Landau-Kleffner syndrome (acquired epileptic aphasia) is reported to respond to oral steroid treatment. Anecdotal reports of use of immunosuppression in other patients have been published but no controlled clinical trials have been performed.

Precautions: Give additional potassium, guard against infections, provide GI prophylaxis, follow for possible hypertension, and discuss the cushingoid appearance and its disappearance. Do not withdraw oral corticosteroids suddenly. Side effects in some series occur in up to 40% of patients. In some regions of the country, prophylaxis against Pneumocystis infection may be required. Careful and frequent follow-up is necessary. Visiting nurse services can be very helpful in surveillance such as monitoring blood pressure, weight, and potential adverse effects.

2. Ketogenic diet—Fasting has been described to stop seizures for centuries and a diet high in fat and low in protein and carbohydrates will result in ketosis and simulate a fasting state. Fatty acids replace glucose as a source of energy for cellular metabolism. Such a diet has been observed to decrease and even control seizures in some children. A ketogenic diet should be considered for children with pharmacoresistant epilepsy. This diet should be monitored very carefully to ensure sufficient protein for body maintenance and growth as well as appropriate vitamin and mineral supplementation. Recent reports suggest efficacy with a modified Atkins diet or a low-glycemic index diet in older and higher functioning children who will not accept the ketogenic diet. A prepared commercial formula is available for children receiving tube feedings.

The mechanism for the anticonvulsant action of the ketogenic diet is not understood. The ketogenic diet requires close adherence full cooperation of all family members is required. However, when seizure control is achieved by this method, acceptance of the diet is usually excellent. Access to other families and patients via Internet has provided support and is particularly useful for providing increased variation of meals for families.
### Table 25-9. Guide to AED use.

<table>
<thead>
<tr>
<th>Medication/Target Dose in Adults [Pediatric Dose mg/kg/d]</th>
<th>Target Serum Levels (mcg/mL)</th>
<th>Idiosyncratic</th>
<th>Dose Related</th>
<th>Age Specific/Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine 1000-2000 [10-30]</td>
<td>4-12</td>
<td>Dermatologic (rash, including Stevens-Johnson), rare, hematologic, hepatic</td>
<td>Vertigo, visual disturbance (diplopia), leukopenia</td>
<td>Hyponatremia in adults; leukopenia; liver induction; myoclonus in patients with general S/W</td>
</tr>
<tr>
<td>Clobazam 5-80 [2 y, 0.5-1; 2-16 y, 5-40]</td>
<td>40-100</td>
<td>Rash (rare), Stevens-Johnson reaction</td>
<td>Ataxia, sedation</td>
<td>Paradoxical reaction with aggressive behavior, withdrawal symptoms with abrupt cessation</td>
</tr>
<tr>
<td>Ethosuximide 1000 [15-40]</td>
<td>5-20</td>
<td>Leukopenia, SLE, nephrotic syndrome, rash</td>
<td>Sedation, GI upset</td>
<td>Behavioral</td>
</tr>
<tr>
<td>Lacosamide 200-400 [8-12]</td>
<td>5-50</td>
<td>Prolonged PR interval, hypersensitivity reaction</td>
<td>None reported to date</td>
<td>Agitation, aggression, depression</td>
</tr>
<tr>
<td>Levetiracetam 1200-2400 [20-60]</td>
<td>4-20</td>
<td>Rash (rare)</td>
<td>Somnolence, irritability, weight gain</td>
<td>Renal excretion, no drug interactions</td>
</tr>
<tr>
<td>Oxcarbazepine 1200-2400 [15-45]</td>
<td>10-20</td>
<td>Rash (5%-10%), hematologic, hepatic, lymphadenopathy others</td>
<td>Cosmetic, CNS, ataxia, dystagmus</td>
<td>Elevated LFTs, induction, reduced vitamin D, cerebellar degeneration?</td>
</tr>
<tr>
<td>Phenobarbital 60-120 [2-6]</td>
<td>15-40</td>
<td>Rash, Stevens-Johnson, SLE</td>
<td>Somnolence, irritability</td>
<td>Possible irreversible cognitive effects, liver induction</td>
</tr>
<tr>
<td>Rufinamide 400-3200 [10-45]</td>
<td>10-20</td>
<td>Hypersensitivity reaction</td>
<td>Sedation, headache, behavioral disturbance, shortened QT interval</td>
<td>hepatic failure</td>
</tr>
<tr>
<td>Tiagabine 32-56 [0.25-1.25]</td>
<td>5-70</td>
<td>Psychiatric</td>
<td>CNS, tremor, weakness, GER reflux, gait difficulty</td>
<td>Language and cognitive disturbance (especially polypharmacy); oligohidrosis</td>
</tr>
<tr>
<td>Topiramate 200-400 [5-25]</td>
<td>3-25</td>
<td>Rash (rare), acute glaucoma (rare)</td>
<td>Somnolence, memory disturbance, renal stones anorexia, paresthesia</td>
<td>Hepatic failure (1/500 younger than age 2 on polypharmacy), elevated LFTs; GI upset with syrup; incidence of PCOS unknown, liver enzyme inhibition; teratogenicity</td>
</tr>
<tr>
<td>Valproic acid 750-1500 [20-60]</td>
<td>50-150</td>
<td>Hepatic failure; pancreatitis</td>
<td>Tremor, weight gain, alopecia, sedation and cognitive changes, thrombocytopenia, prolonged bleeding time</td>
<td>(Continued)</td>
</tr>
</tbody>
</table>
As with all therapies, potential adverse effects can occur with the ketogenic diet. These include acidosis and hypoglycemia, particularly on initiation of the diet. Thus, it is prudent to admit the child for initiation of the diet after screening laboratory studies are performed to rule out underlying metabolic disorders. Renal stones, pancreatitis, and acidosis can occur. In addition, vitamin and minerals need to be followed carefully to avoid deficiencies especially carnitine, iron, and vitamin D.

3. Vagus nerve stimulator (VNS)—The VNS is a pacemaker-like device that is implanted below the clavicle on the left and attached to the left vagus nerve. A cycle of electrical stimulation of the nerve is established (typically 30 seconds of stimulation every 5 minutes), which has an antiepileptic effect, reducing seizures by at least 50% in over half the children so treated. In addition, an emergency mode that is activated by the use of a magnet may interrupt a seizure (ie, an anticonvulsant effect). For patients with sufficient warning of an impending seizure, the device can be activated with abortion of the seizure. Many patients also experience an improvement in learning and behavior with use of this device. With current technology, the battery in the stimulator will last 7 or more years in many patients.

D. Surgery

An evaluation for epilepsy surgery is indicated for all children with medically intractable partial epilepsy. The evaluation and surgery should be performed at a center with expertise in epilepsy surgery and which has a dedicated neurosurgeon, epileptologists, neuropsychologists, and psychiatrists with experience in epilepsy surgery.

The first surgery for treatment of epilepsy took place over 100 years ago, and surgery is now established as an appropriate treatment option for adults and children with epilepsy refractory to medical treatment. Evaluation for possible surgical treatment should begin as soon as it is apparent that a child with focal onset seizures is not responding to standard therapy. Medication resistant (“refractory”) epilepsy is usually defined as failure of two or three anti-epileptic drugs alone or as combination therapy to control seizures. Advances in technology allow for definition and removal of the epileptogenic focus even in young infants. Many centers now have access to video-EEG monitoring, positron emission tomography (PET), single photon emission computerized tomography (SPECT), and similar noninvasive techniques that can be used to identify the “ictal onset zone” for seizures such as a focal cortical dysplasia that may amenable to resection. Freedom from seizures is reported in as many as 80% who have been treated surgically. Some children without an identifiable onset to seizure may qualify for other types of surgery such as corpus callosotomy that aim to reduce seizure burden.

E. General Management of the Child with Epilepsy

1. Education—The initial diagnosis of epilepsy is often devastating for families. The patient and parents must be helped to understand the nature of epilepsy and its management, including etiology, prognosis, safety issues, and treatment options.

Excellent educational materials are available for families of a child with epilepsy, both in print and online. Two excellent web sites are http://www.epilepsyfoundation.org and http://www.epilepsy.com. Materials on epilepsy—including pamphlets, monographs, films, and videotapes suitable for children and teenagers, parents, teachers, and medical professionals—may be purchased through the Epilepsy Foundation: 8301 Professional Place, Landover, MD 20785; (800) 332-1000. The foundation’s local chapter and other community

### Table 25–9. Guide to AED use. (Continued)

<table>
<thead>
<tr>
<th>Medication/Target Dose in Adults [Pediatric Dose mg/kg/d]</th>
<th>Target Serum Levels (mcg/mL)</th>
<th>Idiosyncratic</th>
<th>Dose Related</th>
<th>Age Specific/Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigabatrin Max 3000 [40-100]</td>
<td>—</td>
<td>Visual field constriction, sedation, CNS</td>
<td>Psychiatric symptoms (rare), visual field constriction</td>
<td>Especially effective for infantile spasms and tuberous sclerosis</td>
</tr>
<tr>
<td>Zonisamide 200-600 [4-10]</td>
<td>10-30</td>
<td>Rash, hematologic, hepatic</td>
<td>Renal stones, anorexia, somnolence</td>
<td>Oligohidrosis in children; cross-sensitivity with sulfa drugs</td>
</tr>
</tbody>
</table>

CBZ, carbamazepine; CNS, central nervous system; GE, gastroesophageal; GI, gastrointestinal; LFT, liver function test; MHD, monohydroxy derivative; PCOS, polycystic ovary syndrome; SLE, systemic lupus erythematosus; S/W, spike and wave discharges.

**Note:** For newer drugs, doses, levels, and adverse effects are based on reported clinical experience and not on adequate scientific information from clinical trials in most cases. Some medications do not have FDA approval for children. The package insert for each medication lists potential adverse effects, warnings, and other important considerations.
organizations are able to provide guidance and other services. Support groups exist in many cities for older children and adolescents and for their parents and others concerned.

2. Privileges and precautions in daily life—“No seizures and no side effects” is a motto established by the Epilepsy Foundation. The child should be encouraged to live as normal a life as possible. Children should engage in physical activities appropriate to their age and social group. After seizure control is established, swimming is generally permissible with a buddy system or adequate lifeguard coverage. Scuba diving and high climbing without safety harness is generally not allowed. There are no absolute contraindications to any other sports, although some physicians recommend against contact sports. Physical training and sports are usually to be welcomed rather than restricted. There is some literature that suggests that exercise decreases overall seizure burden. Driving is discussed in the next section.

Emotional disturbances, especially depression, are not uncommon, particularly in adolescents with epilepsy, and need to be treated. Loss of sleep should be avoided as sleep deprivation can be a trigger for seizures. Alcohol intake should be avoided because it may precipitate seizures. Prompt attention should be given to intercurrent illnesses as these can trigger seizures.

Although every effort should be made to control seizures, treatment must not interfere with a child’s ability to function normally. A child may do better having an occasional mild seizure than being so heavily sedated that function at home, in school, or at play is impaired. Therapy and medication adjustment often require much art and fortitude on the physician’s part. Some patients with infrequent seizures, especially if only nocturnal partial seizures (e.g., Rolandic seizures) may not need treatment with AEDs.

3. Driving—Driving becomes important to most young people at age 15 or 16 years. Restrictions for persons with epilepsy and other disturbances of consciousness vary from state to state. In most states, a learner’s permit or driver’s license will be issued to an individual with epilepsy if he or she has been under a physician’s care and free of seizures for at least 1 year provided that the treatment or basic neurologic problems do not interfere with the ability to drive. A guide to this and other legal matters pertaining to persons with epilepsy is published by the Epilepsy Foundation, and its legal department may be able to provide additional information.

4. Pregnancy—Contraception (especially interaction of oral contraceptive with some AEDs), childbearing, potential teratogenicity of AEDs, and the management of pregnancy should be discussed as soon as appropriate with the adolescent young woman with epilepsy. Daily use of vitamin preparations containing folic acid is recommended. For the pregnant teenager with epilepsy, management by an obstetrician conversant with the use of AEDs in pregnancy is appropriate. The patient should be cautioned against discontinuing her medications during pregnancy. The possibility of teratogenic effects of AEDs, such as facial clefts (two to three times increased risk), must be weighed against the risks from seizures. All AEDs appear to have some risk for teratogenicity, although valproate carries a particularly high risk for spinal dysraphism as well as being associated with cognitive issues in children exposed to valproate in utero. Dosing may need to be adjusted frequently during pregnancy as blood volume expands. Frequent AED blood levels may be helpful in making these adjustments.

5. School intervention and seizure response plans—Schools are required by federal law to work with parents to establish a seizure action plan for their child with epilepsy. A template for such a plan is available on the Epilepsy Foundation website at http://www.epilepsyfoundation.org/programs/upload/snactionplan.pdf. These plans usually require the approval of the child’s physician. Schools are sometimes hesitant to administer rectal valium or to activate the vagal nerve stimulator. Often, information from the physician, especially that obtained from the Epilepsy Foundation website, will relieve anxieties. School authorities should be encouraged to avoid needless restrictions and to address the emotional and educational needs of all children with disabilities, including epilepsy. The local affiliates of the Epilepsy Foundation can often provide support for families in their interactions with the school.

2. Status Epilepticus

Status epilepticus is usually defined as a clinical or electrical seizure lasting at least 15 minutes, or a series of seizures without complete recovery over a 30-minute period. After 30 minutes of seizure activity, hypoxia and acidosis occur, with depletion of energy stores, cerebral edema, and structural damage. Eventually, high fever, hypotension, respiratory depression, and even death may occur. Status epilepticus is a medical emergency. Aggressive treatment of prolonged seizures may prevent development status epilepticus. It is generally recommended that treatment with benzodiazepines at home for prolonged seizures be initiated, 5 minutes after onset of a seizure. There are currently several forms of benzodiazepines that can be administered safely at home, rectal valium, intranasal midazolam, sublingual lorazepam, and intramuscular diazepam.

Status epilepticus is classified as (1) convulsive (the common tonic-clonic, or grand mal, status epilepticus) or (2) nonconvulsive (characterized by altered mental status or behavior with subtle or absent motor components). Absence status, or spike-wave stupor, and focal status epilepticus
are examples of the nonconvulsive type. An EEG may be necessary to aid in diagnosing nonconvulsive status because patients sometimes appear merely stuporous and lack typical convulsive movements.

**Treatment**

For treatment options, see Table 25–10.

### 3. Febrile Seizures

Criteria for febrile seizures are (1) age 3 months to 6 years (most occur between ages 6 and 18 months), (2) fever of greater than 38.8°C, and (3) non-CNS infection. More than 90% of febrile seizures are generalized, last less than 5 minutes, and occur early in the illness causing the fever. Febrile seizures occur in 2%–3% of children. Acute respiratory illnesses are most commonly associated with febrile seizures. Gastroenteritis, especially when caused by *Shigella* or *Campylobacter*, and urinary tract infections are less common causes. Roseola infantum is a rare but classic cause. One study implicated viral causes in 86% of cases. Immunizations may be a cause. HHV-6 and HHV-7 is a common cause for febrile status epilepticus, accounting for 1/3 of cases. Febrile seizures rarely (1%–3%) lead to recurrent unprovoked seizures (epilepsy) in childhood and adult life (risk is increased two- to fivefold compared with children who do not have febrile seizures). The chance of later epilepsy is higher if the febrile seizures have complex features, such as duration longer than 15 minutes, more than one seizure in the same day, or focal features. Other adverse factors are an abnormal neurologic status preceding the seizures (eg, cerebral palsy or mental retardation), early onset of febrile seizure (before age 1 year), and a family history of epilepsy. Even with adverse factors, the risk of epilepsy after febrile seizures is still only in the range of 15%–20%, although it is increased if more than one risk factor is present. Recurrent febrile seizures occur in 30%–50% of cases. Therefore, families should be prepared to expect more seizures. In general, recurrence of febrile seizures does not worsen the long-term outlook.

**Clinical Findings**

### A. Diagnostic Evaluation

The child with a febrile seizure must be evaluated for the source of the fever, in particular to exclude CNS infection. Routine studies such as serum electrolytes, glucose, calcium, skull radiographs, or brain imaging studies are seldom helpful unless warranted based on clinical history. A white count above 20,000/L or an extreme left shift may correlate with bacteremia. Complete blood count and blood cultures may be appropriate. Serum sodium is often slightly low but not low enough to require treatment or to cause the seizure. Meningitis and encephalitis must be considered. Signs of meningitis

---

**Table 25-10. Status epilepticus treatment.**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ABCs</td>
</tr>
<tr>
<td></td>
<td>a. Airway: maintain oral airway; intubation may be necessary.</td>
</tr>
<tr>
<td></td>
<td>b. Breathing: oxygen.</td>
</tr>
<tr>
<td></td>
<td>c. Circulation: assess pulse, blood pressure; support with IV fluids, drugs; monitor vital signs.</td>
</tr>
<tr>
<td>2.</td>
<td>Start glucose-containing IV (unless patient is on ketogenic diet); evaluate serum glucose, electrolytes, HCO₃, CBC, BUN, anticonvulsant levels.</td>
</tr>
<tr>
<td>3.</td>
<td>Consider arterial blood gases, pH.</td>
</tr>
<tr>
<td>4.</td>
<td>Give 50% glucose if serum glucose low (1–2 mL/kg).</td>
</tr>
<tr>
<td>5.</td>
<td>Begin IV drug therapy; goal is to control status epilepticus in 20–60 min.</td>
</tr>
<tr>
<td></td>
<td>a. Diazepam, 0.3–0.5 mg/kg over 1–5 min (20 mg max); may repeat in 5–20 min; lorazepam, 0.05–0.2 mg/kg (less effective with repeated doses, longer-acting than diazepam); or midazolam: IV, 0.1–0.2 mg/kg; intranasally, 0.2 mg/kg.</td>
</tr>
<tr>
<td></td>
<td>b. Phenytoin, 10–20 mg/kg IV (not IM) over 5–20 min; (1000 mg maximum); monitor with blood pressure and ECG.</td>
</tr>
<tr>
<td></td>
<td>fosphenytoin may be given more rapidly in the same dosage and can be given IM; order 10–20 mg/kg of “phenytoin equivalent” (P).</td>
</tr>
<tr>
<td></td>
<td>c. Phenobarbital, 5–20 mg/kg (sometimes higher in newborns or refractory status in intubated patients).</td>
</tr>
<tr>
<td>6.</td>
<td>Correct metabolic perturbations (eg, low-sodium, acidosis).</td>
</tr>
<tr>
<td></td>
<td>Administer fluids judiciously.</td>
</tr>
<tr>
<td>7.</td>
<td>Other drug approaches in refractory status:</td>
</tr>
<tr>
<td></td>
<td>a. Repeat phenytoin, phenobarbital (10 mg/kg). Monitor blood levels. Support respiration, blood pressure as necessary.</td>
</tr>
<tr>
<td></td>
<td>b. Other medications: valproate sodium, available as 100 mg/mL IV use; give 15–30 mg/kg over 5–20 min.</td>
</tr>
<tr>
<td></td>
<td>c. Levetiracetam may be helpful (20–40 mg/kg/dose IV).</td>
</tr>
<tr>
<td></td>
<td>d. For patients who fail initial intervention consider midazolam drip: 1–5 mcg/kg/min (even to 20 kg/min); pentobarbital coma; propofol and general anesthetic.</td>
</tr>
<tr>
<td>8.</td>
<td>Consider underlying causes:</td>
</tr>
<tr>
<td></td>
<td>a. Structural disorders or trauma: MRI or CT scan.</td>
</tr>
<tr>
<td></td>
<td>b. Infection: lumbar puncture; blood culture, antibiotics.</td>
</tr>
<tr>
<td></td>
<td>c. Metabolic disorders: consider lactic acidosis, toxins, and uremia if child is being treated with chronic AEDs, obtain medication levels. Toxin screen.</td>
</tr>
<tr>
<td>9.</td>
<td>Initiate maintenance drug treatment with IV medications: phenytoin (10 mg/kg); phenobarbital (5 mg/kg); valproate IV 30 mg/kg; levetiracetam 20–30 mg/kg. Transition to oral medication when patient can safely take them.</td>
</tr>
</tbody>
</table>

BUN, blood urea nitrogen; CBC, complete blood count; CT, computed tomography; ECG, electrocardiogram; IM, intramuscularly; IV, intravenously; MRI, magnetic resonance imaging.

(eg, bulging fontanelle, stiff neck, stupor, and irritability) may all be absent, especially in a child younger than age 18 months.

### B. Lumbar Puncture

After controlling the fever and stopping an ongoing seizure, the physician must decide whether to do a lumbar puncture.
The fact that the child has had a previous febrile seizure does not rule out meningitis as the cause of the current episode. It is very important, especially in younger children, to exclude CNS infection as a source; these children are not classified as having a febrile seizure. A recent study demonstrated that 96% of children with febrile status epilepticus who received an LP had less than three WBC in the CSF. Therefore, seizure should not be acceptable explanation for elevated cells in the CSF. Although the yield is low, a lumbar puncture should probably be done if the child is younger than age 18 months, if recovery is slow, if no other cause for the fever is found, or if close follow-up will not be possible. Occasionally observation in the emergency department for several hours obviates the need for a lumbar puncture.

C. EEG

EEG is rarely useful. An EEG may be considered if the febrile seizure is complicated, focal, or otherwise unusual, but has little predictive value. In uncomplicated febrile seizures, the EEG is usually normal. If performed, the EEG should be done at least a week after the illness to avoid transient changes due to fever or the seizure itself. In older children, 3-Hz/s spike-wave discharges, suggestive of a genetic propensity to epilepsy, may occur. In the young infant, EEG findings seldom aid in assessing the chance of recurrence of febrile seizures or in long-term prognosis. Thus, EEG is not recommended for the child with simple febrile seizures.

Treatment & Prognosis

Prophylactic anticonvulsants are not recommended after a febrile seizure. If febrile seizures are complicated or prolonged, or if medical reassurance fails to relieve family anxiety, anticonvulsant prophylaxis may be indicated and appropriately chosen medication may reduce the incidence of recurrent febrile seizures. Only phenobarbital and valproic acid have demonstrated efficacy in preventing febrile seizures; phenytoin and carbamazepine have been shown to be ineffective. Newer antiepileptic drugs have not been studied. Diazepam started at the first onset of fever for the duration of the febrile illness (0.5 mg/kg two or three times per day orally or rectally) may be effective but will sedate a child and possibly complicate the evaluation for a source of the fever. Prophylactic diazepam is also limited by the fact that a seizure is often the first evidence of fever associated with an acute illness. Diastat (rectal diazepam gel) can be used to prevent febrile status epilepticus in the child with a prolonged febrile seizure (one lasting over 5 minutes), often the greatest concern.

Measures to control fever such as sponging or tepid baths, antipyretics, and the administration of antibiotics for proven bacterial illness are reasonable but unproven to prevent recurrent febrile seizures.

Simple febrile seizures do not have any long-term adverse consequences. As noted earlier, there is only a small increase in the risk of developing epilepsy. Cognitive function is not significantly different from that of siblings without febrile seizures.


Hughes JR: Benign epilepsy of childhood with centrotemporal spikes (BECTS): to treat or not to treat, that is the question. Epilepsy Behav 2010;19:197–203 [PMID: 20797913].


Mancardi MM et al: Familial occurrence of febrile seizures and epilepsy in severe myoclonic epilepsy of infancy (SMEI) patients with SCN1A mutations. Epilepsia 2006;47:1629 [PMID: 17054684].


SLEEP DISORDERS

Sleep disorders can originate from abnormalities within the respiratory system, the neurologic system and as well as the coordination (or lack thereof) between the two systems. In order to understand abnormal sleep, one must understand normal sleep which changes as the child develops. Sleep and its development are reviewed in Chapter 3. Chapter 3 also discusses behavioral considerations in the treatment of sleep disorders. Respiratory abnormalities that are associated with sleep such as obstructive sleep apnea are described in Chapters 18 and 19. This discussion focuses on neurologic features of several sleep disorders affecting children.

1. Narcolepsy

Narcolepsy, a primary disorder of sleep, is characterized by chronic, inappropriate daytime sleep that occurs regardless of activity or surroundings and is not relieved by increased sleep at night. Onset can occur as early as age 3 years. One half of persons affected by narcolepsy have symptoms in childhood. Of children with narcolepsy, 18% are younger than age 10, and 60% are between puberty and their late teens.

Additional symptoms are cataplexy, hypnagogic and/or hypnopompic hallucinations (visual or auditory), and sleep paralysis. Cataplexy is a transient partial or total loss of muscle tone, often triggered by laughter, anger, or other emotional upsurge. Consciousness is preserved during these spells and they can last several minutes in duration. Hypnopompic hallucinations are intense dream-like states while falling asleep, whereas hypnopompic hallucinations occur while waking from sleep. Sleep paralysis is a brief loss of voluntary muscle control typically occurring at sleep-wake transitions.

Abnormally short latency to rapid eye movement (REM) sleep occurs in subjects with narcolepsy. REM usually occurs after 80–100 minutes or longer in normal subjects. Nocturnal polysomnography and Multiple Sleep Latency Testing (MSLT) demonstrate abnormal REM latency and are used to diagnose the disorder. HLA subtype DQB1*0602 and DRB1*1501 are associated with narcolepsy. Absence of a hypothalamic neuropeptide, hypocretin, is associated with the disorder. Low spinal fluid levels of hypocretin-1 are diagnostic.

Sleep hygiene and behavior modification are used to treat patients with narcolepsy. In general, medications
used for the treatment of narcolepsy in children are “off label.” CNS stimulants such as amphetamine mixtures are typically used to treat excessive daytime somnolence. Modafinil is an effective treatment in adults and is used at times in children although controlled studies in children are lacking. Cataplexy responds to venlafaxine, fluoxetine, or clomipramine.

2. Benign Neonatal Sleep Myoclonus

Benign neonatal sleep myoclonus is characterized by myoclonic jerks, usually bilaterally synchronous, that occur only during sleep and stop abruptly when the infant is aroused. It is a benign condition that is frequently confused with epileptic seizures. Myoclonic jerks usually occur in the first 2 weeks of life, and resolve spontaneously in the first months of life although may occur as late as 10 months. Clusters of jerks may last from a few seconds up to 20 minutes.

3. Nocturnal Frontal Lobe Epilepsy

Nocturnal frontal lobe epilepsy is characterized by paroxysmal arousals from NREM sleep with hypermotor seizures with bizarre stereotyped motor movements with dystonic or hyperkinetic features lasting up to 5 minutes. NFLE is a heterogeneous disorder which includes both sporadic and familial forms, the latter related to a genetic abnormality affecting nicotinic receptors. Lack of definitive epileptiform abnormalities on EEG recordings may lead to misdiagnoses of nocturnal dystonia or a parasomnia, such as night terrors or somnambulism.

4. Parasomnias

Parasomnias are abnormal behavioral or physiologic events that occur in association with various sleep stages or the transition between sleeping and waking. The parasomnias of childhood are divided into those occurring in NREM and REM. The NREM parasomnias consist of partial arousals, disorientation, and motor disturbances and include sleep-walking/somnambulism and sleep terrors/pavor nocturnes among others. These are discussed in more detail in Chapter 3.

5. Restless Legs Syndrome

Restless legs syndrome refers to continuous, bothersome leg movements occurring at rest and producing unpleasant paresthesias (sensory symptoms) that often interfere with restful sleep. This disorder can be familial; therefore, a detailed family history may be helpful. Occasionally, anemia (low ferritin) has been noted in adults and children with the disorder; in these cases, improvement has occurred with ferrous sulfate treatment. These are discussed in more detail in Chapter 3.

HEADACHES

ESSENTIALS OF DIAGNOSIS

- The two most common causes of headaches in children are migraine and tension-type headache.
- Diagnosis is based upon a thorough history and physical, excluding secondary causes such as mass or idiopathic intracranial hypertension.
- Warning signs that require further investigation include headache in a young child, new onset and worsening headache, unexplained fever, awakening with headache or vomiting, headache worse with straining or position change, posterior headaches, neurological deficit, or neurocutaneous stigmata.

Headaches are common in children and adolescents and health providers need to recognize and differentiate the common from the more serious causes of headaches. Approximately 11% of children and 28% of adolescents experience recurrent headaches. First, the clinician must determine if the headache is primary or secondary. Symptoms and signs are the center of evaluation; however, red flags (Table 25–11) may prompt
Further workup and evaluation. Correct diagnosis of headache disorders will guide treatment and management.

Clinical Findings

A. Symptoms and Signs

Based on the 2004 International Classification of Headache Disorders-IIIR (IHCD-IIIR), primary headaches are divided into three major categories: migraine, tension-type, and trigeminal autonomic cephalgia. Clinical features of migraine without aura and tension-type headache are compared in Table 25–12. Migraine headaches are generally episodic unilateral (commonly bilateral in children), throbbing, severe headaches with a combination of photophobia, phonophobia, nausea, and or vomiting. Tension-type headaches (TTH) are a tight band dull sensation that can occur episodically or daily. TTH are not associated with nausea or vomiting but may have photophobia or phonophobia but not both. Individuals with greater than 15 headaches (migraine or tension-type) per month are considered chronic, and medication overuse must be excluded. Triggers of head pain can include stress, sleep deprivation, dehydration, skipped meals, caffeine, and possibly specific foods (eg, MSG or nitrates). Trigeminal autonomic cephalgia (or cluster headache) is rare in children, but presents as a unilateral severe headache and autonomic dysfunction (watery eye, congestion, facial sweating, miosis, and ptosis).

According to the IHCD-IIIR, migraines include childhood pediatric syndromes such as cyclic vomiting, abdominal migraine, and benign paroxysmal vertigo of childhood. These are precursors to migraines and in an older child with new onset migraines; history of these periodic syndromes/symptoms may be discovered.

B. Laboratory Findings

Laboratory studies are not routinely needed in children presenting with recurrent headaches. History and examination may prompt basic screening studies for thyroid, anemia, or autoimmune disorders.

C. Imaging Studies

Routine neuroimaging is not indicated for children presenting with recurrent headaches unless Red Flags are present as noted in Table 25–11. A single red flag is less worrisome (except for abnormal neurological exam) and usually a combination of red flags will prompt neuroimaging evaluation. Imaging can also be considered for children with historical features that suggest recent onset of severe headache, change in headache, or features to suggest neurological dysfunction.

Differential Diagnosis

Secondary causes of headache in children include broad categories such as head trauma, infection, vascular, intracranial pressure changes, structural, metabolic, toxic or substance related, and hematologic (Table 25–13). Headaches associated with head trauma are those that start within two weeks of closed head injury. They can have either features of migraines or tension-type headaches. Neck pain and headache after head trauma warrant evaluation for a dissection, especially if examination is suggestive for a connective tissue disorder such as Marfans or homocystinuria. Headaches that worsen with lying down or vomiting without nausea are concerning for increased intracranial hypertension such as IIH (IIH), sinus venous clot producing increased CSF pressure, hydrocephalus, or mass. Headaches that worsen with standing and improve with lying down are suggestive of low pressure headaches caused by a tear in the dura from a preceding LP, spontaneous leak, penetrating trauma, or surgery.

Medication and substance ingestion and withdrawal are both culprits to secondary headaches. Medications directly

---

Table 25–11. Red flags for children with headaches.

<table>
<thead>
<tr>
<th>Red flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache in child less than 5 years</td>
<td></td>
</tr>
<tr>
<td>New (“explosive onset”) and worsening headache in a previously healthy child</td>
<td></td>
</tr>
<tr>
<td>Worst headache of life</td>
<td></td>
</tr>
<tr>
<td>Unexplained fever</td>
<td></td>
</tr>
<tr>
<td>Night time or early morning awakenings with headache or vomiting</td>
<td></td>
</tr>
<tr>
<td>Headache worse with straining</td>
<td></td>
</tr>
<tr>
<td>Posterior headaches</td>
<td></td>
</tr>
<tr>
<td>Neurological deficit</td>
<td></td>
</tr>
<tr>
<td>Postural headache</td>
<td></td>
</tr>
<tr>
<td>Worse when lying</td>
<td></td>
</tr>
<tr>
<td>Worse when standing</td>
<td></td>
</tr>
<tr>
<td>Neurocutaneous stigmata (café au lait spots, hypopigmented macules)</td>
<td></td>
</tr>
</tbody>
</table>

Further workup and evaluation. Correct diagnosis of headache disorders will guide treatment and management.

Clinical Findings

A. Symptoms and Signs

Based on the 2004 International Classification of Headache Disorders-IIIR (IHCD-IIIR), primary headaches are divided into three major categories: migraine, tension-type, and trigeminal autonomic cephalgia. Clinical features of migraine without aura and tension-type headache are compared in Table 25–12. Migraine headaches are generally episodic unilateral (commonly bilateral in children), throbbing, severe headaches with a combination of photophobia, phonophobia, nausea, and or vomiting. Tension-type headaches (TTH) are a tight band dull sensation that can occur episodically or daily. TTH are not associated with nausea or vomiting but may have photophobia or phonophobia but not both. Individuals with greater than 15 headaches (migraine or tension-type) per month are considered chronic, and medication overuse must be excluded. Triggers of head pain can include stress, sleep deprivation, dehydration, skipped meals, caffeine, and possibly specific foods (eg, MSG or nitrates). Trigeminal autonomic cephalgia (or cluster headache) is rare in children, but presents as a unilateral severe headache and autonomic dysfunction (watery eye, congestion, facial sweating, miosis, and ptosis).

According to the IHCD-IIIR, migraines include childhood pediatric syndromes such as cyclic vomiting, abdominal migraine, and benign paroxysmal vertigo of childhood. These are precursors to migraines and in an older child with new onset migraines; history of these periodic syndromes/symptoms may be discovered.

B. Laboratory Findings

Laboratory studies are not routinely needed in children presenting with recurrent headaches. History and examination may prompt basic screening studies for thyroid, anemia, or autoimmune disorders.

C. Imaging Studies

Routine neuroimaging is not indicated for children presenting with recurrent headaches unless Red Flags are present as noted in Table 25–11. A single red flag is less worrisome (except for abnormal neurological exam) and usually a combination of red flags will prompt neuroimaging evaluation. Imaging can also be considered for children with historical features that suggest recent onset of severe headache, change in headache, or features to suggest neurological dysfunction.

Differential Diagnosis

Secondary causes of headache in children include broad categories such as head trauma, infection, vascular, intracranial pressure changes, structural, metabolic, toxic or substance related, and hematologic (Table 25–13). Headaches associated with head trauma are those that start within two weeks of closed head injury. They can have either features of migraines or tension-type headaches. Neck pain and headache after head trauma warrant evaluation for a dissection, especially if examination is suggestive for a connective tissue disorder such as Marfans or homocystinuria. Headaches that worsen with lying down or vomiting without nausea are concerning for increased intracranial hypertension such as IIH (IIH), sinus venous clot producing increased CSF pressure, hydrocephalus, or mass. Headaches that worsen with standing and improve with lying down are suggestive of low pressure headaches caused by a tear in the dura from a preceding LP, spontaneous leak, penetrating trauma, or surgery.

Medication and substance ingestion and withdrawal are both culprits to secondary headaches. Medications directly

---

Table 25–12. Classification of TTH and migraine.

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Migraine Without Aura</th>
<th>Tension-Type Headache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>1–72 h*</td>
<td>30 min to 7 days</td>
</tr>
<tr>
<td>Quality</td>
<td>Throbbing/pounding</td>
<td>Pressure tight band</td>
</tr>
<tr>
<td>Severity</td>
<td>Moderate to severe</td>
<td>Mild to moderate</td>
</tr>
<tr>
<td>Location</td>
<td>Unilateral/bilateral*</td>
<td>Bilateral</td>
</tr>
<tr>
<td>Physical activity</td>
<td>Worsens headache</td>
<td>No effect</td>
</tr>
</tbody>
</table>

*Modified for children based on the IHCD-IIIR classification criteria.
related to possible headaches include oral contraceptives, steroids, thyroid replacement, caffeine, cold medicines, ergotamines, vasodilators, overuse of vitamin A or D, sympathomimetics, bronchodilators, atypical antipsychotics, SSRIs, ethanol, antibiotics, and tetracycline. Steroids, vitamin A toxicity, oral contraceptives, and tetracycline are all associated with development of IIH. Medications that are commonly associated with medication overuse headache include aspirin, acetaminophen, NSAIDs, triptans, and combination analgesics such as acetaminophen, butalbital, and caffeine. Other toxins such as lead, carbon monoxide, or organic solvent poisoning cannot be overlooked.

Infections both of the CNS or systemically are associated with headaches. Meningitis and encephalitis will present with a combination of fever, seizures, altered mental status, stiff neck, and headache. However, common systemic or other focal infections may cause headaches such as viral upper respiratory infections, strep pharyngitis (especially in younger children), rhinosinusitis (sinus headache), influenza, and Lyme disease. Headaches are frequently misdiagnosed as sinus headaches and physicians should carefully obtain history of pain in the face, ears, or teeth and evaluate for signs of rhinosinusitis on either physical examination or imaging.

Any cause of hypoxia (eg, cardiac, respiratory, altitude, anemia) may cause a bifrontal throbbing headache that may be worsened with exertion, straining, or laying down. Hypercapnia causes a nonspecific headache and may be secondary to sleep apnea or other underlying metabolic or respiratory disorder. Hypothyroidism can cause bilateral nonpulsating continuous mild intensity pain that resolves after thyroid supplementation.

Although eye strain and temporal mandibular joint dysfunction are rare causes of recurrent headaches, they can be simply treated; therefore, when suspected, evaluation by ophthalmology or dentist, respectively, is indicated. Examination in TMJ dysfunction reveals a click on slow jaw opening and closing in addition to reduced angle of jaw opening.

A thorough history and physical examination helps diagnosing most of these conditions. Several common red flags associated with worrisome secondary causes are listed in Table 25–11. It is not one single symptom or red flag that usually points to a secondary cause; rather, it is a constellation of symptoms.

### Complications

Migraines and tension-type headaches are both episodic headache disorders but may transform into more frequent headaches. When a child has greater than 15 headaches per month for three or more months, the child has chronic headaches. Risk factors for chronicity include psychological comorbidity, excessive medication use leading to Medication Overuse Headache, and possibly signs of central sensitization. During migraines, central sensitization is indicated by presence of cutaneous allodynia (eg, pain with combing hair, wearing a pony tail, or touching the skin). These symptoms are currently being investigated and are thought to be associated with worsened prognosis with respect to treatment response and headache chronicity.

Depression and anxiety are both comorbid with headaches and are associated with increased headache burden and disability such as school absenteeism. Equally, children psychiatric disorders also have increased rates of primary headaches. School absenteeism and poor school performance appears to be one of the most challenging factors in children with recurrent headaches.

### Treatment

Treatment is divided into two categories: acute and preventative. Management of headaches should emphasize the necessity for early and adequate treatment during a headache, in addition to self-management skills to reduce frequency and disability such as life-style modification and headache diaries. Pharmacologic preventative treatment can be considered if frequency or disability is significant.
A. Acute Treatment

Acute treatment for pediatric migraine includes use of simple analgesics and migraine specific medications. Any abortive medication should be given as early as possible after the onset of headache. The United States FDA approved almotriptan for adolescents 12-17 and rizatriptan for 6-17 year olds. Simple analgesics include acetaminophen (15 mg/kg; max dose 1000 mg) and ibuprofen (10 mg/kg; max dose 800 mg). Studies showing significant benefit for pediatric migraine include rizatriptan, zolmitriptan nasal, sumatriptan nasal, and almotriptan. Occasionally home treatment fails and patients may need IV medications either in an emergency department or infusion center. When a patient fails emergency room treatments, IV dihydroergotamine can be effective with nausea as the most common side effect. All medications used for abortive treatment should be used cautiously to avoid medication overuse headache. Simple analgesics should be limited to 2–3 times per week and migraine-specific medications to approximately 1–2 times per month. During a headache biobehavioral techniques include rest and relaxation. Providing the child with a cool dark room in which to rest may provide added benefit.

B. Prevention

Any child with headaches should have biobehavioral management as a centerpoint to treatment. These include sleep hygiene; improved fluid intake and elimination of caffeine; nutritional meals; avoidance of skipping meals; regular exercise and stretching; and stress management. Preventative treatment can be considered in individuals with headache frequency of one or more per week. Treatments should be chosen by optimizing wanted side effects and minimizing unwanted side effects (eg, topiramate in an obese child given its side effect of weight loss).

Treatments are categorized into antiepileptic (eg, topiramate, valproic acid, levetiracetam), antihypertensive (eg, β-blockers, calcium channel blockers), antidepressants (eg, amitriptyline), antihistamine/antiserotonergic (eg, ciproheptadine), and nutraceuticals. Only small randomized double blinded or open label studies have tested these agents and there are no FDA-approved preventatives in the United States for the treatment of migraine or tension-type headache in children.

Topiramate, propranolol, amitriptyline, and ciproheptadine are the most commonly prescribed medications for pediatric headache. If topiramates started slowly and at low doses, cognitive side effects can be avoided. Peripheral tingling is uncommon and when present can be usually tolerated by most children. Decreased appetite and weight loss should be monitored at routine appointments. Amitriptyline is usually dosed at nighttime given its side effect of sedation, in addition to other common side effects including constipation, dry mouth, and prolonged QT. Ciproheptadine is a good medication to use in younger children given its small side effect profile of primary increased appetite and sedation. Divalproex sodium has not shown efficacy and side effects including weight gain, tremor, hair loss, and teratogenicity warrant caution in adolescent female patients.

Coenzyme q10, magnesium oxide, and riboflavin have shown some efficacy in childhood migraine. They may be a useful option for children with low frequency headache, low disability, or individuals who favor nonpharmaceutical options.

Prognosis

From the few studies regarding long-term prognosis in adolescents presenting with migraines, approximately 25%–40% of adolescents will have remission of migraine symptoms, 40%–50% have persistence, and 20%–25% convert to tension-type headache. Of those with TTH, 20% convert to migraine. Headache severity at diagnosis is thought to be predictive of headache outcome in the long term.
Pathogenesis

The pathogenesis of Idiopathic Intracranial Hypertension (IIH) is essentially unknown. Multiple risk factors have been identified, but obesity is the most common. Interestingly, multiple medications have been associated with IIH, including tetracycline, steroids, and retinol.

Clinical Findings

IIH is characterized by increased intracranial pressure as documented by a lumbar puncture performed in the lateral decubitus position in the absence of an identifiable intracranial mass, infection, metabolic derangement, or hydrocephalus. Symptoms include headache, tinnitus, and visual loss; signs of increased intracranial pressure are outlined in Table 25–14. Visual symptoms are commonly secondary to transient visual obscurations (TVOs), which are transient (less than 1 minute) and reversible alterations of vision in these patients. This must be distinguished from visual field anomalies, which can be permanent. Examine patient for papilledema, cranial nerve VI palsy, visual field deficit.

Differential Diagnosis

The cause of IIH is usually unknown, but it has been described in association with a variety of inflammatory, metabolic, toxic, and connective tissue disorders (Table 25–15). Assessing for alternative causes of increased intracranial pressure is essential to the diagnosis. MRI (or urgent CT for critically ill patients) may reveal hydrocephalus, tumor, or abscess. MRV may demonstrate a cerebral sinovenous thrombosis (CSVT), requiring hematological evaluation and consideration of anticoagulation. As noted in Table 25–15, medications, endocrinologic disturbances, and rheumatologic anomalies may all predispose patients to IIH. Lumbar puncture is essential to the diagnosis, as it confirms the presence of increased pressure (above 180–250 mm H2O depending on technique and anesthetic used), but also assesses for white blood cell count and protein (looking for an infectious mimicker, such as chronic meningitis). In some inflammatory and connective tissue diseases, the CSF protein concentration may be also be increased.

Complications

Vision loss is the main complication of IIH, as chronic papilledema may lead to permanent optic nerve damage. Vision loss usually occurs in the blind spot and/or nasal aspects of the visual field prior to affecting central vision. Headache, TVOs, cranial nerve VI palsy, and malaise are usually reversible.

Treatment

Treatment of IIH is aimed at correcting the identifiable predisposing condition and preventing vision loss. Sequential ophthalmologic evaluation to assess optic nerve swelling and visual fields is important. Obese patients will benefit significantly from weight loss. Some patients may benefit from the use of acetazolamide or topiramate to decrease the volume and pressure of CSF within the CNS. If a program of medical management and ophthalmologic surveillance fail,
lumbar peritoneal shunt, ventriculoperitoneal shunt, or optic nerve fenestration may be necessary to prevent irreparable visual loss and damage to the optic nerves. Dural venous stenting has limited data in adults with no randomized studies in either adults or children.

### Prognosis

With appropriate workup and treatment, the majority of patients recover from IHI without long-term sequelae including visual outcome. Reoccurrence risk is greatest within 18 months.

CEREBROVASCULAR DISEASE

Pediatric arterial ischemic stroke is subdivided into two categories: perinatal arterial ischemic stroke (perinatal ischemic stroke) and childhood arterial ischemic stroke (childhood ischemic stroke). Generally, perinatal ischemic stroke is defined as arterial ischemia occurring in a patient younger than age 28 days and older than 28 weeks’ gestation. Childhood ischemic stroke is any ischemic stroke occurring in a patient between 28 days and 18 years old.

1. **Childhood Arterial Ischemic Stroke**

Childhood arterial ischemic stroke (AIS) is emerging as a serious and increasingly recognized disorder, affecting 2–8/100,000 children per year. There are numerous adverse outcomes, which include death in 10%, neurologic deficits or seizures in 70%–75%, and recurrent ischemic stroke in up to 20%. It is essential to recognize that childhood AIS represents a neurologic emergency, for which prompt diagnosis can affect treatment considerations and outcome. Unfortunately, most pediatric AIS is not recognized until 24–36 hours after onset; and treatment considerations matter most in the first hours after ischemic stroke onset. When possible, all children who present with ischemic stroke should be transferred to a tertiary care center that specializes in pediatric ischemic stroke management. The evaluation should include a thorough history of prior illnesses, especially those associated with varicella (even in the prior 1–2 years) preceding viral infection, minor head or neck trauma, and familial clotting tendencies. A systematic search for evidence of cardiac, vascular, hematologic, or intracranial disorders should be undertaken (Table 25–16). Although many ischemic strokes are not associated with a single underlying systemic disorder, previously diagnosed congenital heart disease is the most common predisposing illness, followed by hematologic and neoplastic disorders. In many instances the origin is multifactorial, necessitating a thorough investigation even when the cause may seem obvious. Arteriopathy is seen in as many as 80% of “idiopathic” patients, and likely confers an increased recurrence risk.

### Clinical Findings

**A. Symptoms and Signs**

Manifestations of arterial ischemic stroke in childhood vary according to the vascular distribution to the brain structure that is involved. Because many conditions leading to childhood ischemic stroke result in emboli, multifocal neurologic involvement is common. Children may present with acute hemiplegia similarly to ischemic stroke in adults. Symptoms of unilateral weakness, sensory disturbance, dysarthria, and dysphagia may develop over a period of minutes, but at times progressive worsening of symptoms may evolve over several hours. Bilateral hemispheric involvement may lead to a depressed level of consciousness. The patient may also demonstrate disturbances of mood and behavior and experience focal or multifocal seizures. Physical examination of the patient is aimed not only at identifying the specific deficits related to impaired cerebral blood flow, but also at seeking evidence for any predisposing disorder. Retinal hemorrhages, splinter hemorrhages in the nail beds, cardiac murmurs, rash, fever, neurocutaneous stigmata, and signs of trauma are especially important findings.

**B. Laboratory Findings and Ancillary Testing**

In the acute phase, certain investigations should be carried out emergently with consideration of treatment options. This should include complete blood count, erythrocyte sedimentation rate, C-reactive protein, basic chemistries, blood urea nitrogen, creatinine, prothrombin time/partial thromboplastin time, chest radiography, ECG, urine toxicology, and imaging (see following section). Subsequent studies can be carried out systemically, with particular attention to disorders involving the heart, blood vessels, platelets, red cells, hemoglobin, and coagulation proteins. Twenty to fifty percent of pediatric ischemic stroke patients will have a prothrombotic state. Additional laboratory tests for systemic disorders such as vasculitis, mitochondrial disorders, and metabolic disorders are sometimes indicated.

---


Ball AK, Clarke CE: IHI. Lancet Neurol 2006;5:433 [PMID: 16632314].

Bussiere M et al: Unilateral transverse sinus stenting of patients with IHI. AJNR 2010;31:645 [PMID: 19942702].


Table 25–16. Etiologic risk factors for ischemic and/or hemorrhagic ischemic stroke.

<table>
<thead>
<tr>
<th>Cardiac disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanotic heart disease</td>
</tr>
<tr>
<td>Valvular disease</td>
</tr>
<tr>
<td>Rheumatic endocarditis</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
</tr>
<tr>
<td>Cardiac dysrhythmia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vascular occlusive disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical/cerebral arterial dissection</td>
</tr>
<tr>
<td>Homocystinuria/homocystinemia</td>
</tr>
<tr>
<td>Vasculitis</td>
</tr>
<tr>
<td>Meningitis</td>
</tr>
<tr>
<td>Polyarteritis nodosa</td>
</tr>
<tr>
<td>Systemic lupus erythematous</td>
</tr>
<tr>
<td>Drug abuse (amphetamines)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Varicella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma</td>
</tr>
<tr>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>Fibromuscular dysplasia</td>
</tr>
<tr>
<td>Moyamoya disease</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Nephrotic syndrome</td>
</tr>
<tr>
<td>Systemic hypertension</td>
</tr>
<tr>
<td>Dural sinus and cerebral venous thrombosis</td>
</tr>
<tr>
<td>Cortical venous thrombosis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hematologic disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron deficiency anemia</td>
</tr>
<tr>
<td>Polycythemia</td>
</tr>
<tr>
<td>Thrombotic thrombocytopenia</td>
</tr>
<tr>
<td>Thrombocytopenic purpura</td>
</tr>
<tr>
<td>Hemoglobinopathies</td>
</tr>
<tr>
<td>Sickle cell disease</td>
</tr>
<tr>
<td>Coagulation defects</td>
</tr>
<tr>
<td>Hemophilia</td>
</tr>
<tr>
<td>Vitamin K deficiency</td>
</tr>
<tr>
<td>Hypercoagulable states</td>
</tr>
<tr>
<td>Prothrombin gene mutation</td>
</tr>
<tr>
<td>Methyleneetetrahydrofolate reductase mutation</td>
</tr>
<tr>
<td>Lipoprotein (s)</td>
</tr>
<tr>
<td>Factor V Leiden deficiency</td>
</tr>
<tr>
<td>Antiphospholipid antibodies</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
</tr>
<tr>
<td>Hypertriglyceridemia</td>
</tr>
<tr>
<td>Factor VIII elevation</td>
</tr>
<tr>
<td>Pregnancy</td>
</tr>
<tr>
<td>Systemic lupus erythematous</td>
</tr>
<tr>
<td>Use of oral contraceptives</td>
</tr>
<tr>
<td>Antithrombin III deficiency</td>
</tr>
<tr>
<td>Protein C and S deficiencies</td>
</tr>
<tr>
<td>Leukemia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intracranial vascular anomalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyamoya</td>
</tr>
<tr>
<td>Arteriovenous malformation</td>
</tr>
<tr>
<td>Arterial aneurysm</td>
</tr>
<tr>
<td>Carotid-cavernous fistula</td>
</tr>
<tr>
<td>Focal cerebral arteriopathy</td>
</tr>
</tbody>
</table>

Examination of CSF is indicated in patients with fever, nuchal rigidity, or obtundation when the diagnosis of intracranial infection requires exclusion. Lumbar puncture may be deferred until a neuroimaging scan (excluding brain abscess or a space-occupying lesion that might contraindicate lumbar puncture) has been obtained. In the absence of infection, rheumatologic disease or intracranial subarachnoid hemorrhage, CSF examination is rarely helpful in defining the cause of the cerebrovascular disorder.

EEG may help in patients with severely depressed consciousness. ECG and echocardiography are useful both in the diagnostic approach to the patient and in ongoing monitoring and management, particularly when hypotension or cardiac arrhythmias complicate the clinical course.

C. Imaging

CT and MRI scans of the brain are helpful in defining the extent of cerebral involvement with ischemia or hemorrhage. CT scans may be normal within the first 12–24 hours of an ischemic stroke and are more useful to assess for hemorrhagic ischemic stroke. A CT scan performed early after the onset of neurologic deficits is valuable in excluding intracranial hemorrhage. This information may be helpful in the early stages of management and in the decision to treat with anticoagulants. Given the high incidence of ischemic stroke mimickers in the pediatric population (complicated migraine, Todd paralysis, encephalitis, etc.), urgent MRI with DWI is increasingly used in pediatric stroke centers.

Vascular imaging of the head and neck is an important part of pediatric ischemic stroke management and may include CTA, MRA, or conventional angiography. In studies in which both MRA and cerebral angiography have been used, up to 80% of patients with idiopathic childhood-onset arterial ischemic stroke have demonstrated a vascular abnormality. Vascular imaging is helpful in diagnosing disorders such as transient cerebral arteriopathy, arteriopathy associated with sickle cell disease, moyamoya disease, arterial dissection, aneurysm, fibromuscular dysplasia, and vasculitis. Recent studies have demonstrated that patients with vascular abnormalities on MRA or conventional angiography have a much greater recurrence risk than patients with normal vessels. When vessel imaging is performed, all major vessels should be studied from the aortic arch. With evidence of fibromuscular dysplasia in the intracranial or extracranial vessels, renal arteriography is indicated.

Differential Diagnosis

Patients with an acute onset of neurologic deficits must be evaluated for other disorders that can cause focal neurologic deficits. Hypoglycemia, prolonged focal seizures, a prolonged postictal paresis (Todd paralysis), acute disseminated encephalomyelitis, meningitis, hemorrhagic stroke, encephalitis, hemiplegic migraine, ingestion, and brain abscess...
should all be considered. Migraine with focal neurologic deficits may be difficult to differentiate initially from ischemic stroke. Occasionally the onset of a neurodegenerative disorder (eg, adrenoleukodystrophy or mitochondrial disorder) may begin with the abrupt onset of seizures and focal neurologic deficits. The possibility of drug abuse (particularly cocaine) and other toxic exposures must be investigated diligently in any patient with acute mental status changes.

**Treatment**

The initial management of ischemic stroke in a child is aimed at providing support for pulmonary, cardiovascular, and renal function. Patients should be administered oxygen and are usually monitored in an intensive care setting. Typically, maintenance fluids without glucose are indicated to augment vascular volume. Pyrexia should be treated aggressively. Specific treatment of ischemic stroke, including blood pressure management, fluid management, and anticoagulation measures, depends partly on the underlying pathogenesis. Meningitis and other infections should be treated. Sickle cell patients require specialists in hematology to perform urgent exchange transfusion and most patients will require chronic transfusions after hospital discharge. Moyamoya is usually treated with surgical revascularization, while patients with vasculitis are often given anti-inflammatory therapy, such as steroids.

In most idiopathic cases of childhood ischemic stroke, anticoagulation or aspirin therapy is indicated. The Royal College of Physicians Pediatric Ischemic Stroke Working Group recommends aspirin, 5 mg/kg daily, as soon as the diagnosis is made. Aspirin use appears safe but the American Heart Association (AHA) recommends yearly flu-shots and close monitoring for Reye syndrome in pediatric ischemic stroke patients. Other groups, such as the American College of Chest Physicians, recommend initial treatment with anticoagulants, such as low-molecular-weight heparin or unfractionated heparin, for 5–7 days (while excluding cardiac sources and dissection) and then switching to aspirin (3–5 mg/d). Recent AHA guidelines support both of these approaches. In some situations, such as arterial dissection or cardio-embolic events, heparinization is usually considered.

In adults with cerebrovascular thrombosis, thrombolytic agents (tissue plasminogen activator) used systemically or delivered directly to a vascular thrombotic lesion using interventional radiologic techniques has been shown to improve outcome in the appropriate patients. Although case reports exist, studies in children have not been completed. AHA guidelines recommend against the thrombolysis, outside of a clinical trial for children, while equivocating in the case of adolescents. Given the time-lag to diagnosis and the lack of evidence in children, tissue plasminogen activator is currently used in less than 2% of U.S. children with ischemic stroke. Cleary, the use of tPA should be limited to practitioner who are familiar with cerebrovascular disease in children.

Long-term management requires intensive rehabilitation efforts and therapy aimed at improving the child’s language, educational, and psychological performance. Length of treatment with antithrombotic agents, such as low-molecular-weight heparin and aspirin, is still being studied and depends on the etiology. Constraint therapy may be particularly helpful in cases of hemiparesis.

**Prognosis**

The outcome of ischemic stroke in infants and children is variable. Roughly one-third may have minimal or no deficits, one-third are moderately affected, and one-third are severely affected. Underlying predisposing conditions and the vascular territory involved play a role in dictating the outcome for an individual patient. When the ischemic stroke involves extremely large portions of one hemisphere or large portions of both hemispheres and cerebral edema develops, the patient’s level of consciousness may deteriorate rapidly, and death may occur within the first few days. In contrast, some patients may achieve almost complete recovery of neurologic function within several days if the cerebral territory is small. Seizures, either focal or generalized, may occur in 30%–50% of patients at some point in the course of their cerebrovascular disorder. Recurrence is up to 20%, and is more prominent in some conditions, such as protein C deficiency, lipoprotein (a) abnormalities, and arteriopathies. Chronic problems with learning, behavior, and activity are common. Long-term follow-up with a pediatric neurologist is indicated and if possible a multidisciplinary ischemic stroke team.

**2. Perinatal Arterial Ischemic Stroke**

Perinatal arterial ischemic stroke is more common than childhood ischemic stroke affecting 1:4000 children. Perinatal ischemic stroke has two distinct presentations: acute and delayed. Most patients with an acute presentation develop neonatal seizures during the first week of life, usually in association with a perinatal event. The seizures in acute perinatal ischemic stroke are often focal motor seizures of the contralateral arm and sometimes leg. The presentation is stereotypical because of the predilection of the ischemic stroke to occur in the middle cerebral artery. The presence of diffusion-weighted abnormalities on an MRI scan confirms an acute perinatal ischemic stroke during the first week of life. Other patients present with delayed symptoms, typically with an evolving hemiparesis at an average of 4–8 months. These patients are termed presumed perinatal arterial ischemic stroke.

Acute treatment of a perinatal ischemic stroke is usually limited to neonates with seizures. Unless an embolic source is identified, aspirin and anticoagulation are almost never prescribed. Management is based on supportive care, identification of comorbid conditions, and treatment of
seizures. In acute perinatal ischemic stroke, treatable causes such as infection, cardiac embolus, metabolic derangement, and inherited thrombophilia must be ruled out. In appropriate cases, echocardiography, thrombophilia evaluation, and lumbar puncture are indicated. Supportive management focuses on general measures, such as normalizing glucose levels, monitoring blood pressure, and optimizing oxygenation.

Long-term management of perinatal ischemic stroke usually starts with identifying risk factors, which might include prothrombotic states, cardiac disease, drugs, and dehydration. Although prothrombotic abnormalities with the best evidence of association are factor V Leiden, protein C deficiency, and high lipoprotein (a), many practitioners perform an extensive hematologic workup. Maternal risk factors such as infertility, antiphospholipid antibodies, placental infection, premature rupture of membranes, and cocaine exposure are all independently associated with perinatal ischemic stroke.

The prognosis for children who sustain perinatal ischemic strokes has been considered better than for children or adults with ischemic strokes, presumably because of the plasticity of the neonatal brain. Recent evidence, however, suggests that as patients progress into their school-age years, they may have previously unrecognized cognitive challenges, such as learning deficits or attention-deficit/hyperactivity disorder. Twenty to forty percent of patients who experience perinatal ischemic strokes are neurologically normal. Motor impairment affects about 40%–60% of patients and is predominantly hemiplegic cerebral palsy. In acute presentations, MRI can be predictive of motor impairment, as descending corticospinal tract diffusion-weighted MRI signal is associated with a higher incidence of hemiplegia. Language delays, behavioral abnormalities, and cognitive deficits are seen in 20%–40% of infants who experience perinatal ischemic strokes. Patients are also at an increased risk for seizures. Ischemic stroke recurs in 3% of neonates and is usually associated with a prothrombotic abnormality or an underlying illness, such as cardiac malformation or infection. Given the low incidence of recurrence, long-term management is largely rehabilitative, including constraint therapies.


CONGENITAL MALFORMATIONS OF THE NERVOUS SYSTEM

Malformations of the nervous system occur in 1%–3% of living neonates and are present in 40% of infants who die. Developmental anomalies of the CNS may result from a variety of causes, including infectious, toxic, genetic, metabolic, and vascular insults that affect the fetus. The specific type of malformation that results from such insults, however, may depend more on the gestational period during which the insult occurs than on the specific cause. The period of induction, days 0–28 of gestation, is the period during which the neural plate appears and the neural tube forms and closes.
Insults during this phase can result in a major absence of neural structures, such as anencephaly, or in a defect of neural tube closure, such as spina bifida, meningomyelocele, or encephalocele. Cellular proliferation and migration characterize neural development that occurs after 28 days’ gestation. During this period, lissencephaly, pachygyria, agyria, and agenesis of the corpus callosum may result from genetic, toxic, infectious, or metabolic disruptions.

1. Abnormalities of Neural Tube Closure

Defects of neural tube closure constitute some of the most common congenital malformations affecting the nervous system, occurring in 1:1000 live births. Spina bifida with associated meningomyelocele or meningocele is commonly found in the lumbar region. Depending on the extent and severity of the involvement of the spinal cord and peripheral nerves, lower extremity weakness, bowel and bladder dysfunction, and hip dislocation may be present. Delivery via cesarean section followed by early surgical closure of meningoceles and meningomyeloceles is usually indicated. Additional treatment is necessary to manage chronic abnormalities of the urinary tract, orthopedic abnormalities such as kyphosis and scoliosis, and paresis of the lower extremities. Hydrocephalus associated with meningomyelocele usually requires ventriculoperitoneal shunting.

Diagnosis & Prevention

In general, the diagnosis of neural tube defects is obvious at the time of birth. The diagnosis may be strongly suspected prenataly on the basis of ultrasonographic findings and the presence of elevated α-fetoprotein in the amniotic fluid. All women of childbearing age should take prophylactic folate, which can prevent these defects and decrease the risk of recurrence by 70%.

2. Disorders of Cortical Development

Malformations of cortical development are increasingly recognized with the advent of MRI techniques and the explosion of newly identified genetic syndromes. They are subdivided into disorders based on (1) neuronal and glial proliferation or apoptosis dysfunction (2) abnormal migration or (3) abnormal post-migrational development. In this section, we provide some common examples of these subtypes.

A. Microcephaly and Megalencephaly

Common examples of neuronal and glial proliferation dysfunction are microcephalies and megalencephalies. Microcephaly is discussed below in abnormal head size section. Megalencephaly results in overdevelopment most commonly one hemisphere (hemimegalencephaly) and results in macrocephaly. Spectrum of clinical findings are broad and depend on the underlying etiology include developmental delay, seizures, and dysmorphisms.

B. Lissencephaly

Lissencephaly is the classic example of abnormal migration. This severe malformation of the brain is characterized by a smooth cortical surface with minimal sulcal and gyral development similar to a fetal brain at the end of the first trimester. Lissencephalic brains have a primitive cytoarchitectural construction with a four-layered cerebral mantle instead of the mature six-layered mantle. Quantities of pachygyria (thick gyri) and agyria (absence of gyri) may vary in an anterior to posterior gradient and help guide genetic diagnosis. Patients with lissencephaly usually have severe neurodevelopmental delay, microcephaly, and seizures (including infantile spasms); however, there is significant phenotypic heterogeneity. These disorders are autosomal recessive and X-linked disorders. LIS1 mutations on chromosome 17 are associated with dysmorphic features (Miller-Dieker syndrome). Another autosomal recessive mutation, involving the RELN gene, results in a lissencephaly with severe hippocampal and cerebellar hypoplasia. X-linked syndromes involving mutations in DCX (double cortin) and ARX (associated with ambiguous genitalia) affect males with lissencephaly and females with band heterotopias or agenesis of the corpus callosum.

Lissencephaly with hydrocephalus, cerebellar malformations, or muscular dystrophy may occur in Walker-Warburg syndrome (POMT1 mutation), Fukuyama muscular dystrophy (fukutin mutation), and muscle-eye-brain disease (POMGnT1 mutation). It is particularly important to identify these syndromes not only because clinical tests are available, but also because of their genetic implications. Lissencephaly may be a component of Zellweger syndrome, a metabolic peroxisomal abnormality with the presence of elevated concentrations of very-long-chain fatty acids in plasma. No specific treatment for lissencephaly is available, and seizures are often difficult to control with standard medications.

C. Polymicrogyria

Polymicrogyria is a post-migrational disorder. Subcategories of polymicrogyria include those associated with schizencephaly and bilateral perisylvian polymicrogyria. Patients with bilateral perisylvian polymicrogyria pseudobulbar palsy, variable cognitive deficits, facial diplegia with dysarthria and drooling, developmental delay, and epilepsy. Seizures are often difficult to control with anti-epileptic drugs; some patients have benefited from corpus callosotomy. The cause of this syndrome is as yet unknown, although intraventricular cerebral ischemic injury has been postulated. Therapy is aimed at improving speech and otoromotor functions and controlling seizures.

3. Disorders of Cerebellum Development

A. Arnold-Chiari Malformations

Arnold-Chiari malformation type I consists of elongation and displacement of the caudal end of the brainstem into the
spinal canal with protrusion of the cerebellar tonsils through the foramen magnum. In association with this hindbrain malformation, minor to moderate abnormalities of the base of the skull often occur, including basilar impression (platybasia) and small foramen magnum. Arnold-Chiari malformation type I may remain asymptomatic for years, but in older children and young adults it may cause progressive ataxia, paresis of the lower cranial nerves, and progressive vertigo; rarely may it present with apnea or disordered breathing. Posterior cervical laminectomy may be necessary to provide relief from cervical cord compression. Venticuloperitoneal shunting may be required for associated hydrocephalus.

Arnold-Chiari malformation type II consists of the malformations found in Arnold-Chiari type I plus an associated lumbar meningomyelocele. Hydrocephalus develops in approximately 90% of children with Arnold-Chiari malformation type II. These patients may also have aqueductal stenosis, hydromyelia or syringomyelia, and cortical dysplasias. The clinical manifestations of Arnold-Chiari malformation type II are most commonly caused by the associated hydrocephalus and meningomyelocele. In addition, dysfunction of the lower cranial nerves may be present. Up to 25% of patients may have epilepsy, likely secondary to the cortical dysplasias. Higher lesions of the thoracic or upper lumbar cord are associated with mild mental retardation in about half of patients, while over 85% of patients with lower level lesions have normal intelligence quotients (IQs). Many patients will develop a latent sensitivity or allergy.

Arnold-Chiari malformation type III is characterized by occipital encephalocele, a closure defect of the rostral (upper) end of the neural tube. Hydrocephalus is extremely common with this malformation.

**B. Dandy-Walker Syndrome**

Despite being described nearly a century ago, the exact definition of the Dandy-Walker syndrome is still debated. Classically, it is characterized by aplasia of the vermis, cystic enlargement of the fourth ventricle, rostral displacement of the tentorium, and absence or atresia of the foramina of Magendie and Luschka. Although hydrocephalus is usually not present congenitally, it develops within the first few months of life. Ninety percent of patients who develop hydrocephalus do so by age 1 year.

On physical examination, a rounded protuberance or exaggeration of the cranial occiput often exists. In the absence of hydrocephalus and increased intracranial pressure, few physical findings may be present to suggest neurologic dysfunction. An ataxic syndrome occurs in fewer than 20% of patients and is usually late in appearing. Many long-term neurologic deficits result directly from hydrocephalus. Diagnosis of Dandy-Walker syndrome is confirmed by CT or MRI scanning of the head. Treatment is directed at the management of hydrocephalus.

**4. Agenesis of the Corpus Callosum**

Agenesis of the corpus callosum, once thought to be a rare cerebral malformation, is more frequently diagnosed with modern neuroimaging techniques; occurring in 1:4000 births. The cause of this malformation is unknown. Occasionally it appears to be inherited in either an autosomal dominant or recessive pattern. It has been associated with X-linked patterns (ARX as mentioned earlier). Most cases are sporadic. Maldevelopment of the corpus callosum may be partial or complete. No specific syndrome is typical of agenesis of the corpus callosum, although many patients have seizures, developmental delay, microcephaly, or mental retardation.

Neurologic abnormalities may be related to microscopic cytoarchitectural abnormalities of the brain that occur in association with agenesis of the corpus callosum. The malformation may be found coincidentally by neuroimaging studies in otherwise normal patients and has been described as a coincidental finding at autopsy in neurologically normal individuals. A special form of agenesis of the corpus callosum occurs in Aicardi syndrome. In this X-linked disorder, agenesis of the corpus callosum is associated with other cystic intracerebral abnormalities, early infantile spasms, mental retardation, lacunar chorioretinopathy, and vertebral body abnormalities.

**5. Hydrocephalus**

Hydrocephalus is an increased volume of CSF with progressive ventricular dilation. In communicating hydrocephalus, CSF circulates through the ventricular system and into the subarachnoid space without obstruction. In noncommunicating hydrocephalus, an obstruction blocks the flow of CSF within the ventricular system or blocks the egress of CSF from the ventricular system into the subarachnoid space. A wide variety of disorders, such as hemorrhage, infection, tumors, and congenital malformations, may play a causal role in the development of hydrocephalus. The presence of radialised thumbs and aqueductal stenosis is suggestive of X-linked hydrocephalus due to the clinically testable neural cell adhesion molecule-L1 deficiency.

Clinical features of hydrocephalus include macrocephaly, an excessive rate of head growth, irritability, bulging or full fontanelle, vomiting, loss of appetite, impaired upgaze, impaired extraocular movements, hypertonia of the lower extremities, and generalized hyperreflexia. Without treatment, optic atrophy may occur. In infants, papilledema may not be present, whereas older children with closed cranial sutures can eventually develop swelling of the optic disk. Hydrocephalus can be diagnosed on the basis of the clinical course, findings on physical examination, and CT or MRI scan.

Treatment of hydrocephalus is directed at providing an alternative outlet for CSF from the intracranial compartment. The most common method is ventriculoperitoneal shunting.
Other treatment should be directed, if possible, at the underlying cause of the hydrocephalus.

**References**


**ABNORMAL HEAD SIZE**

Bone plates of the skull have almost no intrinsic capacity to enlarge or grow. Unlike long bones, they depend on extrinsic forces to stimulate new bone formation at the suture lines. Although gravity and traction on bone by muscle and scalp probably stimulate some growth, the single most important stimulus for head growth during infancy and childhood is brain growth. Therefore, accurate assessment of head growth is one of the most important aspects of the neurologic examination of young children. A head circumference that is two standard deviations above or below the mean for age requires investigation and explanation.

1. **Craniosynostosis**

Craniosynostosis, or premature closure of cranial sutures, is usually sporadic and idiopathic. However, some patients have hereditary disorders, such as Apert syndrome and Crouzon disease that are associated with abnormalities of the digits, extremities, and heart. Craniosynostosis may be associated with an underlying metabolic disturbance such as hyperthyroidism and hypophosphatasia.

The most common form of craniosynostosis involves the sagittal suture and results in scaphocephaly, an elongation of the head in the anterior to posterior direction. Premature closure of the coronal sutures causes brachycephaly, an increase in cranial growth from left to right. Unless many or all cranial sutures close prematurely, intracranial volume will not be compromised, and the brain’s growth will not be impaired. Closure of only one or a few sutures will not cause impaired brain growth or neurologic dysfunction.

A common complaint is abnormal head shape secondary to positional plagiocephaly due to supine sleep position (“positional”), not from occipital lambdoid suture craniosynostosis.

Repositioning the head during naps (eg, with a rolled towel under one shoulder), and “tummy time” when awake are remedies. Rarely is a skull film or consultation necessary to rule out craniosynostosis. Most positional nonsynostotic plagiocephaly resolves by age 2 years.

Management of craniosynostosis is directed at preserving normal skull shape and consists of excising the fused suture and applying material to the edge of the craniectomy to prevent reossification of the bone edges. The best cosmetic effect on the skull is achieved when surgery is performed during the first 6 months of life.

2. **Microcephaly**

A head circumference more than two standard deviations below the mean for age and sex is by definition microcephaly. More important than a single head circumference measurement is the rate or pattern of head growth over time. Head circumference measurements that progressively drop to lower percentiles with increasing age are indicative of a process or condition that has impaired the brain’s capacity to grow. Primary microcephaly is present at birth and secondary microcephaly develops postnatally. The causes of microcephaly are numerous. Some examples are listed in Table 25–17.

**Table 25–17. Causes of microcephaly.**

<table>
<thead>
<tr>
<th>Causes</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosomal</td>
<td>Trisomies 13, 18, 21</td>
</tr>
<tr>
<td>Malformation</td>
<td>Lissencephaly, schizencephaly</td>
</tr>
<tr>
<td>Syndromes</td>
<td>Rubenstein-Taybi, Cornelia de Lange, Angelman</td>
</tr>
<tr>
<td>Toxins</td>
<td>Alcohol, anticonvulsants (?), maternal phenylketonuria (PKU)</td>
</tr>
<tr>
<td>Infections (intrauterine)</td>
<td>TORCHS&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Radiation</td>
<td>Maternal pelvis, first and second trimester</td>
</tr>
<tr>
<td>Placental insufficiency</td>
<td>Toxemia, infection, small for gestational age</td>
</tr>
<tr>
<td>Familial</td>
<td>Autosomal dominant, autosomal recessive</td>
</tr>
<tr>
<td>Perinatal hypoxia, trauma</td>
<td>Birth asphyxia, injury</td>
</tr>
<tr>
<td>Infections (perinatal)</td>
<td>Bacterial meningitis (especially group B streptococci), Viral encephalitis (enterovirus, herpes simplex)</td>
</tr>
<tr>
<td>Metabolic</td>
<td>Glut-1 deficiency, PKU, maple syrup urine disease</td>
</tr>
<tr>
<td>Degenerative disease</td>
<td>Tay-Sachs, Krabbe</td>
</tr>
</tbody>
</table>

<sup>a</sup>TORCHS is a mnemonic for toxoplasmosis, other infections, rubella, cytomegalovirus, herpes simplex, and syphilis.
Clinical Findings

A. Symptoms and Signs
Microcephaly may be suspected in the full-term newborn and in infants up to age 6 months whose chest circumference exceeds the head circumference (unless the child is very obese). Microcephaly may be discovered when the child is examined because of delayed developmental milestones or neurologic problems, such as seizures or spasticity. There may be a marked backward slope of the forehead (as in familial microcephaly) with narrowing of the bitemporal diameter. The fontanelle may close earlier than expected, and sutures may be prominent. Abnormal dermatoglyphics (neurocutaneous marks) may be present when the injury occurred before 19 weeks’ gestation. Parents’ heads may need measurement to rule out a rare dominantly inherited familial microcephaly. Eye, cardiac, and bone abnormalities may also be clues to congenital infection.

B. Laboratory Findings
Laboratory findings vary with the cause. In the newborn, IgM antibody titers for toxoplasmosis, rubella, CMV, herpes simplex virus, and syphilis and urine culture for CMV may be assessed for sign of congenital infection. Genetic testing can be targeted based on history and physical examination. Genetic screening tests may be considered such as array Comparative Genomic Hybridization (CGH) or karyotyping. Most metabolic disorders present either as congenital syndromic microcephaly (ie, dysmorphisms present on examination) or with postnatal microcephaly and global developmental delay. Nonsyndromic microcephaly presenting at birth may be due to maternal PKU (maternal serum with elevated phenylalanine), phosphoglycerate dehydrogenase deficiency (disorder of L-serine biosynthesis), or Amish lethal microcephaly (elevated urine alpha-ketoglutaric acid).

C. Imaging Studies
CT or MRI scans may aid in diagnosis and prognosis. These studies may demonstrate calcifications, malformations, or atrophic patterns that suggest specific congenital infections or genetic syndromes. Plain skull radiographs are of limited value. MRI is most helpful in definitive diagnosis, prognosis, and genetic counseling.

Differential Diagnosis
Common forms of craniosynostosis involving sagittal, coronal, and lambdoidal sutures are associated with abnormally shaped heads but do not cause microcephaly. Recognizing treatable causes of undergrowth of the brain such as hypopituitarism or hypothyroidism and severe protein-calorie undernutrition is critical so that therapy can be initiated as early as possible. Refer to Table 25–17 for examples of causes of microcephaly.

Treatment & Prognosis
Genetic counseling should be offered to the family of any infant with significant microcephaly. Many children with microcephaly are developmentally delayed. The notable exceptions are found in cases of hypopituitarism (rare) or familial autosomal dominant microcephaly. Individuals may need screening for vision and hearing abnormalities as well as supportive therapies for developmental delay.

3. Macrocephaly
A head circumference more than two standard deviations above the mean for age and sex denotes macrocephaly. Rapid head growth rate suggests increased intracranial pressure, most likely caused by hydrocephalus, extra-axial fluid collections, or neoplasms. Macrocephaly with normal head growth rate suggests familial macrocephaly or true megalencephaly, as might occur in neurofibromatosis. Other causes and examples of macrocephaly are listed in Table 25–18.

Differential Diagnosis
A. Catch-Up Growth
When a neurologically intact premature infant whose rapid head enlargement is most marked in the first weeks of life, or the infant in the early phase of recovery from...
deprivation dwarfism. As the expected normal size is reached, head growth slows and then resumes a normal growth pattern.

### B. Familial Macrocephaly

This condition may exist when another family member has an unusually large head with no signs or symptoms referable to such disorders as neurocutaneous dysplasias (especially neurofibromatosis) or cerebral gigantism (Sotos syndrome), or when there are no significant mental or neurologic abnormalities in the child.

### C. Hydrocephalus

See section Congenital Malformations of the Nervous System. Other causes of macrocephaly are dependent on the etiology such as metabolic or genetic causes.

#### Clinical Findings

Clinical and laboratory findings vary with the underlying process. In infants, transillumination of the skull with an intensely bright light in a completely darkened room may disclose subdural effusions, hydrocephalus, hydrencephaly, and cystic defects. A surgically or medically treatable condition must be ruled out. Thus, the first decision is whether and when to perform an imaging study.

#### A. Imaging Studies

An imaging study is necessary if signs or symptoms of increased intracranial pressure are present (see Table 25–14). If the fontanelle is open, cranial ultrasonography can assess ventricular size and diagnose or exclude hydrocephalus. CT or MRI scans are used to define any structural cause of macrocephaly and to identify an operable disorder. Even when the condition is untreatable (or does not require treatment), the information gained may permit more accurate diagnosis and prognosis, guide management and genetic counseling, and serve as a basis for comparison should future abnormal cranial growth or neurologic changes necessitate a repeat study.

### NEUROCUTANEOUS DYSPLASIAS

Neurocutaneous dysplasias are diseases of the neuroectoderm and sometimes involve endoderm and mesoderm. Birthmarks and later appearing skin growths suggest a need to look for brain, spinal cord, and eye disease. Hamartomas (histologically normal tissue growing abnormally rapidly or in aberrant sites) are common. The most common dysplasias are dominantly inherited. Benign and even malignant tumors may develop in these conditions.

#### 1. Neurofibromatosis Type 1 (Von Recklinghausen Disease)

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- More than six café au lait spots 5 mm in greatest diameter in prepubertal individuals and over 15 mm in greatest diameter in postpubertal individuals.
- Two or more neurofibromas of any type or one plexiform neurofibroma.
- Freckling in the axillary or inguinal regions.
- Optic glioma.
- Two or more Lisch nodules (iris hamartomas).
- Distinctive bony lesions, such as sphenoid dysplasia or thinning of long bone with or without pseudarthroses.
- First-degree relative (parent, sibling, offspring) with neurofibromatosis type 1 by above criteria.

Neurofibromatosis is a multisystem disorder with a prevalence of 1:3000. Fifty percent of cases are due to new mutations in the NF1 gene. Forty percent of patients develop medical complications over their lifetime. Two or more positive criteria are diagnostic; others may appear over time. Children with six or more café au lait spots and no other positive criteria should be followed; 95% develop neurofibromatosis type 1.
Clinical Findings

A. Symptoms and Signs

The most common presenting symptoms are cognitive or psychomotor problems; 40% have learning disabilities, and 8% have mental retardation. The history should focus on lumps or masses causing disfigurement, functional problems, or pain. Café au lait spots are seen in most affected children by age 1 year. The typical skin lesion is 10–30 mm, ovoid, and smooth-bordered. Discrete well demarcated neurofibromas or lipomas can occur at any age. Plexiform neurofibromas are diffuse and can invade normal tissue. They are congenital and are frequently detected during periods of rapid growth. If the face or a limb is involved, there may be associated hypertrophy or overgrowth.

Clinicians should evaluate head circumference, blood pressure, vision, hearing, spine for scoliosis, and limbs for pseudarthroses. Strabismus or amblyopia dictates a search for optic glioma, a common tumor in neurofibromatosis. The eye examination should include a check for proptosis and iris Lisch nodules. The optic disk should be examined for atrophy or papilledema. Any progressive or new neurologic deficit calls for studies to rule out tumor of the spinal cord or CNS. Short stature and precocious puberty are occasional findings.

Parents should be examined in detail. Family history is important in identifying dominant gene manifestations.

B. Laboratory Findings

Laboratory tests are not likely to be of value in asymptomatic patients. Selected patients require brain MRI with special cuts through the optic nerves to rule out optic glioma. A common finding is hyperintense, nonmass lesions seen on T2 weighted MRI images. These “unidentified bright objects” (“UBOs”) often disappear with time. Hypertension necessitates evaluation of renal arteries for dysplasia and stenosis. Cognitive and school achievement testing may be indicated. Scoliosis or limb abnormalities should be studied by appropriate imaging.

Differential Diagnosis

Patients with McCune-Albright syndrome often have larger café au lait spots with precocious puberty, polyostotic fibrous dysplasia, and hyperfunctioning endocrinopathies. One or two café au lait spots are often seen in normal children. A large solitary café au lait spot is usually innocent.

Complications

Seizures, deafness, short stature, early puberty, and hypertension occur in less than 25% of patients with neurofibromatosis. Optic glioma occurs in about 15%. Although the tumor may be apparent at an early age, it rarely causes functional problems and is usually nonprogressive. Patients have a slightly increased risk (5% life risk) for various malignancies. Other tumors may be benign but may cause significant morbidity and mortality because of their size and location in a vital or enclosed space, for example, plexiform neurofibromas. These “benign” infiltrating tumors can disfigure facially, impair spinal cord, renal, or pelvic-leg function, and are often vexing to treat. PET scans are helpful to detect malignant transformations (to sarcoma). Experimental trials of interferons and mTOR inhibitors (rapamycin=sirolimus) are ongoing at many centers. Strokes from NF-1 cerebral arteriopathy are noteworthy; arteriopathy of renal arteries can cause reversible hypertension in childhood.

Treatment

Genetic counseling and screening is important and the risk to siblings is 50%. The disease may be progressive, with serious complications occasionally seen. Patients sometimes worsen during puberty or pregnancy. Annual or semiannual visits are important in the early detection of school problems, or bony or neurologic abnormalities. The following parameters should be recorded at each annual visit:

1. Child’s development and progress at school
2. Visual symptoms, visual acuity, and funduscopy until age 7 years (to detect optic pathway glioma, glaucoma)
3. Head circumference (rapid increase might indicate tumor or hydrocephalus)
4. Height (to detect abnormal pubertal development)
5. Weight (to detect abnormal pubertal development)
6. Pubertal development (to detect delayed or precocious puberty due to pituitary or hypothalamic lesion)
7. Blood pressure (to detect renal artery stenosis or pheochromocytoma)
8. Cardiovascular examination (for congenital heart disease, especially pulmonary stenosis)
9. Evaluation of spine (for scoliosis and underlying plexiform neurofibromas)
10. Evaluation of the skin (for cutaneous, subcutaneous, and plexiform neurofibromas)
11. Examination of other systems, depending on specific symptoms

Multidisciplinary clinics at medical centers around the United States are excellent resources. Prenatal diagnosis is probably on the horizon, but the variability of manifestations (trivial to severe) will make therapeutic abortion an unlikely option. Chromosomal linkage studies are under way (chromosome 17q11.2). Information for lay people and physicians is available from the National Neurofibromatosis Foundation (http://www.nf.org).
2. Neurofibromatosis Type 2

NF-2 is a dominantly inherited neoplasia syndrome manifested as bilateral vestibular schwannomas (VIII nerve tumors) which may appear in childhood (with loss of hearing, etc). Café au lait spots are not part of NF-2. In 50% of patients the mutation occurs de novo (neither parent carrying the faulty gene). Tumors of cranial nerve VIII (Schwannomas) virtually never occur in neurofibromatosis type 1 but are the rule in neurofibromatosis type 2, a rare autosomal dominant disease. Café au lait spots are less common in neurofibromatosis type 2. Other tumors of the brain and spinal cord are common: meningiomas, other cranial nerve schwannomas, and ependymomas. Posterior lens cataracts are a third risk.

3. Tuberous Sclerosis (Bourneville Disease)

Tuberous sclerosis (TS) is a dominantly inherited disease. Almost all individuals have deletions on chromosome 9 (TSCI gene) or 16 (TSC2 gene). The gene products hamartin and tuberin have tumor-suppressing effects, therefore TS patients are more susceptible to hamartomas in many organs and brain tubers and tumors. A triad of seizures, mental retardation, and adenoma sebaceum occurs in only 33% of patients. Parents formerly thought not to harbor the gene are now being diagnosed as asymptomatic carriers.

Clinical Findings

Tuberous sclerosis has a wide spectrum of disease: asymptomatic with only skin findings to severe infantile spasms and mental retardation. Seizures in early infancy correlate with later mental retardation.

A. Symptoms and Signs (Table 25-19)

1. Dermatologic features—Skin findings bring most patients to the physician’s attention. Ninety-six percent of patients have one or more hypomelanotic macules, facial angiofibromas, ungual fibromas, or shagreen (leatherly orange peel) patches. Adenoma sebaceum (facial skin hamartomas) may first appear in early childhood, often on the cheek, chin, and dry sites of the skin where acne is not usually seen. Ash-leaf spots are off-white hypomelanotic macules are often oval or “ash leaf” in shape and follow dermatomes. A Wood lamp (ultraviolet light) shows the macules more clearly. The equivalent to an ash leaf spot in the scalp is poliosis (whitened hair patch). Subungual or periungual fibromas are more common in the toes. Café au lait spots are occasionally seen. Fibrous or raised plaques may resemble coalescent angiofibromas.

2. Neurologic features—Seizures are the most common and up to 20% of patients with infantile spasms have TS. Thus, any patient presenting with infantile spasms (and the parents as well) should be evaluated for this disorder. An imaging study of the CNS, such as a CT scan, may show calcified subependymal nodules; MRI may show dysmyelinating white matter lesions or cortical tubers. Virtually any kind of symptomatic seizure (eg, atypical absence, partial complex, and generalized tonic-clonic seizures) may occur. Mental retardation occurs in up to 50% of patients referred to tertiary care centers; the incidence is probably much lower in randomly selected patients. Patients with seizures are more prone to mental retardation or learning disabilities.

3. Renal lesions—Renal cysts or angiomyolipomas may be asymptomatic. Hematuria or obstruction of urine flow sometimes occurs; the latter requires operation. Ultrasonography of the kidneys should be done in any patient suspected of tuberous sclerosis, both to aid in diagnosis if lesions are found and to rule out renal obstructive disease.

4. Cardiopulmonary involvement—Rarely cystic lung disease may occur. Rhabdomyomas of the heart may be asymptomatic but can lead to outflow obstruction, conduction difficulties, and death. Chest radiographs and echocardiograms can detect these rare manifestations. Cardiac rhabdomyoma may be detected on prenatal ultrasound examination, rhabdomyomas typically regress with age, so

<table>
<thead>
<tr>
<th>Table 25-19. Major and minor criteria for tuberous sclerosis.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Major Features</strong></td>
</tr>
<tr>
<td>Facial angiofibromas or forehead plaque</td>
</tr>
<tr>
<td>Nontraumatic ungual or periungual fibroma</td>
</tr>
<tr>
<td>Hypomelanotic macules (three or more)</td>
</tr>
<tr>
<td>Shagreen patch (connective tissue nevus)</td>
</tr>
<tr>
<td>Multiple retinal nodular hamartomas</td>
</tr>
<tr>
<td>Glioneuronal hamartoma (cortical tuber)</td>
</tr>
<tr>
<td>Subependymal nodule</td>
</tr>
<tr>
<td>Subependymal giant cell astrocytoma</td>
</tr>
<tr>
<td>Cardiac rhabdomyoma, single or multiple</td>
</tr>
<tr>
<td>Lymphangiomatoymatosis</td>
</tr>
<tr>
<td>Renal angiomyolipoma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definite tuberous sclerosis complex: either two major features or one major feature plus two minor features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probable tuberous sclerosis complex: one major plus one minor feature</td>
</tr>
<tr>
<td>Possible tuberous sclerosis complex: either one major feature or two or more minor features</td>
</tr>
</tbody>
</table>
symptomatic presentations are typically in the perinatal period or infancy when rhabdomyomas are largest.

5. **Eye involvement**—Retinal hamartomas are often near the disk and usually asymptomatic.

6. **Skeletal involvement**—Cystic rarefactions can be found in the bones of the fingers or toes.

### B. Imaging Studies and Special Tests

Plain radiographs may detect areas of thickening within the skull, spine, and pelvis, and cystic lesions in the hands and feet. Chest radiographs may show lung honeycombing. MR and CT imaging can show the virtually pathognomonic subependymal nodular calcifications, sometimes widened gyri or tubers, and brain tumors. Hypomyelinated lesions may be seen with MRI. EEG should be considered in any TS patient with new onset spells concerning for seizures.

#### Treatment

Therapy is as indicated by underlying disease (eg, seizures and tumors of the brain, kidney, and heart). Skin lesions on the face may need dermabrasion or laser treatment. Genetic counseling emphasizes identification of the carrier. The risk of appearance in offspring if either parent is a carrier is 50%. The patient should be seen annually for counseling and reexamination in childhood. Identification of the chromosomes (9,16; TSC1 and TSC2 genes) may in the future make intrauterine diagnosis possible. Treatment of refractory epilepsy may lead to surgical extirpation of epileptiform tuber sites.

Recent research has suggested the “mammalian target of rapamycin” (mTOR) inhibitors (eg, rapamycin) may inhibit epilepsy in tuberous sclerosis, even shrink dysplasia/tubers, tumors, adenoma sebacea, and possibly improve learning.

### 4. Encephalofacial Angiomatosis (Sturge-Weber Disease)

Sturge-Weber disease is a sporadic disease which consists of a facial port wine nevus involving the upper part of the face (in the first division of cranial nerve V), a venous Angioma of the meninges in the occipitoparietal regions, and choroidal angioma. The syndrome has been described without the facial nevus (rare, type III, exclusive leptomeningal angioma).

#### Clinical Findings

**A. Symptoms and Signs**

In infancy, the eye may show congenital glaucoma, or buphthalmos, with a cloudy, enlarged cornea. In early stages, the facial nevus may be the only indication, with no findings in the brain even on radiologic studies. The characteristic cortical atrophy, calcifications of the cortex, and meningeal angiomatosis may appear with time, solidifying the diagnosis.

Physical examination may show focal seizures or hemiparesis on the side contralateral to the cerebral lesion. The facial nevus may be much more extensive than the first division of cranial nerve V; it can involve the lower face, mouth, lip, neck, and even torso. Hemi-atrophy of the contralateral limbs may occur. Mental handicap may result from poorly controlled seizures. Late-appearing glaucoma and rarely CNS hemorrhage occur.

#### Differential Diagnosis

The differential diagnosis includes (rare) PHACES syndrome: Posterior fossa malformation, segmental (facial) Hemangioma, Arterial abnormalities, Cardiac defects, Eye abnormalities, and Sternal (or ventral) defects; often, only portions of that list are present.

#### Management & Treatment

Early control of seizures is important to avoid consequent developmental setback. If seizures do not occur, normal development can be anticipated. Careful examination of the newborn, with ophthalmologic assessment to detect early glaucoma, is indicated. Rarely, surgical removal of the involved meninges and the involved portion of the brain may be indicated, even hemispherectomy.

### 5. Von Hippel-Lindau Disease (Retrocerebellar Angiomatosis)

Von Hippel-Lindau disease is a rare, dominantly inherited condition with retinal and cerebellar hemangioblastomas; cysts of the kidneys, pancreas, and epididymis; and sometimes renal cancers. The patient may present with ataxia, slurred speech, and nystagmus due to a hemangioblastoma of the cerebellum or with a medullary spinal cord cystic hemangioblastoma. Retinal detachment may occur from hemorrhage or exudate in the retinal vascular malformation. Rarely a pancreatic cyst or renal tumor may be the presenting symptom.

The diagnostic criteria for the disease are a retinal or cerebellar hemangioblastoma with or without a positive family history, intra-abdominal cyst, or renal cancer.

CENTRAL NERVOUS SYSTEM DEGENERATIVE DISORDERS OF INFANCY & CHILDHOOD

The CNS degenerative disorders of infancy and childhood are characterized by arrest of psychomotor development and loss, usually progressive but at variable rates, of mental, motor, and visual functioning (Tables 25–20 and 25–21). Seizures are common especially in those with gray matter involvement. Symptoms and signs vary with age at onset and primary sites of involvement of specific types.

These disorders are fortunately rare. An early clinical pattern of decline often follows normal early development. Referral for sophisticated biochemical testing is usually necessary before a definitive diagnosis can be made. Patients with metachromatic leukodystrophy, Krabbe disease, and adrenoleukodystrophy are candidates for bone marrow transplantation. Treatment of some lysosomal storage diseases, such as Gaucher disease, with enzyme replacement therapy has shown promising results.

Table 25–20. Central nervous system degenerative disorders of infancy.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Enzyme Defect and Genetics</th>
<th>Onset</th>
<th>Early Manifestations</th>
<th>Vision and Hearing</th>
<th>Somatic Findings</th>
<th>Motor Findings</th>
<th>Seizures</th>
<th>Labs</th>
<th>Clinical Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>White matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Globoid (Krabbe) leukodystrophy</strong></td>
<td>Recessive galactocerebrosid β-galactosidase deficiency. Chromosome 14q21–14q31</td>
<td>Infantile form first 6 mo. Late-onset form 2–6 y. Adolescent and adult forms are rare</td>
<td>Feeding difficulties Shrii1 cry Irritability Arching of back</td>
<td>Optic atrophy Hyperacusis occasionally</td>
<td>Underweight Microcephaly</td>
<td>Spasticity Earlier hypotonia Decerebrate posturing</td>
<td>Myoclonic Generalized</td>
<td>Elevated CSF protein, prolonged sural nerve conduction, enzyme deficiency in leukocytes, cultured skin fibroblasts. Demyelination and gliosis on MRI and CT.</td>
<td>Rapid. Death usually by 1.5–2 y. Late-onset cases may live 5–10 y. Hematopoietic stem cell transplantation and enzyme replacement therapy is an experimental.</td>
</tr>
<tr>
<td><strong>Pantothenate kinase–associated neurodegeneration (Hallervorden-Spatz syndrome)</strong></td>
<td>AR Most common chromosome 20 PANK2 gene</td>
<td>Age 10 y</td>
<td>Rigidity, dystonia, gait disturbance, tremor</td>
<td>Retinal degeneration.</td>
<td>Extrapyramidal signs, dysarthria, hyperreflexia</td>
<td>Variable</td>
<td>Axonal degeneration (spheroids). Iron deposits in basal ganglia on MRI: eye-of-the-tiger appearance</td>
<td>Progressive mental/motor deterioration</td>
<td>(Continued)</td>
</tr>
</tbody>
</table>
Table 25–20. Central nervous system degenerative disorders of infancy. (Continued)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Enzyme Defect and Genetics</th>
<th>Onset</th>
<th>Early Manifestations</th>
<th>Vision and Hearing</th>
<th>Somatic Findings</th>
<th>Motor Findings</th>
<th>Seizures</th>
<th>Labs</th>
<th>Clinical Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffuse, but primarily gray matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poliodystrophy (Alpers disease)</td>
<td>Recessive Metabolic forms</td>
<td>Infancy to adolescence</td>
<td>Variable: regression, seizures, incoordination, hepatic failure</td>
<td>Cortical blindness and deafness</td>
<td>Incoordination Spasticity</td>
<td>Myoclonic, akinetic, and generalized</td>
<td>POLG1 and mitochondrial mutations Liver steatosis and cirrhosis Muscle and liver biopsy</td>
<td>Rapid with death within 1–3 y after onset Variants in older children, adults</td>
<td></td>
</tr>
<tr>
<td>Niemann-Pick disease and variants</td>
<td>AR Sphingomyelinase deficiency in types A and C</td>
<td>First 6 mo In variants onset later often non-Jewish.</td>
<td>Slow development Protruding belly</td>
<td>Cherry-red macula in 35%–50%. Blindness Deafness</td>
<td>Early hypotonia Late spasticity Extrapyramidal signs Ataxia</td>
<td>Rare and late</td>
<td>Vacuolated lymphocytes X-rays: “mottled” lungs, decalcified bones Leukocyte and fibroblast enzyme deficiency</td>
<td>Moderately slow Death usually by 3-5 y</td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td>Mode</td>
<td>Onset</td>
<td>Early Symptoms</td>
<td>Late Symptoms</td>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>------</td>
<td>-----------</td>
<td>--------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infantile Gaucher disease (glucosylceramide lipidosis)</td>
<td>AR</td>
<td>First 6 mo</td>
<td>Stridor or hoarse cry, feeding difficulties. Cherry red macula, convergent squint, deafness.</td>
<td>Early opisthotonus followed by decerebrate rigidity.</td>
<td>Rapid Experimental enzyme replacement therapy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalized gangliosidosis and juvenile type (G_{63} gangliosidoses)</td>
<td>AR β-galactosidase</td>
<td>Infantile: first 6 mo, late infantile: 7 mo to 3 y</td>
<td>Developmental arrest, protruding belly, coarse facies, juvenile form: ataxia and dystarthis.</td>
<td>Macrocephaly, hepatosplenomegaly, gingival hypertrophy, cardiomyopathy. Early hypotonia, later spasticity.</td>
<td>Late Vacculated lymphocytes, x-rays: dorsiolumbar kyphosis, “breaking” of vertebrae. Rapid within a few years. Slower in juvenile type.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subacute necrotizing encephalomyelopathy (Leigh disease)</td>
<td>Variable: pyruvate carboxylase, pyruvate dehydrogenase, cytochrome enzymes, mitochondrial DNA.</td>
<td>Infantile to late childhood</td>
<td>Feeding difficulties, feeble or absent cry, hypotonia, apnea, developmental regression, ataxia.</td>
<td>Optic atrophy, roving eye movements, ophthalmoplegia. Head usually normal, cardiac and renal tubular dysfunction. Flaccid hypotonia, later spasticity, ataxia, myelopathy.</td>
<td>Rare Tonic Increased CSF and blood lactate and pyruvate. High signal MRI T2 foci in thalami and basal ganglia. DNA and enzyme tests on muscle. Usually rapid. Central hypoventilation a frequent cause of death.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abetalipoproteinemia (Bassen-Kornzweig disease)</td>
<td>AR Microsomal triglyceride transfer protein (MTP) on chr 4q22-24</td>
<td>Early childhood</td>
<td>Diarrhea in infancy, retinitis pigmentosa, ophthalmoplegia.</td>
<td>None.</td>
<td>Ataxia, movement disorder. None.</td>
<td>Abetalipoproteinemia: acanthocytosis, low serum vitamin E, cerebellar atrophy. Progression arrested with vitamin E.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AR, autosomal recessive; CNS, central nervous system; CSF, cerebrospinal fluid; CT, computed tomography; EEG, electroencephalogram; ERG, electroretinogram; MRI, magnetic resonance imaging; WBC, white blood cell.
<table>
<thead>
<tr>
<th>Disease</th>
<th>Enzyme Defect and Genetics</th>
<th>Onset</th>
<th>Early Manifestations</th>
<th>Vision and Hearing</th>
<th>Motor System</th>
<th>Seizures</th>
<th>Laboratory and Tissue Studies</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenoleukodystrophy and variants (peroxisomal disease)</td>
<td>X-linked Xq28 Neonatal form: AR Acyl-CoA synthetase</td>
<td>5–10 y May also present as newborn, adolescent, or adult</td>
<td>Impaired intellect Behavioral problems</td>
<td>Cortical blindness Deafness</td>
<td>Ataxia Spasticity Motor deficits Adults: Adrenomyeloneuropathy</td>
<td>Occasionally</td>
<td>Hyperpigmentation and adrenocortical insufficiency ACTH elevated Very-long-chain fatty acids in plasma</td>
<td>Variable course, many mildly involved. Severe variant with death in 2–5 y.</td>
</tr>
<tr>
<td>Neuronal ceroid lipofuscinosis (NCL; cerebromacular degeneration); infantile NCL (INCL); late infantile (LINCL); juvenile NCL (JNCL; Batten disease)</td>
<td>AR Multiple gene mutations</td>
<td>INCL: 6–24 mo LINCL: 2–4 y JNCL: 4–8 y</td>
<td>Ataxia Visual difficulties Arrested intellectual development Seizures</td>
<td>Pigmentary degeneration of macula Optic atrophy</td>
<td>Ataxia Spasticity progressing to decerebrate rigidity</td>
<td>Myoclonus Generalized Refractory</td>
<td>Vacuolated lymphocytes. Biopsy, EM of skin, conjunctiva; WBC: “curvilinear bodies, fingerprint profiles.” Molecular testing of ( CLN1, CLN2, CLN3 ) genes. Protein gene product testing for ( CLN1 ) and ( CLN2 ).</td>
<td>Moderately slow Death in 3–8 y</td>
</tr>
<tr>
<td>Subacute sclerosing panencephalitis (Dawson disease)</td>
<td>None: measles infection. Also reported as result of rubella.</td>
<td>3–22 y</td>
<td>Impaired intellect Emotional lability Incoordination</td>
<td>Chorioretinitis Optic atrophy</td>
<td>Ataxia Dysarthria Involuntary movements Spasticity progressing to decerebrate rigidity</td>
<td>Myoclonic Akinetic Focal and generalized</td>
<td>CSF protein normal to moderately elevated. High CSF IgG,(^a) oligoclonal bands. Elevated CSF and serum measles antibody titers. Characteristic EEG.</td>
<td>Variable: death in months to years Remissions occasional Treatment: INF-( \alpha )</td>
</tr>
<tr>
<td>Megalencephalic leukodystrophy with subcortical cysts (MLC)</td>
<td>( MLC1 ) gene defect chr 22q</td>
<td>Infancy</td>
<td>Acquired macrocephaly</td>
<td>Ataxia Spasticity Dystonia</td>
<td>Varied</td>
<td>Characteristic MRI dysmyelination</td>
<td>Slowly progressive to adulthood; wheelchair bound by teens</td>
<td></td>
</tr>
<tr>
<td>Vanishing white matter/childhood ataxia with CNS hypomyelination</td>
<td>AR Chr 3q27</td>
<td>Infancy–fatal Variants: slower</td>
<td>Episodic deterioration with fever, head trauma, and fear.</td>
<td>Ataxia Spasticity</td>
<td>Varied</td>
<td>MRI: dramatic disappearance of white matter.</td>
<td>Infantile: fatal Variants are slowly progressive Adult variant (autosomal dominant) with ovarian dysgenesis</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Type 1</td>
<td>Type 2</td>
<td>Age Onset</td>
<td>Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>--------------------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexander disease</td>
<td>AD</td>
<td>GFAP</td>
<td>Infancy</td>
<td>Macrocephaly; ataxia; spasticity; demyelination; rosenthal fibers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gene</td>
<td></td>
<td>biopsy. Demyelination; rosenthal fibers characteristic of biopsy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fatal infantile. Juvenile: bulbar signs, less retardation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebrotendinous xanthomatosis</td>
<td>AR</td>
<td></td>
<td>Late childhood to adolescence</td>
<td>Xanthomas; mental deterioration; cataracts; xanthelasma; myoclonus; xanthomas in lungs and tendons; slowly progressive into middle life. Replace deficient bile acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huntington disease</td>
<td>AD</td>
<td>CAG</td>
<td>10% childhood onset</td>
<td>Hypokinetic dystonia; rigidity; dementia; ophthalmoplegia; chorea; rigidity; 50% motor seizures; CT scan: “butterfly” atrophy of caudate and putamen; moderately rapid with death</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refsum disease (peroxisomal disease)</td>
<td>AR</td>
<td>Phytanic acid oxidase deficiency</td>
<td>5–10 y</td>
<td>Ataxia; ichthyosis; cardiomyopathy; retinitis pigmentosa; nystagmus; ataxia; neuropathy; areflexia; none; phytanic acid elevated; slow nerve conduction velocity; elevated CSF protein; treat with low phytanic acid diet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACTH, adrenocorticotrophic hormone; AD, autosomal dominant; AR, autosomal recessive; CHR, chromosome; CLN, ceroid lipofuscinosis; CNS, central nervous system; CSF, cerebrospinal fluid; CT, computed tomography; EEG, electroencephalogram; EM, electron microscopy; ERG, electroretinogram; IFN-α, interferon-α; MRI, magnetic resonance imaging; VER, visual evoked response; WBC, white blood cell.

For late infantile metachromatic leukodystrophy, Pelizaeus-Merzbacher disease, poliodystrophy, Gaucher disease of later onset, and subacute necrotizing encephalomyelopathy, see Table 25–22.

CSF γ-globulin (IgG) is considered elevated in children when IgG is > 9% of total protein (possibly even > 8.3%), definitively elevated when > 14%.
In contrast, congenital ataxias may be associated with central nervous system abnormalities, genetic abnormalities, or metabolic disorders. In this section, a brief overview of will be provided of the most common causes of acute and congenital ataxia, and the evaluation and the management of each.

**ACUTE ATAXIAS OF CHILDHOOD**

**ESSENTIALS FOR DIAGNOSIS**

- Symptoms may include refusal to walk due to ataxia, in addition to sudden development of a wide-based, drunken gait.
- Families may not report unsteadiness of arm movements, ataxia of the trunk, or dysarthria, but these symptoms are essential to localization.
- Serious causes include CNS infections and intracranial mass lesions.

**Pathogenesis**

Causes of acute ataxia that require emergent evaluation include increased intracranial pressure due to mass lesions. Therefore, any history suggestive of this should be elicited, such as persistent or recurrent headaches, or vision changes such as blurred or double vision. A history of head of neck trauma should prompt evaluation for vertebral artery dissection. Other common causes include accidental or purposeful ingestion. The evaluation of an acutely ataxic patient can be difficult as the patient may refuse to participate in the examination due to the discomfort of being ataxic, causing them to be irritable or hesitant. Therefore, distinguishing between weakness and ataxia can be difficult, but it is essential to making the correct diagnosis.

**Clinical Findings**

A thorough examination should be performed, with attention to signs suggesting a serious central nervous system disorder, such as mass lesions or central nervous system infections. Changes in mental status are particularly important to observe, as this suggests an ingestion, stroke, acute disseminated encephalomyelitis, or opsoclonus-myoclonus syndrome. The presence of papilledema and cranial nerve palsies suggests an intracranial focal lesion or hydrocephalus. Asymmetry in the examination would be unusual for acute cerebellar ataxia.

Once signs of serious CNS disorders have been sought, localization of the cerebellar lesion should be made. A midline cerebellar lesion may present with dysarthria or truncal titubation. In contrast, a lesion of the cerebellar hemispheres...
may present with sparse speech, dysmetria, tremor, or hypotonia. A patient with a hemispheric cerebellar lesion will tend to veer to the side of the lesion. A resting tremor, myoclonus, or opsoclonus will suggest a lesion affecting the deep cerebellar nuclei. Patient with cerebellar ataxia will not worsen with closed eyes, as a patient with sensory ataxia would.

A. Acute Cerebellar Ataxia

**ESSENTIALS FOR DIAGNOSIS**

- Symptoms may include refusal to walk due to ataxia, in addition to sudden development of a wide-based, drunken gait.
- Families may not report unsteadiness of arm movements, ataxia of the trunk, or dysarthria, but these symptoms are essential to localization.
- Serious causes include CNS infections and intracranial mass lesions.

This is the most common cause of acute childhood ataxia, accounting for about 40% of all cases. It occurs most commonly in children aged 2–6 years. The onset is abrupt, and the evolution of symptoms is rapid. In about 70% of patients, a prodromal illness occurs with fever, respiratory or gastrointestinal symptoms, or an exanthem within 3 weeks of onset. Associated viral infections include varicella, rubella, mumps, echovirus infections, poliomyelitis, infectious mononucleosis, and influenza. Bacterial infections such as scarlet fever and salmonellosis have also been incriminated. Typically, the symptoms evolve rapidly, but the severity can vary between patients. Some patients have such severe ataxia that they cannot walk, and others have only mild unsteadiness. Usually the limbs are not as affected as the trunk. Mental status is normal in these patients, as is sensory and reflex testing.

1. **Laboratory testing**—CSF opening pressure, protein, and glucose levels are typically normal, though a mild pleocytosis with lymphocytic predominance can be seen. Any significant elevation in WBC and protein level should prompt an evaluation for meningitis or encephalitis. Autoantibodies against Purkinje cells and other cerebral and cerebellar tissue have been described, but typically are not clinically useful to obtain.

2. **Imaging findings**—CT scans are typically normal, as are MR images of the brain. Occasionally focal cerebellar or cerebellopontine demyelinating lesions or enhancement of the meninges can be seen. Decreased regional blood flow in the cerebellum on SPECT without abnormal foci on MRI of the brain has also been reported.

3. **Treatment**—Treatment for acute cerebellar ataxia is supportive. IVIg has been used. Steroid use does not result in any improvement. About 80%–90% of patients recover without sequelae within 6–8 weeks, though some may demonstrate residual behavioral changes, learning problems, eye movement abnormalities, and speech problems.

B. Toxic Cerebellar Syndrome

Ataxia due to toxins or medications accounts for as many as 32.5% of acute cases. Substances such as anti-convulsants, benzodiazepines, alcohol, and anti-histamines, and less commonly organic chemicals and heavy metals can cause ataxia. In these cases, ataxia is usually accompanied by mental status changes, including lethargy, confusion, inappropriate speech and behavior, and in some cases, nystagmus or pupillary changes.

1. **Laboratory testing**—Urine toxicology screen may not detect specific medications, and therefore a detailed history is always helpful in guiding testing for specific medications. For phenytoin, the toxic level in serum is usually above 25 mcg/mL; for phenobarbital, above 50 mcg/mL; and for primidone, above 14 mcg/mL.

2. **Imaging findings**—Imaging is usually normal for patients with toxic cerebellar syndrome.

3. **Treatment**—Treatment is guided by the ingested agent, and requires toxicological consultation.

C. Acute Demyelinating Encephalomyelitis

Ataxia is a common feature of acute demyelinating encephalomyelitis (ADEM), and like acute cerebellar ataxia, can occur after a viral infection or vaccination. However, this entity may be distinguished from acute cerebellar ataxia by the accompanying change in mental status or other associated difficulties such as seizures, cranial nerve palsies, or hemiparesis. These clinical events arise from presumed immune-mediated demyelination of the central nervous system. Refer to later section (Noninfectious Inflammatory Disorders of the Central Nervous System) on ADEM in this chapter.

D. Posterior Circulation Stroke

Though rare, this should be considered as an etiology for ataxia if a history of neck trauma or family history of vascular abnormalities is present. Workup and management are discussed in the stroke section (Cerebrovascular Disorders) of this chapter.

E. Paraneoplastic Syndromes

Acute ataxia can occasionally be seen in the entity known as opsoclonus-myoclonus syndrome (OMS). In its classic form, patients will present with ataxia; rapid chaotic conjugate, multidirectional eye movements (opsoclonus); and nonepileptic jerking of the head, extremities, and face (myoclonus).
Some patients may additionally have sleep disturbance, cognitive dysfunction, and behavioral disruption. It is a rare disorder, with an incidence estimated to be 0.18 cases per million children per year in a prospective survey of United Kingdom pediatric neurology centers. Atypical presentations can result in initial erroneous diagnoses, such as of acute cerebellar ataxia, Guillain-Barre syndrome, and epileptic seizures. However, making the diagnosis has significant implications for treatment and prognosis. Forty-eight percent of patients with OMS have a neuroblastoma detected. Traditional methods to detect neuroblastoma with urine catecholamines or metaiodobenzylguanidine scans may be insensitive in patients with opsoclonus-myoclonus syndrome. Therefore, CT or MRI of the entire torso should be obtained in all patients with OMS. Sometimes repeat testing is necessary to attain the diagnosis. In patients without a neuroblastoma, few will have an identifiable cause, though parainfectious or postinfectious processes have been implicated in some cases.

1. Laboratory testing—Readily available biomarkers would greatly facilitate the diagnosis of OMS. However, only in rare patients have autoantibodies against intracellular antigens been found, such as with anti-Hu or anti-\(\text{-methyl-D-aspartate}\) receptor antibodies. None of these antibodies appear to be sensitive for the majority of patients. Relative CSF B-cell expansion has been proposed as a candidate biomarker for OMS, but more data need to be gathered regarding the sensitivity of this biomarker and its relationship to clinical severity. Laboratory evaluation for neuroblastoma or other malignancies should be pursued, with urine catecholamines.

2. Imaging—All patients with OMS should undergo CT or MRI of the entire torso to evaluate for occult malignancies.

3. Treatment—Gold standard treatment for OMS includes corticosteroids and adrenocorticotropic hormone, but no standard formulation or dosing is available, and the short-term benefits do not appear to predict a favorable long-term outcome. Additionally, relapses with dose tapering are common. Therefore, with the poor long-term outcome and the side effects of steroid use, new approaches have been used for treatment, including use of cyclophosphamide, chemotherapy to treat an identified neuroblastoma-associated OMS, and IVIG with ACTH and rituximab.

The long-term outcome for these patients is generally poor for patients both with and without neuroblastoma. From pooled data, 75%–80.6% of patients with OMS had abnormal neurological findings at follow-up, including eye movement abnormalities, dysarthria, ataxia, and myoclonus. In addition, all patients had cognitive impairment, including language, attention, memory, and intellectual disability.

F. Sensory Ataxia

Ataxia can result from loss of sensory input to the cerebellum due to posterior column of the spinal cord, nerve root, or peripheral nerve lesions. Etiologies may include Guillain-Barre syndrome (acute inflammatory demyelinating polyneuropathy) or its variant, Miller-Fisher syndrome; or toxins. These patients, in addition to ataxia, will demonstrate decreased reflexes, a Romberg sign, loss of proprioception and vibratory sensation, and a high steppage gait.

1. Laboratory testing—Testing for suspected Guillain-Barre syndrome should include a lumbar puncture. The CSF findings may show elevated protein with normal cells, known as albuminocytologic dissociation, but very early in the course can be normal in as many as 20% of children. Antibodies against GQ1b should be obtained if Miller-Fisher syndrome is suspected. Electrophysiologic testing with nerve conduction studies may also be helpful, though acutely there may be little in the way of abnormalities.

2. Imaging—MR imaging of the spine may show enhancement of the nerve roots in Guillain-Barre syndrome.

3. Special testing—Electromyography/nerve conduction study may be useful to identify a demyelinating polyneuropathy. Nerve conduction velocities will be slowed into the demyelinating range (motor conduction velocities in the upper extremities \(\leq 38\) m/s) in a patchy, nonuniform fashion. The sural sensory response is typically spared early in the disease. Conduction block and temporal dispersion are hallmarks of this acquired polyneuropathy.

4. Treatment—Both IVIG and plasmapheresis have been used in treatment of GBS. IVIG is typically used in a regimen of 0.4 g/kg daily for 5 days. The typical regimen for PE is a total exchange of about 5 plasma volumes over a 2 week time period. A Cochrane review of the use of IVIG and PE showed no significant difference between the two treatments with respect to disability after 4 weeks, duration of mechanical ventilation, mortality, or residual disability. Steroid treatment has not been showed to be beneficial in GBS.

G. Basilar Migraine

A basilar migraine may present with ataxia. Typically, other accompanying neurological signs are present, such as vertigo, nausea, vomiting, cranial nerve dysfunction, and headache. The patient’s first episode may be concerning for a focal lesion and may prompt workup for a stroke. However, the description of positive visual phenomenon, such as flashing lights, suggests the migrainous nature of the episodes. Subsequent episodes, in the context of the history, are much easier to identify as basilar migraines.

H. Mass Lesions

Posterior fossa tumors arise from the cerebellum or the brainstem and typically present with slowly progressive ataxia and symptoms of increased intracranial pressure. About 45%–60% of all childhood brain tumors are posterior fossa tumors.
Therefore, any patient with a history of nocturnal headaches, chronic headaches, nocturnal emesis, focal neurological deficits, visual changes, or other signs concerning for mass lesion should have neuro-imaging performed immediately.

### I. Functional Ataxia

In functional ataxia, the patient appears to lurch and stagger when walking, the gait is not wide-based, and falls are rare. The findings on the neurological examination do not indicate neuroanatomic localization, and therefore suggest a functional ataxia.

---


---


---

### CONGENITAL CAUSES OF CHRONIC & EPISODIC ATAXIAS

#### ESSENTIALS OF DIAGNOSIS

- Establishing an inheritance pattern and temporal course is useful in determining the diagnosis.
- The findings of spasticity, ophthalmologic abnormalities, eye movement abnormalities, peripheral nervous system involvement, and seizures can be helpful in the evaluation of these patients.

#### Pathogenesis

In considering congenital causes of ataxia, it is probably easiest for the general pediatrician to classify them by the disease progression, either progressive or intermittent/episodic. For instance, Friedreich’s ataxia and ataxia-telangiectasia are both progressive ataxias, with worsening of the ataxia over years. In contrast, in metabolic disorders such as maple syrup urine disease and channelopathies such as episodic ataxia type 1, ataxia occurs episodically and occasionally in response to a trigger. Further defining the ataxias by inheritance pattern is also useful in determining an etiology.

#### Clinical Findings

Similar to the evaluation of a patient with acute onset of ataxia, the examination of a patient with congenital causes of ataxia should include localization of signs to the cerebellum, either the hemispheres or the vermis. Therefore, the presence of ataxia in the trunk and limbs should be noted, of nystagmus, of the quality of eye movements, and of reflexes. Many of the patients may have multisystemic involvement, which may provide diagnostic clues to the etiology.

### INTERMITTENT/EPISODIC ATAXIAS

#### 1. Inborn Errors of Metabolism

Inborn errors of metabolism should be considered when ataxia is either intermittent or progressive. Acute exacerbation or worsening after high protein ingestion, a long period of fasting, febrile illness, or other physical stress is suggestive...
of a metabolic disorder. Disorders in this category are broad and beyond the scope of this text, but may include amino-acidopathies such as maple syrup urine disease, urea cycle defects such as ornithine transcarbamylase deficiency, lactic acidosis such as in Leigh disease, leukodystrophies, lysosomal disorders such as metachromatic leukodystrophy, peroxisomal disorders, and disorders of glycosylation. Because some of these etiologies, such as maple syrup urine disease, can be treatable, diagnostic studies to consider include MRI of the brain, thyroid studies, vitamins E and B12, serum ammonia, ceruloplasmin, serum amino acids, urine organic acids, serum lactate and pyruvate, serum biotinidase, EMG/NCS, serum cholesterol, very long chain fatty acids, phytic acid, transferring isoelectric focusing, and lysosomal enzyme profile on leukocytes.

2. Channelopathies

Channelopathies are a broad category of neurological disorders, and result from altered function of a voltage-gated ion channel which subsequently alters membrane excitability in neurons. This group includes the episodic ataxias and familial hemiplegic migraines. There are six recognized genetic forms of episodic ataxia (EA) at this time. They are generally inherited in an autosomal dominant fashion, with episodes of ataxia lasting from seconds to minutes. In some patients, the episodes of ataxia are precipitated by stress, exercise, startle, or fatigue. EA2 is the most common episodic ataxia. It is allelic with familial hemiplegic migraine and spinocerebellar ataxia 6, both of which can also result in ataxia. Typically the attacks in EA2 are more prolonged, lasting from hours to days.

PROGRESSIVE ATAXIAS

1. Autosomal Dominant Hereditary Ataxias

At this time, there are 29 described dominantly inherited spinocerebellar ataxias. The initial manifestation in infants can be hypotonia and delayed motor development, while in children the symptoms may include nystagmus, truncal and gait ataxia, spasticity, extensor plantar responses, and cognitive delay. Neurological symptoms are progressive, with wheelchair-dependence late in the disorder. In addition, in contrast to the autosomal recessive hereditary ataxias, they may exhibit diverse neurological symptoms, such as retinopathy, optic atrophy, extrapyramidal or pyramidal signs, peripheral neuropathy, cognitive impairment, or epilepsy. The neuroimaging findings can be relatively nonspecific for the various subtypes. However, three general patterns of atrophy on imaging have been described on brain MRI: pure cerebellar atrophy, olivopontocerebellar atrophy, and global brain atrophy. Because many of the spinocerebellar ataxias have overlapping clinical and radiographic phenotypes and there is significant intrafamilial and interfamilial variability

in the clinical presentation, confirmation by genetic testing of the subtype of spinocerebellar ataxia needs to be performed. Treatment in these patients is typically symptomatic, with use of acetazolamide for ataxia, and the use of baclofen for spasticity.

2. Autosomal Recessive Hereditary Ataxias

Most autosomal recessive ataxias are early onset, before 20 years of age. These patients, like those with autosomal dominant forms, also develop spinocerebellar ataxia, with poor balance with falls, difficulty with hand coordination, dysarthria, vertigo, and diplopia. In addition, they are generally associated with peripheral neuropathy, with loss of proprioception and vibratory sense. Areflexia is more commonly seen in autosomal recessive ataxias. Unlike the autosomal dominant inherited disorders, they typically do not exhibit other neurological symptoms, such as seizures, but they do tend to involve systems outside of the nervous system. The two most commonly encountered autosomal recessive hereditary ataxias that may be seen by the general pediatrician are Friedreich ataxia and ataxia-telangiectasia and will be discussed below.

A. Friedreich Ataxia

Friedreich ataxia is the most common of the autosomal recessive ataxias, with a prevalence of about 1 in 30,000–50,000, and a carrier rate of 1 in 85. Typically, patients present at the ages of 5–25 years, with progressive gait and limb ataxia, dysarthria, loss of proprioception and vibration, areflexia, abnormal eye movements, and pyramidal weakness of the feet with upgoing toes. In addition, patients develop systemic symptoms, and may have associated pes cavus, cardiomyopathy, diabetes, and scoliosis.

1. Laboratory testing—The diagnosis is made by performing genetic testing. Ninety eight percent of patients have a triplet GAA expansion in the frataxin gene on chromosome 9q13. In general, a greater number of repeats predicts an earlier onset of disease, more severe systemic manifestations, and more severe ataxia.

2. Imaging—Neuroimaging does not show progressive cerebellar degeneration, unlike the other inherited ataxias. Mild atrophy of the cervical spinal cord may be seen.

3. Treatment—Because of the multisystem involvement in Friedreich ataxia, yearly screening needs to be performed with an x-ray to track the scoliosis; serum glucose and hemoglobin A1C to monitor for the onset of diabetes, and echocardiogram to monitor for hypertrophic cardiomyopathy. Current evidence suggests that frataxin has a role in mitochondrial iron handling and respiratory chain function. Therefore, treatment trials have targeted antioxidant protection. Trials have demonstrated that coenzyme Q10 and
vitamin E can result in improvement in cardiac symptoms, and low dose idebenone can reduce cardiac hypertrophy. However, none of these have resulted in improvement in neurological symptoms, and therefore treatment of the progressive neurological symptoms remains symptomatic.

B. Ataxia-Telangiectasia
Ataxia-telangiectasia is a multisystem disorder arising from a defect in DNA repair. Patients with classic ataxia-telangiectasia present with slurred speech, truncal ataxia, and oculomotor apraxia between the ages of 1 and 4 years. Choreaethesisis is found in nearly all patients with ataxia-telangiectasia. Deep tendon reflexes are decreased or absent in older patients. Plantar reflexes are upgoing or absent. Nonneurologic manifestations include oculocutaneous telangiectasias, recurrent sinopulmonary infections, and hypersensitivity to ionizing radiation with increased susceptibility to cancers, usually leukemia or lymphoma. Premature aging with strands of gray hair and insulin-resistant diabetes mellitus may also be features. After Friedreich ataxia, this is the most common autosomal recessive ataxia, with an estimated prevalence of 1:40,000 to 1:100,000 live births. Greater than 99% of individuals with classic ataxia-telangiectasias have mutations in the ATM gene.

1. Laboratory testing—The serum alpha-fetoprotein level which is typically elevated in these patients to 10 ng/mL or higher, and can remain normal in unaffected children until age 24 months. Immunodeficiencies of IgA and IgE are common. To establish a diagnosis, an immunoblotting assay of the ATM protein level should be performed. Patients with absent or trace amounts of the ATM protein have a definitive diagnosis of ataxia-telangiectasia. Molecular genetic testing of the ATM gene can identify the disease-causing mutations.

2. Imaging—Though a small cerebellum can be seen in older patients on neuroimaging, it is typically not seen in children.

3. Treatment—To establish the extent of systemic involvement in ataxia-telangiectasia, screening should be performed at diagnosis. This should include screening for infectious and oncologic involvement with chest x-ray, pulmonary function testing, CBC with differential, immunoglobulin levels, B/T levels, and T-cell function. In addition, screening for diabetes should be performed with a urinalysis, fasting blood glucose, and hemoglobin A1C. Neurological evaluation should be performed regularly to monitor for disease progression, including ocular coordination, and MRI of the cerebellum. Patients should report any easy bruising, weight loss, or localized swelling to their physician as this may be an early manifestation of malignancy.

Treatment is symptomatic in these patients, though several compounds are under investigation in clinical trials. IVIg replacement should be considered in patients with frequent and severe infections and very low IgG levels, as well as aggressive pulmonary toilet. The neurological manifestations are treated symptomatically, to minimize drooling and ataxia. Most patients will require a wheelchair by 10 years of age. Contractures and scoliosis can limit function, and physical therapy instituted early and continuously can minimize the development of both. Though steroids may decrease the neurological symptoms, discontinuation of steroids results in return of the neurological symptoms. Mutation-targeted therapy such as with antisense oligonucleotides appears promising.

3. X-Linked Cerebellar Ataxias
Fragile X tremor ataxia syndrome has not been documented to occur before 50 years of age, but will be included here as a rare cause of an X-linked inherited ataxia. Patients typically exhibit tremor or ataxia, in inverse relationship to the number of CGG triplet repeat expansions they harbor. In addition, they may also present with varying combinations of parkinsonism, autonomic dysfunction, polyneuropathy, and cognitive deficits.

EXTRAPYRAMIDAL DISORDERS
Extrapyramidal disorders are characterized by the presence in the waking state of one or more of the following features: dyskinesias, athetosis, ballismus, tremors, rigidity, and dystonias. For the most part, the precise pathologic and anatomic localization of these disorders is not understood. Motor pathways synapsing in the striatum (putamen and caudate nucleus), globus pallidus, red nucleus, substantia nigra, and the body of Luys are involved and this system is
modulated by pathways originating in the thalamus, cerebellum, and reticular formation.

1. Sydenham Post-Rheumatic Chorea

Sydenham chorea is characterized by an acute onset of choreiform movements, variable degrees of psychological disturbance, rheumatic endocarditis, and arthritis. Although the disorder follows infections with group A β-hemolytic streptococci, the interval between infection and chorea may be greatly prolonged; throat cultures may therefore be negative.

► Clinical Findings

A. Symptoms and Signs

Chorea is characterized by rapid involuntary disorganized movements of the limbs and face. Other symptoms and signs include emotional lability, waxing and waning (“milkmaid’s”) grip, darting tongue, “spooning” of the extended hands and their tendency to pronate, and knee jerks slow to return to their prestimulus position (“hung up” knee jerk). Hemichorea occurs in 20% of patients with Sydenham chorea.

B. Laboratory Findings and Special Tests

Anemia, leukocytosis, and an increased erythrocyte sedimentation rate and C-reactive protein may be present. The antistreptolysin O or anti-DNase titer (or both) are usually elevated, and C-reactive protein is present. Throat culture is sometimes positive for group A β-hemolytic streptococci.

ECG and echocardiography are often essential to detect cardiac involvement. If antineuronal antibodies (ANA) are present, chorea may be secondary to lupus. Similarly, antiphospholipid antibody (APA) may be elevated in autoimmune related chorea. Specialized radiologic procedures (MRI and SPECT) may show basal ganglia abnormalities.

► Differential Diagnosis

The diagnosis of Sydenham chorea is usually not difficult. Tics, drug-induced extrapyramidal syndromes, Huntington chorea, and hepatolenticular degeneration (Wilson disease), as well as other rare movement disorders, can usually be ruled out on historical and clinical grounds. Immunologic linkages among chorea, tics, and obsessive-compulsive disorder are being studied in pediatric patients. Thus, other causes of chorea in childhood include dyskinetic, “extrapyramidal” cerebral palsy, benign hereditary chorea, kernicterus, Lupus, postpump cardiac surgery, and, for unilateral chorea, stroke, and tumor. These other causes of chorea can often be ruled out by laboratory tests, such as antinuclear antibody for lupus, thyroid screening tests, serum calcium for hypocalcemia, and immunologic and virologic tests for (rare) HIV, parvovirus B19, and Epstein-Barr virus infection.

Relapse of herpes encephalitis rarely manifests as choreoathetosis. Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis may cause chorea or other dyskinesias; detection of NMDAR antibodies is diagnostic. MRI and MRA can help to diagnose or exclude tumor or stroke causing hemichorea.

► Treatment

There is no specific treatment. Prednisone (high-dose IV or orally 0.5–2 mg/kg/d in divided doses) and in severe cases IVIG has been successful. Anticonvulsant sodium valproate (50–60 mg/kg/d in divided doses) and levetiracetam (20–60 mg/kg/d divided into twice a day dosing) is effective in reducing chorea symptoms. Dopaminergic blockers such as haloperidol (0.5 mg/d to 3–6 mg/d) and pimozide (2–10 mg/d) are rarely used because of other effective medications and possible parkinsonian side effects such as rigidity and masked facies, and tardive dyskinesia. Emotional lability and depression sometimes warrant administration of antidepressants. All patients should be given antistreptococcal rheumatic fever prophylaxis with either monthly benzylpenicillin injections or oral penicillin VK 250 mg twice a day.

► Prognosis

Sydenham chorea is a self-limited disease that may last from a few weeks to months. Relapse of chorea may occur with non-specific stress or illness—or with breakthrough streptococcal infections (if penicillin prophylaxis is not done). One-third of patients relapse one or more times, but the ultimate outcome does not appear to be worse in those with recurrences. In adult longitudinal follow up studies, eventual valvular heart disease occurred in about one-third of patients, particularly if other rheumatic manifestations had been present as part of the childhood illness. Psychoneurotic disturbances were also present in a significant percentage of patients.

2. Tics (Habit Spasms)

► Clinical Findings

A. Symptoms and Signs

Tics, or habit spasms, are quick repetitive but irregular movements, often stereotyped, and briefly suppressible. Coordination and muscle tone are not affected. A premonitory urge (“I had to do it”) is unique to tics. Transient tics of childhood (12%–24% incidence in school-aged children) last from 1 month to 1 year and seldom need treatment. Facial tics such as grimaces, twitches, and blinking predominate, but the trunk and extremities are often involved and twisting or flinging movements may be present. Vocal tics are less common; 90% of tics are “above the neck.”

Tourette syndrome is characterized by multiple fluctuating motor and vocal tics with no obvious cause lasting more
than 1 year. Tics evolve slowly, new ones being added to or replacing old ones. Coprolalia and echolalia are relatively infrequent. Complex motor tics are coordinated sequenced movements mimicking normal motor acts or gestures for example ear scratching, head shaking, twisting, and “giving the finger.” Self-injurious behavior is not uncommon in Tourette syndrome.

The usual age for all tic disorders at onset is 4–8 years (median age 6), and the familial incidence is 35%–50%. The disorder occurs in all ethnic groups. Tics may be triggered by stimulants such as methylphenidate and dextroamphetamine. An imbalance of or hypersensitivity to neurotransmitters, especially dopaminergic and adrenergic, has been hypothesized. No single chromosome/gene defect is causative; many “hot spots” have been identified. Either parent can transmit the disease.

In mild cases, tics are self-limited and wane with time. Most pediatric tic patients have transient tics of childhood (tics last less than 1 year), or chronic motor tics (> 1 year). When attention is paid to one tic, it may disappear only to be replaced by another that is often worse. If the tic and its underlying anxiety or compulsive neuroses are severe, psychiatric evaluation and treatment are needed.

Important comorbidities are attention-deficit/hyperactivity disorder and obsessive-compulsive disorder. Learning disabilities, migraine (25%), sleep difficulties, anxiety states, and mood swings are also common. REM sleep is decreased, arousals common. Tics may persist into sleep. Medications such as methylphenidate, amphetamines, and atomoxetine should be carefully titrated to treat attention-deficit/hyperactivity disorder and avoid worsening tics. Fluoxetine, clonipramine, or other selective serotonin reuptake inhibitors (SSRIs) may be useful for obsessive-compulsive disorder and rage episodes in patients with tics.

**Treatment**

The most effective medications for treating Tourette syndrome are dopamine blockers; these drugs, however, have a small risk of tardive dyskinesia, and are thus reserved for use in difficult to control tic patients. Many pediatric patients can manage without drug treatment or with less hazardous medications. Medications are generally reserved for patients with disabling symptoms; treatment may be relaxed or discontinued when the symptoms abate (Table 25–22). Medications usually do not eradicate the tics. The goal of treatment should be to reduce the tics to tolerable levels without inducing undesirable side effects. Medication dosage should be increased at weekly intervals until a satisfactory response is obtained. Often a single dose at bedtime is sufficient. Clonidine, guanfacine (probably the two most safe drugs), and dopamine modulators have been used in individual patients with some success.

The two neuroleptic agents used most often are pimozide and risperidone. Sleepiness and weight gain are the most common side effects; rare are prolonged QT interval (ECG), akathisia, and tardive dyskinesia. Sometimes these agents are used in combination (eg, clonidine with pimozide). Clonazepam has the virtue of safety, but sleepiness and slowing of thinking are drawbacks. Topiramate has shown benefit in one controlled animal trial; human experience is limited. Levetiracetam failed in a controlled trial, but showed benefit in open trials. Tetrabenazine is being utilized for Tourette’s syndrome in some university centers. IVIG has been unsuccessful.

Nonpharmacologic treatment of Tourette syndrome includes education of patients, family members, and school personnel. In some cases, restructuring the school environment to prevent tension and teasing may be necessary. Supportive counseling, either at or outside school, should be provided. Habit reversal therapy (“HRT”) is controversial, very labor intensive, variably successful. More recently, comprehensive Behavior Intervention for Tics (CBIT) is a new intensive (8 weekly visits) therapeutic approach; published results are favorable.

Sydenham chorea is a well-documented pediatric autoimmune disorder associated with streptococcal infections (pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection; PANDAS). Patients with tic disorders occasionally have obsessive-compulsive disorder precipitated or exacerbated by streptococcal infections. Less definite (much less frequent) are tic flare-ups with streptococcal infection. Active prospective antibody (antineuronal and antistreptococcal) and clinical studies are in progress.

### Table 25-22. Medications for Tourette syndrome and tics.

<table>
<thead>
<tr>
<th>Category</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Dopamine blockers</strong></td>
<td>Pimozide (Orap), Aripiprazole (Abilify)<em>, Olanzapine (Zyprexa)</em>, Risperidone (Risperdal)*</td>
</tr>
<tr>
<td><strong>Serotonergic drugs</strong></td>
<td>Fluoxetine (Prozac), Anafranil (Clomipramine) (a tricyclic) for &gt; 10 y old</td>
</tr>
<tr>
<td><strong>Noradrenergic drugs</strong></td>
<td>Clonidine (Catapres), Guanfacine (Tenex)</td>
</tr>
<tr>
<td><strong>Other</strong></td>
<td>Selegiline (Eldepryl)<em>, Baclofen (Lioresal), Pergolide (Permax)</em>, Clonazepam (Klonopin), Levetiracetam (Keppra), Topiramate (Topamax)</td>
</tr>
</tbody>
</table>

*aSome off-label use.
*bUseful for obsessive-compulsive disorder.
*cUseful for attention-deficit/hyperactivity disorder.
*dDopamine-modulating.
Research centers have used experimental treatments (IVIG, plasmapheresis, and corticosteroids) in severe cases. At present, most patients with a tic do not worsen with group A streptococcal infections; with rare exceptions, penicillin prophylaxis is not necessary.

3. Paroxysmal Dyskinesias/Chronic Dystonia

Paroxysmal dyskinesias are sudden-onset, short-duration choreaethetics or dystonia episodes (a sustained muscle contraction of limb or torso, frequently twisting or with abnormal posture). Most often these episodes are familial or genetic in origin. Episodes may occur spontaneously or be set off by actions (“kinesigenic,” or movement-induced) such as rising from a chair, reaching for a glass, or walking. Sometimes only hard sustained exercise will induce the dyskinesia (Table 25–23). Nocturnal dyskinesia/dystonic episodes are currently thought to be frontal lobe seizures.

The diagnosis is clinical. Onset is usually in childhood; average age, 12 years. The patient is alert and often disconcerted during an episode. Episodes may last seconds to 5–20 minutes and occur several times daily or monthly. Laboratory work is normal. EEG is normal between or during attacks; brain imaging is normal. Inheritance is usually autosomal dominant. Anticonvulsants (eg, carbamazepine) usually prevent further attacks. Patients often grow out of this disease in one or two decades (Table 25–23).

Chronic non-kinesigenic dystonia is often secondary to an identifiable brain lesion, less responsive to medications, and may or may not have genetic underpinnings.

Disorders of ion channels underlie many of the genetic cases; some cases are linked to epilepsy and hemiplegic migraine. Chromosome loci are known for the latter. Chronic dystonia in childhood is often “cerebral palsy” a “secondarily caused” movement disorder often from perinatal vicissitudes.

Other chronic dystonias may have an unidentifiable genetic cause: autosomal dominant. DYT-1 is the most common. The diagnosis of chronic persistent dystonia may be aided by spinal fluid neurotransmitter (DYT5) and readily available genetic chromosome studies. Any child with dystonia of unknown cause should have a trial of low-dose L-dopa; a prompt improvement suggests DYT5—a genetic cause with favorable outcome. Long-term oral L-dopa is very effective. Rarely, transient dyskinesia (eg, dystonia) may be precipitated by fever. While the cause of persistent dystonia is often genetic, underlying biochemical and structural causes (eg, Wilson disease, basal ganglia tumor or other pathology, hypoxic ischemic encephalopathy (HIE), glutaric aciduria, etc) must be ruled out. Treatment for chronic dystonia may be specific if a syndrome cause is identified (eg, L-dopa for DYT5). Nonspecific treatment may be physical therapy (eg, for cerebral palsy) or medication trials with anticholinergics trihexyphenidyl (Artane), tetrabenazine, baclofen or botulism injections (eg, for a focal foot, or neck dystonia), or even chronic deep brain stimulation.

Persistent chorea (rarely) may be a benign lifelong genetic disease. Treatment is complex: L-dopa, anticholinergics (trihexyphenidyl, large doses), tetrabenazine, and baclofen are primary medications. A common cause of transient dystonia in childhood (adolescent) is a drug reaction to antipsychotic (eg, chlorpromazine) or antiemetics (phenothiazines, metoclopramide).

4. Tremor

The most common cause of persisting tremors in childhood is essential tremor; average age of onset is 12 years. Tremor is the third most common movement disorder, after restless legs and tics. Of those with this lifelong malady, 4.6% have onset in childhood (2–16 years). A genetic dominant inheritance is probable; 20%–80% afflicted report a relative with tremors. Tremor is worsened by anxiety, fatigue, stress, physical activity, and caffeine, and transiently improved by alcohol. Comorbidities include attention-deficit/hyperactivity disorder, dystonia, and possibly Tourette syndrome. Hand/arm tremor is the major manifestation; voice and head tremors are rare.

Laboratory studies are normal. No single chromosome/gene defect is known. Subtle abnormalities (eg, increased cerebellar blood flow) can be found in 25% in research studies. Progression is usually minimal; some patients develop other movement disorders over a lifetime. Helpful medications (rarely needed long term) include propranolol or primidone.

Differential diagnosis includes birth asphyxia, Wilson disease, hyperthyroidism, and hypocalcemia; history and laboratory tests rule out these rare possibilities.

<table>
<thead>
<tr>
<th>Name</th>
<th>PKDa</th>
<th>PNKDb</th>
<th>PEDc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>Few minutes</td>
<td>2–10 min</td>
<td>5–40 min</td>
</tr>
<tr>
<td>Occurrence</td>
<td>Frequent</td>
<td>Occasional</td>
<td>Hyperventilation, exercise</td>
</tr>
<tr>
<td>Precipitants</td>
<td>Stress</td>
<td>Alcohol, caffeine, stress</td>
<td>Stress</td>
</tr>
<tr>
<td>Treatment</td>
<td>Anticonvulsants</td>
<td>Meds problematic, clonazepam?</td>
<td>Acetazolamide</td>
</tr>
</tbody>
</table>

*Paroxysmal kinesigenic dyskinesia.
*Paroxysmal non-kinesigenic dyskinesia.
*Paroxysmal exercise-induced dyskinesia.

Table 25–23. Paroxysmal movement disorders (genetics).
Recent research studies in adults utilizing proton MRS (magnetic resonance spectroscopy) suggest decreased nerve cells in the cerebellar cortex and increased harmine, a neurotoxin, at the same site. The latter suggests a possible environmental contribution to essential tremor.

5. Wilson Disease

(See also Chapter 22.) Wilson disease is a treatable and reversible genetic disease (AR). Half of patients with Wilson disease present with or have neuropsychiatric diseases; early symptoms may be as non-specific as school work deterioration or mild tremor. Wilson’s should be ruled out in any child with any significant movement disorder or psychiatric symptoms may be as non-specific as school work deterioration or mild tremor. MRI may show hyperintense basal ganglia. Kayser-Fleischer rings seen with 24-hour urine copper laboratory assessment. MRI may show disease in school-age children (adolescents, especially) with serum ceruloplasmin, liver function panel, and possibly 24-hour urine copper laboratory assessment. MRI may show hyperintense basal ganglia. Kayser-Fleischer rings seen with slit-lamp eye examination are virtually diagnostic in neurologically involved patients.


(eg, blindness, deafness, or epilepsy) often coexist. Some form of cerebral palsy occurs in about 0.2% of neonatal survivors. The fundamental course, severity, precise manifestations, and prognosis vary widely.

**Clinical Findings**

**A. Symptoms and Signs**

The most common forms of cerebral palsy (75% of cases) involve spasticity of the limbs. A variety of terms denote the specific limb or combination of limbs affected: monoplegia (one limb); hemiplegia (arm and leg on same side of body, but arm more affected than leg); paraplegia (both legs affected with arms unaffected); quadriplegia (all four limbs affected equally). Ataxia is the second most common form of cerebral palsy, accounting for about 15% of cases. The ataxia frequently affects fine coordinated movements of the upper extremities, but may also involve lower extremities and trunk. A dyskinetic movement disorder usually in the form of choreoathetosis or dystonia accounts for 5% of cases and persistent hypotonia without spasticity for 1%.

Depending on the type and severity of the motor deficits, associated neurologic deficits or disorders may occur: seizures in up to 50%, mild mental retardation in 26%, and severe retardation in up to 27%. Disorders of language, speech, vision, hearing, and sensory perception are found in varying degrees and combinations.

The findings on physical examination are variable and are predominantly those of spasticity, hyperreflexia, and, less often ataxia, and/or involuntary movements. Microcephaly is frequently present. In patients with hemiplegia, the affected arm and leg may be smaller and shorter than the unaffected limbs. Cataracts, retinopathy, and congenital heart defects may be indicative of congenital infections such as CMV and rubella.

**B. Laboratory and Imaging Tests**

Appropriate laboratory studies depend on the history and physical findings. MRI scans may be helpful in understanding the full extent of cerebral injury, and occasionally neuroimaging results suggest specific etiologies (eg, periventricular calcifications in congenital CMV infections or brain malformations such as pachygyri or lissencephaly). Genetic and metabolic testing should be targeted based on history or MRI findings.

**Differential Diagnosis**

The cause is often obscure or multifactorial. No definite etiologic diagnosis is possible in 25% of cases. The incidence is high among infants small for gestational age or with extreme prematurity. Intrauterine hypoxia is a frequent cause. Other known causes are intrauterine bleeding, infections, toxins, congenital brain malformations, obstetric complications (including birth hypoxia), neonatal infections, kernicterus, neonatal hypoglycemia, metabolic disorders, and a small number of genetic syndromes.

**Treatment & Management**

Treatment and management are directed at assisting the child to attain maximal neurological functioning with appropriate physical, occupational, and speech therapy. Orthopedic monitoring and intervention and special educational assistance may all contribute to an improved outcome. Treatment of spasticity (with medications or botulinum toxin) and seizures are needed in many children. Constraint-induced movement therapy is being studied in controlled trials. Also important is the general support of the parents and family with counseling, educational programs, and support groups.

**Prognosis**

The prognosis for patients with cerebral palsy depends greatly on the child’s IQ, severity of the motor deficits, etiology of CP, and degree of incapacity. In severely affected children, aspiration, pneumonia, or other intercurrent infections are the most common causes of death.

In contrast, patients with mild cerebral palsy may improve with age. Some patients experience resolution of their motor deficits by age 7 years. Many children may have normal intellect have normal life spans and are able to lead productive, satisfying lives.
Infections of the CNS are among the most common neurologic disorders encountered by pediatricians. Although infections are among the CNS disorders most amenable to treatment, they also have a very high potential for causing catastrophic destruction of the nervous system. It is imperative for the clinician to recognize infections early in order to treat and prevent massive tissue destruction.

**Clinical Findings**

**A. Symptoms and Signs**

Patients with CNS infections, whether caused by bacteria, viruses, or other microorganisms, present with similar manifestations. Systemic signs of infection include fever, malaise, and impaired heart, lung, liver, or kidney function. General features suggesting CNS infection include headache, stiff neck, fever or hypothermia, changes in mental status (including hyperirritability evolving into lethargy and coma), seizures, and focal sensory and motor deficits. Meningeal irritation is manifested by the presence of Kernig and Brudzinski signs. In very young infants, signs of meningeal irritation may be absent, and temperature instability and hypothermia are often more prominent than fever. In young infants, a bulging fontanelle and an increased head circumference are common. Papilledema may eventually develop, particularly in older children and adolescents. Cranial nerve palsies may develop acutely or gradually during the course of neurologic infections. No specific clinical sign or symptom is reliable in distinguishing bacterial infections from infections caused by other microbes.

During the initial clinical assessment, conditions that predispose the patient to infection of the CNS should be sought. Infections involving the sinuses or other structures in the head and neck region can result in direct extension of infection into the intracranial compartment. Open head injuries, recent neurosurgical procedures, immunodeficiency, and the presence of a mechanical shunt may predispose to intracranial infection.

**B. Laboratory Findings**

When CNS infections are suspected, blood should be obtained for a complete blood count, general chemistry panel, and culture. Most important, however, is obtaining CSF. In the absence of focal neurologic deficits or signs of brainstem herniation, CSF should be obtained immediately from any patient in whom serious CNS infection is suspected. When papilledema or focal motor signs are present, a lumbar puncture may be delayed until a neuroimaging procedure has been done to exclude space-occupying lesions. Treatment must be started even if lumbar puncture is delayed. It is generally safe to obtain spinal fluid from infants with nonfocal neurologic examination even if the fontanelle is bulging. Spinal fluid should be examined for the presence of red and white blood cells, protein concentration, glucose concentration, bacteria, and other microorganisms; a sample should be cultured. In addition, serologic, immunologic, and nucleic acid detection (PCR) tests may be performed on the spinal fluid in an attempt to identify the specific organism. Spinal fluid that contains a high proportion of polymorphonuclear leukocytes, a high protein concentration, and a low glucose concentration strongly suggests bacterial infection (see Chapter 42). CSF containing predominantly lymphocytes, a high protein concentration, and a low glucose concentration suggests infection with mycobacteria, fungi, uncommon bacteria, and some viruses such as lymphocytic choriomeningitis virus, herpes simplex virus, mumps virus, and arboviruses (see Chapters 40 and 43). CSF that contains a high proportion of lymphocytes, normal or only slightly elevated protein concentration, and a normal glucose concentration is suggestive of viral infections and CNS inflammatory disorders, although partially treated bacterial meningitis and parameningeal infections may also result in this CSF profile. Typical CSF findings in a variety of infectious and inflammatory disorders are shown in Table 25–2.

In some cases, brain biopsy may be needed to identify the presence of specific organisms and clarify the diagnosis. Herpes simplex virus infections can be confirmed using PCR to assay for herpes DNA in spinal fluid. This test has 95% sensitivity and 99% specificity. Brain biopsy may be needed to detect the rare PCR-negative case of herpes simplex, various parasitic infections, or in a suspected parainfectious or postinfectious cause with ambiguous spinal fluid findings (eg, vasculitis).

**C. Imaging**

Neuroimaging with CT and MRI scans may be helpful in demonstrating the presence of brain abscess, meningeal inflammation, or secondary problems such as venous and arterial infarctions, hemorrhages, and subdural effusions when these are suspected. In addition, these procedures may identify sinus or other focal infections in the head or neck region that are related to the CNS infection. CT bone windows may demonstrate bony abnormalities such as basilar fractures.
Although often nonspecific, EEGs may be helpful in the assessment of patients who have had seizures at the time of presentation. In some instances, such as herpes simplex virus or focal enterovirus infection, periodic lateralized epileptiform discharges (PLEDs) may be seen early in the course and may be one of the earliest study abnormalities to suggest the diagnosis. EEGs may also show focal slowing over regions of infarcts or (rare) abscesses.

**BACTERIAL MENINGITIS**

Bacterial infections of the CNS may present acutely (symptoms evolving rapidly over 1–24 hours), subacutely (symptoms evolving over 1–7 days), or chronically (symptoms evolving over more than 1 week). Diffuse bacterial infections involve the leptomeninges, superficial cortical structures, and blood vessels. Although the term meningitis is used to describe these infections, it should not be forgotten that the brain parenchyma is also inflamed and that blood vessel walls may be infiltrated by inflammatory cells that result in endothelial cell injury, vessel stenosis, and secondary ischemia and infarction. Overall clinical characteristics of bacterial meningitis (and viral meningoencephalitis) are outlined in Table 25–24.

Pathologically, the inflammatory process involves all intracranial structures to some degree. Acutely, this inflammatory process may result in cerebral edema or impaired CSF flow through and out of the ventricular system, resulting in hydrocephalus.

<table>
<thead>
<tr>
<th>Table 25–24. Encephalitis.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Definition:</strong> Inflammation of brain parenchyma</td>
</tr>
<tr>
<td>Clinically characterized by: fever, headache, impaired consciousness, seizures, focal neurologic deficit</td>
</tr>
<tr>
<td>Laboratory features include: CSF pleocytosis, elevated protein.</td>
</tr>
<tr>
<td>Evaluation should include: CSF culture/PCR; serology CSF/blood</td>
</tr>
<tr>
<td>Radiographic features: focal or diffuse edema, abnormal T2 signal on MRI, diffusion weighted abnormalities consistent with infarction</td>
</tr>
<tr>
<td>Pathologic features: perivascular cells, possible neuronophagia; edema, demyelination, glossis</td>
</tr>
<tr>
<td><strong>Infectious causes:</strong> (95%) enteroviruses, <em>Mycoplasma</em>, herpes, EBV, bacteria, fungi, protozoa</td>
</tr>
<tr>
<td>Some causes are mosquito- or tick-borne; seasonal</td>
</tr>
<tr>
<td><strong>Para-/PostInfectious (ADEM):</strong> post vaccination (&gt; 70%) or post viral (&lt; 5%); no etiologic agent is identified (25%)</td>
</tr>
<tr>
<td><strong>Treatment:</strong> supportive</td>
</tr>
<tr>
<td>Herpes: acyclovir</td>
</tr>
<tr>
<td>ADEM: high dose steroids, IVIG or plasma exchange</td>
</tr>
<tr>
<td>Broad Spectrum Antibiotics until cultures are negative</td>
</tr>
</tbody>
</table>

ADEM, acute disseminated encephalomyelitis; CSF, cerebrospinal fluid; EBV, Epstein-Barr virus; IVIG, intravenous immune globulin; PCR, polymerase chain reaction.


► Treatment

**A. Specific Measures**

(See also Chapters 39, 40, and the section on bacterial infections in Chapter 42.)

While awaiting the results of diagnostic tests, the physician should start broad-spectrum antibiotic coverage. The appropriate antimicrobial varies with age to match the likely pathogens encountered. After specific organisms are identified, antibiotic therapy can be tailored based on antibiotic sensitivity patterns.

Suspected bacterial meningitis in neonates is treated initially with ampicillin and aminoglycoside, usually gentamicin. Cefotaxime may be added if gram negative organisms are suspected. Ampicillin is used to treat *Listeria* and enterococci infections, which rarely affect older children. Thus, children older than 3 months are given ceftriaxone or cefotaxime plus vancomycin to empirically treat for the most common bacterial pathogens, penicillin-resistant *S pneumoniae* and *N meningitides*. Rifampin and dexamethasone use should be considered on a case by case basis. Therapy may be narrowed when organism sensitivity allows. Duration of therapy is 7 days for meningococcal infections, 10 days for *Haemophilus influenzae* or pneumococcal infection, and 14–21 days for other organisms. Slow clinical response or the occurrence of complications may prolong the need for therapy.

**B. General and Supportive Measures**

Children with bacterial meningitis are often systemically ill. The following complications should be looked for and treated aggressively: hypovolemia, hypoglycemia, hyponatremia, acidosis, septic shock, increased intracranial pressure, seizures, disseminated intravascular coagulation, and metastatic infection (eg, pericarditis, arthritis, or pneumonia). Children should initially be monitored closely (cardiorespiratory monitor, strict fluid balance and frequent urine specific gravity assessment, daily weights, and neurologic assessment every few hours), not fed until neurologically very stable, isolated until the organism is known, rehydrated with isotonic solutions until euvelomic, and then given intravenous fluids containing dextrose and sodium at no more than maintenance rate (assuming no unusual losses occur).

► Complications

**Abnormalities of water and electrolyte balance** result from either excessive or insufficient production of antidiuretic hormone and require careful monitoring and appropriate adjustments in fluid administration. Monitoring serum sodium every 8–12 hours during the first 1–2 days, and urine sodium if the inappropriate secretion of antidiuretic hormone is suspected, usually uncovers significant problems.

**Seizures** occur in 20%–30% of children with bacterial meningitis. Seizures tend to be most common in neonates
and less common in older children. Persistent focal seizures or focal seizures associated with focal neurologic deficits strongly suggest subdural effusion, abscess, or vascular lesions such as arterial infarct, cortical venous infarcts, or dural sinus thrombosis. Because generalized seizures in a metabolically compromised child may have severe sequela, early recognition and therapy are critical.

Subdural effusions occur in up to a third of young children with *S. pneumoniae* meningitis. Subdural effusions are often seen on CT scans of the head during the course of meningitis. They do not require treatment unless they are producing increased intracranial pressure or progressive mass effect. Although subdural effusions may be detected in children who have persistent fever, such effusions do not usually have to be sampled or drained if the infesting organism is *H. influenzae*, meningococcus, or pneumococcus. These are usually sterilized with the standard treatment duration, and slowly waning fever during an otherwise uncomplicated recovery may be followed clinically. Under any other circumstance, however, aspiration of the fluid for documentation of sterilization or for relief of pressure should be considered. Interestingly, prognosis is not worsened by subdural effusions.

Cerebral edema can participate in the production of increased intracranial pressure, requiring treatment with dexamethasone, osmotic agents, diuretics, or hyperventilation; continuous pressure monitoring may be needed.

Long-term sequelae of meningitis result from direct inflammatory destruction of brain cells, vascular injuries, or secondary gliosis. Focal motor and sensory deficits, visual impairment, hearing loss, seizures, hydrocephalus, and a variety of cranial nerve deficits can result from meningitis. Sensorineural hearing loss in *H. influenzae* meningitis occurs in approximately 5%–10% of patients during long-term follow-up. Early addition of dexamethasone to the antibiotic regimen may modestly decrease the risk of hearing loss in some children with bacterial meningitis (see Chapter 42).

In addition to the disorders mentioned, some patients with meningitis develop mild to severe cognitive impairment and severe behavioral disorders that limit their function at school and later performance in life.

## BRAIN ABSCESS

### Clinical Findings

Patients with brain abscess often appear to have systemic illness similar to patients with bacterial meningitis, but in addition they show signs of focal neurologic deficits, papilledema, and other evidence of increased intracranial pressure or a mass lesion. Symptoms may be present for a week or more; children with bacterial meningitis usually present within a few days. Conditions predisposing to development of brain abscess include penetrating head trauma; chronic infection of the middle ear, mastoid, or sinuses (especially the frontal sinus); chronic dental or pulmonary infection; cardiovascular lesions allowing right-to-left shunting of blood (including arteriovenous malformations); and endocarditis. Sinus infections more characteristically cause subdural-epidural, orbital and forehead abscesses or empyemas, or cellulitis rather than intrabrain abscesses.

When brain abscess is strongly suspected, a neuroimaging procedure such as CT or MRI scan with contrast enhancement should be done prior to lumbar puncture. If a brain abscess is identified, lumbar puncture may be dangerous and rarely alters the choice of antibiotic or clinical management since the CSF abnormalities usually reflect only parameningeal inflammation or are often normal. With spread from contiguous septic foci, streptococci and anaerobic bacteria are most common. Staphylococci most often enter from trauma or spread from distant or occult infections. Enteric organisms may form an abscess from chronic otitis. Unfortunately, cultures from a large number of brain abscesses remain negative.

The diagnosis of brain abscess is based primarily on a strong clinical suspicion and confirmed by a neuroimaging procedure. Strongly positive inflammatory markers (erythrocyte sedimentation rate, C-reactive protein) may be supportive as normal results would be unlikely in patients with brain abscess. EEG changes are nonspecific but frequently demonstrate focal slowing in the region of brain abscess.

### Differential Diagnosis

Differential diagnosis of brain abscess includes any condition that produces focal neurologic deficits and increased intracranial pressure, such as neoplasms, subdural effusions, cerebral infarctions, and CNS infections.

### Treatment

When a primary source or contiguous foci is suspected a 3rd generation cephalosporin (*Cefotaxime* or *Ceftriaxone*) plus metronidazole is recommended. Penicillin G is an alternative to a cephalosporin. In posttraumatic and postsurgical cases, nafcillin or oxacillin plus 3rd generation cephalosporin (*ceftotaxime* or *ceftriaxone*) is recommended. Vancomycin should be considered as a substitute for nafcillin or oxacillin when methicillin-resistant *Staphylococcus aureus* is suspected. Treatment may include neurologic consultation and anticonvulsant and edema therapy if necessary. In their early stages, brain abscesses are areas of focal cerebritis and can be treated with antibiotic therapies alone. Encapsulated abscesses require surgical drainage.

### Prognosis

The surgical mortality rate in the treatment of brain abscess is lower than 5%. Untreated cerebral abscesses lead to irreversible tissue destruction and may rupture into the
ventricle, producing catastrophic deterioration in neurologic function and death. Because brain abscesses are often associated with systemic illness and systemic infections, the death rate is frequently high in these patients. Other poor prognostic indicators include rapid progression of disease and alteration of consciousness at the time of presentation.

**VIRAL INFECTIONS**

Viral infections of the CNS can involve primarily meninges (meningitis) (see Chapter 40) or cerebral parenchyma (encephalitis) (see Table 25–24). All patients, however, have some degree of involvement of both the meninges and cerebral parenchyma (meningoencephalitis). Many viral infections are generalized and diffuse, but some viruses, notably herpes simplex and some enteroviruses, characteristically cause prominent focal disease. Focal cerebral involvement is clearly evident on neuroimaging procedures. Some viruses have an affinity for specific CNS cell populations. Poliovirus and other enteroviruses can selectively infect anterior horn cells (poliomyelitis) and some intracranial motor neurons.

Although most viral infections of the nervous system have an acute or subacute course in childhood, chronic infections can occur. Subacute sclerosing panencephalitis, for example, represents a chronic indolent infection caused by altered measles virus and is characterized clinically by progressive neurodegeneration and seizures.

Treatment of CNS viral infections is usually limited to symptomatic and supportive measures, except for herpes simplex virus, and some cases of varicella zoster virus infections where acyclovir is used. West Nile virus is an arthropod-borne flavivirus. It is found in mosquitoes, thus the highest incidence of West Nile virus infections occurs from July to October. The infection is now endemic in the United States. This disease is often asymptomatic or mild in pediatric patients; paralysis and death occur mostly in the elderly.

**ENCEPHALOPATHY OF HUMAN IMMUNODEFICIENCY VIRUS INFECTION**

Neurologic syndromes associated directly with HIV infection include subacute encephalitis, meningitis, myelopathy, polynuropathy, and myositis. In addition, secondary opportunistic infections of the CNS occur in patients with HIV-induced immunosuppression. Pneumocystis, Toxoplasma, and CMV infections are particularly common. Progressive multifocal leukoencephalopathy, a secondary papillomavirus infection, herpes simplex and varicella-zoster infections also occur frequently in patients with HIV infection. Various fungal (especially cryptococcal), mycobacterial, and bacterial infections have been described.

Neurologic abnormalities in these patients can also be the result of noninfectious neoplastic disorders. Primary CNS lymphoma and metastatic lymphoma to the nervous system are the most frequent neoplasms of the nervous system in these patients. See Chapters 33, 39, and 41 for diagnosis and management of HIV infection.

**OTHER INFECTIONS**

A wide variety of other microorganisms, including Toxoplasma, mycobacteria, spirochetes, rickettsiae, amebae, and mycoplasma can cause CNS infections. CNS involvement in these infections is usually secondary to systemic infection or other predisposing factors. Appropriate cultures and serologic testing are required to confirm infections by these organisms. Parenteral antimicrobial treatment for these infections is discussed in Chapter 39.

**NONINFECTIOUS INFLAMMATORY DISORDERS OF THE CENTRAL NERVOUS SYSTEM**

The differential diagnosis of bacterial, viral, and other microbial infections of the CNS includes disorders that cause inflammation but for which no specific causal organism has been identified. Sarcoidosis, Behçet disease, systemic lupus erythematosus, and other collagen-vascular disorders are examples. In these disorders, CNS inflammation usually occurs in association with characteristic systemic manifestations that allow proper diagnosis. Some CNS inflammatory disorders lead to demyelination syndromes described in Table 25–25. Management of CNS involvement in these disorders is the same as the treatment of the systemic illness.

1. **Acute Demyelinating Encephalomyelitis (ADEM)**

Inflammatory reactions within the nervous system may occur during the convalescent stage of systemic viral infections. Parainfectious or postinfectious inflammation of the CNS results in several well-recognized disorders: acute

<table>
<thead>
<tr>
<th>Table 25–25. Prominent features of CNS inflammatory demyelination syndromes.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ADEM</strong></td>
</tr>
<tr>
<td><strong>CIS</strong></td>
</tr>
<tr>
<td><strong>NMO</strong></td>
</tr>
<tr>
<td>Relapsing ADEM</td>
</tr>
<tr>
<td>Pediatric MS</td>
</tr>
</tbody>
</table>

ADEM, acute disseminated encephalomyelitis; CIS, clinically isolated syndrome; MS, multiple sclerosis; NMO, neuromyelitis optica.
disseminated encephalomyelitis (ADEM; 25% of encephalitis), transverse myelitis, optic neuritis, polyneuritis, and Guillain-Barré syndrome.

### A. Imaging

MRI findings in ADEM are distinctive: demyelinating lesions, seen on T2 and FLAIR images, are key to the diagnosis. Small and large white matter lesions can mimic findings in multiple sclerosis (MS), but may also involve gray matter such as cortex, basal ganglia, and thalamus. Radiologic changes are usually florid when the patient is first seen but occasionally emerge only days to weeks later. Thus, serial or repeat scans may be necessary.

### B. Laboratory Findings

Lumbar puncture findings may be normal or mildly abnormal, with mild pleocytosis and elevation of the CSF protein in 25%–50% of cases. Typically oligoclonal bands are not seen in clinically isolated syndromes, but elevated IgG indices and presence of oligoclonal bands are more often observed in children who subsequently develop multiple sclerosis.

#### Treatment

In cases of ADEM, corticosteroids are beneficial. Current practice is to administer high dose therapy, followed by oral prednisone taper over 4–6 weeks. Most pediatric groups initially utilize intravenous methylprednisolone (10–30 mg/kg/d up to a maximum dose of 1 g/d) or dexamethasone (1 mg/kg/d) for 3–5 days (no comparative dose studies are available). In refractory patients, IVIG or plasmapheresis may be effective.

#### Prognosis

Rarely, ADEM relapses within 3 months of onset. Recurrence more than 3 months after treatment should raise strong suspicion of MS, neuromyelitis optica (especially in cases of optic nerve or spinal cord involvement) or alternative cause. Congenital viral infections can also affect the CNS. CMV, herpes simplex virus, varicella, and (rare now, because of immunization) rubella virus are the most notable causes of viral brain injury in utero.

### 2. Paraneoplastic Syndromes

Paraneoplastic syndromes are increasingly recognized. These immune-mediated disorders are clinically heterogeneous with neurologic effects that can be both central and peripheral. The disorders are identified by autoantibodies to both intraneuronal and cell surface antigens. While the pathogenesis of these disorders is poorly understood, they are thought to result from misdirected immune response to shared epitopes between neuronal antigens and tumor antigens. Anti-NMDA receptor encephalitis is one example of a paraneoplastic syndrome that may precede detection of neoplasm, or result from post-viral immune dysregulation. Behavioral changes, autonomic instability, insomnia, aphasia, seizures, and movement disorders are prominent. Detection of the antibody is diagnostic. Immunotherapy, including glucocorticoids, intravenous immunoglobulin, and/or plasma exchange are shown to be beneficial. Second line therapies include rituximab and/or cyclophosphamide for refractory cases.

### OTHER PARAINFECTIONAL ENCEPHALOPATHIES

In association with systemic infections or other illnesses, CNS dysfunction may occur in the absence of direct CNS inflammation or infection. Reye syndrome is a prominent example of this type of encephalopathy that often occurs in association with varicella virus or other respiratory or systemic viral infections. In Reye syndrome, cerebral edema and cerebral dysfunction occur, but there is no evidence of any direct involvement of the nervous system by the associated microorganism or inflammation. Cerebral edema in Reye syndrome is accompanied by liver dysfunction and fatty infiltration of the liver. As a result of efforts to discourage use of aspirin in childhood febrile illnesses, the number of patients with Reye syndrome has markedly decreased. The precise relationship, however, between aspirin and Reye syndrome is unclear.

### MULTIPLE SCLEROSIS

Pediatric MS accounts for 5%–10% of all MS cases. Over the last 10 years, we have learned more about the epidemiology, pathophysiology, diagnosis, and treatment of multiple sclerosis in children. Several exciting discoveries have highlighted the importance of genetic and environmental factors alone and in combination. Notable examples include HLA subtypes and viral exposures, among others. Importantly, diagnostic criteria, including clinical, MRI, and laboratory studies are different among prepubertal patients when compared to postpubertal patients.

#### Clinical Findings

The diagnosis of multiple sclerosis (MS) in a child remains challenging, given the limited diagnostic criteria and the somewhat poorly defined overlap with acute disseminated encephalomyelitis. Although there are many similarities between pediatric-onset and adult-onset MS, an earlier age at disease presentation seems to be associated with specific features such as more frequent encephalopathy, seizures, and brainstem and cerebellar symptoms during the first event.

A diagnosis of pediatric MS may be made after one episode of demyelination if the MRI scan meets criteria for dissemination in time and space. If these criteria are not met,
the child is diagnosed with clinically isolated syndrome, for example: optic neuritis; transverse myelitis; or brainstem, cerebellar, or hemispheric dysfunction. Atypical clinical features of pediatric MS include fever and involvement of the peripheral nervous system or other organ systems, elevated erythrocyte sedimentation rate or marked CSF pleocytosis. Encephalopathy is more commonly associated with ADEM. However, in young children, MS exacerbations may present with encephalopathy, making differentiation of the two disorders difficult.

In addition, the initial brain MRI scan of younger patients shows more frequent involvement of the posterior fossa and higher numbers of ovoid, ill-defined T2-bright foci that often partially resolve on the follow-up scan. At present, there are several sophisticated MRI criteria to separate pediatric MS diagnosis from alternatives (eg, ADEM).

Finally, the spinal fluid in younger patients may fail to reveal oligoclonal bands or elevated IgG index at disease onset. There is no FDA-approved therapy for MS in children. As a result physicians have started to use off-label drugs approved for adults. Retrospective data has shown them to be effective in children.

### Differential Diagnosis

Differential diagnosis includes ADEM, and neuromyelitis optica. Many other infections, metabolic disorders, and degenerative diseases can mimic MS.

### Treatment

Acute treatment (mainly corticosteroids; sometimes IVIg or plasmapheresis) and prevention or modulation of relapses is extrapolated from adult studies; pediatric trials are in their infancy. Immunomodulatory treatment to prevent relapses in children includes interferon-beta 1a as are in their infancy. Immunomodulatory treatment to prevent relapses in children includes interferon-beta 1a and glatiramer acetate (injections); oral agents fingolimod, and ocrelizumab, or cyclophosphamide may be utilized in refractory or difficult to control relapses is extrapolated from adult studies; pediatric trials are in their infancy. Immunomodulatory treatment to

---

**References**


SYNDROMES PRESENTING AS ACUTE FLACID WEAKNESS

Pathogenesis
Flaccid paralysis in a child can occur as a result of a lesion anywhere along the neuroaxis. The key to diagnosis is localizing the lesion. Associated changes in reflexes, sensory changes, abnormal reflexes such as a positive Babinski’s sign, and bowel and bladder changes can help in localizing the lesion. Mass lesions, infectious or postinfectious causes, toxins (eg, from a tick or due to botulism), and metabolic causes, are only a few of the etiologies that can cause acute weakness. A review of some of the more common causes of acute weakness and their associated findings are listed in Table 25–26.

Clinical Findings

A. Symptoms and Signs
Features assi sting diagnosis are age, a history of preceding illness, rapidity of progression, cranial nerve findings, bowel and bladder changes, and sensory findings (Table 25–26). The finding of increased reflexes and upgoing toes suggests a CNS lesion. Fatigability in sucking on a bottle and constipation may be seen in patients with botulism. In Guillain-Barré syndrome (GBS, also known as acute inflammatory demyelinating polyneuropathy (AIDP)), patients may initially present with an ascending paresthesia and loss of reflexes before they develop overt weakness. Patients with the Miller Fisher variant of GBS may present with a classic constellation of symptoms including ophthalmoplegia, ataxia, and loss of reflexes. Back pain is suggestive of a spinal cord lesion, such as in transverse myelitis or a spinal cord mass.

B. Laboratory Findings
When a spinal cord or brain lesion is suspected, MRI imaging may be helpful, and in fact are essential if a mass lesion is suspected. Once a mass lesion is excluded by imaging, CSF studies, including opening pressure, can be obtained. Viral cultures (CSF, throat, and stool) and titers aid in diagnosing poliomyelitis. A high sedimentation rate may suggest tumor or abscess; the presence of antinuclear antibody may suggest lupus arteritis.

EMG and nerve conduction studies (NCSs) can be helpful in diagnosing polynuropathy. In GBS, NCSs are particularly helpful after the first week when delayed or absent H or F reflexes are seen are the first changes. Later, motor NCS show prolonged distal latency, conduction block or temporal dispersion, with these changes seen in 50% of patients by 2 weeks and 85% by 3 weeks. EMG findings of fibrillation potentials and increased compound muscle action potential amplitudes with high-frequency stimulation are suggestive of botulism. Rarely, elevation of muscle enzymes or even myoglobinuria may aid in diagnosis of myopathic weakness.

Differential Diagnosis
While the differential diagnosis for acute weakness is broad, a short list of common and potentially treatable causes of acute weakness is listed in Table 25–26. Atypical presentations of viral infections such as with influenza A and West Nile virus should be considered when a patient presents with symptoms of poliomyelitis. Ascending paresthesias and absent reflexes are often early signs of GBS. The weakness of the extremities, respiratory muscles and bulbar muscles can be followed rapidly thereafter. In previously healthy infants who present with acute weakness, botulism should be considered, particularly in endemic areas or with a history of using honey or canned foods. Tick paralysis can be rapidly corrected with removal of the tick, but requires an index of suspicion and a careful search for the offending insect. Patients with transverse myelitis may present with acute weakness and absent reflexes, but in the ensuing weeks will develop hyperreflexia and increased tone in the regions below the area of the lesion.
**Table 25–26. Acute flaccid paralysis in children.**

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Poliomyelitis (Paralytic, Spinal, and Bulbar), With or Without Encephalitis</th>
<th>Guillain-Barré Syndrome (AIDP)</th>
<th>Botulism</th>
<th>Tick-Bite Paralysis</th>
<th>Transverse Myelitis and Neuromyelitis Optica (NMO)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Etiology</strong></td>
<td>Poliovirus types I, II, and III; other enteroviruses, eg, EV-71; vaccine strain poliovirus (rare); West Nile virus: epidemic in birds; mosquitoes infect horses, humans. EV-71 is hand-foot-mouth disease, rarely paralytic.</td>
<td>Likely delayed hypersensitivity—with T-cell-mediated antiganglioside antibodies. Mycoplasmal and viral infections (EBV, CMV), Campylobacter jejuni, hepatitis B.</td>
<td>Clostridium botulinum toxin. Block at neuromuscular junction. Under age 1, toxin synthesized in bowel by organisms in ingested spores or honey. At older ages toxin ingested in food. Rarely from wound infection.</td>
<td>Probable interference with transmission of nerve impulse caused by toxin in tick saliva.</td>
<td>Usually unknown; often postviral. Antibodies to aquaporin in NMO.</td>
</tr>
<tr>
<td><strong>History</strong></td>
<td>None, or inadequate polio immunization. Upper respiratory or GI symptoms followed by brief respite. Bulbar paralysis more frequent after tonsillectomy. Often in epidemics, in summer and early fall.</td>
<td>Nonspecific respiratory or GI symptoms in preceding 5–14 days common. Any season, though slightly lower incidence in summer.</td>
<td>Infancy: dusty environment (eg, construction area), honey. Older: food poisoning. Multiple cases hours to days after ingesting contaminated food.</td>
<td>Exposure to ticks (dog tick in eastern United States; wood ticks). Irritability 12–24 h before onset of a rapidly progressive ascending paralysis.</td>
<td>Rarely symptoms compatible with multiple sclerosis or optic neuritis. Progression from onset to paraplegia often rapid, usually without a history of bacterial infection.</td>
</tr>
<tr>
<td>CSF</td>
<td>Pleocytosis (20–500 + cells) with PMN predominance in 1st few days, later monocytic preponderance. Protein frequently elevated (50–150 mg/dL). CSF IgM-positive in West Nile.</td>
<td>Cytoalbuminologic dissociation; 10 or fewer mononuclear cells with high protein after 1st week. Normal glucose. IgM may be elevated. West Nile will have cells; nerves can be involved in a myeloradiculitis.</td>
<td>Normal.</td>
<td>Normal.</td>
<td>Usually normal opening pressure; CSF may show increased protein, pleocytosis with predominantly mononuclear cells, increased IgG.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>EMG/NCS</td>
<td>EMG shows denervation after 10–21 d. Nerve conduction normal. Amplitude reduced in West Nile.</td>
<td>NCSs may be normal early (within 1st week). Earliest changes slowed to absent F or H reflexes. Demyelinating changes are typically seen 7–10 d after onset of symptoms.</td>
<td>EMG distinctive: BSAP (brief small abundant potentials). High-frequency stimulation may increase in CMAP amplitude but is painful to perform in awake infant.</td>
<td>Nerve conduction slowed; returns rapidly to normal after removal of tick.</td>
<td>Normal early. Denervation at level of lesion after 10–21 d.</td>
</tr>
<tr>
<td>Other studies</td>
<td>Virus in stool and throat. Serial serologic titers IgG, IgM in West Nile. Hyponatremia 30% in West Nile.</td>
<td>Search for specific cause such as infection, intoxication, autoimmune disease. Anti GM, antibodies seen in AMAN*; Anti-GQ1b antibodies seen in Miller-Fisher syndrome.</td>
<td>Infancy: stool culture, toxin. Rare serum toxin positive. Older: serum (or wound) toxin.</td>
<td>Leukocytosis, often with moderate eosinophilia.</td>
<td>Normal spine x-rays do not exclude spinal epidural abscess. MRI to rule out cord-compressive lesions. Cord usually swollen and distorted in myelitis.</td>
</tr>
<tr>
<td>Course and prognosis</td>
<td>Paralysis usually maximal 3–5 d after onset. Transient bladder paralysis may occur. Outlook varies with extent and severity of involvement.</td>
<td>Course progressive over a few days to about 2 wk.</td>
<td>Infancy: supportive.</td>
<td>Total removal of tick is followed by rapid improvement and recovery. Otherwise, mortality rate due to respiratory paralysis is very high.</td>
<td>Large degree of functional recovery possible. Corticosteroids are of controversial benefit in shortening duration of acute attack or altering the overall course. Plasmapheresis, IVIG: anecdotal benefit.</td>
</tr>
</tbody>
</table>

*Note: Mortality greatest from respiratory failure and superinfection. West Nile paralysis may be permanent.

*Note: Threat greatest from respiratory failure (10%), autonomic crises (eg, widely variable blood pressure, arrhythmia), and superinfection. Majority recover completely. Plasmapheresis may have a role. IVIG: Relapses occasionally occur.


AIDP, acute inflammatory demyelinating neuropathy; CMAP, compound muscle action potentials; CMV, cytomegalovirus; CSF, cerebrospinal fluid; EBV, Ebstein–Barr virus; EMG, electromyogram; EV-71, enterovirus 71; GI, gastrointestinal; IVIG, intravenous immune globulin; MRI, magnetic resonance imaging; NCS, nerve conduction studies; PMN, polymorphonuclear neutrophil; SIDS, sudden infant death syndrome.

*AMAN is acute motor axonal neuropathy (uncommon variant in the United States).
Complications

A. Respiratory Weakness and Failure

Early and careful attention to ventilation is essential, especially in those patients with bulbar weakness and early signs of respiratory failure. Administration of oxygen, intubation, mechanical respiratory assistance, and careful suctioning of secretions may be required. Increasing anxiety and a rise in diastolic and systolic blood pressures are early signs of hypoxia. Cyanosis is a late sign. Deteriorating spirometric findings (forced expiratory volume in 1 second and total vital capacity) may indicate the need for controlled intubation and respiratory support and is an important mode of monitoring as blood gases may be normal even in late stages of respiratory failure.

B. Infections

Pneumonia is common, especially in patients with respiratory weakness. Antibiotic therapy is best guided by results of cultures. Bladder infections occur when an indwelling catheter is required because of bladder paralysis. Recovery from myelitis may be delayed by urinary tract infection.

C. Autonomic Crisis

This may be a cause of death in Guillain-Barré syndrome. Strict attention to vital signs to detect and treat hypotension or hypertension and cardiac arrhythmias in an intensive care setting is advisable, at least early in the course and in severely ill patients.

Treatment

Most of these syndromes have no specific treatment, and therefore, supportive treatment is of the essence. Ticks causing paralysis must be removed. Other therapies include the use of erythromycin in Mycoplasma infections and botulism immune globulin in infant botulism. Recognized associated disorders (eg, endocrine, neoplastic, or toxic) should be treated by appropriate means. Supportive care also involves pulmonary toilet, adequate fluids and nutrition, bladder and bowel care, prevention of decubitus ulcers, and in many cases, psychiatric support.

DISORDERS OF CHILDHOOD AFFECTING MUSCLES

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Usually painless, symmetric proximal more than distal muscle weakness (positive Gowers sign, excessive lordosis with walking, waddling gait).
- Preserved deep tendon reflexes compared with muscle weakness.
- Generally normal NCSSs; myopathic findings on EMG.

Clinical Findings

A. Laboratory Findings and Special Tests

1. Serum enzymes—Serum creatine kinase (CK) levels reflect muscle damage or “leaks” from muscle into plasma.

Generally, CK levels are normal to mildly elevated in myopathies, and markedly elevated in muscular dystrophies, up to 50–100 times, as in Duchenne muscular dystrophy. Medications and activity level may affect CK levels, for instance after an EMG or muscle biopsy procedure. Corticosteroids may suppress levels despite very active muscle disease, for example, as in polymyositis.

2. Electrophysiologic studies—Nerve conduction study (NCS) and needle electromyography (EMG) are often helpful in grossly differentiating myopathic from neurogenic processes. Generally, NCSs are normal in muscle disorders. In demyelinating polyneuropathies, NCSs may show slowing of conduction velocities or conduction block. EMG involves inserting a needle electrode into muscle to record muscle electrical potentials. The examination includes assessment of abnormal spontaneous activity (eg, fibrillation and fasciculation potentials, myotonic discharges, myokymic discharges, and complex repetitive discharges) and motor unit action potentials (MUAPs). In the myopathies, MUAPs during contraction characteristically are of short duration, polyphasic, and increased in number for the strength of the contraction (increased interference pattern). In neuropathic processes, MUAPs are polyphasic, are of large amplitude, and show decreased recruitment.

3. Muscle biopsy—A muscle biopsy can be helpful in the diagnosis of a muscle disorder, if properly executed. It is important to consider the timing of the biopsy and the biopsied muscle should be chosen based upon the degree of weakness (ie, weaker muscles will show more pathology than strong muscles). Imaging with MRI or ultrasound may guide the choice of an appropriate site. Biopsies performed in the newborn period may be of limited utility as pathologic changes may not be evident in immature muscle. Care should be taken to avoid sites of prior needle EMG examinations or injections as this may cause spurious areas of focal inflammation pathologically. Findings common to the muscular dystrophies include variation in the size and shape of muscle fibers, increase in connective tissue, interstitial infiltration of fatty tissue, areas of degeneration and regeneration, focal areas of inflammatory changes, and centralized nuclei. Myopathies typically do not have the vigorous cycles of degeneration/regeneration and inflammation is seen in dystrophies.

Immunostaining for proteins of the sarcolemmal membrane, surrounding collagen matrix, and intracellular components of the myofiber is a valuable tool. For instance, demonstration of absent collagen VI is virtually diagnostic of Ullrich congenital muscular dystrophy. In the past, absent dystrophin staining at the sarcolemmal membrane on muscle biopsy was diagnostic of Duchenne muscular dystrophy, but mutation analysis of the dystrophin gene is the preferred initial step given the ready availability of commercial testing.

4. Genetic testing and carrier detection—Mutation analysis for Duchenne and Becker muscular dystrophy is considered the initial step in diagnosis, though it should be noted that readily available commercial testing is not exhaustive, and an initial negative result does not exclude the diagnosis. Full characterization of the mutation is critical, as newer treatments targeting specific mutations are emerging. Carrier testing should be offered to all mothers, not only for genetic counseling purposes but also because carriers are at increased risk for developing cardiomyopathy.

Genetic testing for other myopathies and muscular dystrophies should be guided by the clinical findings, serum CK levels, and muscle biopsy results. Commercially available tests are available for many of these disorders (see Table 25–27).

Genetic counseling is particularly important for families of patients with spinal muscular atrophy. Testing for the survival motor neuron (SMN)1 gene deletion has a sensitivity of 95% and a specificity of 100%. Carrier testing, along with genetic counseling, should also be offered, as the carrier rate is 1 in 25 to 1 in 50, depending upon ethnicity.

Complications

Though skeletal muscle weakness may be profound in muscle disorders, the greatest morbidity and mortality arises from cardiorespiratory complications. Advances in supportive care, especially in critical care management of these patients, have had a tremendous impact in the care of these patients. Noninvasive ventilation, better management of secretions, and generation of effective cough are a few examples. Other complications include delayed gastrointestinal motility which can lead to debilitating constipation or pseudo-obstruction. Contractures are a particularly frustrating complication which can limit mobility of these patients, cause pain, and affect quality of life. Some DMD patients may have a nonprogressive mental retardation with IQ scores one standard deviation below normal means.

Treatment

Treatment for patients with muscle disorders is predominantly supportive, and medications altering disease progression is, at this time, limited. Patients with Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD) should be offered treatment with corticosteroids (prednisone/prednisolone and deflazacort) which have been shown to extend the period of independent ambulation by approximately 2.5 years, and to preserve respiratory strength and cardiac function into the second decade. Instituting steroid treatment between 4 and 8 years, when motor function plateaus or is in decline, appears to have the greatest impact on muscle strength and cardiorespiratory function, according to recent practice parameter guidelines. Additional promising treatments targeting the mutation more specifically have been developed over the last decade.
<table>
<thead>
<tr>
<th>Disease</th>
<th>Genetic Pattern</th>
<th>Age at Onset</th>
<th>Early Manifestation</th>
<th>Involved Muscles</th>
<th>Reflexes</th>
<th>Muscle Biopsy Findings</th>
<th>Other Diagnostic Tests</th>
<th>Treatment</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Muscular dystrophies</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duchenne muscular dystrophy (pseudohypertrophic infantile)</td>
<td>X-linked recessive; Xp21; 30%-50% have no family history and are spontaneous mutations.</td>
<td>2-6 y; rarely in infancy.</td>
<td>Clumsiness, easy fatigability on walking, running, and climbing stairs. Walking on toes; waddling gait with excessive lumbar lordosis. Motor delays. Positive Gowers maneuver.</td>
<td>Proximal (pelvic and shoulder girdle) muscles; pseudohypertrophy of gastrocnemius, triceps brachii, and vastus lateralis. Second decade, progressive scoliosis, cardiomyopathy and respiratory weakness develop.</td>
<td>Knee jerks +/− or 0; ankle jerks + to ++</td>
<td>Areas of degeneration and regeneration, variation in fiber size, inflammatory changes, proliferation of connective tissue. Immunostaining for dystrophin absent.</td>
<td>Myopathic EMG. CK levels can be up to 50-100× normal, but decrease with increasing disease severity, reflecting replacement of muscle with fat/ connective tissue. Genetic testing will show deletion 60% of time, while 5%-15% are duplications, and 20%-30% are point mutations, intronic deletions, or repeats.</td>
<td>Corticosteroids may prolong independent ambulation by 2.5 y if started between age 4 and 8 y; management is largely supportive. Close pulmonary and cardiac follow-up should be maintained due to risk of cardio-respiratory failure in 2nd–3rd decade of life. Osteoporosis should be treated with calcium and vitamin D.</td>
<td>Patients are wheelchair-bound by ~12 y old. Death from cardiorespiratory causes usually occurs by the early 20s.</td>
</tr>
<tr>
<td>Becker muscular dystrophy (late onset)</td>
<td>X-linked recessive; Xp21.</td>
<td>Variable: childhood to adulthood.</td>
<td>Similar to Duchenne.</td>
<td>Similar to Duchenne.</td>
<td>Similar to Duchenne.</td>
<td>Same as above except dystrophin immunostaining is reduced, not absent.</td>
<td>As above.</td>
<td>As above.</td>
<td>Variable. Patients may remain ambulant 15-20 y after 1st symptoms. Near-normal life expectancies.</td>
</tr>
<tr>
<td>Limb-girdle muscular dystrophy</td>
<td>Autosomal dominant, autosomal recessive, and X-linked forms.</td>
<td>Variable; early childhood to adulthood.</td>
<td>Weakness, with distribution according to type. Waddling gait, difficulty climbing stairs. Excessive lumbar lordosis.</td>
<td>Slowly progressive, symmetric proximal muscle involvement; characteristically involves shoulder and pelvic muscles.</td>
<td>Usually present</td>
<td>Necrosis and fiber splitting, increased endomysial connective tissue and inflammation, absent immunostaining for various DGC proteins by subtype.</td>
<td>Myopathic EMG. CK often &gt; 5000 IU/L. MRI of the legs may show selective involvement (eg, peroneal muscles in Miyoshi myopathy).</td>
<td>Physical therapy. Echocardiogram to screen for cardiomyopathy. PFTs to screen to respiratory weakness. No curative treatment available.</td>
<td>Variable by subtype.</td>
</tr>
</tbody>
</table>

Table 25–27. Muscular dystrophies, myopathies, myotonias, and anterior horn diseases of childhood.
<table>
<thead>
<tr>
<th>Congenital myopathies</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Facioscapulohumeral muscular dystrophy (Landouzy-Dejerine)</strong></td>
<td>Most are autosomal dominant inherited deletions of D4Z4 on 4q35; sporadic cases in 10%-30% cases.</td>
<td>Usually late in 1st-5th decade depending on size of deletion.</td>
<td>Diminished facial movements with inability to close eyes, smile, or whistle. Difficulty in raising arms over heard.</td>
<td>Face, shoulder girdle muscles (biceps, triceps), often asymmetric. Deltoid and forearm spared. 75% have sensorineural hearing loss; 60% Coats disease; 89% mental retardation.</td>
<td>Present</td>
<td>Nonspecific myopathic changes: variation in fiber size, moderate increased endomysial connective tissue, mild inflammatory changes.</td>
<td>Nonspecific chronic myopathic changes. CK mild to moderately elevated (&lt; 1500 IU/L).</td>
</tr>
</tbody>
</table>

| **Congenital myopathies** | **Myotubular myopathy** | X-linked recessive, Xq27. | Neonatal period. | Floppy infant; severe hypotonia and respiratory insufficiency. | Ptosis, ophthalmoplegia; severe symmetric distal and proximal weakness. | + to − | Small rounded myofibers: Patchy central clearing with radial spokes. | Normal to mildly elevated CK. Myopathic EMG with fibrillations and complex repetitive discharges. | No curative treatment. Respiratory, nutritional support. Liver and peritoneal hemorrhage reported in cases. | Generally death before 5 mo of age. |

| **Central core myopathy** | Most autosomal dominant, some autosomal recessive, 19q13, RYR1. | Infancy to adulthood. | Reduced fetal movements; hypotonia; ankle contractures. | Nonprogressive proximal weakness of legs more than arms, mild facial weakness, normal eye movements. | + to − | Variable myofiber size; oxidative staining shows central cores absent of mitochondrial activity. | High CK, mild myopathic changes on EMG, muscle MRI shows increased T1 signal. | Physical therapy. Respiratory follow-up required. Avoid inhalational anesthetics and succinylcholine due to risk of malignancy hyperthermia. | Weakness is nonprogressive. Life expectancy normal. |

(Continued)
Table 25–27. Muscular dystrophies, myopathies, myotonias, and anterior horn diseases of childhood. (Continued)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Genetic Pattern</th>
<th>Age at Onset</th>
<th>Early Manifestation</th>
<th>Involved Muscles</th>
<th>Reflexes</th>
<th>Muscle Biopsy Findings</th>
<th>Other Diagnostic Tests</th>
<th>Treatment</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Metabolic myopathies</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ion channel disorders</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperkalemic periodic paralysis</td>
<td>Autosomal dominant 17q35.</td>
<td>Childhood, usually by 1st decade.</td>
<td>Episodic flaccid weakness, precipitated by rest after exercise, stress, fasting or cold.</td>
<td>Proximal and symmetric muscles, distal muscles may be involved if exercised.</td>
<td>Normal, may be 0 with episode</td>
<td>Hyperkalemic periodic paralysis.</td>
<td>CK normal to 300 IU/L; attacks associated with high serum K⁺; NCS show increased CMAP amplitude after 5 min exercise.</td>
<td>Many attacks are brief and do not need treatment; treat acute attack with carbohydrates; if needed, chronic treatment with acetazolamide.</td>
<td>Attacks may be more frequent with increasing age.</td>
</tr>
<tr>
<td><strong>Congenital muscular dystrophies (CMD)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Myotonic disorders | Myotonic dystrophy type 1 (DM1) | Autosomal dominant, expanded CTG triple repeat on chromosome 19q13. | Congenital presentation. | Decreased fetal movement, respiratory insufficiency, difficulties in feeding, sucking, and swallowing. | Generalized weakness; facial and pharyngeal involvement prominent; mental retardation. | Decreased to 0 | Mild myopathic changes, centralized nuclei, variation in fiber size, ring fibers. | Usually normal CK. Electrical myotonia on EMG. Cataracts on slit lamp exam. Reduced testosterone levels. ECG shows conduction defects, like ventricular arrhythmias. Insulin resistance. Sleep study shows hypercapnia and hypoventilation. | No curative treatment. Patients should avoid medications that predispose to arrhythmia such as quinine, amitriptyline, and digoxin. Should be closely followed by pulmonologist with sleep studies, by cardiologist for risk of arrhythmia, by endocrinologist for insulin resistance, and by ophthalmologist for cataracts. May have GI hypomotility with constipation and pseudoobstruction. | Reduced survival to age 65; mean survival to 60 y. 50% patients are wheelchair bound before death. |

(Continued)
Table 25–27. Muscular dystrophies, myopathies, myotonias, and anterior horn diseases of childhood. (Continued)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Genetic Pattern</th>
<th>Age at Onset</th>
<th>Early Manifestation</th>
<th>Involved Muscles</th>
<th>Reflexes</th>
<th>Muscle Biopsy Findings</th>
<th>Other Diagnostic Tests</th>
<th>Treatment</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myotonic dystrophy type 2 (DM2)</td>
<td>Autosomal dominant expanded CCTG repeat on chromosome 3q21.</td>
<td>~8-60 y old.</td>
<td>Complaints of difficult climbing stairs, arising from stairs.</td>
<td>Mild facial weakness, with proximal &gt; distal and legs &gt; arms (usually hip flexors and leg extensors); grip myotonia.</td>
<td>+ to ++</td>
<td>Usually normal, though there may be absence of 2B fibers.</td>
<td>Myotonia and mild myopathic changes on EMG; CK may be slightly elevated 3-4× normal.</td>
<td>Symptomatic treatment with quinine, mexiletine, dilantin, carbamazepine. May improve with exercise. Worsened with β2-agonists, monocarboxylic amino acids, depolarizing muscle relaxants.</td>
<td>Normal life expectancy; muscle stiffness may interfere with activity but improves with exercise.</td>
</tr>
<tr>
<td>Myotonia congenita (Thomsen)</td>
<td>Autosomal dominant on chromosome 7q35 on CLCN1 gene.</td>
<td>Early infancy to adulthood.</td>
<td>Muscle hypertrophy. Difficulty in relaxing muscles after contracting them, especially with cold or stress.</td>
<td>Mild fixed proximal muscle weakness or mild functional difficulties (like climbing stairs).</td>
<td>Normal</td>
<td>Same as above.</td>
<td>Same as above.</td>
<td>Same as above.</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>
### Myotonia congenital (Becker)
- **Autosomal recessive on chromosome 7q35 on CLCN1 gene.**
- **4-12 y**
- **Myotonia, relaxes with exercise. Muscle hypertrophy of legs and gluteals.**
- **Mild distal muscle weakness; limitations from myotonia (inability to voluntarily relax muscle).**
- **Normal**
- **Large areas of grouped muscle fiber atrophy, most larger fibers are type I.**
- **EMG shows fibrillation and fasciculation potentials, large amplitude motor unit potentials. Normal to mildly elevated CK.**
- **No curative treatments. Respiratory and nutritional support. Clinical trials underway with sodium phenylbutyrate, valproic acid, and riluzole.**
- **No independent sitting or standing. Life expectancy < 2 y without respiratory or nutritional support.**

### Spinal muscular atrophy

#### SMA type 1 (Werdnig-Hoffman)
- **Autosomal recessive, rare cohorts with autosomal dominant or X-linked inheritance, 5q.**
- **1st 6 mo of life.**
- **Hypotonia, “floppy” infant, with alert look, fasciculations may be noted of tongue.**
- **Severe progressive, symmetric proximal and respiratory muscle weakness; face spared.**
- **0**

#### SMA type 2
- **1st 18 mo.**
- **Motor delays.**
- **Progressive symmetric proximal muscles, mild to moderate respiratory weakness, limited cough and secretion control.**
- **0 to +**
- **As above.**

EMG also shows fibrillation potentials and large amplitude motor unit potentials, but fasciculations not as common as in SMA type 1; tremor of fingers.

No curative treatments. Mild to moderate respiratory weakness, sleep-disordered breathing, and limited cough and secretion control require close follow-up with pulmonologist.

Will achieve independent sitting but not standing. 75% alive at 25 y old.

(Continued)
Table 25-27. Muscular dystrophies, myopathies, myotonias, and anterior horn diseases of childhood. (*Continued*)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Genetic Pattern</th>
<th>Age at Onset</th>
<th>Early Manifestation</th>
<th>Involved Muscles</th>
<th>Reflexes</th>
<th>Muscle Biopsy Findings</th>
<th>Other Diagnostic Tests</th>
<th>Treatment</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA type 3 (Kugelberg-Welander)</td>
<td>Recognized after 18 mo of age.</td>
<td>Motor delays, difficulty with climbing stairs, may achieve independent walking but may lose this.</td>
<td>Progressive symmetric proximal muscle weakness, +/- tremor of hands.</td>
<td>0 to +</td>
<td>As above.</td>
<td>EMG similar to SMA type 2.</td>
<td>No curative treatments.</td>
<td>Independent ambulation may be achieved, but this skill may be lost. Normal life expectancy.</td>
<td></td>
</tr>
<tr>
<td>SMA type 4</td>
<td>Adulthood.</td>
<td>Clumsy gait.</td>
<td>Mild progressive proximal muscle weakness.</td>
<td>0 to ++</td>
<td>As above.</td>
<td>EMG similar to SMA type 2; tremor of hands often noted.</td>
<td>No curative treatment. Physical therapy and assistive devices. No pulmonary issues.</td>
<td>Slow progression of muscle weakness. Normal life expectancy.</td>
<td></td>
</tr>
</tbody>
</table>

ASA, acetylsalicylic acid; CK, creatine kinase; CPT, carnitine palmityl transferase; CSF, cerebrospinal fluid; CT, computed tomography; ECG, electrocardiogram; EMG, electromyogram; MRI, magnetic resonance imaging; PCR, polymerase chain reaction; SIDS, sudden infant death syndrome.
and are currently in clinical trials, including exon-skipping and read-through strategies that target specific mutations.

In the past, the prognosis for infantile Pompe disease was uniformly grim, with death by age 1 year, but enzyme replacement therapy with recombinant alglucosidase alpha has changed the outlook for many of these patients. Published short-term studies of infants with Pompe disease show significant improvement after treatment with alglucosidase alpha; with improved survival, respiratory performance, cardiomyopathy, and attainment of motor skills.

Until curative treatments for muscle diseases are available, the emphasis on management ought to be on slowing the progressive deterioration in muscle strength and cardiorespiratory function, and to improve quality of life.

**BENIGN ACUTE CHILDHOOD MYOSITIS**

Benign acute childhood myositis (myalgia cruris epidemica) is characterized by transient severe muscle pain and weakness affecting mainly the calves and occurring 1–2 days following an upper respiratory tract infection. Although symptoms involve mainly the gastrocnemius muscles, all skeletal muscles appear to be involved directly by virus; recurrent episodes are due to different viral types. By seroconversion or isolation of the virus, acute myositis has been shown to be largely due to influenza types B and A and occasionally due to parainfluenza and adenovirus.


**MYASTHENIC SYNDROMES**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Asymmetric, variable weakness, usually coming on or increasing with use (fatigue).
- Involves extraocular, bulbar, and respiratory muscles.
- Positive response to neostigmine and edrophonium.

**General Considerations**

Myasthenic syndromes are characterized by easy fatigability of muscles, particularly the extraocular, bulbar, and respiratory muscles. In the neonatal period, however, or in early infancy, the weakness may be so constant and general that an affected infant may present nonspecifically as a “floppy infant.” Three general categories of myasthenic syndromes are recognized: transient neonatal myasthenia, autoimmune myasthenia gravis, and congenital myasthenia.

**Clinical Findings**

**A. Symptoms and Signs**

1. **Neonatal (transient) myasthenia**—This disorder occurs in 12%–19% of infants born to myasthenic mothers as a result of passive transfer of maternal acetylcholine receptor antibody across the placenta. Neonates present before the third day of life with bulbar weakness, difficulty feeding, weak cry, and hypotonia.

2. **Juvenile myasthenia gravis**—Like the adult form of myasthenia gravis, juvenile myasthenia gravis is characterized by fatigable and asymmetric weakness. However, more than half of patients present with ocular symptoms (ptosis...
or ophthalmoplegia), unlike adult patients who typically present with limb weakness. Weakness may remain limited to the extraocular muscles in 10%–15% of patients, but approximately half of children develop systemic or bulbar symptoms within 2 years and 75% within 4 years. Symptoms of weakness tend to recur and remit, and can be precipitated by illness or medications such as aminoglycoside antibiotics. Typical signs include difficulty chewing foods like meat, dysphagia, nasal voice, ptosis, ophthalmoplegia, and proximal limb weakness. Other autoimmune disorders such as rheumatoid arthritis and thyroid disease may be associated findings.

3. Congenital myasthenic syndromes—These syndromes are a heterogenous group of hereditary, nonimmune disorders of presynaptic, synaptic, or postsynaptic neuromuscular transmission. Patients present with symptoms similar to that of myasthenia gravis, but onset is earlier, before the age of 2 years, and can vary from mild motor delay to dramatic episodic sleep apnea. Serum acetylcholine receptor antibody testing is negative. Response to anticholinesterases is variable, depending on the type of congenital myasthenic syndrome, and some forms may paradoxically worsen. The distinction between this group of disorders and myasthenia gravis is important, as these patients will not benefit from a thymectomy, steroids, or immunosuppressants, but it may be clinically difficult to distinguish between the two.

B. Laboratory Findings

1. Anticholinesterase inhibitor testing

A. Neostigmine test—In newborns and very young infants, the neostigmine test may be preferable to the edrophonium (Tensilon) test because the longer duration of its response permits better observation, especially of sucking and swallowing movements. There is a delay of about 10 minutes before the effect may be manifest. The physician should be prepared to suction secretions, and administer atropine if necessary.

B. Edrophonium test—Testing with edrophonium is used in older children who are capable of cooperating in certain tasks and who exhibit easily observable clinical signs, such as ptosis, ophthalmoplegia, or dysarthria. Maximum improvement occurs within 2 minutes. Both cholinesterase inhibitor tests can be limited by patient cooperation and lack of an easily observable clinical sign.

2. Antibody testing—Serum acetylcholine receptor binding, blocking, and modulating antibodies typically, though not always, are found in autoimmune juvenile myasthenia gravis. Though not specifically studied in the pediatric population, in the general myasthenia gravis population at large, about 40% of the seronegative patients have muscle-specific receptor tyrosine kinase (MuSK) antibodies. Serum acetylcholine receptor antibodies or MuSK antibodies are often found in the neonatal and juvenile forms. In juveniles, thyroid studies are appropriate.

3. Genetic testing—Commercially available genetic testing is limited for patients with congenital myasthenic syndromes.

C. Electrophysiologic Studies

Electrophysiologic studies may be helpful when myasthenic syndromes are considered. Repetitive stimulation of a motor nerve at slow rates of 2–3 Hz with recording over an appropriately chosen muscle reveals a progressive fall in compound muscle action potentials by the fourth to fifth repetition in myasthenic patients. At higher rates of stimulation of 50 Hz, there may be a transient repair of this defect before the progressive decline is seen. Both studies may be technically difficult to perform in infants and younger children as repetitive stimulation can be painful and requires cooperation. If this study is negative, single-fiber EMG in older cooperative children may be helpful diagnostically, but it is technically challenging and time intensive, and requires concentration on the part of the child. Stimulated single-fiber EMG may be performed by trained electromyographers.

D. Imaging

Chest radiograph and CT scanning in older children may show thymic hyperplasia. Thymomas are rare in children.

Treatment

A. General and Supportive Measures

In the newborn or in a child in myasthenic or cholinergic crisis (see the following section Complications), supportive care is essential and the child should be monitored in a critical care setting. A careful search for signs of respiratory failure is crucial: simple bedside tests include evaluation of cough and counting to 20 in a single breath. An inability to do either signals respiratory failure. Neck flexion weakness, nasal speech, and drooling are other important signs to observe. Management of secretions and respiratory assistance should be monitored by trained critical care staff.

B. Anticholinesterase Inhibitors

1. Pyridostigmine bromide—Pyridostigmine is the first-line treatment in patients with juvenile myasthenia gravis and mild weakness. Anticholinesterase inhibitors do not modify disease progression but transiently improve muscle strength. For younger children, the starting dose is 0.5–1 mg/kg every 4–6 hours. In older children, the initial dose is 30–60 mg every 4–6 hours. The maximal daily dose is 7 mg/kg/d with an absolute maximum dose of 300 mg/d.
The dosage must be adjusted for each patient based on clinical symptoms and side effects.

2. Neostigmine—Fifteen milligrams of neostigmine are roughly equivalent to 60 mg of pyridostigmine bromide. Neostigmine often causes gastric hypermotility with diarrhea, but it is the drug of choice in newborns, in whom prompt treatment may be lifesaving. It may be given parenterally.

C. Immunomodulatory Treatment

Patients with more severe weakness not responding to cholinesterase inhibitors alone require long-term treatment with immunomodulation. There are four therapeutic options in this category: (1) plasmapheresis, (2) intravenous immunoglobulins (IVIg), (3) steroids, and (4) immunosuppressants. The mainstay of treatment is steroids, but some patients who either cannot tolerate or do not respond to steroids require treatment with other immunosuppressants such as azathioprine, cyclosporine, or mycophenolate mofetil. Both plasmapheresis and IVIg may be given on a long-term basis, depending on the severity of symptoms, as well as in the acute setting, with myasthenic crises. Special note must be made to the use of steroids, which can transiently worsen symptoms before any benefit is noted, particularly with large starting doses.

Complications

A. Myasthenic Crisis

Respiratory failure can develop swiftly due to critical weakness of respiratory muscle, bulbar muscles or both, resulting in a myasthenic crisis. Crises are generally not fatal as long as patients receive timely respiratory support and appropriate immunotherapy. Particular vigilance, however, needs to be maintained as crises can occur in the setting of medical illnesses or surgical procedures. Patients and their caregivers should also be alerted that certain medications can exacerbate myasthenia gravis, including aminoglycoside antibiotics, muscle relaxants, and anesthetics.

B. Cholinergic Crisis

Cholinergic crisis may result from overmedication with anticholinesterase drugs. The resulting weakness may be similar to that of myasthenic crises, and the muscarinic side effects (diarrhea, sweating, lacrimation, miosis, bradycardia, and hypotension) are often absent or difficult to evaluate. If suspected, cholinesterase inhibitors should be discontinued immediately, and improvement afterward suggests cholinergic crisis. As in myasthenic crisis, supportive respiratory care and appropriate immunotherapy should be given.

C. Surgical Measures

Data for efficacy of thymectomy in the pediatric population are few. Some studies suggest that thymectomy within 2 years of diagnosis results in a higher rate of remission in Caucasian children. Experienced surgical and postsurgical care are prerequisites.

Prognosis

Prognosis for neonatal (transient) myasthenia is generally good, with complete resolution of symptoms in 2–3 weeks. However, immediate treatment with appropriate respiratory support in the acute presentation period is crucial, primarily because of the risk of secretion aspiration. No further treatment is required thereafter. The prognosis for congenital myasthenic syndromes is variable by subtype. Some subtypes show improvement in weakness with age. Others demonstrate life-threatening episodic apnea, including those with rapsyn mutations, fast-channel mutations, and choline acetyltransferase mutations. Patients with juvenile myasthenia gravis generally do well, with greater spontaneous remission rates than adult patients. Improvements in respiratory and critical care support has improved prognosis for these patients.


PERIPHERAL NERVE PALSIES

Facial Weakness

Central vs peripheral facial nerve lesions need to be distinguished in order to determine workup, treatment, and prognosis. The inability to raise the eyebrows indicates peripheral involvement of the facial nerve.
Pathogenesis

The most common cranial mononeuropathy is facial nerve palsy. Cranial nerve VII is a complex nerve that carries several different nerve fibers, including motor fibers to all muscles of facial expression, parasympathetic motor fibers supplying the mucosa of the soft palate and the salivary and lacrimal glands, taste fibers to the anterior 2/3 of the tongue, parasympathetic sensory fibers for visceral sensation from the salivary glands and the nasal and pharyngeal mucosa, and somatic sensory fibers supplying a small part of the external auditory meatus and the skin of the ear. Facial weakness can occur as the result of a lesion anywhere along the path of the nerve. A central lesion, proximal to the facial nerve nuclei, causes contralateral weakness of the lower face, sparing the forehead and orbicularis oculi muscles which are bilaterally innervated. Peripheral lesions, at or distal to the facial nerve nuclei, cause ipsilateral facial weakness that affects both the upper and lower facial muscles, resulting in an inability to wrinkle the forehead, close the eye or smile. In addition, there may be dysfunction in the ability of tearing and saliva production, hyperacusis, and absent taste sensation over the anterior two-thirds of the tongue.

Clinical Findings

The inability to wrinkle the forehead may be demonstrated in infants and young children by getting them to follow a light moved vertically above the forehead. Loss of taste of the anterior two-thirds of the tongue on the involved side may be demonstrated in cooperative children by age 4 or 5 years. Playing with a younger child and the judicious use of a tongue blade may enable the physician to note whether the child’s face puckers up when something sour (eg, lemon juice) is applied with a swab to the anterior tongue.

Differential Diagnosis

Injuries to the facial nerve at birth occur in 0.25%–6.5% of consecutive live births. Forceps delivery is the cause in some cases; in others, the side of the face affected may have abutted in utero against the sacral prominence. Often, no cause can be established.

Acquired peripheral facial weakness (Bell palsy) is common in children. Some cases are postinfectious, although an increasing body of evidence suggests that Bell palsy is a viral-induced cranial neuritis caused by herpes virus. It may be a presenting sign of Lyme disease, infectious mononucleosis, herpes simplex, or Guillain-Barré syndrome and is usually diagnosable by the history, physical examination, and appropriate laboratory tests. Chronic cranial nerve VII palsy may be a sign of brainstem tumor.

Bilateral facial weakness in early life may be due to agenesis of the facial nerve nuclei or muscles (part of Möbius syndrome) or may even be familial. Myasthenia gravis, polyneuritis (Miller-Fisher syndrome), fascioscapulohumeral muscular dystrophy, and myotonic dystrophy must be considered.

Asymmetrical crying facies, in which one side of the lower lip depresses with crying (ie, the normal side) and the other does not, is usually an innocent form of autosomal dominant inherited congenital malformation. The defect in the parent (the asymmetry often improves with age) may be almost inapparent. EMG suggests congenital absence of the depressor angularis muscle of the lower lip. Forceps pressure is often erroneously incriminated as a cause of this innocent congenital anomaly. Occasionally other major (eg, cardiac septal defects) congenital defects accompany the palsy. Congenital unilateral lower lip paralysis with asymmetric crying facies, most often attributed to congenital absence of the depressor anguli oris, is associated with major malformations, most commonly heart defects, in 10% of cases.

Treatment & Prognosis

In the vast majority of cases of isolated peripheral facial palsy—both those due to birth trauma and those acquired later—improvement begins within 1–2 weeks, and near or total recovery of function is observed within 2 months. In severe palsy with inefficient blinking, methylcellulose drops, 1%, should be instilled into the eyes to protect the cornea during the day; at night the lid should be taped down with cellophane tape. Upward massage of the face for 5–10 minutes three or four times a day may help maintain muscle tone. Prednisone therapy (2–4 mg/kg orally for 5–7 days) likely does not aid recovery. In the older child, acyclovir or valacyclovir (herpes antiviral agent) therapy or antibiotics (Lyme disease) may have a role in Bell palsy.

In the few children with permanent and cosmetically disfiguring facial weakness, plastic surgical intervention at age 6 years or older may be of benefit. New procedures, such as attachment of facial muscles to the temporal muscle and transplantation of cranial nerve XI, are being developed.

References


Kawaguchi K et al: Reactivation of herpes simplex virus type 1 and varicella-zoster virus and therapeutic effects of combination therapy with prednisolone and valacyclovir in patients with Bell’s palsy. Laryngoscope 2007;117:147 [PMID: 17202945].

**Clinical Findings**

Hereditary neuropathy is the most common documented cause of chronic neuropathy in childhood. A careful genetic history (pedigree) and examination and electrical testing (motor and sensory nerve conduction and EMG) of patient and relatives are keys to diagnosis. Genetic tests are available for many of the variants. Nerve biopsy is rarely necessary.

Other hereditary neuropathies may have ataxia as a prominent finding, often overshadowing the neuropathy. Examples are Friedreich ataxia, dominant cerebellar ataxia, and Marinesco-Sjögren syndrome. Finally, some hereditary neuropathies are associated with identifiable and occasionally treatable metabolic errors (see Tables 25–20 and 25–21). These disorders are described in more detail in Chapter 36.

Laboratory diagnosis of chronic polyneuropathy is made by measurement of motor and sensory nerve conduction velocities. EMG may show a neurogenic pattern. CSF protein levels are often elevated, sometimes with an increased IgG index. Nerve biopsy, with teasing of the fibers and staining for metachromasia, may demonstrate loss of myelin, and to a lesser degree, loss of axons and increased connective tissue or concentric lamellas (so-called onion-skin appearance) around the nerve fiber. Muscle biopsy may show the pattern associated with denervation. Other laboratory studies directed toward specific causes mentioned above include screening for heavy metals and for metabolic, renal, or vascular disorders.

**Treatment & Prognosis**

Therapy is directed at specific disorders whenever possible. Corticosteroid therapy is used first when the cause is unknown or neuropathy is considered to be due to chronic inflammation (this is not the case in acute Guillain-Barré syndrome [AIDP; acute inflammatory demyelinating neuropathy]). Prednisone is initiated at 2–4 mg/kg/d orally, with tapering to the lowest effective dose; it may need to be reinstituted when symptoms recur. (Prednisone should probably not be used for treatment of hereditary neuropathy.) Immunomodulating therapy may be safer or “steroid-sparing”; IVIG, plasmapheresis, mycophenolate mofetil, and rituximab are choices.

The long-term prognosis varies with the cause and the ability to offer specific therapy. In the corticosteroid-dependent group, residual deficits are more frequent.

The diagnostic workup requires a thorough knowledge of normal developmental milestones at each stage of a developing infant and child, and careful assessment of the pre- and perinatal history, family history, developmental history, and presence of other systemic involvement (see Table 25–28).

Clinical Findings

A. Signs and Symptoms

In the young infant, horizontal suspension (ie, supporting the infant with a hand under the chest) normally results in the infant’s holding its head slightly up (45 degrees or less), the back straight or nearly so, the arms flexed at the elbows and slightly abducted, and the knees partly flexed. The “floppy” infant droops over the hand like an inverted U. The normal newborn attempts to keep the head in the same plane as the body when pulled up from supine to sitting by the hands (traction response). Marked head lag is characteristic of the floppy infant. In vertical suspension, the hypotonic infant will slip through the examiner’s hands when held under the armpits. Hyperextensibility of the joints is not a dependable criterion.

B. Laboratory Findings

A general rule for laboratory testing is to localize the etiology of the hypotonia. For instance, if a lower motor neuron etiology is suspected, a serum CK, EMG/NCS, and/or muscle biopsy may be appropriate as first tier testing. Many neuromuscular disorders may be diagnosed by clinical findings alone, as is often the case with spinal muscular atrophy and congenital myotonic dystrophy, and in those cases, genetic testing is often the first testing warranted. If the hypotonic is accompanied by language or cognitive delay, a CNS or genetic disorder is most likely, and MR imaging of the brain may be the most useful diagnostic test.

Pathogenesis

An infant may present with hypotonia due to dysfunction at any place along the neuroaxis, from the brain, spinal cord, nerve, neuromuscular junction, and muscle. Additionally, systemic disorders, metabolic disease and genetic disorders may cause an infant to appear “floppy.” The evaluation of the hypotonic infant is therefore one of the most challenging diagnostic problems that a pediatrician is often faced with.

Pathogenesis

An infant may present with hypotonia due to dysfunction at any place along the neuroaxis, from the brain, spinal cord, nerve, neuromuscular junction, and muscle. Additionally, systemic disorders, metabolic disease and genetic disorders may cause an infant to appear “floppy.” The evaluation of the hypotonic infant is therefore one of the most challenging diagnostic problems that a pediatrician is often faced with.
Table 25–28. Floppy infant.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Genetic/Causes</th>
<th>Early Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantile botulism</td>
<td>Acquired, younger than age 1 y (mostly before age 6 mo); botulism spore in stool makes toxin.</td>
<td>Poor feeding. Constipation. Weak cry. Failure to thrive. Lethargy. Facial weakness, ptosis, ocular muscle palsy. Inability to suck, swallow. Apnea. Source: soil dust, honey. EMG may be helpful.</td>
</tr>
<tr>
<td>Myasthenia gravis</td>
<td>Genetic information not available.</td>
<td>Floppiness. Poor sucking and feeding; choking. Respiratory distress. Weak cry. Autoimmune antibodies from mother. As above; may improve and later exacerbate.</td>
</tr>
<tr>
<td>Neonatal congenital myopathy</td>
<td></td>
<td>Virtually all of the rare myopathies may have a severe (even fatal) neonatal or early infant form.</td>
</tr>
<tr>
<td>Nemaline, central core, myotubular myopathy, etc</td>
<td>Autosomal recessive or dominant.</td>
<td>Clinical features often include respiratory failure. Muscle biopsy for definitive diagnosis.</td>
</tr>
<tr>
<td>Fukayama (FCMD)</td>
<td>Autosomal recessive.</td>
<td>Demyelinating or axonal; a rare cause. Rule out mimicking SMA (deletion study). EMG, NCV are key studies. Nerve biopsy. Diagnosis of exclusion. Family history variable. Mild to moderate hypotonia with weakness. (This term being used less with increasing genetic, microscopy advances.) Improves with time.</td>
</tr>
<tr>
<td>Infantile neuropathy</td>
<td></td>
<td>(Continued)</td>
</tr>
<tr>
<td>Hypomyelinating (rare)</td>
<td>HSMN most common cause.</td>
<td></td>
</tr>
<tr>
<td>Benign congenital hypotonia</td>
<td>Unknown cause.</td>
<td></td>
</tr>
</tbody>
</table>
## Table 25–28. Floppy infant. (Continued)

<table>
<thead>
<tr>
<th>CENTRAL CAUSES</th>
<th>Causes</th>
<th>Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Structural CNS causes</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoxic ischemic encephalopathy</td>
<td>Multiple causes, detailed prenatal and perinatal history crucial</td>
<td>Limpness, stupor; poor suck, cry, Moro reflex, and grasp; later, irritability, increased tone and reflexes.</td>
</tr>
<tr>
<td>Brain malformations</td>
<td>Multiple causes, including genetic, exposures, infections</td>
<td>Seizures may be seen. Cognitive and language delay when older.</td>
</tr>
<tr>
<td><strong>Syndromes with hypotonia (CNS origin)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trisomy 21</td>
<td>Genetic</td>
<td>All have hypotonia early.</td>
</tr>
<tr>
<td>Prader-Willi syndrome</td>
<td>Genetic deletion 15q11.</td>
<td>Hypotonia, hypomentia, hypogonadism, obesity</td>
</tr>
<tr>
<td>Marfan syndrome</td>
<td>Autosomal dominant.</td>
<td>Arachnodactyly.</td>
</tr>
<tr>
<td>Dysautonomia</td>
<td>Autosomal recessive.</td>
<td>Respiratory infections, corneal anesthesia.</td>
</tr>
<tr>
<td>Turner syndrome</td>
<td>45X, or mosaic.</td>
<td>Somatic stigmata (see Chapter 36).</td>
</tr>
<tr>
<td><strong>Degenerative disorders</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tay-Sachs disease</td>
<td>Autosomal recessive.</td>
<td>Cherry-red spot on macula.</td>
</tr>
<tr>
<td>Metachromatic leukodystrophy</td>
<td>Autosomal recessive.</td>
<td>Deep tendon reflexes increased early, polyneuropathy late; mental retardation.</td>
</tr>
<tr>
<td><strong>Systemic diseases</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malnutrition</td>
<td>Deprivation, cystic fibrosis</td>
<td></td>
</tr>
<tr>
<td>Chronic illness</td>
<td>Congenital heart disease; chronic pulmonary disease (eg, bronchopulmonary dysplasia); uremia, renal acidosis.</td>
<td></td>
</tr>
<tr>
<td>Metabolic disease</td>
<td>Mitochondrial; Lowe, Pompe, Leigh disease; hypercalcemia.</td>
<td></td>
</tr>
<tr>
<td>Endocrinopathy</td>
<td>Hypothyroid.</td>
<td></td>
</tr>
</tbody>
</table>

*See elsewhere in text for manifestations.

AD, autosomal dominant; AR, autosomal recessive; EMG, electromyogram; HSMN, hereditary sensory motor neuropathy; MRI, magnetic resonance imaging; NCV, nerve conduction velocity; SMN, survival motor neuron.
Treatment

Treatment for many of these disorders is supportive. Physical and occupational therapy can facilitate some progress to a varying degree. Accompanying seizures and other systemic manifestations should be controlled to optimize development.


WEB RESOURCES

American Association of Child and Adolescent Psychiatry: http://www.aacap.org
Contains practice parameters and relevant information about childhood psychiatric conditions.

American Academy of Neurology: http://www.aan.com
Provides both adult and child neurology practice parameters.

American Epilepsy Society: http://www.aesnet.org
Includes general information about epilepsy, and a comprehensive section about antiepileptic drugs.

Child Neurology Foundation: http://www.childneurologyfoundation.org/index.html
Describes resources and tests related to child neurology, and provides a comprehensive list of child neurology–related web-site links.

Child Neurology Society: http://www.childneurologysociety.org
Provides research updates, organizational information, and has child neurology–specific practice parameters.

Cure CMD: http://curecmd.org/

Epilepsy Foundation of America: http://www.epilepsyfoundation.org
Includes tutorials about epilepsy and living with epilepsy.

Families of SMA: http://www.fsma.org/

Gene tests: http://www.genetests.org
Provides detailed information about available genetic testing, research, literature/disorder reviews, and resources for most genetically determined neurologic disorders.

Muscular Dystrophy Association: http://www.mda.org
Contains research updates, organizational information, and detailed information regarding neuromuscular disorders.

Provides brief descriptions of neurologic disorders, related research, research opportunities, and relevant organizations.

National Ataxia Foundation http://www.ataxia.org/
Resource for providers and patients with ataxia including research and support groups.

National MS Society http://nmss.org
Provides resources for providers, schools, patients and families on pediatric onset multiple sclerosis.

Neurofibromatosis Foundation: http://www.nf.org
Provides detailed information for parents and providers about neurofibromatosis.

Provides information about spinal muscular atrophy for families and providers, including ongoing research, conferences, and literature.

Provides resources about congenital muscular dystrophy for families and providers, including registry data, recent literature, and current clinical trials.

Washington University, St. Louis, Neuromuscular Disease Center: http://neuromuscular.wustl.edu
Includes detailed descriptions of neuromuscular disorders and differential diagnoses.

Tuberous Sclerosis Association: http://www.tsalliance.org
Contains detailed information for parents and providers about Tuberous Sclerosis.

We Move: worldwide education and awareness for movement disorders: http://wemove.org
Descriptions of movement disorders, related research and research opportunities.
Orthopedics is the medical discipline that deals with disorders of the musculoskeletal system. Patients with orthopedic problems generally present with one or more of the following complaints: pain, swelling, loss of function, or deformity. While the history reveals the patient’s expectation, physical examination and radiographic imaging are vitally important features of orthopedic diagnosis.

**DISTURBANCES OF PRENATAL ORIGIN**

**ESSENTIALS OF DIAGNOSIS & TREATMENT**

- Conditions are present at birth.
- Multiple organ systems may be involved.
- Treatment is aimed at maximizing function.

**CONGENITAL AMPUTATIONS & LIMB DEFICIENCIES**

Congenital amputations may be due to teratogens (e.g., drugs or viruses), amniotic bands, or metabolic diseases (e.g., maternal diabetes). Limb deficiencies are rare with an overall prevalence for all types of limb deficiencies of 0.79 per 1000. The most common cause of limb deficiencies is vascular disruption defects (prevalence of 0.22 per 1000). As a group, upper limb deficiencies occur more frequently than lower limb deficiencies, but the single most frequent form of limb deficiency is congenital longitudinal deficiency of the fibula. Children with congenital limb deficiencies, such as absence of the femur, tibia, or fibula, have a high incidence of other congenital anomalies, including genitourinary, cardiac, and palatal defects. Deficiencies usually consist of a partial absence of structures in the extremity along one side. For example, in radial club hand, the entire radius is absent, but the thumb may be either hypoplastic or completely absent. The effect on structures distal to the deficiency varies. Complex tissue defects are virtually always associated with longitudinal bone deficiency since associated nerves and muscles are not completely represented when a bone is absent.

**Treatment**

Limb lengthening and/or contralateral limb shortening can be used to treat less severe deficiencies. More severe deficiencies are treated with a prosthesis to compensate for the length discrepancy. For certain severe anomalies, operative treatment to remove a portion of the malformed extremity (e.g., foot) is indicated to allow for early prosthetic fitting. In these instances, early prosthetic fitting allows for maximization of function.

Typically, a lower extremity prosthesis would be fit at about 1 year of age allowing the child to begin ambulation at an appropriate developmental age. The prosthesis is well accepted since it becomes necessary for balancing and walking. In unilateral upper extremity amputation, the child benefits from the use of a passive mitten type prosthesis starting as early as 6 months of age. Early fitting has the advantage of instilling an accustomed pattern of proper length and bimanual manipulation. Although myoelectric prostheses have a technologic appeal, the majority of patients find the simplest construct to be the most functional. Children quickly learn how to function with their prostheses and can lead active lives.


DEFORMITIES OF THE EXTREMITIES

Metatarsus Adductus

Metatarsus adductus, a common congenital foot deformity, is characterized by inward deviation of the forefoot. When the deformity is more rigid, it is characterized by a vertical crease in the medial aspect of the arch. Angulation occurs at the base of the fifth metatarsal causing prominence of this bone. Most flexible deformities are secondary to intrauterine positioning and usually resolve spontaneously. Several investigators have noticed that 10%–15% of children with metatarsus adductus have hip dysplasia; therefore, a careful hip examination is necessary. The etiology of rigid deformities is unknown. If the deformity is rigid and cannot be manipulated past the midline, it is worthwhile to perform serial casting, with cast changes in 1–2-week intervals, to correct the deformity. Corrective shoes do not live up to their name; however, they can be used to maintain the correction obtained by casting.

Clubfoot (Talipes Equinovarus)

Classic talipes equinovarus, or clubfoot, requires three features for diagnosis: (1) plantar flexion of the foot at the ankle joint (equinus), (2) inversion deformity of the heel (varus), and (3) medial deviation of the forefoot (adductus). Clubfoot occurs in approximately 1 per 1000 live births. The three major categories of clubfoot are idiopathic, neurogenic, and those associated with syndromes such as arthrogryposis and Larsen syndrome. Infants with a clubfoot should be examined carefully for associated anomalies, especially of the spine. Idiopathic club feet may be hereditary.

Treatment

Manipulation of the foot to stretch the contracted tissues on the medial and posterior aspects, followed by casting to hold the correction is the preferred treatment. Serial castings are typically performed on a weekly basis for 6–8 weeks. When instituted shortly after birth, correction is rapid. If treatment is delayed, the foot tends to become more rigid within a matter of days. Casting treatment requires patience and experience, but fewer patients require surgery when attention is paid to details of the Ponseti technique. After full correction is obtained, a night brace is necessary for long-term maintenance of correction. Recent studies indicate that there is poor compliance with brace use following intervention with the Ponseti technique. If the foot is rigid and resistant to cast treatment, surgical release and correction are appropriate. Approximately 15%–50% of patients require a surgical release.

Developmental Dysplasia of the Hip Joint

Dysplasia is the term used to describe abnormal growth or development. Dysplasia of the hip encompasses a spectrum of conditions where an abnormal relationship exists between the proximal femur and the acetabulum. In the most severe condition, the femoral head is not in contact with the acetabulum and is classified as a dislocated hip. In a subluxable hip, the femoral head is within the acetabulum but can be dislocated with a provocative maneuver. A subluxatable hip is one in which the femoral head comes partially out of the joint with a provocative maneuver. Acetabular dysplasia is used to denote insufficient acetabular development and is a radiographic diagnosis.

Congenital dislocation of the hip more commonly affects the left hip, occurring in approximately 1%–3% of newborns. At birth, both the acetabulum and femur are underdeveloped. Dysplasia is progressive with growth unless the instability is corrected. If the dislocation is corrected in the first few weeks of life, the dysplasia can be completely reversible and a normal hip will more likely develop. If the dislocation or subluxation persists with age, the deformity will worsen until it is not completely reversible, especially after the walking age. For this reason, it is important to diagnose the deformity and institute treatment early.

Clinical Findings

Clinical diagnosis of dislocations in newborns is dependent on demonstrating the instability of the joint by placing the infant on his or her back and obtaining complete relaxation. As these clinical signs can be subtle, with a crying or upset infant they can be easily missed. The examiner’s long finger is then placed over the greater trochanter and the thumb over the inner side of the thigh. Both hips are flexed 90 degrees and then slowly abducted from the midline, one hip at a time. With gentle pressure, an attempt is made to lift the greater
trochanter forward. A feeling of slipping as the head relocates is a sign of instability (Ortolani sign). When the joint is more stable, the deformity must be provoked by applying slight pressure with the thumb on the medial side of the thigh as the thigh is adducted, thus slipping the hip posteriorly and eliciting a palpable clunk as the hip dislocates (Barlow sign). Limited hip abduction of less than 60 degrees while the knee is in 90 degrees of flexion is believed to be the most sensitive sign for detecting a dysplastic hip. Clinical signs of instability are more reliable than radiographs for diagnosing developmental dislocation of the hip in the newborn. Ultrasonography is most useful in newborns, and can be helpful for screening high-risk infants, such as those with breech presentation or positive family history. Asymmetrical skin folds are present in about 25% of normal newborns and therefore are not particularly helpful to diagnosing hip dislocation.

The signs of instability become less evident after the first month of life. Contractures begin to develop about the hip joint, limiting abduction to less than 90 degrees. It is important to hold the pelvis level to detect asymmetry of abduction. If the knees are at unequal heights when the hips and knees are flexed, the dislocated hip will be on the side with the lower knee. Radiological examination becomes more valuable after the first 6 weeks of life, with lateral displacement of the femoral head being the most reliable sign. An acetabular index or angle can be measured on pelvis radiographs by drawing one line horizontally through the triradiate cartilage and another line starting at the triradiate cartilage to the acetabulum. A normal angle would be less than 30 degrees. In mild cases, increased steepness of acetabular alignment (acetabular angle > 35 degrees) may be the only abnormality.

If dysplasia of the hip has not been diagnosed before the child begins to walk, there will be a painless limp and/or a lurch to the affected side. When the child stands on the affected leg, a dip of the pelvis will be evident on the opposite side, due to weakness of the gluteus medius muscle. This is called the Trendelenburg sign and accounts for the unusual swaying gait. In children with bilateral dislocations, the loss of abduction is almost symmetrical and may be deceiving. In children with incomplete abduction during the first few months of life, a radiograph of the pelvis is indicated. As a child with bilateral dislocation of the hips begins to walk, the gait is waddling. The perineum is widened as a result of lateral displacement of the hips, and there is flexion contracture as a result of posterior displacement of the hips. This flexion contracture contributes to marked lumbar lordosis, causing the greater trochanters to be easily palpable in their elevated position. Treatment is still possible in the first 2 years of life, but the results are not as good as with early treatment. In patients older than 2 years, more aggressive procedures like osteotomies are often necessary to create a more normal orientation and shape of the hip joint.

### Treatment

Most unstable hips undergo spontaneous correction by 2–6 weeks of age. A Pavlik harness, which maintains reduction by placing the hip in a flexed and abducted position, can be easily used to treat dislocation or dysplasia diagnosed in the first few weeks or months of life. In order to be safely treated in a Pavlik harness, hips must be manually reducible with only gentle manipulation. Forced abduction, or reduction requiring extremes of motion for stability, can lead to avascular necrosis of the femoral head and is contraindicated. The use of double or triple diapers is ineffective. An orthopedic surgeon with experience managing the problem is best to supervise treatment.

In the first 4 months of life, reduction can be obtained by simply flexing and abducting the hip with a Pavlik harness; no other manipulation is usually necessary. In late cases, preoperative traction for 2–3 weeks may assist by relaxing soft tissues about the hip. Following traction, in which the femur is brought down opposite the acetabulum, reduction can typically be achieved, without force, under general anesthesia. A hip spica cast is used for 3 months after reduction. If the hip is not stable within a reasonable range of motion after closed reduction, open reduction is indicated. If reduction is done at an older age, operations to correct the deformities of the acetabulum and femur, as well as open reduction, may be necessary. Older children are more likely to experience complications from more extensive procedures.

---

**Torticollis**

Injury to the sternocleidomastoid muscle during delivery or disease affecting the cervical spine in infancy, such as congenital vertebral anomalies, may cause torticollis. When contracture of the sternocleidomastoid muscle causes torticollis, the chin is rotated to the side opposite of the affected muscle, causing the head to tilt toward the side of the contracture. A mass felt in the midportion of the sternocleidomastoid muscle in a newborn is likely a hematoma or developmental fibroma, rather than a true tumor.

If the deformity is left untreated, a striking facial asymmetry can persist. Passive stretching is an effective treatment in up to 97% of all cases. If the deformity does not correct with passive stretching during the first year of life, surgical release of the muscle origin and insertion can be an effective treatment option. Excising the “tumor” of the sternocleidomastoid muscle is unnecessary and creates an unsightly scar.
Torticollis is occasionally associated with congenital deformities of the cervical spine. Radiographs of the spine are indicated in most cases where such anomalies are suspected. In addition, there is a 15%–20% incidence of associated hip dysplasia.

Acute torticollis may follow upper respiratory infection or mild trauma in children. Upper respiratory infections may lead to swelling in the upper cervical spine, particularly at the C1-C2 region. This swelling renders the C1-C2 articulation susceptible to rotatory subluxation, which commonly presents as a clinical picture of torticollis. Rotatory subluxation of the upper cervical spine requires computed tomography for accurate assessment. Traction or a cervical collar usually results in resolution of the symptoms within 1 or 2 days. Other causes of torticollis include spinal cord and cerebellar tumors, syringomyelia, and rheumatoid arthritis.


GENERALIZED DISORDERS OF SKELETAL OR MESODERMAL TISSUES

Arthrogryposis Multiplex Congenita (Amyoplasia Congenita)

Clinical Findings & Diagnosis

Arthrogryposis multiplex congenita (AMC) consists of incomplete fibrous ankylosis (usually bilateral) of many or all joints of the body. AMC affects both genders equally and occurs in approximately 1 in 2–3000 live births. Upper extremity contractures usually consist of adduction of the shoulders; extension of the elbows; flexion of the wrists; and stiff, straight fingers with poor muscle control of the thumbs. Common deformities of the lower extremities include dislocation of the hips, extension contractures of the knees, and severe club feet. The joints are fusiform and the joint capsules decreased in volume due to lack of movement during fetal development. Muscle development is poor, and may be represented only by fibrous bands. Various investigations have attributed the basic defect to an abnormality of muscle or lower motor neurons.

It is possible to diagnose AMC during routine fetal ultrasound scanning. The fetus will be in an abnormal position or lack mobility. Early diagnosis helps the family and provider with delivery planning and counseling.

Treatment

Passive mobilization of joints is the early treatment. Prolonged casting results in further stiffness and is not indicated. Removable splints combined with vigorous therapy are the most effective conservative treatment; however, surgical release of the affected joints is often necessary. Clubfoot associated with arthrogryposis is very stiff and nearly always requires surgical correction. Knee surgery, including capsulotomy, osteotomy, and tendon lengthening, is used to correct deformities. In young children, a dislocated hip may be reduced operatively by a medial approach. Multiple operative hip procedures are contraindicated, as they may further stiffen the hip dislocation with consequent impairment of motion. Affected children are often able to walk if the dislocations and contractures are reduced surgically. The long-term prognosis for physical and vocational independence is guarded. These patients have normal intelligence, but they have such severe physical restrictions that gainful employment is hard to find.


Marfan Syndrome

Marfan syndrome is a connective tissue disorder characterized by unusually long fingers and toes (arachnodactyly); hypermobility of the joints; subluxation of the ocular lenses; other eye abnormalities, including cataract, coloboma, megacornea, strabismus, and nystagmus; a high-arched palate; a strong tendency to scoliosis (60% of all those diagnosed); pectus carinatum (an outward protrusion of the sternum); and thoracic aortic aneurysms due to weakness of the media of the vessels (see Chapter 37). Fibrillin-1 gene mutations are commonly associated with Marfan syndrome. Serum mucoproteins may be decreased, and urinary excretion of hydroxyproline increased. The condition is easily confused with homocystinuria, because the phenotypic presentation is nearly identical. The two diseases are differentiated by detecting homocystine in the urine of patients with homocystinuria.

Treatment is usually supportive and includes management of blood pressure and restriction of physical activity. Scoliosis may involve more vigorous treatment by bracing or spine fusion. The long-term prognosis has improved for patients since the development of better treatment of their aortic aneurysms.

Klippel-Feil Syndrome

Klippel-Feil syndrome is characterized by failure of segmentation of some or all of the cervical vertebrae. Multiple congenital spinal anomalies may be present, with hemivertebrae and scoliosis. The neck is short and stiff, the hairline is low, and the ears are low-set. Congenital scoliosis, cervical rib, spina bifida, torticollis, web neck, high scapula, renal anomalies, and deafness are commonly associated defects. Renal ultrasound as well as a hearing test are indicated if there is evidence of abnormal renal function. Surgical intervention is necessary to prevent neurologic injury in symptomatic patients who present with unstable spinal anomalies. If asymptomatic, a spine surgeon will determine if surgical intervention is warranted after review of patient’s age, history, and activity level. Spinal arthrodesis is indicated if progressive scoliotic deformities develop.


Sprengel Deformity

Sprengel deformity is a congenital condition where one or both scapulas are elevated and hypoplastic. The deformity prevents the arm from raising completely on the affected side, and torticollis may be an associated finding. The deformity occurs alone or in association with Klippel-Feil syndrome or scoliosis and rib abnormalities. If the deformity is functionally limiting, the scapula may be surgically relocated closer to the normal anatomic position. Surgical intervention improves cosmetic appearance and function.


Osteogenesis Imperfecta

Osteogenesis imperfecta is a rare genetic connective tissue disease characterized by multiple and recurrent fractures. The incidence is 1 in 15,000–20,000. Clinical features of the disease lead to diagnosis in the majority of cases. The severe fetal type (osteogenesis imperfecta congenita) is distinguished by multiple intrauterine or perinatal fractures. Moderately affected children have numerous fractures and exhibit dwarfism as a result of their acquired bone deformities and growth retardation. Fractures begin to occur at different times and in variable patterns after the perinatal period, resulting in fewer fractures and deformities relative to severe cases. Cortical thickness is reduced in the shafts of the long bones, and accessory skull bones that are completely surrounded by cranial sutures (wormian bones) are present in the skull. Blue sclerae, thin skin, hyperextensibility of ligaments, otosclerosis with significant hearing loss, and hypoplastic and deformed teeth are characteristic of osteogenesis imperfecta. Cardiovascular and respiratory problems are the most common causes of morbidity and mortality in adulthood. Intelligence is not affected. Affected patients are sometimes suspected of having suffered abuse. Osteogenesis imperfecta should be ruled out in any case of potential non-accidental trauma.

Molecular genetic studies have identified more than 150 mutations of the COL1A1 and COL1A2 genes, which encode for type I procollagen. Ninety percent of cases occur as the result of a spontaneous mutation; in these families the likelihood of a second affected child is negligible. Among the other 10%, a recessive mode of inheritance has been identified in 2%–5%.

Bisphosphonates have been shown to decrease the incidence of fractures. Surgical treatment involves deformity correction of the long bones. Multiple intramedullary rods have been used to prevent deformity from fracture malunion. Patients are often confined to wheelchairs during adulthood.


Osteopetrosis (Osteitis Condensans Generalisata, Marble Bone Disease, Albers-Schönberg Disease)

Osteopetrosis is a rare disorder of osteoclastic resorption of bone, resulting in abnormally dense bones. The reduced marrow spaces result in anemia. There are two types: a milder autosomal dominant type and a more malignant autosomal recessive type. The findings may appear at any age. Radiologic examination shows increased bone density and transverse bands in the shafts, clubbing of ends, and vertical striations of long bones. Thickening about the cranial foramina is present, and heterotopic calcification of soft tissues is possible. Diminished life expectancy is seen in severe infantile forms.

Treatment is largely symptomatic. The most severe autosomal recessive forms of osteopetrosis can be treated successfully by hematopoietic stem cell transplantation.
Achondroplasia (Classic Chondrodystrophy)

Achondroplasia is the most common form of short-limbed dwarfism. The upper arms and thighs are proportionately shorter than the forearms and legs. Skeletal dysplasia is suspected based on abnormal stature, disproportion, dysmorphism, or deformity. Measurement of height is an excellent clinical screening tool. Findings frequently include bowing of the extremities, a waddling gait, limitation of motion of major joints, relaxation of the ligaments, short stubby fingers of almost equal length, frontal bossing, midface hypoplasia, otolaryngeal system dysfunction, moderate hydrocephalus, depressed nasal bridge, and lumbar lordosis. Intelligence and sexual function are normal. While this disorder has an autosomal dominant transmission pattern, 80% of cases result from a random mutation in the fibroblast growth factor receptor-3 (FGFR3) gene. Radiographs demonstrate short, thick tubular bones and irregular epiphyseal plates. The ends of the bones are thick, with broadening and cupping. Epiphyseal ossification may be delayed. Due to diminished growth in the spinal pedicles, the spinal canal is narrowed (congenital stenosis), and a herniated disk in adulthood may lead to acute paraplegia. Growth hormone is given to some children with bone dysplasia. Limb lengthening is possible, but controversial.


Osteochondrodystrophy (Morquio Disease)

Morquio disease is an autosomal recessive disorder affecting mucopolysaccharide storage. Skeletal abnormalities include shortening of the spine, kyphosis, scoliosis, shortened extremities, pectus carinatum, genu valgum or “knock knees,” and a hypoplastic odontoid with atlantoaxial instability. Appearance is generally normal at birth, with deformities developing between ages 1 and 4 years as a result of abnormal deposition of mucopolysaccharides. Increased urinary glycosaminoglycan levels are associated with increased severity.

Radiographs demonstrate wedge-shaped flattened vertebrae and irregular, malformed epiphyses. The ribs are broad and have been likened to canoe paddles. The lower extremities are more severely involved than the upper extremities. Progressive hip subluxation, genu valgum, and ankle valgus often require surgical intervention.

The major treatment issue revolves around prevention of cervical myelopathy. Bone marrow transplantation has been successful in alleviating some symptoms. Enzyme replacement therapy has emerged as another possible treatment option for afflicted patients. Prognosis depends on age of onset.


Scoliosis

Scoliosis is characterized by lateral curvature of the spine associated with rotation of the involved vertebrae and classified by its anatomic location, in either the thoracic or lumbar spine, with rare involvement of the cervical spine. The convexity of the curve is designated right or left. A right thoracic scoliosis would denote a thoracic curve with convexity to the right. This is the most common type of idiopathic curve. Kyphosis or posterior curvature of the spine is normal in the thoracic area, although excessive curvature is pathologic. Anterior curvature of the spine, or lordosis, is normal in the lumbar and cervical spine regions.

Eighty percent of cases of scoliosis are idiopathic. Idiopathic scoliosis typically develops around age 8–10 years, with progression occurring during periods of rapid skeletal growth. In rare instances, infantile scoliosis may be seen in children age 3 years or younger; idiopathic infantile scoliosis is much more common in Great Britain than in the United States. In infantile scoliosis, if the rib-vertebral angle of Mehta is less than 20 degrees, the curve will likely resolve spontaneously. If the angle is greater, the curve will likely progress.

Idiopathic scoliosis is about four or five times more common in girls. The disorder is usually asymptomatic in the adolescent years, but severe curvature can progress during adulthood causing pain or, in extreme cases, diminished pulmonary function as a result of reduced lung volumes due to deformity of the rib cage. The screening examination for scoliosis is performed by having the patient bend forward 90 degrees with the hands joined in the midline. Asymmetry of the height of the ribs or paravertebral muscles on one side indicates rotation of the trunk associated with lateral curvature. Because 30% of family members are also affected, siblings of an affected child should be examined.

Neurofibromatosis, Marfan syndrome, cerebral palsy, muscular dystrophy, poliomyelitis, and myelodysplasia are among several diseases that may be present with an associated scoliosis.
Congenital vertebral anomalies such as hemivertebra or unilateral vertebral bar account for 5%–7% of all scoliosis. These curves are more rigid than the more common idiopathic curve and will often increase with skeletal growth, especially during adolescence.

Olisthetic scoliosis may result from pressure on the spinal cord or roots by infectious processes or herniation of the nucleus pulposus; the underlying cause must be sought. Secondary curvature will resolve as the primary problem is treated.

### Clinical Findings

#### A. Symptoms and Signs

Scoliosis in adolescents does not typically cause significant pain. If a patient has significant pain, then the source of the pain should be sought in order to rule out the possibility of some other disorder such as infection or tumor. Deformity of the rib cage and asymmetry of the waistline are clinically evident for curvatures of 30 degrees or more. Lesser curves may be detected through the forward bending test, which is designed to detect early abnormalities of rotation that may not be apparent when the patient is standing erect.

#### B. Imaging

Radiographs taken of the entire spine in the standing position in both the anteroposterior and lateral planes are the most valuable for diagnosis. Usually a primary curve is evident with compensatory curvature to balance the body. At times two primary curvatures may be seen (usually in the right thoracic and left lumbar regions). A left thoracic curvature should be suspected of being secondary to neurologic disease and prompt a more meticulous neurologic examination. If the curvatures of the spine are balanced (compensated), the head is centered over the center of the pelvis. If the spinal alignment is uncompensated, the head will be displaced to one side, which produces an unsightly deformity. Rotation of the spine may be measured with a scoliometer. Rotation is associated with a marked rib hump as the lateral curvature increases in severity.

### Prognosis

Compensated small curves that do not progress may cause minor deformities but are well tolerated throughout life. Patients should be counseled about the genetic transmission of scoliosis and cautioned that their children’s backs should be examined as part of routine physicals. Early detection allows for simple brace treatment. Severe scoliosis may require correction by spinal fusion, although fusionless techniques are being developed.

### Treatment

Treatment of scoliosis depends on the curve magnitude, skeletal maturity, and risk of progression. Treatment is indicated for any curvature that demonstrates progression on serial radiologic examination. Definitive spinal fusions should be delayed as long as possible in young children through the use of casting, bracing, and growth modulating surgeries such as growing rods or vertical expandable prosthetic titanium ribs (VEPTR).

Management of scoliosis is dependent on the Cobb angle, measured on standing anteroposterior x-rays of the spine. Curvatures of less than 20 degrees typically do not require treatment unless they show progression. Bracing is controversial, but often used for curvatures of 20–40 degrees in a skeletally immature child. Recent studies have shown bracing to be effective for female patients with a Cobb angle of 25–35 degrees. Bracing and casting may be a beneficial way to prevent the progression of scoliosis without the negative quality of life effects associated with other treatments. Curvatures greater than 40 degrees are resistant to treatment by bracing. Thoracic curvatures greater than 70 degrees have been correlated with poor pulmonary function in adult life, leading treatment algorithms toward preventing progression to this extreme. Curvatures reaching a magnitude of 40–60 degrees are indicated for surgical correction as they are highly likely to continue to progress, ultimately reaching the 70 degree threshold in adulthood. Surgical intervention should be geared to maximize pulmonary function, while improving spinal alignment.

The surgical procedure for scoliosis has two fundamental components: deformity correction and spinal fusion. Spinal instrumentation (rods, screws, hooks, etc) are applied to the region of the spine to be corrected. The instrumentation is then used to manually reposition the spine intraoperatively. Surgical fusion involves decortication of the bone over the laminas and spinous processes, with the addition of bone graft. The instrumentation is then secured/tightened in order to maintain postoperative correction, with activity restriction for several months until the bone fusion is solid. Treatment requires a team approach and is best done in centers with full support facilities.

---

**SLIPPED CAPITAL FEMORAL EPIPHYSIS**

Slipped capital femoral epiphysis (SCFE) is caused by displacement of the proximal femoral epiphysis due to disruption of the growth plate. The head of the femur is usually displaced medially and posteriorly relative to the femoral neck. This condition is most commonly seen in adolescent,
obese males. It occurs when stress increases across the proximal femoral physis (growth plate) or resistance to shear is reduced. Factors that can lead to this increase in stress or decrease in resistance include endocrine disorders, obesity, coxa profunda (a deep acetabular socket), and femoral or acetabular retroversion. Femoral version refers to the angle of inclination (anteversion) of the femoral neck towards the hip joint (femoral head) relative to the shaft of the femur. Retroversion of the femur occurs when the same proximal femoral segment is angled posteriorly relative to the shaft of the femur. Acetabular retroversion refers to when the alignment of the mouth of the acetabulum does not face the normal anterolateral direction, but inclines more posterolaterally. Experimental evidence has shown that the strength of the perichondral ring stabilizing the epiphyseal area is sufficiently weakened by hormonal changes during adolescence such that the overload of excessive body weight can produce a pathologic fracture through the growth plate. Hormonal studies in affected children are usually normal, although SCFE is associated with hypothyroidism.

Clinically, SCFE is classified as stable or unstable. SCFE is considered stable if the child is able to bear weight on the affected extremity. In unstable SCFE, the child is unable to bear weight. An increased rate of avascular necrosis is correlated with the inability to bear weight. Acute SCFE occasionally occurs following a fall or direct trauma to the hip. More commonly, vague symptoms occur over a protracted period in an otherwise healthy child who presents with pain and limp. The pain can be referred into the thigh or the medial side of the knee, making examination of the hip joint important in any obese child complaining of knee pain. Physical examination consistently reveals a limitation of internal rotation of the hip. The diagnosis may be clearly apparent only in the lateral radiographic view.

Initial management consists of making the patient non-weight-bearing on crutches and immediate referral to an orthopedic surgeon. Treatment is based on the same principles that govern treatment of any fracture of the femoral neck: the head of the femur is internally fixed to the neck of the femur and the fracture line allowed to heal.

The long-term prognosis is guarded because most of these patients continue to be overweight and overstress their hip joints. Follow-up studies have shown a high incidence of premature degenerative arthritis, even in those who do not develop avascular necrosis. The development of avascular necrosis almost guarantees a poor prognosis, because new bone does not readily replace the dead bone at this late stage of skeletal development. About 30% of patients have bilateral involvement, which may occur as late as 1 or 2 years after the primary episode.


GENU VARUM & GENU VALGUM

Genu varum (bowleg) is normal from infancy through 3 years of age. The alignment then changes to genu valgum (knock-knee) until about age 8 years, at which time adult alignment is attained. If bowing persists beyond age 2, increases rather than decreases, occurs in only one leg, or if a patient is knock-kneed in association with short stature, the patient should be referred to an orthopedist. Genu varum is usually secondary to tibial rotation, while genu valgum may be caused by skeletal dysplasia or rickets.

Individuals with genu varum may be at a greater risk for falling as the deformity increases the normal postural sway in the mediolateral direction. Bracing may be appropriate. An osteotomy may be necessary for severe problems such as occurs in Blount disease (proximal tibial epiphysial dysplasia).


TIBIAL TORSION

“Toeing in” in small children is a common parental concern. Tibial torsion refers to rotation of the leg between the knee and the ankle. Internal rotation amounts to about 20 degrees at birth but decreases to neutral rotation by age 16 months. The deformity may be accentuated by laxity of the knee ligaments, which allows excessive internal rotation of the leg in small children. This condition is largely self-limiting and usually resolves spontaneously with further growth and development. Treatment is focused on educating the families to the benign nature and expected resolution with observation.

FEMORAL ANTEVERSION

Toeing in beyond age 2 or 3 years is usually secondary to femoral anteversion, characterized by more internal rotation of the hip than external rotation. This femoral alignment decreases toward neutral during growth. Little is gained by
active treatment with shoes or braces. Active external rotation exercises, such as skating or bicycle riding, are encouraged. Osteotomy for rotational correction is rarely required. Children who have no external rotation of the hip in extension are candidates for orthopedic consultation. However, the vast majority go on to resolve spontaneously.

**COMMON FOOT PROBLEMS**

When a child begins to stand and walk, the longitudinal arch of the foot is flat with a medial bulge over the inner border of the foot. The forefeet are mildly pronated or rotated inward, with a slight valgus alignment of the knees. As the child grows and joint laxity decreases, the long arch is better supported and more normal relationships occur in the lower extremities. (See also sections Metatarsus Varus and Clubfoot [Talipes Equinovarus].)

**Flatfoot**

Flatfoot is normal in infants. If the heel cord is of normal length, full dorsiflexion is possible when the heel is in the neutral position. As long as the heel cord is of normal length and a longitudinal arch is noted when the child is sitting in a non-weight-bearing position, a normal arch will generally develop.

Younger children who are male, obese, and have excessive joint laxity are more likely to be flatfooted. Around 15% of flatfeet do not resolve spontaneously. There is usually a familial incidence of relaxed flatfeet in children who have no apparent arch. In any child with a shortened heel cord or stiffness of the foot, other causes of flatfoot such as tarsal coalition (congenital fusion of the tarsal bones) should be ruled out by a complete orthopedic examination and radiographs.

For an ordinary relaxed flatfoot, no active treatment is indicated unless calf or leg pain is present. In children who have leg pains attributable to flatfoot, a supportive shoe, such as a good-quality sports shoe, is useful. An orthotic that holds the heel in neutral position and supports the arch may relieve discomfort if more support is needed. An arch insert should not be prescribed unless passive correction of the arch is easily accomplished; otherwise, the skin over the medial side of the foot will be irritated.

**Talipes Calcaneovalgus**

Talipes calcaneovalgus is characterized by excessive dorsiflexion at the ankle and eversion of the foot. This disorder can be associated with posteromedial bowing of the tibia and is due to intrauterine position and is often present at birth. The deformity occurs in 0.4–1.0 per 1000 live births. Treatment consists of passive exercises, such as stretching the foot into plantar flexion. With or without treatment, the deformity usually resolves by age 3–6 months. In rare instances, it may be necessary to use plaster casts to help with manipulation and positioning. Complete correction is the rule.

**Cavus Foot**

Cavus foot consists of an unusually high longitudinal arch of the foot. It may be hereditary or associated with neurologic conditions such as poliomyelitis, hereditary sensory motor neuropathies, and diastematomyelia (congenital splitting of the spinal cord). Typically there is an associated contracture of the toe extensors, producing a claw toe deformity in which the metatarsal phalangeal joints are hyperextended and the interphalangeal joints acutely flexed. Cavus foot presents with diffuse and localized pain in the lower legs and is commonly associated with an inflexible foot deformity. Any child presenting with cavus feet should receive a careful neurologic examination as well as radiographs and magnetic resonance imaging (MRI) of the spine.

Conservative therapy, such as an orthotic to realign the foot, can be effective in milder cases. In symptomatic cases, surgery may be necessary to lengthen the contracted extensor and flexor tendons and to release the plantar fascia and other tight plantar structures. Associated varus heel deformities cause more problems than the high arch.

**Bunions (Hallux Valgus)**

With a prevalence of 23%–35%, hallux valgus is the most common forefoot deformity. The etiology is unknown. Adolescents may present with lateral deviation of the great toe associated with a prominence over the head of the first metatarsal. Around 60% of patients have a family history of this condition. The deformity is painful with shoe wear
and almost always relieved by fitting shoes that are wide enough in the toe area. Since further growth tends to cause recurrence of the deformity, surgery should be avoided in the adolescent.

Therapeutic treatments are aimed at correcting the muscular and weight bearing forces that act on the joint. While conservative treatment provides symptomatic relief, it does not reverse the natural history, as these deformities will typically continue to progress until corrected surgically. A high percentage of these patients ultimately have surgery in adulthood due to a continued progression of the deformity. Proper surgical treatment results in a very good, good, or satisfactory outcome in 95% of patients.


Degenerative arthritis may follow childhood skeletal problems, such as infection, SCFE, avascular necrosis, trauma, or hemarthroses in patients with hemophilia. Early, effective treatment of these disorders can prevent arthritis. Overuse in young athletes can also cause degenerative changes to the soft tissues around the joints. Young boys throwing excessive numbers of pitches, especially curve balls, may develop “Little League” elbow, consisting of degenerative changes around the humeral condyles associated with pain, swelling, and limitation of motion (see Chapter 27). Limitation of the number of pitches thrown by little league pitchers is the key to prevention.

Acute bursitis is uncommon in childhood, and other causes should be ruled out before this diagnosis is accepted. Tenosynovitis is most common in the knees and feet. Children taking dancing lessons, particularly toe dancing, may have pain around the flexor tendon sheaths in the toes or ankles. Rest is effective treatment. Around the knee, the patellar ligament may be irritated, with associated swelling in the infrapatellar fat pad. Synovitis in this area is usually due to overuse and is treated by rest and nonsteroidal anti-inflammatory drugs. Corticosteroid injections are contraindicated.

Directed physical examination (eg, swelling, tenderness, deformity, instability).

Radiographic examination.

Rule out physeal fracture.

Early motion for sprains and strains.

Reduction and immobilization for fractures.

A sprain is the stretching of a ligament and a strain is a stretch of a muscle or tendon. Contusions are generally due to tissue compression, with damage to blood vessels within the tissue and the formation of a hematoma.

In a severe sprain, the ligament is completely disrupted resulting in instability of the joint. Incomplete tearing of the ligament, with local pain and swelling but no joint instability, is considered a mild or moderate sprain.

The initial treatment of any sprain consists of ice, compression, and elevation. Brief splinting followed by early range of motion exercises of the affected joint protect against further injury and relieves swelling and pain. Ibuprofen and other nonsteroidal anti-inflammatory drugs are useful for pain. Rest, ice, and elevation are usually sufficient for mild or moderate sprains. If more severe trauma occurs, resulting in complete tearing of a ligament, instability of the joint may be demonstrated by gross examination or by stress testing with radiographic documentation. Such deformity of the joint may cause persistent instability resulting from inaccurate apposition of the ligament ends during healing. If instability is evident, surgical repair of the torn ligament may be indicated. If a muscle is torn at its tendinous insertion, it also should be repaired surgically.

Ankle Sprains

The history will indicate that the injury was by either forceful inversion or eversion. The more common inversion injury results in tearing or injury to the lateral ligaments, whereas an eversion injury will injure the medial ligaments of the ankle. The injured ligaments can be identified by
careful palpation for point tenderness around the ankle. The joint should be supported or immobilized in the functional position (right angle). Use of an air splint produces joint rest, and the extremity can be protected by using crutches. Functional rehabilitation to include edema control, range of motion, strengthening, and restoration of proprioceptive sensation can prevent long-term disability. Re-injury is common. Continued injury can lead to chronic ankle instability.


Knee Sprains

Sprains of the collateral and cruciate ligaments are uncommon in children. These ligaments are so strong that it is more common to injure the growth plates, which are the weakest structures in the region of the knees of children. In adolescence, as the physes start to close, rupture of the anterior cruciate ligament can result from a rotational injury. If the injury produces avulsion of the tibial spine, anatomic reduction and fixation are often required.

Effusion of the knee after trauma deserves referral to an orthopedic specialist. The differential diagnosis includes torn ligament, torn meniscus, and osteochondral fracture. Nontraumatic effusion should be evaluated for inflammatory conditions (eg, juvenile rheumatoid arthritis) or patellar malalignment.

Effusion of the knee after trauma deserves referral to an orthopedic specialist. The differential diagnosis includes torn ligament, torn meniscus, and osteochondral fracture. Nontraumatic effusion should be evaluated for inflammatory conditions (eg, juvenile rheumatoid arthritis) or patellar malalignment.

Sprains of the collateral and cruciate ligaments are uncommon in children. These ligaments are so strong that it is more common to injure the growth plates, which are the weakest structures in the region of the knees of children. In adolescence, as the physes start to close, rupture of the anterior cruciate ligament can result from a rotational injury. If the injury produces avulsion of the tibial spine, anatomic reduction and fixation are often required.

Effusion of the knee after trauma deserves referral to an orthopedic specialist. The differential diagnosis includes torn ligament, torn meniscus, and osteochondral fracture. Nontraumatic effusion should be evaluated for inflammatory conditions (eg, juvenile rheumatoid arthritis) or patellar malalignment.

Internal Derangements of the Knee

Meniscal injuries are uncommon in children younger than 12 years of age. Clicking or locking of the knee may occur in young children as a result of a discoid lateral meniscus, which is a rare congenital anomaly. As the child approaches adolescence, internal damage to the knee from a torsion weight-bearing injury may result in locking of the knee if tearing and displacement of a meniscus occurs. Osteochondritis dissecans also presents as swelling and mechanical symptoms of the knee in adolescence. Posttraumatic synovitis may mimic a meniscal lesion. Epiphyseal injury should be suspected in any severe injury to the knee or when there is tenderness on both sides of the femoral metaphysis after injury. Stress films will sometimes demonstrate separation of the distal femoral epiphysis.


Back Sprains

Sprains of the ligaments and muscles of the back are unusual in children but may occur as a result of violent trauma from automobile accidents or athletic injuries. Sprains usually cause lateral and midline pain over musculature. Back pain in a child may be the only symptom of significant disease and warrants clinical investigation. Inflammation, infection, renal disease, or tumors can cause back pain in children, and sprain should not be accepted as a routine diagnosis.


Contusions

Muscle contusions with hematoma formation produce the familiar “charley horse” injury. Treatment includes application of ice, compression, and rest. Exercise should be avoided for 5–7 days. Local heat may hasten healing once the acute phase of tenderness and swelling has passed.

Myositis Ossificans

Ossification within muscle occurs when sufficient trauma causes a hematoma that later heals in the manner of a fracture. Contusions of the quadriceps of the thigh or the triceps of the arm are the most common injuries.

Disability is great, with local swelling, heat and extreme pain with the slightest provocation of the adjacent joint. The limb should be rested until the local reaction has subsided (5–7 days). When local heat and tenderness have decreased, gentle active exercises may be initiated. Passive stretching exercises are not indicated as they may stimulate the ossification reaction. If an extremity experiences a severe injury with a hematoma, it should be splinted and further activity should be avoided until the acute reaction has subsided. If additional trauma causes recurrent injury, ossification may reach spectacular proportions and resemble an osteosarcoma. Surgery to excise the ossification may restart the process and lead to an even more severe reaction and should not be attempted before 9 months to 1 year after injury.

TRAUMATIC SUBLUXATIONS & DISLOCATIONS

Joint dislocation is always associated with severe damage to the joint capsule and associated ligaments. In contrast to fracture reduction, which may be safely postponed, dislocations must be reduced immediately in order to minimize further joint damage. Dislocations can usually be reduced by gentle sustained traction. Often, no anesthetic is needed for several hours after the injury due to the protective anesthesia produced by the injury. A thorough neurovascular examination should be performed and documented pre- and postreduction. Radiographs should be obtained postreduction to document congruency and assess for the presence of
associated fractures. Following reduction, the joint should be splinted for transportation of the patient.

The dislocated joint should be treated by immobilization, followed by graduated active exercises through a full range of motion. Vigorous passive manipulation of the joint by a therapist may be harmful.

**Subluxation of the Radial Head (Nursemaid’s Elbow)**

Infants may sustain subluxation of the radial head as a result of being lifted or pulled by the hand. The child appears with the elbow fully pronated and painful. The usual complaint is that the child’s elbow will not bend. Radiographic findings are normal, but there is point tenderness over the radial head. When the elbow is placed in full supination and slowly moved from full extension to full flexion, a click may be palpated at the level of the radial head. The relief of pain is remarkable, as the child usually stops crying immediately. The elbow may be immobilized in a sling for comfort for a day. Occasionally, symptoms last for several days, requiring more prolonged immobilization.

A pulled elbow may be a clue to battering. This should be considered during examination, especially if the problem is recurrent.

**Dislocation of the Patella**

Complete patellar dislocations nearly always dislocate laterally. Pain is severe, and the patient will present with the knee slightly flexed and an obvious bony mass lateral to the knee joint associated with a flat area over the anterior knee. Radiologic examination confirms the diagnosis. The patella may be reduced by extending the knee and placing slight pressure on the patella while gentle traction is exerted on the leg. When subluxation of the patella occurs, symptoms may be more subtle, and the patient will complain that the knee “gives out” or “jumps out of place.”

Recurrent dislocations more commonly occur in loose-jointed individuals, especially adolescent girls. Factors that affect risk for recurrence include length of patellar tendon, the depth of trochlear groove, and position of the patella in relation to the trochlear groove.

For first-time dislocation, initial treatment after reduction should be nonoperative, consisting of physical therapy to strengthen the quadriceps, hips, and core stabilizers. Surgery is reserved for individuals with reparable osteochondral injuries, loose bodies, and recurrent dislocation following appropriate nonoperative therapy. Around one-third of patients report a repeated dislocation after rehabilitation.


**Epiphyseal Separations**

Epiphyseal separations (also referred to as epiphyseal fractures) are more common than ligamentous injuries in children since the ligaments of the joints are generally stronger than their associated growth plates. Radiographs should be taken whenever a dislocation is suspected in order to rule out epiphyseal fracture. Radiographs of the opposite extremity, especially for injuries around the elbow, are valuable for comparison. Fractures across the growth plate may produce bony bridges that will cause premature cessation of growth or angular deformities of the extremity. These bridges are due to trauma to the growth plate and can occur even with adequate reductions.

Reduction of a fractured epiphysis should be done under anesthesia to align the growth plate with the least amount of force. Epiphyseal fractures around the shoulder, wrist, and fingers can usually be treated by closed reduction, but fractures of the epiphyses around the elbow often require open reduction. In the lower extremity, accurate reduction of the epiphyseal plate is necessary to prevent joint deformity when a joint surface is involved. If angular deformities result, corrective osteotomy may be necessary.


**Torus Fractures**

Torus fractures consist of “buckling” of the cortex due to compression of the bone. They are most common in the distal radius or ulna. Alignment is usually satisfactory, and simple immobilization for 3 weeks is sufficient. Soft bandage therapy and cast therapy are effective in preventing further angulation. It is important that the fracture is not misdiagnosed as a greenstick fracture (see below) at initial presentation. Children with a torus fracture who are misdiagnosed with a greenstick fracture report having more pain after application of a soft bandage or cast.

Greenstick Fractures
Greenstick fractures involve frank disruption of the cortex on one side of the bone but no discernible cleavage plane on the opposite side. The term “greenstick” implies similarity to what happens when one tries to break a twig/stick from a live tree; commonly bark will break on one side of the stick, while remaining intact on the opposite side. Bone ends are not separated, making these fractures angulated but not displaced. Reduction is achieved by straightening the arm into normal alignment and maintaining alignment with a snugly fitting cast. It is necessary to obtain radiographs of greenstick fractures again in 7–10 days to make certain that the reduction has been maintained in the cast. A slight angular deformity can be corrected by remodeling of the bone. The farther the fracture is from the growing end of the bone, the longer the time required for remodeling. The fracture can be considered healed when no tenderness is present and a bony callus is seen on a radiograph.

Fracture of the Clavicle
Clavicular fractures are very common injuries in infants and children. The patient can be immobilized in a sling for comfort. The healing callus will be apparent when the fracture has consolidated, but this unsightly lump will generally resolve over a period of months to a year via bone remodeling.

Supracondylar Fractures of the Humerus
The condyles of the distal humerus form the proximal half of the elbow joint. There is a concavity in the posterior distal humerus that is present anatomically to accommodate the olecranon when the elbow reaches full extension. This anatomic accommodation, located in what is referred to as the supracondylar region of the humerus, also creates a thinner area of cortical bone that is more susceptible to injury/fracture. Supracondylar fractures tend to occur in children age 3–6 years and are the most common elbow fracture in children. The proximity to the brachial artery in the distal arm creates a potential danger when dealing with these types of fractures. Absence of a distal pulse is a strong indicator of a secondary arterial injury. Swelling may be severe as these injuries are usually associated with a significant amount of trauma. Most often, these fractures are treated by closed reduction and percutaneous pinning performed under general anesthesia. Complications associated with supracondylar fractures include Volkmann ischemic contracture of the forearm due to vascular compromise and cubitus varus (decreased carrying angle, “gunstock deformity”) secondary to poor reduction. The “gunstock deformity” of the elbow may be somewhat unsightly but does not usually interfere with joint function.

General Comments on Other Fractures in Children
Reduction of fractures in children can usually be accomplished by simple traction and manipulation; open reduction is indicated if a satisfactory alignment is not obtained. Remodeling of the fracture callus generally produces an almost normal appearance of the bone over a matter of months. The younger the child, the more remodeling is possible. Angular deformities in the plane of joint motion remodel reliably while rotational malalignment does not remodel well.

There should be suspicion of child abuse whenever the age of a fracture does not match the history given or when the severity of the injury is more than the alleged accident would have produced. In suspected cases of battering in which no fracture is present on the initial radiograph, a repeat radiograph 10 days later is in order. Bleeding beneath the periosteum will be calcified by 7–10 days, and the radiographic appearance can be diagnostic of severe closed trauma characteristic of a battered child.

INFECTIONS OF THE BONES & JOINTS

**ESSENTIALS OF DIAGNOSIS & TREATMENT**

- Movement of the extremity causes pain.
- Soft tissue swelling.
- Elevated erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP).
- Surgical drainage of abscess, plus antibiotics.
- Antibiotic therapy for early osteomyelitis without abscess.

**OSTEOMYELITIS**
Osteomyelitis is an infectious process that usually starts in the spongy or medullary bone and extends into compact or cortical bone. Commonly preceded by trauma, the lower extremities are more likely to be affected. Osteomyelitis is most commonly caused by hematogenous spread of bacteria from other infected or colonized areas (eg, pyoderma or upper respiratory tract) but it may occur as a result of direct...
invasion from the outside (exogenous), through a penetrating wound (nail) or open fracture. *Staphylococcus aureus* is the most common infecting organism and has a tendency to infect the metaphyses of growing bones. Anatomically, the arterial supply to the metaphysis in the long bones includes end arteries just below the growth plate which turn sharply and end in venous sinuses, causing relative stasis that predisposes to bacterial localization. In the infant (younger than age 1 year), there is direct vascular communication with the epiphysis across the growth plate. Bacterial spread occurs from the metaphysis to the epiphysis and into the joint. In the older child, the growth plate provides an effective barrier and the epiphysis is usually not infected. Infection spreads retrograde from the metaphysis into the diaphysis, and by rupture through the cortical bone, down along the diaphysis beneath the periosteum.

**Exogenous Osteomyelitis**

All wounds must be carefully examined and cleansed to avoid osteomyelitis by direct extension. Osteomyelitis is a common occurrence from pressure sores in insensate areas, such as in patients with spina bifida. Copious irrigation is necessary, and all nonviable skin, subcutaneous tissue, fascia, and muscle must be excised. In extensive or contaminated wounds, antibiotic coverage is indicated. Contaminated lacerations should be left open and secondary closure performed 3–5 days later. Leaving the wound open allows infection to stay at the surface rather than extend inward to the bone. Further necrotic tissue should be excised if present at the time of delayed closure. Puncture wounds are especially prone to causing osteomyelitis and should be carefully debrided.

Initially, broad-spectrum antibiotics should be administered for contaminated wounds, but the final choice of antibiotics is directed by culture results. A tetanus toxoid booster may be indicated. Gas gangrene is best prevented by adequate debridement.

After exogenous osteomyelitis has become established, treatment becomes more complicated, requiring extensive surgical debridement and antibiotics, initially by the intravenous route. Definitive antibiotic selection should generally be guided by bacterial cultures of infected bone.

**Hematogenous Osteomyelitis**

Hematogenous osteomyelitis is the most common infection of the bone in children. It most often occurs in the metaphyseal region of tubular bones and is usually caused by pyogenic bacteria; 85% of cases are due to staphylococci. Streptococci (group B *Streptococcus* in young infants, *Streptococcus pyogenes* in older children) are a less common cause of osteomyelitis. *Pseudomonas aeruginosa* is common in cases of nail puncture wounds. Children with sickle cell anemia are especially prone to osteomyelitis caused by *Salmonella* spp.

---

### Clinical Findings

#### A. Symptoms and Signs

Osteomyelitis may be subtle in infants, presenting as irritability, diarrhea, or failure to feed properly; temperature may be normal or slightly low; and white blood cell count may be normal or only slightly elevated. There may be pseudoparalysis of the involved limb. Manifestations are more striking in older children, with severe local tenderness and pain and, often, but not invariably, high fever, rapid pulse, and elevated white blood cell count, ESR, and CRP. Osteomyelitis of a lower extremity often occurs around the knee joint in children age 7–10 years. Tenderness is most marked over the metaphysis of the bone where the process has its origin. For a child who refuses to bear weight, osteomyelitis is high in the differential diagnosis.

#### B. Laboratory Findings

Blood cultures are often positive early. The most important test is the aspiration of pus or biopsy of involved bone. It is useful to insert a needle into the bone in the area of suspected infection and aspirate any fluid present. Fluid should be stained for organisms and cultured. Even edema fluid can be useful for determining the causative organism. Elevation of the ESR above 50 mm/h is typical for osteomyelitis. CRP is elevated earlier than the ESR.

#### C. Imaging

Osteomyelitis should be diagnosed clinically before significant plain radiographic findings are present. Plain film findings progress from nonspecific local swelling, to elevation of the periosteum, with formation of new bone from the cambium layer of the periosteum occurring after 3–6 days. As infection becomes chronic, areas of cortical bone are isolated by pus spreading down the medullary canal, causing rarefaction and demineralization of the bone. Isolated pieces of cortex become ischemic and form sequestra (dead bone fragments). These radiographic findings are specific, but late. Bone scan is sensitive (before plain radiographic findings are apparent) but nonspecific and should be interpreted in the clinical context. MRI can demonstrate early edema and subperiosteal abscess and is helpful to confirm and localize disease prior to plain film changes.

---

### Treatment

#### A. Specific Measures

Intravenous antibiotics should be started as soon as the diagnosis of osteomyelitis is made and diagnostic specimens have been obtained. Transition to oral antibiotics occurs when tenderness, fever, the white cell count, and the CRP are all resolved/decreasing and is facilitated by a positive culture. Agents that cover *S aureus* and *Streptococcus pyogenes*...
(eg, oxacillin, nafcillin, cefazolin, and clindamycin) are appropriate for most cases. Alternative antistaphylococcal therapy (eg, vancomycin) may be needed if methicillin-resistant and clindamycin-resistant *S. aureus* is suspected or isolated. Methicillin-resistant *S. aureus* infection should be suspected in patients with severe cases of hematogenous osteomyelitis. Consultation with an infectious disease specialist can be helpful. For specific recommendations and for possible *Pseudomonas* infection, see Chapter 42.

Acute osteomyelitis is usually treated for a minimum of 4–6 weeks and until normalization of the physical exam and inflammatory markers. Chronic infections are treated for months. Following surgical debridement, *Pseudomonas* foot infections usually respond to 1–2 weeks of antibiotic treatment.

### B. General Measures

Splinting minimizes pain and decreases spread of the infection through lymphatic channels in the soft tissue. The splint should be removed periodically to allow active use of adjacent joints and prevent stiffening and muscle atrophy. In chronic osteomyelitis, splinting may be necessary to guard against fracture of the weakened bone.

### C. Surgical Measures

Aspiration of the metaphysis for culture and Gram stain is the most useful diagnostic measure in any case of suspected osteomyelitis. If frank pus is aspirated from the bone, surgical drainage is indicated. If the infection has not shown a significant response within 24 hours, surgical drainage is also indicated. It is important that all devitalized soft tissue be removed and adequate exposure of the bone be obtained to permit free drainage. Excessive amounts of bone should not be removed when draining acute osteomyelitis as it will not be completely replaced by the normal healing process. Bone damage is limited by surgical drainage, whereas failure to evacuate pus in acute cases may lead to widespread damage.

### Prognosis

When osteomyelitis is diagnosed in the early clinical stages and prompt antibiotic therapy is begun, the prognosis is excellent. If the process has been unattended for a week to 10 days, there is almost always some permanent loss of bone structure, as well as the possibility of future growth abnormality due to physeal injury.

---

**Pyogenic Arthritis**

The source of pyogenic arthritis varies according to the child’s age. Infantile pyogenic arthritis often develops from adjacent osteomyelitis. In older children, it presents as an isolated infection, usually without bony involvement. In teenagers with pyogenic arthritis, an underlying systemic disease or an organism that has an affinity for joints (eg, *Neisseria gonorrhoeae*) may be present.

The most frequent infecting organisms similarly vary with age: group B *Streptococcus* and *S. aureus* in those younger than age 4 months; *Haemophilus influenzae B* (if unimmunized) and *S. aureus* in those aged 4 months to 4 years; and *S. aureus* and *S. pyogenes* in older children and adolescents. *Streptococcus pneumoniae* and *Neisseria meningitis* are occasionally implicated, and *Neisseria gonorrhoeae* is a cause in adolescents. *H. influenzae B* is now uncommon in the United States because of effective immunization. *Kingella kingae* is a gram-negative bacterium that is increasingly recognized as a cause of pyarthritis in children less than 5 years of age.

The initial effusion of the joint rapidly becomes purulent in pyogenic arthritis. A joint effusion may accompany osteomyelitis in the adjacent bone, but a white cell count exceeding 50,000/μL in the joint fluid indicates a purulent infection involving the joint. Generally, spread of infection is from bone into a joint, but unattended pyogenic arthritis may also affect adjacent bone. The ESR is often above 50 mm/h.

### Clinical Findings

**A. Symptoms and Signs**

In older children, signs may be striking, with fever, malaise, vomiting, and restriction of motion. In infants, paralysis of the limb due to inflammatory pseudoparalysis may be evident. Infection of the hip joint in infants should be suspected if decreased abduction of the hip is present in an infant who is irritable or feeding poorly. A history of umbilical catheter treatment in the newborn nursery should alert the physician to the possibility of pyogenic arthritis of the hip.

**B. Imaging**

Early distention of the joint capsule is nonspecific and difficult to measure by plain radiograph. In infants with unrecognized pyogenic arthritis, dislocation of the joint may follow within a few days as a result of distention of the capsule by pus. Destruction of the joint space, resorption of epiphysial cartilage, and erosion of the adjacent bone of the metaphysis occur later. The bone scan shows increased flow and increased uptake about the joint. MRI and ultrasound imaging are useful adjuncts for detecting joint effusions, which can be helpful in assessing potential joint sepsis.
Treatment

Aspiration of the joint is the key to diagnosis. Surgical drainage followed by the appropriate antibiotic therapy provides the best treatment for pyogenic arthritis. Antibiotics can be selected based on the child’s age and results of the Gram stain and culture of aspirated pus. Reasonable empiric therapy in infants and young children is nafcillin or oxacillin plus a third-generation cephalosporin. An antibiotic therapy agent alone is usually adequate for children older than age 5 years, unless gonococcal or meningococcal infection is suspected. Alternative antibiotic therapy (eg, clindamycin or vancomycin) may be needed if meticillin-resistant S. aureus is suspected or isolated. Consultation with an infectious disease specialist can be helpful.

For staphylococcal infections, a minimum of 3 weeks of therapy and until examination and inflammatory markers are normal is recommended; for other organisms, a minimum of 2 weeks and until examination and inflammatory markers are normal is usually sufficient. Oral therapy may be begun when clinical signs and inflammatory markers have improved markedly. It is not necessary to give intra-articular antibiotics since good levels are achieved in the synovial fluid with parenteral administration.

Prognosis

The prognosis for the patient with pyogenic arthritis is excellent if the joint is drained before damage to the articular cartilage has occurred. If infection is present for more than 24 hours, dissolution of the proteoglycans in the articular cartilage takes place, with subsequent arthrosis and fibrosis of the joint. Damage to the growth plate may occur, especially within the hip joint, where the epiphyseal plate is intracapsular.

DISKITIS

Diskitis is pyogenic infectious spondylitis in children. Although many infections are culture-negative, S. aureus is considered to be the most frequent etiologic pathogen. The typical clinical presentation includes back pain and malaise over a few weeks to months duration. Younger children, less than 5 years of age, may not be able to localize their complaints and commonly present with “abdominal” pain. Supportive treatment and appropriate antibiotics are likely to lead to rapid relief of symptoms and signs without recurrence.

TRANSIENT (TOXIC) SYNOVITIS & SEPTIC ARTHRITIS OF THE HIP

The most common cause of limping and hip pain in children in the United States is transient synovitis. This acute inflammatory reaction often follows an upper respiratory or gastrointestinal infection and is generally self-limited. Classically affecting children aged 3–10 years, it is more common in boys than girls. The hip joint experiences limitation of motion, particularly internal rotation, and radiographic changes are nonspecific, with some swelling apparent in the soft tissues around the joint.

It is important for the provider to differentiate between transient synovitis and septic arthritis upon initial presentation. Early in the disease both conditions have similar symptoms but each requires a different treatment plan. Generally, toxic synovitis of the hip is not associated with elevation of the ESR, white blood cell count, or temperature above 38.3°C. In questionable cases, aspiration of the hip yields only yellowish fluid in transient synovitis rather than purulent fluid in pyogenic arthritis. Transient synovitis can be distinguished from septic arthritis with a dynamic contrast enhanced MRI (DCE-MRI).

Rest and nonsteroidal anti-inflammatory medications are the preferred treatments for transient synovitis, whereas patients afflicted with septic arthritis of the hip are treated with operative drainage followed by antibiotic treatment.
Nonsteroidal anti-inflammatory drugs shorten the course of the transient synovitis, although even with no treatment, the disease usually runs its course in days. Radiographic follow-up is essential as toxic synovitis may be the precursor of avascular necrosis of the femoral head (described in the next section) in a small percentage of patients. Radiographs can be obtained at 6 weeks, or earlier if either a persistent limp or pain is present.

In contrast to other body tissues that undergo infarction, bone removes necrotic tissue and replaces it with living bone through creeping substitution (a process where necrotic bone is replaced by viable bone). This replacement of necrotic bone may be so complete that a normal bone results. Adequacy of replacement depends on the patient’s age, the presence or absence of associated infection, the congruity of the involved joint, and other physiologic and mechanical factors.

Rapid growth of the secondary ossification centers in the epiphyses in relation to their blood supply subject them to avascular necrosis. Despite the number of different names referring to avascular necrosis of the epiphyses (see Table 26–1), the process is identical: necrosis of bone followed by replacement.

Even though the pathologic and radiographic features of avascular necrosis of the epiphyses are well known, the cause is not generally agreed upon. Necrosis may follow known causes such as trauma or infection, but idiopathic lesions usually develop during periods of rapid growth of the epiphyses.

**AVASCULAR NECROSIS OF THE PROXIMAL FEMUR (LEGG-CALVÉ-PERTHES DISEASE)**

Necrosis results if the vascular supply to the proximal femur is interrupted.

**Clinical Findings**

**A. Symptoms and Signs**

The highest incidence of Legg-Calvé-Perthes disease occurs between 4 and 8 years of age. Persistent pain is the most common symptom, and the patient may present with limp or limitation of motion.

**B. Laboratory Findings**

Laboratory findings, including studies of joint aspirates, are normal.

**C. Imaging**

Radiographic findings correlate with progression of the disease and the extent of necrosis. Effusion of the joint associated with slight widening of the joint space and periarticular swelling are the early findings. Decreased bone density in and around the joint is apparent after a few weeks. The necrotic ossification center appears denser than the surrounding viable structures, and the femoral head is collapsed or narrowed.

As replacement of the necrotic ossification center occurs, rarefaction of the bone begins in a patchwork fashion, producing alternating areas of rarefaction and relative density, referred to as “fragmentation” of the epiphysis.

**Table 26–1. The osteochondroses.**

<table>
<thead>
<tr>
<th>Ossification Center</th>
<th>Eponym</th>
<th>Typical Age (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital femoral</td>
<td>Legg-Calvé-Perthes disease</td>
<td>4-8</td>
</tr>
<tr>
<td>Tarsal navicular</td>
<td>Köhler bone disease</td>
<td>6</td>
</tr>
<tr>
<td>Second metatarsal head</td>
<td>Freiberg disease</td>
<td>12-14</td>
</tr>
<tr>
<td>Vertebral ring</td>
<td>Scheuermann disease</td>
<td>13-16</td>
</tr>
<tr>
<td>Capitellum</td>
<td>Panner disease</td>
<td>9-11</td>
</tr>
<tr>
<td>Tibial tubercle</td>
<td>Osgood-Schlatter disease</td>
<td>11-13</td>
</tr>
<tr>
<td>Calcaneus</td>
<td>Sever disease</td>
<td>8-9</td>
</tr>
</tbody>
</table>
Widening of the femoral head may be associated with flattening, or coxa plana. If infarction has extended across the growth plate, a radiolucent lesion will be evident within the metaphysis. If the growth center of the femoral head has been damaged and normal growth arrested, shortening of the femoral neck results.

Eventually, complete replacement of the epiphysis develops as living bone replaces necrotic bone by creeping substitution. The final shape of the head depends on the extent of the necrosis and collapse of weakened bone.

**Differential Diagnosis**

Differential diagnosis includes inflammation and infection and dysplasia. Transient synovitis of the hip may be distinguished from Legg-Calvé-Perthes disease by serial radiographs.

**Treatment**

Protection of the joint by minimizing impact is the principal treatment. If the joint is deeply seated within the acetabulum and normal joint motion is maintained, a reasonably good hip can result. Little benefit has been shown from bracing. Surgical treatment is controversial.

**Prognosis**

The prognosis for complete replacement of the necrotic femoral head in a child is excellent, but the functional result depends on the amount of deformity that has developed. Better outcomes are observed for patients with an onset of symptoms before the age of 6. Generally a poorer prognosis is expected for patients who develop the disease late in childhood, those with more completed involvement of the epiphyseal center, those with metaphysial defects and those who have more complete involvement of the femoral head.

The knee (medial femoral condyle), the elbow joint (capitellum), and the talus (superior lateral dome) are the most common sites for these lesions. Joint pain is the usual presenting complaint; however, local swelling or locking may be present, particularly if a fragment is free in the joint. Laboratory studies are normal.

Treatment consists of protection of the involved area from mechanical damage. Stable/attached lesions are generally treated with activity modification and immobilization for 3–6 months. Unstable/dislodged lesions are treated surgically with arthroscopic drilling, in order to bring new blood flow to the area, and fixation to stabilize the lesion. For some marginal lesions, it may be worthwhile to drill the necrotic fragment to encourage more rapid vascular in-growth and replacement. If a fragment is free within the joint as a loose body, it must be removed. If large areas of a weight-bearing joint are involved, secondary degenerative arthritis may result. Adolescents have less favorable outcomes with nonoperative therapy.

---

**OSTEOCHONDRITIS DISSECVANS**

In osteochondritis dissecans, a wedge-shaped necrotic area of bone and cartilage develops adjacent to the articular surface. The fragment of bone may break off from the host bone and displace into the joint as a loose body. If it remains attached, the necrotic fragment may be completely replaced through creeping substitution.

The pathologic process is the same as that for avascular necrosing lesions of ossification centers. Joint damage may occur because of the proximity of these lesions to adjacent articular cartilage.

The knee (medial femoral condyle), the elbow joint (capitellum), and the talus (superior lateral dome) are the most common sites for these lesions. Joint pain is the usual presenting complaint; however, local swelling or locking may be present, particularly if a fragment is free in the joint. Laboratory studies are normal.

Treatment consists of protection of the involved area from mechanical damage. Stable/attached lesions are generally treated with activity modification and immobilization for 3–6 months. Unstable/dislodged lesions are treated surgically with arthroscopic drilling, in order to bring new blood flow to the area, and fixation to stabilize the lesion. For some marginal lesions, it may be worthwhile to drill the necrotic fragment to encourage more rapid vascular in-growth and replacement. If a fragment is free within the joint as a loose body, it must be removed. If large areas of a weight-bearing joint are involved, secondary degenerative arthritis may result. Adolescents have less favorable outcomes with nonoperative therapy.

---

**NEUROLOGIC DISORDERS INVOLVING THE MUSCULOSKELETAL SYSTEM**

**ORTHOPEDIC ASPECTS OF CEREBRAL PALSY**

Early physical therapy encouraging completion of normal developmental patterns may benefit patients with cerebral palsy. This therapy is most effective during the first few years of life, and should be discontinued when no improvement is apparent.

Bracing and splinting are of questionable benefit, although night splints may be useful in preventing equinus deformity of the ankle, the most common deformity found in this population, or adduction contractures of the hips. Orthopedic surgery is useful for treating joint contractures that interfere with function. Muscle transfers are effective in carefully selected patients with cerebral palsy, and most orthopedic procedures are directed at tendon lengthening or bony stabilization by osteotomy or arthrodesis.

Flexion and adduction of the hip due to hyperactivity of the adductors and flexors may produce a progressive paralytic dislocation of the hip. This can lead to pain and dysfunction, with treatment being difficult and unsatisfactory. The principal preventive measure is abduction bracing, supplemented by release of the adductors and hip flexors in order to prevent dislocation. In severe cases, osteotomy of the femur may be necessary to correct bony deformities.
of femoral anteversion and coxa valga that are invariably present. Patients with a predominantly athetotic pattern are poor candidates for any surgical procedure or bracing due to largely unpredictable results.

Surgeons must examine patients on several occasions before any operative procedure as it is difficult to predict the surgical outcome in individuals diagnosed with cerebral palsy. Follow-up care with a physical therapist can maximize the anticipated long-term gains and should be arranged before surgery.


ORTHOPEDIC ASPECTS OF MYELODYSPLASIA

Early closure of the sac in patients born with spina bifida is the rule, although there has been some hesitancy to provide treatment to all of these patients due to the extremely poor prognosis associated with congenital hydrocephalus, high levels of paralysis, and associated congenital anomalies in some cases. A high percentage of these children have hydrocephalus, which may be evident at birth or shortly thereafter, requiring shunting. Careful urologic evaluation and follow-up must be obtained to prevent complications from bladder dysfunction.

Patients should be examined early by an orthopedic surgeon. The level of neurologic involvement determines the muscle imbalance that will be present to produce deformity with growth. The involvement is often asymmetrical and tends to change during the first 12–18 months of life. Associated musculoskeletal problems may include clubfoot, congenital dislocation of the hip, arthrogryposis-type changes of the lower extremities, and congenital scoliosis and kyphosis. Spina bifida lesions are most common at the L3–L4 level and tend to affect the hip joint, with progressive dislocation occurring during growth due to unopposed hip flexion and adduction forces. Foot deformities are complicated by the fact that sensation is generally absent; these deformities may be in any direction depending on the muscle imbalance present. Spinal deformities develop in a high percentage of these children, with scoliosis present in approximately 40%.

Ambulation may require long leg braces. In children who have a reasonable likelihood of walking, operative treatment consists of reduction of the hip, alignment of the feet in the weight-bearing position, as well as stabilization of the scoliosis. In children who lack active quadriceps function and extensor power of the knee, the likelihood of ambulation is greatly decreased. In such patients, aggressive surgery to the foot and hip region is usually not indicated as it may result in stiffening of the joints and prevent sitting.

The overall treatment of the child with spina bifida should be coordinated in a multidisciplinary clinic where various medical specialists work with therapists, social workers, and teachers to provide the best possible care.

NEOPLASIA OF THE MUSCULOSKELETAL SYSTEM

The poor prognosis of malignant tumors arising in the bone or other tissues derived from the mesoderm makes neoplastic diseases of the musculoskeletal system a serious problem. Fortunately, few benign lesions undergo malignant transformation. Accurate diagnosis depends on correlation of the clinical, radiographic, and microscopic findings. Complaints about the knee should be investigated for tumor, although the usual causes of knee pain are traumatic, infectious, or developmental in origin.


OSTEOCHONDROMA

Osteochondroma is the most common benign bone tumor in children. It usually presents as a pain-free mass. When present, pain is caused by bursitis or tendinitis due to irritation by the tumor. Lesions may be single or multiple. Pathologically, the lesion is a bone mass capped with cartilage. These masses result from a developmental defect of the growth plate and tend to grow during childhood and adolescence in proportion to the child’s growth. Males are more affected than females.

Generally, the tumors are present on radiographs in the metaphyseal region of long bones and may be pedunculated or sessile. The cortex of the underlying bone “flows” into the base of the tumor.

An osteochondroma should be excised if it interferes with function, is frequently traumatized, or is large enough to be deforming. The prognosis is excellent. Malignant transformation is very rare.


OSTEOID OSTEMA

Osteoid osteoma is a benign bone-forming lesion. It classically produces night pain that can be relieved by nonsteroidal anti-inflammatory drugs. On physical examination, there usually is tenderness over the lesion. An osteoid osteoma in the upper femur may cause referred pain to the knee.

The radiographic lesion consists of a radiolucent nidus surrounded by dense osteosclerosis that may obscure the nidus.
Bone scan shows intense uptake in the lesion. CT scans are confirmatory and delineate the nidus well.

Surgical excision or radiofrequency ablation of the nidus is curative and may be done using computed tomography imaging and a minimally invasive technique. The prognosis is excellent, with no known cases of malignant transformation, although the lesion has a tendency to recur if incompletely excised. The etiology remains unclear.

**ENCHONDROMA**

Enchondroma (nest of benign cartilage within long bones) is usually a silent lesion unless it produces a pathologic fracture. On radiograph it is radiolucent, usually in a long bone. Speckled calcification may be present. The classic lesion looks as though someone dragged his or her fingernails through clay, making streaks in the bones. Enchondroma is treated by surgical curettage and bone grafting. The prognosis is excellent. Malignant transformation may occur but is very rare in childhood.

**CHONDROBLASTOMA**

The presenting complaint in chondroblastoma (benign chondral origin lesions typically in the epiphyses [joint ends] of long bones) is pain around a joint. This neoplasm may produce a pathologic fracture. On radiograph, the lesion is radiolucent and usually located in the epiphysis. With little to no reactive bone, calcification is unusual. The lesion is treated by surgical curettage and bone grafting. The prognosis is excellent if complete curettage is performed. There is no known malignant transformation.

**NONOSSIFYING FIBROMA**

Nonossifying fibroma, or benign cortical defect, is nearly always an incidental finding on radiograph. Nonossifying fibroma is a radiolucent lesion eccentrically located in the metaphyseal region of the bone. Usually a thin sclerotic border is evident. Multiple lesions may be present. The most frequent sites are the distal femur and proximal tibia. In general, no treatment is needed because these lesions heal as they ossify with maturation and growth. Rarely, pathologic fractures result from large lesions.

**OSTEOSARCOMA**

Osteosarcoma is an aggressive form of cancer characterized by chromosomal instability. It is suspected that micro RNAs (non-coding, single-stranded molecules of RNA that regulate gene expression) play an important role in the cancer’s development. In osteosarcoma, the presenting complaint is usually pain in a long bone; however, the patient may present with, loss of function, mass, or limp. Pathological fracture is uncommon. The malignant osseous tumor produces a destructive, expanding, and invasive lesion. A triangle may be adjacent to the tumor, produced by elevated periosteum and subsequent tumor ossification. The lesion may contain calcification and violates the cortex of the bone. Femur, tibia, humerus, and other long bones are the sites usually affected.

Surgical excision (limb salvage) or amputation is indicated based on the extent of the tumor. Adjuvant chemotherapy is routinely used prior to surgical excision. The prognosis is improving, with 60%–70% long-term survival rates being reported in modern series. Death usually occurs as a result of lung metastasis. Patients with osteosarcoma complicated by pathological fracture have lower long-term survival rates than patients with osteosarcoma and no pathological fracture.

**EWING SARCOMA**

In Ewing sarcoma, the presenting complaint is usually pain and tenderness, but fever and leukocytosis may be present. Osteomyelitis is the main differential diagnosis. The lesion may be multicentric. Ewing sarcoma is radiolucent and destroys the cortex, frequently in the diaphyseal region. Reactive bone formation may occur about the lesion, seen as successive layers of so-called onion skin layering.

Treatment is with multi-agent chemotherapy, radiation, and surgical resection. Large tumor size, pelvic lesions, and inadequate response to chemotherapy portend a poor prognosis.

---


MISCELLANEOUS DISEASES OF BONE AND JOINT

ESSENTIALS OF DIAGNOSIS & TREATMENT

- Rule out malignant process.
- Rule out pathologic fracture.
- Beware of associated endocrine abnormalities.
- Treatment based on symptoms and location.

FIBROUS DYSPLASIA

Dysplastic fibrous tissue replacement of the medullary canal is accompanied by the formation of metaplastic bone in areas with fibrous dysplasia. Three forms of the disease are recognized: monostotic, polyostotic, and polyostotic with endocrine disturbances (precocious puberty in females, hyperthyroidism, and hyperadrenalism [Albright syndrome]).

Clinical Findings

A. Symptoms and Signs

The lesion or lesions may be asymptomatic. If present, pain is probably due to pathologic fractures. In females, endocrine disturbances may be present in the polyostotic variety and associated with café au lait spots.

B. Laboratory Findings

Laboratory findings are normal unless endocrine disturbances are present, in which case secretion of gonadotropic, thyroid, or adrenal hormones may be increased.

C. Imaging

The lesion begins centrally within the medullary canal, usually of a long bone, and expands slowly. Pathologic fracture may occur. If metaplastic bone predominates, the contents of the lesion have the density of bone. The disease is often asymmetrical, and limb length disturbances may occur as a result of stimulation of epiphyseal cartilage growth. Marked deformity of the bone may result, and a shepherd’s crook deformity of the upper femur is a classic feature of the disease.

Differential Diagnosis

The differential diagnosis includes other fibrous lesions of bone as well as destructive lesions such as unicameral bone cyst, eosinophilic granuloma, aneurysmal bone cyst, nonossifying fibroma, enchondroma, and chondromyxoid fibroma.

Treatment

If the lesion is small and asymptomatic, no treatment is needed. If the lesion is large and produces or threatens pathologic fracture, curettage and bone grafting are indicated.

Prognosis

Unless the lesions affect epiphyseal growth, the prognosis for patients with fibrous dysplasia is good. Lesions tend to enlarge during the growth period but are stable during adult life. Malignant transformation is rare.

UNICAMERAL BONE CYST

Unicameral bone cysts occur in the metaphysis of a long bone, usually in the femur or humerus. A cyst begins in the medullary canal adjacent to the epiphyseal cartilage. It probably results from some fault in enchondral ossification (the process where bone is formed from cartilaginous precursors). The cyst is considered active as long as it abuts onto the metaphyseal side of the epiphyseal cartilage, and there is a risk of growth arrest with or without treatment. When a border of normal bone exists between the cyst and the epiphyseal cartilage, the cyst is inactive. The lesion is usually identified when a pathologic fracture occurs, producing pain. Laboratory findings are normal. On radiograph, the cyst is identified centrally within the medullary canal, producing expansion of the cortex and thinning over the widest portion of the cyst. Treatment consists of curettage and bone grafting. The cyst may heal after a fracture.


ANEURYSMAL BONE CYST

Aneurysmal bone cyst is similar to unicameral bone cyst, except it contains blood rather than clear fluid. It usually occurs in a slightly eccentric position in a long bone, expanding the cortex of the bone but not breaking the cortex. Involvement of the flat bones of the pelvis is less common. On radiographs, the lesion appears somewhat larger than the width of the epiphyseal cartilage, distinguishing it from a unicameral bone cyst.

Chromosomal abnormalities have been associated with aneurysmal bone cysts. The lesion may appear aggressive histologically, and it is important to differentiate it from osteosarcoma or hemangioma. Treatment is by curettage and bone grafting. The prognosis is good.

INFANTILE CORTICAL HYPEROSTOSIS (CAFFEY SYNDROME)

Infantile cortical hyperostosis is a benign disease of unknown cause that has its onset before age 6 months and
is characterized by irritability; fever; and nonsuppurating, tender, painful swellings. Swellings may involve almost any bone of the body and are frequently widespread. Classically, swellings of the mandible and clavicle occur in 50% of patients; swellings of the ulna, humerus, and ribs also occur. The disease is limited to the shafts of bones and does not involve subcutaneous tissues or joints. It is self-limited but may persist for weeks or months. Anemia, leukocytosis, an increased ESR, and elevation of the serum alkaline phosphatase concentration are usually present. Cortical hyperostosis is demonstrable by a typical radiographic appearance and may be diagnosed on physical examination by an experienced healthcare provider. In rare instances, a biopsy may be needed to confirm the diagnosis.

Fortunately, the disease appears to be decreasing in frequency. Indomethacin may be useful for treatment. The prognosis is good, and the disease usually terminates without deformity.

**Ganglion**

A ganglion is a smooth, small cystic mass connected by a pedicle to the joint capsule, usually on the dorsum of the wrist. It may also occur in the tendon sheath over the flexor or extensor surfaces of the fingers. These ganglia can be excised if they interfere with function or cause persistent pain.

**Baker Cyst**

A Baker cyst is a herniation of the synovium in the knee joint into the popliteal region. In children, the diagnosis may be made by aspiration of mucinous fluid, but the cyst nearly always disappears with time. Whereas Baker cysts may be indicative of intra-articular disease in the adult, they occur without internal derangement in children and rarely require excision.


**National QI/QA Initiatives in Orthopedics**

The Pediatric Orthopaedic Society of North America (POSNA) has developed an initiative called the POSNA QSVI (Quality, Safety, and Value Initiative). This initiative is designed to optimize management of children with orthopedic issues. Within POSNA, this initiative has branched into many subcommittees with charges that include education, quality measurements, best practice guidelines, research, and benchmarking.
Sports medicine as a separate discipline has grown since the 1980s in response to an expanding body of knowledge in the areas of exercise physiology, biomechanics, and musculoskeletal medicine. As more children participate in recreational and competitive activities, pediatric health care providers are encountering more young athletes in their practice. Familiarity with the common medical and orthopaedic issues faced by athletically active children and knowledge of which injuries necessitate referral to a sports medicine specialist are essential.

**Basic Principles**

**Pediatric Injury Patterns**

Although young athletes have injuries and issues similar to those of adults, there are many injuries that are unique to the pediatric and adolescent athlete. An understanding of the differences between adult and pediatric injury patterns is important to foster an appropriate index of suspicion for situations unique to pediatrics.

Components of a long bone include the diaphysis, metaphysis, and epiphysis. In the pediatric bone architecture, the presence of cartilaginous growth plates and apophyses predispose children to unique injury patterns that are different from their adult counterparts. Open growth plates or physes and their various stages of development are important factors to consider when treating young athletes. The physes are located at the ends of the long bones and are the primary ossification centers where length is added to the immature skeleton. The physis is a weak link in the musculoskeletal complex and has a high risk of fracture during periods of rapid growth. The surrounding soft tissues, including ligaments and tendons, are relatively stronger than the physis. The epiphyses are secondary centers of ossification that also contribute to long bone formation and, like the adjacent articular cartilages, are vulnerable to trauma. Injuries that involve the epiphysis can lead to joint deformity. The apophyses are secondary centers of ossification that add contour but not length to the bone. The apophysis is the attachment site of the muscle-tendon unit and is vulnerable to both acute and chronic overuse traction injury during times of rapid growth. Unlike injuries to the physis and epiphysis, however, apophyseal injuries do not result in long-term growth disturbance. Recognizing injuries to growth centers is important because of the risk for partial or complete physeal arrest. Complications of growth plate injury can lead to limb length discrepancy or angular deformity.

**Strength Training**

Strength is defined as the peak force that can be generated during a single maximal contraction. Strength training uses progressive resistance to improve an athlete's ability to resist or exert force. This can be achieved by a variety of techniques, including body weight, free weight, or machine resistance. The benefits of strength training include improved performance, endurance, and muscular strength. Strength training can be safely started in prepubescent athletes as early as 7 and 8 years old if designed appropriately with a focus on lighter resistance, increased repetitions, proper technique and mechanics, coordination, and building self-confidence. Children mature at varying paces, and strength training programs should be individualized to accommodate for these unique differences. All strength training regimens should be modified as needed to remain age-appropriate and pain-free. Tanner staging (see Chapter 34) helps define readiness for progression to more strenuous programs. Power lifting and maximal weight lifting should be restricted to athletes who have reached or passed Tanner stage V. To prevent injuries,
care should be taken to instruct children on the proper use of weight-training equipment at home. Children and adults with disabilities can benefit from weight-training programs modified to meet their specific needs.


FITNESS & CONDITIONING

Compared to children who are sedentary, physically active youth tend to develop greater agility and skills and maintain better fitness throughout their lifetime. Young children and adolescents should participate in physical activity for 60 minutes or more each day. To improve overall fitness and reduce the risk of injury, children and adolescents should focus on three different components of exercise:

1. Resistance (strength) training (progressive resistive loads in a variety of modalities).

2. Neuromuscular conditioning (mixture of basic fundamental and specialized motor control exercises aimed at improving general health and sports performance). Examples include core strength exercises, agility, and plyometrics.

3. Integrative training (curriculum of diverse skills, increasing fitness, and appropriate rest periods). Examples include developing fundamental skills and technique, learning proper movement mechanics, aerobic and anaerobic conditioning.

Periodization is a training concept that emphasizes variations in the volume and intensity of training throughout the year in a conditioning program. Continuously varying the specific type and goals of training provides adequate recovery from each strenuous exercise session and avoids overtraining, burnout, and overuse injuries.


SPORTS NUTRITION

Proper nutrition in young athletes focuses on maintaining an appropriate energy balance; creating healthy eating and hydration habits; and avoiding harmful food, drink, and supplement choices. Keeping an adequate nutritional intake will increase lean muscle mass, maximizing strength, endurance, immunity, and training benefit. Athletes should be encouraged to balance caloric intake with energy expenditure, eat whole grains, avoid processed foods, focus on healthy fats and proteins, and maintain proper hydration. Carbohydrates should compose 55%–60% of a young athlete’s diet, with fat and protein making up 25%–30% and 12%–15%, respectively. Hydration can come mainly from water if the exercise lasts less than 1 hour, after which time a carbohydrate-containing sports drink is appropriate. Water or sports drinks should be consumed every 15–20 minutes during prolonged exercise greater than 1 hour or in hot playing conditions. A light snack and hydration are recommended prior to and immediately after an extended workout. To avoid excessive caloric and sugar intake, sports drinks are not recommended at meals or times other than prolonged exercise. The average athlete eats a well-balanced diet not necessitating nutritional supplementation. However, if food allergies or improper dietary intake is confirmed, an athlete may benefit from a daily multivitamin. In general, nutritional sports supplements are not recommended and extreme caution is suggested when considering their use. The supplement industry is not well-regulated and contamination with toxic and banned substances has been noted in the past. Similarly, energy drinks are not recommended for use in any youth under the age of 18 years due to high levels of caffeine and other stimulants contained in such beverages.


PREPARTICIPATION PHYSICAL EVALUATION

The ultimate goal of the preparticipation physical evaluation (PPE) is to promote the health and safety of athletes. Its primary objectives are to screen for conditions that may be life threatening or disabling and for conditions that may predispose to injury or illness. Secondary objectives of the PPE include establishing a medical home, determining the general health of the individual, assessing fitness for specific sports, and counseling on injury prevention and health-related issues. The ideal timing of the examination is at least 6–8 weeks before training starts. This allows time to further evaluate, treat, or rehabilitate any identified problems.

Preparticipation History

The medical history is the most important part of the encounter, identifying 65%–77% of medical and musculoskeletal conditions. Therefore, obtaining a thorough and accurate history is essential in identifying conditions that may affect a child’s ability to safely participate in sports.
Many key elements should be explored with the athlete. A standardized PPE form, endorsed by six medical societies including the American Academy of Pediatrics (AAP), is available in the fourth edition of the PPE monograph (Bernhardt and Roberts 2010) or on the Internet. This monograph, formulated based on current literature, policies, consensus statements, expert opinion, and extensive peer review, is currently the recommended standard for the preparticipation physical examination in the United States. Figure 27–1A and B contain copies of the PPE form. The history includes the following areas:

A. Cardiovascular History

The routine use of electrocardiogram (ECG) and echocardiography in the preparticipation cardiovascular screening in athletes remains a highly debated topic in sports medicine and sports cardiology. Despite ongoing controversy, the American Heart Association (AHA) currently recommends against its routine usage in asymptomatic athletes because of its low sensitivity, high false-positive rate, limited resources, lack of trained physicians to interpret the ECG, and poor cost-effectiveness due to the low prevalence of disease. In 2007, the AHA updated its consensus statement on cardiovascular screening stating its position to this effect. According to the AHA, the goal of the PPE is to reduce cardiovascular risk associated with physical activity. The 2007 AHA recommendations for cardiovascular screening are incorporated in the fourth edition PPE monograph and include the following 12-point screen:

**Personal Medical History:**
1. Chest pain or discomfort with exercise
2. Syncope or near syncope associated with exercise
3. Excessive shortness or breath or fatigue associated with exertion
4. History of heart murmur
5. History of elevated blood pressure

**Family Medical History:**
6. Premature death before age 50 years due to heart disease
7. Disability from heart disease in a close relative younger than 50 years
8. Knowledge of specific cardiac conditions: hypertrophic or dilated cardiomyopathy, long QT syndrome, other ion channelopathies, Marfan syndrome, or arrhythmias

**Physical Examination:**
9. Auscultation of heart murmur in supine and standing position
10. Palpation of radial and femoral pulses
11. Physical stigmata of Marfan syndrome
12. Brachial blood pressure taken in seated position

Sudden cardiac arrest is the leading cause of death in young athletes, accounting for 75% of all sudden deaths. Addressing these areas may help identify potentially life-threatening cardiac lesions. However, clinicians should keep in mind that there are currently no outcome-based studies that demonstrate the effectiveness of the PPE in preventing sudden cardiac death in athletes. In the United States, the most common causes of sudden cardiac death on the playing field are hypertrophic cardiomyopathy (HCM) and congenital coronary artery anomalies, with HCM accounting for one-third of sudden cardiac deaths in young athletes. Any athletes with cardiovascular symptoms require further evaluation before allowing them to participate in sports. Any activity restrictions or sports disqualification for an athlete should be made in consultation with a cardiologist.

B. History of Hypertension

Any history of hypertension requires investigation for secondary causes of hypertension and target organ disease. An athlete with hypertension who exercises may cause their blood pressure to rise even higher, placing them at increased risk for complications. Athletes should also be asked about the use of stimulants (ie, caffeine, nicotine) and a family history of hypertension. The diagnosis of hypertension in children younger than 18 years is based on gender, age, and height, and the blood pressure must be measured on three separate occasions. Blood pressure measurements with values from 90% to 95% of gender, age, and height-based norms are considered prehypertension; values from 95% to 5 mm Hg above the 99% of norms are defined as stage 1 hypertension; and values greater than 5 mm Hg above the 99% of norms are defined as stage 2 hypertension.

Athletes with prehypertension are eligible to participate in sports. Counseling regarding lifestyle modifications should be made, including healthy dietary changes, weight management and daily physical activity. Those with stage 1 hypertension, in the absence of end-organ damage, may also participate in competitive sports but with appropriate subspecialist referral if the individual is symptomatic, have associated heart disease or structural abnormality, or have persistent elevated blood pressure on two additional occasions despite lifestyle modifications. Athletes who have stage 2 hypertension or end-organ damage should not be cleared to participate in competitive sports until their blood pressure is evaluated, treated, and is under control.

C. Central Nervous System

A history of frequent or exertional headaches, seizure disorders, concussion or head injuries, recurrent stingers or burners, or cervical cord neuropraxia may affect an athlete’s ability to participate in sports. These conditions require further evaluation, rehabilitation, or informed decision-making prior to clearance for sports participation. The fourth edition PPE
## PREPARTICIPATION HISTORY

**Name** ___________________________  **DOB** ___________  **Age** _______  **Sex (M or F)** ___________

**Primary Physician** ___________________________  **Sports** ___________________________________________

**Allergies (medications, latex, foods, bees, etc)** ________________________________________________________________________

**Medications (Include prescription, nonprescription, supplements, and vitamins)** __________________________________________

**Answer questions by checking yes (Y)/no (N)/don’t know (?)**

### General Health

1. Have you had any injuries or illnesses?  
2. Have you ever been hospitalized?  
3. Do you think you are too thin or overweight?  
4. Have you ever used anything to gain or lose weight?  
5. Any problems exercising in the heat: heat cramps, heat exhaustion, or heat stroke?  
6. Ever had frostbite?  
7. Any vision problems?  
8. Do you wear glasses, contact lenses, or eye protection?  
9. Any dental appliances?  
10. Have you had any surgeries?  
11. Any organs missing?  
12. Immunizations (tetanus/hepatitis B): are they current?  
13. Any concerns about participating in sports?  

### Cardiac/Respiratory History

1. Has any family member died suddenly, had heart disease before age 50, or other heart problems?  
2. Do you have any dizziness, chest pain, a racing heart, or shortness of breath with exercise?  
3. Have you ever passed out?  
4. Do you have a heart murmur, high blood pressure, or any heart condition?  
5. Can you exercise as much as your friends?  
6. Any history of asthma, problems breathing, coughing with exercise?  

### Neurologic History

1. Any history of a head injury/concussion: being knocked out, dazed, or having memory loss?  
2. Have you ever had a seizure or convulsion?  
3. Any nerve problems: stingers, burners, pinched nerves, numbness?  
4. Any problems with headaches?  

### Musculoskeletal History

1. Do you have a history of sprains, strains, or fractures?  
2. Any hip, knee, or ankle injuries?  
3. Any shoulder, elbow, wrist, hand, or finger injuries?  
4. Any back or neck problems?  
5. Ever have to be in a splint, cast or use crutches?  
6. Do you use any special equipment when competing (braces, orthotics, pads, etc)?  

**Females Only**

1. Any problems with menstruation: cramps, irregularity, etc?  
2. When was your last period?  

### COMMENT ON YES ANSWERS

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

---

**Figure 27–1. A:** Preparticipation Physical Evaluation form.
Preparticipation Physical Evaluation History Form

(Note: This form is to be filled out by the patient and parent prior to seeing the physician. The physician should keep this form in the chart.)

<table>
<thead>
<tr>
<th>Date of Exam:</th>
<th>Name</th>
<th>Date of birth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sex Age Grade School

<table>
<thead>
<tr>
<th>Medicines and Allergies: Please list all of the prescription and over-the-counter medicines and supplements (herbal and nutritional) that you are currently taking</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Yes □ No</td>
</tr>
<tr>
<td>Medicines</td>
</tr>
</tbody>
</table>

Do you have any allergies? □ Yes □ No

Explain “Yes” answers below. Circle questions you don’t know the answers to.

<table>
<thead>
<tr>
<th>General Questions</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Has a doctor ever advised or restricted your participation in sports for any reason?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Do you have any ongoing medical conditions? If so, please identify below: Asthma, Arthritis, Diabetes, Infections, Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Have you ever spent the night in the hospital?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Have you ever had surgery?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heart Health Questions About You

<table>
<thead>
<tr>
<th>Heart Health Questions About You</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Have you ever passed out or nearly passed out during or after exercise?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Have you ever had discomfort, pain, tightness, or pressure in your chest during exercise?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Does your heart ever race or skip beats (regular beats) during exercise?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Has a doctor ever told you that you have any heart problems? If so, check all that apply: High blood pressure, A heart murmur, High cholesterol, A heart defect, Kawasaki disease, Other.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Has a doctor ever ordered a test for your heart? (For example, ECG/ES, echo-cardiogram)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Do you get light-headed or feel more short of breath than expected during exercise?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Have you ever had an unexplained seizure?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Do you get more tired or short of breath more quickly than your friends during exercise?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heart Health Questions About Your Family

<table>
<thead>
<tr>
<th>Heart Health Questions About Your Family</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Has any family member or relative died of heart problems or had an unexpected or unexplained sudden death before age 10 (including drowning, unrelated accident, or sudden infant death syndrome)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Does anyone in your family have hypertrophic cardiomyopathy, Marfan syndrome, achondroplasia, Marfan-like cardiomyopathy, Long QT syndrome, Short QT syndrome, Brugada syndrome, or cleft palate?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Does anyone in your family have a heart problem, pacemaker, or other implanted device?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Has anyone in your family had unexplained fainting, unexplained seizures, or near drowning?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bone and Joint Questions

<table>
<thead>
<tr>
<th>Bone and Joint Questions</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Have you ever had an injury to a bone, muscle, ligament, or tendon that caused you to miss a practice or a game?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Have you ever had any broken or fractured bones or dislocated joints?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Have you ever had an injury that required x-rays, MRI, CT scan, injections, therapy, a brace, a cast, or crutches?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Have you ever had a stress fracture?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Have you ever been told that you have or have had an injury for neck instability or atlantoaxial instability? (Ossum syndrome or dislocations)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Do you regularly use a brace, orthotics, or other assistive device?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Do you have a bone, muscle, or joint injury that bothers you?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Do any of your joints become painful, swollen, feel warm, or look red?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Do you have any history of juvenile arthritis or connective tissue disease?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I hereby state that, to the best of my knowledge, my answers to the above questions are complete and correct.

Signature of athlete: ____________________________ Date: ____________________________
Signature of parent/guardian: ____________________________ Date: ____________________________

©2010 American Academy of Family Physicians, American Academy of Pediatrics, American College of Sports Medicine, American Medical Society for Sports Medicine, American Orthopaedic Society for Sports Medicine, and American Orthopaedic Academy of Sports Medicine. Permission is granted to reprint for noncommercial, educational purposes with acknowledgment.

Figure 27–1. B: Preparticipation examination.
## Preparticipation Physical Evaluation

### THE ATHLETE WITH SPECIAL NEEDS: SUPPLEMENTAL HISTORY FORM

<table>
<thead>
<tr>
<th>Date of Exam:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Age</td>
</tr>
</tbody>
</table>

1. Type of disability
2. Date of disability
3. Classification (if available)
4. Cause of disability (birth, disease, accident/trauma, other)
5. List the sports you are interested in playing

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
6. Do you regularly use a brace, assistive device, or prosthesis? |       |    |
7. Do you use any special brace or assistive device for sports? |       |    |
8. Do you have any abrasions, pressure sores, or any other skin problems? |       |    |
9. Do you have a hearing loss? Do you use a hearing aid? |       |    |
10. Do you have a visual impairment? |       |    |
11. Do you use any special devices for bowel or bladder function? |       |    |
12. Do you have burning or discomfort when urinating? |       |    |
13. Have you had strabismus (cross-eye)? |       |    |
14. Have you ever been diagnosed with a heat-related (hyperthermia) or cold-related (hypothermia) illness? |       |    |
15. Do you have muscle spasticity? |       |    |
16. Do you have frequent seizures that cannot be controlled by medication? |       |    |

Explain “yes” answers here

Please indicate if you have ever had any of the following.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
Abnormal instability |       |    |
X-ray evaluation for atlantoaxial instability |       |    |
Dismounted joints (more than one) |       |    |
Easy bleeding |       |    |
Enlarged spleen |       |    |
Hepatitis |       |    |
Osteopenia or osteoporosis |       |    |
Difficulty controlling bowel |       |    |
Difficulty controlling bladder |       |    |
Numerous or tingling in arms or hands |       |    |
Numerous or tingling in legs or feet |       |    |
Weakness in arms or hands |       |    |
Weakness in legs or feet |       |    |
Recent change in coordination |       |    |
Recent change in ability to walk |       |    |
Sepsis |       |    |
Latex allergy |       |    |

Explain “yes” answers here

I hereby state that, to the best of my knowledge, my answers to the above questions are complete and correct.

Signature of athlete | Signature of parent/guardian | Date |

©2010 American Academy of Family Physicians, American Academy of Pediatrics, American College of Sports Medicine, American Medical Society for Sports Medicine, American Orthopaedic Society for Sports Medicine, and American Orthopaedic Academy of Sports Medicine. Permission is granted to reprint for noncommercial, educational purposes with acknowledgement.

▲ Figure 27–1. B: Preparticipation examination. (Continued)
**Figure 27-1.** B: Preparticipation examination. (Continued)
Preparticipation Physical Evaluation
CLEARANCE FORM

Name ____________________________ Sex □ M □ F Age __________ Date of birth __________

☐ Cleared for all sports without restriction
☐ Cleared for all sports without restriction with recommendations for further evaluation or treatment for ____________________________________________

☐ Not cleared
  ☐ Pending further evaluation
  ☐ For any sport
  ☐ For certain sport ____________________________
  Reason ______________________________________

Recommendations
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________

I have examined the above-named student and completed the preparticipation physical evaluation. The athlete does not present apparent clinical contraindications to practice and participate in the sport(s) as outlined above. A copy of the physical exam is on record in my office and can be made available to the school at the request of the parents. If conditions arise after the athlete has been cleared for participation, the physician may rescind the clearance until the problem is resolved and the potential consequences are completely explained to the athlete (and parents/guardians).

Name of physician (print/type) ____________________________ Date __________
Address ______________________________________________ Phone ____________________________
Signature of physician ____________________________, MD or DO

EMERGENCY INFORMATION

Allergies
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________

Other information
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________

©2010 American Academy of Family Physicians, American Academy of Pediatrics, American College of Sports Medicine, American Medical Society for Sports Medicine, American Orthopaedic Society for Sports Medicine, and American Orthopaedic Academy of Sports Medicine. Permission is granted to reprint for noncommercial, educational purposes with acknowledgment.
monograph provides an updated review and recommendations on concussions in sports. (See also section Concussion.)

D. History of Chronic Diseases

Diseases such as reactive airway disease, exercise-induced asthma, diabetes, renal disease, liver disease, chronic infections, or hematologic diseases should be noted.

E. Surgical History

Surgical history may influence participation in certain sports. Full recovery with no long-term impact on athletic performance is required prior to clearance.

F. Infectious Mononucleosis

Ask about infectious mononucleosis in the last 4 weeks. The risk for splenic rupture is highest within the first 3 weeks of illness and can occur in the absence of trauma. Therefore, physical activity should be avoided during the first 3–4 weeks after the infection starts. The athlete may return to play once clinical symptoms are resolved and risk for splenic rupture is assessed as minimal. The use of serial abdominal ultrasound to assess spleen size to aid in return to play decisions is debatable. Parameters for spleen size based on ethnicity, sex, height, and weight have not yet been established so determining when spleen size has normalized based on imaging becomes difficult.

G. Musculoskeletal Limitations and Prior Injuries

The physician should inquire about joints with limited range of motion, muscle weakness, and prior injuries that may affect future performance. Chronic pain or soreness long after activity may reflect overuse syndromes that should be evaluated.

H. Menstrual History in Females

The physician should pay particular attention to the so-called female athlete triad: amenorrhea disordered eating and osteoporosis.

I. Nutritional Issues

The physician should record methods the athlete uses to maintain, gain, or lose weight. Eating disorders or inadequate nutritional intake could lead to persistent or recurrent injury, including stress fractures. Vitamin D deficiency has become increasingly common in female athletes due to inadequate dietary intake or decreased sunlight exposure.

J. Medication History

Inquire about the use of prescription, over-the-counter medications, and supplements. Not only will medications reveal problems omitted in the medical history, but the information will also provide data on current medications whose side effects may suggest activity modifications. Documenting drug use may provide the opportunity to explore with the patient the drawbacks of performance-enhancing compounds such as anabolic steroids, creatine, stimulants, and narcotics.


Physical Examination

The physical examination should be focused on the needs of the athlete. It may be the only time an athlete has contact with medical personnel and can be used to promote wellness along with screening for physical activity. Figure 27–1B is an example of a preparticipation physical examination form endorsed in the fourth edition of the PPE monograph (Bernhardt and Roberts 2010). The examination should include routine vital signs, including blood pressure measurements obtained in the upper extremity. The cardiovascular examination should include palpation of pulses, auscultation for murmurs while sitting and standing, evaluation for physical stigmata of Marfan syndrome, and assessment of any cardiovascular symptoms as previously described. The musculoskeletal examination is used to determine strength, range of motion, flexibility, and previous injuries. Included is a quick guide
Table 27–1. The screening sports examination.a

General evaluation	Have patient stand in front of examiner; evaluate both front and back along with posture. Look at general body habitus. Look for asymmetry in muscle bulk, scars, or unusual postures. Watch how patient moves when instructed.
Neck evaluation	Evaluate range of motion (ROM) by having patient bend head forward (chin to chest), rotate from side to side and laterally bend (ear to shoulder). Observe for asymmetry, lack of motion, or pain with movement.
Shoulder and upper extremity evaluation	Observe clavicles, shoulder position, scapular position, elbow position, and fingers. ROM screening: Fully abduct arms with palms in jumping jack position. Internally and externally rotate shoulder. Flex and extend wrist, pronate and supinate wrist, flex and extend fingers. Do the following manual muscle testing: Have patient shrug shoulders (testing trapezius). Abduct to 90 degrees (testing deltoid). Flex elbow (testing biceps). Extend elbow over head (testing triceps). Test wrist flexion and extension. Have patient grasp fingers.
Back evaluation	General inspection to look for scoliosis or kyphosis. ROM screening: Bend forward touching toes with knees straight (spine flexion and hamstring range). Rotation, side bending, and spine extension.
Gait and lower extremity evaluation	General observation while walking. Have patient walk short distance normally (look at symmetry, heel-toe gait pattern, look at all joints involved in gait and leg lengths, any evidence of joint effusions or pain). Have patient toe-walk and heel-walk for short distance and check tandem walking (balance beam walking).

A. Skin

Are there any contagious lesions such as herpes or impetigo?

B. Vision

Are there any visual problems? Is there any evidence of retinal problems? Are both eyes intact?

C. Abdomen

Is there any evidence of hepatosplenomegaly?

D. Genitourinary System

Are any testicular abnormalities or hernias present?

E. Neurologic System

Are there any problems with coordination, gait, or mental processing?

F. Sexual Maturity

What is the individual’s Tanner stage?

Recommendations for Participation

After completing the medical evaluation, the physician can make recommendations about sports clearance. The options include the following:

- Cleared for all sports without restrictions
- Cleared for all sports without restrictions with recommendations for further evaluation or treatment
- Not cleared: pending further evaluation, for any sports, or for certain sports

Table 27–2 is a composite of recommendations for sports participation organized by body system. Recommendations for sports participation with specific medical conditions can be found on the AAP website.


that can be used to screen for musculoskeletal abnormalities (Table 27–1). The remainder of the examination should emphasize the following areas:

A. Skin

Are there any contagious lesions such as herpes or impetigo?
Table 27-2. Recommendations and considerations for participation in sports.

<table>
<thead>
<tr>
<th>Disorders</th>
<th>Considerations and Recommendations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cardiac</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticoagulation treatment</td>
<td>Need to avoid all contact sports.</td>
<td></td>
</tr>
<tr>
<td>Aortic stenosis</td>
<td>Individualize treatment based on extent of disease and systolic gradient: Mild: &lt; 20 mm Hg, all sports if asymptomatic. Moderate: limited sports. Severe: no competitive sports.</td>
<td>Rice 2008</td>
</tr>
<tr>
<td>Arrhythmias</td>
<td>Long-QT syndrome, malignant ventricular arrhythmias, symptomatic WPW syndrome, advanced heart block, family history of sudden death or previous sudden cardiac event, and implantation of a cardioverter-defibrillator. May participate: qualified yes. Consult with cardiologist.</td>
<td>Rice 2008</td>
</tr>
<tr>
<td>Arrhythmogenic right ventricular cardiomyopathy</td>
<td>May participate: qualified no. Consult with cardiologist.</td>
<td>Rice 2008</td>
</tr>
<tr>
<td>Carditis</td>
<td>May participate: qualified no. May result in sudden death with exertion.</td>
<td>Rice 2008</td>
</tr>
<tr>
<td>Congenital heart disease</td>
<td>May participate: qualified yes. Consult with cardiologist. Mild, moderate, and severe diseases for cardiac lesions are defined by the 36th Bethesda Conference. Those with mild lesions may fully participate in most cases. Those with moderate or severe lesions or who have undergone surgery need further evaluation.</td>
<td>Maron et al 2005</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Screen patient with LVEF &lt; 30% for ischemia. Use AHA risk stratification criteria to define exercise capacity.</td>
<td>Braith 2002</td>
</tr>
<tr>
<td>Heart implants</td>
<td>No jumping, swimming, or contact sports.</td>
<td></td>
</tr>
<tr>
<td>Hypertrophic cardiomyopathy</td>
<td>May participate: qualified no. Athletes should not participate in sports except possibly low-intensity forms (eg, golf, bowling). Consult with cardiologist.</td>
<td>Maron 2002a, b</td>
</tr>
<tr>
<td>Hypertension</td>
<td>May participate: qualified yes. Those with hypertension &gt; 5 mm Hg above 99th percentile for age, gender, and height should avoid heavy weightlifting and power lifting, bodybuilding, and high-static component sports.</td>
<td>Rice 2008</td>
</tr>
<tr>
<td>Marfan syndrome</td>
<td>Aortic root dilation is associated with mitral valve prolapse and regurgitation. May participate: qualified yes. Participate in sports with minimal physical demands.</td>
<td>Salim and Alpert 2001</td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
<td>May participate: qualified yes. No restrictions unless there is a history of syncope, positive family history of sudden death, arrhythmias with exercise, or moderate regurgitation.</td>
<td></td>
</tr>
<tr>
<td>Syncope</td>
<td>Unexplained syncopal episodes during exercise must be evaluated by ECG, echocardiograph, Holter and tilt test prior to resumption of any activities.</td>
<td>Firoozi et al 2003</td>
</tr>
</tbody>
</table>

(Continued)
Table 27–2. Recommendations and considerations for participation in sports. (Continued)

<table>
<thead>
<tr>
<th>Disorders</th>
<th>Considerations and Recommendations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Endocrine</strong></td>
<td></td>
<td>Draznin 2000, Harris et al 2012</td>
</tr>
</tbody>
</table>
| Diabetes mellitus type 1   | No restrictions to activity. However, athletes are at risk for hypoglycemia and ketoacidosis, so ensure proper hydration and caloric intake. As exercise enhances insulin sensitivity, the quantity and duration of aerobic and anaerobic exercise and intensity of practices and games need to be assessed. In general:  
  Short-term exercise = no insulin changes.  
  Vigorous exercise may require 25% reduction in insulin with 15–30 g of carbohydrates before and every 30 min during exercise.  
  Strenuous exercise = may require up to an 80% reduction in insulin with extra carbohydrates.  
  Generally, monitor blood glucose frequently during exercise. Diabetic athletes typically perform best with glucose levels between 70 and 150 mg/dL.                                                                                                                                                                                                                                                                                                                                 |                                      |
| **Eye**                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rice 2008                            |
| Detached retina            | May participate in sport, but athlete may have increased risk of injury because of weakened eye tissue. Therefore, participation should be determined on an individual basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| Functionally one eyed      | Defined as having best corrected visual acuity worse than 20/40 in the poorest seeing eye. Consider avoiding contact sports, although if patient participates, use of eye protection is mandatory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rice 2008                            |
| **Genitourinary**          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rice 2008                            |
| One testicle               | Need to wear protective cups in collision and contact sports.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| Solitary kidney            | May participate; qualified yes. Protective equipment may reduce risk of injury to remaining kidney sufficiently to allow participation in most sports.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rice 2008                            |
| **Hematologic**            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rice 2008                            |
| Hemophilia                 | Avoid contact and collision sports.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| Sickle cell disease        | May participate; qualified yes. If illness status permits, all sports may be played. However, any sport or activity that entails overexertion, overheating, dehydration, or chilling should be avoided. Participation at high altitude poses risk for sickle cell crisis.                                                                                                                                                                                                                                                                                                                                                                                                 | Rice 2008                            |
| Sickle cell trait          | Currently, no recommendations for universal screening in athletes. However, the NCAA now requires screening for athletes if their sickle cell status is unknown.  
  May participate: yes. Under normal environmental conditions, no increased risk of sudden death or other medical problems. Ensure acclimatization to extreme environment conditions (eg, altitude, heat, humidity) and adequate hydration during participation to reduce risk of heat illness and/or rhabdomyolysis.  
  Seto 2011, Rice 2008                                                                                                           |                                      |

(Continued)
### Table 27–2. Recommendations and considerations for participation in sports. *(Continued)*

<table>
<thead>
<tr>
<th>Disorders</th>
<th>Considerations and Recommendations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Infectious disease</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>May participate: no. Cardiopulmonary effort is increased while maximum exercise capacity is decreased during febrile illnesses. Risk of heat illness is also increased.</td>
<td>Rice 2008</td>
</tr>
<tr>
<td>Infectious mononucleosis</td>
<td>Splenic rupture is most important consideration. Risk of spleen rupture highest during first 3 weeks of illness. No athletic participation during the first 3–4 weeks after the infection starts. Too early a return to sports increases risk of splenic rupture or could cause EBV reactivation and relapse. If symptoms resolve by third week, light activities can be started during the fourth week with graded increases in intensity. Full contact activity participation may resume at week 5.</td>
<td>Putukian et al 2008</td>
</tr>
<tr>
<td>Skin infections</td>
<td>Herpes simplex, molluscum contagiosum, warts, staphylococcal and streptococcal infections, impetigo, scabies, and tinea. May participate: qualified yes. During contagious periods, participation in gymnastics or cheerleading with mats, martial arts, wrestling, or other collision, contact or limited contact sports is not allowed.</td>
<td>Rice 2008</td>
</tr>
<tr>
<td>Upper respiratory infections (including common cold)</td>
<td>May participate in sports if tolerated. Exceptions include those with fever, severe bacterial infections (sinusitis, pharyngitis), or those with symptoms below the neck. “Neck check” guide allows athletes to return to sports if symptoms are “above the neck” (eg, rhinorrhea, congestion, or sore throat). If symptoms “below the neck” (eg, fever or malaise) are present, the athlete should not participate.</td>
<td>Jaworski et al 2011</td>
</tr>
<tr>
<td><strong>Neurologic</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epilepsy</td>
<td>Majority of sports are safe for those with good seizure control; contact sports are allowed with proper protection. Definitely wear a helmet. Fitness may reduce number of seizures. Swimming and water sports should be supervised. Sports such as free climbing, hang gliding, and scuba are not recommended.</td>
<td>Howard et al 2004</td>
</tr>
<tr>
<td>Herniated disk (with cord compression)</td>
<td>Avoid contact and collision sports.</td>
<td></td>
</tr>
<tr>
<td>Muscle disease or myopathy</td>
<td>Exercise within physical limits. Low- to moderate-intensity activity is appropriate for patients with slow progressive disorders. Patients with disorders that are rapidly progressing should avoid high-resistance and eccentric muscle activity. With eccentric exercise, muscles elongate during contraction and opposite the force of gravity (eg, lowering of weights), resulting in high levels of tension in the muscle. Modification of exercise with intercurrent illness is also necessary.</td>
<td>Tarnopolsky 2002, Ansved 2003</td>
</tr>
<tr>
<td>Spinal stenosis</td>
<td>Avoid contact and collision sports.</td>
<td></td>
</tr>
<tr>
<td><strong>Orthopedic</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scoliosis</td>
<td>No restrictions unless severe.</td>
<td></td>
</tr>
<tr>
<td>Spondylolisthesis</td>
<td>Grade 2 and above should avoid contact sports or sports with lumbar hyperextension.</td>
<td></td>
</tr>
<tr>
<td>Spondyloysis</td>
<td>No restrictions if pain-free.</td>
<td></td>
</tr>
</tbody>
</table>
Table 27–2. Recommendations and considerations for participation in sports.

<table>
<thead>
<tr>
<th>Disorders</th>
<th>Considerations and Recommendations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Respiratory</strong></td>
<td>-----------------------------------------------------------------------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Asthma</td>
<td>No activity restrictions. Using an inhaled short-acting $\beta_2$-agonist 15 min before exercise is recommended to help prevent exercise-induced bronchoconstriction. For athletes with asthma symptoms unassociated with exercise or who have frequent use of $\beta_2$-agonists (&gt; 3 times per week), a regular inhaled corticosteroid should be considered. Antidoping regulations need to be considered for athletes using $\beta_2$-agonists.</td>
<td>Hull et al 2012</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>Can occur spontaneously in sports, especially in young, tall males. Athlete may present with atypical symptoms such as chest pain. Therefore, have a low threshold for obtaining chest x-ray. Management is per standard guideline recommendations. Athlete may return to sports when there is evidence of radiographic resolution. Increased risk for recurrence; should consider not participating in strenuous and contact sports.</td>
<td>Hull et al 2012</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Active infection: not allowed to participate because of exposure to other athletes.</td>
<td>Hull et al 2012</td>
</tr>
<tr>
<td><strong>Other</strong></td>
<td>-----------------------------------------------------------------------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Cerebral palsy</td>
<td>Full participation with modifications.</td>
<td>Platt 2001</td>
</tr>
<tr>
<td>Developmental disabilities</td>
<td>Athletes with developmental disabilities often have associated medical problems including diabetes, obesity, and hypokinesia.</td>
<td>Platt 2001</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>10%-40% have atlantoaxial instability. Head or neck trauma in these patients may cause catastrophic spinal cord injury. Correlation of radiographic findings of atlantoaxial instability with neurologic abnormalities has not been well established. At present, there are no evidence-based guidelines for screening and activity restrictions. However, the Special Olympics requires radiographic screening in all athletes with Down syndrome and the American Academy of Pediatrics, while acknowledging the lack of evidence to support routine screening, also recommends plain films of the cervical spine to assess for atlantoaxial instability. If x-rays are abnormal, participation in contact sports or sports that entail high risk of head or neck trauma should not be allowed. 40%-50% of persons with Down syndrome have cardiac anomalies. Evaluation of underlying congenital heart disorders should be considered in this population.</td>
<td>Sanyer 2006</td>
</tr>
<tr>
<td>Remote spinal cord injury or spina bifida</td>
<td>Full participation. Consider modification of equipment to accommodate activity or modification of activity to accommodate disability. Consider how modification affects performance. Be aware of thermoregulatory dysfunction, medications, and pressure areas.</td>
<td>Platt 2001</td>
</tr>
</tbody>
</table>

AHA, American Heart Association; EBV, Epstein-Barr virus; ECG, electrocardiogram; LVEF, left ventricular ejection fraction; NCAA, National Collegiate Athletic Association; WPW, Wolff-Parkinson-White syndrome.
 Participation in sports benefits children not only by promoting physical activity but also by the acquisition of motor and social skills. All sports participation, however, carries an inherent risk of injury. Injuries are classified as either acute or chronic. Chronic injuries occur over time as a result of overuse, repetitive microtrauma, and inadequate repair of injured tissue. When the demands of exercise exceed the body’s ability to recover, overuse injury may occur. Overuse injury accounts for up to 50% of all injuries in pediatric sports medicine. Risk factors for overuse include year round participation, participation in more than one sport at a time, poor mechanics, and training errors such as increasing exercise volume, load, frequency, or intensity too quickly. To avoid overuse injury, athletes should train with a regular variety of resistances, power, speed, agility, skills, and distance. Adequate periods of rest and recovery should be incorporated into every training regimen in order to ensure proper healing of stressed tissues. Treatment measures such as corticosteroid or platelet-rich plasma injections are more commonly used in skeletally mature athletes.

Present trends in injury rehabilitation and prevention focus on core stability training and dynamic warm-up and stretching. Core exercises emphasize isometric holds that activate the core and pelvis. They utilize light single limb movements to challenge endurance over protracted time periods. Programs should be age-appropriate and modified as needed to exercise in a pain-free range. The development of back pain during a core program signifies poor technique, overly complicated curriculum, or a prior back injury. Exercise programs can be obtained from the website resource: http://www.webexercises.com.

Dynamic warm-up and stretching programs concentrate on light movement prior to exercise. Dynamic programs use controlled, full active range of motion of each joint for an overall excitatory and stretching effect prior to exercise. The aim is to initiate light perspiration and increase heart rate, peripheral circulation, and connective tissue suppleness through simple excitatory activity. In contrast to traditional static stretching regimens in which athletes hold a stretching position for a distinct period of time, an appropriate dynamic curriculum will incorporate aerobic activity and moving stretches into sport-specific movement preparation. Areas of focus include joint range of motion, proprioception, coordination, balance, flexibility, muscular contraction, and stimulation of the central nervous system and energy resources. For example, athletes may work through a series of exercises such as side shuffle, high knee stepping, bear crawls, and double-leg hopping over cones three times. Static stretching is appropriate after exercise is complete. A useful website to design a dynamic stretching program can be found at: http://www.webexercises.com.

Acute injuries or macrotrauma are one-time events that can cause alterations in biomechanics and physiology. Response to an acute injury occurs in predictable phases. The first week is characterized by an acute inflammatory response. During this time, initial vasoconstriction is followed by vasodilation. Chemical mediators of inflammation are released, resulting in the classical physical findings of local swelling, warmth, pain, and loss of function. This phase is essential in healing of the injury. The proliferative phase occurs over the next 2–4 weeks and involves repair and clean-up. Fibroblasts infiltrate and lay down new collagen. Lastly, the maturation phase allows for repair and regeneration of the damaged tissues.

The management of acute sports injuries focuses on optimizing healing and restoring function. The goals of immediate care are to minimize the effects of the injury by reducing pain and swelling, to educate the athlete about the nature of the injury and how to treat it, and to maintain the health and fitness of the rest of the body. The treatment for an acute injury is captured in the acronym PRICE:

- **Protect** the injury from further damage (taping, splints, braces)
- **Rest** the area
- **Ice**
- **Compression** of the injury
- **Elevation** immediately
Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the inflammatory response and reduce discomfort. These medications may be used immediately after the injury. When safely and appropriately managed, therapeutic use of physical modalities, including early cold and later heat, hydrotherapy, massage, electrical stimulation, iontophoresis, and ultrasound, can enhance recovery in the acute phase.

The recovery phase can be lengthy and requires athlete participation. Physical therapy prescription is a common treatment modality. Initial treatment is focused on joint range of motion and flexibility. Range-of-motion exercises should follow a logical progression of starting with passive motion, then active assistive and finally active movement. Active range of motion is initiated once normal joint range has been reestablished. Flexibility exercises, particularly dynamic stretches, are sport-specific and aimed at reducing tightness of musculature. Strength training can begin early in this phase of rehabilitation. Initially only isometric exercises (static muscle contraction against stable resistance without movement of a joint or change in length of a muscle) are encouraged. As recovery progresses and flexibility increases, isotonic (change in length of a muscle without varying resistance) and isokinetic (change in length of a muscle against variable resistance without varying speed) exercises can be added to the program. These should be done at least three times per week.

As the athlete approaches near-normal strength and is pain-free, the final maintenance phase can be introduced. During this phase, the athlete continues to build strength and work on endurance. The biomechanics of sport-specific activity need to be analyzed and retraining incorporated into the exercise program. Generalized cardiovascular conditioning should continue during the entire rehabilitation treatment. Typically, return-to-play guidelines after an injury include the attainment of full joint range of motion, nearly full and symmetric strength, full speed, and nearly full sport-specific agility and skill.

Faccioni A: Dynamic warm-up routines for sports. Faccioni Speed and Conditioning Consultancy 2004 [web PDF].

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bacterial dermatoses</strong> (including impetigo, furuncles, cellulitis, folliculitis, and abscesses)</td>
</tr>
<tr>
<td>Athlete may participate when no new lesions for 48 h, no moist or draining lesions, and has completed oral antibiotics for at least 72 h</td>
</tr>
<tr>
<td><strong>Diarrhea, infectious</strong></td>
</tr>
<tr>
<td>May participate: No.</td>
</tr>
<tr>
<td>May increase risk of dehydration and heat illness. No participation is permitted unless symptoms are mild and athlete is fully hydrated.</td>
</tr>
<tr>
<td><strong>Fever</strong></td>
</tr>
<tr>
<td>May participate: No.</td>
</tr>
<tr>
<td>Cardiopulmonary effort increases with fever and maximum exercise capacity is reduced. Heat illness also more likely to occur.</td>
</tr>
<tr>
<td><strong>Hepatitis, infectious</strong></td>
</tr>
<tr>
<td>May participate: Qualified yes.</td>
</tr>
<tr>
<td>Minimal risk to others. May participate in all sports if health allows.</td>
</tr>
<tr>
<td>Use universal precautions when handling blood or bodily fluids.</td>
</tr>
<tr>
<td>Athlete should have skin lesions covered properly.</td>
</tr>
<tr>
<td><strong>Herpes gladiatorum</strong></td>
</tr>
<tr>
<td>Transmission occurs by skin-to-skin contact. Athlete may participate when free of systemic symptoms, has no new lesions for 72 h, and has been on oral antiviral treatment for 120 h. Any open wounds must be properly covered.</td>
</tr>
<tr>
<td><strong>Human immunodeficiency virus infection</strong></td>
</tr>
<tr>
<td>May participate: Yes.</td>
</tr>
<tr>
<td>Minimal risk to others. May participate in all sports if health allows.</td>
</tr>
<tr>
<td>Use universal precautions when handling blood or bodily fluids.</td>
</tr>
<tr>
<td>Athletes should have skin lesions covered properly with an occlusive dressing. They should also be instructed to report bleeding wounds.</td>
</tr>
<tr>
<td><strong>Infectious mononucleosis</strong></td>
</tr>
<tr>
<td>Splenomegaly is present in almost all cases and risk of splenic rupture is highest in the first 3 weeks of illness. Once clinical symptoms resolve, gradual return to activity 3 weeks after symptom onset is reasonable. Contact sports should be avoided until 4 weeks post illness onset.</td>
</tr>
<tr>
<td><strong>Methicillin-resistant Staphylococcus aureus (MRSA) skin infections</strong></td>
</tr>
<tr>
<td>Athletes with suspected MRSA should be cultured and treated accordingly with antibiotics. Abscesses should be treated with incision and drainage. Athlete may return to sport when no new lesions for 48 h, no moist or draining lesions, and has been on oral antibiotics for at least 72 h.</td>
</tr>
<tr>
<td><strong>Molluscum contagiosum</strong></td>
</tr>
<tr>
<td>Require appropriate covering for participation.</td>
</tr>
<tr>
<td><strong>Streptococcal pharyngitis</strong></td>
</tr>
<tr>
<td>Athletes can resume activity once treatment has been provided for 24 h and they are afebrile.</td>
</tr>
<tr>
<td><strong>Upper respiratory infections</strong></td>
</tr>
<tr>
<td>May participate in sports if tolerated. Exceptions include those with fever, severe bacterial infections (sinusitis, pharyngitis), or those with symptoms below the neck. “Neck check” guide allows athletes to return to sports if symptoms are “above the neck” (e.g., rhinorrhea, congestion, or sore throat). If symptoms “below the neck” (e.g., fever or malaise) are present, the athlete should not participate.</td>
</tr>
<tr>
<td><strong>Warts</strong></td>
</tr>
<tr>
<td>Require appropriate covering for participation.</td>
</tr>
</tbody>
</table>
Active skin infections are common reasons to exclude athletes from sports participation. Herpes simplex, staphylococcal, molluscum, and tinea skin infections are commonly seen and most easily transmitted in sports with skin-to-skin contact and shared equipment usage. In particular, athletes are at high risk for infection with community-associated methicillin-resistant *Staphylococcus aureus* (CA-MRSA). Recent reports of outbreaks in sports teams have prompted many sports organizations to adopt specific protocols to deal with the problem. Transmission is primarily by skin-to-skin contact and clinical manifestations are most commonly skin infections and soft tissue abscesses. Early treatment of CA-MRSA soft tissue infections by incision and drainage followed by appropriate antibiotic treatment is important to prevent significant morbidity and possible mortality.


### HEAD & NECK INJURIES

Head and neck injuries occur most commonly in contact and individual sports. The sports with the highest incidence of brain injury are football, bicycling, baseball, and horseback riding. Concussions most commonly occur in football, ice hockey, rugby, boxing, basketball, lacrosse, soccer, bicycling, judo, and baseball/softball. The optimal treatment of these injuries has not been established and multiple guidelines have been developed. As a general rule, treatment of head and neck injuries in young children should be more conservative because of their developing central nervous systems.

1. Concussion

Concussion is a complex process that occurs when a direct blow to the body or head translates forces into the brain. Even in the presence of neurologic symptoms, concussions are usually not associated with structural changes in brain tissue detectable by standard imaging studies. Instead, they may cause metabolic and vascular changes in cerebral tissues. Consequently, there are complex alterations in physiologic function, such as catecholamine surges and failure of cerebral blood flow autoregulation, leading to the common symptoms we ascribe to this type of injury. Symptoms may appear and evolve over the first few hours after injury. Confusion, headache, visual disturbance, post-traumatic amnesia, and balance problems are common symptoms. It is important to note that concussion does not have to involve loss of consciousness. Concussion should be suspected in any athlete with somatic, cognitive, or behavioral complaints as listed in Table 27–4. Observers may notice physical signs, behavioral changes, or cognitive impairment in the injured athlete. Diagnosis may be aided by the use of the Sport Concussion Assessment Tool v3 (SCAT3) and the Child-SCAT3 (ages 5–12 years), which also provide standardized patient handouts (available at [http://bjsm.bmj.com/content/47/5/259.full.pdf](http://bjsm.bmj.com/content/47/5/259.full.pdf) and [http://bjsm.bmj.com/content/47/5/263.full.pdf](http://bjsm.bmj.com/content/47/5/263.full.pdf)). Regardless of level of participation or elite status, any athlete suspected of sustaining a concussion in a practice or competition should be immediately removed from play. The athlete should not be left alone in the initial hours after the injury in order to monitor for deterioration. An athlete diagnosed with a concussion should not be permitted to return to sport on the day of injury. In the acute setting, computed tomography (CT) is rarely indicated beyond the first 24 hours after injury. CT should be considered during initial evaluation if the patient displays deteriorating or altered mental status, prolonged loss of consciousness, repeated vomiting, severe headache, signs of skull fracture, or focal neurologic deficit or if he/she experienced a severe mechanism of injury.

Symptoms associated with concussions usually follow a predictable pattern and most resolve in 7–10 days. Children and adolescents tend to have a longer recovery interval.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
</tr>
<tr>
<td>Amnesia: classically anterograde</td>
</tr>
<tr>
<td>Balance problems</td>
</tr>
<tr>
<td>Vomiting</td>
</tr>
<tr>
<td>Light sensitivity</td>
</tr>
<tr>
<td>Ringing in the ears</td>
</tr>
<tr>
<td>Sleep abnormalities</td>
</tr>
<tr>
<td>Concentration difficulties</td>
</tr>
<tr>
<td>Behavioral changes</td>
</tr>
</tbody>
</table>

---
Acute management of concussion includes an early period of physical and cognitive rest (1–2 days), the exact duration of which is currently unknown. Return to school and light noncontact physical activity may be reasonable early during the recovery period if symptoms are not exacerbated. In young athletes, interventions may include modified school attendance, decreased school work, reduction in technological stimulation (television, internet, computer games, cellular phone use), proper nutrition and hydration, and adequate rest and sleep. Before athletes are allowed to return to sports participation, symptoms should be resolved both at rest and during exercise without the aid of medication and a graduated return-to-play protocol should be completed. Return to play is a six-step progression with each step lasting 24 hours: (1) when asymptomatic at rest for 24 hours, progress to (2) light aerobic exercise, followed by (3) sport-specific exercise, then begin (4) noncontact drills, followed by (5) contact practice drills, and finally (6) release to game play. If any symptoms recur during any of the steps, the athlete should not move to the next stage and should rest for 24 hours, thereafter restarting at the previous step where the athlete was asymptomatic. Commonly, it is recommended that an athlete follow up with a medical provider for clearance for return to contact or collision sports, and many states have passed legislation requiring medical assessment of concussed youth and medical clearance for return to play. Current expectations are that children should return to school prior to return to sport. In general, conservative return to play guidelines should be used in children.

Among commonly used assessment tools are the SCAT3, Standardized Assessment of Concussion (SAC), Balance Error Scoring System (BESS), computerized testing, and symptoms checklist (see Table 27–4). Neuropsychological testing may be helpful in assessing the cognitive function of concussed athletes, but it should not be used as the only source of clinical decision making. It may assist in management decisions for athletes with complex cases or severe or prolonged symptoms and is best performed and interpreted by a qualified neuropsychologist. Preseason testing may provide a comparison to help practitioners assess acute concussive status, but there is no solid evidence currently to support the use of baseline neuropsychological testing.

The long-term effects of concussions or contact/collision sports have yet to be established; specifically, a cause-and-effect relationship has not been proven between concussions and chronic traumatic encephalopathy (CTE). Second impact syndrome is a controversial diagnosis primarily based on anecdotal reports. There is no universal agreement on the existence of this reported phenomenon. Advocates endorse a rare but potentially deadly complication of repeated head injury, causing loss of vascular auto-regulation, catecholamine surge, increased cerebral blood pressure, and subsequent malignant cerebral edema without intracranial hematoma. Consequences include massive brain swelling and herniation leading to seizure, coma, and, possibly, death. Opponents suggest the phenomenon is actually the well-established condition of diffuse cerebral swelling, a known complication of head injury, particularly in younger individuals. The decision to retire an athlete from high risk or contact/collision sport is a sensitive and challenging one. There is currently little evidence to support a standardized approach to retirement decisions. However, considerations should include total number of concussions; increasing frequency; occurrence with serially less force; and prolonged, more severe, or permanent symptoms/signs.

2. Atlantoaxial Instability

Atlantoaxial instability is common in children with Down syndrome because of hypotonia and ligamentous laxity, especially including the annular ligament of C1. Consequently, this condition causes increased mobility at C1 and C2. Most cases are asymptomatic. Lateral cervical neck films in flexion, extension, and neutral position evaluate the atlantodens interval (ADI). ADI is normally less than 2.5 mm, but up to 4.5 mm is acceptable in this population. Children with an ADI greater than 4.5 mm should be restricted from contact and collision activities, as well as any sport requiring excessive neck flexion or extension.

3. Burners or Stingers

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Symptoms appear on the same side as an injury to the neck and shoulder.
- Burning pain or numbness in the shoulder and arm.
- Weakness may be present.

Burners or stingers are common injuries in contact sports, especially football. The two terms are used interchangeably to describe transient unilateral pain and paresthesias in the upper extremity. These cervical radiculopathies or brachial plexopathies typically occur when the head is laterally bent and the shoulder depressed, causing exacerbation of a degenerative cervical disk or stenosis, a compressive injury to a cervical nerve root on the symptomatic upper extremity, or a traction injury to the brachial plexus of the ipsilateral shoulder. Symptoms include immediate burning pain and paresthesias down one arm generally lasting only minutes. Unilateral weakness in the muscles of the upper trunk—supraspinatus, deltoid, and biceps—also tends to resolve quickly, but can persist for weeks. The most important part of the workup is a thorough neurologic assessment to differentiate this injury from a more serious brain or cervical spine injury. The key distinguishing feature of the stinger is its unilateral nature. If symptoms persist or include bilateral complaints, headache, change in mental status, or severe neck pain, a diagnostic evaluation should include a careful neurological examination and possibly cervical spine radiographs including flexion/extension views, magnetic resonance imaging (MRI) scans, and electromyography (EMG).

**SPINE INJURIES**

As children have become more competitive in sports, spine injuries have become more common. Sports with a fairly high incidence of back injuries include golf, gymnastics, football, dance, wrestling, and weightlifting. Back pain lasting more than 2 weeks indicates a possible structural problem that should be investigated.

Acute injury to the spine often results from an axial load injury. Patients present with focal tenderness of the thoracic or thoracolumbar spine. Evaluation includes plain radiography that may demonstrate anterior wedging of the thoracic vertebra, representing a compression fracture. When significant spinal tenderness or any neurologic abnormalities are present, radiographs are often followed by CT or MRI. Treatment of minor compression fractures includes pain control, bracing, rest from high-risk sports, and physical therapy. With appropriate rehabilitation, athletes can usually return to contact activity within 8 weeks.

**1. Spondylolysis**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Injury to the pars interarticularis.
- Usually presents as lower back pain with extension.

Spondylolysis is an injury to the pars interarticularis of the vertebral complex, resulting in a stress reaction or an acquired stress fracture. The pars interarticularis is the bony connection between the inferior and superior articulating facets. Injuries to the pars interarticularis, or pars defects for short, are present in 4%–6% of the population. In adolescent athletes, however, the incidence of spondylolysis in those presenting with lower back pain is close to 50%. As such, it should be high on the differential when evaluating lower back pain in this population. The incidence of pars defects in athletes such as gymnasts, dancers, divers, and wrestlers is significantly increased because of the repetitive flexion/extension motions combined with rotation. Repetitive overload results in stress fractures. Spondylolysis occurs at L5 in 85% of cases. The athlete presents with midline low back pain...
that is aggravated by extension, such as arching the back in gymnastics. There may be palpable tenderness over the lower lumbar vertebrae, with pain on the single leg hyperextension test (Stork test). Tight hamstrings are another common physical finding. Evaluation includes anteroposterior (AP) and lateral radiographs of the lumbar spine. Although oblique radiographic views of the lumbar spine are helpful to look for the so-called Scottie dog sign, they are falling out of favor because they do not significantly improve diagnostic accuracy and increase radiation exposure. Single photon emission computed tomography (SPECT) scan, CT scan, and MRI can be useful to determine the presence of an active spondylolytic lesion. Bone/SPECT scan shows stress reaction or pars injury before other radiographic changes. CT provides excellent definition of bony anatomy and can document healing. MRI is an alternative to detect pars interarticularis problems. With the use of high magnetic field strength and fat saturation techniques, high-resolution MRI images can now show subtle bone marrow edema of early stress injuries and are becoming popular, particularly for pediatric patients because of the lack of radiation exposure. There is currently no gold standard for the treatment of spondylolysis. The goal is to alleviate painful symptoms and allow the athlete a safe return to play. Management includes refraining from hyperextension and high-impact sporting activities, stretching of the hamstrings, and core and back stabilization exercises. Athletes can cross-train with low-impact activity and neutral or flexion-based physical therapy. Bracing is controversial. Outcome studies show similar results regarding return to sports and bony healing whether or not braces are worn. It is important to note also that clinical outcome does not necessarily correlate with healed pars fracture versus bony nonunions (when the fractured bone fails to heal). Satisfactory outcomes (asymptomatic patients and return to sports) can be achieved regardless of bony healing status. Typically, return to play is often delayed 8–12 weeks or longer based on clinical signs of healing. Most symptomatic spondylolysis improves with rest and activity modifications (with or without radiologic evidence of healing). Once asymptomatic, an athlete can usually return to sports without restrictions. Surgery is reserved for refractory cases that fail conservative measures.

2. Spondylolisthesis

- Bilateral pars interarticularis injury resulting in forward slippage of one vertebra over the one below it.
- Usually presents as back pain with extension.
- Hyperlordosis, or possible step-off of lumbar spine.

When a bilateral pars stress fracture (spondylolysis) occurs, slippage of one vertebra over another causes a spondylolisthesis. Patients present with hyperlordosis, kyphosis, pain with hyperextension, and, in severe cases, a palpable step-off. A standing lateral radiograph is used to make the diagnosis and to monitor for any progression of slippage. These injuries are graded from 1 to 4 based on the percentage of slippage: grade 1 (0%–24%), grade 2 (25%–49%), grade 3 (50%–74%), and grade 4 (75%–100%).

Treatment is often symptom based. Asymptomatic athletes with less than 25% slippage often have no restrictions and are followed on a routine basis for radiographic assessment. Management of symptomatic spondylolisthesis requires a period of activity modifications, particularly protection from spine extension and impact activities, coupled with a regimen of stretching of the hamstrings and core and back stabilization exercises. Bracing may also be considered. Surgical intervention is considered for slippage greater than 50%, progressive spondylolisthesis, or intractable pain despite nonoperative treatment. If surgery is required, the athlete must understand that he or she cannot return to activities for at least 1 year and may not be able return to previous sporting activities.

3. Disk Herniation

- Back pain worse with flexion and sitting.
- Radiculopathy can be present.
- Positive straight leg raise.

Discogenic back pain accounts for a small percentage of back injuries in children. These injuries are almost unheard of in preadolescence. Back pain can originate from disk bulging, disk herniation, or disk degeneration. Most injuries occur at L4–L5 and L5–S1 vertebrae. Not all disk bulges found on MRI are symptomatic. In adolescents, most disk herniations are central rather than posterolateral. Risk factors include heavy lifting, excessive or repetitive axial loading of the spine, rapid increases in training, or trauma. Symptoms include back pain, which may be increased with activities such as bending, sitting, and coughing. Although not as common as in adults, radicular symptoms of pain down the leg can also occur and are often associated with large disk herniations. Evaluation includes physical and neurologic examinations, including straight leg testing, sensory testing, and checking reflexes. If symptoms persist, evaluation usually begins with radiographs and an MRI, which is the
imaging test of choice for diagnosing disc herniation. EMG may also be considered in the presence of radiculopathy.

Treatment usually is conservative as most disk herniations, even if large, improve spontaneously. The athlete can rest the back for a short period, with avoidance of prolonged sitting, jumping, or hyperextension and hyperflexion of the spine, as these activities may increase pressure on the disk, leading to aggravation of symptoms. After a short period of rest, a structured physical therapy program should begin, focusing on core and pelvic stabilization, peripelvic flexibility and sports or activity specific conditioning. If symptoms persist, a short course of oral steroids may be indicated. Surgery is recommended for patients who fail conservative therapy, have significant or progressive radiculopathy, or who have progressive neurologic deficit.


SHOULDER INJURIES

Shoulder injury is usually a result of acute trauma or chronic overuse. Acute injuries around the shoulder include contusions, fractures, sprains (or separations), and dislocations. The age of the patient affects the injury pattern, as younger patients are more likely to sustain fractures instead of sprains. Sprains (ligaments) and strains (muscle and tendon) are generally defined as low grade soft tissue injuries that do not result in functional compromise of a structure.

1. Fracture of the Clavicle

- Injury by fall on to shoulder or outstretched hand.
- Severe pain in the shoulder.
- Deformity over clavicle.

Clavicular fractures occur from a fall or direct trauma to the shoulder. Focal swelling, deformity, and tenderness are present over the clavicle. The diagnosis is made by radiographs of the clavicle; the fractures are most common in the middle third of the bone.

Initial treatment is focused on pain control and protection with a sling and swathe. Early range of motion is permitted based on pain level. Progressive rehabilitation is important. Athletes cannot return to contact sports for 8–10 weeks. Absolute surgical indications for acute clavicular fractures include open fractures or neurovascular compromise. Fracture nonunion is unusual in young patients. However, there is recent evidence in the adult population recommending surgical stabilization for fractures that are very displaced or shortened. The role of acute surgical stabilization in the pediatric and adolescent population in regards to shortening is still being defined. Patients with recurrent fractures or nonunion typically will also require surgical fixation.

2. Acromioclavicular Separation

- Injury with fall on shoulder.
- Severe pain in the shoulder.
- Deformity over acromioclavicular joint.

A fall on the point of the shoulder is the most common cause of acromioclavicular separation. Tearing of the acromioclavicular joint capsule and possibly the coracoclavicular ligaments occurs. The injury is classified by the extent of the injuries to these ligaments. Athletes present with focal soft tissue swelling and tenderness over the acromioclavicular joint. More severe injuries are associated with deformity. Patients have a positive cross-arm test, in which pain is localized to the acromioclavicular joint. Radiographs are necessary in this setting to assess the degree of injury and to evaluate for a coexisting fracture or growth plate injury.

Treatment is supportive, with rest and immobilization in a sling followed by progressive rehabilitation. Return to activity can be accomplished in 1–6 weeks depending on the severity of the injury and the persistence of symptoms. Full range of motion and full strength must be achieved prior to being cleared to return to sports.
3. Fracture of the Humerus

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Injury with significant fall on outstretched arm.
- Severe pain in proximal humerus.
- Swelling and/or deformity over proximal humerus.

Fractures of the humerus occur from a severe blow or fall on the shoulder. Pain and swelling are localized to the proximal humeral region. The fractures can include the physes or may be extraphyseal. A significant amount of displacement and angulation can be tolerated in this location because of the young athlete’s potential for remodeling and because of the intrinsic range of motion of the shoulder. Careful assessment of the brachial plexus and radial nerves are needed to rule out associated nerve damage.

Treatment consists of a sling for 4–6 weeks followed by progressive rehabilitation.

4. Acute Traumatic Anterior Shoulder Instability (Anterior Shoulder Dislocation/Subluxation)

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Injury with an abducted and externally rotated arm.
- Severe pain in the shoulder.
- Squared-off shoulder on examination.
- Reduced range of motion of the shoulder.

Acute traumatic anterior shoulder instability occurs when significant force is applied to the abducted and externally rotated shoulder. Most often, the humeral head is dislocated in an anterior and inferior direction. The patient has severe pain and a mechanical block to motion. Some patients will spontaneously reduce within seconds or minutes of their injury. Most patients, however, require immediate closed reduction on the field or in the emergency room. Radiographs are helpful to confirm the position of the humeral head as well as to evaluate for coexisting fracture. MRI may be required for accurate visualization of fractures and cartilaginous injury.

Optimal follow-up treatment for glenohumeral dislocation in young athletes has not been established. Initially, the shoulder is immobilized for comfort. Range-of-motion exercises and progressive rehabilitation are initiated. Prolonged immobilization does not decrease the risk of recurrence, and is discouraged. Because of the high risk of recurrence, options for treatment should be individualized, with consideration given to both nonoperative and surgical management.

5. Rotator Cuff Injury

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Injury can be acute or chronic.
- Pain is described as diffuse or anterior and lateral.
- Overhead activities exacerbate the pain.

Shoulder injuries are often a consequence of repetitive overuse and tissue failure. Rotator cuff tendonitis and bursitis are the most commonly observed rotator cuff injuries in youth sports. Rotator cuff tears in children and adolescents are exceedingly rare. These overuse injuries typically occur in sports requiring repetitive overhead motions. Muscle imbalances and injury can cause the position of the humeral head to be abnormal, which may cause entrapment of the supraspinatus tendon under the acromial arch. Patients with nontraumatic shoulder instability due to ligamentous and capsular laxity (also known as multidirectional instability) are prone to overuse rotator cuff injury. These athletes present with chronic pain in the anterior and lateral shoulder, which is increased with overhead activities. Diagnostic workup includes plain radiographs and an outlet view to look for anatomic variability. The rehabilitation of this injury is geared toward reduction of inflammation, improved flexibility, and core stabilization and strengthening of the scapular stabilizers and rotator cuff muscles. A biomechanics evaluation can assist athletes in the recovery process by building sport-specific skills and eliminating substitution patterns. Surgery is rarely indicated.

6. Little League Shoulder

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Participation in a throwing sport.
- Pain with throwing.
- Pain in the lateral aspect of the humerus.
- Swelling around the shoulder.
- Widening of the proximal humeral physis on radiographs.
Proximal humeral epiphysitis, or “Little League shoulder,” is an overuse injury that occurs in children aged 11–14 years who play overhead sports such as baseball. The patient presents with activity-related pain in the lateral aspect of the proximal humerus. Examination often shows tenderness over the proximal humerus. Absence of findings on office examination does not preclude this diagnosis. The hallmark feature is pain with throwing. Radiographs show widening, sclerosis, and irregularity of the proximal humeral physis. Comparison views are often helpful when considering this diagnosis.

Treatment consists of rest from throwing or other aggravating activity. Physical therapy is initiated during the rest period. Return to play can only be considered after a period of rest has significantly decreased the pain and the athlete has proceeded through a progressive throwing program. Healing can take several months. Signs of radiographic healing may lag behind the athlete’s clinical progress and normal radiographs are not necessarily required to return an athlete to play. Permanent sequelae such as fracture, growth arrest, or deformity is extremely rare but can occur in chronic cases that are not treated appropriately.


ELBOW INJURIES

Injuries in the elbow are quite common and have both chronic and acute etiologies. They often occur in athletes involved in throwing or overhead sports. Although acute injuries to the elbow are common, chronic overuse injuries are becoming more and more prevalent in young athletes. Risk factors leading to overuse elbow injury include single sport specialization, year-round participation, longer competitive seasons, insufficient rest, and poor biomechanics. The term Little League elbow is used loosely to encompass a variety of causes of elbow pain in young throwing athletes. These injuries include medial epicondylitis, apophysitis, medial epicondyle avulsion fracture, and osteochondritis dissecans (OCD) of the capitellum. It is intended, however, to refer to medial epicondyle apophysitis, an overuse elbow injury resulting from repetitive valgus stress from overhead throwing.

When the elbow is evaluated, it is helpful to divide the examination into specific anatomic areas, discussed as follows.

1. Medial Epicondyle Apophysitis (Little League Elbow)

   Little League elbow is a traction injury to the medial epicondylar physis, which develops in young overhead throwing athletes, particularly baseball pitchers, between the ages of 9–12 years. The biomechanical forces generated around the elbow during throwing, namely repetitive valgus stress, can result in shearing, inflammation, traction, and abnormal bone development. The symptoms are primarily swelling, medial elbow pain, performance difficulties, and weakness. The pain localizes to the medial epicondyle, which may be tender to palpation, and worsened with valgus stress. Wrist flexion and forearm pronation may increase symptoms. The physician should inquire about the exposure to throwing, including pitch counts, the number of practices and games, and the duration of the season. Workup includes elbow radiographs, with comparison films of the unaffected side, to look for widening of the apophysis. Rarely, MRI is used to confirm the diagnosis.

   Treatment of the injury includes complete rest from throwing activities. It is not uncommon for a player to be restricted from throwing for up to 6 weeks. Competition can be resumed once the player is asymptomatic and has progressed through a graduated, age-appropriate throwing program. The key approach for this injury is prevention. Children should be properly conditioned and coached in correct throwing biomechanics. Guidelines for Little League pitching limits in youth baseball have been developed and are outlined in Table 27–5.

2. Panner Disease

   Little League elbow is an overuse injury that occurs in children aged 11–14 years who play overhead sports such as baseball. The patient presents with activity-related pain in the lateral aspect of the proximal humerus. Examination often shows tenderness over the proximal humerus. Absence of findings on office examination does not preclude this diagnosis. The hallmark feature is pain with throwing. Radiographs show widening, sclerosis, and irregularity of the proximal humeral physis. Comparison views are often helpful when considering this diagnosis.

   Treatment consists of rest from throwing or other aggravating activity. Physical therapy is initiated during the rest period. Return to play can only be considered after a period of rest has significantly decreased the pain and the athlete has proceeded through a progressive throwing program. Healing can take several months. Signs of radiographic healing may lag behind the athlete’s clinical progress and normal radiographs are not necessarily required to return an athlete to play. Permanent sequelae such as fracture, growth arrest, or deformity is extremely rare but can occur in chronic cases that are not treated appropriately.


ELBOW INJURIES

Injuries in the elbow are quite common and have both chronic and acute etiologies. They often occur in athletes involved in throwing or overhead sports. Although acute injuries to the elbow are common, chronic overuse injuries are becoming more and more prevalent in young athletes. Risk factors leading to overuse elbow injury include single sport specialization, year-round participation, longer competitive seasons, insufficient rest, and poor biomechanics. The term Little League elbow is used loosely to encompass a variety of causes of elbow pain in young throwing athletes. These injuries include medial epicondylitis, apophysitis, medial epicondyle avulsion fracture, and osteochondritis dissecans (OCD) of the capitellum. It is intended, however, to refer to medial epicondyle apophysitis, an overuse elbow injury resulting from repetitive valgus stress from overhead throwing.

When the elbow is evaluated, it is helpful to divide the examination into specific anatomic areas, discussed as follows.

1. Medial Epicondyle Apophysitis (Little League Elbow)

   Little League elbow is a traction injury to the medial epicondylar physis, which develops in young overhead throwing athletes, particularly baseball pitchers, between the ages of 9–12 years. The biomechanical forces generated around the elbow during throwing, namely repetitive valgus stress, can result in shearing, inflammation, traction, and abnormal bone development. The symptoms are primarily swelling, medial elbow pain, performance difficulties, and weakness. The pain localizes to the medial epicondyle, which may be tender to palpation, and worsened with valgus stress. Wrist flexion and forearm pronation may increase symptoms. The physician should inquire about the exposure to throwing, including pitch counts, the number of practices and games, and the duration of the season. Workup includes elbow radiographs, with comparison films of the unaffected side, to look for widening of the apophysis. Rarely, MRI is used to confirm the diagnosis.

   Treatment of the injury includes complete rest from throwing activities. It is not uncommon for a player to be restricted from throwing for up to 6 weeks. Competition can be resumed once the player is asymptomatic and has progressed through a graduated, age-appropriate throwing program. The key approach for this injury is prevention. Children should be properly conditioned and coached in correct throwing biomechanics. Guidelines for Little League pitching limits in youth baseball have been developed and are outlined in Table 27–5.

2. Panner Disease

   Little League elbow is an overuse injury that occurs in children aged 11–14 years who play overhead sports such as baseball. The patient presents with activity-related pain in the lateral aspect of the proximal humerus. Examination often shows tenderness over the proximal humerus. Absence of findings on office examination does not preclude this diagnosis. The hallmark feature is pain with throwing. Radiographs show widening, sclerosis, and irregularity of the proximal humeral physis. Comparison views are often helpful when considering this diagnosis.

   Treatment consists of rest from throwing or other aggravating activity. Physical therapy is initiated during the rest period. Return to play can only be considered after a period of rest has significantly decreased the pain and the athlete has proceeded through a progressive throwing program. Healing can take several months. Signs of radiographic healing may lag behind the athlete’s clinical progress and normal radiographs are not necessarily required to return an athlete to play. Permanent sequelae such as fracture, growth arrest, or deformity is extremely rare but can occur in chronic cases that are not treated appropriately.

Panner disease refers to developmental osteochondrosis of the capitellum that results from overuse injury. The lesion involves disordered ossification of the capitellum, which is the lower end of the humerus that articulates with the radius. This condition occurs in children aged 5–12 years who play sports that involve overhead throwing and in gymnasts. The repetitive lateral compressive forces from loading the elbow in these sports compromises the blood supply to the growing epiphysis, leading to degeneration of the ossification center, or osteochondrosis. The child may have dull aching in the lateral elbow that worsens with throwing. Swelling and reduced elbow extension usually are present. Radiocapitellar compression test will also elicit pain—with elbow fully extended, arm is actively pronated and supinated. Radiographs show an abnormal, flattened capitellum, with fragmentation and areas of sclerosis. This should be distinguished from OCD of the capitellum, which typically occur in older children (see as follows). Treatment is conservative, using rest, ice, and splinting. Avoid activities that load the elbow for 3–6 months. The child can return to play once symptoms resolve, and there is evidence of healing on follow-up radiographs. The natural history of this condition is one of complete resolution of symptoms and, ultimately, normal ossification of the capitellum.

### 3. Ulnar Collateral Ligament Tear

#### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Sudden forceful tensile stress on ligament from a fall or from valgus stress to elbow during overhead throw.
- Feeling a pop or sensation of elbow giving out.
- Medial elbow pain.
- Tenderness distal to medial epicondyle.

Once the medial epicondylar physis closes in a skeletally mature athlete, valgus forces are then transmitted to the ulnar collateral ligament, resulting in a sprain or tear. Patients present with medial elbow pain and are often unable to fully extend the elbow. Examination reveals tenderness just distal to the medial epicondyle, and there may be instability with valgus stressing. Treatment is conservative, including rest, ice, and physical therapy directed at range of motion and strengthening. Surgery may be suggested for those with persistent pain or instability and who desire to continue participating in overhead sports.

### 4. Osteochondritis Dissecans

#### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Participation in a throwing sport.
- Pain over the lateral elbow, especially with pitching.
- Tenderness over radiocapitellar joint.
- Elbow flexion contracture.

Lateral elbow pain in a slightly older throwing athlete, usually aged 13–15 years, can be secondary to osteochondritis dissecans (OCD), which is a more worrisome diagnosis than Panner disease. Unlike Panner disease, which is self-limiting, OCD lesions can lead to permanent destruction of the bone. It is an injury to the subchondral bone and its overlying articular cartilage. Although it can involve different sites of the elbow, including the olecranon, radial head, or trochlea, it most commonly affects the capitellum. Repetitive valgus compressive forces can lead to avascular necrosis of the capitellum, which can ultimately result in the formation of loose bodies in the joint. The athlete presents with lateral pain, swelling, lack of full extension, and occasionally locking. Radiographs show lucency of the capitellum with surrounding sclerotic bone. MRI can more fully delineate the lesion. The prognosis for high-grade lesions is guarded.

A child with OCD should be seen by either a sports medicine specialist or an orthopedic surgeon with expertise in upper extremity injuries. Treatment is based on classification and can be either conservative or surgical. For early or stable OCD lesions, particularly in skeletally immature individuals, management includes throwing activity restrictions and range of motion exercises. More advanced lesions or those with persistent symptoms despite conservative treatment may require surgical intervention.
5. Lateral Epicondylitis

Lateral epicondylitis (also known as tennis elbow) is common in skeletally mature athletes participating in racquet sports. It is a tendinopathy of the extensor muscles in the forearm, which inserts onto the lateral epicondyle causing lateral elbow pain. The pain is increased by wrist extension. Initial treatment is aimed at inflammation control. Stretching and strengthening of forearm muscles are the primary interventions during the subsequent phases. Stroke mechanics may need to be altered and a forearm brace used to decrease the forces in the extensor muscles.

6. Posterior Elbow Pain

Posterior elbow pain is uncommon. Etiologies include dislocations, fractures, triceps avulsions, olecranon apophysitis, and olecranon bursitis.

Harris SS, Anderson SJ: Care of the Young Athlete, 2nd ed. American Academy of Pediatrics; 2010.

HAND & WRIST INJURIES

The hand is the most common area of injury in children and accounts for a large proportion of emergency room visits. All hand and wrist injuries have the potential for serious long-term disability and deserve thorough evaluation. A thorough neurovascular examination as well as evaluation of rotational or angular deformity or malalignment is critical. Examples of complications include loss of range of motion, dysfunction, deformity, limb length discrepancy, and arthritis.

1. Distal Phalanx Injury

Tuft injury requires splinting for 3–6 weeks or until the patient is pain-free. If there is significant displacement, a surgical K-wire can be used for reduction. Nail bed injury often requires nail bed suturing, splinting, and drainage of subungual hematomas. Nail avulsions should be replaced into the nail fold, and if not possible, a substitute material should be interposed into the nail bed as a stent. Patients with nail bed injuries should be advised that nail regrowth may appear irregular or may not occur at all.

2. Distal Interphalangeal Injury

Mallet finger or extensor tendon avulsion occurs more commonly in ball-handling sports. The mechanism of injury is an axial load or forced flexion against an actively extending finger, causing avulsion fracture or rupture of the extensor digitorum tendon. Athletes present with a flexion contracture at the distal interphalangeal (DIP) joint and inability to actively extend the distal phalanx. Referral to an orthopedic surgeon is necessary. Conservative treatment consists of splinting in extension for 4 weeks for fractures and 6–8 weeks for tendon rupture. Surgery may be required if the initial fracture involves greater than 30% of the joint space or poor healing with loss of function occurs.

Jersey finger, or flexor tendon avulsion, occurs in contact sports, particularly American football. The mechanism of injury is forced extension against an actively flexed finger. The fourth (“ring”) finger is the most commonly injured digit. Athletes present with tenderness, swelling, and inability to flex at the DIP. The examiner can test the function of the flexor tendon by holding the proximal interphalangeal joint in extension while having the injured athlete attempt flexion at the DIP joint. The injured finger should be splinted in a comfortable position and immediately referred to an orthopedic surgeon, as definitive treatment is often surgical.

3. Thumb Injury

Gamekeeper’s thumb is an injury to the ulnar collateral ligament from forced abduction of the thumb metacarpophalangeal (MCP) joint. It is a common skiing injury to those who fall while holding on to their ski poles. Patients will complain of pain over the medial aspect of the MCP joint and pain with apposition or pinching. If a radiograph shows an avulsed fragment that is displaced less than 2 mm, a thumb spica cast can be used. If there is no fragment, less than 35 degrees of lateral joint space opening, or less than 15 degrees difference in joint space opening compared to the uninjured thumb, a spica cast for 4–6 weeks is indicated. Surgery is required for more serious injuries.

4. Hand Fractures

All finger fractures should be assessed for growth plate involvement, rotation, angulation, and displacement. If stable and not displaced, these fractures can be splinted for 3–4 weeks and buddy-taped for immediate return to sports. However, spiral
or oblique fractures of the middle phalanx, intra-articular fractures, and severely angulated physeal fractures are considered unstable and should be referred to an orthopedic surgeon.

**Boxer’s fracture** is a neck fracture of the fourth or fifth metacarpal, typically caused by poor punching technique or punching into a hard surface. Less than 40 degrees of angulation in the fourth or fifth metacarpals is acceptable. Assessment of displacement and rotational deformity is critical, as displaced or rotated fractures require reduction and fixation. Prior to definitive treatment with hand-based casting for 4 weeks, boxer’s fractures may be temporarily immobilized with an ulnar gutter splint with the MCP joints flexed to 70 degrees.

### 5. Wrist Injury

Most swollen wrists without evidence of gross deformity or instability can be splinted temporarily for several days. Radial and ulnar fractures, which are fairly common in children, must be ruled out. Particular attention should be paid to the growth plates and the scaphoid bone. Typically, distal radius and ulna fractures require casting for 3–6 weeks in either a short or long arm cast, depending on the involvement of one or both bones and the severity of displacement or angulation. Torus, or buckle, fractures may be placed in a rigid wrist brace or short arm cast for 3–4 weeks. Scaphoid fractures are caused by a force applied to a hyperextended wrist, most commonly a fall onto an outstretched hand. Despite normal radiographs, if evidence of snuffbox tenderness and swelling is present, there is tenderness along the volar aspect of the scaphoid, or there is pain with radial wrist deviation or active wrist range of motion; the wrist must be further evaluated, either by MRI acutely or immobilized for 10 days and then reassessed both clinically and with follow-up radiographs. A nondisplaced scaphoid fracture requires at least 6 weeks of immobilization in a thumb spica cast. Nonunion can occur, particularly in fractures of the proximal pole of the scaphoid, related to the poor blood supply of this carpal bone. Displacement requires operative management. Gymnast’s wrist has chronic wrist pain due to repetitive overloading of the distal radial physis. Athletes complain of dorsal wrist pain, worsened with weight bearing on the affected upper extremity or active extension of the wrist. This overuse stress injury may cause long-term growth abnormalities or degenerative wrist joint changes, which may ultimately require surgical intervention. Athletes should be placed in a rigid wrist brace or short arm cast for 4 weeks and undergo a period of relative rest and activity modification.

---


---

**HIP INJURIES**

Because the pelvis and hip articulate with both the lower extremities and the spine, this area is rich in ligaments, muscle attachments, and nerves. Injuries in young children are rare, but sprains, strains, and avulsion fractures can occur. Additionally, athletes can be susceptible to overuse injury involving the hip.

### 1. Hip Avulsion Fractures

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Fractures at apophyseal areas.
- Pain with weight bearing.
- Focal pain over the site of injury.

Avulsion fractures around the hip in adolescents occur at apophyseal regions such as the ischial tuberosity, anterior superior iliac spine, anterior inferior iliac spine, and iliac crest. The mechanism of injury is a forceful, unbalanced muscle contraction that causes avulsion of the muscle tendon insertion. The athlete presents with a history of an acute traumatic incident; often a “pop” is felt and the athlete is immediately unable to bear weight. Range of motion of the hip is limited secondary to pain and focal tenderness is present over the apophysis.

Treatment is conservative. Surgical management is rarely required even in displaced fractures. The athlete is typically placed on crutches for the first couple of weeks for pain control and to normalize gait. After the acute phase, an athlete can progress to weight bearing as tolerated. The rehabilitation phase focuses on regaining motion, flexibility training and pelvic, and core strengthening. Progressive return to activity can often be accomplished in 4–6 weeks, if full range of motion, full strength, and sport-specific skills have been achieved.
2. Slipped Capital Femoral Epiphysis

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Pain in the hip or knee, or both.
- Loss of internal rotation of the hip.
- Radiographs in the frog-leg position show widening of the physis and epiphyseal slippage.

Slipped capital femoral epiphysis occurs in children aged 11–16 years. The physis is weakened during times of rapid growing and is susceptible to shearing failure either acutely secondary to a traumatic injury or insidiously from chronic overload. Patients complain of groin, thigh, or knee pain and often have a limp. Examination shows painful range of motion of the hip, limited internal rotation, and obligatory external rotation when the hip is flexed. Radiographs include AP and frog-leg lateral films, which demonstrate widening of the physis and epiphyseal slippage or displacement of the femoral head relative to the femoral neck.

Treatment consists of immediate non-weight-bearing and urgent referral to an orthopedic specialist for open reduction and internal fixation. Failure to identify this injury can result in permanent hip deformity and damage resulting in early arthritis. Rehabilitation is a component of the postsurgical treatment. Return to activity is progressive over months. (See also Chapter 26.)

3. Acetabular Labral Tears

Acetabular labral tears are an increasingly recognized cause of anterior hip and groin pain in athletes. The majority of hip labral tears occur as a result of some underlying hip disorder such as femoroacetabular impingement (FAI) or hip dysplasia. Because of the stress and range of motion requirements for most athletics, these injuries tend to present and be more symptomatic in the athletic population. Athletes with this injury typically do not report an acute traumatic event that precipitated their symptoms. Symptoms often develop insidiously rather than acutely. Athletes present with deep anterior hip or groin pain that worsens with activity and is resistant to treatment. Radiographic findings can be normal. An MRI arthrogram is used to demonstrate the tear. Treatment typically starts conservatively and requires rest. Ultimately, treatment is tailored to the athlete's particular needs and symptoms. Arthroscopy to repair the tear and address any underlying structural issue that caused the tear is often required.

4. Adductor Strain

An adductor strain or a groin pull is generally caused by forced abduction during running, falling, twisting, or tackling. Sports that require quick directional changes place athletes at risk for these types of injuries. The associated pain is in the adductor muscle. There is often pain with hip adduction or flexion and tenderness over the adductor tubercle. Treatment includes rest, ice, and protection—often with crutches, and strengthening of the muscle when it heals.

5. Hamstring Strain

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Mechanism is forced knee extension.
- Pain with tearing or popping sensation in the posterior leg.
- Pain with resisted knee extension.

Hamstring strain is a common injury in athletes. The majority of these injuries occur in the muscle belly and can be treated successfully with nonoperative management. The mechanism of injury is forced extension of the knee or directional changes. Typically, the athlete with a hamstring strain suddenly stops playing and grabs the back of the knee. There are three grades of injury. Examination reveals pain on palpation of the muscle and occasionally a defect. Pain also occurs with knee flexion against resistance.

Initial treatment is focused on minimizing swelling, bruising, and pain. The thigh should be iced and compression applied. In moderate and severe injuries, crutches may be needed for a short duration. The athlete can walk as soon as he or she can tolerate the activity. It is particularly important to stretch the hamstring because, as a two-joint muscle, it is more susceptible to injury than other types of muscle. Eccentric strengthening is an important component of rehabilitation.

6. Quadriceps Contusion

Quadriceps contusion is caused by a direct injury to the muscle that causes bruising, swelling, and pain. The amount of damage is directly related to the amount of force. The anterior and lateral thigh regions are most commonly injured, often in contact sports such as football and lacrosse.

Treatment is rest, ice, and protection for the first 24 hours. The knee should be kept in a fully flexed position. Two to 3 days after the injury, range-of-motion exercises may begin in both flexion and extension. Once 120 degrees of motion
has been established and movement does not cause pain, the athlete may return to competitive activity. If the muscle remains firm on examination after 2 weeks, radiographs of the thigh should be obtained to rule out myositis ossificans, an abnormal deposition of calcium in the muscle that may be induced by aggressive stretching of the muscle too early in the clinical course.

7. Hip Dislocation

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Usually produces posterior dislocation.
- Leg is flexed, adducted, and internally rotated.
- Hip pain is severe.
- This is an on-site emergency and must be treated quickly.

The hip is a very constrained joint and is inherently very stable. Therefore, hip dislocations are very rare and typically occur only in high energy or forceful injuries. Most hip dislocations occur in the posterior direction. Athletes with this injury typically have severe pain and any motion of the hip or leg is poorly tolerated. Classically, these athletes present with an acutely painful hip following a major impact and the hip is locked in flexion, adduction, and internal rotation. Hip dislocations in skeletally mature athletes are often associated with acetabular and femoral neck fractures. The preadolescent, skeletally immature competitor may have an isolated dislocation without fracture. Hip radiographs and advanced imaging such as a CT or MRI scan are needed to completely evaluate the injury.

This injury is an emergency. The athlete should be transported immediately to the nearest facility that has an orthopedic surgeon available. Severe bleeding, avascular necrosis, and nerve damage can result with delay in relocation. Most athletes can be relocated in a closed fashion. Once reduction has been established in an uncomplicated case, protected weight bearing on crutches for 6 weeks is recommended followed by another 6 weeks of range-of-motion and strengthening exercises. An athlete may return gradually to competition after 3 months, when strength and motion are normal.

Surgery can be necessary if there is an associated fracture, labral tear, loose body, or if a concentric reduction cannot be achieved in a closed fashion.

9. Iliotibial Band Syndrome

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Overuse running injury.
- Pain over lateral knee or hip.
- Positive Ober test.

Iliotibial band syndrome and associated trochanteric bursitis result when the bursa and IT band become inflamed because of repetitive friction from the underlying greater trochanter. This condition can cause pain when the hip is flexed as a result of reduced flexibility of the iliotibial band and gluteus medius tendons. The bursa is a structure that normally allows for improved motion by reducing friction but becomes pathologic in this condition. Movement is painful and may be limited. Iliotibial band syndrome is best evaluated in a side-lying position and pain is reproduced when the hip is actively flexed from a fully extended hip (Ober test).

Initial treatment is to alter the offending activity and then start a stretching program geared at the iliotibial band and hip abductors. Core and pelvic stabilization are also important. Ultrasound can be beneficial and corticosteroid injections may be used after conservative treatment has failed.

10. Femoral Neck Fractures

Femoral neck fractures (stress fractures) are generally the result of repetitive microtrauma. They commonly occur in running athletes who have increased their mileage. Athletes with this type of injury present with persistent pain in the groin and pain with internal and external rotation. Symptoms often are present with sports, but as the fracture progresses, symptoms often develop during activities of daily living. Athletes with a history of previous stress fracture, disordered eating, or any disorder of calcium metabolism and groin pain should alert the provider to the possibility of this diagnosis. Special attention should be given to the female athlete with triad of eating disorders, amenorrhea, or oligomenorrhea, and low bone density and the risk of stress fracture in this population.
KNEE INJURIES

Knee injuries are one of the most common sports-related problems. The knee is stabilized through a variety of ligaments, tendons, and the menisci. Knee injuries can be divided into two groups: those resulting from acute or chronic causes. Acute injuries occur during a well-defined traumatic incident. The mechanism of injury is an important historical feature, although many young patients have difficulty describing the details of the inciting event. The onset of rapid swelling after a traumatic event indicates the presence of a hemarthrosis and likely internal derangements such as fracture, rupture of the anterior cruciate ligament (ACL), meniscal tear, or patellar dislocation.

1. Anterior Knee Pain

The most common knee complaint is anterior knee pain. This complaint can have multiple etiologies but should always include hip pathology as a possible source. Patellofemoral dysfunction (defined as follows) is a common cause of anterior knee pain. The differential diagnosis of anterior knee pain is extensive and requires a thorough examination. The following are the most common knee diagnoses responsible for anterior knee pain.

A. Patellofemoral Overuse Syndrome

Patellofemoral overuse syndrome occurs during running and sports that involve repetitive stress in the lower extremity. The athlete presents with activity-related pain in the anterior knee. In young athletes, it is occasionally associated with swelling and crepitus of the knee joint.

Evaluation of these injuries is comprehensive and requires a “top-down” evaluation of the athlete’s leg from the hip to the foot. Most athletes with this condition, regardless of level or physical condition, typically have hip/core weakness that results in altered knee biomechanics. A comprehensive evaluation of hip alignment and rotation, muscle development, tightness in the hamstrings and iliotibial band, and foot mechanics is necessary to fully understand and treat the cause of this disorder. Most athletes with this complaint often have a multifactorial cause for their symptoms.

Treatment should be geared toward identifying the cause. Often, athletes are overtraining and need to modify current activities. Cross-training may help. Addressing hip and pelvic stability is now a mainstay of treatment for this disorder. Stretching and strengthening of the hamstrings and quadriceps are recommended. Use of braces providing proprioceptive feedback during competition is controversial.

B. Patellar Tendonitis ("Jumper’s Knee")

This overuse injury is caused by repetitive loading of the quadriceps during running or jumping. This diagnosis is common in jumping sports such as basketball and volleyball. Tenderness is located directly over the patellar tendon at its insertion site at the inferior pole of the patella.

C. Osgood-Schlatter Disease (Tibial Tubercle Apophysitis)

- Activity-related anterior knee pain in adolescents.
- Swelling and pain over tibial tubercle.
- Progressive fragmentation of tibial tubercle apophysis.

This condition is caused by the recurrent traction on the tibial tubercle apophysis (growth plate) that occurs in jumping and running sports. Fragmentation and microfractures of the tibial tubercle occur during its time of rapid growth. The condition occurs in the preteen and adolescent years and is most common in boys aged 12–15 years and girls aged 11–13 years. Pain is localized to the tibial tubercle and is aggravated by activities using eccentric quadriceps muscle movement. The pain can become so severe that routine activity must be curtailed. Radiographs typically demonstrate fragmentation or irregular ossification of the tibial tubercle.

Typically the condition resolves spontaneously as the athlete reaches skeletal maturity. In the interim, pain control using NSAIDs is indicated. Physical therapy and stretching the hamstrings and application of ice after workouts are helpful.
**D. Sinding-Larsen-Johansson Disease**  
*(Apophysitis of the Inferior Pole of the Patella)*

This condition involves a process similar to that in Osgood-Schlatter disease but occurs in younger athletes between ages 9 and 12 years. Traction from the patellar tendon on the inferior pole of the patella results in fragmentation of the inferior patella that is often obvious on a lateral knee radiograph. Treatment and prognosis is similar to Osgood-Schlatter disease.

### Treatment

The treatment of the above knee disorder is similar. As with many injuries, control of pain and inflammation is essential. This begins with relative rest from offending activity and application of ice. Alignment problems and mechanics across the anterior knee can be improved with an effective rehabilitation program that includes flexibility and strengthening. Quadriceps, pelvic, and core strengthening are all important components of this program. Orthotics, in theory, can have an impact on mechanics across the knee joint if they correct excessive pronation or supination.

Knee bracing is controversial and the major benefits are proprioceptive feedback and patellar tracking. Return to activity is often based on symptoms.

### 2. Posterior Knee Pain

Posterior knee pain often results from an injury to the gastrocnemius-soleus complex caused by overuse. Other causes include a Baker cyst (benign synovial fluid filled cyst in the posterior aspect of the knee), tibial stress fracture, or tendinitis of the hamstring. Treatment is rest, ice, and strengthening exercises after symptoms have improved. Intra-articular injuries such as meniscal tears and cartilage injuries can also cause posterior knee pain and should be considered if symptoms do not improve.

### 3. Meniscal Injuries

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Medial or lateral knee pain.
- Effusion and joint line tenderness.
- Feeling of locking or of the knee giving way.
- Positive McMurray test.

The meniscus of the knee cushions forces in the knee joint, increases nutrient supply to the cartilage, and stabilizes the knee. Most injuries are related to directional changes on a weight-bearing extremity. **Medial meniscus injuries** have a history of tibial rotation in a weight-bearing position. This injury happens frequently in ball-handling sports. **Lateral meniscus injuries** occur with tibial rotation with a flexed knee, as in exercises such as squatting or certain wrestling maneuvers. These injuries are uncommon in children younger than age 10 years.

### Clinical Findings

The athlete with such an injury has a history of knee pain, swelling, snapping, or locking and may report a feeling of the knee giving way. Physical examination often reveals effusion, joint line tenderness, and a positive McMurray hyperflexion-rotation test. The McMurray test is performed by having the examiner place his/her fingers across the joint lines while flexing the knee maximally. The knee is then rotated while it is brought out into extension. A positive test is evoked when the patient reports pain and the examiner feels an associated click or catch along the joint line. The diagnostic test of choice is MRI of the knee, although standard knee radiographs should be included. It is important to note that the increased vascularity of the meniscus in the pediatric population often causes increased signal changes on MRI that can be confused with a tear. Therefore, an MRI diagnosis of a meniscal tear in a young athlete needs to be correlated with the patient’s clinical symptoms and examination.

### Treatment

Treatments of these injuries is typically surgical because of the limited ability of the meniscus to heal without surgical intervention. Nonoperative management can be considered if the tear is minor and symptoms are minimal. Surgery can entail repairing the tear or removing the torn portion of the meniscus. Typically, every attempt is made to preserve the meniscal tissue in young athletes because of their favorable healing rates and the long-term concern over the development of arthritis in meniscal deficient patients. Meniscectomy (removal of torn tissue) patients can often return to sports 3–6 weeks after surgery. Meniscal repair patients require a period of 6 weeks of crutch protection followed by physical therapy. Return to sport after a repair is typically 3–4 months.

### 4. Medial & Lateral Collateral Ligament Injuries

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Pain on the medial or lateral portion of the knee.
- Tenderness along the ligament.
- Positive valgus stress test at 0 and 30 degrees.
The medial and lateral collateral ligaments are positioned along either side of the knee and act to stabilize the knee during varus and valgus stress. Medial injuries occur either with a blow to the lateral aspect of the knee, as seen in a football tackle, or with a noncontact rotational stress.

### Clinical Findings

The athlete may feel a pop or lose sensation along the medial aspect of the knee. The examination reveals a mild effusion and tenderness medially along the course of the ligament. A valgus stress test performed in 20–30 degrees of flexion reproduces pain and possibly instability.

**Medial collateral ligament (MCL) injuries** are graded on a scale of 1–3. Grade 1 injury represents a stretching injury. Grade 2 injury involves partial disruption of the ligament. Grade 3 injury is a complete disruption of the ligament.

Radiographs are useful, especially in the skeletally immature athlete, to look for distal femoral or proximal tibial bone injury. MRI scans are used if grade 3 injury or concomitant intra-articular derangement is suspected.

### Treatment

Treatment is almost always conservative. Initial injuries should be iced and elevated. A protective brace is worn and full knee motion in the brace can be permitted within a few days. Weight bearing is allowed and a strengthening program can be started. The athlete should use the brace until pain and range of motion have improved. The use of a functional brace is often required when a player returns to competition. Bracing is temporary until the ligament heals completely and the athlete has no subjective feelings of instability. Return to sports is variable and is dependent on the severity of the tear and other associated injuries. Most isolated, low-grade MCL injuries can return to play in 3–5 weeks.

### 5. Anterior Cruciate Ligament Injuries

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Pain and effusion of the knee.
- Pain along the lateral joint line.
- Positive Lachman test.

The anterior cruciate ligament (ACL) consists of two bundles that prevent anterior subluxation and rotation of the tibia. Most ACL injuries are noncontact and occur with deceleration, twisting, and cutting motions. ACL injuries can also occur with knee hyperextension or from a direct blow to the knee—typically on the lateral side—which causes an extreme valgus stress with both ACL and MCL disruption.

### Clinical Findings

The athlete often reports hearing or feeling a "pop" followed by swelling that occurs within hours of the injury. Evaluation of the knee begins with examination of the uninjured knee. The Lachman test provides the most accurate information about knee stability in relation to the ACL. The Lachman test is performed by holding the knee in 30 degrees of flexion while supporting the tibia and femur. The tibia is pulled anteriorly, and the degree of excursion and the firmness of the endpoint are assessed and compared to the contralateral side. All other structures of the knee should be examined to rule out concomitant injuries. Imaging of the knee includes plain radiographs and an MRI scan. In skeletally immature athletes, a tibial spine avulsion is frequently seen on radiographs rather than a midsubstance ACL tear.

### Treatment

Initial treatment focuses on controlling swelling and pain. Structured physical therapy can be instituted early to assist in regaining range of motion and strength. Conservative treatment includes bracing, strengthening, and restricting physical activity. Knee braces enhance proprioception and control terminal extension. Conservative management can be complicated by continued instability and damage to meniscal cartilage.

Surgical reconstruction is typically indicated for young athletes in cutting sports and is also required for persistent instability. Surgery can be performed 2–6 weeks following the injury if the swelling and motion of the knee have improved. Recent advances in surgical treatment of the skeletally immature athlete have been helpful in dealing with the complicated management of young athletes with ACL tears. Rehabilitation of the knee starts immediately after surgery. A structured ACL physical therapy protocol is initiated with the goals of building strength, muscle reeducation, endurance, agility, and coordination. Return to cutting and pivoting sports can be achieved by 6 months after surgery if certain criteria are met.

### 6. Posterior Cruciate Ligament Injuries

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Pain and swelling of the knee.
- Increased pain with knee flexion.
- Positive posterior Drawer test.
The posterior cruciate ligament (PCL) runs from the medial femoral condyle to the posterior tibial plateau and has two bundles. Its main function is to prevent posterior tibial subluxation. Injury to the PCL is uncommon; it occurs when the individual falls on a flexed knee with the ankle in plantarflexion or with forced hyperflexion of the knee. The most common sports in which PCL injuries are sustained are football and hockey.

**Clinical Findings**

The athlete presents with swelling and pain in the posterior and lateral knee. The examination begins with the uninjured knee and proceeds to the injured side. Confirmatory testing includes the posterior drawer test, performed with the patient supine, the knee flexed to 90 degrees, and the foot stabilized. Grading is based on the amount of translation. Grade 1 (mild) is up to 5 mm, grade 2 (moderate) is 5–10 mm, and grade 3 (severe) is more than 10 mm. Grade 3 injuries are typically indicative that another ligament is injured in addition to the PCL and should alert the provider to an associated injury. Diagnostic imaging includes plain radiographs and MRI scan.

**Treatment**

Isolated PCL injuries are almost universally treated nonoperatively. The exception is bony avulsions of the PCL off the femur or tibia. Generally surgical fixation is recommended for these injuries. Ligamentous PCL injuries in isolation are remarkably well tolerated in athletes and can be treated with bracing and a progressive rehabilitation program. PCL injuries with injury to other structures are complex and often require surgical stabilization. Surgical stabilization of these injuries is complicated, and return to sports at the previous level is uncertain after combined injuries that involve the PCL.

---

**FOOT & ANKLE INJURIES**

Injuries in the lower leg, ankle, and foot are common in pediatric athletes. The types of injuries sustained typically depend on the age group. Young children tend to have diaphyseal injuries, in contrast to older children in rapid growth, who tend to have epiphyseal and apophyseal injuries. Skeletally mature adolescents are prone to adult-pattern ligamentous injury. Although fractures of the ankle are possible with inversion and eversion mechanisms, the most common acute injury involving the ankle is the lateral ankle sprain.

### 1. Ankle Sprain

- **Mechanism** is usually inversion and plantarflexion.
- **Swelling and pain in the ankle over the ligament.**
- **Bruising over the ankle.**

When a ligament is overloaded, tearing occurs. These injuries are graded on a scale of 1–3. Grade 1 injury is a stretch without instability; grade 2 is a partial tear with some instability; and grade 3 is a total disruption of the ligament with instability of the joint. The ankle has three lateral ligaments (anterior talofibular, calcaneofibular, and posterior talofibular) and a medial deltoid ligament. Inversion of the foot generally damages the anterior talofibular ligament, whereas eversion injuries the deltoid ligament. Lateral ankle sprains are far more common than medial ankle sprains because the deltoid ligament is stronger mechanically than the lateral ligaments. However, medial ankle sprains may have more severe complications, including syndesmotic tearing and instability of the ankle joint requiring surgical stabilization. High ankle sprains involve injury to the tibiofibular syndesmosis, a movable connection in which the adjacent tibia and fibula bones are bound together by ligamentous structures. The syndesmosis supports the integrity of the ankle mortise joint. The ankle mortise is defined as the boney arc formed by the tibial plafond, the medial and lateral malleoli, and the roof of the talus. The mortise provides the wide range of flexibility and motion of the ankle, but its injury causes instability and pain. Syndesmotic injuries do not typically require surgery but do involve longer healing times than low-grade medial or lateral ankle sprains.

**Clinical Findings**

Physical examination often reveals swelling, bruising, and pain. Diagnostic testing should be done when a bony injury is suspected. Obtaining radiographs is especially important when evaluating skeletally immature athletes who are more prone to growth plate injury. Medial ankle swelling, tenderness, and bruising warrant ankle three-view radiographs (AP, lateral, mortise) to evaluate asymmetry and instability of the ankle mortise.

The adult Ottawa Ankle Rules are used to determine whether obtaining x-rays are necessary and do not pertain to...
to patients younger than 18 years. Tenderness over the malleoli, tenderness beyond ligament attachments, and excessive swelling are reasons to obtain radiographs in young athletes.

### Differential Diagnosis

Other injuries to consider include injuries to the fifth metatarsal, which can occur with an inversion mechanism. In this injury, the athlete presents with localized swelling and tenderness over the base of the fifth metatarsal. Fractures at the base of the fifth metatarsal can be divided into avulsion, Jones, and diaphyseal fractures. High-ankle sprains (a.k.a. syndesmotic injuries) occur most commonly with dorsiflexion and external rotation. Radiographs are required and the syndesmotic squeeze test is positive. Fractures of the tibial epiphysis, malleoli, fibula, talus dome, or calcaneus may also mimic ankle sprain.

### Treatment

Appropriate treatment of ligamentous ankle injuries is imperative to ensure full recovery and should begin immediately after the injury. Fractures and instability of the ankle mortise require immediate orthopedic surgical referral. Nonoperative management is typical of the vast majority of ankle sprains. Phase 1 care involves immediate compressive wrapping and icing to control swelling and inflammation. Protected weight bearing is encouraged as tolerated in the early phase of rehabilitation. Severe ankle sprains may benefit from a short period of treatment in a lower leg walking boot or cast. Phase 2 begins when the athlete can ambulate without pain. Supervised physical therapy prescription may be beneficial. During this time, ankle range of motion is emphasized, along with isometric contractions of the ankle dorsiflexors. Once 90% of strength has returned, active isotonic (eccentric and concentric exercises) and isokinetic exercises can be added. Phase 3 is designed to increase strength, improve proprioception, and add ballistic activity (more complex movement patterns), as well as sport-specific agility and function. The “foot alphabet” and “balance board” are excellent methods to improve ankle range of motion and proprioception. To restore range of motion, the patient is asked to actively move the ankle by drawing letters of the alphabet with the toes. To restore proprioception, the ability to maintain proper balance and control, balance exercises are performed on a balance board (or wobble board). This could also be done by having the patient stand on one leg while playing catch with a ball. This program can be effective in returning athletes to activity within a few weeks, although up to 6 weeks may be required for return to full activity. The athlete should wear a protective brace for 3–4 months, continue phase 3 home exercises, and ice after exercising.

### 2. Sever’s Disease

#### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Activity-related heel pain in preadolescents.
- Pain localized to the calcaneal apophysis and Achilles insertion.
- Positive calcaneal squeeze test.

Sever’s disease, or calcaneal apophysitis, occurs in athletes aged 8–12 years who are typically involved in high-impact activities, such as gymnastics and soccer. Causes include overuse, improper footwear, and tightness in the calf musculature and Achilles tendon. Pain occurs about the heel and at the point of muscle tendon insertion onto the growth center of the calcaneus. The athlete presents with activity-related heel pain and examination reveals focal tenderness over the apophysis. Tenderness created by pressing forcefully on the lateral and medial heel constitutes a positive “calcaneal squeeze test.” Treatment is symptomatic and consists of reassurance and education, relative rest, heel cord stretching, eccentric calf strengthening, ice massage, heel cups, NSAIDs for pain control, and progression to activity as tolerated based on pain level. Activity restriction is not required. Heel cups are rubber or gel infused shoe inserts that provide heel lift and cushion to decrease both tension and impact on the calcaneal apophysis. Refractory cases may benefit from brief immobilization and partial or non-weight bearing in a walking boot or cast followed by supervised physical therapy.

### 3. Plantar Fasciitis

Plantar fasciitis is a common problem that manifests as heel pain in the adolescent or older athlete. It typically occurs in runners who log more than 30 miles per week and in athletes who have tight Achilles tendons or wear poorly fitting shoes. It is also common in people with cavus feet and in those who are overweight. The pain is worse upon first standing up in the morning and taking a few steps. Differential diagnosis includes navicular or calcaneal stress fracture. A bone spur is often found on examination. Treatment involves local massage, stretching of the gastrocnemius-soleus-Achilles complex, NSAIDs, arch supports, and local steroid injections. Runners may need to cut back on their weekly mileage until these measures eliminate pain.

---


PREVENTION

As in all activities, most sports-related injuries can be prevented by education, reducing dangerous behaviors, use of protective equipment, and proper training. Early recognition of injuries, treatment, and appropriate rehabilitation are also crucial to ensure safe sports participation. Protective equipment should be properly fitted and maintained by an individual with training and instruction. Helmets should be used in football, baseball, hockey, bicycling, skiing, in-line skating, skateboarding, or any sport with risk of head injury. Eye protection should be used in sports that have a high incidence of eye injuries. Proper protective padding should be identified and used, including chest pads for catchers; shin guards in soccer; shoulder, arm, chest, and leg padding in hockey; and wrist and elbow protectors in skating. Other primary prevention strategies should also be addressed by coaches, parents, and physicians in order to ensure the safety of children participating in sports. These include inspecting playing fields for potential hazards, adapting rules to the developmental level of the participants, and matching opponents equally in skill level and size.

The use of the preparticipation history and physical examination can identify potential problems and allow for prevention and early intervention. Proper training techniques reduce injuries by encouraging flexibility, promoting endurance, and teaching correct biomechanics. Sports education reinforces the concepts of fitness and a healthy lifestyle along with sport-specific training. Early identification of an injury allows the athlete to modify techniques and avoid micro- and macrotrauma. Once an injury has occurred, it needs to be identified properly and appropriate measures used to minimize morbidity. Rehabilitation of the injury starts as soon as it has been identified. Early and appropriate care offers the athlete an optimal chance for full recovery and return to full participation.


Rehabilitation medicine is the multispecialty discipline involved in diagnosis and therapy of individuals with congenital and acquired disabilities. The goals of rehabilitation medicine are to maximize functional capabilities and improve quality of life. Disabilities are described using the World Health Organization’s International Classification of Function, Health, and Disability. Three aspects are evaluated in every patient: (1) the impact of the disability on body structure and function, (2) the impact of the disability on activity and participation in society, and (3) the environmental factors with an impact on the individual’s function. These three areas are the common framework for discussion of a disabling condition and its therapy.

PEDIATRIC BRAIN INJURY

ESSENTIALS OF DIAGNOSIS

- Severe head injury: Glasgow Coma Score (GCS) of < 9
- Moderate head injury: GCS of 9–13
- Mild head injury: GCS of 13–15

There are an estimated 475,000 emergency department visits for brain injuries per year among children from birth through 14 years of age, with 3000 deaths and 37,000 hospitalizations. Children with brain injuries may have long-term deficits and disabilities that must be identified and treated.

Pathogenesis

Brain injury is classically divided into two categories based upon the timing of the pathologic findings: primary and secondary injury.

Primary injury occurs at the time of trauma, causing focal and diffuse damage. Focal damage includes skull fracture, parenchymal bruising or contusion, extraparenchymal or intraparenchymal hemorrhage, blood clots, tearing of blood vessels, or penetrating injury. Diffuse damage includes diffuse axonal injury and edema. Consequences of primary injury, either focal or diffuse, include cellular disruption with release of excitatory amino acids, opiate peptides, and inflammatory cytokines.

Secondary injury is the loss of cellular function accompanying primary injury that results in loss of cerebrovascular regulation, altered cellular homeostasis, or cell death and functional dysregulation. A primary injury can initiate the processes of secondary programmed cell death (apoptosis), which further exacerbates the primary injury. Secondary injury may develop hours or days after the initial insult. It appears to be precipitated by elevated intracranial pressure, cerebral edema, and release of neurochemical mediators. Current treatment paradigms are focused on treating and preventing secondary injury.

Clinical Findings

Classification & Assessment of Injury Severity

Traumatic brain injury is usually categorized as open or closed. Open injuries are the result of penetration of the skull by missile or sharp object or deformation of the skull with exposure of the underlying intracranial tissues. Closed injuries are the result of blunt trauma to the head, which causes movement (intracranial acceleration or deceleration and rotational forces) and compression of brain tissue. Brain contusions are referred to as coup (occurring at the site of injury) or contra-coup (occurring on the side of the brain opposite the injury). Rating the severity of injury and
eventual outcomes is important in medical management. Included below are the two most commonly used scales relevant to clinical care of these injuries in rehabilitation medicine.

A. Glasgow Coma Scale

The Glasgow Coma Scale (GCS) is the most commonly used system to assess the depth and duration of impaired consciousness in the acute setting. The score is derived from three areas of evaluation: motor responsiveness (maximum score 6), verbal performance (maximum score 5), and eye opening to stimuli (maximum score 6). The scale has been modified for use in infants and children younger than 5 years of age, allowing for their lack of verbal responsiveness and understanding. Cumulative scores on the GCS define injury as mild (13–15), moderate (9–12), and severe (≤8). The concept of posttraumatic amnesia is used to gauge severity of injury and is an adjunct to the GCS, termed the GCS-E (extended). Posttraumatic amnesia is defined as the period of time after an injury during which new memory cannot be incorporated and the person appears confused or disoriented. Amnesia can be retrograde, anterograde, or both. A complicating factor in the use of either of these tools is the utilization of anesthesia, paralytics, and intubation in the acute care setting.

B. Rancho Los Amigos Levels of Cognitive Function

The Rancho Los Amigos Levels of Cognitive Function (LCFS or “Rancho”) is used to gauge the overall severity of cognitive deficit and can be used serially during recovery as a rough gauge of improvement. The scale has 10 levels of functioning ranging from “no response” to “purposeful, appropriate.”

Common Sequelae of Brain Injury

Depending on the severity of brain injury, there may be deficits in cognition and behavior, as well as physical impairments. Injuries can also produce changes in sensory and motor function, emotional stability, social behavior, speed of mental processing, memory, speech, and language. The consequences of mild brain injuries may be difficult to discern. Small intraparenchymal injuries, easily identified by computed tomographic (CT) or magnetic resonance imaging (MRI) scans, may not cause obvious signs or symptoms. The following are common problems associated with brain injury.

A. Seizures

Seizures occurring in the first 24 hours after injury are referred to as immediate seizures. Those occurring during the first week are early seizures, and those starting more than 1 week after injury are referred to as late seizures.

Seizure prophylaxis with medications is recommended in the first week after brain injury in children at high risk for seizures and in very young children, who are at higher risk for early seizures than are older children and adults. Seizure prophylaxis is also recommended for 1 week after any penetrating brain trauma. Seizure prophylaxis is probably not effective for prevention of late-onset seizures. Late-developing seizures may require long-term treatment.

B. Neuromotor Deficits/Movement Disorders

Neuromotor deficits after brain injury include movement disorders, spasticity, paralysis, and weakness. The type of disorder will be influenced by the areas damaged from the trauma. The most common movement disorders are tremors and dystonias. These deficits can result in impaired ambulation, coordination, impaired ability to use upper extremities, and speech problems. Physical therapy is the primary means of treating these problems.

C. Communication Disorders

Language and communication disorders are fairly common. Aphasia, which is difficulty in understanding and producing written and spoken language, is categorized as fluent, nonfluent, or global. Individuals with fluent aphasia or Wernicke type disorder can produce speech, but have little content associated. The nonfluent aphasias or Broca’s type have a paucity of speech and may have word finding difficulties. Global aphasias have extensive injuries and the most severe language disorders.

D. Paroxysmal Sympathetic Hyperactivity

Severe brain injuries may be associated with excessive sympathetic outflow and results in a constellation of symptoms known as paroxysmal sympathetic hyperactivity (PSH). Symptoms of PSH are tachycardia, tachypnea, sweating, hyperthermia, hypertension, agitation, and posturing. Common medications used to treat PSH include dopamine agonists (eg, bromocriptine), β-blockers (eg, propranolol), and α-agonists (eg, clonidine).

E. Cognitive and Behavioral Deficits

After brain injury, cognitive and behavioral deficits are a frequent occurrence. Cognitive disorders depend on the location and severity of the injury. Damage to the frontal lobes can cause executive function problems along with initiation delays. Neuropsychiatric sequelae are common, and depression, anxiety disorders, and posttraumatic stress disorders (PTSD) are present in one-third of those injured. Testing by a neuropsychologist may help to identify problem areas and develop interventional programs including school modifications and behavioral strategies.
Careful consideration should be given to the developmental progress of the brain-injured child and adolescent. Delays can be anticipated after moderate and severe brain injuries related to abnormalities of cognition and behavior. It is critical to identify developmental disabilities as early as possible so that appropriate therapy can be started in order to maximize the child’s residual capabilities. Educational programs should include an individualized educational program (IEP) to support the child with significant remediation and assistance needs during their school years. Programs should also include a 504 plan (named for Section 504 of the Rehabilitation Act and the Americans with Disabilities Act). The 504 plan identifies the accommodations necessary in regular school settings for students with lesser disabilities so that they may be educated in a setting with their peers.

### Treatment

The primary goal of rehabilitation after childhood brain injury is to maximize functional independence. Rehabilitative care can be divided into three phases: acute, subacute, and long term. The acute and subacute phases typically occur in the inpatient setting while the long-term phase is an outpatient endeavor.

#### A. Acute Care

Therapy in the acute phase consists mainly of medical, surgical, and pharmacologic measures to decrease brain edema, treat increased intracranial pressure, and normalize laboratory values. Nutrition is essential in the healing process and either parenteral nutrition or supplemental enteral feedings are employed. Current research suggests that transitioning to enteral nutrition (eg, nasogastric tube feeding) as soon as possible after brain injury is associated with improved outcomes. Placement of a gastrostomy tube for supplemental enteral feeding is often performed in patients with severe brain injuries when recovery will be protracted and swallowing function is inadequate for safe oral feeding.

#### B. Subacute Care

Therapy in the subacute phase is characterized by early, intensive participation in rehabilitative therapies promoting functional recovery. Treatment should be planned after consultation with physical therapy, occupational therapy, speech-language specialists, and neuropsychologists. Nursing staff members are a primary interface with the patient and often serve as educators for family-directed care. Most children and adolescents with brain injuries can be discharged home to continue with treatment on an outpatient basis.

#### C. Long-Term Care

Long-term follow-up starts immediately after discharge. Medical issues must be thoroughly and regularly reviewed to ensure that changing needs are met. Annual multidisciplinary...
evaluation is important, especially as the child approaches school age. Neuropsychological testing may be required to define cognitive and behavioral deficits and plan strategies to deal with them in the educational environment. Therapies should be flexible, providing strategies to maximize independence and facilitate the child’s involvement in changing environments.

Medication is often required for cognitive and behavioral issues. Attention deficit and fatigue associated with brain injury may be amenable to treatment with stimulants such as methylphenidate and modafinil. Dopaminergic agents such as amantadine, levodopa, and bromocriptine can be useful in improving cognition, processing speed, and agitation. Antidepressants such as selective serotonin reuptake inhibitors can be helpful in treating depression and mood lability. Anticonvulsants can be useful as mood stabilizers and in treating agitation and aggression. Tegretol and valproic acid are typical agents for this purpose.

Attention and arousal can also be successfully addressed by utilizing behavioral techniques to reinforce desired behaviors as well as identifying environmental situations that optimize those behaviors. Gains made in the behavioral realm often have a positive impact on therapies designed to address physical issues.

**Prognosis & Outcomes**

Directly after brain injury, poor pupillary reactivity, low blood pH, absence of deep tendon reflexes, and low GCS all correlate with poor outcome. An increased number of intracranial lesions, and the merging of multiple smaller lesions into one, is associated with increased injury severity and poorer outcome. Increased depth and duration of coma are also associated with poor functional recovery. Children younger than 1 year of age tend to have worse outcomes.

Functional outcome assessment is important for judging the efficacy of rehabilitation therapy. Global multidomain measures (eg, FIM/WeeFIM, FRESNO) are used to provide a functional “snapshot in time” of select functions—motor function and mobility, self-care, cognition, socialization, and communication. Sensitive and specific domain-specific outcome tools are important to follow for functional recovery that may occur in small increments. Simpler, single-domain, functional assessment tools such as the Glasgow Outcome Scale (GOS) and its pediatric cousin the Kings Outcome Scale for Childhood Head Injury (KOSCHI) may also be of use.

Outcome associated with mild brain injury is often quite favorable. Most patients recover normal function within a short time. A small percentage develop persistent problems such as chronic headache, poor focusing ability, altered memory, and vestibular abnormalities, and full recovery may last for many weeks or months. Differentiating between musculoskeletal and central nervous system (CNS) etiologies of symptoms associated with these types of injuries (eg, headache) is important and can influence prognosis and care planning.

In children, recovery may not be fully achieved for many months or years after the initial injury. The impact of the injury on developmental processes and its future consequences are difficult to predict. Long-term follow-up is required, particularly as the child approaches school age.

---

**SPINAL CORD INJURY**

**ESSENTIALS OF DIAGNOSIS**

- **Spinal cord injury (SCI)** is an alteration in normal motor, sensory, or autonomic function secondary to spinal insult.
- **Characterized as either complete (total loss of function) or incomplete (some preservation of function below the level of lesion).**

Epidemiologic studies of spinal cord injuries (SCI) suggest that there will be about 10,000 new injuries per year and that 20% will be in those younger than age 20 years. Motor vehicle accidents are the leading cause of SCI in all ages. Falls are common causes in young children. The phenomenon of SCI without obvious radiologic abnormality (SCIWORA) can be present in 20%–40% of young children. Children from birth to 2 years tend to have high-level injuries to the cervical spine because of the anatomical features of the spine in this age group. The facets tend to be shallower and oriented horizontally, and the boney spine is more flexible than the spinal cord. In addition, the head is disproportionately large and the neck muscles are weak.

**Clinical Findings**

**A. Classification and Assessment of Injury Severity**

SCI is classified using the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI), which was formerly known as the American Spinal Injury Association (ASIA) classification system.

This classification evaluates motor and sensory function, defines the neurologic level of the injury, and assesses the completeness (level of motor or sensory sparing) of the deficit. The 72-hour examination is used in predicting recovery. A complete
lesion identified on examination at 72 hours predicts a poor recovery potential. The ISNCSCI classification is as follows:

1. Class A is a complete SCI, with no motor or sensory function in the lowest sacral segments.
2. Class B is an incomplete injury, with preserved sensory function but no motor function in the sacral segments.
3. Class C is an incomplete lesion in which the strength of more than 50% of key muscles below the injury level is graded less than 3/5 on manual muscle testing.
4. Class D is an incomplete lesion in which the strength of more than 50% of key muscles below the injury level is graded greater than 3/5 on manual muscle testing.
5. Class E is an injury in which full motor and sensory function is preserved.

B. Clinical Patterns of Spinal Cord Injury

1. **Brown-Séquard injury**—The cord is hemisected causing motor paralysis, loss of proprioception and vibration on the ipsilateral side, and loss of pain and temperature on the contralateral side.
2. **Central cord syndrome**—Injury is to the central part of the cord and results in greater weakness in the arms than the legs.
3. **Anterior cord syndrome**—Disruption of the anterior spinal artery causes motor deficits and loss of pain and temperature sensation. Proprioception and fine touch is spared.
4. **Conus medullaris syndrome**—Injury or tumor of the conus, the lower conical shaped end of the spinal cord, can cause minimal motor impairment but significant sensory, bowel, and bladder abnormalities.
5. **Cauda equina syndrome**—Injury to the nerve roots produces flaccid bilateral weakness in the legs, sensory abnormalities in the perineum, and lower motor neuron bowel and bladder dysfunction.

C. Imaging

The diagnosis and anatomic description of SCI are made mainly through imaging techniques. Initial studies should include radiographs of the entire spine (including cervical spine) and special studies for bone structures. MRI imaging is required to evaluate soft tissues. CT scans, including three-dimensional reconstructions, may be used to further define the injured elements.

**Treatment**

A. Initial Management

The two primary precepts of SCI treatment are early identification and immediate stabilization of the spine. The approach used to stabilize the spine is determined by the type of injury, location of injury, and underlying condition of the spinal cord. Stabilizing the spine may prevent further damage to the spinal cord. External traction devices such as halo traction and orthotics are often used. Some injuries require internal stabilization. The benefit of methylprednisolone administration in acute SCI has been brought into question. Based on the ongoing controversy regarding efficacy and outcomes, steroids remain an option, but their administration is not considered standard of care. When used, the initial loading dose is 30 mg/kg over 15 minutes, followed by 5.4 mg/kg for the next 23 hours if started within 3 hours of injury. If started within 3–8 hours of injury, corticosteroids should be continued for 48 hours.

B. Functional Expectations after Spinal Cord Injury

The lesions associated with SCI have a predictable impact on motor and sensory function. It is helpful to understand these concepts when discussing functional expectations with patients and parents (Table 28–1).

C. Special Clinical Problems Associated With Spinal Cord Injury

1. **Autonomic hyperreflexia or dysreflexia**—This condition occurs in spinal injuries above the T6 level. Noxious stimuli in the injured patient cause sympathetic vasoconstriction below the level of injury. Vasoconstriction produces hypertension and then a compensatory, vagal-mediated bradycardia. Symptoms include hypertension, bradycardia, headaches, and diaphoresis. This response may be severe enough to be life threatening. Treatment requires identification and relief of the underlying noxious stimulus. Bowel, bladder, and skin problems are the most common noxious stimuli causing this syndrome. The patient should be placed in an upright position and antihypertensive medication used if conservative measures fail. Nifedipine (oral or sublingual) and nitrates have been used in the treatment of this condition.

2. **Hypercalcemia**—Hypercalcemia often occurs in male adolescents within the first 2 months of becoming paraplegic or tetraplegic. The serum calcium level rises significantly in response to immobilization. Patients complain of abdominal pain and malaise. Behavioral problems may occur. Initial treatment is focused on hydration and forced diuresis using fluids and furosemide to increase urinary excretion of calcium. In severe cases, especially in older children, calcitonin and etidronate may be required.

3. **Thermoregulation problems**—These problems are most common and most severe in higher level injuries and usually result in a poikilothermic state where body temperature changes with that of the environment. The ability to vasoconstrict and vasodilate below the injury level is impaired. The person with an SCI above T6 is particularly
Table 28-1. Functional expectations related to spinal cord injury.

<table>
<thead>
<tr>
<th>Level of Injury and Key Muscle Function</th>
<th>Functional Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–C4 (no upper extremity function)</td>
<td>Dependent for all skills, can use voice-activated computer, mouth stick; can drive power wheelchair with technology devices such as sip and puff, chin drive, or head array</td>
</tr>
<tr>
<td>C5 (biceps function)</td>
<td>Can assist with ADLs, power wheelchair with joy stick, push manual wheelchair short distances, use modified push rims</td>
</tr>
<tr>
<td>C6 (wrist extension)</td>
<td>More ADL skills; can push manual wheelchair indoors, perform level transfers; hand function augmented with adapted equipment</td>
</tr>
<tr>
<td>C7 (elbow extension)</td>
<td>ADLs independent; hand function augmented with adapted equipment; can push manual wheelchair indoor and outdoor</td>
</tr>
<tr>
<td>C8 (finger flexors)</td>
<td>ADLs independent; independent manual wheelchair skills; increased transfer skills</td>
</tr>
<tr>
<td>T1 (little finger abduction)</td>
<td>ADLs independent; independent manual wheelchair skills; improved transfer; standing with braces</td>
</tr>
<tr>
<td>T2-T12 (chest, abdominal and spinal extensors)</td>
<td>ADLs independent; independent manual wheelchair skills; improved transfer; standing with braces</td>
</tr>
<tr>
<td>L1 and L2 (hip flexors)</td>
<td>Standing and walking with long leg braces, KAFO, and RGO; swing-through gait; manual wheelchair main form of mobility</td>
</tr>
<tr>
<td>L3 (knee extension)</td>
<td>Home and limited community ambulation; long leg or short leg braces</td>
</tr>
<tr>
<td>L4 (ankle dorsiflexion)</td>
<td>Community ambulation with short leg braces, AFO</td>
</tr>
<tr>
<td>L5 (long toe extensors)</td>
<td>Community ambulation; may be slower than peers and have some endurance issues</td>
</tr>
<tr>
<td>S1 (ankle plantar flexors)</td>
<td></td>
</tr>
</tbody>
</table>

ADLs, activities of daily living; KAFO, knee-ankle-foot orthosis; AFO, ankle-foot orthosis; RGO, reciprocal gait orthosis.

susceptible to environmental temperature and is at risk for hypothermia and hyperthermia.

4. Deep vein thrombosis—Thrombosis is a common complication of SCI, especially in postpubescent children. Deep vein thrombosis should be suspected in children with any unilateral extremity swelling, palpable cords in the calf muscles, fevers, erythema, or leg pain. Diagnosis is confirmed by Doppler ultrasound, and full evaluation may require spiral CT or ventilation-perfusion scan if pulmonary embolus is suspected. Preventative measures include elastic stockings and compression devices. Anticoagulation prophylaxis may be required using medications such as low-molecular-weight heparins (eg, enoxaparin, 0.5 mg/kg subcutaneously, every 12 hours).

5. Heterotopic ossification—This complication occurs in both spinal cord and traumatic brain injuries. Ectopic calcium deposits usually appear around joints in the first 6 months after injury. They may cause swelling, decreased range of motion, pain with motion, palpable firm masses, fever, elevated sedimentation rate, and abnormal triple phase bone scan. Nonsteroidal anti-inflammatory drugs or bisphosphonates such as Etidronate should be started at the time of diagnosis. Surgical removal of ectopic deposits is controversial and usually performed only in cases of extreme loss of motion, pressure sores, or severe pain.


BRACHIAL PLEXUS LESIONS

ESSENTIALS OF DIAGNOSIS

Upper trunk (C5 and C6) is the most common area injured and results in the classic Erb’s palsy.
Injury to the lower trunk (C7–T1) produces a Klumpke palsy. Pan plexus lesion involves all roots.

Pathogenesis
Brachial plexus lesions associated with delivery are related to traction applied to the nerves and is often associated with shoulder dystocia. The nerve injury can range from simple neuropraxia (stretch) to complete avulsion. Acquired brachial plexus injuries from sports, surgery, and accidents also have a mechanism which stretches or injures the plexus.

Prevention
Identification of factors associated with shoulder dystocia, such as macrosomia, or proper positioning during surgical procedures to decrease traction on the brachial plexus may reduce the incidence of these lesions.

Clinical Findings
Erb’s palsy has been described as the “waiter’s tip posture” and is characterized by shoulder weakness with internal rotation and adduction of the upper arm. The elbow is extended and the wrist flexed. There is good preservation of hand function. Klumpke palsy is characterized by good shoulder function but decreased or absent hand function. Brachial plexus injuries may also cause a Horner’s syndrome (unilateral miosis, ptosis, and facial anhydrosis) due to disruption of cervical sympathetic nerves. Associated boney and nerve injuries are common in brachial plexus injury. The physical examination should include inspection of the humerus and clavicle for fractures. There may be injuries of the phrenic and facial nerves. The diagnosis of a brachial plexus lesion should be based on the history and clinical examination. Diagnostic testing helps confirm, localize, and classify the lesion. Electromyography is helpful 3–4 weeks after the injury. This test not only is used diagnostically but also can track recovery. MRI, myelography, and CT scan can help to locate the lesion and determine its extent.

Complications
The development of complications reflect the degree of nerve recovery. Severe injuries are at risk for shoulder contractures, muscle atrophy, osseous deformities, functional deficits, pain, and maladapted postures.

Treatment & Prognosis
The treatment for brachial plexus lesions will depend on the severity of the lesion. Many will heal on their own and no interventions are needed. For persistent injuries, physical/occupational therapy is the major treatment and includes stretching, bracing, strengthening, electrical stimulation, and functional training. Primary surgery to the nerves of the plexus is indicated for children who have no spontaneous recovery of biceps function by 6–9 months. Secondary procedures to maximize function include muscle transfers and orthopedic interventions.

Many factors are used to predict recovery. The anatomic location of the lesion impacts recovery, as upper trunk lesions do better than lower trunk lesions. If a Horner’s syndrome is present, these injuries always have a poor recovery. Children in whom antigravity function returns within 2 months of injury will usually have a good recovery of function. If antigravity function is delayed until 6 months, recovery will probably be limited. If antigravity function is absent at 6–9 months, there will be no recovery of function and surgery should be considered.


COMMON REHABILITATION PROBLEMS
1. Neurogenic Bladder
The muscles of the bladder include the detrusor and urethral sphincters. During the first year of life the bladder is a reflex-driven system that empties spontaneously. After the first year control begins to develop, and most children achieve continence by age 5 years. Children with damage to the central or peripheral nervous system may develop a neurogenic bladder. Neurogenic bladder is usually classified as noted below:

1. Uninhibited neurogenic bladder occurs after upper motor neuron injuries at the level of the brain or spinal cord that result in failure to inhibit detrusor contractions. This results in a hyperreflexive voiding pattern.
2. Reflex neurogenic bladder results from damage to the sensory and motor nerves above the S3 and S4 level. The bladder empties reflexively but coordination may not be present and dyssynergia (contraction of the bladder musculature against a closed sphincter) can occur. Increased intravesicular pressure and vesicourethral reflux may be consequences of dyssynergia.
3. Autonomic neurogenic bladder is a flaccid bladder and is associated with lower motor neuron damage. Bladder volumes are usually increased and overflow incontinence can occur.
4. Motor paralytic neurogenic bladder results from injury to the motor nerves of the S2–S4 roots. Sensation is intact but there is motor dysfunction. The child has the
sensation to void but has difficulty with the voluntary contractions.

5. Sensory paralytic neurogenic bladder results when sensory roots are disrupted. Affected patients do not have sensation of the full bladder but are able to initiate voiding.

The diagnosis of neurogenic bladder requires a complete history and physical examination. The type of neurologic damage should be identified as this will help to predict anticipated voiding issues. The upper tracts should be assessed by several techniques, including ultrasound, intravenous pyelogram, and renogram (isotope) studies. Lower tract testing includes urinalysis, postvoid residuals, urodynamics, cystography, and cystoscopy.

### Treatment

Treatment is geared to the type of bladder dysfunction. The simplest methods are those employing behavioral strategies. Timed voiding can be effective for children with uninhibited bladders. In this technique, children are reminded verbally or use a cueing device (watch with a timer) to void every 2–3 hours before bladder capacity is reached. The Credé and Valsalva maneuvers are used in patients with an autonomous bladder to assist in draining a flaccid bladder. There is a risk of increasing intravesicular pressure during these maneuvers, which can provoke vesicoureteral reflux. These maneuvers should never be used in a patient with a reflex neurogenic bladder.

Medications are often employed to treat neurogenic bladder. Anticholinergics are commonly used to reduce detrusor contractions, decrease the sense of urgency, and increase bladder capacity. Medications include oxybutynin, tolterodine, and hyoscyamine. The side effects of these medications include sleepiness, nausea, and constipation. External methods are also used to improve continence and function. Absorbent pads and diapers, external catheters, internal catheters, and intermittent catheterization are some typical methods. Surgical procedures to protect the upper tracts from urinary reflux are often used. A young child with a high-pressure bladder is at particular risk for reflux and may need medication, intermittent catheterization, or vesicostomy to prevent hydrostatic renal damage and infection. An older child may require reconstructive bladder surgery (bladder augmentation) to increase the capacity of the bladder or an intestinal conduit from bladder to skin surface (Mitrofanoff procedure) to relieve bladder distention. If an incompetent urethral sphincter causes urinary leakage, injections, slings, or implants may be used to increase the urethral barrier. Recently, electrical stimulation of sacral roots has been used to initiate voiding. Biofeedback training is also used to improve voiding.

### 2. Neurogenic Bowel

Control of bowel function depends on an intact autonomic (sympathetic and parasympathetic) and somatic nervous system. Interruption of any of these pathways can result in retention and/or incontinence. Goals of treatment for patients with neurogenic bowel are to establish a predictable and reliable bowel habit, and prevent incontinence and complications. There are two types of neurogenic bowel dysfunction: upper motor and lower motor dysfunction. The upper neuron bowel results from damage above the conus. Affected patients usually have reflex bowel contractions of high amplitude, absence of sensation, and no voluntary sphincter control. Patients with the lower motor neuron bowel have no voluntary sphincter control and no reflex contraction of the external anal sphincter (anocutaneous reflex). It has been described as a flaccid bowel. In general, establishing a bowel program is easier in patients with upper motor neuron lesions.

### Treatment

Diet is important in either type of neurogenic bowel. Fiber and fluids are critical elements. Stool consistency should be on the soft side, although some patients try to keep themselves constipated to prevent accidents. A predictable and scheduled bowel program is essential. Bowel movements should be scheduled to occur with meals, as the gastrocolic reflex can trigger defecation.

Laxative and stool softening medications are usually included in a comprehensive bowel program. Stool softeners such as docucate retain stool water. Mineral oil is an acceptable stool softener in patients not at risk for pulmonary aspiration. Bulking agents such as Metamucil increase fiber and water content of stool and reduce transit time. Stimulants such as senna fruit extract or bisacodyl increase peristalsis. Osmotic agents such as polyethylene glycol keep stools soft by retaining stool water. Suppositories and enemas are often used when other methods have not been successful. Upper motor neuron bowel management programs may include digital rectal stimulation. When conservative methods are ineffective, options may include surgical implantation of sacral nerve stimulators or techniques to facilitate antegrade flushing of the colon. For example, the ACE (antegrade continence enema) or Malone procedure approximates the appendix to the surface of the abdomen providing a conduit for flushing. Also, a capped cecostomy tube can be placed into the cecum through which fluids can be administered in an antegrade fashion to remove fecal matter from the colon.

### 3. Spasticity

Spasticity is a velocity-dependent increase in muscle tone and a loss of isolated muscle function. Whereas tone is the resistance felt in a muscle as it is moved in space, spasticity
occurs when there is damage to the CNS from trauma or injury. It is included in the upper motor neuron syndrome (hyperactive and exaggerated reflexes, increased tone, clonus, positive Babinski sign). Spasticity is evaluated using the Ashworth Scale, with 0 indicating no increase in muscle tone and 4 indicating complete rigidity of the extremity.

**Treatment**

Treatment is goal directed and influenced by the functional status of the client. Spasticity has both positive and negative effects on quality of life. The positive aspects include the ability to use spasticity for functional tasks along with maintaining muscle strength. Negatively spasticity can interfere with positioning and hygiene, can affect function, and can cause pain.

Options for therapy range from conservative to aggressive. A pyramidal approach starts from a base of prevention of nociceptive input and aggressive physical therapy. Children should be positioned properly and have appropriate equipment to support this strategy. Physical therapy is designed to reduce the long-term effects of spasticity by stretching and range-of-motion exercises. Heat and cold are useful in improving tone, but their effects are not long lived. Casting of both upper and lower extremities can decrease tone and increase range of motion. Constraint therapy can be used to try to improve upper extremity function.

The next step on the pyramid is the use of medications, mainly baclofen, diazepam, dantrolene, and tizanidine. Baclofen (a direct GABA_\_agonist) is a first-line medication, which produces effects at the spinal cord level. Side effects are primarily sleepiness and weakness. Seizure threshold may be reduced by baclofen. Baclofen can be delivered directly to the CNS through an intrathecal pump. It has been used successfully in children with brain injury, cerebral palsy, and SCI. Diazepam is an allosteric modulator of postsynaptic GABA_A receptors in both the brain and the spinal cord. It can cause drowsiness and dependence. Dantrolene decreases the release of calcium in muscle. Side effects include weakness and, rarely, hepatotoxicity. Tizanidine is a newer agent and works at the \_\_adrenergic receptors presynaptically. It can cause dry mouth and sedation, and liver function tests can be elevated.

Relief of focal spasticity can be achieved by using chemodenervation techniques. Botulinum toxin A and B can be injected in selected muscles to improve range of motion, thus improving function and hygiene as well as reducing pain and deformity. More recently, botulinum toxins have been used to treat drooling, hyperhydrosis, and chronic pain. These toxins block the release of acetylcholine at the neuromuscular junction. The effects are temporary, lasting only 3–6 months, and repeat injections are often needed. Phenol injections are another option for treatment of local spasticity and are technically more challenging. Phenol denatures proteins in both myelinated and unmyelinated fibers and produces neurolysis or myolysis, depending on the site of injection. The effects may last longer than botulinum toxins. Injections carry a risk of sensory dysesthesia if mixed nerves are injected.

Surgical options include orthopedic procedures geared toward improving function and ambulation and alleviating deformities produced over time by spasticity. Contractures are common in the Achilles tendon, hamstrings, and adductors. Upper extremity contractures occur in the elbow, wrist, and finger flexors. Scoliosis is fairly common and bracing or surgery may be needed. Gait analysis may be helpful in evaluating the child with functional spasticity as a guide for the use of orthotics, therapy, and surgery. Neurosurgical techniques such as selective dorsal rhizotomy, sectioning afferent sensory nerve fibers, are used in a very select group of children to permanently alter spasticity patterns and improve ambulation.


**QUALITY ASSURANCE/IMPROVEMENT INITIATIVES IN REHABILITATION MEDICINE**

Working with the Accreditation Council for Graduate Medical Education (ACGME), the American Academy of Physical Medicine and Rehabilitation (AAPM&R) fosters acquisition of knowledge regarding the use of quality assurance/improvement techniques in its training programs. This is now one of six competencies required for board certification. The AAPM&R feels that these skills endow the practitioner with the capacity to maintain and improve the quality of care provided to the public.
Juvenile idiopathic arthritis (JIA) is characterized by chronic arthritis in one or more joints for at least 6 weeks. There are four main subtypes of JIA: (1) oligoarticular, (2) polyarticular, (3) systemic, and (4) enthesitis-associated. The exact cause of JIA is not known, but there is substantial evidence that it is an autoimmune process with genetic susceptibility factors.

Clinical Findings
A. Symptoms and Signs
The most common type of JIA is the oligoarticular form, which constitutes approximately 30%–40% of patients and is characterized by arthritis of four or fewer joints. This type of JIA often affects medium to large joints. Because the arthritis is often asymmetrical, children may develop a leg-length discrepancy in which the involved leg grows longer due to increased blood flow and growth factors. The synovitis is usually mild and may be painless. Systemic features are uncommon except for inflammation in the eye. Up to 20% of children with this type of JIA develop insidious, asymptomatic uveitis, which may cause blindness if untreated. The activity of the eye disease does not correlate with that of the arthritis. Therefore, routine ophthalmologic screening with slit-lamp examination must be performed at 3-month intervals if the antinuclear antibody (ANA) test is positive, and at 6-month intervals if the ANA test is negative, for at least 4 years after the onset of arthritis, as this is the period of highest risk.

Polyarticular disease is defined as arthritis involving five or more joints. This type of JIA affects 25% of patients. Both large and small joints are involved, typically in a symmetrical pattern. Systemic features are not prominent, although low-grade fever, fatigue, rheumatoid nodules, and anemia may be present. This group is further divided into rheumatoid factor (RF)-positive and RF-negative disease. The former resembles adult rheumatoid arthritis with more chronic, destructive arthritis.

The systemic form, previously known as Still disease, comprises 5%–10% of patients with JIA. The arthritis can involve any number of joints and affects both large and small joints, but may be absent at disease onset. One of the classic features is a high fever, often as high as 39°C–40°C, typically occurring one to two times per day. In between fever spikes, the temperature usually returns to normal or subnormal. Ninety percent of patients have a characteristic evanescent, salmon-pink macular rash that is most prominent on pressure areas and when fever is present. Other systemic features that may be present, but are not specific for JIA, include hepatosplenomegaly, lymphadenopathy, leukocytosis, and serositis.

Enthesitis-associated arthritis is most common in males, older than 10 years of age, and is typically associated with lower extremity, large joint arthritis. The hallmark of this form is inflammation of tendinous insertions (enthesopathy), such as the tibial tubercle or the heel. Low back pain and sacroiliitis are also commonly seen in this form of arthritis which comprises approximately 10%–20% of patients with JIA.
There are two additional subtypes of JIA. Children with psoriatic arthritis may have typical psoriasis, but may also present prior to the onset of the classic thick scaly plaques and have more subtle changes such as nail pitting (see Chapter 15). Patients with psoriatic arthritis may also present with dactylitis or “sausage digit,” which is painful swelling of an entire finger or toe. Undifferentiated JIA, comprising 10% of patients, includes children with chronic arthritis that do not meet criteria for any of the other subgroups or meet more than one criterion and therefore could be classified into multiple subgroups.

B. Laboratory Findings

There is no diagnostic test for JIA. A normal erythrocyte sedimentation rate (ESR) does not exclude the diagnosis of JIA. However, patients with systemic JIA typically have significantly elevated markers of inflammation, including ESR, C-reactive protein (CRP), white blood cell count, and platelets. RF is positive in about 5% of patients, usually when the onset of polyarticular disease occurs after age 8 years. A newer test, anti-cyclic citrullinated peptide (anti-CCP) antibody, has a very high specificity for rheumatoid arthritis and may be detectable prior to the RF. ANAs are associated with an increased risk of iridocyclitis in patients with oligoarticular disease. A positive ANA test is also fairly common in patients with the late-onset RF-positive form of the disease. Carriage of HLAB27 antigen is associated with an increased risk of developing enthesitis-associated arthritis.

Table 29–1 lists the general characteristics of joint fluid in various conditions. The main indication for joint aspiration and synovial fluid analysis is to rule out infection. A positive Gram stain or culture is the only definitive test for infection. A leukocyte count over 2000/μL suggests inflammation; this may be due to infection, rheumatologic diseases, leukemia, or reactive arthritis. A very low glucose concentration (< 40 mg/dL) or very high polymorphonuclear leukocyte count (> 60,000/μL) is highly suggestive of bacterial arthritis.

C. Imaging Studies

In the early stages of the disease, only soft tissue swelling and possibly periarticular osteoporosis may be seen. Magnetic resonance imaging (MRI) of involved joints may show early joint damage and, if obtained with gadolinium, can confirm the presence of synovitis. Later in the course of the disease, particularly in patients with RF-positive disease, plain films may demonstrate joint space narrowing due to cartilage thinning and erosive changes of the bone related to chronic inflammation.

Differential Diagnosis

Table 29–2 lists the most common causes of limb pain in childhood. JIA is a diagnosis of exclusion; therefore, it is

<table>
<thead>
<tr>
<th>Table 29–1. Joint fluid analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Disorder</strong></td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Trauma</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Reactive arthritis</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Juvenile idiopathic arthritis</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Septic arthritis</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*Normal value is ≥ 75% of the serum glucose value.*
The former usually occurs as discrete, recurrent episodes with the spiking fever that characterizes the systemic form of arthritis is essential to the diagnosis. The fever pattern and clinical findings should be sought based on examination and electrocardiographic findings. Evidence of recent streptococcal infection is essential to the diagnosis. The fever pattern in rheumatic fever is low grade and persistent compared with the spiking fever that characterizes the systemic form of JIA. Lyme arthritis resembles oligoarticular JIA, but the former usually occurs as discrete, recurrent episodes of arthritis lasting 2–6 weeks and children should have a history of being in an endemic area. The typical bull’s-eye rash is called erythema chronicum migrans. Approximately 70%–80% of patients have a history of a compatible rash, although is usually resolved by the time the arthritis appears. For children suspected of having Lyme disease, testing for antibodies against *Borrelia burgdorferi* should be performed, with confirmatory testing by Western blot (see Chapter 42).

**Treatment**

The objectives of therapy are to restore function, relieve pain, maintain joint motion, and prevent damage to cartilage and bone.

**A. Nonsteroidal Anti-Inflammatory Medications**

First-line therapy is nonsteroidal anti-inflammatory drugs (NSAIDs). A wide range of agents is available but only a few are approved for use in children, including naproxen (10 mg/kg per dose twice daily), ibuprofen (10 mg/kg per dose three to four times daily), and meloxicam (0.125 mg/kg once daily). NSAIDs are generally well tolerated in children, as long as they are taken with food. The average time to symptomatic improvement is 1 month, but in some patients a response is not seen for 8–12 weeks.

**B. Disease-Modifying and Biologic Agents**

For patients with JIA who fail to respond to NSAIDs, weekly methotrexate is the second-line medication of choice. Symptomatic response usually begins within 3–4 weeks. The low dosages used (5–10 mg/m²/wk or 1 mg/kg/wk as a single dose) are generally well tolerated. Potential side effects include nausea, vomiting, hair thinning, stomatitis, leucopenia, immunosuppression, and hepatotoxicity. A complete blood count and liver function tests should be obtained every 2–3 months. Several additional disease-modifying agents are available for use in patients with persistently active disease or those intolerant to methotrexate. Leflunomide is an antipyrimidine medication that is administered orally. Side effects may include diarrhea and alopecia. Biological modifying medications that inhibit tumor necrosis factor, a cytokine known to play an important role in the pathogenesis of JIA, include etanercept, infliximab, and adalimumab. These drugs are generally quite effective in controlling disease and preventing cartilage and bone damage, and have been associated with healing based on radiologic changes. However, their potential long-term effects are unknown, they are very expensive, and require parenteral administration. Newer biologic agents, including anakinra, rituximab, abatacept, and tocilizumab, have demonstrated some efficacy in patients who have not responded to other treatments.
C. Corticosteroids

Local steroid joint injections may be helpful in patients who have arthritis in one or a few joints. Triamcinolone hexacetonide is a long-acting steroid that can be used for injections and is often associated with at least several months of disease control. Oral or parenteral steroids are reserved for children with severe involvement, primarily patients with systemic disease.

D. Uveitis

Iridocyclitis should be closely monitored by an ophthalmologist (see Chapter 16). Typically treatment is initiated with corticosteroid eye drops and dilating agents to prevent scarring between the iris and the lens. In patients who fail topical treatments, methotrexate, cyclosporine, and/or a tumor-necrosis factor inhibitor such as infliximab or adalimumab may be used.

E. Rehabilitation

Physical and occupational therapies are important to focus on range of motion, stretching, and strengthening. These exercises, as well as other modalities such as heat, water therapy, and ultrasound, can help control pain, maintain and restore function, and prevent deformity and disability. Young children with oligoarticular disease affecting asymmetrical lower extremity joints can develop a leg-length discrepancy, which may require treatment with a shoe lift on the unaffected side.

Prognosis

The course and prognosis for JIA is variable, depending on the subtype of disease. Children with persistent oligoarticular JIA have the highest rate of clinical remission, while patients with RF-positive disease are the least likely to achieve this status and are at highest risk for chronic, erosive arthritis that may continue into adulthood. The systemic features associated with systemic arthritis tend to remit within months to years. The prognosis in systemic disease is worse in patients with persistent systemic disease after 6 months, thrombocytosis, and more extensive arthritis.

Perry DC, Bruce C: Evaluating the child who presents with an acute limp. BMJ 2010;341:c4250 [PMID: 20729271].

SYSTEMIC LUPUS ERYTHEMATOSUS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Multisystem inflammatory disease of the joints, serosal linings, skin, kidneys, blood, and central nervous system.
- Autoantibodies such as ANA, double-stranded DNA, and anti-Smith antibodies are present and related to the pathogenesis of disease.

Pathogenesis

Systemic lupus erythematosus (SLE) is the prototype of immune complex diseases; its pathogenesis is related to the formation of antibody-antigen complexes that exist in the circulation and deposit in the involved tissues. The spectrum of symptoms is due to tissue-specific autoantibodies as well as damage to the tissue by lymphocytes, neutrophils, and complement evoked by the deposition of immune complexes. Autoreactive T lymphocytes that have escaped clonal deletion and unregulated B-lymphocyte production of autoantibodies may initiate the disease.

Clinical Findings

A. Symptoms and Signs

The onset of pediatric SLE is most common in girls between the ages of 9 and 15 years. Signs and symptoms depend on the organs affected by immune complex deposition. The American College of Rheumatology has established criteria to aid in the diagnosis of SLE; four of the following 11 criteria are necessary to establish the diagnosis:

1. Malar rash—photosensitive, so-called butterfly rash on the cheeks and nasal bridge
2. Discoid rash—annular, scaly rash on the scalp, face, and extremities that can lead to scarring
3. Photosensitivity—increased rash or other disease symptoms in response to sunlight exposure
4. Mucous membrane ulcers—painless ulcers on the hard palate and/or nasal septum
5. Arthritis—nonerosive arthritis of large and small joints, typically in a symmetrical distribution
6. Serositis—pericarditis and/or pleuritis, often associated with chest pain and difficulty breathing
7. Renal abnormalities—proteinuria (> 0.5 g/d) and/or cellular casts
8. Neurologic abnormalities—seizures and/or psychosis
9. Blood count abnormalities—low white blood cell count (< 4000/mm³), Coombs test–positive anemia, and/or thrombocytopenia (< 100,000/mm³)

10. Positive ANA—seen in almost 100% of patients with SLE

11. Autoantibodies—positive double-stranded DNA antibody, anti-Smith antibody, anticardiolipin antibodies, lupus anticoagulant, and/or false-positive blood test for syphilis

Other common signs and symptoms include fever, fatigue, weight loss, anorexia, Raynaud phenomenon, myositis, vasculitis, chorea, neuropathies, depression, and cognitive changes.

B. Laboratory Findings

Complete blood count abnormalities are common, including leukopenia, anemia, and thrombocytopenia. Approximately 15% of patients are Coombs test–positive, but many patients develop anemia due to other causes, including chronic disease and blood loss. Patients with significant renal involvement may have electrolyte disturbances, elevated kidney function tests, and hypoalbuminemia. The ESR is frequently elevated during active disease. In contrast, many patients with active SLE have a normal CRP. When the CRP is elevated, it is important to investigate possible infectious causes, particularly bacterial infections. It is critical to monitor the urinalysis in patients with SLE for proteinuria and hematuria, as the renal disease may be otherwise clinically silent. In immune complex diseases, complement is consumed; therefore, levels of C3 and C4 are depressed with active disease.

The ANA test is positive in almost 100% of patients, usually at titers of 1:320 or above. In patients with suspected SLE, it is important to obtain a full ANA profile—including antibodies directed against double-stranded DNA, Smith, ribonucleic protein, and Sjogren’s specific antibody A and B to better characterize their serologic markers of disease. Because approximately 50%–60% of pediatric SLE patients have antiphospholipid antibodies and are therefore at increased risk of thrombosis, it is important to screen all patients with SLE for anticardiolipin antibodies and lupus anticoagulant.

Differential Diagnosis

Because there is such a wide spectrum of disease with SLE, the differential diagnosis is quite broad, including systemic JIA, mixed connective tissue disease (MCTD), rheumatic fever, vasculitis, malignancies, and bacterial and viral infections. A negative ANA test essentially excludes the diagnosis of SLE. Anti–double-stranded DNA and Smith antibodies are very specific for SLE. The preceding diagnostic criteria, which are very helpful in establishing the diagnosis of SLE, have a specificity and sensitivity of 96%.

MCTD, an overlap syndrome with features of several collagen-vascular diseases, shares many features with SLE. The symptom complex is diverse and often includes arthritis, fever, skin tightening, Raynaud phenomenon, muscle weakness, and rash. The ANA test is typically positive in very high titers. The ANA profile is negative except for antibodies directed against ribonucleic protein.

Treatment

The treatment of SLE should be tailored to the organ system involved so that toxicities may be minimized. Prednisone is the mainstay of treatment and has significantly lowered the mortality rate in SLE. Patients with severe, life-threatening, or organ-threatening disease are typically treated with intravenous pulse methylprednisolone, 30 mg/kg per dose (maximum of 1000 mg) daily for 3 days, and then switched to 2 mg/kg/d of prednisone. The dosage should be adjusted using clinical and laboratory parameters of disease activity, and the minimum amount of corticosteroid to control the disease should be used. Skin manifestations, arthritis, and fatigue may be treated with antimalarials such as hydroxychloroquine, 5–7 mg/kg/d orally. Pleuritic pain or arthritis can often be managed with NSAIDs.

If disease control is inadequate with prednisone or if the dose required produces intolerable side effects, a steroid-sparing agent, such as mycophenolate mofetil, azathioprine, and cyclophosphamide, should be added. More recently, rituximab, a monoclonal antibody directed against the B-cell surface marker CD20, has been used for persistent active disease, particularly in patients with hematologic manifestations. Patients who have evidence of antiphospholipid antibodies should be treated with a baby aspirin every day to help prevent thrombosis. Thrombotic events due to these antibodies require long-term anticoagulation.

The toxicities of the regimens must be carefully considered. Growth failure, osteoporosis, Cushing syndrome, adrenal suppression, and aseptic necrosis are serious side effects of chronic use of prednisone. When high doses of corticosteroids are used (> 2 mg/kg/d), there is a high risk of infection. Cyclophosphamide can cause bone marrow suppression, bladder epithelial dysplasia, hemorrhagic cystitis, and sterility. Azathioprine has been associated with liver damage and bone marrow suppression. Immunosuppressant treatment should be withheld if the total white blood cell count falls below 3000/µL or the neutrophil count falls below 1000/µL. Retinal damage from hydroxychloroquine is generally not observed with recommended dosages, but patients are typically instructed to have visual field testing every 6–12 months to screen for retinal toxicity.

Prognosis

The prognosis in SLE relates to the presence of renal involvement or infectious complications of treatment. Nonetheless,
the survival rate has improved from 51% at 5 years in 1954 to 90% today. The disease has a natural waxing and waning cycle; the disease may flare at any time and spontaneous remission may rarely occur.


DERMATOMYOSITIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

► Pathognomonic skin rashes.
► Weakness of proximal muscles and occasionally of pharyngeal and laryngeal groups.
► Pathogenesis related to vasculitis.

Treatment

Treatment is aimed at suppression of the inflammatory response and prevention of the loss of muscle function and joint range of motion. Acutely, it is very important to assess the adequacy of the ventilatory effort and swallowing and to rule out intestinal vasculitis. Corticosteroids are the initial therapy of choice. Treatment is usually initiated with prednisone, 2 mg/kg/d, and continued until signs and symptoms of active disease are controlled; the dosage is then gradually tapered. In severe cases, intravenous pulse methylprednisolone for 3 days is indicated. Therapy is guided by the physical examination findings and muscle enzyme values. Methotrexate is often used concomitantly to achieve better control of the disease and minimize the steroid side effects. If patients continue to have active disease, additional steroid-sparing agents, such as cyclosporine, intravenous immunoglobulin, and, in severe cases, cyclophosphamide should be started.

Hydroxychloroquine and intravenous immunoglobulin may be particularly helpful in managing the skin manifestations. As the rashes are photosensitive, sun protection is very important. Physical and occupational therapy should be initiated early in the course of disease. Initially, passive range-of-motion exercises are performed to prevent loss of motion. Later, once the muscle enzymes have normalized, a graduated program of stretching and strengthening exercises is introduced to restore normal strength and function.

Prognosis

Most patients have a monocyclic course; 10%–20% of patients have more chronic or recurrent symptoms. Factors that influence the outcome include the rapidity of symptom onset, extent of weakness, presence of cutaneous or gastrointestinal vasculitis, timeliness of diagnosis, initiation of therapy, and response to treatment. Dermatomyositis in children is not associated with cancer as it is in adults.

VASCULITIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

► Cutaneous involvement with nonblanching, tender skin lesions.
► Frequently with systemic inflammation, particularly in the lungs and kidneys.
► Gold-standard for diagnosis is demonstration of vasculitis on biopsy.

The vasculitides are a group of conditions that involve inflammation of blood vessels. They are classified by the size of the blood vessels affected (Table 29–3). The two most common forms of vasculitis in childhood—Henoch-Schonlein Purpura (HSP) (see Chapter 30) and Kawasaki Disease (see Chapter 20)—are acute, self-limited forms of vasculitis. In contrast, there are idiopathic, chronic forms of vasculitis, such as granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA), which are rare in childhood.

Clinical Findings

A. Symptoms and Signs

Signs and symptoms vary by disease, but most children with chronic forms of vasculitis have persistent fever, fatigue, weight loss, and signs of pulmonary, renal, musculoskeletal, gastrointestinal, and/or skin inflammation.

Table 29–3. Classification of vasculitides by vessel size involved.

<table>
<thead>
<tr>
<th>Large vessel</th>
<th>Medium vessel</th>
<th>Small vessel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takayasu arteritis</td>
<td>Kawasaki disease</td>
<td>Henoch-Schonlein purpura</td>
</tr>
<tr>
<td>Giant cell arteritis</td>
<td>Granulomatosis with polyangiitis</td>
<td>Microscopic polyarteritis</td>
</tr>
<tr>
<td></td>
<td>(previously called Wegener granulomatosis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polyarteritis nodosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Churg-Strauss syndrome</td>
<td></td>
</tr>
</tbody>
</table>

Granulomatosis with polyangiitis (previously called Wegener granulomatosis) often causes nephritis and involves the lungs, manifesting as chronic cough, hemorrhage, and/or cavitating lesions. This form of vasculitis also frequently affects the upper respiratory tract, causing chronic otitis media, sinusitis, and/or inflammation of the trachea; saddle nose deformity may occur.

Children with polyarteritis nodosa (PAN) often present with skin lesions such as purpura, nodules or ulcers, and evidence of organ involvement with abdominal pain, testicular pain, hypertension, hematuria and/or neurologic symptoms. MPA typically presents with pulmonary-renal syndrome with features of pulmonary hemorrhage and rapidly progressive kidney inflammation.

B. Laboratory Findings/Imaging Studies/Special Tests

Patients with vasculitis often have elevated inflammatory markers. If they have significant renal involvement, they may have elevated renal function tests and abnormal urinary sediment. Anemia is common, due to chronic disease and/or renal insufficiency. A low hemoglobin may also be an indicator of pulmonary hemorrhage in a patient with cough, hemoptysis, respiratory distress, and/or infiltrates on chest x-ray.

Antineutrophil cytoplasmic antibodies (ANCA) may be present in patients with small vessel vasculitis. Cytoplasmic ANCA (c-ANCA), which is usually directed against proteinase 3 and is quite sensitive and specific for GPA, is positive in 80%–95% of patients with active disease. Perinuclear ANCA (p-ANCA) is typically directed against myeloperoxidase and is associated with MPA and can also be seen in HSP, Churg-Strauss, and inflammatory bowel disease.

The diagnosis is made based on a typical clinical presentation and laboratory findings. If the diagnosis remains uncertain, then attempting to definitively establish the diagnosis with a biopsy of involved tissue is warranted. A biopsy in patients with GPA typically demonstrates necrotizing granulomatous vasculitis. Biopsies of involved areas will confirm the presence of vasculitis in small vessels in patients with MPA and small and medium arteries in PAN. If a biopsy is not feasible, additional imaging studies such as an angiogram, which can demonstrate characteristic patterns of inflammation in affected blood vessels, should be considered.

Treatment

The treatment of the various forms of chronic vasculitis is based on the severity of illness and the organs involved. Typically, corticosteroids are the initial therapy. Patients with severe disease are usually treated with intravenous pulse methylprednisolone, 30 mg/kg per dose (maximum of 1000 mg) daily for 3 days, and then switched to 2 mg/kg/d of...
prednisone. The dosage is then gradually tapered as tolerated based on clinical and laboratory markers of disease activity. Patients are usually treated with other immunosuppressant medications to gain and maintain control of the disease and minimize the steroid side effects. Standard treatment has included cyclophosphamide for induction, followed by maintenance with methotrexate, azathioprine, or mycophenolate. More recent studies in patients with GPA suggest that rituximab can be used for induction therapy with potentially fewer side effects and risks than cyclophosphamide.

**Prognosis**

Immunosuppressive medications have improved survival and remission rates for patients with chronic vasculitis. Conditions such as GPA had almost always been fatal; since introducing the regimen of high-dose steroids and cyclophosphamide (or other cytotoxic agents), patients with vasculitides have greatly improved outcomes, with 5-year survival ranging from 50% to 100%. Because relapses are common when therapy is weaned or stopped, maintenance immunosuppression is commonly used in these disorders.

**RAYNAUD PHENOMENON**

Raynaud phenomenon is an intermittent vasospastic disorder of the extremities. As much as 10% of the adult population has this disorder, and onset in childhood is not uncommon. The classic triphasic presentation is cold-induced pallor, then cyanosis, followed by hyperemia, but incomplete forms are frequent. In adults older than 35 years who are ANA-positive, Raynaud phenomenon may be a harbinger of rheumatic disease. This progression is rarely seen in childhood. Evaluation should include a detailed history with review of systems relevant to rheumatic disease. Examination of the cuticle edge, using an otoscope or a special microscope called a capillaroscope, is important to screen for dilated and/or tortuous capillaries that may suggest an underlying rheumatic disease such as lupus or scleroderma. In the absence of positive findings, Raynaud phenomenon is likely to be idiopathic.

Treatment involves education about keeping the extremities and core body warm and the role of stress, which may be a precipitant. In very symptomatic patients, treatment with calcium channel blockers such as nifedipine can be effective.

**NONINFLAMMATORY PAIN SYNDROMES**

1. **Complex Regional Pain Syndrome**

Complex regional pain syndrome, previously known as reflex sympathetic dystrophy, is a painful condition that is frequently confused with arthritis. Prevalence and recognition of the condition appear to be increasing. Severe extremity pain leading to nearly complete loss of function is the hallmark of the condition. Evidence of autonomic dysfunction is demonstrated by pallor or cyanosis, temperature differences (with the affected extremity cooler than surrounding areas), and generalized swelling. On examination, allodynia, which is marked cutaneous hyperesthesia to even the slightest touch, is often evident. Results of laboratory tests are normal, without evidence of systemic inflammation. Radiographic findings are normal except for late development of osteoporosis. Bone scans may be helpful and may demonstrate either increased or decreased blood flow to the painful extremity.

The cause of this condition remains elusive. Treatment includes physical therapy to focus on restoration of function, maintenance of range of motion, and pain relief. NSAIDs can be helpful for pain control, and in patients with more chronic disease, gabapentin or pregabalin are frequently effective. Persistent disease may respond to local nerve blocks. Counseling is helpful to identify potential psychosocial stressors and to assist with pain management. Long-term prognosis is good if recovery is rapid; recurrent episodes imply a less favorable prognosis.

2. **Fibromyalgia**

Fibromyalgia is a chronic pain syndrome characterized by diffuse musculoskeletal pain, fatigue, sleep disturbance, and chronic headaches. Weather changes, fatigue, and stress exacerbate symptoms. Patients have a normal examination except for characteristic trigger points at the insertion of muscles, especially along the neck, spine, and pelvis.

Treatment centers on physical therapy, nonnarcotic pain medications, improving sleep, and counseling. Low-dose amitriptyline or trazodone can help with sleep and may produce remarkable reduction in pain. Physical therapy should emphasize a graded rehabilitative approach to stretching and exercise and promote regular aerobic exercise. Pregabalin recently became the first medication to be approved by the Food and
Drug Administration for the treatment of fibromyalgia. Use of the drug is associated with decreased pain in adults with fibromyalgia, and studies are planned to test the safety and efficacy of its use in children with the condition. The prognosis for children with fibromyalgia is not clear, and long-term strategies may be necessary to enable them to cope with the condition.


3. Hypermobility Syndrome

Ligamentous laxity, which previously was thought to occur only in Ehlers-Danlos syndrome or Down syndrome, is now recognized as a common cause of joint pain. Patients with hypermobility present with episodic joint pain and occasionally with swelling that lasts a few days after increased physical activity. Depending on the activity, almost any joint may be affected. Five criteria have been established: (1) passive opposition of the thumb to the flexor surface of the forearm, (2) passive hyperextension of the fingers so that they are parallel to the extensor surface of the forearm, (3) hyperextension of the elbow, (4) hyperextension of the knee, and (5) palms on floor with knees extended. Results of laboratory tests are normal. The pain associated with the syndrome is produced by improper joint alignment caused by the laxity during exercise. Treatment consists of a graded conditioning program designed to provide muscular support of the joints to compensate for the loose ligaments and to train patients to protect their joints from hyperextension.

NORMAL HEMATOLOGIC VALUES

The normal ranges for peripheral blood counts vary significantly with age. Normal neonates show a relative polycythemia with a hematocrit concentration of 45%–65%. The reticulocyte count at birth is relatively high at 2%–8%. Within the first few days of life, erythrocyte production decreases, and the values for hemoglobin and hematocrit fall to a nadir at about 6–8 weeks. During this period, known as physiologic anemia of infancy, normal infants have hemoglobin values as low as 10 g/dL and hematocrits as low as 30%. Thereafter, the normal values for hemoglobin and hematocrit gradually increase until adult values are reached after puberty. Premature infants can reach a nadir hemoglobin level of 7–8 g/dL at 8–10 weeks. Anemia is defined as a hemoglobin concentration two standard deviations below the mean for a normal population of the same gender and age.

Newborns have larger red cells than children and adults, with a mean corpuscular volume (MCV) at birth of more than 94 fL. The MCV subsequently falls to a nadir of 70–84 fL at about age 6 months. Thereafter, the normal MCV increases gradually until it reaches adult values after puberty.

The normal number of white blood cells (WBCs) is higher in infancy and early childhood than later in life. Neutrophils predominate in the differential white count at birth and in the older child. Lymphocytes predominate (up to 80%) between about ages 1 month and 6 years.

Normal values for the platelet count are 150,000–400,000/μL and vary little with age.

BONE MARROW FAILURE

Failure of the marrow to produce adequate numbers of circulating blood cells may be congenital or acquired and may cause pancytopenia (aplastic anemia) or involve only one cell line (single cytopenia). Constitutional and acquired aplastic anemias are discussed in this section and the more common single cytopenias in later sections. Bone marrow failure caused by malignancy or other infiltrative disease is discussed in Chapter 31. It is important to remember that many drugs and toxins may affect the marrow and cause single or multiple cytopenias.

Suspicion of bone marrow failure is warranted in children with pancytopenia and in children with single cytopenias who lack evidence of peripheral red cell, white cell, or platelet destruction. Macrocytosis often accompanies bone marrow failure. Many of the constitutional bone marrow disorders are associated with a variety of congenital anomalies.

CONSTITUTIONAL APLASTIC ANEMIA (FANCONI ANEMIA)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Progressive pancytopenia.
- Macrocytosis.
- Multiple congenital anomalies.
- Increased chromosome breakage in peripheral blood lymphocytes.

General Considerations

Fanconi anemia, which is the number 1 inherited bone marrow failure syndrome, is characterized by defective DNA repair that is caused by a variety of genetic mutations. Inheritance is autosomal recessive, and this disease occurs in all ethnic groups; 75%–90% of affected individuals develop bone marrow failure in the first 10 years of life.
Clinical Findings

A. Symptoms and Signs

Symptoms are determined principally by the degree of hematologic abnormality. Thrombocytopenia may cause purpura, petechiae, and bleeding; neutropenia may cause severe or recurrent infections; and anemia may cause weakness, fatigue, and pallor. Congenital anomalies are present in at least 50% of patients. The most common include abnormal pigmentation of the skin (generalized hyperpigmentation, café au lait or hypopigmented spots), short stature with delicate features, and skeletal malformations (hypoplasia, anomalies, or absence of the thumb and radius). More subtle anomalies are hypoplasia of the thenar eminence or a weak or absent radial pulse. Associated renal anomalies include aplasia, horseshoe kidney, and duplication of the collecting system. Other anomalies are microcephaly, microphthalmia, strabismus, ear anomalies, and hypogenitalism.

B. Laboratory Findings

Thrombocytopenia or leukopenia typically occurs first, followed over the course of months to years by anemia and progression to severe aplastic anemia. Macrocytosis is virtually always present; is usually associated with anisocytosis and an elevation in fetal hemoglobin levels; and is an important diagnostic clue. The bone marrow reveals hypoplasia or aplasia. The diagnosis is confirmed by the demonstration of an increased number of chromosome breaks and rearrangements in peripheral blood lymphocytes. The use of diepoxybutane to stimulate these breaks and rearrangements provides a sensitive assay that is virtually always positive in children with Fanconi anemia, even before the onset of hematologic abnormalities.

Specific Fanconi genes (FANCA, B, C, and others) have been identified and transmission is generally autosomal, although FANCB is on the X chromosome.

Differential Diagnosis

Because patients with Fanconi anemia frequently present with thrombocytopenia, the disorder must be differentiated from idiopathic thrombocytopenic purpura (ITP) and other more common causes of thrombocytopenia. In contrast to patients with ITP, those with Fanconi anemia usually exhibit a gradual fall in the platelet count. Counts less than 20,000/μL are often accompanied by neutropenia or anemia. Fanconi anemia may also be manifested initially by pancytopenia, and must be differentiated from acquired aplastic anemia and other disorders, such as acute leukemia. Examination of the bone marrow and chromosome studies of peripheral blood lymphocytes (chromosomal breakage) will usually distinguish between these disorders.

Complications

Complications are those related to thrombocytopenia and neutropenia. Endocrine dysfunction may include growth hormone deficiency, hypothyroidism, or impaired glucose metabolism. Persons with Fanconi anemia have a significantly increased risk of developing malignancies, especially acute nonlymphocytic leukemia (800-fold), head and neck cancers, genital cancers, and myelodysplastic syndromes.

Treatment

Attentive supportive care is critical. Patients with neutropenia who develop fever require prompt evaluation and parenteral broad-spectrum antibiotics. Transfusions are important, but should be used judiciously, especially in the management of thrombocytopenia, which frequently becomes refractory to platelet transfusions as a consequence of alloimmunization. Transfusions from family members should be discouraged because of the negative effect on the outcome of bone marrow transplant. At least 50% of patients with Fanconi anemia respond, albeit incompletely, to oxymetholone, and many recommend institution of androgen therapy before transfusions are needed. However, oxymetholone is associated with hepatotoxicity, hepatic adenomas, and masculinization, and is particularly troublesome for female patients.

The definitive treatment is a reduced intensity hematopoietic stem cell transplant, ideally from a human leukocyte antigen (HLA)-identical sibling donor, although matched unrelated and cord transplant may be considered. Before transplant, any prospective sibling donor must be screened for Fanconi anemia.

Prognosis

Many patients succumb to bleeding, infection, or malignancy in adolescence or early adulthood. Stem cell transplant does not reduce the increased susceptibility for malignancy.


ACQUIRED APLASTIC ANEMIA

- Weakness and pallor.
- Petechiae, purpura, and bleeding.
Frequent or severe infections.
- Pancytopenia with hypocellular bone marrow.

**General Considerations**

Acquired aplastic anemia is characterized by peripheral pancytopenia with a hypocellular bone marrow. Approximately 50% of cases in childhood are idiopathic. Other cases are secondary to idiosyncratic reactions to drugs such as phenylbutazone, sulfonamides, nonsteroidal anti-inflammatory drugs (NSAIDs), and anticonvulsants. Toxic causes include exposure to benzene, insecticides, and heavy metals. Infectious causes include viral hepatitis, infectious mononucleosis (Epstein-Barr virus [EBV]), and human immunodeficiency virus (HIV). In immunocompromised children, aplastic anemia has been associated with human parvovirus B19. Immune mechanisms of marrow suppression are suspected in most cases.

**Clinical Findings**

**A. Symptoms and Signs**

Weakness, fatigue, and pallor result from anemia; petechiae, purpura, and bleeding occur due to thrombocytopenia; and fevers due to generalized or localized infections are associated with neutropenia. Hepatosplenomegaly and significant lymphadenopathy are unusual.

**B. Laboratory Findings**

Anemia is usually normocytic, with a low reticulocyte count. The WBC count is low, with a marked neutropenia. The platelet count is typically below 50,000/μL and is frequently below 20,000/μL. Bone marrow biopsy shows a marked decrease in cellularity typically less than 20% of normal in severe aplastic anemia.

**Differential Diagnosis**

Examination of the bone marrow usually excludes pancytopenia caused by peripheral destruction of blood cells or by infiltrative processes such as acute leukemia, storage diseases, and myelofibrosis. Many of these other conditions are associated with hepatosplenomegaly. Preleukemic conditions also may present with pancytopenia and hypocellular bone marrows. Cytogenetic analysis of the marrow is helpful, because a clonal abnormality may predict the subsequent development of leukemia. Since congenital anomalies may not be apparent in some children with Fanconi anemia, patients with newly diagnosed aplastic anemia should be studied for chromosome breaks and rearrangements in peripheral blood lymphocytes.

**Complications**

Acquired aplastic anemia is characteristically complicated by infection and hemorrhage, which are the leading causes of death. Other complications are those associated with therapy.

**Treatment**

Comprehensive supportive care is essential. Febrile illnesses require prompt evaluation and usually parenteral antibiotics. Red blood cell (RBC) transfusions alleviate symptoms of anemia. Platelet transfusions may be lifesaving, but they should be used sparingly because many patients eventually develop platelet alloantibodies and become refractory to platelet transfusions.

Immunomodulation, usually with antithymocyte globulin and cyclosporine or tacrolimus, is associated with a high response rate and improved overall survival. However, incomplete response, relapse, and progression to myelodysplasia/leukemia may occur. Hematopoietic stem cell transplant is the treatment of choice for severe aplastic anemia when an HLA-identical sibling donor is available. Because the likelihood of success with transplant is influenced adversely by receipt of transfusions, HLA typing of family members should be undertaken at the time of diagnosis. Increasingly, patients who lack HLA-identical siblings are able to find matched donors through cord blood banks or the National Marrow Donor Program.

**Prognosis**

Children receiving early bone marrow transplant from an HLA-identical sibling have a long-term survival rate of greater than 80%. Sustained, complete remissions may be seen in 65%–80% of patients receiving immunosuppressive therapy. However, both therapies are associated with an increased risk of myelodysplastic syndromes, acute leukemia, and other malignancies in long-term survivors.

**ANEMIAS**

**APPROACH TO THE CHILD WITH ANEMIA**

Anemia is a relatively common finding, and identifying the cause is important. Even though anemia in childhood has many causes, the correct diagnosis can usually be established.
with relatively little laboratory cost. Frequently the cause is identified with a careful history. Nutritional causes should be sought by inquiry about dietary intake; growth and development; and symptoms of chronic disease, malabsorption, or blood loss. Hemolytic disease may be associated with a history of jaundice (including neonatal jaundice) or by a family history of anemia, jaundice, gallbladder disease, splenomegaly, or splenectomy. The child’s ethnicity may suggest the possibility of certain hemoglobinopathies or deficiencies of red cell enzymes, such as glucose-6-phosphate dehydrogenase (G6PD). The review of systems may reveal clues to a previously unsuspected systemic disease associated with anemia. The patient’s age is important because some causes of anemia are age related. For example, patients with iron-deficiency anemia (IDA) and β-globin disorders present more commonly at ages 6–36 months than at other times in life.

The physical examination may also reveal clues to the cause of anemia. Poor growth may suggest chronic disease or hypothyroidism. Congenital anomalies may be associated with constitutional aplastic anemia (Fanconi anemia) or with congenital hypoplastic anemia (Diamond-Blackfan anemia). Other disorders may be suggested by the findings of petechiae or purpura (leukemia, aplastic anemia, hemolytic uremic syndrome), jaundice (hemolysis or liver disease), generalized lymphadenopathy (leukemia, juvenile rheumatoid arthritis, HIV infection), splenomegaly (leukemia, sickle hemoglobinopathy syndromes, hereditary spherocytosis, liver disease, hypersplenism), or evidence of chronic or recurrent infections.

The initial laboratory evaluation of the anemic child consists of a complete blood count (CBC) with differential and platelet count, review of the peripheral blood smear, and a reticulocyte count. The algorithm in Figure 30–1 uses limited laboratory information, together with the history and physical examination, to reach a specific diagnosis or to focus additional laboratory investigations on a limited diagnostic category (eg, microcytic anemia, bone marrow failure, pure red cell aplasia, or hemolytic disease). This diagnostic scheme depends principally on the MCV to determine whether the anemia is microcytic, normocytic, or macrocytic, according to the percentile curves of Dallman and Siimes (Figure 30–2).
Although the incidence of iron deficiency (ID) in the United States has decreased significantly with improvements in infant nutrition, it remains an important cause of microcytic anemia, especially at ages 6–24 months. A trial of therapeutic iron is appropriate in such children, provided the dietary history is compatible with ID and the physical examination or CBC does not suggest an alternative cause for the anemia. If a trial of therapeutic iron fails to correct the anemia and microcytosis, further evaluation is warranted.

Another key element of Figure 30–1 is the use of both the reticulocyte count and the peripheral blood smear to determine whether a normocytic or macrocytic anemia is due to hemolysis. Typically hemolytic disease is associated with an elevated reticulocyte count, but some children with chronic hemolysis initially present during a period of a virus-induced aplasia when the reticulocyte count is not elevated. Thus, review of the peripheral blood smear for evidence of hemolysis (eg, spherocytes, red cell fragmentation, sickle forms) is important in the evaluation of children with normocytic anemias and low reticulocyte counts. When hemolysis is suggested, the correct diagnosis may be suspected by specific abnormalities of red cell morphology or by clues from the history or physical examination. Autoimmune hemolysis is usually excluded by a negative direct antiglobulin test (DAT). Review of blood counts and the peripheral blood smears of the mother and father may suggest genetic disorders such as hereditary spherocytosis. Children with normocytic or macrocytic anemias, with relatively low reticulocyte counts and no evidence of hemolysis on the blood smear, usually have anemias caused by inadequate erythropoiesis in the bone marrow. The presence of neutropenia or thrombocytopenia in such children suggests the possibility of aplastic anemia, malignancy, or severe folate or vitamin B₁₂ deficiency, and usually dictates examination of the bone marrow.

Pure red cell aplasia may be congenital (Diamond-Blackfan anemia), acquired, and transient (transient erythroblastopenia of childhood); a manifestation of a systemic disease such as renal disease or hypothyroidism; or associated with malnutrition or mild deficiencies of folate or vitamin B₁₂.


**PURE RED CELL APLASIA**

Infants and children with normocytic or macrocytic anemia, a low reticulocyte count, and normal or elevated numbers of neutrophils and platelets should be suspected of having pure red cell aplasia. Examination of the peripheral blood smear in such cases is important because signs of hemolytic disease...
suggest chronic hemolysis complicated by an aplastic crisis due to parvovirus infection. Appreciation of this phenomenon is important because chronic hemolytic disease may not be diagnosed until the anemia is exacerbated by an episode of red cell aplasia and subsequent rapidly falling hemoglobin level. In such cases, cardiovascular compromise and congestive heart failure may develop quickly.

1. Congenital Hypoplastic Anemia (Diamond-Blackfan Anemia)

   **ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

   - Age: birth to 1 year.
   - Macrocytic anemia with reticulocytopenia.
   - Bone marrow with erythroid hypoplasia.
   - Short stature or congenital anomalies in one-third of patients.

   **General Considerations**

   Diamond-Blackfan anemia is a relatively rare cause of anemia that usually presents at 2–3 months of age. To date, mutations of genes encoding ribosomal proteins occurring autosomal dominance has been recognized. Early diagnosis is important because treatment with corticosteroids results in increased erythropoiesis in 80% of patients, thus avoiding the difficulties and complications of long-term chronic transfusion therapy.

   **Clinical Findings**

   **A. Symptoms and Signs**

   Signs and symptoms are generally those of chronic anemia, such as pallor and congestive heart failure. Jaundice, splenomegaly, or other evidence of hemolysis are usually absent. Short stature or other congenital anomalies are present in 50% of patients. A wide variety of anomalies have been described; craniofacial and triphalangeal thumbs are the most common.

   **B. Laboratory Findings**

   Diamond-Blackfan anemia is characterized by severe macrocytic anemia and marked reticulocytopenia. The neutrophil count is usually normal or slightly decreased, and the platelet count is normal, elevated, or decreased. The bone marrow usually shows a marked decrease in erythroid precursors but is otherwise normal. In older children, fetal hemoglobin levels are usually increased and there is evidence of persistent fetal erythropoiesis, such as the presence of the i antigen on erythrocytes. In addition, the level of adenosine deaminase in erythrocytes is elevated.

   **Differential Diagnosis**

   The principal differential diagnosis is transient erythroblastopenia of childhood. Children with Diamond-Blackfan anemia generally present at an earlier age, often have macrocytosis, and have evidence of fetal erythropoiesis and an elevated level of red cell adenosine deaminase. In addition, short stature and congenital anomalies are not associated with transient erythroblastopenia. Lastly, transient erythroblastopenia of childhood usually resolves within 6–8 weeks of diagnosis, whereas Diamond-Blackfan anemia is a lifelong affliction. Other disorders associated with decreased red cell production such as renal failure, hypothyroidism, and the anemia of chronic disease need to be considered.

   **Treatment**

   Oral corticosteroids should be initiated at the time of diagnosis. Eight percent of patients respond to prednisone, 2 mg/kg/d, and many who respond subsequently tolerate significant tapering of the dose. Patients who are unresponsive to prednisone require chronic transfusion therapy, which inevitably causes transfusion-induced hemosiderosis and the need for chelation. Bone marrow transplant is an alternative definitive therapy that should be considered for transfusion-dependent patients who have HLA-identical siblings. Unpredictable spontaneous remissions occur in up to 20% of patients.

   **Prognosis**

   The prognosis for patients responsive to corticosteroids is generally good, particularly if remission is maintained with low doses of alternate-day prednisone. Patients dependent on transfusion are at risk for the complications of hemosiderosis. There is an increased risk for the development of solid tumors.


2. Transient Erythroblastopenia of Childhood

   **ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

   - Age: 6 months to 4 years.
   - Normocytic anemia with reticulocytopenia.
   - Absence of hepatosplenomegaly or lymphadenopathy.
   - Erythroid precursors initially absent from bone marrow.
General Considerations

Transient erythroblastopenia of childhood is a relatively common cause of acquired anemia in early childhood. The disorder is suspected when a normocytic anemia is discovered during evaluation of pallor or when a CBC is obtained for another reason. Because the anemia is due to decreased red cell production, and thus develops slowly, the cardiovascular system has time to compensate. Therefore, children with hemoglobin levels as low as 4–5 g/dL may look remarkably well. The disorder is thought to be autoimmune in most cases, because IgG from some patients has been shown to suppress erythropoiesis in vitro.

Clinical Findings

Pallor is the most common sign, and hepatosplenomegaly and lymphadenopathy are absent. The anemia is normocytic, and the peripheral blood smear shows no evidence of hemolysis. The platelet count is normal or elevated, and the neutrophil count is normal or, in some cases, decreased. Early in the course, no reticulocytes are identified. The Coombs test is negative, and there is no evidence of chronic renal disease, hypothyroidism, or other systemic disorder. Bone marrow examination shows severe erythroid hypoplasia initially; subsequently, erythroid hyperplasia develops along with reticulocytosis, and the anemia resolves.

Differential Diagnosis

Transient erythroblastopenia of childhood must be differentiated from Diamond-Blackfan anemia, particularly in infants younger than age 1 year. In contrast to Diamond-Blackfan anemia, transient erythroblastopenia is not associated with macrocytosis, short stature, or congenital anomalies, or with evidence of fetal erythropoiesis prior to the phase of recovery. Also in contrast to Diamond-Blackfan anemia, transient erythroblastopenia is associated with normal levels of red cell adenosine deaminase. Transient erythroblastopenia of childhood must also be differentiated from chronic disorders associated with decreased red cell production, such as renal failure, hypothyroidism, and other chronic states of infection or inflammation. As with other single cytopenias, the possibility of malignancy (ie, leukemia) should always be considered, particularly if fever, bone pain, hepatosplenomegaly, or lymphadenopathy is present. In such cases, examination of the bone marrow is generally diagnostic. Confusion may sometimes arise when the anemia of transient erythroblastopenia is first identified during the early phase of recovery when the reticulocyte count is high. In such cases, the disorder may be confused with the anemia of acute blood loss or with hemolytic disease. In contrast to hemolytic disorders, transient erythroblastopenia of childhood is not associated with jaundice or peripheral destruction of red cells.

Treatment & Prognosis

By definition, this is a transient disorder. Some children require red cell transfusions if cardiovascular compromise is present. Resolution of the anemia is heralded by an increase in the reticulocyte count, which generally occurs within 4–8 weeks of diagnosis. Transient erythroblastopenia of childhood is not treated with corticosteroids because of its short course.

NUTRITIONAL ANEMIAS

1. Iron-Deficiency Anemia

General Considerations

Iron deficiency (ID) and iron-deficiency anemia (IDA) are a worldwide concern. ID is defined as a state in which there is insufficient iron to maintain normal physiologic functions such that iron stores (serum ferritin or bone marrow iron content) are reduced. IDA is defined as a hemoglobin more than 2 standard deviations below normal for age and gender, which has developed as a consequence of ID.

Normal-term infants are born with sufficient iron stores to prevent ID for the first 4 months of life, whereas premature infants have reduced iron stores since iron is predominantly acquired in the last trimester. Thus premature infants, as well as those with low birth weight, neonatal anemia, perinatal blood loss, or subsequent hemorrhage may have reduced iron stores. Breast milk is low in iron relative to cow’s milk and fortified formulas, and without iron supplementation, ID may develop in exclusively breast-fed children.

Clinical Findings

A. Symptoms and Signs

Symptoms and signs vary with the severity of the deficiency. ID is usually asymptomatic. IDA may be associated with pallor, fatigue, and irritability. A history of pica is common. It is controversial whether or not ID/IDA adversely affects long-term neurodevelopment and behavior. IDA is
associated with increased lead absorption and subsequent neurotoxicity.

B. Laboratory Findings

According to the American Academy of Pediatrics (AAP) 2010 guidelines, screening for anemia should be performed at about 12 months of age with determination of hemoglobin concentration and an assessment of risk factors for ID/IDA. Risks include low socioeconomic status, prematurity or low birth weight, lead exposure, exclusive breast-feeding beyond 4 months of age without iron supplementation, weaning to whole milk or complementary foods that do not include iron, feeding problems, poor growth, and inadequate nutrition. If the hemoglobin is less than 11 mg/dL or there is a high risk for ID, an iron evaluation should be performed. There is no single measurement that will document the iron status; recommended tests include serum ferritin and C-reactive protein or reticulocyte hemoglobin concentration.

Differential Diagnosis

The differential diagnosis is that of microcytic, hypochromic anemia. The possibility of thalassemia (α-thalassemia, β-thalassemia, and hemoglobin E disorders) should be considered, especially in infants of African, Mediterranean, or Asian ethnic background. In contrast to infants with ID, those with thalassemia generally have an elevated red cell number and are less likely, in mild cases, to have an elevated RBC distribution width (the index of the MCV divided by the red cell number is usually < 13). Thalassemias are associated with normal or increased levels of serum iron and ferritin and with normal iron-binding capacity. The hemoglobin electrophoresis in β-thalassemia minor typically shows an elevation of hemoglobin A₂ levels, but coexistent ID may lower the percentage of hemoglobin A₂ into the normal range. Hemoglobin electrophoresis will also identify children with hemoglobin E, a cause of microcytosis common in Southeast Asians. In contrast, the hemoglobin electrophoresis in α-thalassemia trait is normal. Lead poisoning has also been associated with microcytic anemia, but anemia with lead levels less than 40 mg/dL is often due to coexistent ID.

The anemia of chronic inflammation or infection is normocytic but in late stages may be microcytic. This anemia is usually suspected because of the presence of a chronic systemic disorder and an elevated CRP. Relatively mild infections, particularly during infancy, may cause transient anemia. Thus, screening tests for anemia should not be obtained within 3–4 weeks of such infections.

Treatment

The AAP has published guidelines for routine iron intake for children. If a child has a hemoglobin of 10–11 mg/dL at the 12-month screening visit, the child can be closely monitored or empirically treated with iron supplementation with a recheck of hemoglobin in one month.

If a child is found to have ID/IDA, the recommended oral dose of elemental iron is 6 mg/kg/d in three divided daily doses. Parenteral administration of iron is rarely necessary. Iron therapy results in an increased reticulocyte count within 3–5 days, which is maximal between 5 and 7 days. The rate of hemoglobin rise is inversely related to the hemoglobin level at diagnosis. Resolution of the anemia is within 4–6 weeks. Treatment is generally continued for a few additional months to replenish iron stores.

2. Megaloblastic Anemias

Pallor and fatigue.

Nutritional deficiency or intestinal malabsorption.

Macrocytic anemia.

Megaloblastic bone marrow changes.

General Considerations

Megaloblastic anemia is a macrocytic anemia caused by deficiency of cobalamin (vitamin B₁₂), folic acid, or both. Cobalamin deficiency due to dietary insufficiency may occur in infants who are breast fed by mothers who are strict vegetarians or who have pernicious anemia. Intestinal malabsorption is the usual cause of cobalamin deficiency in children and occurs with Crohn disease, chronic pancreatitis, bacterial overgrowth of the small bowel, infection with the fish tapeworm (Diphyllobothrium latum), or after surgical resection of the terminal ileum. Deficiencies due to inborn errors of metabolism (transcobalamin II deficiency and methylmalonic aciduria) also have been described. Malabsorption of cobalamin due to deficiency of intrinsic factor (pernicious anemia) is rare in childhood.

Folic acid deficiency may be caused by inadequate dietary intake, malabsorption, increased folate requirements, or some combination of the three. Folate deficiency due to
dietary deficiency alone is rare but occurs in severely malnourished infants and has been reported in infants fed with goat’s milk not fortified with folic acid. Folic acid is absorbed in the jejunum, and deficiencies are encountered in malabsorptive syndromes such as celiac disease. Anticonvulsant medications (e.g., phenytoin and phenobarbital) and cytotoxic drugs (e.g., methotrexate) also have been associated with folate deficiency, caused by interference with folate absorption or metabolism. Finally, folic acid deficiency is more likely to develop in infants and children with increased requirements. This occurs during infancy because of rapid growth and also in children with chronic hemolytic anemia. Premature infants are particularly susceptible to the development of the deficiency because of low body stores of folate.

Clinical Findings

A. Symptoms and Signs

Infants with megaloblastic anemia may show pallor and mild jaundice as a result of ineffective erythropoiesis. Classically, the tongue is smooth and beefy red. Infants with cobalamin deficiency may be irritable and may be poor feeders. Older children with cobalamin deficiency may complain of paresthesias, weakness, or an unsteady gait and may show decreased vibratory sensation and proprioception on neurologic examination.

B. Laboratory Findings

The laboratory findings of megaloblastic anemia include an elevated MCV and mean corpuscular hemoglobin (MCH). The peripheral blood smear shows numerous macro-ovalocytes with anisocytosis and poikilocytosis. Neutrophils are large and have hypersegmented nuclei. The white cell and platelet counts are normal with mild deficiencies but may be decreased in more severe cases. Examination of the bone marrow is not indicated, but it typically shows erythroid hyperplasia with large erythroid and myeloid precursors. Nuclear maturation is delayed compared with cytoplasmic maturation, and erythropoiesis is ineffective. The serum indirect bilirubin concentration may be slightly elevated.

Children with cobalamin deficiency have a low serum vitamin B₁₂ level, but decreased levels of serum vitamin B₁₂ may also be found in about 30% of patients with folic acid deficiency. Negative results should not negate treatment if clinically compatible symptoms are present. The level of red cell folate is a better reflection of folate stores than is the serum folic acid level. Elevated serum levels of metabolic intermediates (methylmalonic acid and homocysteine) may help establish the correct diagnosis. Elevated methylmalonic acid levels are consistent with cobalamin deficiency and generally decrease with treatment, whereas elevated levels of homocysteine occur with both cobalamin and folate deficiency.

Differential Diagnosis

Most macrocytic anemias in pediatrics are not megaloblastic. Other causes of an increased MCV include drug therapy (e.g., anticonvulsants, anti-HIV nucleoside analogues), Down syndrome, an elevated reticulocyte count (hemolytic anemias), bone marrow failure syndromes (Fanconi anemia, Diamond-Blackfan anemia), liver disease, and hypothyroidism.

Treatment

Treatment of cobalamin deficiency due to inadequate dietary intake is readily accomplished with high-dose oral supplementation that is as effective as parenteral treatment if absorption is normal. Folic acid deficiency is treated effectively with oral folic acid in most cases. Children at risk for the development of folic acid deficiencies, such as premature infants and those with chronic hemolytic anemia, are often given folic acid prophylactically.

ANEMIA OF CHRONIC DISORDERS

Anemia is a common manifestation of many chronic illnesses in children. In some instances, causes may be mixed. For example, children with chronic disorders involving intestinal malabsorption or blood loss may have anemia of chronic inflammation in combination with nutritional deficiencies of iron, folate, or cobalamin. In other settings, the anemia is due to dysfunction of a single organ (e.g., renal failure, hypothyroidism), and correction of the underlying abnormality resolves the anemia.

1. Anemia of Chronic Inflammation

Anemia is frequently associated with chronic infections or inflammatory diseases. The anemia is usually mild to moderate in severity, with a hemoglobin level of 8–12 g/dL. In general, the severity of the anemia corresponds to the severity of the underlying disorder, and there may be microcytosis, but not hypochromia. The reticulocyte count is low. The anemia is thought to be due to inflammatory cytokines that inhibit erythropoiesis, and shunting of iron into, and impaired iron release from, reticuloendothelial cells. High levels of hepcidin, a peptide produced in the liver during infection or inflammation, reduce iron absorption by the duodenum and release from macrophages. Levels of erythropoietin are relatively low for the severity of the anemia. The serum iron concentration is low, but in contrast to ID, anemia of chronic inflammation is not associated with elevated iron-binding capacity and is associated with an elevated serum ferritin level. Treatment consists of correction of the underlying disorder, which, if controlled, generally results in improvement in hemoglobin level.
2. Anemia of Chronic Renal Failure
Severe normocytic anemia occurs in most forms of renal disease that have progressed to renal insufficiency. Although white cell and platelet production remain normal, the bone marrow shows significant hypoplasia of the erythroid series and the reticulocyte count is low. The principal mechanism is deficiency of erythropoietin, a hormone produced in the kidney, but other factors may contribute to the anemia. In the presence of significant uremia, a component of hemolysis may also be present. Recombinant human erythropoietin (epoetin alfa) and iron correct the anemia, largely eliminating the need for transfusions.

3. Anemia of Hypothyroidism
Some patients with hypothyroidism develop significant anemia. Occasionally, anemia is detected before the diagnosis of the underlying disorder. A decreased growth velocity in an anemic child suggests hypothyroidism. The anemia is usually normocytic or macrocytic, but it is not megaloblastic and, hence not due to deficiencies of cobalamin or folate. Replacement therapy with thyroid hormone is usually effective in correcting the anemia.

CONGENITAL HEMOLYTIC ANEMIAS: RED CELL MEMBRANE DEFECTS
The congenital hemolytic anemias are divided into three categories: defects of the red cell membrane; hemoglobinopathies; and disorders of red cell metabolism. Hereditary spherocytosis and elliptocytosis are the most common red cell membrane disorders. The diagnosis is suggested by the peripheral blood smear, which shows characteristic red cell morphology (eg, spherocytes, elliptocytes). These disorders usually have an autosomal dominant inheritance, and the diagnosis may be suggested by family history. The hemolysis is due to the deleterious effect of the membrane abnormality on red cell deformability. Decreased cell deformability leads to entrapment of the abnormally shaped red cells in the spleen. Many patients have splenomegaly, and splenectomy usually alleviates the hemolysis.

1. Hereditary Spherocytosis

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Anemia and jaundice.
- Splenomegaly.

- Positive family history of anemia, jaundice, or gallstones.
- Spherocytosis with increased reticulocytes.
- Increased osmotic fragility.
- Negative DAT.

- General Considerations
Hereditary spherocytosis is a relatively common inherited hemolytic anemia that occurs in all ethnic groups, but is most common in persons of northern European ancestry, in whom the incidence is about 1:5000. The disorder is marked by variable degrees of anemia, jaundice, and splenomegaly. In some persons, the disorder is mild and there is no anemia because erythroid hyperplasia fully compensates for hemolysis. In others, symptoms and transfusion dependence may be present prior to splenectomy. The hallmark of hereditary spherocytosis is the presence of microspherocytes in the peripheral blood. The disease is inherited in an autosomal dominant fashion in about 75% of cases; the remaining cases are thought to be autosomal recessive or due to de novo mutations.

Hereditary spherocytosis is secondary to alteration of genes encoding for spectrin, band 3, ankyrin, or protein 4.2 of the red cell membrane; spectrin abnormalities are more often diagnosed in childhood and band 3 in adulthood. The vertical linkages in the membrane are impaired so that spherocytes form. These are poorly deformable resulting in a shortened life span because they are trapped in the microcirculation of the spleen and engulfed by splenic macrophages. The specific membrane defect is of no major clinical implication.

- Clinical Findings

A. Symptoms and Signs
Hemolysis causes significant neonatal hyperbilirubinemia in 50% of affected children. Splenomegaly subsequently develops in the majority and is often present by age 5 years. Jaundice is variably present and in many patients may be noted only during infection. Patients with significant chronic anemia may complain of pallor, fatigue, or malaise. Intermittent exacerbations of the anemia are caused by increased hemolysis, splenic sequestration or by aplastic crises, and may be associated with severe weakness, fatigue, fever, abdominal pain, or even heart failure.

B. Laboratory Findings
Most patients have mild chronic hemolysis with hemoglobin levels of 9–12 g/dL. In some cases, the hemolysis is fully compensated and the hemoglobin level is in the normal range. Rare cases of severe disease require frequent transfusions. The anemia is usually normocytic and hyperchromic,
and many patients have an elevated MCH concentration. The peripheral blood smear shows numerous microspherocytes and polychromasia. The reticulocyte count is elevated, often higher than might be expected for the degree of anemia. WBC and platelet counts are usually normal. The osmotic fragility is increased, particularly after incubation at 37°C for 24 hours. Serum bilirubin usually shows an elevation in the unconjugated fraction. The DAT is negative.

### Differential Diagnosis

Spherocytes are frequently present in persons with immune hemolyis. Thus, in the newborn, hereditary spherocytosis must be distinguished from hemolytic disease caused by ABO or other blood type incompatibilities. Older patients with autoimmune hemolytic anemia (AIHA) frequently present with jaundice, splenomegaly, and spherocytes on the peripheral blood smear. The DAT is positive in most cases of immune hemolyis and negative in hereditary spherocytosis. Occasionally, the diagnosis is confused in patients with splenomegaly from other causes, especially when hypersplenism increases red cell destruction and when some spherocytes are noted on the blood smear. In such cases, the true cause of the splenomegaly may be suggested by signs or symptoms of portal hypertension or by laboratory evidence of chronic liver disease. In contrast to children with hereditary spherocytosis, those with hypersplenism typically have some degree of thrombocytopenia or neutropenia.

### Complications

Severe jaundice may occur in the neonatal period and, if not controlled by phototherapy, may occasionally require exchange transfusion. Intermittent or persistent splenomegaly occurs in 10%–25% of patients and may require removal. Splenectomy is associated with an increased risk of overwhelming bacterial infections, particularly with pneumococci. Gallstones occur in 60%–70% of adults who have not undergone splenectomy and may form as early as age 5–10 years.

### Treatment

Supportive measures include the administration of folic acid to prevent the development of red cell hypoplasia due to folate deficiency. Acute exacerbations of anemia, due to increased rates of hemolysis or to aplastic crises caused by infection with human parvovirus, may be severe enough to require red cell transfusions. Splenectomy may be indicated depending on clinical severity and always results in significant improvement. This increases survival of the spherocytic red cells and leads to complete correction of the anemia in most cases. Except in unusually severe cases, the procedure should be postponed until the child is at least age 5 years because of the greater risk of postsplenectomy sepsis prior to this age. All patients scheduled for splenectomy should be immunized with pneumococcal, *Haemophilus influenzae* type b (Hib), and meningococcal vaccines prior to the procedure, and some clinicians recommend daily penicillin prophylaxis afterward. Asplenic patients with fever should be promptly evaluated for severe infection. Splenectomy prevents the subsequent development of cholelithiasis and eliminates the need for the activity restrictions. However, these benefits must be weighed against the risks of the surgical procedure and the subsequent lifelong risk of postsplenectomy sepsis.

### Prognosis

Splenectomy eliminates signs and symptoms in all but the most severe cases and reduces the risk of cholelithiasis. The abnormal red cell morphology and increased osmotic fragility persist without clinical consequence.

---


### 2. Hereditary Elliptocytosis

Hereditary elliptocytosis is a heterogeneous disorder that ranges in severity from an asymptomatic state with almost normal red cell morphology to about 10% having moderate to severe hemolytic anemia. Most affected persons have numerous elliptocytes on the peripheral blood smear, but mild or no hemolysis. Those with hemolysis have an elevated reticulocyte count and may have jaundice and splenomegaly. This disorder is caused by weakened horizontal linkages in the red cell membrane skeleton due either to a defective spectrin dimer-dimer interaction or a defective spectrin-actin protein 4.1R junctional complex. Inheritance is autosomal dominant. Because most patients are asymptomatic, no treatment is indicated. Patients with significant degrees of hemolytic anemia may benefit from folate supplementation or splenectomy.

Some infants with hereditary elliptocytosis present in the neonatal period with moderate to marked hemolysis and significant hyperbilirubinemia. This disorder has been termed *transient infantile pyknocytosis* because such infants exhibit bizarre erythrocyte morphology with elliptocytes, budding red cells, and small misshapen cells that defy description. The MCV is low, and the anemia may be severe enough to require red cell transfusions. Typically, one parent has hereditary elliptocytosis, usually mild or asymptomatic. The infant’s hemolysis gradually abates during the first year of life, and the erythrocyte morphology subsequently becomes more typical of hereditary elliptocytosis.

### CONGENITAL HEMOLYTIC ANEMIAS: HEMOGLOBINOPATHIES

The hemoglobinopathies are an extremely heterogeneous group of congenital disorders that may occur in all ethnic groups. The relatively high frequency of these genetic variants
is related to the malaria protection afforded to heterozygous individuals. The hemoglobinopathies are generally classified into two major groups. The first, the thalassemias, are caused by quantitative deficiencies in the production of globin chains. These quantitative defects in globin synthesis cause microcytic and hypochromic anemias. The second group of hemoglobinopathies consists of those caused by structural abnormalities of globin chains. The most important of these, hemoglobins S, C, and E, are all the result of point mutations and single amino acid substitutions in β-globin. Many, but not all, infants with hemoglobinopathies are identified by routine neonatal screening.

Figure 30–3 shows the normal developmental changes that occur in globin-chain production during gestation and the first year of life. At birth, the predominant hemoglobin is fetal hemoglobin (hemoglobin F), which is composed of two α-globin chains and two γ-globin chains. Subsequently, the production of γ-globin decreases and the production of β-globin increases so that adult hemoglobin (two α chains and two β chains) predominates after 2–4 months. Because α-globin chains are present in both fetal and adult hemoglobin, disorders of α-globin synthesis (α-thalassemia) are clinically manifest in the newborn as well as later in life. In contrast, patients with β-globin disorders such as β-thalassemia and sickle cell disease are generally asymptomatic during the first 3–4 months of age and present clinically after γ-chain production and therefore fetal hemoglobin levels have decreased substantially.

1. α-Thalassemia

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Predominately African, Mediterranean, Middle Eastern, Chinese, or Southeast Asian ancestry.

**Table 30–1. The α-thalassemias.**

<table>
<thead>
<tr>
<th>Usual Genotypes</th>
<th>α-Gene Number</th>
<th>Clinical Features</th>
<th>Hemoglobin Electrophoresis&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Birth</th>
<th>&gt;6 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>αα/αα</td>
<td>4</td>
<td>Normal</td>
<td>N</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>−α/αα</td>
<td>3</td>
<td>Silent carrier</td>
<td>0%–3% Hb Bart's</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>−/αα or −α/−α</td>
<td>2</td>
<td>α-Thal trait</td>
<td>2%–10% Hb Bart's&lt;sup&gt;c&lt;/sup&gt;</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>−/−α</td>
<td>1</td>
<td>Hb H disease</td>
<td>15%–30% Hb Bart's</td>
<td>Hb; H present</td>
<td></td>
</tr>
<tr>
<td>−/−</td>
<td>0</td>
<td>Fetal hydrops</td>
<td>&gt;75% Hb Bart's&lt;sup&gt;c&lt;/sup&gt;</td>
<td>−</td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup> α indicates presence of α-globin gene, − indicates deletion of α-globin gene.
<sup>b</sup>N = normal results, Hb = hemoglobin, Hb Bart’s = γ, Hb H = β.
<sup>c</sup>The level of Hb Bart’s does not directly correlate with the number of deleted α genes.
on the genetic abnormalities prevalent in the population. In
persons of African ancestry, α-thalassemia is usually caused
by the deletion of only one of the two α-globin genes on
each chromosome. Thus, in the African population, hetero-
ygous individuals are silent carriers and homozygous
individuals have α-thalassemia trait. In Asians, deletions of
one or of both α-globin genes on the same chromosome are
common; heterozygous individuals are either silent carriers
or have α-thalassemia trait, and homozygous individuals
or compound heterozygous individuals have α-thalassemia
trait, hemoglobin H disease, or hydrops fetalis. Thus, the
presence of α-thalassemia in a child of Asian ancestry
may have important implications for genetic counseling,
whereas this is not usually the case in families of African
ancestry.

### Clinical Findings

The clinical findings depend on the number of α-globin
genes deleted. Table 30–1 summarizes the α-thalassemia
syndromes.

Persons with three α-globin genes (one-gene deletion)
are asymptomatic and have no hematologic abnormalities.
Hemoglobin electrophoresis in the neonatal period shows
0%–3% Bart’s hemoglobin, which is a variant hemoglobin
composed of four γ-globin chains. Hemoglobin electro-
phoresis after the first few months of life is normal. Thus,
this condition is usually suspected only in the context of
family studies or when a small amount of Bart’s hemoglobin
is detected by neonatal screening for hemoglobinopathies.

Persons with two α-globin genes (two-gene deletion) are
typically asymptomatic. The MCV is usually less than 100 fL
at birth. Hematologic studies in older infants and children
show a normal or slightly decreased hemoglobin level with
a low MCV and a slightly hypochromic blood smear with
some target cells.

Persons with one α-globin gene (three-gene deletion)
have a mild to moderately severe microcytic hemolytic
anemia (hemoglobin level of 7–10 g/dL), which may
be accompanied by hepatosplenomegaly and some bony
abnormalities caused by the expanded medullary space.
The reticulocyte count is elevated, and the red cells show
marked hypochromia and microcytosis with significant
poikilocytosis and some basophilic stippling. Incubation of
red cells with brilliant cresyl blue (hemoglobin H prepara-
tion) shows inclusion bodies formed by denatured hemo-
globin H.

The deletion of all four α-globin genes causes severe
intrauterine anemia and results in hydrops fetalis and fetal
demise or neonatal death shortly after delivery. Extreme
pallor and massive hepatosplenomegaly are present.
Hemoglobin electrophoresis reveals a predominance of
Bart’s hemoglobin with a complete absence of normal fetal
or adult hemoglobin.

### Differential Diagnosis

α-Thalassemia trait (two-gene deletion) must be differenti-
ated from other mild microcytic anemias, including ID and
β-thalassemia minor (see the next section). In contrast to
children with ID, children with α-thalassemia trait show
normal or increased levels of ferritin and serum iron. In
contrast to children with β-thalassemia minor, children with
α-thalassemia trait have a normal hemoglobin electrophoresis
after age 4–6 months. Finally, the history of a low MCV (96 fL)
at birth or the presence of Bart’s hemoglobin on the neonatal
hemoglobinopathy screening test suggests α-thalassemia.

Children with hemoglobin H disease may have jaundice
and splenomegaly, and the disorder must be differentiated
from other hemolytic anemias. The key to the diagnosis is
the decreased MCV and the marked hypochromia on the
blood smear. With the exception of β-thalassemia, most
other significant hemolytic disorders have a normal or
elevated MCV and the RBCs are not hypochromic. Infants
with hydrops fetalis due to severe α-thalassemia must be
distinguished from those with hydrps due to other causes
of anemia, such as alloimmunization.

### Complications

The principal complication of α-thalassemia trait is the needless
administration of iron, given in the belief that a mild microcytic
anemia is due to ID. Persons with hemoglobin H disease may
have intermittent exacerbations of their anemia in response to
oxidant stress or infection, which occasionally require blood
transfusions. Splenomegaly may exacerbate the anemia and
may require splenectomy. Women pregnant with hydropic
α-thalassemia fetuses are subject to increased complications of
pregnancy, particularly toxemia and postpartum hemorrhage.

### Treatment

Persons with α-thalassemia trait require no treatment.
Those with hemoglobin H disease should receive supple-
mental folic acid and avoid the same oxidant drugs that
cause hemolysis in persons with G6PD deficiency, because
exposure to these drugs may exacerbate their anemia. The
anemia may also be exacerbated during periods of infec-
tion, and transfusions may be required. Hypersplenism may
develop later in childhood and require surgical splenectomy.
Genetic counseling and prenatal diagnosis should be offered
to families at risk for hydropic fetuses.

Cunningham MJ: Update on thalassemia: clinical care and com-
20113904].
Harreveld CL: α-thalassemia. Orphanet J Rare Dis 2010;5:13
[PMID: 20507641].
Lal A: Heterogeneity of hemoglobin H disease in childhood.
2. β-Thalassemia

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

**β-Thalassemia minor:**
- Normal neonatal screening test.
- Predominantly African, Mediterranean, Middle Eastern, or Asian ancestry.
- Mild microcytic, hypochromic anemia.
- No response to iron therapy.
- Elevated level of hemoglobin A₂.

**β-Thalassemia intermedia:**
- Ancestry as above.
- Microcytic, hypochromic anemia that usually becomes symptomatic after the first few years of life with hepatosplenomegaly.

**β-Thalassemia major:**
- Neonatal screening shows hemoglobin F only.
- Mediterranean, Middle Eastern, or Asian ancestry.
- Severe microcytic, hypochromic anemia with marked hepatosplenomegaly.

**General Considerations**

In contrast to the four α-globin genes, only two β-globin genes are present in diploid cells, one on each chromosome 11. Excess non-β-globin chains damage the red cells, causing extravascular hemolysis. Individuals heterozygous for one β-thalassemia gene generally have β-thalassemia minor. Homozygous individuals generally have β-thalassemia major (Cooley anemia), a severe transfusion-dependent anemia. Individuals with β-thalassemia intermedia, which is more severe than thalassemia minor but is not generally transfusion-dependent, are usually heterozygous for two β⁺ mutations (produce reduced quantities of normal A hemoglobin) or have both β₀ (production of no normal A hemoglobin) and a β⁺ mutation, or have an alternative mutation such as E in conjunction with a severe β⁺ or β₀ mutation. Thalassemia major is the most common worldwide cause of transfusion-dependent anemia in childhood. In addition, β-thalassemia genes interact with genes for structural β-globin variants, such as hemoglobin S and hemoglobin E to cause serious disease in compound heterozygous individuals. These disorders are discussed further in the sections dealing with sickle cell disease and with hemoglobin E disorders.

**Clinical Findings**

**A. Symptoms and Signs**

Persons with β-thalassemia minor are usually asymptomatic with a normal physical examination. The time to presentation for those with β-thalassemia intermedia is variable. Those with β-thalassemia major are normal at birth but develop significant anemia during the first year of life. If the disorder is not identified and treated with blood transfusions, such children grow poorly and develop massive hepatosplenomegaly and enlargement of the medullary space with thinning of the bony cortex. The skeletal changes (due to ineffective erythropoiesis) cause characteristic facial deformities (prominent forehead and maxilla) and predispose the child to pathologic fractures.

**B. Laboratory Findings**

Children with β-thalassemia minor have normal neonatal screening results but subsequently develop a decreased MCV with or without mild anemia. The peripheral blood smear typically shows hypochromia, target cells, and sometimes basophilic stippling. Hemoglobin electrophoresis performed after 6–12 months of age is usually diagnostic when levels of hemoglobin A₂, hemoglobin F, or both are elevated. β-Thalassemia major is often initially suspected when hemoglobin A is absent on neonatal screening. Such infants are hematologically normal at birth, but develop severe anemia after the first few months of life. The peripheral blood smear typically shows a severe hypochromic, microcytic anemia with marked anisocytosis and poikilocytosis. Target cells are prominent, and nucleated RBCs often exceed the number of circulating WBCs. The hemoglobin level usually falls to 5–6 g/dL or less, and the reticulocyte count is elevated, but the reticulocyte index is normal to decreased. Platelet and WBC counts may be increased, and the serum indirect bilirubin level is elevated. The bone marrow shows marked erythroid hyperplasia, but this finding is not needed for diagnosis. Hemoglobin electrophoresis shows only fetal hemoglobin and hemoglobin A₂ in children with homozygous β⁺-thalassemia.

Those with β⁺-thalassemia genes make a variable amount of hemoglobin A, depending on the mutation, but have a marked increase in fetal hemoglobin and hemoglobin A₂ levels. The diagnosis of homozygous β-thalassemia, intermedia or minor, may also be supported by DNA testing.

**Differential Diagnosis**

β-Thalassemia minor must be differentiated from other causes of mild microcytic, hypochromic anemias, principally ID and α-thalassemia. In contrast to patients with IDA, those with β-thalassemia minor typically have an elevated number of RBCs, and the index of the MCV divided by
the red cell count is under 13. Generally, the finding of an elevated hemoglobin A\textsubscript{1} level is diagnostic; however, the A\textsubscript{1} level is lowered by coexistent ID. Thus, in children thought to be iron-deficient, hemoglobin electrophoresis with quantitation of hemoglobin A\textsubscript{2} is sometimes deferred until after a course of iron therapy.

\(\beta\)-Thalassemia major is rarely confused with other disorders. Hemoglobin electrophoresis and family studies readily distinguish it from hemoglobin E/\(\beta\)-thalassemia, which is the other increasingly important cause of transfusion-dependent thalassemia.

### Complications

The principal complication of \(\beta\)-thalassemia minor is the unnecessary use of iron therapy in a futile attempt to correct the microcytic anemia. Children with \(\beta\)-thalassemia major who are inadequately transfused experience poor growth and recurrent infections and may have hepatosplenomegaly, thinning of the cortical bone, and pathologic fractures. Without treatment, most children die within the first decade of life. The principal complications of \(\beta\)-thalassemia major in transfused children are hemosiderosis, splenomegaly, and hypersplenism. Transfusion-related hemosiderosis requires chelation therapy to prevent cardiac, hepatic, and endocrine dysfunction. Noncompliance with chelation in adolescents and young adults may lead to death from congestive heart failure, cardiac arrhythmias, or hepatic failure. Even with adequate transfusions, many patients develop splenomegaly and some degree of hypersplenism. This may require surgical splenectomy because of the increasing transfusion requirements, but the procedure increases the risk of thrombosis, pulmonary hypertension, and overwhelming septicemia.

### Treatment

\(\beta\)-Thalassemia minor requires no specific therapy, but the diagnosis may have important genetic implications for the family. The time to presentation for those with \(\beta\)-thalassemia intermedia is variable. For \(\beta\)-thalassemia major, two treatments are available: chronic transfusion with iron chelation and stem cell transplant. Programs of blood transfusion are generally targeted to maintain a nadir hemoglobin level of 9–10 g/dL. This approach gives increased vigor and well-being, improved growth, and fewer overall complications. However, maintenance of good health requires iron chelation. Small doses of supplemental ascorbic acid may enhance the efficacy of iron chelation. Patients who undergo splenectomy to reduce transfusion requirements, and hence iron loading, should receive pneumococcal vaccine prior to the procedure and prophylactic penicillin and urgent treatment of all febrile illness after splenectomy. Chronic transfusion therapy is infrequently indicated for individuals with \(\beta\)-thalassemia intermedia.

Bone marrow or umbilical cord blood transplant is an important therapeutic option for children with \(\beta\)-thalassemia major who have an HLA-identical sibling donor. The probability of hematologic cure is greater than 90% when transplant is performed prior to the development of hepatomegaly or portal fibrosis.


## 3. Sickle Cell Disease

### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Neonatal screening test usually with hemoglobins FS, FSC, or FSA (S > A).
- Predominantly African, Mediterranean, Middle Eastern, Indian, or Caribbean ancestry.
- Anemia, elevated reticulocyte count, usually jaundice.
- Recurrent episodes of musculoskeletal or abdominal pain.
- Often hepatomegaly and splenomegaly that resolves.
- Increased risk of bacterial sepsis.

### General Considerations

Sickle cell disease encompasses a family of disorders with manifestations secondary to the propensity of deoxygenated sickle hemoglobin (S) to polymerize. Polymerization of sickle hemoglobin distorts erythrocyte morphology; decreases red cell deformability; causes a marked reduction in red cell life span; increases blood viscosity; and predisposes to inflammation, coagulation activation, and episodes of vaso-occlusion. Sickle cell anemia, the most severe sickling disorder, is caused by homozygosity for the sickle gene and is the most common form of sickle cell disease. Other clinically important sickling disorders are compound heterozygous conditions in which the sickle gene interacts with genes for hemoglobins C, D\textsubscript{Punjab}°, O\textsubscript{Arab}, C\textsubscript{Hainan}° or \(\beta\)-thalassemia.

Overall, sickle cell disease occurs in about 1 of every 400 African-American infants. Eight percent of African Americans are heterozygous carriers of the sickle gene and are said to have sickle cell trait.

### Clinical Findings

#### A. Symptoms and Signs

These are related to the hemolytic anemia, tissue ischemia, and organ dysfunction caused by vaso-occlusion. They are
most severe in children with sickle cell anemia or sickle β0-thalassemia. Physical findings are normal at birth, and symptoms are unusual before age 3–4 months because high levels of fetal hemoglobin inhibit sickling. A moderately severe hemolytic anemia may be present by age 1 year. This causes pallor, fatigue, and jaundice, and predisposes to the development of gallstones during childhood and adolescence. Intense congestion of the spleen with sickled cells may cause splenomegaly in early childhood and results in functional asplenia as early as age 3 months in sickle cell anemia. This places children at great risk for overwhelming infection with encapsulated bacteria, particularly pneumococci. Up to 30% of patients experience one or more episodes of acute splenic sequestration, characterized by sudden enlargement of the spleen with pooling of red cells, acute exacerbation of anemia, and, in severe cases, shock and death. Acute exacerbation of anemia also occurs with aplastic crises, usually caused by infection with human parvovirus and other viruses.

Recurrent episodes of vaso-occlusion and tissue ischemia cause acute and chronic problems. Dactylitis, or hand-and-foot syndrome, is the most common initial symptom of the disease and occurs in up to 50% of children with sickle cell anemia before age 3 years. Recurrent episodes of abdominal and musculoskeletal pain may occur throughout life. Overstrokes occur in about 11% of children with sickle cell anemia and tend to be recurrent. Recurrence is significantly reduced with chronic red cell transfusions. The so-called acute chest syndrome, characterized by fever, pleuritic chest pain, and acute pulmonary infiltrates with hypoxemia, is caused by pulmonary infection, infarction, or fat embolism from ischemic bone marrow. All tissues are susceptible to damage from vaso-occlusion, and multiple organ dysfunction is common by adulthood in those with sickle cell anemia or sickle β0-thalassemia. The common manifestations of sickle cell disease are listed in Table 30–2. Manifestations generally develop less frequently in those with SC and S β+ -thalassemia.

### B. Laboratory Findings

Children with sickle cell anemia generally show a baseline hemoglobin level of 7–10 g/dL. This value may fall to life-threatening levels at the time of a splenic sequestration or aplastic crisis; often this occurs in association with parvovirus B19 infection. The baseline reticulocyte count is elevated markedly. The anemia is usually normocytic or macrocytic, and the peripheral blood smear typically shows the characteristic sickle cells as well as numerous target cells. Patients with sickle β-thalassemia also generally have a low MCV and hypochromia. Those with sickle β+ -thalassemia tend to have less hemolysis and anemia. Persons with sickle hemoglobin C disease have fewer sickle forms and more target cells, and the hemoglobin level may be normal or only slightly decreased because the rate of hemolysis is much less than in sickle cell anemia.

Most infants with sickle hemoglobinopathies born in the United States are identified by neonatal screening. Results indicative of possible sickle cell disease require prompt confirmation with hemoglobin electrophoresis. Children with sickle cell anemia and with sickle β0-thalassemia have only hemoglobins S, F, and A2. Persons with sickle β+ -thalassemia have a preponderance of hemoglobin S with a lesser amount of hemoglobin A and elevated A2. Persons with sickle hemoglobin C disease have equal amounts of hemoglobins S and C. The use of solubility tests to screen for the presence of sickle hemoglobin should be avoided because a negative result is frequently encountered in infants with sickle cell disease, and because a positive result in an older child does not differentiate sickle cell trait from sickle cell disease. Thus, hemoglobin electrophoresis is always necessary to accurately identify a sickle disorder. Solubility tests also will not identify hemoglobin variants other than S.

#### Differential Diagnosis

Hemoglobin electrophoresis and sometimes hematologic studies of the parents are usually sufficient to confirm sickle cell disease, although DNA testing is available. It is critical to determine whether the child with only F and S hemoglobins on newborn screening has sickle cell anemia, sickle β0-thalassemia, or is a compound heterozygote for sickle hemoglobin

| Table 30–2. Common clinical manifestations of sickle cell disease. |
|------------------|-----------------|------------------|
| **Children**     | **Acute**       | **Chronic**      |
|                  |                  |                  |
| Children         |                  |                  |
| Bacterial sepsis |                 |                 |
| Aplastic crisis  |                 |                 |
| Vaso-occlusive   |                 |                 |
| events           |                 |                 |
| Bone infarction  |                 |                 |
| Acute chest      |                 |                 |
| syndrome         |                 |                 |
| Stroke           |                 |                 |
| Priapism         |                 |                 |
| Acute multiorgan failure syndrome | | |
| **Adults**       | **Acute**       | **Chronic**      |
|                  |                  |                  |
| Adults           |                  |                  |
| Bacterial sepsis |                 |                 |
| Aplastic crisis  |                 |                 |
| Vaso-occlusive   |                 |                 |
| events           |                 |                 |
| Bone infarction  |                 |                 |
| Acute chest syndrome |         |                 |
| Stroke           |                 |                 |
| Priapism         |                 |                 |
| Acute multiorgan failure syndrome | | |
|                  | **Associated with significant mortality rate.** | |
and pancellular hereditary persistence of fetal hemoglobin. Such children, when older, typically have 30% fetal hemoglobin and 70% hemoglobin S, and are well.

#### Complications

Repeated tissue ischemia and infarction causes damage to virtually every organ system. Table 30–2 lists the most important complications. Patients who require multiple transfusions are at risk of developing transfusion-related hemodilution and infections as well as red cell alloantibodies.

#### Treatment

The cornerstone of treatment is enrollment in a program involving patient and family education, comprehensive outpatient care, and appropriate treatment of acute complications. Important to the success of such a program are psychosocial services, blood bank services, and the ready availability of baseline patient information in the setting in which acute illnesses are evaluated and treated.

Management of sickle cell anemia and sickle β-thalassemia includes daily prophylactic penicillin, which should be initiated by age 2 months and continued at least until age 5 years. The routine use of penicillin prophylaxis in sickle hemoglobin C disease and sickle β + -thalassemia is controversial. Pneumococcal conjugate and polysaccharide vaccines should be administered to all children who have sickle cell disease. Other routine immunizations, including yearly vaccination against influenza, should be provided. All illnesses associated with fever greater than 38.5°C should be evaluated promptly, bacterial cultures performed, parenteral broad-spectrum antibiotics administered, and careful inpatient or outpatient observation conducted.

Treatment of painful vaso-occlusive episodes includes the maintenance of adequate hydration (with avoidance of overhydration), correction of acidosis if present, administration of adequate analgesia, maintenance of normal oxygen saturation, and the treatment of any associated infections.

Red cell transfusions play an important role in management. Transfusions are indicated to improve oxygen-carrying capacity during acute severe exacerbations of anemia, as occurs during episodes of splenic sequestration or aplastic crisis. Red cell transfusions are not indicated for the treatment of chronic steady-state anemia, which is usually well tolerated, or for uncomplicated episodes of vaso-occlusive pain. Simple or partial exchange transfusion to reduce the percentage of circulating sickle cells is indicated for some severe acute vaso-occlusive events and may be lifesaving. These events include stroke, moderate to severe acute chest syndrome, and acute life-threatening failure of other organs. Transfusions may be administered prior to high-risk procedures such as surgery with general anesthesia and arteriograms with high ionic contrast materials. Some patients with severe complications may benefit from chronic transfusion therapy.

The most common indications for transfusions are stroke or an abnormal transcranial Doppler assessment indicating an increased risk for stroke. Extended matching for red cell antigens reduces the incidence of alloimmunization.

Successful stem cell transplant cures sickle cell disease, but to date its use has been limited because of the risks associated with the procedure, the inability to predict in young children the severity of future complications, and the paucity of HLA-identical sibling donors. Daily administration of oral hydroxyurea increases levels of fetal hemoglobin, decreases hemolysis, and reduces episodes of pain and dactylitis in young children with sickle cell anemia, as well as some evidence for a reduction in acute chest syndrome, hospitalization rates, and transfusions. The hematologic effects and short-term toxicity of hydroxyurea in children are similar to those in adults. Thus, hydroxyurea is being increasingly prescribed for children and adolescents with sickle cell anemia and sickle βα-thalassemia; efficacy in SC and βα-thalassemia has not been formally studied.

#### Prognosis

Early identification by neonatal screening of infants with sickle cell disease, combined with comprehensive care that includes prescription of prophylactic penicillin, instruction on splenic palpation, and education on the need to urgently seek care when fever occurs, has markedly reduced mortality in childhood. Most patients now live well into adulthood, but eventually succumb to complications.

Lasalle-Williams M: Extended red blood cell antigen matching for transfusions in sickle cell disease: a review of a 14-year experience from a single center. Transfusion 2011 Feb 18 [Epub ahead of print] [PMID: 21332724].


#### 4. Sickle Cell Trait

Individuals who are heterozygous for the sickle gene have sickle cell trait. Neonates are identified by neonatal screening that shows hemoglobin FAS (A > S). Accurate identification of older persons with sickle cell trait depends on hemoglobin electrophoresis, which typically shows about 60% hemoglobin A and 40% hemoglobin S. No anemia or hemolysis is present, and the physical examination is normal. Persons with sickle cell trait are generally healthy with normal life expectancy.

However, sickle trait erythrocytes are capable of sickling, with acidemia and hypoxemia. Thus, the kidney may be affected with the most common manifestation of sickle trait being hyposthenuria. Painless hematuria, usually microscopic, affects about 4% of those with sickle trait and does
not progress to significant renal dysfunction. Fewer than 40 individuals have been reported with an exceedingly rare malignancy, renal medullary carcinoma, and all but one have had sickle trait. The incidence of bacteriuria and pyelonephritis may be increased during pregnancy, but overall rates of maternal and infant morbidity and mortality are not affected by sickle cell trait.

Exertion at moderate altitudes rarely precipitates splenic infarction. Whether or not the risk of sudden unexplained death during strenuous exercise, as occurs during military basic training, is increased in men with sickle cell trait is controversial. In general, exercise tolerance seems to be normal; the incidence of sickle cell trait in black professional football players is similar to that of the general African-American population.

There is no reason to restrict strenuous activity for individuals with sickle cell trait. As is true for all individuals performing strenuous activity, it is important to be conditioned, dress appropriately, have access to fluids, rest periodically, and perform moderate activity in extreme heat and humidity. Sickle cell trait is most significant for its genetic implications.

5. Hemoglobin C Disorders

Hemoglobin C is detected by neonatal screening. Two percent of African Americans are heterozygous for hemoglobin C and are said to have hemoglobin C trait. Such individuals have no symptoms, anemia, or hemolysis, but the peripheral blood smear may show some target cells. Identification of persons with hemoglobin C trait is important for genetic counseling, particularly with regard to the possibility of sickle hemoglobin C disease in offspring.

Persons with homozygous hemoglobin C have a mild microcytic hemolytic anemia and may develop splenomegaly. The peripheral blood smear shows prominent target cells. As with other hemolytic anemias, complications of homozygous hemoglobin C include gallstones and aplastic crises.

6. Hemoglobin E Disorders

Hemoglobin E is the second most common hemoglobin variant worldwide, with a gene frequency up to 60% in northeast Thailand and Cambodia. Persons heterozygous for hemoglobin E show hemoglobin FAE by neonatal screening and are asymptomatic and usually not anemic, but they may develop mild microcytosis. Persons homozygous for hemoglobin E are also asymptomatic but may have mild anemia; the peripheral blood smear shows microcytosis and some target cells.

Compound heterozygotes for hemoglobin E and β-thalassemia are normal at birth and, like infants with homozygous E, show hemoglobin FE on neonatal screening.

Unlike homozygotes, they subsequently develop mild to severe microcytic hypochromic anemia. Such children may exhibit jaundice, hepatosplenomegaly, and poor growth if the disorder is not recognized and treated appropriately. In some cases, the anemia becomes severe enough to require lifelong transfusion therapy. Even without regular transfusions, hemosiderosis may occur. In certain areas of the United States, hemoglobin E/β-thalassemia has become a more common cause of transfusion-dependent anemia than homozygous β-thalassemia.

7. Other Hemoglobinopathies

At least 500 human globin-chain variants have been described. Some, such as hemoglobins D and G, are relatively common. Heterozygous individuals, who are frequently identified during the course of neonatal screening programs for hemoglobinopathies, are generally asymptomatic and usually have no anemia or hemolysis. The principal significance of most hemoglobin variants is the potential for disease in compound heterozygous individuals who also inherit a gene for β-thalassemia or sickle hemoglobin. For example, children who are compound heterozygous for hemoglobins S and D Punjab (D Los Angeles) have sickle cell disease.

CONGENITAL HEMOLYTIC ANEMIAS: DISORDERS OF RED CELL METABOLISM

Erythrocytes depend on the anaerobic metabolism of glucose for the maintenance of adenosine triphosphate levels sufficient for homeostasis. Glycolysis also produces the 2,3-diphosphoglycerate (2,3-DPG) levels needed to modulate the oxygen affinity of hemoglobin. Glucose metabolism via the hexose monophosphate shunt is necessary to generate sufficient reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduced glutathione to protect red cells against oxidant damage. Congenital deficiencies of many glycolytic pathway enzymes have been associated with hemolytic anemias. In general, the morphologic abnormalities present on the peripheral blood smear are nonspecific, and the inheritance of these disorders is autosomal recessive or X-linked. Thus, the possibility of a red cell enzyme defect should be considered during the evaluation of a patient with a congenital hemolytic anemia in the following instances: when the peripheral blood smear does not show red cell morphology typical of membrane or hemoglobin defects (eg, spherocytes, sickle forms, target cells); when hemoglobin disorders are excluded by hemoglobin electrophoresis and by isopropanol precipitation tests; and when family studies do not suggest an autosomal dominant disorder. The diagnosis is confirmed by finding a low level of the deficient enzyme.

The two most common disorders of erythrocyte metabolism are G6PD deficiency and pyruvate kinase deficiency.
1. Glucose-6-Phosphate Dehydrogenase Deficiency

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- African, Mediterranean, or Asian ancestry.
- Neonatal hyperbilirubinemia.
- Sporadic hemolysis associated with infection or with ingestion of oxidant drugs or fava beans.
- X-linked inheritance.

**General Considerations**

Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is the most common red cell enzyme defect that causes hemolytic anemia. The disorder has an X-linked recessive inheritance and occurs with high frequency among persons of African, Mediterranean, and Asian ancestry. Hundreds of different G6PD variants have been characterized. In most instances, the deficiency is due to enzyme instability; thus, older red cells are more deficient than younger ones and are unable to generate sufficient nicotinamide adenine dinucleotide (NADH) to maintain the levels of reduced glutathione necessary to protect the red cells against oxidant stress. Thus, most persons with G6PD deficiency do not have a chronic hemolytic anemia; instead, they have episodic hemolysis at times of exposure to the oxidant stress of infection or by the ingestion of certain drugs or food substances. The severity of the disorder varies among ethnic groups; G6PD deficiency in persons of African ancestry usually is less severe than in other ethnic groups.

**Clinical Findings**

**A. Symptoms and Signs**

Infants with G6PD deficiency may have significant hyperbilirubinemia and require phototherapy or exchange transfusion to prevent kernicterus. The deficiency is an important cause of neonatal hyperbilirubinemia in infants of Mediterranean or Asian ancestry, but less so in infants of African ancestry. Older children with G6PD deficiency are asymptomatic and appear normal between episodes of hemolysis. Hemolytic episodes are often triggered by infection or by the ingestion of oxidant drugs such as antimalarial compounds and sulfonamide antibiotics (Table 30–3). Ingestion of fava beans may trigger hemolysis in children of Mediterranean or Asian ancestry but usually not in children of African ancestry. Episodes of hemolysis are associated with pallor, jaundice, hemoglobinuria, and sometimes cardiovascular compromise.

**Table 30–3.** Some common drugs and chemicals that can induce hemolytic anemia in persons with G6PD deficiency.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetanilide</td>
<td>Niridazole</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>Nitrofurantoin</td>
</tr>
<tr>
<td>Furazolidone</td>
<td>Phenazopyridine</td>
</tr>
<tr>
<td>Methylene blue</td>
<td>Primaquine</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>Sulfamethoxazole</td>
</tr>
</tbody>
</table>


**B. Laboratory Findings**

The hemoglobin concentration, reticulocyte count, and peripheral blood smear are usually normal in the absence of oxidant stress. Episodes of hemolysis are associated with a variable fall in hemoglobin. “Bite” cells or blister cells may be seen, along with a few spherocytes. Hemoglobinuria is common, and the reticulocyte count increases within a few days. Heinz bodies may be demonstrated with appropriate stains. The diagnosis is confirmed by the finding of reduced levels of G6PD in erythrocytes. Because this enzyme is present in increased quantities in reticulocytes, the test is best performed at a time when the reticulocyte count is normal or near normal.

**Complications**

Kernicterus is a risk for infants with significant neonatal hyperbilirubinemia. Episodes of acute hemolysis in older children may be life-threatening. Rare G6PD variants are associated with chronic hemolytic anemia; the clinical course of patients with such variants may be complicated by splenomegaly and by the formation of gallstones.

**Treatment**

The most important treatment issue is avoidance of drugs known to be associated with hemolysis (see Table 30–3). For some patients of Mediterranean, Middle Eastern, or Asian ancestry, the consumption of fava beans must also be avoided. Infections should be treated promptly and antibiotics given when appropriate. Most episodes of hemolysis are self-limiting, but red cell transfusions may be lifesaving when signs and symptoms indicate cardiovascular compromise.

2. Pyruvate Kinase Deficiency

Pyruvate kinase deficiency is an autosomal recessive disorder observed in all ethnic groups but is most common in northern Europeans. The deficiency is associated with a chronic hemolytic anemia of varying severity. Approximately one-third of those affected present in the neonatal period with jaundice and hemolysis that require phototherapy or exchange transfusion.
Occasionally, the disorder causes hydrops fetalis and neonatal death. In older children, the hemolysis may require red cell transfusions or be mild enough to go unnoticed for many years. Jaundice and splenomegaly frequently occur in the more severe cases. The diagnosis of pyruvate kinase deficiency is occasionally suggested by the presence of echinocytes on the peripheral blood smear, but these findings may be absent prior to splenectomy. The diagnosis depends on the demonstration of low levels of pyruvate kinase activity in red cells.

Treatment of pyruvate kinase deficiency depends on the severity of the hemolysis. Blood transfusions may be required for significant anemia, and splenectomy may be beneficial. Although the procedure does not cure the disorder, it ameliorates the anemia and its symptoms. Characteristically, the reticulocyte count increases and echinocytes become more prevalent after splenectomy, despite the decreased hemolysis and increased hemoglobin level.

**ACQUIRED HEMOLYTIC ANEMIA**

1. Autoimmune Hemolytic Anemia

   **ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

   ▶ Pallor, fatigue, jaundice, and dark urine.
   ▶ Splenomegaly.
   ▶ Positive DAT.
   ▶ Reticulocytosis and spherocytosis.

   **General Considerations**

   Acquired autoimmune hemolytic anemia (AIHA) is rare during the first 4 months of life but is one of the more common causes of acute anemia after the first year. It may arise as an isolated problem or may complicate an infection (hepatitis, upper respiratory tract infections, EBV mononucleosis, or cytomegalovirus [CMV] infection); systemic lupus erythematosus and other autoimmune syndromes; immunodeficiency states, including autoimmune lymphoproliferative syndrome (ALPS); or, very rarely, malignancies. Drugs may induce antibody-associated hemolytic anemia, and recently third-generation cephalosporins have become a more common cause for this adverse event of antibiotic therapy.

   **Clinical Findings**

   **A. Symptoms and Signs**

   The disease usually has an acute onset manifested by weakness, pallor, dark urine, and fatigue. Jaundice is a prominent finding, and splenomegaly is often present. Some cases have a more chronic, insidious onset. Clinical evidence of an underlying disease may be present.

   **B. Laboratory Findings**

   The anemia is normochromic and normocytic and may vary from mild to severe (hemoglobin concentration < 5 g/dL). The reticulocyte count and index are usually increased but occasionally are normal or low. Spherocytes and nucleated red cells may be seen on the peripheral blood smear. Although leukocytosis and elevated platelet counts are a common finding, thrombocytopenia occasionally occurs. Other laboratory data consistent with hemolysis are present, such as increased indirect and total bilirubin, lactic dehydrogenase, aspartate aminotransferase, and urinary urobilinogen. Intravascular hemolysis is indicated by hemoglobinemia or hemoglobinuria. Examination of bone marrow shows marked erythroid hyperplasia and hemophagocytosis, but is seldom required for the diagnosis.

   Serologic studies are helpful in defining pathophysiology, planning therapeutic strategies, and assessing prognosis (Table 30–4). In almost all cases, the direct and indirect antiglobulin (DAT and IAT) tests are positive. Further evaluation allows distinction into one of three syndromes. The presence of IgG and no or low level of complement activation on the patient’s RBCs, maximal in vitro antibody activity at 37°C, and either no antigen specificity or an Rh-like specificity constitute warm AIHA with extravascular destruction by the reticuloendothelial system. In contrast, the detection of complement alone on RBCs, optimal reactivity in vitro at 4°C, and I or i antigen specificity are diagnostic of cold AIHA with intravascular hemolysis. Although cold agglutinins are relatively common (∼10%) in normal individuals, clinically significant cold antibodies exhibit in vitro reactivity at 30°C or above. Warm reactive IgM antibodies are rare.

   Paroxysmal cold hemoglobinuria presents a different category of disease. The laboratory evaluation is identical to cold AIHA except for antigen specificity (P) and the exhibition of an in vitro hemolysin. Paroxysmal cold hemoglobinuria is almost always associated with significant infections, such as *Mycoplasma*, EBV, and CMV.

   **Differential Diagnosis**

   AIHA must be differentiated from other forms of congenital or acquired hemolytic anemias. The DAT discriminates antibody-mediated hemolysis from other causes, such as hereditary spherocytosis. The presence of other cytopenias and antibodies to platelets or neutrophils suggests an autoimmune (eg, lupus) syndrome, immunodeficiency (eg, ALPS, congenital immunodeficiency), or Evans syndrome (AIHA and other cytopenias associated with autoantibodies). Up to one-third of patients diagnosed as Evans syndrome may have ALPS.
Complications

The anemia may be very severe and result in cardiovascular collapse, requiring emergency management. The complications of an underlying disease, such as disseminated lupus erythematosus or an immunodeficiency state, may be present.

Treatment

Medical management of the underlying disease is important in symptomatic cases. Defining the clinical syndrome provides a useful guide to treatment. Most patients with warm AIHA (in which hemolysis is mostly extravascular) respond to prednisone (2 mg/kg/d). After the initial treatment, the dose of corticosteroids may be decreased slowly. Patients may respond to 1 g of intravenous immune globulin (IVIG) per kilogram per day for 2 days, but fewer patients respond to IVIG than to prednisone. Although the rate of remission with splenectomy may be as high as 50%, particularly in warm AIHA, this should be carefully considered in younger patients and withheld until other treatments have failed. In severe cases, unresponsive to more conventional therapy, immunosuppressive agents such as mycophenolate, sirolimus, cyclosporine, cyclophosphamide, azathioprine, or busulfan may be tried alone or in combination with corticosteroids. The initial three may induce less myelosuppression and be helpful when hemolysis is associated with Evans syndrome or ALPS. In severe cases, rituximab may be a successful alternative; however, this drug should be avoided in AIHA associated with ALPS. Transplantation has been used in a small number of cases.

Patients with cold AIHA and paroxysmal cold hemoglobinuria are less likely to respond to corticosteroids or IVIG. Because these syndromes are most apt to be associated with infections and have an acute, self-limited course, supportive care alone may be sufficient. Plasma exchange may be effective in severe cold autoimmune (IgM) hemolytic anemia because the offending antibody has an intravascular distribution.

Supportive therapy is crucial. Patients with cold-reacting antibodies, particularly paroxysmal cold hemoglobinuria, should be kept in a warm environment. Transfusion may be necessary because of the complications of severe anemia but should be used only when there is no alternative. In most patients, cross-match compatible blood will not be found, and the least incompatible unit may be identified. Transfusion must be conducted carefully, beginning with a test dose (see Transfusion Medicine section, later in this chapter). Identification of the patient's phenotype for minor red cell alloantigens may be helpful in avoiding alloimmunization or in providing appropriate transfusions.

| Table 30–4. Classification of autoimmune hemolytic anemia (AIHA) in children. |
|-----------------------------|------------------|----------------|------------------|
| **Syndrome**                 | **Warm AIHA**    | **Cold AIHA**  | **Paroxysmal Cold Hemoglobinuria** |
| Specific antiglobulin test   | Strongly positive. Negative or mildly positive. | Negative. Strongly positive. | Negative. Strongly positive. |
| IgG Complement               |                  |                |                  |
| Temperature at maximal reactivity (in vitro) | 37°C. | 4°C. | 4°C. |
| Antigen specificity         | May be panagglutinin or may have an Rh-like specificity. | I or i. | P. |
| Other                       | Clinically significant if agglutination occurs ≥ 30°C. | Positive biphasic hemolysin test. |
| Pathophysiology             | Extravascular hemolysis, destruction by the RES (eg, spleen). Rarely an intravascular component early in the course. | Intravascular hemolysis (may have extravascular component). | Intravascular hemolysis (may have extravascular component). |
| Prognosis                   | May be more chronic (> 3 mo) with significant morbidity and mortality. May be associated with a primary disorder (lupus, immunodeficiency, etc). | Generally acute (< 3 mo). Good prognosis: often associated with infection. | Acute, self-limited. Associated with infection. |
| Therapy                     | Responds to RES blockade, including steroids (prednisone, 2 mg/kg/d), IVIG (1 g/kg/d for 2 d), or splenectomy. | May not respond to RES blockade. Severe cases may benefit from plasmapheresis. | Usually self-limited. Symptomatic management. |

IVIG, intravenous immune globulin; RES, reticuloendothelial system.
if alloantibodies arise after initial transfusions. Patients with severe intravascular hemolysis may have associated disseminated intravascular coagulation (DIC), and heparin therapy should be considered in such cases.

**Prognosis**

The outlook for AIHA in childhood usually is good unless associated diseases are present (e.g., congenital immunodeficiency, ALPS, AIDS, lupus erythematosus), in which case hemolysis is likely to have a chronic course. In general, children with warm (IgG) AIHA are at greater risk for more severe and chronic disease with higher morbidity and mortality rates. Hemolysis and positive antiglobulin tests may continue for months or years. Patients with cold AIHA or paroxysmal cold hemoglobinuria are more likely to have acute, self-limited disease (<3 months). Paroxysmal cold hemoglobinuria is almost always associated with infection (e.g., *Mycoplasma* infection, CMV, and EBV).


**2. Nonimmune Acquired Hemolytic Anemia**

Hepatic disease may alter the lipid composition of the red cell membrane. This usually results in the formation of target cells and is not associated with significant hemolysis.

Occasionally, hepatocellular damage is associated with the formation of spur cells and brisk hemolytic anemia. Renal disease may also be associated with significant hemolysis; hemolytic-uremic syndrome is one example. In this disorder, hemolysis is associated with the presence, on the peripheral blood smear, of echinocytes, helmet cells, fragmented red cells, and spherocytes.

A microangiopathic hemolytic anemia with fragmented red cells and some spherocytes may be observed in several conditions associated with intravascular coagulation and fibrin deposition within vessels. This occurs with DIC complicating severe infection, but may also occur when the intravascular coagulation is localized, as with giant cavernous hemangiomas (Kasabach-Merritt syndrome). Fragmented red cells may also be seen with mechanical damage (e.g., associated with artificial heart valves).

**CONGENITAL ERYTHROCYTOSIS (FAMILIAL POLYCYTHEMIA)**

In pediatrics, polycythemia is usually secondary to chronic hypoxemia. The disorder differs from polycythemia vera in that only RBCs are affected; the WBC and platelet counts are normal. It occurs as an autosomal dominant or recessive disorder. There are usually no physical findings except for plethora and splenomegaly. The hemoglobin level may be as high as 27 g/dL, and symptoms are generally limited to headache and lethargy. Treatment is not indicated unless symptoms are marked. Phlebotomy is the treatment of choice.

**SECONDARY POLYCYTHEMIA**

Secondary polycythemia occurs in response to hypoxemia. The most common cause of secondary polycythemia in children is cyanotic congenital heart disease, but it also occurs in chronic pulmonary disease such as cystic fibrosis. Persons living at extremely high altitudes, as well as some with methemoglobinemia, develop polycythemia. Polycythemia may occur in the neonatal period; it is particularly exaggerated in infants who are preterm or small for gestational age. It may occur in infants of diabetic mothers, in Down syndrome, and as a complication of congenital adrenal hyperplasia.

Iron deficiency may complicate polycythemia and aggravate the associated hyperviscosity. This complication should always be suspected when the MCV falls below the normal range. Coagulation and bleeding abnormalities, including thrombocytopenia, mild consumption coagulopathy, and elevated fibrinolytic activity, have been described in severely polycythemic cardiac patients. Bleeding at surgery may be severe.

The ideal treatment of secondary polycythemia is correction of the underlying disorder. When this cannot be done, phlebotomy may be necessary to control symptoms. Iron sufficiency should be maintained. These measures help prevent the complications of thrombosis and hemorrhage.

**METHEMOGLOBINEMIA**

When heme iron is oxidized, it changes from the ferrous to the ferric state and methemoglobin is produced. Normally, methemoglobin is enzymatically reduced back to hemoglobin. Methemoglobin is unable to transport oxygen and causes a shift in the oxygen dissociation curve. Cyanosis is seen with methemoglobin levels greater than 15%.

**1. Hemoglobin M**

This designation is given to several abnormal hemoglobins associated with methemoglobinemia due to amino acid substitutions in α- or β-globin chains. Hemoglobin M is transmitted as an autosomal dominant disorder. Methemoglobin electrophoresis at the usual pH will not always demonstrate the
abnormal hemoglobin, and isoelectric focusing may be needed. Affected individuals are cyanotic, but they have normal exercise tolerance and life expectancy. No treatment is indicated.

2. Congenital Methemoglobinemia Due to Enzyme Deficiencies

Congenital methemoglobinemia is caused most frequently by congenital deficiency of the reducing enzyme diaphorase I (coenzyme factor I) and is transmitted as an autosomal recessive trait. Affected individuals may have as much as 40% methemoglobin but usually have no symptoms, although a mild compensatory polycythemia may be present. Patients with diaphorase I deficiency respond to treatment with ascorbic acid and methylene blue (see the next section), but treatment is not usually indicated.

3. Acquired Methemoglobinemia

Nitrites and nitrates, chlorates, and quinines such as aniline dyes, sulfonamides, acetanilid, phenaacetin, bismuth subnitrate, and potassium chloride generate methemoglobin. Recreational use of volatile nitrites (“poppers”) and cocaine may precipitate methemoglobinemia. Poisoning with a drug or chemical containing one of these substances should be suspected with sudden onset cyanosis. Methemoglobin levels in such cases may be extremely high and can produce anoxia, dyspnea, unconsciousness, circulatory failure, and death. Because of transiently deficient NADH methemoglobin reductase, newborns are more susceptible to drug- or chemical-induced methemoglobinemia. Infants with metabolic acidosis may also develop methemoglobinemia.

Patients with acquired methemoglobinemia respond dramatically to intravenous methylene blue. Ascorbic acid administered orally or intravenously also reduces methemoglobin, but the response is slower.

### DISORDERS OF LEUKOCYTES

#### NEUTROPENIA

**Phase 1: NEUTROPENIA**

**Essentials of Diagnosis & Typical Features**

- Increased frequency of infections.
- Ulceration of oral mucosa and gingivitis.
- Decreased absolute neutrophil count; normal numbers of red cells and platelets.

**General Considerations**

Neutropenia is an absolute neutrophil (granulocyte) count of less than 1500/μL in childhood, or less than 1100/μL between ages 1 month and 2 years. During the first few days of life, an absolute neutrophil count of less than 3500/μL may be considered neutropenia in term infants. Neutropenia results from absent or defective myeloid stem cells; ineffective or suppressed myeloid maturation; decreased production of hematopoietic cytokines (eg, granulocyte colony-stimulating factor [G-CSF] or granulocyte-macrophage colony-stimulating factor [GM-CSF]); decreased marrow release; increased neutrophil apoptosis; destruction or consumption; or, in pseudoneutropenia, from an increased neutrophil marginating pool (Table 30–5). A decrease in neutrophil mass diminishes delivery of these cells to areas where the balance favors bacterial proliferation and invasion.

The most severe types of congenital neutropenia include reticular dysgenesis (congenital aleukocytosis), Kostmann syndrome (severe neutropenia with maturation defect in the marrow progenitor cells), Shwachman syndrome (neutropenia with pancreatic insufficiency), neutropenia with immune deficiency states, cyclic neutropenia, and myelokathexis or dysgranulopoiesis. Genetic mutations for Chédiak-Higashi syndrome, Kostmann syndrome, Shwachman syndrome, and other congenital neutropenias are listed in Table 30–5.

**Table 30–5. Classification of neutropenia of childhood.**

Congenital neutropenia with stem cell abnormalities	Congenital dysgenesis
Congenital neutropenia with abnormalities of committed myeloid progenitor cells	Cyclic neutropenia
Neutropenia with immunodeficiency disorders (T cells and B cells)	Severe congenital neutropenia (Kostmann syndrome)
Chronic idiopathic neutropenia of childhood	Myelokathexis with dysmyelopoiesis
Chédiak-Higashi syndrome	Shwachman-Diamond syndrome
Cartilage-hair hypoplasia	Dyskeratosis congenital
Fanconi anemia	Organic acidemias (eg, propionic, methylmalonic)
Glucose-6-phosphatase catalytic subunit deficiency	Glycogenosis Ib
Osteopetrosis	Acquired neutropenias affecting stem cells
Malignancies (leukemia, lymphoma) and preleukemic disorders	Drugs or toxic substances
Ionizing radiation	Aplastic anemia
Acquired neutropenias affecting committed myeloid progenitors or survival of mature neutrophils	Ineffective granulopoiesis (vitamin B12, folate, and copper deficiency)
Infection	Immune (neonatal alloimmune or autoimmune; autoimmune or chronic benign neutropenia of childhood)
Hypersplenism	
and cyclic neutropenia and the newly described glucose-6-phosphatase catalytic subunit 3 (G6PC3) have been identified. Neutropenia may also be associated with storage and metabolic diseases and immunodeficiency states. The most common causes of acute neutropenia are viral infection or drugs, resulting in decreased neutrophil production in the marrow, increased peripheral turnover, or both. Severe bacterial infections may be associated with neutropenia. Although not commonly seen, neonatal alloimmune neutropenia can be severe and associated with infection. Autoimmune neutropenia occurs with chronic benign neutropenia of childhood, immunodeficiency syndromes, autoimmune disorders, or, in the newborn, as a result of passive transfer of antibody from the mother to the fetus. Malignancies, osteopetrosis, marrow failure syndromes, and hypersplenism usually are not associated with isolated neutropenia.

**Clinical Findings**

**A. Symptoms and Signs**

Acute severe bacterial or fungal infection is the most significant complication of neutropenia. Although the risk is increased when the absolute neutrophil count is less than 500/μL, the actual susceptibility is variable and depends on the cause of neutropenia, marrow reserves, and other factors. The most common types of infection include septicemia, cellulitis, skin abscesses, pneumonia, and perirectal abscesses. Sinusitis, aphthous ulcers, gingivitis, and periodontal disease also cause significant problems. In addition to local signs and symptoms, patients may have chills, fever, and malaise. In most cases, the spleen and liver are not enlarged. *Staphylococcus aureus* and gram-negative bacteria are the most common pathogens.

**B. Laboratory Findings**

Neutrophils are absent or markedly reduced in the peripheral blood smear. In most forms of neutropenia or agranulocytosis, the monocytes and lymphocytes are normal and the red cells and platelets are not affected. The bone marrow usually shows a normal erythroid series, with adequate megakaryocytes, but a marked reduction in the myeloid cells or a significant delay in maturation of this series may be noted. Total cellularity may be decreased.

In the evaluation of neutropenia (eg, persistent, intermittent, cyclic), attention should be paid to the duration and pattern of neutropenia, the types of infections and their frequency, and phenotypic abnormalities on physical examination. A careful family history and blood counts from the parents are useful. If an acquired cause, such as viral infection or drug, is not obvious as an acute cause and no other primary disease is present, WBC counts, white cell differential, and platelet and reticulocyte counts should be completed twice weekly for 6 weeks to determine the possibility of cyclic neutropenia. Bone marrow aspiration and biopsy are most important to characterize the morphologic features of myelopoiesis. Measuring the neutrophil counts in response to corticosteroid infusion may document the marrow reserves. Other tests that aid in the diagnosis include measurement of neutrophil antibodies, immunoglobulin levels, antinuclear antibodies, and lymphocyte phenotyping to detect immunodeficiency states. Tissue culture of bone marrow is important for defining the numbers of stem cells and progenitors committed to the myeloid series or the presence of inhibitory factors. Cytokine levels in plasma or mononuclear cells can be measured directly. Some neutropenia disorders have abnormal neutrophil function, but severe neutropenia may preclude collection of sufficient cells to complete assays. Recent studies have documented abnormalities in an antiapoptotic gene, *HAX1*, and the elastase gene, *ELA2*, in Kostmann syndrome and *ELA2* mutations in cyclic neutropenia. A mutation for Shwachman syndrome has been described. Increased apoptosis in marrow precursors or circulating neutrophils has been described in several congenital or genetic disorders.

**Treatment**

Underlying disorders should be identified and treated or associated agents should be eliminated. Infections should be aggressively assessed and treated. Prophylactic antimicrobial therapy is not indicated for afebrile, asymptomatic patients, but may be considered in rare cases with recurrent infections. Recombinant G-CSF will increase neutrophil counts in most patients; GM-CSF may be considered, but is less extensively used. Patients may be started on 3–5 mcg/kg/d of G-CSF (filgrastim) given subcutaneously or intravenously once a day. Depending on the counts, the dose may be adjusted to keep the absolute neutrophil count below 10,000/μL. Some patients maintain adequate counts with G-CSF given every other day or three times a week. Treatment will decrease infectious complications but may have little effect on periodontal disease. However, not all patients with neutropenia syndromes require G-CSF (eg, chronic benign neutropenia of childhood). Patients with cyclic neutropenia may have a milder clinical course as they grow older. Immunizations should be given if the adaptive immune system is normal. Hematopoietic stem cell transplant may be considered for patients with severe complications, especially those with severe congenital neutropenia.

**Prognosis**

The prognosis varies greatly with the cause and severity of the neutropenia. In severe cases with persistent agranulocytosis, the prognosis is poor in spite of antibiotic therapy; in mild or cyclic forms of neutropenia, symptoms may be minimal and the prognosis for normal life expectancy excellent. G-CSF
has the potential to prolong life expectancy. Up to 50% of patients with Shwachman syndrome may develop aplastic anemia, myelodysplasia, or leukemia during their lifetime. Patients with Kostmann syndrome also have a potential for leukemia, as do patients with neutropenia associated with some immune disorders. Hematopoietic stem cell transplant may be the only curative therapy for some disorders.

The neutrophilias must be distinguished from myeloproliferative disorders such as chronic myelogenous leukemia and juvenile chronic myelogenous leukemia. In general, abnormalities involving other cell lines, the appearance of immature cells on the blood smear, and the presence of hepatosplenomegaly are important differentiating characteristics.

DISORDERS OF NEUTROPHIL FUNCTION

Neutrophils play a key role in host defenses. Circulating in capillary beds, they adhere to the vascular endothelium adjacent to sites of infection and inflammation. Moving between endothelial cells, the neutrophil migrates toward the offending agent. Contact with a microbe that is properly opsonized with complement or antibodies triggers ingestion, a process in which cytoplasmic streaming results in the formation of pseudopods that fuse around the invader, encasing it in a phagosome. During the ingestion phase, the oxidase enzyme system assembles and is activated, taking oxygen from the surrounding medium and reducing it to form toxic oxygen metabolites critical to microbicidal activity. Concurrently, granules from the two main classes (azurophil and specific) fuse and release their contents into the phagolysosome. The concentration of toxic oxygen metabolites (eg, hydrogen peroxide, hypochlorous acid, hydroxyl radical) and other compounds (eg, proteases, cationic proteins, cathepsins, defensins) increases dramatically, resulting in the death and dissolution of the microbe. Complex physiologic and biochemical processes support and control these functions. Defects in any of these processes may lead to inadequate cell function and an increased risk of infection.

Classification

Table 30–6 summarizes congenital neutrophil function defects. Recently reported is variant CGD with p40phox deficiency manifested by inflammatory bowel disease. Also described is a syndrome of severe neutrophil dysfunctions and severe infections associated with a mutation in a GTPase signaling molecule, Rac2. New syndromes of innate immune dysfunction include defects in interferon and interleukin (IL)-12 receptor and signaling pathways, leading to monocye and macrophage dysfunction and defective toll-like receptor signaling pathways (IL-1 receptor-associated [IRAk] deficiency) associated with recurrent bacterial infections. Leukocyte adhesion deficiency (LAD) III is a disorder characterized by severe bleeding, impaired leukocyte adhesion, and endothelial inflammation, and is associated with mutations of FERMT3 gene, which encodes for a protein, Kindlin-3, critical for intracellular function of β integrins. Other congenital or acquired causes of mild to moderate neutrophil dysfunction include metabolic defects (eg, glycogen storage disease Ib, G6PC3 deficiency, diabetes mellitus, renal disease, and hypophosphatemia), viral infections,
**Table 30–6.** Classification of congenital neutrophil function deficits.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Clinical Manifestations</th>
<th>Functional Defect</th>
<th>Biochemical Defect</th>
<th>Inheritance (Chromosome; Gene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chédiak-Higashi syndrome</td>
<td>Oculocutaneous albinism, photophobia, nystagmus, ataxia. Recurrent infections of skin, respiratory tract, and mucous membranes with gram-positive and gram-negative organisms. Many patients die during lymphoproliferative phase with hepatomegaly, fever, which may be a viral-associated hemophagocytic syndrome secondary to Epstein-Barr virus infection. Older patients may develop degenerative CNS disease.</td>
<td>Neutropenia. Neutrophils, monocytes, lymphocytes, platelets, and all granule-containing cells have giant granules. Most significant defect is in chemotaxis. Also milder defects in microbicidal activity and degranulation.</td>
<td>Gene defect identified. Alterations in membrane fusion with formation of giant granules. Other biochemical abnormalities in cAMP and cGMP, microtubule assembly.</td>
<td>Autosomal recessive (1q42.1-.2; CHS1)</td>
</tr>
<tr>
<td>Leukocyte adherence deficiency I</td>
<td>Recurrent soft-tissue infections, including gingivitis, otitis, mucositis, periodontitis, skin infections. Delayed separation of the cord in newborn and problems with wound healing.</td>
<td>Neutrophilia. Diminished adherence to surfaces, leading to decreased chemotaxis.</td>
<td>Absence or partial deficiency of CD11/CD18 cell surface adhesive glycoproteins.</td>
<td>Autosomal recessive (12q22.3; ITGB2)</td>
</tr>
<tr>
<td>Leukocyte adherence deficiency II</td>
<td>Recurrent infections, mental retardation, craniofacial abnormalities, short stature.</td>
<td>Neutrophilia. Deficient “rolling” interactions with endothelial cells. Red cells have Bombay phenotype.</td>
<td>Deficient fucosyl transferase results in deficient sialyl Lewis X antigen, which interacts with P selectin. P selectin on endothelial cells is required for neutrophil rolling, a prerequisite for adherence and diapedesis.</td>
<td>Autosomal recessive (11p11.2; SLC35C1)</td>
</tr>
<tr>
<td>Chronic granulomatous disease</td>
<td>Recurrent purulent infections with catalase-positive bacteria and fungi. May involve skin, mucous membranes. Patients also develop deep infections (lymph nodes, lung, liver, bones) and sepsis.</td>
<td>Neutrophilia. Neutrophils demonstrate deficient bactericidal activity but normal chemotaxis and ingestion. Defect in the oxidase (Nox2) enzyme system, resulting in absence or diminished production of oxygen metabolites toxic to microbes.</td>
<td>Several molecular defects in oxidase components. Absent cytochrome b558 with decreased expression of either (1) or (2): (1) gp91-phox (2) p22-phox Absent p47-phox or p67-phox (cytosolic components).</td>
<td>X-linked in 60%-65% of cases (Xp21.1; CYBB) Autosomal recessive in &lt; 5% of cases (16q24; CYBA) Autosomal recessive in 30% of cases (7q11.23; NCF1 and 1q25; NCF2, respectively)</td>
</tr>
<tr>
<td>Myeloperoxidase deficiency</td>
<td>Generally healthy. Fungal infections when deficiency associated with systemic diseases (eg, diabetes in poor control).</td>
<td>Diminished capacity to enhance hydrogen peroxide-mediated microbicidal activity. Decreased killing of Candida.</td>
<td>Diminished or absent myeloperoxidase; posttranslational defect in processing protein.</td>
<td>Autosomal recessive (17q22-23)</td>
</tr>
<tr>
<td>Specific granule deficiency</td>
<td>Recurrent skin and deep tissue infections.</td>
<td>Neutropenia. Neutrophils have band-shaped or bilobed nuclei. Decreased chemotaxis and bactericidal activity.</td>
<td>Failure to produce specific granules or their contents during myelopoiesis. Defect in transcription factor.</td>
<td>Autosomal recessive (14q11.2; CEBPe)</td>
</tr>
</tbody>
</table>

cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; CNS, central nervous system; Nox2, NADPH oxidase 2.
and certain drugs. Neutrophils from newborn infants have abnormal adherence, chemotaxis, and bactericidal activity. Cells from patients with thermal injury, trauma, and overwhelming infection have defects in cell motility and bactericidal activity similar to those seen in neonates.

**Clinical Findings**

Recurrent bacterial or fungal infections are the hallmark of neutrophil dysfunction. Although patients will have infection-free periods, episodes of pneumonia, sinusitis, cellulitis, cutaneous and mucosal infections (including perianal or peritonsillar abscesses), and lymphadenitis are frequent. As with neutropenia, aphthous ulcers of mucous membranes, severe gingivitis, and periodontal disease are also major complications. In general, S aureus or gram-negative organisms are commonly isolated from infected sites; other organisms may be specifically associated with a defined neutrophil function defect. In some disorders, fungi account for an increasing number of infections. Deep or generalized infections, such as osteomyelitis, liver abscesses, sepsis, meningitis, and necrotic or gangrenous soft-tissue lesions, occur in specific syndromes (eg, leukocyte adherence deficiency or chronic granulomatous disease). Patients with severe neutrophil dysfunction may die in childhood from severe infections or associated complications. Table 30–6 summarizes pertinent laboratory findings.

**Treatment**

The mainstays of management of these disorders are anticipation of infections and aggressive attempts to identify the foci and the causative agents. Surgical procedures to achieve these goals may be both diagnostic and therapeutic. Broad-spectrum antibiotics covering the range of possible organisms should be initiated without delay, switching to specific antimicrobial agents when the microbiologic diagnosis is made. When infections are unresponsive or they recur, granulocyte transfusions may be helpful.

Chronic management may include prophylactic antibiotics. Trimethoprim-sulfamethoxazole and some other antibiotics (eg, rifampin) enhance the bactericidal activity of neutrophils from patients with chronic granulomatous disease. Some patients with Chédiak-Higashi syndrome improve clinically when given ascorbic acid. Recombinant γ-interferon decreases the number and severity of infections in patients with chronic granulomatous disease. Demonstration of this activity with one patient group raises the possibility that cytokines, growth factors, and other biologic response modifiers may be helpful in other conditions in preventing recurrent infections. Bone marrow transplant has been attempted in most major congenital neutrophil dysfunction syndromes, and reconstitution with normal cells and cell function has been documented. Combining genetic engineering with autologous bone marrow transplant may provide a future strategy for curing these disorders.

**Prognosis**

For mild to moderate defects, anticipation and conservative medical management ensure a reasonable outlook. For severe defects, excessive morbidity and significant mortality still exist. In some diseases, the development of noninfectious complications, such as the lymphoproliferative phase of Chédiak-Higashi syndrome or inflammatory syndromes in chronic granulomatous disease, may influence prognosis.

---

**LYMPHOCYTOSIS**

From the first week up to the fifth year of life, lymphocytes are the most numerous leukocytes in human blood. The ratio then reverses gradually to reach the adult pattern of neutrophil predominance. An absolute lymphocytosis in childhood is associated with acute or chronic viral infections, pertussis, syphilis, tuberculosis, and hyperthyroidism. Other noninfectious conditions, drugs, and hypersensitivity and serum sickness–like reactions cause lymphocytosis.

Fever, upper respiratory symptoms, gastrointestinal complaints, and rashes are clues in distinguishing infectious from noninfectious causes. The presence of enlarged liver, spleen, or lymph nodes is crucial to the differential diagnosis, which includes acute leukemia and lymphoma. Most cases of infectious mononucleosis are associated with hepatosplenomegaly or adenopathy. The absence of anemia and thrombocytopenia helps to differentiate these disorders. Evaluation of the morphology of lymphocytes on peripheral blood smear is crucial. Infectious causes, particularly infectious mononucleosis, are associated with atypical features in the lymphocytes, such as basophilic cytoplasm, vacuoles, finer and less-dense chromatin, and an indented nucleus. These features are distinct from the characteristic morphology associated with lymphoblastic leukemia. Lymphocytosis in
childhood is most commonly associated with infections and resolves with recovery from the primary disease.

**EOSINOPHILIA**

Eosinophilia in infants and children is an absolute eosinophil count greater than 300/μL. Marrow eosinophil production is stimulated by the cytokine IL-5. Allergies, particularly those associated with asthma and eczema, are the most common primary causes of eosinophilia in children. Eosinophilia also occurs in drug reactions, with tumors (Hodgkin and non-Hodgkin lymphomas and brain tumors), and with immunodeficiency and histiocytosis syndromes. Increased eosinophil counts are a prominent feature of many invasive parasitic infections. Gastrointestinal disorders such as chronic hepatitis, ulcerative colitis, Crohn disease, and milk precipitin disease may be associated with eosinophilia. Increased blood eosinophil counts have been identified in several families without association with any specific illness. Rare causes of eosinophilia include the hypereosinophilic syndrome, characterized by counts greater than 1500/μL and organ involvement and damage (hepatosplenomegaly, cardiomyopathy, pulmonary fibrosis, and central nervous system injury). This is a disorder of middle-aged adults and is rare in children. Eosinophilic leukemia has been described, but its existence as a distinct entity is very rare.

Eosinophils are sometimes the last type of mature myeloid cell to disappear after marrow ablative chemotherapy. Increased eosinophil counts are associated with graft-versus-host disease after bone marrow transplant, and elevations are sometimes documented during rejection episodes in patients who have solid organ grafts.

**BLEEDING DISORDERS**

Bleeding disorders may occur as a result of (1) quantitative or qualitative abnormalities of platelets, (2) quantitative or qualitative abnormalities in plasma procoagulant factors, (3) vascular abnormalities, or (4) accelerated fibrinolysis. The coagulation cascade and fibrinolytic system are shown in Figures 30–4 and 30–5.

The most critical aspect in evaluating the bleeding patient is obtaining detailed personal and family bleeding histories, including bleeding complications associated with dental interventions, surgeries, suture placement and removal, and trauma. Excessive mucosal bleeding is suggestive of a platelet disorder, von Willebrand disease (vWD), dysfibrinogenemia, or vasculitis. Bleeding into muscles and joints may be associated with a plasma procoagulant factor abnormality. In either scenario, the abnormality may be congenital or acquired. A thorough physical examination should be performed with special attention to the skin, oro- and nasopharynx, liver, spleen, and joints. Screening and diagnostic evaluation in patients with suspected bleeding disorders should initially include the following laboratory testing:

2. Activated partial thromboplastin time (aPTT) to assess clotting function of high-molecular-weight kininogen, prekallikrein, XII, XI, IX, VIII, X, V, II, and fibrinogen.
3. Platelet count and size determined as part of a CBC.
4. Platelet functional assessment by platelet function analyzer-100 (PFA-100), template bleeding time, or whole blood platelet aggregometry.
5. Fibrinogen functional level by clotting assay.

The following laboratory tests may also be useful:

1. Thrombin time to measure the generation of fibrin from fibrinogen following conversion of prothrombin to thrombin, as well as the antithrombin effects of fibrin-split products and heparin. The thrombin time
Chapter 30

1. Idiopathic Thrombocytopenic Purpura

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Otherwise healthy child.
- Decreased platelet count.
- Petechiae, ecchymoses.

General Considerations

Acute idiopathic thrombocytopenic purpura (ITP) is the most common bleeding disorder of childhood. It occurs most frequently in children aged 2–5 years and often follows infection with viruses, such as rubella, varicella, measles, parvovirus, influenza, EBV, or acute and chronic HIV. Most patients recover spontaneously within a few months. Chronic ITP (> 12 months’ duration) occurs in 10%–20% of affected patients. The thrombocytopenia results from clearance of circulating IgM- or IgG-coated platelets by the reticuloendothelial system. The spleen plays a predominant role in the disease by forming the platelet cross-reactive antibodies and sequestering the antibody-bound platelets.

Clinical Findings

A. Symptoms and Signs

Onset of ITP is usually acute, with the appearance of multiple petechiae and ecchymoses. Epistaxis is also common at presentation. No other physical findings are usually present. Rarely, concurrent infection with EBV or CMV may cause hepatosplenomegaly or lymphadenopathy, simulating acute leukemia.

B. Laboratory Findings

1. Blood—The platelet count is markedly reduced (usually < 50,000/µL and often < 10,000/µL), and platelets frequently are of larger size on peripheral blood smear, suggesting accelerated production of new platelets. The white blood count and differential are normal, and the hemoglobin concentration is preserved unless hemorrhage has been significant.

2. Bone marrow—The number of megakaryocytes is increased. Erythroid and myeloid cellularity is normal.

3. Other laboratory tests—Platelet-associated IgG or IgM, or both, may be demonstrated on the patient’s platelets or in the serum. PT and aPTT are normal.

Abnormalities of Platelet Number or Function

Thrombocytopenia in the pediatric age range is often immune-mediated (eg, ITP, neonatal auto- or alloimmune thrombocytopenia, heparin-induced thrombocytopenia), but is also caused by consumptive coagulopathy (eg, DIC, Kasabach-Merritt syndrome), acute leukemias, rare disorders such as Wiskott-Aldrich syndrome and type 2b vWD, and artifactually in automated cytometers (eg, Bernard-Soulier syndrome), where giant forms may not be enumerated as platelets by automated cell counters.

Figure 30–5. The fibrinolytic system. Solid arrows indicate activation; dashed line arrows indicate inhibition. ECM, extracellular matrix; FDP, fibrinogen-fibrin degradation products; MMP, matrix metalloproteinases; PAI, plasminogen activator inhibitor; TAFI, thrombin activatable fibrinogenolysis inhibitor; tPA, tissue plasminogen activator; uPA, urokinase; uPAR, cellular urokinase receptor. (Reproduced, with permission, from Goodnight SH, Hathaway WE [eds]: Disorders of Hemostasis & Thrombosis: A Clinical Guide, 2nd ed. McGraw-Hill; 2001.)

may be prolonged in the setting of a normal fibrinogen concentration if the fibrinogen is dysfunctional (ie, dysfibrinogenemia).

2. Euglobulin lysis time (ELT), if available, to evaluate for accelerated fibrinolysis if the preceding workup is nonrevealing despite documented history of pathologic bleeding. If the ELT is shortened, assessment of plasminogen activator inhibitor-1 and α2-antiplasmin is warranted, as congenital deficiency in these fibrinolytic inhibitors may cause hyperfibrinolysis. In ill patients, measurement of fibrin degradation products may assist in the diagnosis of DIC.
**Differential Diagnosis**

Table 30–7 lists common causes of thrombocytopenia. ITP is a diagnosis of exclusion. Family history or the finding of predominantly giant platelets on the peripheral blood smear is helpful in separating from thrombocytopenia that is hereditary. Bone marrow examination should be performed if the history is atypical (ie, the child is not otherwise healthy, or if there is a family history of bleeding), if abnormalities other than purpura and petechiae are present on physical examination, or if other cell lines are affected on the CBC. The importance of performing a bone marrow examination prior to using corticosteroids in the treatment for ITP remains controversial.

**Complications**

Severe hemorrhage and bleeding into vital organs are the feared complications of ITP. Intracranial hemorrhage is the most serious (but rarely seen) complication, occurring in less than 1% of affected children. The most important risk factors for hemorrhage are a platelet count less than 10,000/μL and mean platelet volume less than 8 fL.

**Treatment**

**A. General Measures**

Treatment is optional in most children in the absence of bleeding. Aspirin and other medications (eg, NSAIDs such as Advil, Naproxin, etc) that compromise platelet function should be avoided. Bleeding precautions (eg, restriction from physical contact activities and use of helmets) should be observed. Platelet transfusion should be avoided except in circumstances of life-threatening bleeding, in which case emergent splenectomy may be considered. In this setting, administration of corticosteroids and IVIG is also advisable.

**B. Corticosteroids**

Patients with clinically significant but non–life-threatening bleeding (ie, epistaxis, hematuria, and hematochezia) and those with a platelet count of less than 10,000/μL may benefit from prednisone at 1–2 mg/kg/d for 2–3 weeks with a maximum dose of 60–80 mg/d. A higher dose initially (3–5 mg/kg/d) for 3–7 days may lead to faster count recovery. The dosage is then tapered and stopped. No further prednisone is given regardless of the platelet count unless significant bleeding recurs, at which time prednisone is administered in the smallest dose that achieves resolution of bleeding episodes (usually 2.5–5 mg twice daily). Follow-up continues until the steroid can again be discontinued, spontaneous remission occurs, or other therapeutic measures are instituted. Toxicity (Cushingoid facies, weight gain, change in behavior, hyperglycemia, and hypertension) is usually mild for short treatment courses.

**C. Intravenous Immunoglobulin**

Intravenous immunoglobulin (IVIG) is the treatment of choice for severe, acute bleeding, and may also be used as an alternative or adjunct to corticosteroid treatment in both acute and chronic ITP of childhood. IVIG may be effective even when the patient is resistant to corticosteroids; responses are prompt and may last for several weeks. Most patients receive 0.8–1 g/kg/d for 1–2 days. Infusion time is typically 4–6 hours. Platelets may be given simultaneously during life-threatening hemorrhage but are rapidly destroyed. Adverse effects of IVIG are common, including transient neurologic complications in one-third of patients (eg, headache, nausea, and aseptic meningitis). These symptoms may mimic those of intracranial hemorrhage and necessitate radiologic evaluation of the brain. A transient decrease in neutrophil number may also be seen.

---

**Table 30–7. Common causes of thrombocytopenia.**

<table>
<thead>
<tr>
<th>Antibody-Mediated</th>
<th>Increased Turnover</th>
<th>Other</th>
<th>Decreased Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic thrombocytopenic purpura</td>
<td>Disseminated intravascular coagulopathy</td>
<td>Hemolytic-uremic syndrome</td>
<td>Congenital: Fanconi anemia</td>
</tr>
<tr>
<td>Infection</td>
<td>Sepsis</td>
<td>Thrombotic thrombocytopenic purpura</td>
<td>Wiskott-Aldrich syndrome</td>
</tr>
<tr>
<td>Immunologic diseases</td>
<td>Necrotizing enterocolitis</td>
<td>Respiratory distress syndrome</td>
<td>Thrombocytopenia with absent radii</td>
</tr>
<tr>
<td></td>
<td>Thrombosis</td>
<td>Wiskott-Aldrich syndrome</td>
<td>Metabolic disorders</td>
</tr>
<tr>
<td></td>
<td>Cavernous hemangioma</td>
<td>Osteopetrosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D. Anti-Rh(D) Immunoglobulin

This polyclonal immunoglobulin binds to the D antigen on RBCs. The splenic clearance of anti-D–coated red cells interferes with removal of antibody-coated platelets, resulting in improvement in thrombocytopenia. This approach is effective only in Rh(+) patients with a functional spleen. The time required for platelet increase is slightly longer than with IVIG. However, approximately 80% of Rh(+) children with acute or chronic ITP respond well. Significant hemolysis may occur transiently with an average hemoglobin concentration decrease of 0.8 g/dL. However, severe hemolysis occurs in 5% of treated children, and clinical and laboratory evaluation following administration is warranted in all patients. Rh(D) immunoglobulin is less expensive and infused more rapidly than IVIG but is more expensive than corticosteroids.

E. Splenectomy

Many children with chronic ITP have platelet counts greater than 30,000/μL. Up to 70% of such children spontaneously recover with a platelet count greater than 100,000/μL within 1 year. For the remainder, corticosteroids, IVIG, and anti-D immunoglobulin are typically effective treatment for acute bleeding. Splenectomy produces a response in 70%–80%, but it should be considered only after persistence of significant thrombocytopenia for at least 1 year. Preoperative treatment with corticosteroids, IVIG, or anti-D immunoglobulin is usually indicated. Postoperatively, the platelet count may rise to 1 million/μL. This reactive thrombocytosis is not associated with thrombotic complications in children. The risk of overwhelming infection (predominantly with encapsulated organisms) is increased after splenectomy, particularly in the young child. Therefore, the procedure should be postponed, if possible, until age 5 years. Administration of pneumococcal, *H. influenzae* type b and meningococcal vaccines at least 2 weeks prior to splenectomy is recommended. Daily penicillin prophylaxis should be started postoperatively and continued at least until 5 years of age.

F. Rituximab (Anti-CD20 Monoclonal Antibody)

There have been no randomized trials for rituximab in children. The efficacy of treating childhood chronic ITP in several series and case studies has demonstrated a response rate of 60%. Because of significant adverse events, this therapy may be reserved for refractory cases with significant bleeding or as an alternative to splenectomy.

G. New Agents

One randomized clinical trial in children has been conducted with romiplostim, a thrombopoietin receptor agonist, with an 88% response rate and improved quality of life. Further studies in larger numbers of pediatric patients are needed to address the possibility that some patients with chronic ITP have a response in platelet production that is not maximally increased.

### Prognosis

Ninety percent of children with ITP will have a spontaneous remission. Features associated with the development of chronic ITP include female gender, age greater than 10 years at presentation, insidious onset of bruising, and the presence of other autoantibodies. Older child- and adolescent-onset ITP is associated with an increased risk of chronic autoimmune diseases or immunodeficiency states. Appropriate screening by history and laboratory studies (eg, antinuclear antibody) is warranted.

---


---

2. Thrombocytopenia in the Newborn

Thrombocytopenia is one of the most common causes of neonatal hemorrhage and should be considered in any newborn with petechiae, purpura, or other significant bleeding. Defined as a platelet count less than 150,000/μL, thrombocytopenia occurs in approximately 0.9% of unselected neonates. Several specific entities may be responsible (see Table 30–7); however, half of such neonates have alloimmune thrombocytopenia. Infection and DIC are the most common causes of thrombocytopenia in ill full-term newborns and in preterm newborns. In the healthy neonate, antibody-mediated thrombocytopenia (alloimmune or maternal autoimmune), viral syndromes, hyperviscosity, and major-vessel thrombosis are frequent causes of thrombocytopenia. Management is directed toward the underlying etiology.

A. Thrombocytopenia Associated With Platelet Alloantibodies (Neonatal Alloimmune Thrombocytopenia)

Platelet alloimmunization occurs in 1 out of approximately 350 pregnancies. Unlike in Rh incompatibility, 30%–40% of affected neonates are first-born. Thrombocytopenia is progressive over the course of gestation and worse with each subsequent pregnancy. Alloimmunization occurs when a platelet antigen of the infant differs from that of the mother, and the mother is sensitized by fetal platelets that cross
the placenta into the maternal circulation. In Caucasians, alloimmune thrombocytopenia is most often due to human platelet antigen (HPA)-1a incompatibility. Sensitization of a mother homozygous for HPA-1b to paternally acquired fetal HPA-1a antigen results in severe fetal thrombocytopenia in 1 in 1200 fetuses. Only 1 in 20 HPA-1a–positive fetuses of HPA-1a–negative mothers develop alloimmunization. Other platelet-specific alloantigens may be etiologic. The presence of antenatal maternal platelet antibodies on more than one occasion and their persistence into the third trimester is predictive of severe neonatal thrombocytopenia; a weak or undetectable antibody does not exclude thrombocytopenia. Severe intracranial hemorrhage occurs in 10%–30% of affected neonates as early as 20 weeks’ gestation. Petechiae or other bleeding manifestations are usually present shortly after birth. The disease is self-limited, and the platelet count normalizes within 4 weeks.

If alloimmunization is associated with clinically significant bleeding, transfusion of platelet concentrates harvested from the mother is more effective than random donor platelets in increasing the platelet count. Transfusion with HPA-matched platelets from unrelated donors or treatment with IVIG or methylprednisolone to acutely block macrophage uptake of sensitized cells has also been successful in raising the platelet count and achieving hemostasis. If thrombocytopenia is not severe and bleeding is absent, observation alone is often appropriate.

Intracranial hemorrhage in a previous child secondary to alloimmune thrombocytopenia is the strongest risk factor for severe fetal thrombocytopenia and hemorrhage in a subsequent pregnancy. Amniocentesis or chorionic villus sampling to obtain fetal DNA for platelet antigen typing is sometimes performed if the father is heterozygous for HPA-1a. If alloimmunization has occurred with a previous pregnancy, irrespective of history of intracranial hemorrhage, screening cranial ultrasound for hemorrhage should begin at 20 weeks’ gestation and be repeated regularly. In addition, cordocentesis should be performed at approximately 20 weeks’ gestation, with prophylactic transfusion of irradiated, leukoreduced, maternal platelet concentrates. If the fetal platelet count is less than 100,000/μL, the mother should be treated with weekly IVIG. Delivery by elective cesarean section is recommended if the fetal platelet count is less than 50,000/μL, to minimize the risk of intracranial hemorrhage associated with birth trauma.

B. Thrombocytopenia Associated With ITP in the Mother (Neonatal Autoimmune Thrombocytopenia)

Infants born to mothers with idiopathic thrombocytopenic purpura (ITP) or other autoimmune diseases (eg, antiphospholipid antibody syndrome or systemic lupus erythematosus) may develop thrombocytopenia as a result of transfer of antiplatelet IgG from the mother to the infant. Unfortunately, maternal and fetal platelet counts and maternal antiplatelet antibody levels are unreliable predictors of bleeding risk. Antenatal corticosteroid administration to the mother is generally instituted once maternal platelet count falls below 50,000/μL, with or without a concomitant course of IVIG.

Most neonates with autoimmune thrombocytopenia do not develop clinically significant bleeding, and thus treatment for thrombocytopenia is not often required. The risk of intracranial hemorrhage is 0.2%–2%. If diffuse petechiae or minor bleeding are evident, a 1- to 2-week course of oral prednisone, 2 mg/kg/d, may be helpful. If the platelet count remains consistently less than 20,000/μL or if severe hemorrhage develops, IVIG should be given (0.8–1 g/kg daily for 1–2 days). Platelet transfusions are only indicated for life-threatening bleeding, and may only be effective after removal of antibody by exchange transfusion. The platelet nadir is typically between the fourth and sixth day of life and improves significantly by 1 month; full recovery may take 2–4 months. Platelet recovery may be delayed in breast-fed infants because of transfer of IgG to the milk.

C. Neonatal Thrombocytopenia Associated With Infections

Thrombocytopenia is commonly associated with severe generalized infections during the newborn period. Between 50% and 75% of neonates with bacterial sepsis are thrombocytopenic. Intrauterine infections such as rubella, syphilis, toxoplasmosis, CMV, herpes simplex (acquired intra- or postpartum), enteroviruses, and parvovirus are often associated with thrombocytopenia. In addition to specific treatment for the underlying disease, platelet transfusions may be indicated in severe cases.

D. Thrombocytopenia Associated With Kaposiform Hemangioendotheliomas (Kasabach-Merritt Syndrome)

A rare but important cause of thrombocytopenia in the newborn is kaposiform hemangioendotheliomas, a benign neoplasm with histopathology distinct from that of classic infantile hemangiomas. Intense platelet sequestration in the lesion results in peripheral thrombocytopenia and may rarely be associated with a DIC-like picture and hemolytic anemia. The bone marrow typically shows megakaryocytic hyperplasia in response to the thrombocytopenia. Corticosteroids, α-interferon, and vincristine are all useful for reducing the size of the lesion and are indicated if significant coagulopathy is present, the lesion compresses a vital structure, or the lesion is cosmetically unacceptable. If consumptive coagulopathy is present, heparin or aminocaproic acid may be useful. Depending on the site, embolization may be an option. Surgery is often avoided because of the high risk of hemorrhage.
3. Disorders of Platelet Function

Individuals with platelet function defects typically develop abnormal bruising and mucosal bleeding similar to that occurring in persons with thrombocytopenia. Historically, platelet function has been screened by measuring the bleeding time. If this is prolonged, in vitro platelet aggregation is studied using agonists, such as adenosine diphosphate, collagen, arachidonic acid, and ristocetin. While labor-intensive, platelet aggregometry remains important in selected clinical situations, the PFA-100 has become available to evaluate platelet dysfunction and vWD and has replaced the template bleeding time in many clinical laboratories. Unfortunately, none of these screening tests of platelet function is uniformly predictive of clinical bleeding severity.

Platelet dysfunction may be inherited or acquired, with the latter being more common. Acquired disorders of platelet function may occur secondary to uremia, cirrhosis, sepsis, myeloproliferative disorders, congenital heart disease, and viral infections. Many pharmacologic agents decrease platelet function. The most common offending agents in the pediatric population are aspirin and other NSAIDs, synthetic penicillins, and valproic acid. In acquired platelet dysfunction, the PFA-100 closure time is typically prolonged with collagen-eptinephrine, while normal with collagen-ADP.

The inherited disorders are due to defects in platelet-vessel interaction, platelet-platelet interaction, platelet granule content or release (including defects of signal transduction), thromboxane and arachidonic acid pathway, and platelet-procoagulant protein interaction. Individuals with hereditary platelet dysfunction generally have a prolonged bleeding time with normal platelet number and morphology by light microscopy. PFA-100 closure time, in contrast to that in acquired dysfunction, is typically prolonged with both collagen-ADP and collagen-eptinephrine.

Congenital causes of defective platelet-vessel wall interaction include Bernard-Soulier syndrome, which is characterized by increased platelet size and decreased platelet number. The molecular defect in this autosomal recessive disorder is a deficiency or dysfunction of glycoprotein Ib-V-IX complex on the platelet surface resulting in impaired von Willebrand factor (vWF) binding, and hence, impaired platelet adhesion to the vascular endothelium.

Glanzmann thrombasthenia is an example of platelet-platelet dysfunction. In this autosomal recessive disorder, glycoprotein IIb-IIIa is deficient or dysfunctional. Platelets do not bind fibrinogen effectively and exhibit impaired aggregation. As in Bernard-Soulier syndrome, acute bleeding is treated by platelet transfusion.

Disorders involving platelet granule content include storage pool disease and Quebec platelet disorder. In individuals with storage pool disease, platelet-dense granules lack adenosine diphosphate and adenosine triphosphate and are often found to be low in number by electron microscopy. These granules are also deficient in Hermansky-Pudlak, Chédiak-Higashi, and Wiskott-Aldrich syndromes. Whereas deficiency of a second granule class, α-granules, results in the gray platelet syndrome, Quebec platelet disorder is characterized by a normal platelet α-granule number, but with abnormal proteolysis of α-granule proteins and deficiency of platelet α-granule multimerin. α-Granule abnormality in this disorder also results in increased serum levels of urokinase-type plasminogen activator. Epinephrine-induced platelet aggregation is markedly impaired.

Platelet dysfunction has also been observed in other congenital syndromes, such as Down and Noonan syndromes, without a clear understanding of the molecular defect.

**Treatment**

Acute bleeding in many individuals with acquired or selected congenital platelet function defects responds to therapy with desmopressin acetate, likely due to an induced release of vWF from endothelial stores and/or upregulated expression of glycoprotein Ib-V-IX on the platelet surface. If this therapy is ineffective, or if the patient has Bernard-Soulier syndrome or Glanzmann syndrome, the mainstay of treatment for bleeding episodes is platelet transfusion, possibly with HLA type-specific platelets. Recombinant VWF has variable efficacy and may be helpful in platelet transfusion-refractory patients.

**INHERITED BLEEDING DISORDERS**

Table 30–8 lists normal values for coagulation factors. The more common factor deficiencies are discussed in this section. Individuals with bleeding disorders should avoid exposure to medications that inhibit platelet function. Participation in contact sports should be considered in the context of the severity of the bleeding disorder.

**1. Factor VIII Deficiency (Hemophilia A, Classic Hemophilia)**

- **Bruising, soft-tissue bleeding, hemarthrosis.**
- **Prolonged aPTT.**
- **Reduced factor VIII activity.**
### Table 30–8. Physiologic alterations in measurements of the hemostatic system.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Normal Adults</th>
<th>Fetus (20 wk)</th>
<th>Preterm (25–32 wk)</th>
<th>Term Infant</th>
<th>Infant (6 mo)</th>
<th>Pregnancy (term)</th>
<th>Exercise (acute)</th>
<th>Aging (70–80 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Platelets</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count μL/10^3</td>
<td>250</td>
<td>107–297</td>
<td>293</td>
<td>332</td>
<td>—</td>
<td>260</td>
<td>↑ 18%–40%</td>
<td>225</td>
</tr>
<tr>
<td>Size (fL)</td>
<td>9.0</td>
<td>8.9</td>
<td>8.5</td>
<td>9.1</td>
<td>—</td>
<td>9.6</td>
<td>↑</td>
<td>—</td>
</tr>
<tr>
<td>Aggregation ADP</td>
<td>N</td>
<td>+</td>
<td>↓</td>
<td>↓</td>
<td>—</td>
<td>↑</td>
<td>↓ 15%</td>
<td>—</td>
</tr>
<tr>
<td>Collagen</td>
<td>N</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ristocetin</td>
<td>N</td>
<td>—</td>
<td>↑</td>
<td>↑</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>BT (min)</td>
<td>2–9</td>
<td>—</td>
<td>3.6 ± 2</td>
<td>3.4 ± 1.8</td>
<td>—</td>
<td>9.0 ± 1.4</td>
<td>—</td>
<td>5.6</td>
</tr>
<tr>
<td><strong>Procoagulant system</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTT*</td>
<td>1</td>
<td>4.0</td>
<td>3</td>
<td>1.3</td>
<td>1.1</td>
<td>1.1</td>
<td>↓ 15%</td>
<td>↓</td>
</tr>
<tr>
<td>PT*</td>
<td>1.00</td>
<td>2.3</td>
<td>1.3</td>
<td>1.1</td>
<td>1</td>
<td>0.95</td>
<td>N</td>
<td>—</td>
</tr>
<tr>
<td>TCT*</td>
<td>1</td>
<td>2.4</td>
<td>1.3</td>
<td>1.1</td>
<td>1</td>
<td>0.92</td>
<td>N</td>
<td>—</td>
</tr>
<tr>
<td>Fibrinogen mg/dL</td>
<td>278 (0.61)</td>
<td>96 (50)</td>
<td>250 (100)</td>
<td>240 (150)</td>
<td>251 (160)</td>
<td>450 (100)</td>
<td>↓ 25%</td>
<td>↑ 15%</td>
</tr>
<tr>
<td>II, U/mL</td>
<td>1 (0.7)</td>
<td>0.16 (0.10)</td>
<td>0.32 (0.18)</td>
<td>0.52 (0.25)</td>
<td>0.88 (0.6)</td>
<td>1.15 (0.68–1.9)</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>V, U/mL</td>
<td>1.0 (0.6)</td>
<td>0.32 (0.21)</td>
<td>0.80 (0.43)</td>
<td>1.00 (0.54)</td>
<td>0.91 (0.55)</td>
<td>0.85 (0.40–1.9)</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>VII, U/mL</td>
<td>1.0 (0.6)</td>
<td>0.27 (0.17)</td>
<td>0.37 (0.24)</td>
<td>0.57 (0.35)</td>
<td>0.87 (0.50)</td>
<td>1.17 (0.87–3.3)</td>
<td>↑ 200%</td>
<td>↑ 25%</td>
</tr>
<tr>
<td>VIIIc, U/mL</td>
<td>1.0 (0.6)</td>
<td>0.50 (0.23)</td>
<td>0.75 (0.40)</td>
<td>1.50 (0.55)</td>
<td>0.90 (0.50)</td>
<td>2.12 (0.8–6.0)</td>
<td>↑ 250%</td>
<td>1.50</td>
</tr>
<tr>
<td>vWF, U/mL</td>
<td>1.0 (0.6)</td>
<td>0.65 (0.40)</td>
<td>1.50 (0.90)</td>
<td>1.60 (0.84)</td>
<td>1.07 (0.60)</td>
<td>1.7</td>
<td>↑ 75–200%</td>
<td>↑</td>
</tr>
<tr>
<td>IX, U/mL</td>
<td>1.0 (0.5)</td>
<td>0.10 (0.05)</td>
<td>0.22 (0.17)</td>
<td>0.35 (0.15)</td>
<td>0.86 (0.36)</td>
<td>0.81–2.15</td>
<td>↑ 25%</td>
<td>1.0–1.40</td>
</tr>
<tr>
<td>X, U/mL</td>
<td>1.0 (0.6)</td>
<td>0.19 (0.15)</td>
<td>0.38 (0.20)</td>
<td>0.45 (0.3)</td>
<td>0.78 (0.38)</td>
<td>1.30</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>XI, U/mL</td>
<td>1.0 (0.6)</td>
<td>0.13 (0.08)</td>
<td>0.2 (0.12)</td>
<td>0.42 (0.20)</td>
<td>0.86 (0.38)</td>
<td>0.7</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>XII, U/mL</td>
<td>1.0 (0.6)</td>
<td>0.15 (0.08)</td>
<td>0.22 (0.09)</td>
<td>0.44 (0.16)</td>
<td>0.77 (0.39)</td>
<td>1.3 (0.82)</td>
<td>—</td>
<td>↑ 16%</td>
</tr>
<tr>
<td>XIII, U/mL</td>
<td>1.04 (0.55)</td>
<td>0.30</td>
<td>0.4</td>
<td>0.61 (0.36)</td>
<td>1.04 (0.50)</td>
<td>0.96</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PreK, U/mL</td>
<td>1.12 (0.06)</td>
<td>0.13 (0.08)</td>
<td>0.26 (0.14)</td>
<td>0.35 (0.16)</td>
<td>0.86 (0.56)</td>
<td>1.18</td>
<td>—</td>
<td>↑ 27%</td>
</tr>
<tr>
<td>HK, U/mL</td>
<td>0.92 (0.48)</td>
<td>0.15 (0.10)</td>
<td>0.28 (0.20)</td>
<td>0.64 (0.50)</td>
<td>0.82 (0.36)</td>
<td>1.6</td>
<td>—</td>
<td>↑ 32%</td>
</tr>
</tbody>
</table>

(Continued)
Table 30–8. Physiologic alterations in measurements of the hemostatic system. *(Continued)*

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Normal Adults</th>
<th>Fetus (20 wk)</th>
<th>Preterm (25–32 wk)</th>
<th>Term Infant</th>
<th>Infant (6 mo)</th>
<th>Pregnancy (term)</th>
<th>Exercise (acute)</th>
<th>Aging (70–80 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Anticoagulant system</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT, U/mL</td>
<td>1.0</td>
<td>0.23</td>
<td>0.35</td>
<td>0.56</td>
<td>1.04</td>
<td>1.02</td>
<td>14%</td>
<td>N</td>
</tr>
<tr>
<td>α₂-MG, U/mL</td>
<td>1.05 (0.79)</td>
<td>0.18 (0.10)</td>
<td>—</td>
<td>1.39 (0.95)</td>
<td>1.91 (1.49)</td>
<td>1.53 (0.85)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C1IN, U/mL</td>
<td>1.01</td>
<td>—</td>
<td>—</td>
<td>0.72</td>
<td>1.41</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PC, U/mL</td>
<td>1.0</td>
<td>0.10</td>
<td>0.29</td>
<td>0.50</td>
<td>0.59</td>
<td>0.99</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Total PS, U/mL</td>
<td>1.0 (0.6)</td>
<td>0.15 (0.11)</td>
<td>0.17 (0.14)</td>
<td>0.24 (0.1)</td>
<td>0.87 (0.55)</td>
<td>0.89</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>Free, PS, U/mL</td>
<td>1.0 (0.5)</td>
<td>0.22 (0.13)</td>
<td>0.28 (0.19)</td>
<td>0.49 (0.33)</td>
<td>—</td>
<td>0.25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Heparin</td>
<td>1.01</td>
<td>0.10 (0.06)</td>
<td>0.25 (0.10)</td>
<td>0.49 (0.33)</td>
<td>0.97 (0.59)</td>
<td>—</td>
<td>—</td>
<td>↓ 15%</td>
</tr>
<tr>
<td>Cofactor II, U/mL</td>
<td>(0.73)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFPI, ng/mL</td>
<td>73</td>
<td>21</td>
<td>20.6</td>
<td>38</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td><strong>Fibrinolytic system</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasminogen U/mL</td>
<td>1.0</td>
<td>0.20</td>
<td>0.35 (0.20)</td>
<td>0.37 (0.18)</td>
<td>0.90</td>
<td>1.39</td>
<td>↓ 10%</td>
<td>N</td>
</tr>
<tr>
<td>tPA, ng/mL</td>
<td>4.9</td>
<td>—</td>
<td>8.48</td>
<td>9.6</td>
<td>2.8</td>
<td>4.9</td>
<td>↑ 300%</td>
<td>N</td>
</tr>
<tr>
<td>α₂-AP, U/mL1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.74 (0.5)</td>
<td>0.83 (0.65)</td>
<td>1.11 (0.83)</td>
<td>0.95</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>PAI-1, U/mL</td>
<td>1.0</td>
<td>—</td>
<td>1.5</td>
<td>1.0</td>
<td>1.07</td>
<td>4.0</td>
<td>↓ 5%</td>
<td>N</td>
</tr>
<tr>
<td>Overall fibrinolysis</td>
<td>N</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>—</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>

Except as otherwise indicated values are mean ±2 standard deviation (SD) or values in parentheses are lower limits (−2 SD or lower range); +, positive or present; ↓, decreased; ↑, increased; N, normal or no change; *, values as ratio or subject/mean of reference range; α₂-MG, α₂-macroglobulin; α₂-AP, α₂-antiplasmin; ADP, adenosine diphosphate; AT, antithrombin; BT, bleeding time; C1IN, C1 esterase inhibitor; HK, high-molecular-weight kininogen; PAI, plasminogen activator inhibitor; PC, protein C; PreK, prekallikrein; PS, protein S; PT, prothrombin time; PTT, partial thromboplastin time; TCT, thrombin clotting time; TFPI, tissue factor pathway inhibitor; tPA, tissue plasminogen activator; vWF, von Willebrand factor. Overall fibrinolysis is measured by euglobulin lysis time.

General Considerations

Factor VIII activity is reported in units per milliliter, with 1 U/mL equal to 100% of the factor activity found in 1 mL of normal plasma. The normal range for factor VIII activity is 0.50–1.50 U/mL (50%–150%). Hemophilia A occurs predominantly in males as an X-linked disorder. One-third of cases are due to a new mutation. The incidence of factor VIII deficiency is 1:5000 male births.

Clinical Findings

A. Symptoms and Signs

Patients with severe hemophilia A (<1% plasma factor VIII activity) have frequent spontaneous bleeding episodes involving skin, mucous membranes, joints, muscles, and viscera. In contrast, patients with mild hemophilia A (5%–40% factor VIII activity) bleed only at times of trauma or surgery. Those with moderate hemophilia A (1% to <5% factor VIII activity) typically have intermediate bleeding manifestations. The most crippling aspect of factor VIII deficiency is the tendency to develop recurrent hemorrhages that incite joint destruction.

B. Laboratory Findings

Individuals with hemophilia A have a prolonged aPTT, except in some cases of mild deficiency. The PT is normal. The diagnosis is confirmed by finding decreased factor VIII activity with normal vWF activity. In two-thirds of families of hemophilic patients, the females are carriers and some are mildly symptomatic. Carriers of hemophilia can be suspected by determination of the ratio of factor VIII activity to vWF antigen and definitely diagnosed by molecular genetic techniques. In a male fetus or newborn with a family history of hemophilia A, cord blood sampling for factor VIII activity is accurate and important in subsequent care.

Complications

Intracranial hemorrhage is the leading disease-related cause of death among patients with hemophilia. Most intracranial hemorrhages in moderate to severe deficiency are spontaneous (ie, not associated with trauma). Hemarthroses begin early in childhood and, particularly when recurrent, can result in joint destruction (ie, hemophilic arthropathy). Large intramuscular hematomas can lead to a compartment syndrome with resultant neurologic compromise. Although these complications are most common in severe hemophilia A, they may be experienced by individuals with moderate or mild disease. A serious complication of hemophilia is the development of an acquired circulating antibody to factor VIII after treatment with factor VIII concentrate. Such factor VIII inhibitors develop in up to 30% of patients with severe hemophilia A, and most commonly among patients with large deletions in the factor VIII gene. Inhibitors may be amenable to desensitization with regular factor VIII infusion (immune tolerance therapy) with or without immunosuppressive therapy. The “bypassing agent,” recombinant factor VIIa, has become a therapy of choice for treatment of acute hemorrhage in patients with hemophilia A and a high-titer inhibitor.

In prior decades, therapy-related complications in hemophilia A have included infection with the HIV, hepatitis B virus, and hepatitis C virus. Through stringent donor selection, the implementation of sensitive screening assays, the use of heat or chemical methods for viral inactivation, and the development of recombinant products, the risk of these infections is minimal. Inactivation methods do not eradicate viruses lacking a lipid envelope, however, so that transmission of parvovirus and hepatitis A remains a concern with the use of plasma-derived products. Immunization with hepatitis A and hepatitis B vaccines is recommended for all hemophilia patients.

Treatment

The general aim of management is to raise the factor VIII activity to prevent or stop bleeding. Some patients with mild factor VIII deficiency may respond to desmopressin via release of endothelial stores of factor VIII and vWF into plasma; however, most patients require administration of exogenous factor VIII to achieve hemostasis. The in vivo half-life of factor VIII is generally 8–12 hours but may exhibit considerable variation among individuals depending on comorbid conditions. Non–life-threatening, non–limb-threatening hemorrhage is treated initially with 20–30 U/kg of factor VIII, to achieve a rise in plasma factor VIII activity to 40%–60%. Large joint hemarthrosis and life- or limb-threatening hemorrhage is treated initially with approximately 50 U/kg of factor VIII, targeting a rise to 100% factor VIII activity. Subsequent doses are determined according to the site and extent of bleeding and the clinical response. In circumstances of suboptimal clinical response, recent change in bleeding frequency, or comorbid illness, monitoring the plasma factor VIII activity response may be warranted. For most instances of non–life-threatening hemorrhage in experienced patients with moderate or severe hemophilia A, treatment can be administered at home, provided adequate intravenous access and close contact with the hemophilia clinician team can be achieved.

Prophylactic factor VIII infusions (eg, two or three times weekly) may prevent the development of arthropathy in severe hemophiliacs, and this approach is the standard of care in pediatric hemophilia.

Prognosis

The development of safe and effective therapies for hemophilia A has resulted in improved long-term survival in recent decades. In addition, more aggressive management and the coordination of comprehensive care through hemophilia centers have greatly improved quality of life and level of function.
2. Factor IX Deficiency (Hemophilia B, Christmas Disease)

The mode of inheritance and clinical manifestations of factor IX deficiency are the same as those of factor VIII deficiency. Hemophilia B is 15%–20% as prevalent as hemophilia A. As in factor VIII deficiency, factor IX deficiency is associated with a prolonged aPTT, but the PT and thrombin time are normal. However, the aPTT is slightly less sensitive to factor IX deficiency than factor VIII deficiency. Diagnosis of hemophilia B is made by assaying factor IX activity, and severity is determined similarly to factor VIII deficiency. In general, clinical bleeding severity correlates less well with factor activity in hemophilia B than in hemophilia A.

The mainstay of treatment in hemophilia B is exogenous factor IX. Unlike factor VIII, about 50% of the administered dose of factor IX diffuses into the extravascular space. Therefore, 1 U/kg of plasma-derived factor IX concentrate or recombinant factor IX is expected to increase plasma factor IX activity by approximately 1%. Factor IX typically has a half-life of 20–22 hours in vivo, but because of variability, therapeutic monitoring may be warranted. As for factor VIII products, viral-inactivation techniques for plasma-derived factor IX concentrates appear effective in eradicating enveloped viruses. Only 1%–3% of persons with factor IX deficiency develop an inhibitor to factor IX, but patients may be at risk for anaphylaxis when receiving exogenous factor IX. The prognosis for persons with factor IX deficiency is comparable to that of patients with factor VIII deficiency. Gene therapy research efforts are ongoing for both hemophilias.


4. Other Inherited Bleeding Disorders

Other hereditary single clotting factor deficiencies are rare. Transmission is generally autosomal. Homozygous individuals with a deficiency or structural abnormality of prothrombin, factor V, factor VII, or factor X may have excessive bleeding.

Persons with dysfibrinogenemia (ie, structurally or functionally abnormal fibrinogen) may develop recurrent venous thromboembolic episodes or bleeding. Immunologic assay of fibrinogen is normal, but clotting assay may be low and the thrombin time prolonged. The PT and aPTT may be prolonged. Cryoprecipitate, which is rich in fibrinogen, has been the treatment of choice. Fibrinogen concentrates are available in the United States, but the clinical experience is limited.

Afibrinogenemia resembles hemophilia clinically but has an autosomal recessive inheritance. Affected patients can experience a variety of bleeding manifestations, including mucosal bleeding, ecchymoses, hematomas, hemarthroses, and intracranial hemorrhage, especially following trauma. Fatal umbilical cord hemorrhage has been reported in neonates. The PT, aPTT, and thrombin time are all prolonged. A severely reduced fibrinogen concentration in an otherwise well child is confirmatory of the diagnosis. As in dysfibrinogenemia, fibrinogen concentrate or cryoprecipitate infusion is used for surgical prophylaxis and for acute hemorrhage.

Prolonged PFA-100 (or bleeding time), normal platelet count, absence of acquired platelet dysfunction.

Reduced activity or abnormal structure of vWF.

General Considerations

von Willebrand disease (vWD) is the most common inherited bleeding disorder among Caucasians, with a prevalence of 1%. vWF is a protein present as a multimeric complex in plasma, which binds factor VIII and is a cofactor for platelet adhesion to the endothelium. An estimated 70%-80% of all patients with vWD have classic vWD (type 1), which is caused by a partial quantitative deficiency of vWF. vWD type 2 involves a qualitative deficiency of (ie, dysfunctional) vWF, and vWD type 3 is characterized by a nearly complete deficiency of vWF. The majority (> 80%) of individuals with type 1 disease are asymptomatic. vWD is most often transmitted as an autosomal dominant trait, but it can be autosomal recessive. The disease can also be acquired, developing in association with hypothyroidism, Wilms tumor, cardiac disease, renal disease, or systemic lupus erythematosus, and in individuals receiving valproic acid. Acquired vWD is most often caused by the development of an antibody to vWF or increased turnover of vWF.

Clinical Findings

A. Symptoms and Signs
A history of increased bruising and excessive epistaxis is often present. Prolonged bleeding also occurs with trauma or at surgery. Menorrhagia is often a presenting finding in females.

B. Laboratory Findings
PT is normal, and aPTT is sometimes prolonged. Prolongation of the PFA-100 or bleeding time is usually present since vWF plays a role in platelet adherence to endothelium. Platelet number may be decreased in type 2b vWD. Factor VIII and vWF antigen are decreased in types 1 and 3, but may be normal in type 2 vWD. vWF activity (eg, ristocetin cofactor or collagen binding) is decreased in all types. Since normal vWF antigen levels vary by blood type (type O normally has lower levels), blood type must be determined. Complete laboratory classification requires vWF multimer assay. The diagnosis requires confirmation of laboratory testing and bleeding history is often helpful when present.

Treatment

The treatment to prevent or halt bleeding for most patients with vWD types 1 and 2 is desmopressin acetate, which causes release of vWF from endothelial stores. Desmopressin may be administered intravenously at a dose of 0.3 mcg/kg diluted in at least 20–30 mL of normal saline and given over 20–30 minutes. This dose typically elicits a three- to fivefold increase in plasma vWF. A high-concentration desmopressin nasal spray (150 mcg/spray), different than the preparation used for enuresis, may alternatively be used. Because response to vWF is variable among patients, factor VIII and vWF activities are typically measured before 60 minutes and 4 hours after infusion, to document the adequacy of the response. Desmopressin may cause fluid shifts, hyponatremia, and seizures; therefore, fluid restriction should be discussed, especially in children younger than 2 years. Because release of stored vWF is limited, tachyphylaxis often occurs with desmopressin.

If further therapy is indicated, vWF-replacement therapy (eg, plasma-derived concentrate) is recommended; such therapy is also used in patients with type 1 or 2a vWD who exhibit suboptimal laboratory response to desmopressin, and for all individuals with type 2b or 3 vWD. Antifibrinolytic agents (eg, e-aminocaproic acid) may be useful for control of mucosal bleeding. Topical thrombin and fibrin glue may also be of benefit, although antibodies that inhibit these clotting proteins and therefore the affect of the glue have been described. Estrogen-containing contraceptive therapy may be helpful for menorrhagia.

Prognosis

With the availability of effective treatment and prophylaxis for bleeding, life expectancy in vWD is normal.

ACQUIRED BLEEDING DISORDERS

1. Disseminated Intravascular Coagulation

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

Presence of disorder known to trigger DIC.

Evidence for consumptive coagulopathy (prolonged aPTT, PT, or bleeding time; increase in FSPs [fibrin-fibrinogen split products]; decreased fibrinogen or platelets).

General Considerations

Disseminated intravascular coagulation (DIC) is an acquired pathologic process characterized by tissue factor–mediated coagulation activation in the host. DIC involves dysregulated,
excessive thrombin generation, with consequent intravascular fibrin deposition and consumption of platelets and procoagulant factors. Microthrombi, composed of fibrin and platelets, may produce tissue ischemia and end-organ damage. The fibrinolytic system is frequently activated in DIC, leading to plasmin-mediated destruction of fibrin and fibrinogen; this results in fibrin-fibrinogen degradation products (FDPs) which exhibit anticoagulant and platelet-inhibitory functions. DIC commonly accompanies severe infection and other critical illnesses in infants and children. Conditions known to trigger DIC include endothelial damage (eg, endotoxin, virus), tissue necrosis (eg, burns), diffuse ischemic injury (eg, shock, hypoxia acidosis), and systemic release of tissue procoagulants (eg, certain cancers, placental disorders).

**Clinical Findings**

**A. Symptoms and Signs**

Signs of DIC may include (1) signs of shock, often including end-organ dysfunction, (2) diffuse bleeding tendency (eg, hematuria, melena, purpura, petechiae, persistent oozing from needle punctures or other invasive procedures), and (3) evidence of thrombotic lesions (eg, major vessel thrombosis, purpura fulminans).

**B. Laboratory Findings**

Tests that are most sensitive, easiest to perform, most useful for monitoring, and best reflect the hemostatic capacity of the patient are the PT, aPTT, platelet count, fibrinogen, and FSPs. The PT and aPTT are typically prolonged and the platelet count and fibrinogen concentration may be decreased. However, in children, the fibrinogen level may be normal until late in the course. Levels of FSPs are increased, and elevated levels of D-dimer, a cross-linked fibrin degradation byproduct, may be helpful in monitoring the degree of activation of both coagulation and fibrinolysis. However, D-dimer is nonspecific and may be elevated in the context of a triggering event (eg, severe infection) without concomitant DIC. Often, physiologic inhibitors of coagulation, especially antithrombin III and protein C, are consumed, predisposing to thrombosis. The specific laboratory abnormalities in DIC may vary with the triggering event and the course of illness.

**Differential Diagnosis**

DIC can be difficult to distinguish from coagulopathy of liver disease (ie, hepatic synthetic dysfunction), especially when the latter is associated with thrombocytopenia secondary to portal hypertension and hypersplenism. Generally, factor VII activity is decreased markedly in liver disease (due to deficient synthesis of this protein, which has the shortest half-life among the procoagulant factors), but only mildly to moderately decreased in DIC (due to consumption). Factor VIII activity is often normal or even increased in liver disease, but decreased in DIC.

**Treatment**

**A. Therapy for Underlying Disorder**

The most important aspect of therapy in DIC is the identification and treatment of the triggering event. If the pathogenic process underlying DIC is reversed, often no other therapy is needed for the coagulopathy.

**B. Replacement Therapy for Consumptive Coagulopathy**

Replacement of consumed procoagulant factors with FFP and of platelets via platelet transfusion is warranted in the setting of DIC with hemorrhagic complications, or as periprocedural bleeding prophylaxis. Infusion of 10–15 mL/kg FFP typically raises procoagulant factor activities by approximately 10%–15%. Cryoprecipitate can also be given as a rich source of fibrinogen; one bag of cryoprecipitate per 3 kg in infants or one bag of cryoprecipitate per 6 kg in older children typically raises plasma fibrinogen concentration by 75–100 mg/dL.

**C. Anticoagulant Therapy for Coagulation Activation**

Continuous intravenous infusion of unfractionated heparin is sometimes given in order to attenuate coagulation activation and consequent consumptive coagulopathy. The rationale for heparin therapy is to maximize the efficacy of, and minimize the need for, replacement of procoagulants and platelets; however, clinical evidence demonstrating benefit of heparin in DIC is lacking. Prophylactic doses of unfractionated heparin or low-molecular-weight heparin (LMWH) in critically ill and nonbleeding patients with DIC may be considered for prevention of venous thromboembolism. Unfractionated heparin dosing and monitoring is listed on page 979.

**D. Specific Factor Concentrates**

A nonrandomized pilot study of antithrombin concentrate in children with DIC and associated acquired antithrombin deficiency demonstrated favorable outcomes, suggesting that replacement of this consumed procoagulant may be of benefit. Protein C concentrate has also shown promise in two small pilot studies of meningococci-associated DIC with purpura fulminans. Activated protein C has reduced mortality in septic adults in a large randomized multicenter trial; in additional studies, efficacy in adults and pediatrics is increasingly controversial.

**2. Liver Disease**

The liver is the major synthetic site of prothrombin, fibrinogen, high-molecular-weight kininogen, and factors V, VII,
IX, X, XI, XII, and XIII. In addition, plasminogen and the physiologic anticoagulants (antithrombin III, protein C, and protein S) are hepatically synthesized. α₁-Antiplasmin, a regulator of fibrinolysis, is also produced in the liver. Deficiency of factor V and the vitamin K–dependent factors (II, VII, IX, and X) is most often a result of decreased hepatic synthesis and is manifested by a prolonged PT and often a prolonged aPTT. Extravascular loss and increased consumption of clotting factors may contribute to PT and aPTT prolongation. Fibrinogen production is often decreased, or an abnormal fibrinogen (dysfibrinogen) containing excess sialic acid residues may be synthesized, or both. Hypofibrinogenemia or dysfibrinogenemia is associated with prolongation of thrombin time and reptilase time. FDPs and D-dimers may be present because of increased fibrinolysis, particularly in the setting of chronic hepatitis or cirrhosis. Thrombocytopenia secondary to hypersplenism may occur. DIC and coagulopathy of liver disease also mimic vitamin K deficiency; however, vitamin K deficiency has normal factor V activity. Treatment of acute bleeding in the setting of coagulopathy of liver disease consists of replacement with FFP and platelets. Desmopressin may shorten the bleeding time and aPTT in patients with chronic liver disease, but its safety has not been well established. Recombinant VIIa also is efficacious for life-threatening hemorrhage.

3. Vitamin K Deficiency

The newborn period is characterized by physiologically depressed activity of the vitamin K–dependent factors (II, VII, IX, and X). If vitamin K is not administered at birth, a bleeding diathesis previously called hemorrhagic disease of the newborn, now termed vitamin K deficiency bleeding (VKDB), may develop. Outside of the newborn period, vitamin K deficiency may occur as a consequence of inadequate intake, excess loss, inadequate formation of active metabolites, or competitive antagonism.

One of three patterns is seen in the neonatal period:

1. Early VKDB of the newborn occurs within 24 hours of birth and is most often manifested by cephalohematoma, intracranial hemorrhage, or intra-abdominal bleeding. Although occasionally idiopathic, it is most often associated with maternal ingestion of drugs that interfere with vitamin K metabolism (eg, warfarin, phenytoin, isoniazid, and rifampin). Early VKDB occurs in 6%–12% of neonates born to mothers who take these medications without receiving vitamin K supplementation. The disorder is often life threatening.

2. Classic VKDB occurs at 24 hours to 7 days of age and usually is manifested as gastrointestinal, skin, or mucosal bleeding. Bleeding after circumcision may occur. Although occasionally associated with maternal drug usage, it most often occurs in well infants who do not receive vitamin K at birth and are solely breast fed.

3. Late neonatal VKDB occurs on or after day 8. Manifestations include intracranial, gastrointestinal, or skin bleeding. This disorder is often associated with fat malabsorption (eg, in chronic diarrhea) or alterations in intestinal flora (eg, with prolonged antibiotic therapy). Like classic VKDB, late VKDB occurs almost exclusively in breast-fed infants.

The diagnosis of vitamin K deficiency is suspected based on the history, physical examination, and laboratory results. The PT is prolonged out of proportion to the aPTT (also prolonged). The thrombin time becomes prolonged late in the course. The platelet count is normal. This laboratory profile is similar to the coagulopathy of acute liver disease, but with normal fibrinogen level and absence of hepatic transaminase elevation. The diagnosis of vitamin K deficiency is confirmed by a demonstration of noncarboxylated proteins in the absence of vitamin K in the plasma and by clinical and laboratory responses to vitamin K. Intravenous or subcutaneous treatment with vitamin K should be given immediately and not withheld while awaiting test results. In the setting of severe bleeding, additional acute treatment with FFP or recombinant factor VIIa may be indicated.

4. Uremia

Uremia is frequently associated with acquired platelet dysfunction. Bleeding occurs in approximately 50% of patients with chronic renal failure. The bleeding risk conferred by platelet dysfunction associated with metabolic imbalance may be compounded by decreased vWF activity and procoagulant deficiencies (eg, factor II, XII, XI, IX) due to increased urinary losses of these proteins in some settings of renal insufficiency. In accordance with platelet dysfunction, uremic bleeding is typically characterized by purpura, epistaxis, menorrhagia, or gastrointestinal hemorrhage. Acute bleeding may be managed with infusion of desmopressin acetate, factor VIII concentrates containing vWF, or cryoprecipitate with or without coadministration of FFP. Red cell transfusion may be required. Prophylactic administration of erythropoietin before the development of severe anemia appears to decrease the potential for bleeding. Recombinant VIIa may be useful in refractory bleeding.

1. Henoch-Schönlein Purpura (Anaphylactoid Purpura)

**Essentials of Diagnosis & Typical Features**
- Purpuric cutaneous rash.
- Migratory polyarthritis or polyarthralgias.
- Intermittent abdominal pain.
- Nephritis.

**General Considerations**
Henoch-Schönlein purpura (HSP), the most common type of small vessel vasculitis in children, primarily affects boys 2–7 years of age. Occurrence is highest in the spring and fall, and upper respiratory infection precedes the diagnosis in two-thirds of children.

Leukocytoclastic vasculitis in HSP principally involves the small vessels of the skin, gastrointestinal tract, and kidneys, with deposition of IgA immune complexes. The most common and earliest symptom is palpable purpura, which results from extravasation of erythrocytes into the tissue surrounding the involved venules. Antigens from group A β-hemolytic streptococci and other bacteria, viruses, drugs, foods, and insect bites have been proposed as inciting agents.

**Clinical Findings**

**A. Symptoms and Signs**
Skin involvement may be urticarial initially, progresses to a maculopapules, and coalesces to a symmetrical, palpable purpuric rash distributed on the legs, buttocks, and elbows. New lesions may continue to appear for 2–4 weeks, and may extend to involve the entire body. Two-thirds of patients develop migratory polyarthalgias or polyarthritis, primarily of the ankles and knees. Intermittent, sharp abdominal pain occurs in approximately 50% of patients, and hemorrhage and edema of the small intestine can often be demonstrated. Intussusception may develop. From 25% to 50% of those affected develop renal involvement in the second or third week of illness with either a nephritic or, less commonly, nephrotic picture. Hypertension may accompany the renal involvement. In males, testicular torsion may also occur, and neurologic symptoms are possible due to small vessel vasculitis.

**B. Laboratory Findings**
The platelet count is normal or elevated, and other screening tests of hemostasis and platelet function are typically normal. Urinalysis frequently reveals hematuria, and sometimes proteinuria. Stool may be positive for occult blood. The antistreptolysin O (ASO) titer is often elevated and the throat culture positive for group A β-hemolytic streptococci. Serum IgA may be elevated.

**Differential Diagnosis**
The rash of septicemia (especially meningococcemia) may be similar to skin involvement in HSP, although the distribution tends to be more generalized. The possibility of trauma should be considered in any child presenting with purpura. Other vasculitides should also be considered. The lesions of thrombotic thrombocytopenic purpura (TTP) are not palpable.

**Treatment**
Generally, treatment is supportive. NSAIDs may be useful for the arthritis. Corticosteroid therapy may provide symptomatic relief for severe gastrointestinal or joint manifestations but does not alter skin or renal manifestations. If culture for group A β-hemolytic streptococci is positive or if the ASO titer is elevated, a therapeutic course of penicillin is warranted.

**Prognosis**
The prognosis for recovery is generally good, although symptoms frequently (25%–50%) recur over a period of several months. In patients who develop renal manifestations, microscopic hematuria may persist for years. Progressive renal failure occurs in fewer than 5% of patients with HSP, with an overall fatality rate of 3%.


2. Collagen Disorders
Mild to life-threatening bleeding occurs with some types of Ehlers-Danlos syndrome, the most common inherited collagen disorder. Ehlers-Danlos syndrome is characterized by joint hypermobility, skin extensibility, and easy bruising. Coagulation abnormalities may sometimes be present, including platelet dysfunction and deficiencies of coagulation factors VIII, IX, XI, and XIII. However, bleeding and easy bruising, in most instances, relates to fragility of capillaries and compromised vascular integrity. Individuals with Ehlers-Danlos syndrome types 4 and 6 are at risk for aortic dissection and spontaneous rupture of
aortic aneurysms. Surgery should be avoided for patients with Ehlers-Danlos syndrome, as should medications that induce platelet dysfunction.


THROMBOTIC DISORDERS

General Considerations

Although uncommon in children, thrombotic disorders are being recognized with increasing frequency, particularly with heightened physician awareness and improved survival in pediatric intensive care settings. Several clinical conditions have a potential association with thrombotic events in childhood (see the next section Clinical Risk Factors).

Clinical Findings

Initial evaluation of the child who has thrombosis includes an assessment for potential triggering factors, as well as a family history of thrombosis and early cardiovascular or cerebrovascular disease.

A. Clinical Risk Factors

Clinical risk factors are present in more than 90% of children with acute venous thromboembolism (VTE). These conditions include the presence of an indwelling vascular catheter, cardiac disease, infection, trauma, surgery, immobilization, collagen-vascular or chronic inflammatory disease, renal disease, sickle cell anemia, and malignancy. Prospective findings employing serial radiologic evaluation as screening indicate that the risk of VTE is nearly 30% for short-term central venous catheters placed in the internal jugular veins.

Retrospective data suggest that approximately 8% of children with cancer develop symptomatic VTE.

1. Inherited Thrombophilia (Hypercoagulable) States

A. Protein C deficiency—Protein C is a vitamin K–dependent protein that is normally activated by thrombin bound to thrombomodulin and inactivates activated factors V and VIII. In addition, activated protein C promotes fibrinolysis. Two phenotypes of hereditary protein C deficiency exist. Heterozygous individuals with autosomal dominant protein C deficiency often present with VTE as young adults, but the disorder may manifest during childhood or in later adulthood. In mild protein C deficiency, anticoagulant prophylaxis is typically limited to periods of increased prothrombotic risk. Homozygous or compound heterozygous protein C deficiency is rare but phenotypically severe. Affected children generally present within the first 12 hours of life with purpura fulminans (Figure 30–6) and/or VTE.

Prompt protein C replacement by infusion of protein C concentrate or (if unavailable) FFP every 6–12 hours, along with therapeutic heparin administration, is recommended. Subsequent management requires chronic anticoagulation with warfarin, sometimes along with routine protein C concentrate infusion in order to permit lower warfarin dosing. Recurrent VTE is common, especially during periods of subtherapeutic anticoagulation or in the presence of conditions associated with increased prothrombotic risk.

B. Protein S deficiency—Protein S is a cofactor for protein C. Neonates with homozygous protein S deficiency have a course similar to those with homozygous or compound heterozygous protein C deficiency. Lifelong warfarin therapy is indicated in homozygous/severe deficiency, or in heterozygous individuals who have experienced recurrent VTE. Efforts must be made to distinguish these conditions from acquired deficiency, which can be antibody-mediated or secondary to an increase in C4b-binding protein induced by inflammation.

C. Antithrombin deficiency—Antithrombin, which is the most important physiologic inhibitor of thrombin, inhibits activated factors IX, X, XI, and XII. Antithrombin deficiency is transmitted in an autosomal dominant pattern and is associated with VTE, typically with onset in adolescence or young adulthood. Therapy for acute VTE involves replacement with antithrombin concentrate and
therapeutic anticoagulation. The efficiency of heparin may be significantly diminished in the setting of severe antithrombin deficiency and it often requires supplementation of antithrombin via concentrate. Patients with homozygous/severe deficiency or recurrent VTE are maintained on lifelong warfarin.

D. Factor V Leiden mutation—An amino acid substitution in the gene coding for factor V results in factor V Leiden, a factor V polymorphism that is resistant to inactivation by activated protein C. The most common cause of activated protein C resistance in Caucasians, factor V Leiden is present in approximately 5% of the Caucasian population, 20% of Caucasian adults with deep vein thrombosis, and 40%–60% of those with a family history of VTE. VTE occurs in both heterozygous and homozygous individuals. In the former case, thrombosis is typically triggered by a clinical risk factor (or else develops in association with additional thrombophilia traits), whereas in the latter case, it is often spontaneous. Population studies suggest that the risk of incident VTE is increased two- to sevenfold in the setting of heterozygous factor V Leiden, 35-fold among heterozygous individuals taking the oral contraceptives, and 80-fold in those homozygous for factor V Leiden.

E. Prothrombin mutation—The 20210 glutamine to alanine mutation in the prothrombin gene is a relatively common polymorphism in Caucasians that enhances its activation to thrombin. In heterozygous form, this mutation is associated with a two- to threefold increased risk for incident VTE. This mutation also appears to modestly increase the risk for recurrent VTE.

F. Other inherited disorders—Qualitative abnormalities of fibrinogen (dysfibrinogenemias) are usually inherited in an autosomal dominant manner. Most individuals with dysfibrinogenemia are asymptomatic. Some patients experience bleeding, while others develop venous or arterial thrombosis. The diagnosis is suggested by a prolonged thrombin time with a normal fibrinogen concentration. Hyperhomocysteinemia can be an inherited or an acquired condition and is associated with an increased risk for both arterial and venous thromboses. In children, it may also serve as a risk factor for ischemic arterial stroke. Hyperhomocysteinemia is quite uncommon in the setting of dietary folate supplementation (as in the United States) and is observed almost uniquely in cases of renal insufficiency or metabolic disease (eg, homocystinuria). Methylene tetrahydrofolate reductase receptor mutations do not appear to constitute a risk factor for thrombosis in US children if homocysteine is not elevated.

Lipoprotein(a) is a lipoprotein with homology to plasminogen. In vitro studies suggest that lipoprotein(a) may both promote atherothrombosis and inhibit fibrinolysis. Some evidence to date suggests that elevated plasma concentrations of lipoprotein(a) are associated with an increased risk of VTEs and ischemic arterial stroke in children.

Increased factor VIII activity is a risk factor for incident VTE and is common among children with acute VTE. Elevation in factor VIII may persist in the long-term follow-up of these patients, and can be inherited.

2. Acquired Disorders

A. Antiphospholipid antibodies—The development of antiphospholipid antibodies is the most common form of acquired thrombophilia in children. Antiphospholipid antibodies, which include the lupus anticoagulant, anticardiolipin antibodies, and β₂-glycoprotein-1 antibodies (among others) are common in acute childhood VTE. The lupus anticoagulant is demonstrated in vitro by its inhibition of phospholipid-dependent coagulation assays (eg, aPTT and dilute Russell viper venom time), whereas immunologic techniques (eg, enzyme-linked immunosorbent assays) are often used to detect anticardiolipin and β₂-glycoprotein-1 antibodies. Although common in persons with autoimmune diseases such as systemic lupus erythematosus, antiphospholipid antibodies may also develop following certain drug exposures, infection, acute inflammation, and lymphoproliferative diseases. Sometimes VTE and antiphospholipid antibodies may predate other signs of lupus for long periods of time. Viral illness is a common precipitant in children, and in many cases, the inciting infection may be asymptomatic.

If an antiphospholipid antibody persists for 12 weeks following the acute thrombotic event, the diagnosis of this syndrome is confirmed. Optimal duration of anticoagulation in this setting is unclear, such that current pediatric treatment guidelines recommend a 3-month to lifelong course.

B. Deficiencies of intrinsic anticoagulants—Acquired deficiencies of proteins C and S and antithrombin may occur in the clinical context of antibodies (eg, protein S antibodies in acute varicella) or in excessive consumption, including sepsis, DIC, major-vessel or extensive VTE, and post–bone marrow transplant sinusoidal obstruction syndrome (formerly termed hepatic veno-occlusive disease). Pilot studies in children have suggested a possible therapeutic role for antithrombin or protein C concentrates in sepsis-associated DIC (eg, meningococcemia) and severe posttransplant sinusoidal obstruction syndrome.

C. Acute phase reactants—As part of the acute phase response, elevations in plasma fibrinogen concentration, plasma factor VIII, and platelet count may occur, all of which may contribute to an acquired prothrombotic state. Reactive thrombocytosis is rarely associated with VTEs in children when the platelet count is less than 1 million/µL.

B. Symptoms and Signs

Presenting features of thrombosis vary with the anatomic site, extent of vascular involvement, degree of vaso-occlusion, and presence of end-organ dysfunction. The classic presentation of deep venous thrombosis of an upper or lower
extremity is painful acute or subacute extremity swelling, while that for pulmonary embolism commonly involves dyspnea and pleuritic chest pain, and in cerebral sinovenous thrombosis (CSVT) often includes severe or persistent headache, with or without neurologic deficit in otherwise well children. It is not infrequently preceded by sign/symptoms of otitis media progressing to mastoiditis. Arterial thrombosis of the lower extremity (eg, neonatal umbilical artery catheter-associated) as well as vasospasm without identified thrombosis, often manifests with diminished distal pulses and dusky discoloration of the limb.

C. Laboratory Findings

A comprehensive laboratory investigation for thrombophilia (ie, hypercoagulability) is recommended by the International Society on Thrombosis and Haemostasis in order to disclose possible underlying congenital or acquired abnormalities that may affect acute or long-term management. Testing evaluates for intrinsic anticoagulant deficiency (proteins C and S and antithrombin), procoagulant factor excess (eg, factor VIII), proteins and genetic mutations mediating enhanced procoagulant activity or reduced sensitivity to inactivation (antiphospholipid antibodies; factor V Leiden and prothrombin 20210 polymorphisms), biochemical mediators of endothelial damage (homocysteine), and markers or regulators of fibrinolysis (eg, D-dimer, plasminogen activator inhibitor-1, and lipoprotein[a]). Interpretation of procoagulant factor and intrinsic anticoagulant levels should take into account the age dependence of normal values for these proteins. Among these VTE risk factors, antiphospholipid antibodies and elevated levels of homocysteine and lipoprotein[a] have also been demonstrated as risk factors for arterial thrombotic and ischemic events.

D. Imaging

Appropriate radiologic imaging is essential to objectively document the thrombus and to delineate the type (venous vs arterial), occlusiveness, and extent (proximal and distal termini) of thrombosis. Depending on site, typical imaging modalities include compression ultrasound with Doppler, computed tomographic (CT) venography, magnetic resonance venography, and conventional angiography.

Treatment

Current guidelines for the treatment of first-episode VTE in children have been largely based on adult experience and include therapeutic anticoagulation for at least 3 months. During the period of anticoagulation, bleeding precautions should be followed, as previously described (see Treatment under Idiopathic Thrombocytopenic Purpura, earlier); in CVST, presentation with postthrombotic hemorrhage often does not preclude anticoagulant therapy. Initial therapy for acute VTE employs continuous intravenous unfractionated heparin or subcutaneous injections of LMWH) for at least 7 days, monitored by anti-Xa activity level to maintain anticoagulant levels of 0.3–0.7 or 0.5–1.0 IU/mL, respectively. Subsequent extended anticoagulant therapy is given with LMWH or daily oral warfarin, the latter agent monitored by the PT to maintain an international normalized ratio (INR) of 2.0–3.0 (2.5–3.5 in the presence of an antiphospholipid antibody). During warfarin treatment, the INR optimally should be within the therapeutic range for 2 consecutive days before discontinuation of heparin. Warfarin pharmacokinetics are affected by acute illness, numerous medications, and changes in diet, and can necessitate frequent monitoring. In children, warfarin dose is determined by age. LMWH offers the advantage of infrequent need for monitoring but is far more expensive than warfarin. Anatomic contributions to venous stasis (eg, mastoiditis or depressed skull fracture as risk factors for CVST; congenital left iliac vein stenosis in DVT of proximal left lower extremity with May-Thurner anomaly) should be addressed to optimize response to anticoagulation. In cases of limb- or life-threatening VTEs, including major proximal pulmonary embolus, and in cases of progressive VTE despite therapeutic anticoagulation, thrombolytic therapy (eg, tissue-type plasminogen activator) may be considered. A recent cohort study has indicated that initial thrombolytic therapy may also reduce the risk of the postthrombotic syndrome (PTS) in children with veno-occlusive deep venous thrombosis of the proximal limbs in whom adverse prognostic biomarkers (ie, elevated factor VIII and D-dimer levels) are present at diagnosis; however, the safety and efficacy of this approach must be further evaluated in larger studies. In adolescent females, estrogen-containing contraceptives are relatively contraindicated in those with prior VTE, particularly if an additional genetic cause for impairment of protein C pathway is disclosed.

Prognosis

Registries and cohort studies have suggested that recurrent VTE occurs in approximately 10% of children within 2 years. Persistent thrombosis is evident following completion of a standard therapeutic course of anticoagulation in up to 30% of children, with unclear clinical importance. Approximately one in four children with deep venous thrombosis involving the extremities develop post thrombotic syndrome, a condition of venous insufficiency of varying severity characterized by chronic skin changes, edema, and dilated collateral superficial venous formation, and often accompanied by functional limitation (pain with activities or at rest). The presence of homozygous anticoagulant deficiencies, multiple thrombophilia traits, or persistent antiphospholipid antibodies following VTE diagnosis has been associated with increased risk of recurrent VTE, leading to consideration of extended anticoagulation in these instances. Complete veno-occlusion and elevated levels of factor VIII and D-dimer at VTE diagnosis have been identified as prognostic factors for
PTS among children with deep venous thrombosis affecting the limbs. In CSVT failure to provide antithrombotic therapy has been associated with adverse neurologic outcome.

Table 30–9. Causes of chronic splenomegaly in children.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Associated Clinical Findings</th>
<th>Diagnostic Investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive splenomegaly</td>
<td>History of umbilical vein catheter or neonatal omphalitis; signs of portal hypertension (varices, hemorrhoids, dilated abdominal wall veins); pancytopenia; history of hepatitis or jaundice</td>
<td>Complete blood count, platelet count, liver function tests, ultrasonography</td>
</tr>
<tr>
<td>Chronic infections</td>
<td>History of exposure to tuberculosis, histoplasmosis, coccidiodymycosis, other fungal disease; chronic sepsis (foreign body in bloodstream; subacute infective endocarditis)</td>
<td>Appropriate cultures and skin tests, ie, blood cultures; PPD, fungal serology and antigen tests, chest film; HIV serology</td>
</tr>
<tr>
<td>Infectious mononucleosis</td>
<td>Fever, fatigue, pharyngitis, rash, adenopathy, hepatomegaly</td>
<td>Atypical lymphocytes on blood smear, monospot, EBV antibody titer</td>
</tr>
<tr>
<td>Leukemia, lymphoma, Hodgkin disease</td>
<td>Evidence of systemic involvement with fever, bleeding tendencies, hepatomegaly, and lymphadenopathy; pancytopenia</td>
<td>Blood smear, bone marrow examination, chest film, gallium scan, LDH, uric acid</td>
</tr>
<tr>
<td>Hemolytic anemia</td>
<td>Anemia, jaundice; family history of anemia, jaundice, and gallbladder disease in young adults</td>
<td>Reticulocyte count, Coombs test, blood smear, osmotic fragility test, hemoglobin electrophoresis</td>
</tr>
<tr>
<td>Reticuloendothelioses (histiocytosis X)</td>
<td>Chronic otitis media, seborheic or petechial skin rashes, anemia, infections, lymphadenopathy, hepatomegaly, bone lesions</td>
<td>Skeletal radiographs for bone lesions; biopsy of bone, liver, bone marrow, or lymph node</td>
</tr>
<tr>
<td>Storages diseases</td>
<td>Family history of similar disorders, neurologic involvement, evidence of macular degeneration, hepatomegaly</td>
<td>Biopsy of liver or bone marrow in search for storage cells</td>
</tr>
<tr>
<td>Splenic cyst</td>
<td>Evidence of other infections (postinfectious cyst) or congenital anomalies; peculiar shape of spleen</td>
<td>Radionuclide scan, ultrasonography</td>
</tr>
<tr>
<td>Splenic hemangioma</td>
<td>Other hemangiomas, consumptive coagulopathy</td>
<td>Radionuclide scan, arteriography, platelet count, coagulation screen</td>
</tr>
</tbody>
</table>

EBV, Epstein-Barr virus; HIV, human immunodeficiency virus; LDH, lactic dehydrogenase; PPD, purified protein derivative.
be warranted. Although more commonly associated with acute enlargement, rupture of an enlarged spleen can be seen in more chronic conditions such as Gaucher disease.


ASPLENIA & SPLENECTOMY

Children who lack normal splenic function are at risk for sepsis, meningitis, and pneumonia due to encapsulated bacteria such as pneumococci and H influenzae. Such infections are often fulminant and fatal because of inadequate antibody production and impaired phagocytosis of circulating bacteria.

Congenital asplenia is usually suspected when an infant is born with abnormalities of abdominal viscera and complex cyanotic congenital heart disease. Howell-Jolly bodies are usually present on the peripheral blood smear, and the absence of splenic tissue is confirmed by technetium radionuclide scanning. The prognosis depends on the underlying cardiac lesions, and many children die during the first few months. Prophylactic antibiotics, usually penicillin, and pneumococcal conjugate, Hb, and meningococcal vaccines, are recommended.

The risk of overwhelming sepsis following surgical splenectomy is related to the child’s age and to the underlying disorder. Because the risk is highest when the procedure is performed earlier in life, splenectomy is usually postponed until after age 5 years. The risk of postsplenectomy sepsis is also greater in children with malignancies, thalassemias, and reticuloendothelioses than in children whose splenectomy is performed for ITP, hereditary spherocytosis, or trauma. Prior to splenectomy, children should be immunized against Streptococcus pneumoniae, H influenzae, and Neisseria meningitidis. Additional management should include penicillin prophylaxis and prompt evaluation for fever 38.8°C or above or signs of severe infection.

Children with sickle cell anemia develop functional asplenia during the first year of life, and overwhelming sepsis is the leading cause of early deaths in this disease. Prophylactic penicillin reduces the incidence of sepsis by 84%.


STORAGE & PRESERVATION OF BLOOD & BLOOD COMPONENTS

Whole blood is routinely fractionated into packed red cells, platelets, and FFP or cryoprecipitate for most efficient use of all blood components. The storage conditions and biologic characteristics of the fractions are summarized in Table 30–11. The conditions provide the optimal environment to maintain appropriate recovery, survival, and function, and are different for each blood component. For example, red cells undergo dramatic metabolic changes...
Table 30–10. Transmission risks of infectious agents for which screening of blood products is routinely performed.

<table>
<thead>
<tr>
<th>Disease Entity</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syphilis</td>
<td>Low risk: fresh blood drawn during spirochetemia can transmit infection. Organism not able to survive beyond 72 h during storage at 4°C.</td>
</tr>
<tr>
<td></td>
<td>Donor history. RPR or VDRL.</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Units drawn during prodrome could transmit virus. Because of brief viremia during acute phase, absence of asymptomatic carrier phase, and failure to detect transmission in multiple transfused individuals, infection by this agent is unlikely.</td>
</tr>
<tr>
<td></td>
<td>Donor history.</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Prolonged viremia during various phases of the disease and asymptomatic carrier state make HBV infection a significant risk of transfusion. Incidence has markedly decreased with screening strategies. Also, an increasing number of blood recipients have been vaccinated.</td>
</tr>
<tr>
<td></td>
<td>Donor history, education, and self-exclusion. HBsAg. Surrogate test for non-A, non-B hepatitis (hepatitis-B core antibody) has helped screen out population at risk for transmitting HBV.</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>Most cases of posttransfusion hepatitis in the past have been related to this virus.</td>
</tr>
<tr>
<td></td>
<td>Donor history. Surrogate tests: hepatitis B core antibody (anti-HBc), anti-HCV. Nucleic acid testing for viral genome required.</td>
</tr>
<tr>
<td>Non-A, non-B, non-C hepatitis</td>
<td>Agents other than HAV, HBV, HCV, EBV, and CMV, which can cause posttransfusion hepatitis.</td>
</tr>
<tr>
<td></td>
<td>Donor history. Surrogate tests: anti-HBc.</td>
</tr>
<tr>
<td>Human immunodeficiency virus (HIV-1, HIV-2) infection</td>
<td>Retroviruses spread by sexual contact, parenteral (including transfusion) and vertical routes.</td>
</tr>
<tr>
<td></td>
<td>Donor history, education, and self-exclusion. Anti-HIV by EIA screening test. Western blot confirmatory. Nucleic acid testing for viral genome required.</td>
</tr>
<tr>
<td>Human T-cell lymphotropic virus I and II (HTLV-I and II) infection</td>
<td>Retroviruses spread by sexual contact, parenteral (including transfusion) and vertical modes.</td>
</tr>
<tr>
<td></td>
<td>Donor history. Anti-HTLV-I and II by enzyme immunoassay screening test. Western blot confirmatory.</td>
</tr>
<tr>
<td>Chagas disease</td>
<td>Transmitted by insect vector, blood transfusion (all components), organ transplant, food contaminated with parasites, and mother to fetus.</td>
</tr>
<tr>
<td></td>
<td>History (especially country of origin), detection of antibody in donor serum or plasma.</td>
</tr>
<tr>
<td>West Nile virus</td>
<td>Seasonal transmission through mosquito vector. Transmitted by blood transfusion and organ transplant.</td>
</tr>
<tr>
<td></td>
<td>History, nucleic acid testing for viral genome.</td>
</tr>
</tbody>
</table>

CMV, cytomegalovirus; EBV, Epstein-Barr virus; EIA, enzyme-linked immunosorbent assay; HAV, HBV, HCV, hepatitis A virus, hepatitis B virus, hepatitis C virus, respectively; HIV, human immunodeficiency virus; HBsAg, hepatitis B surface antigen; HTLV, human T-cell lymphotropic virus; RPR, rapid plasma reagin; VDRL, syphilis test.

during their 35- to 42-day storage, with a virtual disappearance of 2,3-DPG by day 14 of storage, a decrease in adenosine triphosphate, a gradual loss of intracellular potassium, but in vivo recovery of greater than or equal to 80% transfused cells in red cells by day of storage outdate. Fortunately, these changes are reversed readily in vivo within hours to days after the red cells are transfused. However, in certain clinical conditions, these effects may define the type of components used. For example, blood less than 7–10 days old would be preferred for exchange transfusion in neonates, red cell exchanges in older patients, or replacement of red cells in persons with severe cardiopulmonary disease to ensure adequate oxygen-carrying capacity. Storage time is not an issue when administering transfusions to those with chronic anemia.

If extracellular potassium in older packed red cells may present a problem, one may use blood less than 10 days old, making packed cells out of an older unit of whole blood or washing blood stored as packed cells. Regardless of the blood’s age, greater than 80% of the red cells will circulate after transfusion and approximate normal survival in the circulation.
<table>
<thead>
<tr>
<th>Component</th>
<th>Storage Conditions</th>
<th>Composition and Transfusion Characteristics</th>
<th>Indications</th>
<th>Risks and Precautions</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole blood</td>
<td>4°C for 35 d. RBC characteristics:</td>
<td>Contains RBCs and many plasma compounds of whole blood. Leukocytes and platelets lose activity or viability after 1-3 d under these conditions. Procoagulant clotting factors (particularly VIII and V) deteriorate rapidly during storage. Each unit has about 500 mL volume and Hct 36%-40%</td>
<td>Oxygen-carrying capacity (anemia). Volume replacement for massive blood loss or severe shock.</td>
<td>Must be ABO-identical and cross-match-compatible. Infections. Febrile or hemolytic transfusion reactions. Alloimmunization to red cell, white cell, or platelet antigens.</td>
<td>During acute blood loss, as rapidly as tolerated. In other settings, 2-4 h. 10 mL/kg will raise Hct by 5% and support volume.</td>
</tr>
<tr>
<td>Packed red cells</td>
<td>Same as for whole blood. Special preservative solutions allow storage for 42 d.</td>
<td>Contains RBCs; most plasma removed in preparation. Status of leukocytes, clotting factors, and platelets same as for whole blood. Hct about 70%, volume 200-250 mL. May request tighter pack to give Hct 80%-90%</td>
<td>Oxygen-carrying capacity. Acute trauma or bleeding or situations requiring intensive cardiopulmonary support (Hct &lt; 25%-30%). Chronic anemia (Hct &lt; 21%).</td>
<td>Same as for whole blood.</td>
<td>May be given as patient will tolerate, based on cardiovascular status over 2-4 h. Dose of 3 mL packed RBC/kg will raise Hct by 3%. If cardiovascular status is stable, give 10 mL/kg over 2-4 h. If unstable, use smaller volume or do packed RBC exchange.</td>
</tr>
<tr>
<td>Washed or filtered red cells</td>
<td>When cells are washed, there is a 24-h outdate. Up to that time, they have the same characteristics as for packed red cells.</td>
<td>Same as for packed red cells.</td>
<td>Same as packed red cells. Depending on technique used and extent of reduction of white blood cells, leukoreduced red cells may achieve the following: • Decrease in febrile reactions. • Decrease in transmission of CMV. • Decrease in incidence of alloimmunization to white cell antigens.</td>
<td>Same as whole blood. Removal of white cells diminishes the risk of febrile reactions. Filtration with high-efficiency white cell filters may decrease rate of alloimmunization to white cell antigens and transmission of CMV.</td>
<td>Same as for packed red cells.</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Component</th>
<th>Storage Conditions</th>
<th>Composition and Transfusion Characteristics</th>
<th>Indications</th>
<th>Risks and Precautions</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frozen red cells</td>
<td>Packed red cells frozen in 40% glycerol solution at $&lt; -65^\circ C$. After</td>
<td>Same as for packed red cells.</td>
<td>Same as packed red cells. Useful for avoiding febrile reactions, decreasing</td>
<td>Same as for whole blood. Risk of CMV transmission is at same level as using</td>
<td>Same as for packed red cells.</td>
</tr>
<tr>
<td></td>
<td>storage for 10 y, cells retain the same biochemical characteristics, function, and capacity for survival as on the day they were frozen; when thawed, 24-h outdate.</td>
<td></td>
<td>transmission of CMV, autologous blood donation, and developing an inventory of rare red cell blood groups.</td>
<td>seronegative components.</td>
<td></td>
</tr>
<tr>
<td>Fresh frozen plasma</td>
<td>Plasma from whole blood stored at $&lt; -18^\circ C$ for up to 1 y.</td>
<td>Contains $&gt; 80%$ of all procoagulant and anticoagulant plasma proteins.</td>
<td>Replacement of plasma procoagulant and anticoagulant plasma proteins. May provide “other” factors, eg, treatment of TTP.</td>
<td>Need not be cross-matched; should be type-compatible. Volume overload, infectious diseases, allergic reactions. Solvent detergent-treated plasma or donor-retested plasma units have decreased risk for viral transmission.</td>
<td>As rapidly as tolerated by patient, but not $&gt; 4$ h. Dose: 10-15 mL/kg will increase level of all clotting factors by 10%-20%.</td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>Produced by freezing fresh plasma to $&lt; -65^\circ C$, then allowed to thaw 18 h at 4°C. After centrifugation, cryoprecipitable proteins are separated. May be stored at $&lt; -18^\circ C$ for up to 1 y.</td>
<td>Contains factor VIII, vWF, fibrinogen, and fibronectin at concentrations greater than those of plasma. Also contains factor XIII, VIII $&gt; 80$ IU/pack, fibrinogen 100-350 mg/pack.</td>
<td>Treatment of acquired or congenital deficiencies of fibrinogen. Useful in making biologic glues that contain fibrinogen. Commercial clotting factor concentrates are the treatment of choice for factor VIII deficiency and vWD because sterilization procedures further reduce the risk of viral transmission.</td>
<td>Same as for fresh frozen plasma. ABO agglutinogens may also be concentrated and can give positive direct agglutination test if not type-specific.</td>
<td>Cryoprecipitate can be given as a rapid infusion. Dose: ½ pack/kg body weight will increase factor VIII level by 80%-100% and fibrinogen by 200-250 mg/dL.</td>
</tr>
</tbody>
</table>
### Platelet concentrates from whole blood donation

- Separated from platelet-rich plasma and stored with gentle agitation at 22-24°C for 5 d. Containers currently in use are plastic and allow for gas exchange; diffusion of CO₂ helps keep pH > 6, a major factor in keeping platelets viable and functional.
- Each unit contains about $5 \times 10^{10}$ platelets. **Survival:** Although there may be some loss with storage, 60%-70% recovery should be achieved, with stored platelets able to correct platelet function test in proportion to the peak counts reached.
- Treatment of thrombocytopenia or platelet function defects. **No cross-match necessary.** Should be ABO type-specific. Other risks as for whole blood. Can be taken during rapid transfusion or as defined by cardiovascular status, not > 4 h. Dose: 10 mL/kg should increase platelet count by at least 50,000/μL.

### Platelet concentrates by apheresis techniques

- Same as random donor units.
- Platelet content is equivalent to 6-10 units of concentrates from whole blood ($3 \times 10^{11}$ platelets); can be made relatively free of leukocytes, which is important for avoiding alloimmunization.
- Same as above, particularly useful in treating patients who have insufficient production and also may have a problem with alloisoimmunization.

### Granulocytes

- Although they may be stored stationary at 22-24°C, transfuse as soon as possible after collection.
- Contains at least $1 \times 10^{10}$ granulocytes, but also platelets and red cells. When donors given 10 mcg/kg G-CSF subcutaneously and 8 mg Decadron orally 12–15 h before collection, yield increases to $> 5 \times 10^{10}$ granulocytes.
- Severely neutropenic individuals (< 500/μL) with poor marrow reserves and suspected bacterial or fungal infections not responding to 48-72 h of parenteral antibiotics. Also in patients with neutrophil dysfunction.
- Same as for platelets. Pulmonary leukostasis reactions. Severe febrile reactions.
- Given in an infusion over 2-4 h. Dose: 1 unit daily for newborns and infants, $1 \times 10^{9}$ granulocytes/kg.

---

**CMV,** cytomegalovirus; **DPG,** diphosphoglycerate; **G-CSF,** granulocyte colony-stimulating factor; **Hct,** hematocrit; **RBC,** red blood cell; **TTP,** thrombotic thrombocytopenic purpura; **vWD,** von Willebrand disease; **vWF,** von Willebrand factor.
Platelets are stored at 22°C for a maximum of 5 days; criteria for 7-day storage are being developed. At the extremes of storage, there should be at least a 60% recovery, a survival time that approximates turnover of fresh autologous platelets, and normalization of the bleeding time or PFA-100 in proportion to the peak platelet count. Frozen components, red cells, FFP, and cryoprecipitate are outdated at 10 years, 1 year, and 1 year, respectively. Frozen red cells retain the same biochemical and functional characteristics as the day they were frozen. FFP contains 80% or more of all of the clotting factors of fresh plasma. Factors VIII and XIII, vWF, and fibrinogen are concentrated in cryoprecipitate.

**PRETRANSFUSION TESTING**

Both the donated blood and the recipient are tested for ABO and Rh(D) antigens and screened for auto- or allo-antibodies in the plasma. The cross-match is required on any component that contains red cells. In the major cross-match, washed donor red cells are incubated with the serum from the patient, and agglutination is detected and graded. The antiglobulin phase of the test may then be performed; Coombs reagent, which will detect the presence of IgG or complement on the surface of the red cells, is added to the mixture, and agglutination is evaluated. In the presence of a negative antibody screen in the recipient, a negative immediate spin cross-match test confirms the compatibility of the blood and antiglobulin phase is not required. Further testing is required if the antibody screen or the cross-match is positive, and blood should not be given until the nature of the reactivity is delineated. An incompatible cross-match is evaluated first with a DAT or Coombs test to detect IgG or complement on the surfaces of the recipient’s red cells. The indirect antiglobulin test is also used to determine the presence of antibodies that will coat red cells or activate complement, and additional studies are completed to define the antibody.

**TRANSFUSION PRACTICE**

**General Rules**

Several rules should be observed in administering any blood component:

1. In final preparation of the component, no solutions should be added to the bag or tubing set except for normal saline (0.9% sodium chloride for injection, USP), ABO-compatible plasma, or other specifically approved expanders. Hypotonic solutions cause hemolysis of red cells, and, if these are transfused, a severe reaction will occur. Any reconstitution should be completed by the blood bank.

2. Transfusion products should be protected from contact with any calcium-containing solution (eg, lactated Ringer); recalcification and reversal of the citrate effect will cause clotting of the blood component.

3. Blood components should not be warmed to a temperature greater than 37°C. If a component is incubated in a water bath, it should be enclosed in a watertight bag to prevent bacterial contamination of entry ports.

4. Whenever a blood bag is entered, the sterile integrity of the system is violated, and that unit should be discarded within 4 hours if left at room temperature or within 24 hours if the temperature is 4–6°C.

5. Transfusions of products containing red cells should not exceed 4 hours. Blood components in excess of what can be infused during this time period should be stored in the blood bank until needed.

6. Before transfusion, the blood component should be inspected visually for any unusual characteristics, such as the presence of flocculent material, hemolysis, or clumping of cells, and mixed thoroughly.

7. The unit and the recipient should be identified properly.

8. The administration set includes a standard 170- to 260-μm filter. Under certain clinical circumstances, an additional microaggregate filter may be used to eliminate small aggregates of fibrin, white cells, and platelets that will not be removed by the standard filter.

9. The patient should be observed during the entire transfusion and especially during the first 15 minutes. With the onset of any adverse symptoms or signs the transfusion should be stopped, an evaluation initiated immediately and the reaction reported promptly to the transfusion service.

10. When cross-match–incompatible red cells or whole blood unit(s) must be given to the patient (as with A1HA), a test dose of 10% of the total volume (not to exceed 50 mL) should be administered over 15–20 minutes; the transfusion is then stopped and the patient observed. If no changes in vital signs or the patient’s condition are noted, the remainder of the volume can be infused carefully.

11. Blood for exchange transfusion in the newborn period may be cross-matched with either the infant’s or the mother’s serum. If the exchange is for hemolysis, 500 mL of whole blood stored for less than 7 days will be adequate. If replacement of clotting factors is a key issue, packed red cells (7 days old) reconstituted with ABO type-specific FFP may be considered. Based on posttransfusion platelet counts, platelet transfusion may be considered. Other problems to be anticipated are acid-base derangements, hypotension, hyperkalemia, hypocalcemia, hypoglycemia, hypothermia, and hypervolemia or hypovolemia.
Choice of Blood Component

Several principles should be considered when deciding on the need for blood transfusion. Indications for blood or blood components must be well defined, and the patient’s medical condition, not just the laboratory results, should be the basis for the decision. Specific deficiencies exhibited by the patient (e.g., oxygen-carrying capacity, thrombocytopenia) should be treated with appropriate blood components and the use of whole blood minimized. Information about specific blood components is summarized in Table 30–11. In general, very little is known about specific indications for blood component transfusion and outcomes. A recent review evaluates what is known and presents fertile areas for investigation (see Josephson, et al).

A. Whole Blood

Whole blood may be used in patients who require replacement of oxygen-carrying capacity and volume. More specifically, it may be considered during massive blood loss, after initial response to replace volume with crystalloid and oxygen carrying capacity. Doses vary depending on volume considerations (see Table 30–11). In acute situations, the transfusion may be completed rapidly to support blood volume.

B. Packed Red Cells

Packed red cells (which include leukocyte-poor, filtered, or frozen deglycerolated products) prepared from whole blood by centrifugal techniques are the appropriate choice for almost all patients with deficient oxygen-carrying capacity. Exact indications will be defined by the clinical setting, the severity of the anemia, the acuity of the condition, and any other factors affecting oxygen transport.

C. Platelets

The decision to transfuse platelets depends on the patient’s clinical condition, the status of plasma phase coagulation, the platelet count, the cause of the thrombocytopenia, and the functional capacity of the patient’s own platelets. In the face of decreased production, clinical bleeding, and platelet counts less than 10,000/μL, the risk of severe, spontaneous bleeding is increased markedly. In the presence of these factors and in the absence heparin-induced thrombocytopenia, TTP, or antibody-mediated thrombocytopenia, transfusion may be considered. Under certain circumstances, especially with platelet dysfunction or treatment that inhibits the procoagulant system, transfusions at higher platelet counts may be necessary.

Transfused platelets are sequestered temporarily in the lungs and spleen before reaching their peak concentrations, 45–60 minutes after transfusion. A significant proportion of the transfused platelets never circulate but remain sequestered in the spleen. This phenomenon results in reduced recovery; under best conditions, only 60%–70% of the transfused platelets are accounted for when peripheral platelet count increments are used as a measure of response.

In addition to cessation of bleeding, two variables indicate the effectiveness of platelet transfusions. The first is platelet recovery, as measured by the maximum number of platelets circulating in response to transfusion. The practical measure is the platelet count at 1 hour after transfusion. In the absence of immune or drastic nonimmune factors that markedly decrease platelet recovery, one would expect a 7000/μL increment for each random donor unit and a 40,000–70,000/μL increment for each single-donor apheresis unit in a large child or adolescent. For infants and small children, 10 mL/kg of platelets will increase the platelet count by at least 50,000/μL. The second variable is the survival of transfused platelets. If the recovery is great enough, transfused platelets will approach a normal half-life in the circulation. In the presence of increased platelet destruction, the life span may be shortened to a few days or a few hours. Frequent platelet transfusions may be required to maintain adequate hemostasis.

A particularly troublesome outcome in patients receiving long-term platelet transfusions is the development of a refractory state characterized by poor (≤ 20%) recovery or no response to platelet transfusion (as measured at 1 hour). Most (70%–90%) of these refractory states result from the development of alloantibodies directed against HLA antigens on the platelet. Platelets have class I HLA antigens, and the antibodies are primarily against HLA A or B determinants. A smaller proportion of these alloantibodies (< 10%) may be directed against platelet-specific alloantigens. The most effective approach to prevent HLA sensitization is to use leukocyte-depleted components (< 5 million leukocytes per unit of packed red cells or per apheresis or 6–10 random donor unit concentrates). For the alloimmunized, refractory patient, the best approach is to provide HLA-matched platelets for transfusion. Reports have suggested that platelet cross-matching procedures using HLA-matched or unmatched donors may be helpful in identifying platelet concentrates most likely to provide an adequate response.

D. Fresh Frozen Plasma

The indication for fresh frozen plasma (FFP) is replacement of plasma coagulation factors in clinical situations in which a deficiency of one or more clotting factors exists and associated bleeding manifestations are present. In some hereditary factor deficiencies, such as factor VIII deficiency or vWD, commercially prepared concentrates contain these factors in higher concentrations and, because of viral inactivation, impose less infectious risk and are more appropriate than...
<table>
<thead>
<tr>
<th>Event</th>
<th>Pathophysiology</th>
<th>Signs and Symptoms</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute hemolytic transfusion reaction</td>
<td>Preformed alloantibodies (most commonly to ABO) and infrequently autoantibodies cause rapid intravascular hemolysis of transfused cells with activation of clotting (DIC), activation of inflammatory mediators, and acute renal failure.</td>
<td>Fever, chills, nausea, chest pain, back pain, pain at transfusion site, hypotension, dyspnea, oliguria, hemoglobinuria.</td>
<td>The risk of this type of reaction overall is low (1:70,000–1:30,000), but the mortality rate is high (up to 40%). Stop the transfusion; maintain renal output with intravenous fluids and diuretics (furosemide or mannitol); treat DIC with heparin; and institute other appropriate supportive measures.</td>
</tr>
<tr>
<td>Delayed hemolytic transfusion reaction</td>
<td>Formation of alloantibodies after transfusion and resultant destruction of transfused red cells, usually by extravascular hemolysis.</td>
<td>Jaundice, anemia. A small percentage may develop chronic hemolysis.</td>
<td>Detection, definition, and documentation (for future transfusions). Supportive care. Risk, &lt;5% of transfused patients may develop alloantibody; hemolysis, 1:11,000–1:2500.</td>
</tr>
<tr>
<td>Febrile reactions</td>
<td>Usually caused by leukoagglutinins in recipient, cytokines, or other biologically active compounds.</td>
<td>Fever. May also involve chills.</td>
<td>Supportive. Leukocyte-reduced products decrease reactions. Risk per transfusion, 1:100 transfusions.</td>
</tr>
<tr>
<td>Allergic reactions</td>
<td>Most causes not identified. In IgA-deficient individuals, reaction occurs as a result of antibodies to IgA.</td>
<td>Itching, hives, and occasionally chills and fever. In severe reactions, may see signs of anaphylaxis: dyspnea, pulmonary edema.</td>
<td>Mild to moderate reactions: diphenhydramine. More severe reactions: epinephrine subcutaneously and steroids intravenously. Risk for mild to moderate allergic reactions, 1:100. Severe anaphylactic reactions, 1:50,000–1:20,000.</td>
</tr>
<tr>
<td>Transfusion-related acute lung injury</td>
<td>Acute lung injury occurring within 6 h after transfusion. Two sets of factors interact to produce the syndrome. Patient factors: infection, surgery, cytokine therapy. Blood component factors: lipids, antibodies, cytokines. Two groups of factors interact during transfusion to result in lung injury indistinguishable from ARDS.</td>
<td>Tachypnea, dyspnea, hypoxia. Diffuse interstitial markings. Cardiac evaluation normal.</td>
<td>May consider younger products: packed red blood cells ≤ 2 wk, platelets ≤ 3 d, washing components to prevent syndrome. Management: supportive care. Risk, 1:2000–1:3000 per transfusion. Current preventive procedures include avoiding donors at risk for alloimmunization; use of male-only FFP or white blood cell antibody-negative apheresis FFP or platelet products.</td>
</tr>
<tr>
<td>Dilutional coagulopathy</td>
<td>Massive blood loss and transfusion with replacement with fluids or blood components and deficient clotting factors.</td>
<td>Bleeding.</td>
<td>Replacement of clotting factors or platelets with appropriate blood components.</td>
</tr>
<tr>
<td>Bacterial contamination</td>
<td>Contamination of units results in growth of bacteria or production of clinically significant levels of endotoxin.</td>
<td>Chills, high fever, hypotension, other symptoms of sepsis or endotoxemia.</td>
<td>Stop transfusion; make aggressive attempts to identify organism; provide vigorous support. Sepsis in 1:500,000–1:75,000</td>
</tr>
<tr>
<td>Graft-versus-host disease</td>
<td>Lymphocytes from donor transfused in an immunoincompetent host.</td>
<td>Syndrome can involve a variety of organs, usually skin, liver, gastrointestinal tract, and bone marrow.</td>
<td>Rare. Preventive management: irradiation (&gt;1500 cGy) of cellular blood components transfused to individuals with congenital or acquired immunodeficiency syndromes, intrauterine transfusion, very premature infants, and when donors are relatives of the recipient.</td>
</tr>
<tr>
<td>Iron overload</td>
<td>There is no physiologic mechanism to excrete excess iron. Target organs include liver, heart, and endocrine organs. In patients receiving red cell transfusions over long periods of time, there is an increase in iron burden.</td>
<td>Signs and symptoms of dysfunctional organs affected by the iron.</td>
<td>Significant risk with chronic transfusions. Treated with chronic administration of iron chelator such as deferoxamine given intravenously or Exjade given orally.</td>
</tr>
</tbody>
</table>

ARDS, adult respiratory distress syndrome; DIC, disseminated intravascular coagulation; FFP, fresh frozen plasma.
plasma. Treatment with FFP is indicated for decreased liver production of clotting factors or generalized consumption (DIC) when INR is greater than 1.5.

E. Cryoprecipitate

This component may be used for acquired or congenital disorders of hypofibrinogenemia or a fibrinogenemia. Although cryoprecipitate is a rich source for factor VIII or vWF, commercial concentrates that contain these factors are more appropriate (see preceding section). The dose given depends on the protein to be replaced. Cryoprecipitate can be given in a rapid transfusion over 30–60 minutes and is currently under investigation.

F. Granulocytes

With better supportive care over the past 20 years, the need for granulocytes in neutropenic patients with severe bacterial infections has decreased. Indications still remain for severe bacterial or fungal infections unresponsive to vigorous medical therapy in either newborns or older children with bone marrow failure, or patients with neutrophil dysfunction. Newer mobilization schemes using G-CSF and steroids in donors result in granulocyte collections with at least 50 billion neutrophils. This may provide a better product for patients requiring granulocyte support.

G. Apheresis Products and Procedures

Apheresis equipment allows one or more blood components to be collected while the rest are returned to the donor. Apheresis platelet concentrates, which have as many platelets as 6–10 units of platelet concentrates from whole blood donations, are one example; granulocytes are another. Apheresis techniques can also be used to collect hematopoietic stem cells that have been mobilized into the blood by cytokines (eg, G-CSF) given alone or after chemotherapy or mononuclear cells for immunotherapy. These stem cells are used for allogeneic or autologous bone marrow transplantation. Blood cell separators can be used for the collection of single-source plasma or removal of a blood component that is causing disease. Examples include red cell exchange in sickle cell disease and plasmapheresis in Goodpasture syndrome or in Guillain-Barré syndrome.

Adverse Effects

The noninfectious complications of blood transfusions are outlined in Table 30–12. Most complications present a significant risk to the recipient.

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Publication</th>
<th>PMID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dodd R</td>
<td>Transfusion medicine and safety. Biologicals</td>
<td>2009;37:62</td>
<td>19230706</td>
</tr>
</tbody>
</table>

REFERENCES

Neoplastic Disease

Each year approximately 150 out of every 1 million children younger than age 20 years are diagnosed with cancer. For children between the ages of 1 and 20 years, cancer is the fourth leading cause of death, behind unintentional injuries, homicides, and suicides. However, combined-modality therapy, including surgery, chemotherapy, and radiation therapy, has improved survival dramatically, such that the overall 5-year survival rate of pediatric malignancies is now greater than 75%. It is estimated that by the year 2020, 1 in 600 adults will be a survivor of childhood cancer.

Because pediatric malignancies are rare, cooperative clinical trials have become the mainstay of treatment planning and therapeutic advances. The Children’s Oncology Group (COG), representing the amalgamation of four prior pediatric cooperative groups (Children’s Cancer Group, Pediatric Oncology Group, Intergroup Rhabdomyosarcoma Study Group, and the National Wilms Tumor Study Group), offers current therapeutic protocols and strives to answer important treatment questions. A child or adolescent newly diagnosed with cancer should be enrolled in a cooperative clinical trial whenever possible. Because many protocols are associated with significant toxicities, morbidity, and potential mortality, treatment of children with cancer should be supervised by a pediatric oncologist familiar with the hazards of treatment, preferably at a multidisciplinary pediatric cancer center.

Advances in molecular genetics, cell biology, and tumor immunology have contributed and are crucial to the continued understanding of pediatric malignancies and their treatment. Continued research into the biology of tumors will lead to the identification of targeted therapy for specific tumor types with, it is hoped, fewer systemic effects.

Research in supportive care areas, such as prevention and management of infection, pain, and emesis, has improved the survival and quality of life for children undergoing cancer treatment. Long-term studies of childhood cancer survivors are yielding information that provides a rationale for modifying future treatment regimens to decrease morbidity. A guide for caring for childhood cancer survivors is now available to medical providers as well as families and details suggested examinations and late effects by type of chemotherapy received.

Cure Search. Children’s Oncology Group. Available at: http://www.survivorshipguidelines.org

MAJOR PEDIATRIC NEOPLASTIC DISEASES

ACUTE LYMPHOBLASTIC LEUKEMIA

General Considerations

Acute lymphoblastic leukemia (ALL) is the most common malignancy of childhood, accounting for about 25% of all cancer diagnoses in patients younger than age 15 years. The worldwide incidence of ALL is about 1:25,000 children per year, including 3000 children per year in the United States. The peak age at onset is 4 years; 85% of patients are diagnosed between ages 2 and 10 years. Children with Down syndrome have a 14-fold increase in the overall rate of leukemia.

ALL results from uncontrolled proliferation of immature lymphocytes. Its cause is unknown, and genetic factors may play a role. Leukemia is defined by the presence of more than 25% malignant hematopoietic cells (blasts) in the bone marrow aspirate. Leukemic blasts from the majority of cases of childhood ALL have an antigen on the cell surface called the common ALL antigen (CALLA). These blasts derive from B-cell precursors early in their development, called B-precursor ALL. Less commonly, lymphoblasts are of T-cell origin or of mature B-cell origin. Over 70% of children receiving aggressive combination chemotherapy and early
presymptomatic treatment to the central nervous system (CNS) are now cured of ALL.

**Clinical Findings**

**A. Symptoms and Signs**

Presenting complaints of patients with ALL include those related to decreased bone marrow production of red blood cells (RBCs), white blood cells (WBCs), or platelets and to leukemic infiltration of extramedullary (outside bone marrow) sites. Intermittent fevers are common, as a result of either cytokines induced by the leukemia itself or infections secondary to leukopenia. Many patients present due to bruising or pallor. About 25% of patients experience bone pain, especially in the pelvis, vertebral bodies, and legs.

Physical examination at diagnosis ranges from virtually normal to highly abnormal. Signs related to bone marrow infiltration by leukemia include pallor, petechiae, and purpura. Hepatomegaly and/or splenomegaly occur in over 60% of patients. Lymphadenopathy is common, either localized or generalized to cervical, axillary, and inguinal regions. The testes may occasionally be unilaterally or bilaterally enlarged secondary to leukemic infiltration. Superior vena cava syndrome is caused by mediastinal adenopathy compressing the superior vena cava. A prominent venous pattern develops over the upper chest from collateral vein enlargement. The neck may feel full from venous engorgement. The face may appear plethoric, and the periorbital area may be edematous. A mediastinal mass can cause tachypnea, orthopnea, and respiratory distress. Leukemic infiltration of cranial nerves may cause cranial nerve palsies with mild nuchal rigidity. The optic fundi may show exudates of leukemic infiltration and hemorrhage from thrombocytopenia. Anemia can cause a flow murmur, tachycardia, and, rarely, congestive heart failure.

**B. Laboratory Findings**

A complete blood count (CBC) with differential is the most useful initial test because 95% of patients with ALL have a decrease in at least one cell type (single cytopenia): neutropenia, thrombocytopenia, or anemia with most patients having a decrease in at least two blood cell lines. The WBC count is low or normal (≥ 10,000/μL) in 50% of patients, but the differential shows neutropenia (absolute neutrophil count < 1000/μL) along with a small percentage of blasts amid normal lymphocytes. In 30% of patients the WBC count is between 10,000/μL and 50,000/μL; in 20% of patients it is over 50,000/μL, occasionally higher than 300,000/μL. Blasts are usually readily identifiable on peripheral blood smears from patients with elevated WBC counts. Peripheral blood smears also show abnormalities in RBCs, such as teardrops. Most patients with ALL have decreased platelet counts (< 150,000/μL) and decreased hemoglobin (< 11 g/dL) at diagnosis. In approximately 1% of patients diagnosed with ALL, CBCs and peripheral blood smears are entirely normal but patients have bone pain that leads to bone marrow examination. Serum chemistries, particularly uric acid and lactate dehydrogenase (LDH), are often elevated at diagnosis as a result of cell breakdown.

The diagnosis of ALL is made by bone marrow examination, which shows a homogeneous infiltration of leukemic blasts replacing normal marrow elements. The morphology of blasts on bone marrow aspirate can usually distinguish ALL from acute myeloid leukemia (AML). Lymphoblasts are typically small, with cell diameters of approximately two erythrocytes. Lymphoblasts have scant cytoplasm, usually without granules. The nucleus typically contains no nucleoli or one small, indistinct nucleolus. Immunophenotyping of ALL blasts by flow cytometry helps distinguish precursor B-cell ALL from T-cell ALL or AML. Histochemical stains specific for myeloblastic and monoblastic leukemias (myeloperoxidase and nonspecific esterase) distinguish ALL from AML. About 5% of patients present with CNS leukemia, which is defined as a cerebrospinal fluid (CSF) WBC count greater than 5/μL with blasts present on cytocentrifuged specimen.

**C. Imaging**

Chest radiograph may show mediastinal widening or an anterior mediastinal mass and tracheal compression secondary to lymphadenopathy or thymic infiltration, especially in T-cell ALL. Abdominal ultrasound may show kidney enlargement from leukemic infiltration or uric acid nephropathy as well as intra-abdominal adenopathy. Plain radiographs of the long bones and spine may show demineralization, periosteal elevation, growth arrest lines, or compression of vertebral bodies. Although these findings may suggest leukemia, they are not diagnostic.

**Differential Diagnosis**

The differential diagnosis, based on the history and physical examination, includes chronic infections by Epstein-Barr virus (EBV) and cytomegalovirus (CMV), causing lymphadenopathy, hepatosplenomegaly, fevers, and anemia. Prominent petechiae and purpura suggest a diagnosis of immune thrombocytopenic purpura. Significant pallor could be caused by transient erythroblastopenia of childhood, autoimmune hemolytic anemias, or aplastic anemia. Fevers and joint pains, with or without hepatosplenomegaly and lymphadenopathy, suggest juvenile rheumatoid arthritis (JRA). The diagnosis of leukemia usually becomes straightforward once the CBC reveals multiple cytopenias and leukemic blasts. Serum LDH levels may help distinguish JRA from leukemia, as the LDH is usually normal in JRA.
An elevated WBC count with lymphocytosis is typical of pertussis; however, in pertussis the lymphocytes are mature, and neutropenia is rarely associated.

**Treatment**

**A. Specific Therapy**

Intensity of treatment is determined by specific prognostic features present at diagnosis, the patient’s response to therapy, and specific biologic features of the leukemia cells. The majority of patients with ALL are enrolled in clinical trials designed by clinical groups and approved by the National Cancer Institute; the largest group is COG (Children’s Oncology Group). The first month of therapy consists of induction, at the end of which over 95% of patients exhibit remission on bone marrow aspirates by morphology. The drugs most commonly used in induction include oral prednisone or dexamethasone, intravenous vincristine, daunorubicin, intramuscular or intravenous asparaginase, and intrathecal methotrexate.

Consolidation is the second phase of treatment, during which intrathecal chemotherapy along with continued systemic therapy and sometimes cranial radiation therapy are given to kill lymphoblasts “hiding” in the meninges. Several months of intensive chemotherapy follows consolidation, often referred to as intensification. This intensification has led to improved survival in pediatric ALL.

Maintenance therapy can include daily oral mercaptopurine, weekly oral methotrexate, and, often, monthly pulses of intravenous vincristine and oral prednisone or dexamethasone. Intrathecal chemotherapy, either with methotrexate alone or combined with cytarabine and hydrocortisone, is usually given every 2–3 months.

Chemotherapy has significant potential side effects. Patients need to be monitored closely to prevent drug toxicities and to ensure early treatment of complications. The duration of treatment ranges between 2.2 years for girls and 3.2 years for boys in COG trials. Treatment for ALL is tailored to prognostic, or risk, groups. A child aged 1–9 years with a WBC count below 50,000/μL at diagnosis of pre B ALL and without poor biologic features [(t(9;22) or an 11q23 rearrangement)] is considered to be at “standard risk” and receives less intensive therapy than a “high-risk” patient who has a WBC count at diagnosis over 50,000/μL or is 10 years of age or greater. An infant less than 1 year at diagnosis would be considered very high risk and receive even more intensive chemotherapy. Also important is the patient’s response to treatment determined by minimal residual disease (MRD) monitoring. This risk-adapted treatment approach has significantly increased the cure rate among patients with less favorable prognostic features by allowing for early intensification while minimizing treatment-related toxicities in those with favorable features. Bone marrow relapse is usually heralded by an abnormal CBC, either during treatment or following completion of therapy.

The CNS and testes are sanctuary sites of extramedullary leukemia. Currently, about one-third of all ALL relapses are isolated to these sanctuary sites. Systemic chemotherapy does not penetrate these tissues as well as it penetrates other organs. Thus, presymptomatic intrathecal chemotherapy is a critical part of ALL treatment, without which many more relapses would occur in the CNS, with or without bone marrow relapse. The majority of isolated CNS relapses are diagnosed in an asymptomatic child at the time of routine intrathecal injection, when CSF cell count and differential shows an elevated WBC with leukemic blasts. Occasionally, symptoms of CNS relapse develop: headache, nausea and vomiting, irritability, nuchal rigidity, photophobia, changes in vision, and cranial nerve palsies. Currently, testicular relapse occurs in less than 5% of boys. The presentation of testicular relapse is usually unilateral painless testicular enlargement, without a distinct mass. Routine follow-up of boys both on and off treatment includes physical examination of the testes.

Bone marrow transplantation, now called hematopoietic stem cell transplantation (HSCT), is rarely used as initial treatment for ALL, because most patients are cured with chemotherapy alone. Patients whose blasts contain certain chromosomal abnormalities, such as t(9;22) or hypodiploidy (< 44 chromosomes), and patients with a very slow response to therapy may have a better cure rate with early HSCT from a human leukocyte antigen (HLA)-DR–matched sibling donor, or perhaps a matched unrelated donor, than with intensive chemotherapy alone. HSCT cures about 50% of patients who relapse, provided that a second remission is achieved with chemotherapy before transplant. Children who relapse more than 1 year after completion of chemotherapy (late relapse) may be cured with intensive chemotherapy without HSCT.

Several new biologic agents, including tyrosine kinase inhibitors and immunotoxins, are currently in various stages of research, development, and in chemotherapeutic trials. Some of these therapies may prove relevant for future treatment of poor risk or relapsed ALL.

Several years ago, Imatinib, a tyrosine kinase inhibitor (TKI), directed against the Philadelphia chromosome (Ph+) protein product, was combined in a backbone of intensive ALL therapy for Ph+ ALL in pediatric patients. The preliminary results of this trial showed a 3-year event-free survival (EFS) of 78% compared to about 50% in historical controls. An ongoing trial for COG in Ph+ ALL is incorporating a newer, more targeted TKI, Dasatinib, into a very similar intensive chemotherapy background with the goal of improving EFS further for this select group of patients. As more is understood about the biology of ALL, further therapy will likely include more of these targeted agents.
B. Supportive Care

Tumor lysis syndrome, which consists of hyperkalemia, hyperuricemia, hyperphosphatemia, should be anticipated when treatment is started. Maintaining brisk urine output with intravenous fluids plus/minus alkalinization of urine with intravenous sodium bicarbonate, and treating with oral allopurinol are appropriate steps in managing tumor lysis syndrome. Rasburicase is indicated for severe tumor lysis syndrome with initial high uric acid values or high WBC at presentation. Serum levels of potassium, phosphorus, and uric acid should be monitored. If superior vena caval or superior mediastinal syndrome is present, general anesthesia is contraindicated temporarily and until there has been some decrease in the mass. If hyperleukocytosis (WBC count > 100,000/μL) is accompanied by hyperviscosity with symptoms of respiratory distress and/or mental status changes, leukaphoresis may be indicated to rapidly reduce the number of circulating blasts and minimize the potential thrombotic or hemorrhagic CNS complications. Throughout the course of treatment, all transfused blood and platelet products should be irradiated to prevent graft-versus-host disease from the transfused lymphocytes. Whenever possible, blood products should be leukodepleted to minimize CMV transmission, transfusion reactions, and sensitization to platelets.

Due to the immunocompromised state of the patient with ALL, bacterial, fungal, and viral infections are serious and can be life-threatening or fatal. During the course of treatment, fever (temperature = 38.3°C) and neutropenia (absolute neutrophil count < 500/μL) require prompt assessment, blood cultures from each lumen of a central line, and prompt treatment with empiric broad-spectrum antibiotics. Patients receiving ALL treatment must receive prophylaxis against Pneumocystis jiroveci (formerly Pneumocystis carinii). Trimethoprim–sulfamethoxazole given twice each day on 2 or 3 consecutive days per week is the drug of choice. Patients who are nonimmune to varicella are at risk for very serious—even fatal—infection. Such patients should receive varicella-zoster immune globulin (VZIG) within 72 hours after exposure and treatment with intravenous acyclovir for active infection.

Prognosis

Cure rates depend on specific prognostic features present at diagnosis, biologic features of the leukemic blast, and the response to therapy. Two of the most important features are WBC count and age. Children aged 1–9 years whose diagnostic WBC count is less than 50,000/μL, standard risk ALL, have an EFS in the 90% range, while children 10 years of age or older have an EFS of approximately 88%. Minimal residual disease (MRD) measurements are now frequently used to determine both the rapidity of response as well as the depth of remission attained at the end of induction (first 4–6 weeks of therapy). Patients with very low levels of MRD at the end of induction will likely have a superior EFS as compared to other patients with similar initial risk factors but a higher MRD level. On the flip side, by identifying patients with higher MRD at end induction, more intensified therapy can be delivered in order to reduce the MRD and thus, improve the EFS.

Certain chromosomal abnormalities present in the leukemic blasts at diagnosis influence prognosis. Patients with t(9;22), the Philadelphia chromosome, had a poor chance of cure in the past but as discussed earlier in this chapter, now have improved outcome with the incorporation of a directed TKI. Likewise, infants younger than age 6 months with t(4;11) have a poor chance of cure with conventional chemotherapy. In contrast, patients whose blasts are hyperdiploid (containing > 50 chromosomes instead of the normal 46) with trisomies of chromosomes 4, and 10, and patients whose blasts have a t(12;21) and ETV6-AML1 rearrangement have a greater chance of cure, approaching 95%–97% EFS, than do children without these characteristics.
is responsible for at least one-third of deaths from leukemia in children and teenagers. Congenital conditions associated with an increased risk of AML include Diamond-Blackfan anemia; neurofibromatosis; Down syndrome; Wiskott-Aldrich, Kostmann, and Li-Fraumeni syndromes; as well as chromosomal instability syndromes such as Fanconi anemia. Acquired risk factors include exposure to ionizing radiation, cytotoxic chemotherapeutic agents, and benzenes. However, the vast majority of patients have no identifiable risk factors. Historically, the diagnosis of AML was based almost exclusively on morphology and immunohistochemical staining of the leukemic cells. AML has eight subtypes (M0–M7) according to the French-American-British (FAB) classification (Table 31–1). Immunophenotypic, cytogenetic, and molecular analyses are increasingly important in confirming the diagnosis of AML and subclassifying it into biologically distinct subtypes that have therapeutic and prognostic implications. Recently the World Health Organization (WHO) classification was published to describe AML as AML with recurrent genetic abnormalities with a list of genetic abnormalities sufficient to diagnose AML and then AML not otherwise specified with morphologic descriptions of AML including similar to the FAB classification. Cytogenetic clonal abnormalities occur in 80% of patients with AML and are often predictive of outcome.

### Clinical Findings

The clinical manifestations of AML commonly include anemia (44%), thrombocytopenia (33%), and neutropenia (69%). Symptoms may be few and innocuous or may be life-threatening. The median hemoglobin value at diagnosis is 7 g/dL, and platelets usually number fewer than 50,000/μL. Frequently the absolute neutrophil count is under 1000/μL, although the total WBC count is over 100,000/μL in 25% of patients at diagnosis.

Hyperleukocytosis may be associated with life-threatening complications. Venous stasis and sludging of blasts in small vessels cause hypoxia, hemorrhage, and infarction, most notably in the lung and CNS. This clinical picture is a medical emergency requiring rapid intervention, such as leukopheresis, to decrease the leukocyte count. CNS leukemia is present in 5%–15% of patients at diagnosis, a higher rate of initial involvement than in ALL. Certain subtypes, such as M4 and M5, have a higher likelihood of meningeal infiltration than do other subtypes. Additionally, clinically significant

<table>
<thead>
<tr>
<th>FAB Classification</th>
<th>Common Name</th>
<th>Distribution in Childhood (Age)</th>
<th>Cytogenetic Associations</th>
<th>Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>Acute myeloid leukemia, minimally differentiated</td>
<td>&lt; 2y: 1%; &gt; 2y: 23%</td>
<td>inv (3q26), t(3;3)</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Acute myeloblastic leukemia without maturation</td>
<td>&lt; 2y: 17%; &gt; 2y: 23%</td>
<td>t(8;21), t(6;9); rare</td>
<td>Myeloblastomas or chloromas</td>
</tr>
<tr>
<td>M2</td>
<td>Acute myeloblastic leukemia with maturation</td>
<td>&lt; 2y: 26%; &gt; 2y: 23%</td>
<td>t(15;17); rarely, t(11;17) or (5;17)</td>
<td>Disseminated intravascular coagulation</td>
</tr>
<tr>
<td>M3</td>
<td>Acute promyelocytic leukemia</td>
<td>&lt; 2y: 4%; &gt; 2y: 23%</td>
<td>t(15;17); rarely, t(11;17) or (5;17)</td>
<td>Disseminated intravascular coagulation</td>
</tr>
<tr>
<td>M4</td>
<td>Acute myelomonoblastic leukemia</td>
<td>&lt; 2y: 30%; &gt; 2y: 24%</td>
<td>11q23, inv 3, t(3;3), t(6;9)</td>
<td>Hyperleukocytosis, CNS involvement, skin and gum infiltration</td>
</tr>
<tr>
<td>M4Eo</td>
<td>Acute myelomonoblastic leukemia with abnormal eosinophils</td>
<td>&lt; 2y: 30%; &gt; 2y: 24%</td>
<td>inv16, t(16;16)</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>Acute monoblastic leukemia</td>
<td>&lt; 2y: 46%; &gt; 2y: 15%</td>
<td>11q23, t(9;11), t(8;16)</td>
<td>Hyperleukocytosis, CNS involvement, skin and gum infiltration</td>
</tr>
<tr>
<td>M6</td>
<td>Erythroleukemia</td>
<td>&lt; 2y: 7%; &gt; 2y: 5%</td>
<td>t(1;22)</td>
<td>Down syndrome frequent (&lt; age 2 y)</td>
</tr>
</tbody>
</table>

CNS, central nervous system; FAB, French-American-British classification.
coagulopathy may be present at diagnosis in patients with M3, M4, or M5 subtypes. This problem manifests as bleeding or an abnormal disseminated intravascular coagulation screen and should be at least partially corrected prior to initiation of treatment, which may transiently exacerbate the coagulopathy.

Treatment

A. Specific Therapy

AML is less responsive to treatment than ALL and requires more intensive chemotherapy. Toxicities from therapy are common and likely to be life-threatening; therefore, treatment should be undertaken only at a tertiary pediatric oncology center.

Current AML protocols rely on intensive administration of anthracyclines, cytarabine, and etoposide for induction of remission. After remission is obtained, patients who have a matched sibling donor undergo allogeneic HSCT, while those without an appropriate related donor are treated with additional cycles of aggressive chemotherapy for a total of 4–5 cycles. Inv16 and (t;8;21) herald a more responsive subtype of AML. In patients with a rapid response to induction chemotherapy, intensive chemotherapy alone may be curative in patients whose blasts harbor these cytogenetic abnormalities. Additional recognized genetic risk factors that carry a poor outcome for children with AML include monosomy 7 and FLT3 internal tandem duplications (ITD). HSCT is recommended for all these patients, using either a related or unrelated donor. Trials with risk grouping are ongoing as more is understood about the varying biologic factors.

The biologic heterogeneity of AML is becoming increasingly important therapeutically. The M3 subtype, associated with t(15;17) demonstrated either cytogenetically or molecularly, is currently treated with all trans-retinoic acid in addition to chemotherapy with high-dose cytarabine and daunorubicin. All trans-retinoic acid leads to differentiation of promyelocytic leukemia cells and can induce remission, but cure requires conventional chemotherapy as well. The use of arsenic trioxide has also been investigated in the treatment of this subtype of AML with favorable results. This subtype has an increased event-free survival over other AML subtypes.

Another biologically distinct subtype of AML occurs in children with Down syndrome, M7, or megakaryocytic AML. Using less intensive treatment, remission induction rate and overall survival of these children are dramatically superior to non–Down syndrome children with AML. It is important that children with Down syndrome receive appropriate treatment specifically designed to be less intensive due to their increased rate of toxicity with chemotherapeutic agents.

As with ALL, newer biologic agents with more specific targeting are available and undergoing clinical trails.

One such agent, sorafenib, appears to be active against AML with Flt3 ITDs. Combining sorafenib with AML therapy has been useful in relapsed disease and is now being studied in to upfront trials.

Clofarabine, a newer nucleoside analogue, also has activity in AML and is currently undergoing trials in relapsed and refractory patients with promising results.

B. Supportive Care

Tumor lysis syndrome rarely occurs during induction treatment of AML. Nevertheless, when the diagnostic WBC cell count is greater than 100,000/μL or significant adenopathy or organomegaly is present, one should maintain brisk urine output, and follow potassium, uric acid, and phosphorous laboratory values closely. Hyperleukocytosis (WBC > 100,000/μL) is a medical emergency and, in a symptomatic patient, requires rapid intervention such as leukopheresis to rapidly decrease the number of circulating blasts and thereby decrease hyperviscosity. Delaying transfusion of packed RBCs until the WBC can be decreased to below 100,000/μL avoids exacerbating hyperviscosity. It is also important to correct the coagulopathy commonly associated with M3, M4, or M5 subtypes prior to beginning induction chemotherapy. As with the treatment of ALL, all blood products should be irradiated and leukodepleted; Pneumocystis prophylaxis must be administered during treatment and for several weeks afterward; and patients not immune to varicella must receive VZIG within 72 hours of exposure and prompt treatment with intravenous acyclovir for active infection.

Onset of fever (temperature ≥ 38.3°C) or chills associated with neutropenia requires prompt assessment, blood cultures from each lumen of a central venous line, other cultures such as throat or urine as appropriate and prompt initiation of broad-spectrum intravenous antibiotics. Infections in this population of patients can rapidly become life-threatening. Because of the high incidence of invasive fungal infections, there should be a low threshold for initiating antifungal therapy. Filgrastim (granulocyte colony-stimulating factor) may be used to stimulate granulocyte recovery during the treatment of AML and results in shorter periods of neutropenia and hospitalization. It must be stressed that the supportive care for this group of patients is as important as the leukemia-directed therapy and that this treatment should be carried out only at a tertiary pediatric cancer center.

Prognosis

Published results from various centers show a 50%–60% survival rate at 5 years following first remission for patients who do not have matched sibling hematopoietic stem cell donors. Patients with matched sibling donors fare slightly better, with 5-year survival rates of 60%–70% after allogeneic HSCT.

As treatment becomes more sophisticated, outcome is increasingly related to the subtype of AML. Currently, AML
in patients with t(8;21), t(15;17), inv 16, or Down syndrome has the most favorable prognosis, with 65%–75% long-term survival using modern treatments, including chemotherapy alone. The least favorable outcome occurs in AML patients with monosomy 7 or 5, 7q, 5q−, 11q23 cytogenetic abnormalities, or FLT 3 mutations or ITD.


MYELOPROLIFERATIVE DISEASES

Myeloproliferative diseases in children are relatively rare. They are characterized by ineffective hematopoiesis that results in excessive peripheral blood counts. The three most important types are chronic myelogenous leukemia (CML), which accounts for less than 5% of the childhood leukemias, transient myeloproliferative disorder in children with Down syndrome, and juvenile myelomonocytic leukemia (Table 31–2).

1. Chronic Myelogenous Leukemia

General Considerations

CML with translocation of chromosomes 9 and 22 (the Philadelphia chromosome, Ph+) is identical to adult Ph+CML. Translocation 9;22 results in the fusion of the BCR gene on chromosome 22 and the ABL gene on chromosome 9. The resulting fusion protein is a constitutively active tyrosine kinase that interacts with a variety of effector proteins and allows for deregulated cellular proliferation, decreased adhesion of cells to the bone marrow extracellular matrix, and resistance to apoptosis. The disease usually progresses within 3 years to an accelerated phase and then to a blast crisis. It is generally accepted that Ph+ cells have an increased susceptibility to the acquisition of additional molecular changes that lead to the accelerated and blast phases of disease.

Clinical Findings

Patients with CML may present with nonspecific complaints similar to those of acute leukemia, including bone pain, fever, night sweats, and fatigue. However, patients can also be asymptomatic. Patients with a total WBC count of more than 100,000/μL may have symptoms of leukostasis, such as dyspnea, priapism, or neurologic abnormalities. Physical findings may include fever, pallor, ecchymoses, and hepatosplenomegaly. Anemia, thrombocytosis, and leukocytosis are frequent laboratory findings. The peripheral smear is usually diagnostic, with a characteristic predominance of myeloid cells in all stages of maturation, increased basophils and relatively few blasts.

Table 31–2. Comparison of JMML, CML, and TMD.

<table>
<thead>
<tr>
<th>Age at onset</th>
<th>CML</th>
<th>TMD</th>
<th>JMML</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt; 3 y</td>
<td>&lt; 3 mo</td>
<td>&lt; 2 y</td>
<td></td>
</tr>
<tr>
<td>Clinical presentation</td>
<td>Nonspecific constitutional complaints, massive splenomegaly, variable hepatomegaly</td>
<td>DS features, often no or few symptoms; or hepatosplenomegaly, respiratory symptoms</td>
<td>Abrupt onset; eczematoid skin rash, marked lymphadenopathy, bleeding tendency, moderate hepatosplenomegaly, fever</td>
</tr>
<tr>
<td>Chromosomal alterations</td>
<td>t(9;22)</td>
<td>Constitutional trisomy 21, but usually no other abnormality</td>
<td>Monosomy or del (7q) in 20% of patients</td>
</tr>
<tr>
<td>Laboratory features</td>
<td>Marked leukocytosis (&gt; 100,000/μL), normal to elevated platelet count, decreased to absent leukocyte alkaline phosphatase, usually normal muramidase</td>
<td>Variable leukocytosis, normal to high platelet count, large platelets, myeloblasts</td>
<td>Moderate leukocytosis (&gt; 10,000/μL), thrombocytopenia, monocytosis (&gt; 1000/μL), elevated fetal hemoglobin, normal to diminished leukocyte alkaline phosphatase, elevated muramidase</td>
</tr>
</tbody>
</table>

CML, chronic myelogenous leukemia; DS, Down syndrome; JMML, juvenile myelomonocytic leukemia; TMD, transient myeloproliferative disorder.
**Treatment & Prognosis**

Historically, hydroxyurea or busulfan has been used to reduce or eliminate Ph+ cells and HSCT was the only consistently curative intervention. Reported survival rates for patients younger than age 20 years transplanted in the chronic phase from matched-related donors are 70%–80%. Unrelated stem cell transplants result in survival rates of 50%–65%.

The understanding of the molecular mechanisms involved in the pathogenesis of CML has led to the rational design of molecularly targeted therapy. Imatinib mesylate (Gleevec) is a tyrosine kinase inhibitor that has had dramatic success in the treatment of CML, with most adults and children achieving cytogenetic remission. There are now newer, more targeted TKIs including dasatinib, erlotinib, nilotinib, and ponatinib. These medications in adults have an increased incidence of molecular remissions and may be all that is required for long-term survival in adults. The durability of the remission for children with TKIs therapy alone is unclear but is now the accepted upfront therapy.

2. Transient Myeloproliferative Disorder

Transient myeloproliferative disorder is unique to patients with trisomy 21 or mosaicism for trisomy 21. It is characterized by uncontrolled proliferation of blasts, usually of megakaryocytic origin, during early infancy and spontaneous resolution. The pathogenesis of this process is not well understood, although mutations in the GATA1 gene have been recently implicated as initial events.

Although the true incidence is unknown, it is estimated to occur in up to 10% of patients with Down syndrome. Despite the fact that the process usually resolves by 3 months of age, organ infiltration may cause significant morbidity and mortality.

Patients can present with hydrops fetalis, pericardial or pleural effusions, or hepatic fibrosis. More frequently, they are asymptomatic or only minimally ill. Therefore, treatment is primarily supportive. Patients without symptoms are not treated, and those with organ dysfunction receive low doses of chemotherapy or leukaphoresis (or both) to reduce peripheral blood blast counts. Although patients with transient myeloproliferative disorder have apparent resolution of the process, approximately 30% go on to develop acute megakaryoblastic leukemia (AML M7) within 3 years.

3. Juvenile Myelomonocytic Leukemia

Juvenile myelomonocytic leukemia (JMML) accounts for approximately one-third of the myelodysplastic and myeloproliferative disorders in childhood. Patients with neurofibromatosis type 1 (NF-1) are at higher risk of JMML than the general population. It typically occurs in infants and very young children and is occasionally associated with monosomy 7 or a deletion of the long arm of chromosome 7.

Patients with JMML present similarly to those with other hematopoietic malignancies, with lymphadenopathy, hepatosplenomegaly, skin rash, or respiratory symptoms. Patients may have stigmata of NF-1 with neurofibromas or café au lait spots. Laboratory findings include anemia, thrombocytopenia, leukocytosis with monocytosis, and elevated fetal hemoglobin.

The results of chemotherapy for children with JMML have been disappointing, with estimated survival rates of less than 30%. Approximately 40%–45% of patients are projected to survive long term using HSCT, although optimizing conditioning regimens and donor selection may improve these results.


**BRAIN TUMORS**

**General Considerations**

The classic triad of morning headache, vomiting, and papilledema is present in fewer than 30% of children at presentation. School failure and personality changes are common in older children. Irritability, failure to thrive, and delayed development are common in very young children with brain tumors. Recent-onset head tilt can result from a posterior fossa tumor.

Brain tumors are the most common solid tumors of childhood, accounting for 1500–2000 new malignancies in
children each year in the United States and for 25%–30% of all childhood cancers. In general, children with brain tumors have a better prognosis than do adults. Favorable outcome occurs most commonly with low-grade and fully resectable tumors. Unfortunately, cranial irradiation in young children can have significant neuropsychological, intellectual, and endocrinologic sequelae.

Brain tumors in childhood are biologically and histologically heterogeneous, ranging from low-grade localized lesions to high-grade tumors with neuraxis dissemination. High-dose systemic chemotherapy is used frequently, especially in young children with high-grade tumors, in an effort to delay, decrease, or completely avoid cranial irradiation. Such intensive treatment may be accompanied by autologous HSCT or peripheral stem cell reconstitution.

The causes of most pediatric brain tumors are unknown. The risk of developing astrocytomas is increased in children with neurofibromatosis or tuberous sclerosis. Several studies show that some childhood brain tumors occur in families with increased genetic susceptibility to childhood cancers in general, brain tumors, or leukemia and lymphoma. A higher incidence of seizures has been observed in relatives of children with astrocytoma. The risk of developing a brain tumor is increased in children who received cranial irradiation for treatment of meningeal leukemia. All children with gliomas and meningiomas should be screened for NF-1. In children with meningiomas, without the skin findings of NF-1, neurofibromatosis type 2 and Von Hippel-Lindau syndrome should be considered. Inherited germline mutations are possible in atypical teratoid/rhabdoid tumors (AT/RTs) and in choroid plexus carcinomas. Careful family histories should be taken in these tumors and genetic counseling considered.

Because pediatric brain tumors are rare, they are often misdiagnosed or diagnosed late; most pediatricians see no more than two children with brain tumors during their careers.

**Clinical Findings**

**A. Symptoms and Signs**

Clinical findings at presentation vary depending on the child’s age and the tumor’s location. Children younger than age 2 years more commonly have infratentorial tumors. Children with such tumors usually present with nonspecific symptoms such as vomiting, unsteadiness, lethargy, and irritability. Signs may be surprisingly few or may include macrocephaly, ataxia, hyperreflexia, and cranial nerve palsies. Because the head can expand in young children, papilledema is often absent. Measuring head circumference and observing gait are essential in evaluating a child for possible brain tumor. Eye findings and apparent visual disturbances such as difficulty tracking can occur in association with optic pathway tumors such as optic glioma. Optic glioma occurring in a young child is often associated with neurofibromatosis.

Older children more commonly have supratentorial tumors, which are associated with headache, visual symptoms, seizures, and focal neurologic deficits. Initial presenting features are often nonspecific. School failure and personality changes are common. Vaguely described visual disturbance is often present, but the child must be directly asked. Headaches are common, but they often will not be predominantly in the morning. The headaches may be confused with migraine.

Older children with infratentorial tumors characteristically present with symptoms and signs of hydrocephalus, which include progressively worsening morning headache and vomiting, gait unsteadiness, double vision, and papilledema. Cerebellar astrocytomas enlarge slowly, and symptoms may worsen over several months. Morning vomiting may be the only symptom of posterior fossa ependymomas, which originate in the floor of the fourth ventricle near the vomiting center. Children with brainstem tumors may present with facial and extraocular muscle palsies, ataxia, and hemiparesis; hydrocephalus occurs in approximately 25% of these patients at diagnosis.

**B. Imaging and Staging**

In addition to the tumor biopsy, neuraxis imaging studies are obtained to determine whether dissemination has occurred. It is unusual for brain tumors in children and adolescents to disseminate outside the CNS.

Magnetic resonance imaging (MRI) has become the preferred diagnostic study for pediatric brain tumors. MRI provides better definition of the tumor and delineates indolent gliomas that may not be seen on computed tomography (CT) scan. In contrast, a CT scan can be done in less than 10 minutes—as opposed to the 30 minutes required for an MRI scan—and is still useful if an urgent diagnostic study is necessary or to detect calcification of a tumor. Both scans are generally done with and without contrast enhancement. Contrast enhances regions where the blood-brain barrier is disrupted. Postoperative scans to document the extent of tumor resection should be obtained within 48 hours after surgery to avoid postsurgical enhancement.

Imaging of the entire neuraxis and CSF cytologic examination should be part of the diagnostic evaluation for patients with tumors such as medulloblastoma, ependymoma, and pineal region tumors. Diagnosis of neuraxis drop metastases (tumor spread along the neuraxis) can be accomplished by gadolinium-enhanced MRI incorporating sagittal and axial views. MRI of the spine should be obtained preoperatively in all children with midline tumors of the fourth ventricle or cerebellum. A CSF sample should be obtained during the diagnostic surgery or, if that is not possible, 7 to 10 days after the surgery. Lumbar CSF is preferred.
over ventricular CSF for cytologic examination. Levels of biomarkers in the blood and CSF, such as human chorionic gonadotropin and \( \alpha \)-fetoprotein, may be helpful at diagnosis and in follow-up. Both human chorionic gonadotropin and \( \alpha \)-fetoprotein should be obtained from the blood preoperatively for all pineal and suprasellar tumors.

The neurosurgeon should discuss staging and sample collection with an oncologist before surgery in a child newly presenting with a scan suggestive of brain tumor.

### C. Classification

About 50% of the common pediatric brain tumors occur above the tentorium and 50% in the posterior fossa. In the very young child, posterior fossa tumors are more common. Most childhood brain tumors can be divided into two categories according to the cell of origin: (1) glial tumors, such as astrocytomas and ependymomas, or (2) nonglial tumors, such as medulloblastoma and other primitive neuroectodermal tumors. Some tumors contain both glial and neural elements (eg, ganglioglioma). A group of less common CNS tumors does not fit into either category (ie, craniopharyngiomas, AT/RTs, germ cell tumors, choroid plexus tumors, and meningiomas). Low- and high-grade tumors are found in most categories. Table 31–3 lists the locations and frequencies of the common pediatric brain tumors.

Astrocytoma is the most common brain tumor of childhood. Most are juvenile pilocytic astrocytoma (WHO grade I) found in the posterior fossa with a bland cellular morphology and few or no mitotic figures. Low-grade astrocytomas are in many cases curable by complete surgical excision alone.

Table 31–3. Location and frequency of common pediatric brain tumors.

<table>
<thead>
<tr>
<th>Location</th>
<th>Frequency of Occurrence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemispheric</td>
<td>37</td>
</tr>
<tr>
<td>Low-grade astrocytoma</td>
<td>23</td>
</tr>
<tr>
<td>High-grade astrocytoma</td>
<td>11</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
</tr>
<tr>
<td>Posterior fossa</td>
<td>49</td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td>15</td>
</tr>
<tr>
<td>Cerebellar astrocytoma</td>
<td>15</td>
</tr>
<tr>
<td>Brainstem glioma</td>
<td>15</td>
</tr>
<tr>
<td>Ependymoma</td>
<td>4</td>
</tr>
<tr>
<td>Midline</td>
<td>14</td>
</tr>
<tr>
<td>Craniopharyngioma</td>
<td>8</td>
</tr>
<tr>
<td>Chiasmal glioma</td>
<td>4</td>
</tr>
<tr>
<td>Pineal region tumor</td>
<td>2</td>
</tr>
</tbody>
</table>

Chemotherapy may be effective in about 40%–50% of low-grade astrocytomas and even in those who will fail chemotherapy eventually, it may delay time to radiation.

Medulloblastoma and related primitive neuroectodermal tumors are the most common high-grade brain tumors in children. These tumors usually occur in the first decade of life, with a peak incidence between ages 5 and 10 years and a female-male ratio of 2.1:1.3. The tumors typically arise in the midline cerebellar vermis, with variable extension into the fourth ventricle. Neuraxis dissemination at diagnosis affects from 10% to 46% of patients. Prognostic factors are outlined in Table 31–4. Determination of risk using histology may soon be replaced by molecular classifications.

Brainstem tumors are third in frequency of occurrence in children. They are frequently of astrocytic origin and often are high grade. Children with tumors that diffusely infiltrate the brainstem and involve primarily the pons (diffuse intrinsic pontine gliomas) have a long-term survival rate of less than 5%. There has been considerable biological discovery, largely from autopsy samples, in diffuse pontine gliomas in the very recent past; it is hoped this will result in new, better targeted therapies. Brainstem tumors that occur above or below the pons and grow in an eccentric or cystic manner have a somewhat better outcome. Exophytic tumors in this location may be amenable to surgery. Generally, brainstem tumors are treated without a tissue diagnosis.

Other brain tumors such as ependymomas, germ cell tumors, choroid plexus tumors, and craniopharyngiomas are less common, and each is associated with unique diagnostic and therapeutic challenges.

### Treatment

#### A. Supportive Care

Dexamethasone should be started prior to initial surgery (0.5–1.0 mg/kg initially, then 0.25–0.5 mg/kg/d in four divided doses). Anticonvulsants should be started if the child has had a seizure or if the surgical approach is likely to induce seizures. Keppra is now the preferred anticonvulsant in this population as it does not induce liver enzymes. Because postoperative treatment of young children with high-grade brain tumors incorporates increasingly more
intensive systemic chemotherapy, consideration should also be given to the use of prophylaxis for prevention of oral candidiasis and Pneumocystis infection. Dexamethasone potentially reduces the effectiveness of chemotherapy and should be discontinued as soon after surgery as possible.

Optimum care for the pediatric patient with a brain tumor requires a multidisciplinary team including subspecialists in pediatric neurosurgery, neuro-oncology, neurology, endocrinology, neuropsychology, radiation therapy, and rehabilitation medicine, as well as highly specialized nurses, social workers, and staff in physical therapy, occupational therapy, and speech and language science.

**B. Specific Therapy**

The goal of treatment is to eradicate the tumor with the least short- and long-term morbidity. Long-term neuropsychological morbidity becomes an especially important issue related to deficits caused by the tumor itself and the sequelae of treatment. Meticulous surgical removal of as much tumor as possible is generally the preferred initial approach. Technologic advances in the operating microscope, the ultrasonic tissue aspirator, and the CO\(_2\) laser (which is less commonly used in pediatric brain tumor surgery); the accuracy of computerized stereotactic resection; and the availability of intraoperative monitoring techniques such as evoked potentials and electrocorticography have increased the feasibility and safety of surgical resection of many pediatric brain tumors. Second-look surgery after chemotherapy is increasingly being used when tumors are incompletely resected at initial surgery.

Radiation therapy for pediatric brain tumors is in a state of evolution. For tumors with a high probability of neuraxis dissemination (eg, medulloblastoma), craniospinal irradiation is still standard therapy in children older than age 3 years. For tumors, such as medulloblastomas, there are ongoing trials aimed at further reducing the craniospinal dose. In others (eg, ependymomas), craniospinal irradiation has been abandoned because neuraxis dissemination at first relapse is rare. Conformal radiation and the use of three-dimensional treatment planning are now in routine.

Chemotherapy is effective in treating low-grade and malignant astrocytomas and medulloblastomas. There is an initial report supporting the effectiveness of chemotherapy in AT/RTs. The therapy used in this study was prolonged and intensive. The utility of chemotherapy in ependymoma is being re-explored in national trials. A series of brain tumor protocols for children younger than age 3 years involved administering intensive chemotherapy after tumor resection and delaying or omitting radiation therapy. The results of these trials have generally been disappointing but have taught valuable lessons regarding the varying responses to chemotherapy of different tumor types. Superior results seem to have been obtained in the very young with high-dose chemotherapy strategies with stem cell rescue often followed by conformal radiotherapy. Conformal techniques allow the delivery of radiation to strictly defined fields and may limit side effects.

Perhaps the most exciting development in pediatric neuro-oncology is the development of biologically and clinically relevant subclassifications in both medulloblastoma and ependymoma. This development will drive a new generation of targeted therapy aimed at these biologically defined groups. The consensus definition of four biologically defined entities in medulloblastoma, including the Wnt and SHH groups, is the best example of this. New studies are in the planning stage based on this new defined biology.

In older children with malignant glioma, the current approach is surgical resection of the tumor and combined-modality treatment with irradiation and intensive chemotherapy. It has recently been realized there is considerable heterogeneity in pediatric high-grade gliomas. Some, such as the congenital tumors, may do well with relatively modest therapy. Others, such as epithelioid glioblastomas may harbor Braf mutations and may be targetable with specific agents. Generally, however, the prognosis is poor for children with high-grade gliomas and there has been little progress in finding better chemotherapeutic agents and strategies for most children with these devastating tumors.

The treatment of low-grade astrocytomas, which cannot be completely excised, has likewise shown only disappointing progress. The chemotherapy agents currently in use have high failure rates and some children suffer multiple, neurologically damaging, relapses. Radiotherapy with its improved conformational techniques is perhaps being delayed too long in some children.

**Prognosis**

Despite improvements in surgery and radiation therapy, the outlook for cure remains poor for children with high-grade glial tumors. For children with high-grade gliomas, an early CCG study showed a 45% progression-free survival rate for children who received radiation therapy and chemotherapy, but this may have been due to the inclusion of low-grade patients. More recent studies would suggest survival rate of less than 10%. The major exception to this is congenital glioblastomas which appear to have a much more favorable prognosis. Biologic factors that may affect survival are being increasingly recognized. The prognosis for diffuse pontine gliomas remains very poor, with the standard therapy of radiation alone, being only palliative.

The 5- and even 10-year survival rate for low-grade astrocytomas of childhood is 60%–90%. However, prognosis depends on both site, grade and, it is increasingly realized, on biology. A child with a pilocytic astrocytoma of the cerebellum has a considerably better prognosis than a child with a fibrillary astrocytoma of the cerebral cortex. Pilomyxoid astrocytomas
have been recently designated a grade II tumor and have a worse prognosis. For recurrent or progressive low-grade astrocytoma of childhood, relatively moderate chemotherapy may improve the likelihood of survival.

Conventional craniospinal irradiation for children with low-stage medulloblastoma results in survival rates of 60%–90%. Ten-year survival rates are lower (40%–60%). Chemotherapy allows a reduction in the craniospinal radiation dose while improving survival rates for average-risk patients (86% survival at 5 years on the most recent COG average-risk protocol). However, even reduced-dose craniospinal irradiation has an adverse effect on intellect, especially in children younger than age 7 years. Five-year survival rates for high-risk medulloblastoma have been 25%–40%, but this may be improved with the introduction of more chemotherapy during radiation although this still awaits the results of formal trials.

The previously poor prognosis for children with AT/RT’s seems improved by intensive multimodality therapy. A single center study suggests an improved outcome for ependymoma using conformational radiation techniques. This awaits confirmation by a national study.

Major challenges remain in treating brain tumors in children younger than age 3 years and in treating brainstem gliomas and malignant gliomas. The increasing emphasis is on the quality of life of survivors, not just the survival rate.

In contrast, the term leukemia refers to a malignancy arising from the bone marrow, which may include lymphoid cells. Because lymphomas can involve the bone marrow, the distinction between the two can be confusing. The diagnosis of lymphoma is a common one among childhood cancers, accounting for 10%–15% of all malignancies. The most common form is Hodgkin disease, which represents nearly half of all cases. The remaining subtypes, referred to collectively as non-Hodgkin lymphoma, are divided into four main groups: lymphoblastic, small noncleaved cell, large B-cell, and anaplastic large cell lymphomas.

In contrast to lymphomas, lymphoproliferative disorders (LPDs) are quite rare in the general population. Most are polyclonal, nonmalignant (though often life-threatening) accumulations of lymphocytes that occur when the immune system fails to control virally transformed lymphocytes. However, a malignant monoclonal proliferation can also arise. The posttransplant LPDs arise in patients who are immunosuppressed to prevent solid organ or bone marrow transplant rejection, particularly liver and heart transplant patients. Spontaneous LPDs occur in immunodeficient individuals and, less commonly, in immunocompetent persons.

### 1. Hodgkin Lymphoma

#### General Considerations

Children with Hodgkin lymphoma have a better response to treatment than do adults, with a 75% overall survival rate at more than 20 years following diagnosis. Although adult therapies are applicable, the management of Hodgkin lymphoma in children younger than age 18 years frequently differs. Because excellent disease control can result from several different therapeutic approaches, selection of staging procedures (radiographic, surgical, or other procedures to determine additional locations of disease) and treatment are often based on the potential long-term toxicity associated with the intervention.

Although Hodgkin lymphoma represents 50% of the lymphomas of childhood, only 15% of all cases occur in children aged 16 years or younger. Children younger than age 5 years account for 3% of childhood cases. There is a 4:1 male predominance in the first decade. Notably, in underdeveloped countries, the age distribution is quite different, with a peak incidence in younger children.

Hodgkin disease is subdivided into four histologic groups, and the distribution in children parallels that of adults: lymphocyte-predominant (10%–20%); nodular sclerosing (40%–60%); mixed cellularity (20%–40%); and lymphocyte-depleted (5%–10%). Prognosis is independent of sub-classification, with appropriate therapy based on stage (see section on “Staging”).

#### LYMPHOMAS & LYMPHOPROLIFERATIVE DISORDERS

The term lymphoma refers to a malignant proliferation of lymphoid cells, usually in association with and arising from lymphoid tissues (ie, lymph nodes, thymus, spleen).
Clinical Findings

A. Symptoms and Signs

Children with Hodgkin lymphoma usually present with painless cervical adenopathy. The lymph nodes often feel firmer than inflammatory nodes and have a rubbery texture. They may be discrete or matted together and are not fixed to surrounding tissue. The growth rate is variable, and involved nodes may wax and wane in size over weeks to months.

As Hodgkin lymphoma nearly always arises in lymph nodes and spreads to contiguous nodal groups, a detailed examination of all nodal sites is mandatory. Lymphadenopathy is common in children, so the decision to perform biopsy is often difficult or delayed for a prolonged period. Indications for consideration of early lymph node biopsy include lack of identifiable infection in the region drained by the enlarged node, a node greater than 2 cm in size, supraclavicular adenopathy or abnormal chest radiograph, and lymphadenopathy increasing in size after 2 weeks or failing to resolve within 4–8 weeks.

 Constitutional symptoms occur in about one-third of children at presentation. Symptoms of fever greater than 38.0°C, weight loss of 10% in the previous 6 months, and drenching night sweats are defined by the Ann Arbor staging criteria as B symptoms. The A designation refers to the absence of these symptoms. B symptoms are of prognostic value, and more aggressive therapy is usually required for cure. Generalized pruritus and pain with alcohol ingestion may also occur.

Half of patients have asymptomatic mediastinal disease (adenopathy or anterior mediastinal mass), although symptoms due to compression of vital structures in the thorax may occur. A chest radiograph should be obtained when lymphoma is being considered. The mediastinum must be evaluated thoroughly before any surgical procedure is undertaken to avoid airway obstruction or cardiovascular collapse during anesthesia and possible death. Splenomegaly or hepato- megaly is generally associated with advanced disease.

B. Laboratory Findings

The CBC is usually normal, although anemia, neutrophilia, eosinophilia, and thrombocytosis may be present. The erythrocyte sedimentation rate and other acute-phase reactants are often elevated and can serve as markers of disease activity. Immunologic abnormalities occur, particularly in cell-mediated immunity, and anergy is common in patients with advanced-stage disease at diagnosis. Autoantibody phenomena such as hemolytic anemia and an idiopathic thrombocytopenic purpura–like picture have been reported.

C. Staging

Staging of Hodgkin lymphoma determines treatment and prognosis. The most common staging system is the Ann Arbor classification that describes extent of disease by I–IV and symptoms by an A or a B suffix (eg, stage IIIIB). A systematic search for disease includes chest radiography; CT scan of the chest, abdomen, and pelvis; and bilateral bone marrow aspirates and biopsies. Technetium bone scanning may show bony involvement and is usually reserved for patients with bone pain, as bone involvement is rare. In recent years, positron emission tomography is increasingly used in the staging and follow-up of patients with Hodgkin disease, often replacing gallium scanning.

The staging laparotomy in pediatrics is rarely performed because almost all patients are given systemic chemotherapy rather than radiation therapy. This shift in favored therapy is due to the toxicities of high-dose, extended-field radiation in children and the complications of laparotomy, including postsplenectomy sepsis.

D. Pathologic Findings

The diagnosis of Hodgkin lymphoma requires the histologic presence of the Reed-Sternberg cell or its variants in tissue. Reed-Sternberg cells are germinal-center B cells that have undergone malignant transformation. Nearly 20% of these tumors in developed countries are positive for EBV. EBV has been linked to Hodgkin disease and the large portion of Hodgkin patients with increased EBV titers suggests that EBV activation may contribute to the onset of Hodgkin lymphoma.

Treatment & Prognosis

Treatment decisions are based on presence of B symptoms, stage, tumor bulk, and number of involved nodal regions. To achieve long-term disease-free survival while minimizing treatment toxicity, Hodgkin disease is increasingly treated by chemotherapy alone—and less often by radiation therapy. Several combinations of chemotherapeutic agents are effective, and treatment times are relatively short compared with pediatric oncology protocols for leukemia. A recently completed COG study addressed whether only 9 weeks of therapy with AV-PC (Adriamycin [doxorubicin], vincristine, prednisone, and cyclophosphamide) is sufficient to induce a complete response in patients with low-risk Hodgkin lymphoma. Two additional drugs, bleomycin and etoposide, are currently added in the treatment of intermediate-risk patients for a total of 4–6 months of therapy for patients with intermediate-risk disease. The removal of involved field irradiation in patients with intermediate-risk Hodgkin lymphoma who respond early to chemotherapy is being investigated. Combined-modality therapy with chemotherapy and irradiation is used in advanced disease.

Current treatment gives children with stage I and stage II Hodgkin lymphoma at least a 90% disease-free likelihood of survival 5 years after diagnosis, which generally equates with cure. Two-thirds of all relapses occur within 2 years after...
diagnosis, and relapse rarely occurs beyond 4 years. In more advanced disease (stages III and IV), 5-year event-free survival rates range from over 60% to 90%. With more patients being long-term survivors of Hodgkin disease, the risk of secondary malignancies, both leukemias and solid tumors, is becoming more apparent and is higher in patients receiving radiation therapy. Therefore, elucidating the optimal treatment strategy that minimizes such risk should be the goal of future studies.

Patients with relapsed Hodgkin lymphoma are often salvageable using chemotherapy and radiation therapy. An increasingly popular alternative is autologous HSCT, which may improve survival rates. Allogeneic HSCT is also used, but carries increased risks of complications and may not offer added survival benefit.

Targeted therapies are being tested for children with high-risk Hodgkin lymphoma, including antibody conjugates targeting CD30, a transmembrane receptor highly expressed in Hodgkin lymphoma. Other agents being considered in the high-risk group are histone deacetylase inhibitors and mTOR inhibitors.


2. Non-Hodgkin Lymphoma

General Considerations

Non-Hodgkin lymphomas (NHLs) are a diverse group of cancers accounting for 5%–10% of malignancies in children younger than age 15 years. About 500 new cases arise per year in the United States. The incidence of NHLs increases with age. Children aged 15 years or younger account for only 3% of all cases of NHLs, and the disease is uncommon before age 5 years. There is a male predominance of approximately 3:1. In equatorial Africa, NHLs cause almost 50% of pediatric malignancies.

Most children who develop NHL are immunologically normal. However, children with congenital or acquired immune deficiencies (eg, Wiskott-Aldrich syndrome, severe combined immunodeficiency syndrome, X-linked lymphoproliferative syndrome, HIV infection, immunosuppressive therapy following solid organ or marrow transplantation) have an increased risk of developing NHLs. It has been estimated that their risk is 100–10,000 times that of age-matched control subjects.

Animal models suggest a viral contribution to the pathogenesis of NHL, and there is evidence of viral involvement in human NHL as well. In equatorial Africa, 95% of Burkitt lymphomas contain DNA from the EBV. But in North America, less than 20% of Burkitt tumors contain the EBV genome. The role of other viruses (eg, human herpesviruses 6 and 8), disturbances in host immunologic defenses, chronic immunostimulation, and specific chromosomal rearrangements as potential triggers in the development of NHL is under investigation.

Unlike adult NHL, virtually all childhood NHLs are rapidly proliferating, high-grade, diffuse malignancies. These tumors exhibit aggressive behavior but are usually very responsive to treatment. Nearly all pediatric NHLs are histologically classified into four main groups: lymphoblastic lymphoma (LL), small noncleaved cell lymphoma (Burkitt lymphoma [BL] and Burkitt-like lymphoma [BLL]), large B-cell lymphoma (LBCL), and anaplastic large cell lymphoma (ALCL). Immunophenotyping and cytogenetic features, in addition to clinical presentation, are increasingly important in the classification, pathogenesis, and treatment of NHLs. Comparisons of pediatric NHLs are summarized in Table 31–5.

Clinical Findings

A. Symptoms and Signs

Childhood NHLs can arise in any site of lymphoid tissue, including lymph nodes, thymus, liver, and spleen. Common extralymphatic sites include bone, bone marrow, CNS, skin, and testes. Signs and symptoms at presentation are determined by the location of lesions and the degree of dissemination. Because NHL usually progresses very rapidly, the duration of symptoms is quite brief, from days to a few weeks. Nevertheless, children present with a limited number of syndromes, most of which correlate with cell type.

Children with LL often present with symptoms of airway compression (cough, dyspnea, orthopnea) or superior vena cava obstruction (facial edema, chemosis, plethora, venous engorgement), which are a result of mediastinal disease. These symptoms are a true emergency necessitating rapid diagnosis and treatment. Pleural or pericardial effusions may further compromise the patient’s respiratory and cardiovascular status. CNS and bone marrow involvement are not common at diagnosis. When bone marrow contains more than 25% lymphoblasts, patients are diagnosed with ALL.

Most patients with BL and BLL present with abdominal disease. Abdominal pain, distention, a right lower quadrant mass, or intussusception in a child older than age 5 years suggests the diagnosis of BL. Bone marrow involvement is common (~65% of patients). BL is the most rapidly proliferating tumor known and has a high rate of spontaneous cell
death as it outgrows its blood supply. Consequently, children presenting with massive abdominal disease frequently have tumor lysis syndrome (hyperuricemia, hyperphosphatemia, and hyperkalemia). These abnormalities can be aggravated by tumor infiltration of the kidney or urinary obstruction by tumor. Although similar histologically, numerous differences exist between cases of BL occurring in endemic areas of equatorial Africa and the sporadic cases of North America (Table 31–6).

Large cell lymphomas are similar clinically to the small noncleaved cell lymphomas, although unusual sites of involvement are quite common, particularly with ALCL. Skin lesions, focal neurologic deficits, and pleural or peritoneal effusions without an obvious associated mass are frequently seen.

### B. Diagnostic Evaluation

Diagnosis is made by biopsy of involved tissue with histology, immunophenotyping, and cytogenetic studies. If mediastinal disease is present, general anesthesia must be avoided if the airway or vena cava is compromised by tumor. In these cases samples of pleural or ascitic fluid, bone marrow, or peripheral nodes obtained under local anesthesia (in the presence of an anesthesiologist) may confirm the diagnosis. Major abdominal surgery and intestinal resection should be avoided in patients with an abdominal mass that is likely to be BL, as the tumor will regress rapidly with the initiation of chemotherapy. The rapid growth of these tumors and

---

**Table 31–5.** Comparison of pediatric non-Hodgkin lymphomas.

<table>
<thead>
<tr>
<th></th>
<th>Lymphoblastic Lymphoma</th>
<th>Small Noncleaved Cell Lymphoma (BL and BLL)</th>
<th>Large B-Cell Lymphoma</th>
<th>Anaplastic Large Cell Lymphoma</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Incidence (%)</strong></td>
<td>30-40</td>
<td>35-50</td>
<td>10-15</td>
<td>10-15</td>
</tr>
<tr>
<td><strong>Histopathologic features</strong></td>
<td>Indistinguishable from ALL lymphoblasts</td>
<td>Large nucleus with prominent nucleoli surrounded by very basophilic cytoplasm that contains lipid vacuoles</td>
<td>Large cells with cleaved or noncleaved nuclei</td>
<td>Large pleomorphic cells</td>
</tr>
<tr>
<td><strong>Immunopheno-type</strong></td>
<td>Immature T cell</td>
<td>B cell</td>
<td>B cell</td>
<td>T cell or null cell</td>
</tr>
<tr>
<td><strong>Cytogenetic markers</strong></td>
<td>Translocations involving chromosome 14q11 and chromosome 7; interstitial deletions of chromosome 1</td>
<td>t(8;14), t(8;22), t(2;8)</td>
<td>Many</td>
<td>t(2;5)</td>
</tr>
<tr>
<td><strong>Clinical presentation</strong></td>
<td>Intrathoracic tumor, mediastinal mass (50%-70%), lymphadenopathy above diaphragm (50%-80%)</td>
<td>Intra-abdominal tumor (90%), jaw involvement (10%-20% sporadic BL, 70% endemic BL), bone marrow involvement</td>
<td>Abdominal tumor most common; unusual sites: lung, face, brain, bone, testes, muscle</td>
<td>Lymphadenopathy, fever, weight loss, night sweats, extranodal sites including viscera and skin</td>
</tr>
<tr>
<td><strong>Treatment</strong></td>
<td>Similar to ALL therapy; 24 mo duration</td>
<td>Intensive administration of alkylating agents and methotrexate; CNS prophylaxis; 3-9 mo duration</td>
<td>Similar to therapy for BL/BLL</td>
<td>Similar to therapy for lymphoblastic lymphoma or BL/BLL</td>
</tr>
</tbody>
</table>

ALL, acute lymphoblastic leukemia; BL, Burkitt lymphoma; BLL, Burkitt-like lymphoma; CNS, central nervous system.

---

**Table 31–6.** Comparison of endemic and sporadic Burkitt lymphoma.

<table>
<thead>
<tr>
<th></th>
<th>Endemic</th>
<th>Sporadic</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Incidence</strong></td>
<td>10 per 100,000</td>
<td>0.9 per 100,000</td>
</tr>
<tr>
<td><strong>Cytogenetics</strong></td>
<td>Chromosome 8 breakpoint upstream of c-myc locus</td>
<td>Chromosome 8 breakpoint within c-myc locus</td>
</tr>
<tr>
<td><strong>EBV association</strong></td>
<td>≥ 95%</td>
<td>≤ 20%</td>
</tr>
<tr>
<td><strong>Disease sites at presentation</strong></td>
<td>Jaw (58%), abdomen (48%), CNS (19%), orbit (11%), marrow (7%)</td>
<td>Jaw (7%), abdomen (91%), CNS (14%), orbit (1%), marrow (20%)</td>
</tr>
</tbody>
</table>

CNS, central nervous system; EBV, Epstein-Barr virus.
the associated life-threatening complications demand that further studies be done expeditiously so that specific therapy is not delayed.

After a thorough physical examination, a CBC, liver function tests, and a biochemical profile (electrolytes, calcium, phosphorus, uric acid, renal function) should be obtained. An elevated LDH reflects tumor burden and can serve as a marker of disease activity. Imaging studies should include a chest radiograph and chest CT scan, an abdominal ultrasound or CT scan, and possibly a positron emission tomography scan. Bone marrow and CSF examinations are also essential.

**Treatment**

**A. Supportive Care**

The management of life-threatening problems at presentation is critical. The most common complications are superior mediastinal syndrome and acute tumor lysis syndrome. Patients with airway compromise require prompt initiation of specific therapy. Because of the risk of general anesthesia in these patients, it is occasionally necessary to initiate corticosteroids or low-dose emergency radiation therapy until the mass is small enough for a biopsy to be undertaken safely. Response to steroids and radiation therapy is usually prompt (12–24 hours).

Tumor lysis syndrome should be anticipated in all patients who have NHL with a large tumor burden. Maintaining a brisk urine output (> 5 mL/kg/h) with intravenous fluids and diuretics is the key to management. Allopurinol will reduce serum uric acid, and alkalization of urine will increase its solubility. Rasburicase is an effective intravenous alternative to allopurinol and is increasingly used for patients with high risk of tumor lysis based on tumor burden or in patients who do not have an optimal response to allopurinol. Because phosphate precipitates in alkaline urine, alkali administration should be discontinued if hyperphosphatemia occurs. Renal dialysis is occasionally necessary to control metabolic abnormalities. Every attempt should be made to correct or minimize metabolic abnormalities before initiating chemotherapy; however, this period of stabilization should not exceed 24–48 hours.

**B. Specific Therapy**

Systemic chemotherapy is the mainstay of therapy for NHLs. Nearly all patients with NHL require intensive intrathecal chemotherapy for CNS prophylaxis. Surgical resection is not indicated unless the entire tumor can be resected safely, which is rare. Partial resection or debulking surgery has no role. Radiation therapy does not improve outcome, so its use is confined to exceptional circumstances.

Therapy for LL is generally based on treatment protocols designed for ALL and involves dose-intensive, multiagent chemotherapy. The duration of therapy is 2 years. Treatment of BL and BLL using alkylating agents and intermediate- to high-dose methotrexate administered intensively but for a relatively short time produce the highest cure rates. LBCL is treated similarly, whereas ALCL has been treated with both BL and LL protocols.

Monoclonal antibodies such as rituximab (anti-CD20) allow for more targeted therapy of lymphomas and have been successful in improving outcomes in adults. Studies employing this type of therapy in children are underway in those with newly diagnosed as well as relapsed or refractory B-cell NHL. Additionally, inhibitors against the ALK oncogene are being explored as novel therapy for specific subsets of patients with NHL. Specifically, the ALK oncogene (activated by a 2:5 translocation leading to juxtaposition of NPM N-terminal region to the intracellular part of ALK) is the defining genetic lesions in ALK-positive ALCL and in rare variants of LBCL. Molecular profiling of pediatric lymphomas has identified other potential biologic targets. Developing therapeutics against biologic targets may improve outcomes for patients, particularly those patients with advanced stage disease, while reducing the potential for late effects.

**Prognosis**

A major predictor of outcome in NHL is the extent of disease at diagnosis. Ninety percent of patients with localized disease can expect long-term, disease-free survival. Patients with extensive disease on both sides of the diaphragm, CNS involvement, or bone marrow involvement in addition to a primary site have a 70%-80% failure-free survival rate. Relapses occur early in NHL; patients with LL rarely have recurrences after 30 months from diagnosis, whereas patients with BL and BLL very rarely have recurrences beyond 1 year. Patients who experience relapse may have a chance for cure by autologous or allogeneic HSCT.

---


3. Lymphoproliferative Disorders

LPDs can be thought of as a part of a continuum with lymphomas. Whereas LPDs represent inappropriate, often polyclonal proliferations of nonmalignant lymphocytes, lymphomas represent the development of malignant clones, sometimes arising from recognized LPDs.

A. Posttransplantation Lymphoproliferative Disorders

Posttransplantation lymphoproliferative disorders (PTLDs) arise in patients who have received substantial immunosuppressive medications for solid organ or bone marrow transplantation. In these patients, reactivation of latent EBV infection in B cells drives a polyclonal proliferation of these cells that is fatal if not halted. Occasionally a true lymphoma develops, often bearing a chromosomal translocation.

LPDs are an increasingly common and significant complication of transplantation. The incidence of PTLD ranges from approximately 2% to 15% of transplant recipients, depending on the organ transplanted and the immunosuppressive regimen.

Treatment of these disorders is a challenge for transplant physicians and oncologists. The initial treatment is reduction in immunosuppression, which allows the patient’s own immune cells to destroy the virally transformed lymphocytes. However, this is only effective in approximately half of the patients. For those patients who do not respond to reduced immune suppression, chemotherapy of various regimens may succeed. The use of anti-B-cell antibodies, such as rituximab (anti-CD20), for the treatment of PTLDs has been promising in clinical trials. More recently, T-cell-based immune therapies, such as donor lymphocyte infusions and adoptive transfer of EBV-specific cytotoxic T lymphocytes have also been explored as novel approaches.

B. Spontaneous Lymphoproliferative Disease

Immunodeficiencies in which LPDs occur include Bloom syndrome, Chédiak-Higashi syndrome, ataxia-telangiectasia, Wiskott-Aldrich syndrome, X-linked lymphoproliferative syndrome, congenital T-cell immunodeficiencies, and HIV infection. Treatment depends on the circumstances, but unlike PTLD, few therapeutic options are often available.

Castleman disease is an LPD occurring in pediatric patients without any apparent immunodeficiency. The autoimmune lymphoproliferative syndrome (ALPS) is characterized by widespread lymphadenopathy with hepatosplenomegaly, and autoimmune phenomena. ALPS results from mutations in the Fas ligand pathway that is critical in regulation of apoptosis.

NEUROBLASTOMA

General Considerations

Neuroblastoma arises from neural crest tissue of the sympathetic ganglia or adrenal medulla. It is composed of small, fairly uniform cells with little cytoplasm and hyperchromatic nuclei that may form rosette patterns. Pathologic diagnosis is not always easy, and neuroblastoma must be differentiated from the other “small, round, blue cell” malignancies of childhood (Ewing sarcoma, rhabdomyosarcoma, peripheral neuroectodermal tumor, and lymphoma).

Neuroblastoma accounts for 7%–10% of pediatric malignancies and is the most common solid neoplasm outside the CNS. Fifty percent of neuroblastomas are diagnosed before age 2 years and 90% before age 5 years.

Neuroblastoma is a biologically diverse disease with varied clinical behavior ranging from spontaneous regression to progression through very aggressive therapy. Unfortunately, despite significant advances in our understanding of this tumor at the cellular and molecular level, the overall survival rate in advanced disease has changed little in 20 years, with 3-year event-free survival being less than 15%.

Clinical Findings

A. Symptoms and Signs

Clinical manifestations vary with the primary site of malignant disease and the neuroendocrine function of the tumor. Many children present with constitutional symptoms such as fever, weight loss, and irritability. Bone pain suggests metastatic disease, which is present in 60% of children older than 1 year of age at diagnosis. Physical examination may reveal a firm, fixed, irregularly shaped mass that extends beyond the midline. The margins are often poorly defined. Although most children have an abdominal primary tumor (40% adrenal gland, 25% paraspinal ganglion), neuroblastoma can arise wherever there is sympathetic tissue. In the posterior mediastinum, the tumor is usually asymptomatic and discovered on a chest radiograph obtained for other reasons. Patients with cervical neuroblastoma present with a neck mass, which is often misdiagnosed as infection. Horner syndrome (unilateral ptosis, myosis, and anhidrosis) or heterochromia iridis (differently colored irises) may accompany...
cervical neuroblastoma. Paraspinal tumors can extend through the spinal foramina, causing cord compression. Patients may present with paresis, paralysis, and bowel or bladder dysfunction.

The most common sites of metastases are bone, bone marrow, lymph nodes (regional as well as disseminated), liver, and subcutaneous tissue. Neuroblastoma has a predilection for metastasis to the skull, in particular the sphenoid bone and retrobulbar tissue. This causes periorbital ecchymosis and proptosis. Liver metastasis, particularly in the newborn, can be massive. Subcutaneous nodules are bluish in color and associated with an erythematous flush followed by blanching when compressed, probably secondary to catecholamine release.

Neuroblastoma may also be associated with unusual paraneoplastic manifestations. Perhaps the most striking example is opsoclonus-myoclonus, also called dancing eyes/dancing feet syndrome. This phenomenon is characterized by the acute onset of rapid and chaotic eye movements, myoclonic jerking of the limbs and trunk, ataxia, and behavioral disturbances. This process, which often persists after therapy is complete, is thought to be secondary to cross-reacting anti-neural antibodies. Intractable, chronic watery diarrhea is associated with tumor secretion of vasoactive intestinal peptides. Both of these paraneoplastic syndromes are associated with favorable outcomes.

B. Laboratory Findings

Anemia is present in 60% of children with neuroblastoma and can be due to chronic disease or marrow infiltration. Occasionally, thrombocytopenia is present, but thrombocytosis is a more common finding, even with metastatic disease in the marrow. Urinary catecholamines (vanillylmandelic acid and homovanillic acid) are elevated in at least 90% of patients at diagnosis and should be measured prior to surgery.

C. Imaging

Plain radiographs of the primary tumor may show stippled calcifications. Metastases to bone appear irregular and lytic. Periosteal reaction and pathologic fractures may also be seen. CT scanning provides more information, including the extent of the primary tumor, its effects on surrounding structures, and the presence of liver and lymph node metastases. Classically, in tumors originating from the adrenal gland, the kidney is displaced inferolaterally, which helps to differentiate neuroblastoma from Wilms tumor. MRI is useful in determining the presence of spinal cord involvement in tumors that appear to invade neural foramina.

Technetium bone scanning is obtained for the evaluation of bone metastases, because the tumor usually takes up technetium. Metaiodobenzylguanidine (MIBG) scanning is also performed to detect metastatic disease.

D. Staging

Staging of neuroblastoma is performed according to the International Neuroblastoma Staging System (INSS) (Table 31–7). A biopsy of the tumor is performed to determine the biologic characteristics of the tumor. In addition, bilateral bone marrow aspirates and biopsies must be performed to evaluate marrow involvement.

Tumors are classified as favorable or unfavorable based on histologic characteristics. Amplification of the MYCN protooncogene is a reliable marker of aggressive clinical behavior with rapid disease progression. Tumor cell DNA content is also predictive of outcome. Hyperdiploidy is a favorable finding, whereas diploid DNA content is associated with a worse outcome.

Treatment & Prognosis

Patients are treated based on a risk stratification system adopted by the COG based on INSS stage, age, MYCN status, histology, cytogenetic findings, and DNA index. The mainstay of therapy is surgical resection coupled with chemotherapy.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Localized tumor with complete gross excision, with or without microscopic residual disease; representative ipsilateral lymph nodes negative for tumor microscopically.</td>
</tr>
<tr>
<td>2A</td>
<td>Localized tumor with incomplete gross excision; representative ipsilateral nonadherent lymph nodes negative for tumor microscopically.</td>
</tr>
<tr>
<td>2B</td>
<td>Localized tumor with or without complete gross excision, with ipsilateral nonadherent lymph nodes positive for tumor. Enlarged lymph nodes must be negative microscopically.</td>
</tr>
<tr>
<td>3</td>
<td>Unresectable unilateral tumor infiltrating across the midline, with or without regional lymph node involvement; localized unilateral tumor with contralateral regional lymph node involvement; or midline tumor with bilateral extension by infiltration (unresectable) or by lymph node involvement. The midline is defined as the vertebral column. Tumors originating on one side and crossing the midline must infiltrate to or beyond the opposite side of the vertebral column.</td>
</tr>
<tr>
<td>4</td>
<td>Any primary tumor with dissemination to distant lymph nodes, bone, bone marrow, liver, skin, or other organs, except as defined for stage 4S.</td>
</tr>
<tr>
<td>4S</td>
<td>Localized primary tumor, as defined for stage 1, 2A, or 2B, with dissemination limited to skin, liver, or bone marrow, and limited to infants younger than age 1 y. Marrow involvement should be &lt; 10% of nucleated cells.</td>
</tr>
</tbody>
</table>
The usually massive size of the tumor often makes primary resection impossible. Under these circumstances, only a biopsy is performed. Following chemotherapy, a second surgical procedure may allow for resection of the primary tumor. Radiation therapy is sometimes also necessary. Effective chemotherapeutic agents in the treatment of neuroblastoma include cyclophosphamide, doxorubicin, etoposide, cisplatin, vincristine, and topotecan. About 80% of patients achieve complete or partial remission, although in advanced disease, remission is seldom durable.

For low-risk disease (stage 1 and 2, with good biologic features), surgical resection alone may be sufficient to affect a cure. Infants younger than 1 year with stage 4S disease may need little if any therapy, although chemotherapy may be initiated because of bulky disease causing mechanical complications. In intermediate-risk neuroblastoma (subsets of patients with stage 3 and 4 disease), the primary treatment approach is surgical combined with chemotherapy. High-risk patients (the majority with stage 3 and 4 disease) require multimodal therapy, including surgery, irradiation, chemotherapy, and autologous HSCT. The administration of cis-retinoic acid, a differentiating agent, can prolong disease-free survival in advanced-stage neuroblastoma when administered in the setting of minimal residual disease (MRD) after HSCT.

A recent cooperative clinical trial concluded that administration of ch14.18 (a monoclonal antibody specific for the predominant antigen on neuroblastoma cells) and cytokines improves outcome in the high-risk population following HSCT. All patients with high-risk disease are offered this therapy. The current COG trial for high-risk patients is comparing single versus tandem HSCT in this population. Fenretinide, a synthetic retinoid, and radiolabeled MIBG are also under investigation.

For children with stage 1, 2, or 4S disease, the 5-year survival rate is 70%–90%. Infants younger than 460 days old have a greater than 80% likelihood of long-term survival. Children older than age 1 year with stage 3 disease have an intermediate prognosis (~40%–70%). Older patients with stage 4 disease have a poor prognosis (5%–50% survival 5 years from diagnosis), although patients 12–18 months old with hyperdiploidy and nonamplified MYCN have an excellent prognosis.

**WILMS TUMOR (NEPHROBLASTOMA)**

**General Considerations**

Approximately 460 new cases of Wilms tumor occur annually in the United States, representing 5%–6% of cancers in children younger than age 15 years. After neuroblastoma, this is the second most common abdominal tumor in children. The majority of Wilms tumors are of sporadic occurrence. However, in a few children, Wilms tumor occurs in the setting of associated malformations or syndromes, including aniridia, hemihypertrophy, genitourinary malformations (eg, cryptorchidism, hypospadias, gonadal dysgenesis, pseudohemaphroditism, and horseshoe kidney), Beck-with-Wiedemann syndrome, Denys-Drash syndrome, and WAGR syndrome (Wilms tumor, aniridia, ambiguous genitalia, mental retardation).

The median age at diagnosis is related both to gender and laterality, with bilateral tumors presenting at a younger age than unilateral tumors, and males being diagnosed earlier than females. Wilms tumor occurs most commonly between ages 2 and 5 years; it is unusual after age 6 years. The mean age at diagnosis is 4 years.

**Clinical Findings**

**A. Symptoms and Signs**

Most children with Wilms tumor present with increasing size of the abdomen or an asymptomatic abdominal mass incidentally discovered by a parent and/or health care provider. The mass is usually smooth and firm, well demarcated, and rarely crosses the midline, though it can extend inferiorly into the pelvis. About 25% of patients are hypertensive at presentation. Gross hematuria is an uncommon presentation, although microscopic hematuria occurs in approximately 25% of patients.

**B. Laboratory Findings**

The CBC is usually normal, but some patients have anemia secondary to hemorrhage into the tumor. Blood urea nitrogen and serum creatinine are usually normal. Urinalysis may show some blood or leukocytes.
C. Imaging and Staging

Ultrasonography or CT of the abdomen should establish the presence of an intrarenal mass. It is also essential to evaluate the contralateral kidney for presence and function as well as synchronous Wilms tumor. The inferior vena cava needs to be evaluated by ultrasonography with Doppler flow for the presence and extent of tumor propagation. The liver should be imaged for the presence of metastatic disease. Chest CT scan should be obtained to determine whether pulmonary metastases are present. Approximately 10% of patients will have metastatic disease at diagnosis. Of these, 80% will have pulmonary disease and 15% liver metastases. Bone and brain metastases are extremely uncommon and usually associated with the rarer, more aggressive renal tumor types, such as clear cell sarcoma or rhabdoid tumor; hence, bone scans and brain imaging are not routinely performed. The clinical stage is ultimately decided at surgery and confirmed by the pathologist.

Treatment & Prognosis

In the United States, treatment of Wilms tumor begins with surgical exploration of the abdomen via an anterior surgical approach to allow for inspection and palpation of the contralateral kidney. The liver and lymph nodes are inspected and suspicious areas biopsied or excised. En bloc resection of the tumor is performed. Every attempt is made to avoid tumor spillage at surgery as this may increase the staging and treatment. Because therapy is tailored to tumor stage, it is imperative that a surgeon familiar with the staging requirements perform the operation.

In addition to the staging, the histologic type has implications for therapy and prognosis. Favorable histology (FH; see later discussion) refers to the classic triphasic Wilms tumor and its variants. Unfavorable histology (UH) refers to the presence of diffuse anaplasia (extreme nuclear atypia) and is present in 5% of Wilms tumors. Only a few small foci of anaplasia in a Wilms tumor give a worse prognosis to patients with stage II, III, or IV tumors. Loss of heterozygosity of chromosomes 1p and 16q are adverse prognostic factors in those with favorable histology. Following excision and pathologic examination, the patient is assigned a stage that defines further therapy.

Improvement in the treatment of Wilms tumor has resulted in an overall cure rate of approximately 90%. The National Wilms Tumor Study Group’s fourth study (NWTS-4) demonstrated that survival rates were improved by intensifying therapy during the initial treatment phase while shortening overall treatment duration (24 weeks vs 60 weeks of treatment).

Table 31–8 provides an overview of the current treatment recommendations in NWTS-5. Patients with stage III or IV Wilms tumor require radiation therapy to the tumor bed and to sites of metastatic disease. Chemotherapy is optimally begun within 5 days after surgery, whereas radiation therapy should be started within 10 days. Stage V (bilateral Wilms tumor) disease dictates a different approach, consisting of possible bilateral renal biopsies followed by chemotherapy and second-look renal-sparing surgery. Radiation therapy may also be necessary.

Using these approaches, 4-year overall survival rates through NWTS-4 are as follows: stage I FH, 96%; stage II–IV FH, 82%–92%; stage I–III UH (diffuse anaplasia), 56%–70%; stage IV UH, 17%. Patients with recurrent Wilms tumor have a salvage rate of approximately 50% with surgery, radiation therapy, and chemotherapy (singly or in combination). HSCT is also being explored as a way to improve the chances of survival after relapse.

Future Considerations

Although progress in the treatment of Wilms tumor has been extraordinary, important questions remain to be answered. Questions have been raised regarding the role of prenephrectomy chemotherapy in the treatment of Wilms tumor. Presurgical chemotherapy seems to decrease tumor rupture at resection but may unfavorably affect outcome by changing staging. Future studies will be directed at minimizing acute and long-term toxicities for those with low-risk disease and improving outcomes for those with high-risk and recurrent disease.
Primary malignant bone tumors are uncommon in childhood with only 650–700 new cases per year. Osteosarcoma accounts for 60% of cases and occurs mostly in adolescents and young adults. Ewing sarcoma is the second most common malignant tumor of bony origin and occurs in toddlers to young adults. Both tumors have a male predominance. The cardinal signs of bone tumor are pain at the site of involvement, often following slight trauma, mass formation, and fracture through an area of cortical bone destruction.

1. Osteosarcoma

General Considerations

Although osteosarcoma is the sixth most common malignancy in childhood, it ranks third among adolescents and young adults. This peak occurrence during the adolescent growth spurt suggests a causal relationship between rapid bone growth and malignant transformation. Further evidence for this relationship is found in epidemiologic data showing patients with osteosarcoma to be taller than their peers, osteosarcoma occurring most frequently at sites where the greatest increase in length and size of bone occurs, and osteosarcoma occurring at an earlier age in girls than boys, corresponding to their earlier growth spurt. The metaphyses of long tubular bones are primarily affected. The distal femur accounts for more than 40% of cases, with the proximal tibia, proximal humerus, and mid and proximal femur following in frequency.

Clinical Findings

A. Symptoms and Signs

Pain over the involved area is the usual presenting symptom with or without an associated soft tissue mass. Patients generally have symptoms for several months prior to diagnosis. Systemic symptoms (fever, weight loss) are rare. Laboratory evaluation may reveal elevated serum alkaline phosphatase or LDH levels.

B. Imaging and Staging

Radiographic findings show permeative destruction of the normal bony trabecular pattern with indistinct margins. In addition, periosteal new bone formation and lifting of the bony cortex may create a Codman triangle. A soft tissue mass plus calcifications in a radial or sunburst pattern are frequently noted. MRI is more sensitive in defining the extent of the primary tumor and has mostly replaced CT scanning. The most common sites of metastases are the lung (≤ 20% of newly diagnosed cases) and the additional boney sites (10%). CT scan of the chest and bone scan are essential for detecting metastatic disease. PET CT may be a consideration in monitoring response to therapy. Bone marrow aspirates and biopsies are not indicated.

Despite the rather characteristic radiographic appearance, a tissue sample is needed to confirm the diagnosis. Placement of the incision for biopsy is of critical importance. A misplaced incision could preclude a limb salvage procedure and necessitate amputation. The surgeon who will carry out the definitive surgical procedure should perform the biopsy. A staging system for osteosarcoma based on local tumor extent and presence or absence of distant metastasis has been proposed, but it has not been validated.

Treatment & Prognosis

Historical studies showed that over 50% of patients receiving surgery alone developed pulmonary metastases within 6 months after surgery. This suggests the presence of micrometastatic disease at diagnosis. Adjuvant chemotherapy trials showed improved disease-free survival rates of 55%–85% in patients followed for 3–10 years.

Osteosarcomas are highly radioresistant lesions; for this reason, radiation therapy has no role in its primary management. Chemotherapy is often administered prior to definitive surgery (neoadjuvant chemotherapy). This permits an early attack on micrometastatic disease and may also shrink the tumor, facilitating a limb salvage procedure. Preoperative chemotherapy also makes detailed histologic evaluation of tumor response to the chemotherapy agents possible. If the histologic response is poor (> 10% viable tumor tissue), postoperative chemotherapy can be changed accordingly. Chemotherapy may be administered intra-arterially or intravenously, although the benefits of intra-arterial chemotherapy are disputed. Agents having efficacy in the treatment of osteosarcoma include doxorubicin, cisplatin, high-dose methotrexate, ifosfamide, and etoposide.

Definitive cure requires en bloc surgical resection of the tumor with a margin of uninvolved tissue. Amputation, limb salvage, and rotationplasty (Van Ness rotation) are equally effective in achieving local control of osteosarcoma. Contraindications to limb-sparing surgery include major involvement of the neurovascular bundle by tumor; immature skeletal age, particularly for lower extremity tumors; infection in the region of the tumor; inappropriate biopsy site; and extensive muscle involvement that would result in a poor functional outcome.

Postsurgical chemotherapy is generally continued until the patient has received 1 year of treatment. Relapses are unusual beyond 3 years, but late relapses do occur. Histologic response to neoadjuvant chemotherapy is an
excellent predictor of outcome. Patients with localized disease having 90% tumor necrosis have a 70%–85% long-term, disease-free survival rate. Other favorable prognostic factors include distal skeletal lesions, longer duration of symptoms, age older than 20 years, female gender, and near-diploid tumor DNA index. Patients with metastatic disease at diagnosis or multifocal bone lesions do not fair well, despite advances in chemotherapy and surgical techniques.

2. Ewing Sarcoma

a. General Considerations

Ewing sarcoma accounts for only 10% of primary malignant bone tumors; fewer than 200 new cases occur each year in the United States. It is a disease primarily of white males, almost never affects blacks, and occurs mostly in the second decade of life. Ewing sarcoma is considered a “small, round, blue cell” malignancy. The differential diagnosis includes rhabdomyosarcoma, lymphoma, and neuroblastoma. Although most commonly a tumor of bone, it may also occur in soft tissue (extraskeletal Ewing sarcoma or peripheral neuroectodermal tumor [PNET]).

b. Clinical Findings

A. Symptoms and Signs

Pain at the site of the primary tumor is the most common presenting sign, with or without swelling and erythema. No specific laboratory findings are characteristic of Ewing sarcoma, but an elevated LDH may be present and is of prognostic significance. Associated symptoms include fevers and weight loss.

B. Imaging and Staging

The radiographic appearance of Ewing sarcoma overlaps with osteosarcoma, although Ewing sarcoma usually involves the diaphyses of long bones. The central axial skeleton gives rise to 40% of Ewing tumors. Evaluation of a patient diagnosed as having Ewing sarcoma should include an MRI of the primary lesion to define the extent of local disease as precisely as possible. This is imperative for planning future surgical procedures or radiation therapy. Metastatic disease is present in 25% of patients at diagnosis. The lung (38%), bone (particularly the spine) (31%), and the bone marrow (11%) are the most common sites for metastasis. CT scan of the chest, bone scan, and bilateral bone marrow aspirates and biopsies are all essential to the staging workup. PET CT may be a consideration in helping to monitor therapy response.

A biopsy is essential in establishing the diagnosis. Histologically, Ewing sarcoma consists of sheets of undifferentiated cells with hyperchromatic nuclei, well-defined cell borders, and scanty cytoplasm. Necrosis is common. Electron microscopy, immunocytochemistry, and cytogenetics may be necessary to confirm the diagnosis. A generous tissue biopsy specimen is often necessary for diagnosis but should not delay starting chemotherapy.

A consistent cytogenetic abnormality, t(11;22), has been identified in Ewing sarcoma and PNET and is present in 85%–90% of tumors. These tumors also express the protooncogene c-myc, which may be helpful in differentiating Ewing sarcoma from neuroblastoma, in which c-myc is not expressed.

c. Treatment & Prognosis

Therapy usually commences with the administration of chemotherapy after biopsy and is followed by local control measures. Depending on many factors, including the primary site of the tumor and the response to chemotherapy, local control can be achieved by surgery, radiation therapy, or a combination of these methods. Following local control, chemotherapy continues for approximately 1 year. Effective treatment for Ewing sarcoma uses combinations of daunorubicin, vincristine, doxorubicin, cyclophosphamide, etoposide, and ifosfamide. Recent data showed that giving chemotherapy every 2 weeks, rather than every 3 weeks, improved the event-free survival for localized Ewing sarcoma.

Patients with small localized primary tumors have a 50%–70% long-term, disease-free survival rate. For patients with metastatic disease and large pelvic primary tumors, survival is poor. Autologous HSCT is being investigated for the treatment of these high-risk patients.

Rhabdomyosarcoma is the most common soft tissue sarcoma occurring in childhood and accounts for 10% of solid tumors in childhood. The peak incidence occurs at ages


2–5 years; 70% of children are diagnosed before age 10 years. A second smaller peak is seen in adolescents with extremity tumors. Males are affected more commonly than females.

Rhabdomyosarcoma can occur anywhere in the body. When rhabdomyosarcoma imitates striated muscle and cross-striations are seen by light microscopy, the diagnosis is straightforward. Immunohistochemistry, electron microscopy, or chromosomal analysis is sometimes necessary to make the diagnosis. Rhabdomyosarcoma is further classified into subtypes based on pathologic features: embryonal (60%–80%), of which botryoid is a variant; alveolar (about 15%–20%); undifferentiated sarcoma (8%); pleomorphic, which is seen in adults (1%); and other (11%). These subtypes occur in characteristic locations and have different metastatic potentials and outcomes.

Although the pathogenesis of rhabdomyosarcoma is unknown, in rare cases a genetic predisposition has been determined. Li-Fraumeni syndrome is an inherited mutation of the p53 tumor suppressor gene that results in a high risk of bone and soft tissue sarcomas in childhood plus breast cancer and other malignant neoplasms before age 45 years. Two characteristic chromosomal translocations [t(2;13) and t(1;13)] have been described in alveolar rhabdomyosarcoma. The t(1;13) translocation appears to be a favorable prognostic feature in patients with metastatic alveolar rhabdomyosarcoma, whereas t(2;13) is associated with poor outcomes.

► Clinical Findings

A. Symptoms and Signs

The presenting symptoms and signs of rhabdomyosarcoma result from disturbances of normal body function due to tumor growth (Table 31–9). For example, patients with orbital rhabdomyosarcoma present with proptosis, whereas patients with rhabdomyosarcoma of the bladder can present with hematuria, urinary obstruction, or a pelvic mass.

B. Imaging

A plain radiograph and a CT and/or MRI scan should be obtained to determine the extent of the primary tumor and to assess regional lymph nodes. A chest CT scan is obtained to rule out pulmonary metastasis, the most common site of metastatic disease at diagnosis. A skeletal survey and a bone scan are obtained to determine whether bony metastases are present. Bilateral bone marrow biopsies and aspirates are obtained to rule out bone marrow infiltration. Additional studies may be warranted in certain sites. For example, in parameningeal primary tumors, a lumbar puncture is performed to evaluate CSF for tumor cells.

► Treatment

Optimal management and treatment of rhabdomyosarcoma is complex and requires combined modality therapy. When feasible, the tumor should be excised, but this is not always possible because of the site of origin and size of tumor. When only partial tumor resection is feasible, the operative procedure is usually limited to biopsy and sampling of lymph nodes. Debulking of unresectable tumor may improve outcomes. Chemotherapy can often convert an inoperable tumor to a resectable one. A second-look procedure to remove residual disease and confirm the clinical response to chemotherapy and radiation therapy is generally performed at about week 20 of therapy.

Table 31–9. Characteristics of rhabdomyosarcoma.

<table>
<thead>
<tr>
<th>Primary Site</th>
<th>Frequency (%)</th>
<th>Symptoms and Signs</th>
<th>Predominant Pathologic Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head and neck</td>
<td>35</td>
<td>Proptosis</td>
<td>Embryonal</td>
</tr>
<tr>
<td>Orbit</td>
<td>9</td>
<td>Proptosis</td>
<td></td>
</tr>
<tr>
<td>Parameningeal</td>
<td>16</td>
<td>Cranial nerve palsies; aural or sinus obstruction with or without drainage</td>
<td>Alveolar (50%), undifferentiated</td>
</tr>
<tr>
<td>Other</td>
<td>10</td>
<td>Painless, progressively enlarging mass</td>
<td></td>
</tr>
<tr>
<td>Genitourinary</td>
<td>22</td>
<td>Hematuria, urinary obstruction</td>
<td>Embryonal (botryoid variant in bladder and vagina)</td>
</tr>
<tr>
<td>Bladder and prostate</td>
<td>13</td>
<td>Hematuria, urinary obstruction</td>
<td></td>
</tr>
<tr>
<td>Vagina and uterus</td>
<td>2</td>
<td>Pelvic mass, vaginal discharge</td>
<td></td>
</tr>
<tr>
<td>Paratesticular</td>
<td>7</td>
<td>Painless mass</td>
<td></td>
</tr>
<tr>
<td>Extremities</td>
<td>18</td>
<td>Adolescents, swelling of affected body part</td>
<td>Alveolar, undifferentiated</td>
</tr>
<tr>
<td>Other</td>
<td>25</td>
<td>Mass</td>
<td>Alveolar, undifferentiated</td>
</tr>
</tbody>
</table>
Radiation therapy is an effective method of local tumor control for both microscopic and gross residual disease. It is generally administered to all patients, the only exception being those with a localized tumor that has been completely resected. All patients with rhabdomyosarcoma receive chemotherapy, even when the tumor is fully resected at diagnosis. The exact regimen and duration of chemotherapy are determined by primary site, group, and tumor node metastasis classification. Vincristine, dactinomycin, and cyclophosphamide have shown the greatest efficacy in the treatment of rhabdomyosarcoma. Newer agents such as irinotecan are also being used in the upfront treatment of metastatic rhabdomyosarcoma based on good responses in relapsed disease. Newer treatment strategies for high-risk patients include different drug combinations and dosing schedules with hematopoietic growth factor support, hyperfractionated radiation therapy, and autologous HSCT.

Prognosis
The age of the patient, the extent of tumor at diagnosis, the primary site, the pathologic subtype, and the response to treatment all influence the long-term, disease-free survival rate from the time of diagnosis. Children with localized disease at diagnosis have a 70%–75% 3-year disease-free survival rate, whereas children with metastatic disease at presentation have a worse outcome (39% 3-year disease-free survival).


Clinical Findings
A. Symptoms and Signs
Children with retinoblastoma generally come to medical attention while the tumor is still confined to the globe. Although present at birth, retinoblastoma is not usually detected until it has grown to a considerable size. Leukocoria (white pupillary reflex) is the most common sign (found in 60% of patients). Parents may note an unusual appearance of the eye or asymmetry of the eyes in a photograph. The differential diagnosis of leukocoria includes Toxocara canis granuloma, astrocytic hamartoma, retinopathy of prematurity, Coats disease, and persistent hyperplastic primary vitreous. Strabismus (in 20% of patients) is seen when the tumor involves the macula and central vision is lost. Rarely (in 7% of patients), a painful red eye with glaucoma, a hyphema, or proptosis is the initial manifestation. A single focus or multiple foci of tumor may be seen in one or both eyes at diagnosis. Bilateral involvement occurs in 20%–30% of children.
Suspected retinoblastoma requires a detailed ophthalmologic examination under general anesthesia. An ophthalmologist makes the diagnosis of retinoblastoma by the appearance of the tumor within the eye without pathologic confirmation. A white to creamy pink mass protruding into the vitreous matter suggests the diagnosis; intraocular calcifications and vitreous seeding are virtually pathognomonic of retinoblastoma. A CT scan of the orbits and MRI of the orbits/brain detects intraocular calcification, evaluates the optic nerve for tumor infiltration, and detects extraocular extension of tumor. A single focus or multiple foci of tumor may be seen in one or both eyes at diagnosis. Metastatic disease of the marrow and meninges can be ruled out with bilateral bone marrow aspirates and biopsies plus CSF cytology.

### Treatment

Each eye is treated according to the potential for useful vision, and every attempt is made to preserve vision. The choice of therapy depends on the size, location, and number of intraocular lesions. Absolute indications for enucleation include no vision, neovascular glaucoma, inability to examine the treated eye, and inability to control tumor growth with conservative treatment. External beam irradiation has been the mainstay of therapy. A total dose of 35–45 Gy is administered. However, many centers are investigating the role of systemic chemotherapy for the treatment of retinoblastoma confined to the globe and the elimination of external beam radiotherapy is now accepted. Cryotherapy, photocoagulation, and radioactive plaques can be used for local tumor control. Patients with metastatic disease receive chemotherapy.

Children with retinoblastoma confined to the retina (whether unilateral or bilateral) have an excellent prognosis, with 5-year survival rates greater than 90%. Mortality is correlated directly with extent of optic nerve involvement, orbital extension of tumor, and massive choroid invasion. Patients who have disease in the optic nerve beyond the lamina cribrosa have a 5-year survival rate of only 40%. Patients with meningeal or metastatic spread rarely survive, although intensive chemotherapy and autologous HSCT have produced long-term survivors.

Patients with the germline mutation (heritable form) have a significant risk of developing second primary tumors. Osteosarcomas account for 40% of such tumors. Second malignant neoplasms occur in both patients who have and those who have not received radiation therapy. The 30-year cumulative incidence for a second neoplasm is 35% in patients who received radiation therapy and 6% in those who did not receive radiation therapy. The risk continues to increase over time. Although radiation contributes to the risk, it is the presence of the retinoblastoma gene itself that is responsible for the development of nonocular tumors in these patients.

### HEPATIC TUMORS (SEE ALSO CHAPTER 22)

Two-thirds of liver masses found in childhood are malignant. Ninety percent of hepatic malignancies are either hepatoblastoma or hepatocellular carcinoma. Hepatoblastoma accounts for the vast majority of liver tumors in children younger than age 5 years, hepatocellular carcinoma for the majority in children aged 15–19 years. The features of these hepatic malignancies are compared in Table 31–10. Of the benign tumors, 60% are hamartomas or vascular tumors such as hemangiomas. There is mounting evidence for a strong association between prematurity and the risk of hepatoblastoma.

Children with hepatic tumors usually come to medical attention because of an enlarging abdomen. Approximately 10% of hepatoblastomas are first discovered on routine examination. Anorexia, weight loss, vomiting, and abdominal pain are associated more commonly with hepatocellular carcinoma. Serum α-fetoprotein is often elevated and is an excellent marker for response to treatment.

Imaging studies should include abdominal ultrasound, CT scan, or MRI. Malignant tumors have a diffuse hyper-echoic pattern on ultrasonography, whereas benign tumors are usually poorly echoic. Vascular lesions contain areas with varying degrees of echogenicity. Ultrasound is also useful for imaging the hepatic veins, portal veins, and inferior vena cava. CT scanning and, in particular, MRI are important for defining the extent of tumor within the liver. CT scanning of the chest should be obtained to evaluate for metastatic spread. Because bone marrow involvement is extremely rare, bone marrow aspirates and biopsies are not indicated.

The prognosis for children with hepatic malignancies depends on the tumor type and the resectability of the tumor. Complete resectability is essential for survival.
Chemotherapy can decrease the size of most hepatoblastomas. Following biopsy of the lesion, neoadjuvant chemotherapy is administered prior to attempting complete surgical resection. Monitoring the rate of decline of the alpha fetoprotein levels can help indicate favorable versus poor responders to chemotherapy. Chemotherapy can often convert an inoperable tumor to a completely resectable one and can also eradicate metastatic disease. Approximately 50%–60% of hepatoblastomas are fully resectable, whereas only one-third of hepatocellular carcinomas can be completely removed. Even with complete resection, only one-third of patients with hepatocellular carcinoma are long-term survivors. A recent CCG/Pediatric Oncology Group trial has shown cisplatin, fluorouracil, and vincristine to be as effective as but less toxic than cisplatin and doxorubicin in treating hepatoblastoma. The current open Children’s Oncology Group trial is using cisplatin, fluorouracil, vincristine, and doxorubicin along with the cardioprotectant dexrazoxane in intermediate and high risk patients. Other drug combinations that have demonstrated benefit include carboplatin plus etoposide and doxorubicin plus ifosfamide. Liver transplantation has been shown to be a successful surgical option in patients whose tumors are considered to be unresectable.


**Table 31–10.** Comparison of hepatoblastoma and hepatocellular carcinoma in childhood.

<table>
<thead>
<tr>
<th></th>
<th>Hepatoblastoma</th>
<th>Hepatocellular Carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age at presentation</td>
<td>1 y (0-3 y)</td>
<td>12 y (5-18 y)</td>
</tr>
<tr>
<td>Male-female ratio</td>
<td>1.7:1</td>
<td>1.4:1</td>
</tr>
<tr>
<td>Associated conditions</td>
<td>Hemihypertrophy, Beckwith-Wiedemann syndrome, prematurity, Gardner syndrome</td>
<td>Hepatitis B virus infection, hereditary tyrosinemia, biliary cirrhosis, α1-antitrypsin deficiency</td>
</tr>
<tr>
<td>Pathologic features</td>
<td>Fetal or embryonal cells; mesenchymal component (30%)</td>
<td>Large pleomorphic tumor cells and tumor giant cells</td>
</tr>
<tr>
<td>Solitary hepatic lesion</td>
<td>80%</td>
<td>20%-50%</td>
</tr>
<tr>
<td>Unique features at diagnosis</td>
<td>Osteopenia (20%-30%), isosexual precocity (3%)</td>
<td>Hemoperitoneum, polycythemia</td>
</tr>
<tr>
<td>Laboratory features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperbilirubinemia</td>
<td>5%</td>
<td>25%</td>
</tr>
<tr>
<td>Elevated AFP</td>
<td>&gt; 90%</td>
<td>50%</td>
</tr>
<tr>
<td>Abnormal liver function tests</td>
<td>15%-30%</td>
<td>&gt; 30%-50%</td>
</tr>
</tbody>
</table>

AFP, α-fetoprotein.


**LANGERHANS CELL HISTIOCYTOSIS**

**General Considerations**

Langerhans cell histiocytosis (LCH; formerly called histiocytosis X) is a rare and poorly understood spectrum of disorders. It can occur as an isolated lesion or as widespread systemic disease involving virtually any body site. Eosinophilic granuloma, Hand-Schüller-Christian disease, and Letterer-Siwe disease are all syndromes encompassed by this disorder. LCH is not a true malignancy, but instead is a clonal, reactive proliferation of normal histiocytic cells, perhaps resulting from an immunoregulatory defect. The distinctive pathologic feature is proliferation of histiocytic cells beyond what would be seen in a normal inflammatory process. Langerhans histiocytes have typical
features: on light microscopy, the nuclei are deeply indented (coffee bean–shaped) and elongated, and the cytoplasm is pale, distinct, and abundant. Additional diagnostic characteristics include Birbeck granules on electron microscopy, expression of CD1 on the cell surface, and positive immunostaining for S-100 protein.

**Clinical Findings**

Because LCH encompasses a broad spectrum of diseases; its presentation can be variable, from a single asymptomatic lesion to widely disseminated disease.

Patients with localized disease present primarily with lesions limited to bone. Occasionally found incidentally on radiographs obtained for other reasons, these lesions are well-demarcated and frequently found in the skull, clavicles, ribs, and vertebrae. These lesions can be painful. Patients can also present with localized disease of the skin, often as a diaper rash that does not resolve.

Bony lesions, fever, weight loss, otitis media, exophthalmos, and diabetes insipidus occur in a small number of children with the disease. Children with this multifocal disease, formerly called Hand-Schüller-Christian disease, commonly present with generalized symptoms and organ dysfunction.

Children with disseminated LCH (formerly called Letterer-Siwe disease) typically present before age 2 years with a seborrheic skin rash, fever, weight loss, lymphadenopathy, hepatosplenomegaly, and hematologic abnormalities.

Diagnosis is made with biopsy of the involved organ. The workup should include a CBC, liver and kidney function tests, a skeletal survey or technetium bone scan, and a urinalysis with specific gravity to rule out diabetes insipidus.

**Treatment & Prognosis**

The outcome in LCH is extremely variable, but the process usually resolves spontaneously. Isolated lesions may need no therapy at all. Intralesional corticosteroids, curettage, and low-dose radiation therapy are useful local treatment measures for symptomatic focal lesions. Patients with localized disease have an excellent prognosis.

Multifocal disease is often treated with systemic chemotherapy. Prednisone and vinblastine are used for multifocal disease or disease involving other organs such as liver, spleen, hematopoietic system. The agents are given repeatedly or continuously until lesions heal; the drugs can then be reduced and finally stopped. A common therapeutic protocol for LCH is LCH III. Other active chemotherapeutic agents include 6-mercaptopurine, methotrexate, and etoposide. HSCT can also be used with success in refractory cases.

Multifocal disease is less predictable, but most cases resolve without sequelae. Age, degree of organ involvement, and response to therapy are the most important prognostic factors. Infants with disseminated disease tend to do poorly, with mortality rates approaching 50%. New treatment approaches for patients who do not respond to conventional chemotherapy have been evaluated in small studies. 2-Chlorodeoxyadenosine (2-CDA) has been used with some success. Therapeutic strategies targeting the dysregulated immune response using interferon-α or etanercept (anti–tumor necrosis factor-α) have also been reported.


**HEMATOPOIETIC STEM CELL TRANSPLANT**

**GENERAL CONSIDERATIONS**

Hematopoietic stem cell transplant (HSCT) is considered standard therapy for a variety of malignancies, hematopoietic disorders (aplastic anemia, hemoglobinopathies), storage diseases, and severe immunodeficiencies. In most instances, high doses of chemotherapy and/or radiation are given to the HSCT patient for myeloablation prior to infusion of stem cells that rescue marrow function. HSCT can be divided into two main categories: autologous, infusion of the patient’s own hematopoietic stem cells, or allogeneic, infusion of another individual’s (donor) hematopoietic stem cells. Stem cells can be obtained from bone marrow, peripheral blood, or umbilical cord blood.

The rationale for HSCT in patients with nonmalignant disorders is to use the transplanted donor stem cells to replace the absent or defective hematopoietic or lymphoid elements of the recipient. For children with oncologic disorders, the rationale for HSCT is multifaceted. High doses of chemotherapy and/or radiation are used to optimize tumor cell kill by overcoming cancer cell resistance. Additionally, in allogeneic HSCT (stem cells from another person), the donor lymphoid cells may recognize the cancer as foreign and provide an immunologic attack on the malignancy, a concept known as the graft-versus-tumor (GVT) effect.

Autologous transplantation, often referred to as “stem cell rescue,” is restricted to the treatment of certain pediatric...
malignancies: neuroblastoma, lymphoma, selected brain tumors, germ cell tumors, and Ewing sarcoma. Relapse of the malignancy continues to be the greatest obstacle to successful autologous transplantation, likely due to limitations in achieving systemic cancer control prior to transplant, resistance to pretreatment chemotherapy and/or radiation, and lack of GVT effect.

Allogeneic transplantation rescues hematopoiesis with stem cells from another person, either within the immediate family or an unrelated individual from a volunteer bank. Allogeneic HSCT patients require therapy to provide sufficient immunosuppression to prevent rejection of donor cells. Posttransplant medications such as cyclosporine, tacrolimus, mycophenolate, and methotrexate are needed to reduce the risk of graft-versus-host disease (GVHD). The selection of a suitable donor who matches the recipient most closely at the HLA (Human Leukocyte Antigen) loci, HLA-A, B, C, and DR, is critical, as these mediate graft rejection and GVHD. Each child expresses one set of paternal and one set of maternal HLA antigens. Thus, the probability of one child inheriting any specific combination and matching another sibling for an allogeneic transplant is one in four. Large worldwide registries of unrelated bone marrow and umbilical cord blood donors have been developed; however, finding a closely matched unrelated donor can be challenging, especially for underrepresented minorities.

Supportive care in the initial weeks after transplant includes management of chemotherapy side effects, prevention and treatment of infection, nutritional support, and immunosuppressive medications to lessen the potential for development of GVHD in allogeneic HSCT recipients. Until their new donor cells engraft, patients will also require blood product support for several weeks following preparative therapy. These blood products should be leukocyte reduced to decrease the risk of CMV transmission and irradiated to prevent GVHD from residual lymphocytes that remain even in leukocyte reduced blood products.

**HSCT COMPLICATIONS**

HSCT patients are profoundly immunocompromised for many months following transplantation and infections from bacteria, viruses, fungi, and protozoa account for significant morbidity and mortality. During the early phase (0–1 month after transplant), when there is profound neutropenia and mucosal disruption, bacteria from the patient’s aerodigestive tract are common culprits in bacteremia. Additionally, the presence of a central venous catheter makes gram-positive bacteria an important consideration. Therefore, empiric prophylactic antibiotic coverage and intravenous immune globulin supplementation are used to decrease the risk of bacterial sepsis. Acyclovir prophylaxis is used to prevent the reactivation of herpes simplex virus that may occur early in up to 70% of seropositive patients, while antifungal agents are routinely used to prevent infections from *Candida* and *Aspergillus* (Figure 31–1).

In the intermediate phase (1–6 months after transplant), the HSCT patient usually has adequate neutrophil counts yet remains significantly compromised due to reduced T-lymphocyte cell number and function. Because of this relative T-cell defect a child after transplant is susceptible to sudden, overwhelming illness from viral pathogens. CMV reactivation or new infection is relatively common and can result in retinitis, enteritis, and pneumonia. Treatment with foscarnet or ganciclovir is usually successful if CMV infection is recognized early particularly when preventive or preemptive approaches to control viremia are used. Common community acquired viruses, such as respiratory syncytial virus, adenovirus, influenza, parainfluenza, and human metapneumovirus can also be life-threatening therefore prevention is critical. The use of frequent hand washing, contact restriction, and early treatment with available antiviral therapies, such as inhaled ribavirin, can be lifesaving in this population. Prophylactic administration of acyclovir helps limit reactivation of herpes simplex virus and varicella-zoster virus (shingles). Trimethoprim-sulfamethoxazole, dapsone, or pentamidine prophylaxis reduces, but does not eliminate, *P jiroveci pneumonia*. The late phase (6–12 months after transplant) is characterized by dysfunction of the reticuloendothelial system, leading to infections from encapsulated bacteria such as pneumococcus, and ongoing inadequate lymphocyte function, resulting in poor control of viral infection and reactivation. Patients on immunosuppressive treatment for GVHD have an increased and protracted risk of all types of infections.

Graft versus host disease results when donor lymphocytes recognize the recipient tissues as foreign and mount an immunologic attack. Despite the use of immunosuppressive agents, anti-T-cell antibodies, and T-cell depletion of the donor graft, 20%–70% of allogeneic HSCT patients experience some degree of acute GVHD. Factors influencing GVHD risk include the degree of HLA match, stem cell source, patient age, and donor sex. Acute GVHD generally occurs within the first 100 days after transplant but on occasion, may occur later. Acute GVHD typically presents with a maculopapular skin rash, secretory diarrhea, and/or cholestatic jaundice. Chronic GVHD generally occurs after day 100 and may involve multiple organ systems. Sclerotic skin, malabsorption, weight loss, keratoconjunctivitis sicca, oral mucositis, chronic lung disease, and cholestatic jaundice are common manifestations. Treatment for GVHD consists of further use of immunosuppressive agents.

Long-term follow-up of HSCT patients is essential. Patients are at risk for numerous complications, including pulmonary disease, cataracts, endocrine dysfunction affecting growth and fertility, cardiac dysfunction, avascular necrosis of bone, developmental delay, and secondary malignancies. Although HSCT has many challenges, it represents an important advance in curative treatment for a variety of serious pediatric illnesses.
Late effects of treatment by surgery, radiation, and chemotherapy have been identified in survivors of pediatric cancer. Current estimates are that 1 in every 640 adults between the ages of 20 and 39 years is a pediatric cancer survivor. One recent study found that 60% of survivors of pediatric cancer diagnosed between 1970 and 1986 have at least one chronic condition. Virtually any organ system can demonstrate sequelae related to previous cancer therapy. This has necessitated the creation of specialized oncology clinics whose function is to identify and provide treatment to these patients.

The Childhood Cancer Survivor Study, a pediatric multi-institutional collaborative project, was designed to investigate the various aspects of late effects of pediatric cancer therapy in a cohort of over 13,000 survivors of childhood cancer.
GROWTH COMPLICATIONS

Children who have received cranial irradiation are at highest risk of developing growth complications. Growth complications of cancer therapy in the pediatric survivor are generally secondary to direct damage to the pituitary gland, resulting in growth hormone deficiency. However, new evidence in children treated for ALL suggests that chemotherapy alone may result in an attenuation of linear growth without evidence of catch-up growth once therapy is discontinued. Up to 90% of patients who receive more than 30 Gy of radiation to the CNS will show evidence of growth hormone deficiency within 2 years. Approximately 50% of children receiving 24 Gy will have growth hormone problems. The effects of cranial irradiation appear to be age-related, with children younger than age 5 years at the time of therapy being particularly vulnerable. These patients usually benefit from growth hormone therapy. Currently, there is no evidence that such therapy causes a recurrence of cancer.

Spinal irradiation inhibits vertebral body growth. In 30% of treated children, standing heights may be less than the fifth percentile. Asymmetrical exposure of the spine to radiation may result in scoliosis.

Growth should be monitored closely, particularly in young survivors of childhood cancer. Obesity may become an issue for selected survivors who are young at diagnosis and have received whole brain radiation. Follow-up studies should include height, weight, growth velocity, scoliosis examination, and, when indicated, growth hormone testing.

ENDOCRINE COMPLICATIONS

Thyroid dysfunction, manifesting as hypothyroidism, is common in children who received total body irradiation, cranial irradiation, or local radiation therapy to the neck and/or mediastinum. Particularly at risk are children with brain tumors who received more than 3000 cGy and those who received more than 4000 cGy to the neck region. The average time to develop thyroid dysfunction is 12 months after exposure, but the range is wide. Therefore, individuals at risk should be monitored yearly for at least 7 years from the completion of therapy. Although signs and symptoms of hypothyroidism may be present, most patients will have a normal thyroxine level with an elevated thyroid-stimulating hormone level. These individuals should be given thyroid hormone replacement because persistent stimulation of the thyroid from an elevated thyroid-stimulating hormone level may predispose to thyroid nodules and carcinomas. In a recent report from the Childhood Cancer Survivor Study, thyroid cancer occurred at 18 times the expected rate for the general population in pediatric cancer survivors who received radiation to the neck region. Hyperthyroidism, although rare, also occurs in patients who have received neck irradiation.

Precocious puberty, delayed puberty, and infertility are all potential consequences of cancer therapy. Precocious puberty, more common in girls, is usually a result of cranial irradiation causing premature activation of the hypothalamic-pituitary axis. This results in premature closure of the epiphysis and decreased adult height. Luteinizing hormone analogue and growth hormone are used to halt early puberty and facilitate continued growth.

Gonadal dysfunction in males is usually the result of radiation to the testes. Patients who receive testicular irradiation as part of their therapy for ALL, abdominal irradiation for Hodgkin disease, or total body irradiation for HSCT are at highest risk. Radiation damages both the germinal epithelium (producing azoospermia) and Leydig cells (causing low testosterone levels and delayed puberty). Alkylation agents such as ifosfamide and cyclophosphamide can also interfere with male gonadal function, resulting in oligospermia or azoospermia, low testosterone levels, and abnormal follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels. Determination of testicular size, semen analysis, and measurement of testosterone, FSH, and LH levels will help identify abnormalities in patients at risk. When therapy is expected to result in gonadal dysfunction, pretherapy sperm banking should be offered to adolescent males.

Exposure of the ovaries to abdominal radiation may result in delayed puberty with a resultant increase in FSH and LH and a decrease in estrogen. Girls receiving total body irradiation as preparation for HSCT and those receiving craniospinal irradiation are at particularly high risk for delayed puberty as well as premature menopause. In patients at high risk for development of gonadal complications, a detailed menstrual history should be obtained, and LH, FSH, and estrogen levels should be monitored if indicated.

No studies to date have confirmed an increased risk of spontaneous abortions, stillbirths, premature births, congenital malformations, or genetic diseases in the offspring of childhood cancer survivors. Women who have received abdominal irradiation may develop uterine vascular insufficiency or fibrosis of the abdominal and pelvic musculature or uterus, and their pregnancies should be considered high risk.

CARDIOPULMONARY COMPLICATIONS

Pulmonary dysfunction generally manifests as pulmonary fibrosis. Therapy-related factors known to cause pulmonary toxicities include certain chemotherapeutic agents, such as bleomycin, the nitrosoureas, and busulfan, as well as lung or total body irradiation. Pulmonary toxicity due to chemotherapy is related to the total cumulative dose received. Pulmonary function tests in patients with therapy-induced toxicity show restrictive lung disease, with decreased carbon monoxide diffusion and small lung volumes. Individuals exposed to these risk factors should be counseled to refrain...
from smoking and to give proper notification of the treatment history if they should require general anesthesia.

Cardiac complications usually result from exposure to anthracyclines (daunorubicin, doxorubicin, and mitoxantrone), which destroy myocytes and lead to inadequate myocardial growth as the child ages, and eventually result in congestive heart failure. The incidence of anthracycline cardiomyopathy increases in a dose-dependent fashion. A recent report indicates that survivors receiving cumulative doses larger than 360 mg/m$^2$ were more than 40 times more likely to die of cardiac disease. In a recent study, complications from these agents appeared 6–19 years following administration of the drugs. Pregnant women who have received anthracyclines should be followed closely for signs and symptoms of congestive heart failure, as peripartum cardiomyopathy has been reported.

Radiation therapy to the mediastinal region, which is a common component of therapy for Hodgkin disease, has been linked to an increased risk of coronary artery disease; chronic restrictive pericarditis may also occur in these patients.

Current recommendations include an echocardiogram and electrocardiogram every 1–5 years, depending on the age at therapy, total cumulative dose received, and presence or absence of mediastinal irradiation. Selective monitoring with various modalities is indicated for those who were treated with anthracyclines when they were younger than age 4 years or received more than 500 mg/m$^2$ of these drugs. Biomarkers such as cardiac troponins and brain natriuretic peptides may be useful in assessing cardiotoxicity of anthracyclines.

**RENAL COMPLICATIONS**

Long-term renal side effects stem from therapy with cisplatin, alkylating agents (ifosfamide and cyclophosphamide), or pelvic irradiation. Patients who have received cisplatin may develop abnormal creatinine clearance, which may or may not be accompanied by abnormal serum creatinine levels, as well as persistent tubular dysfunction with hypomagnesemia. Alkylating agents can cause hemorrhagic cystitis, which may continue after chemotherapy has been terminated and has been associated with the development of bladder carcinoma. Ifosfamide can also cause Fanconi syndrome, which may result in clinical rickets if adequate phosphate replacement is not provided. Pelvic irradiation may result in abnormal bladder function with dribbling, frequency, and enuresis.

Patients seen in long-term follow-up who have received nephrotoxic agents should be monitored with urinalysis, appropriate electrolyte profiles, and blood pressure. Urine collection for creatinine clearance or renal ultrasound may be indicated in individuals with suspected renal toxicity.

**NEUROPSYCHOLOGICAL COMPLICATIONS**

Pediatric cancer survivors who have received cranial irradiation for ALL or brain tumors appear to be at greatest risk for neuropsychological sequelae. The severity of cranial irradiation effects varies among individual patients and depends on the dose and dose schedule, the size and location of the radiation field, the amount of time elapsed after treatment, the child’s age at therapy, and the child’s gender. Girls may be more susceptible than boys to CNS toxicity because of more rapid brain growth and development during childhood.

Auditory complications can be seen in childhood cancer survivors exposed to platinum-based chemotherapy and/or temporal or posterior fossa radiation. Difficulty hearing sounds, tinnitus, or hearing loss requiring an aid have been reported.

The main effects of CNS irradiation appear to be related to attention capacities, ability with nonverbal tasks and mathematics, and short-term memory. Recent studies support the association between treatment with high-dose systemic methotrexate, triple intrathecal chemotherapy, and, more recently, dexamethasone and more significant cognitive impairment.

Additionally, pediatric cancer patients have been reported as having more behavior problems and as being less socially competent than a sibling control group. Adolescent survivors of cancer demonstrate an increased sense of physical fragility and vulnerability manifested as hypochondriasis or phobic behaviors.

A recent report from Childhood Cancer Survivor Study noted that when compared to population norms, childhood cancer survivors and siblings report positive psychological health, good health-related quality of life, and life satisfaction. There are, however, subgroups that could be targeted for intervention.

**SECOND MALIGNANCIES**

Approximately 3%–12% of children receiving cancer treatment will develop a new cancer within 20 years of their first diagnosis. This is a 10-fold increased incidence when compared with age-matched control subjects. Particular risk factors include exposure to alkylating agents, epipodophyllotoxins (etoposide), and radiation therapy, primary diagnosis of retinoblastoma or Hodgkin disease, or the presence of an inherited genetic susceptibility syndrome (Li-Fraumeni syndrome or NF). In a recent report, the cumulative estimated incidence of second malignant neoplasms for the cohort of the Childhood Cancer Survivor Study was 3.2% at 20 years from diagnosis.

Second hematopoietic malignancies (acute myelogenous leukemia) occur as a result of therapy with epipodophyllotoxins or alkylating agents. The schedule of drug
administration (etoposide) and the total dose may be related to the development of this secondary leukemia.

Children receiving radiation therapy are at risk for developing second malignancies, such as sarcomas, carcinomas, or brain tumors, in the field of radiation. A recent report examining the incidence of second neoplasms in a cohort of pediatric Hodgkin disease patients showed the cumulative risk of a second neoplasm to be as high as 8% at 15 years from diagnosis. The most common solid tumor was breast cancer (the majority located within the radiation field) followed by thyroid cancer. Girls aged 10–16 years when they received radiation therapy were at highest risk and had an actuarial incidence that approached 35% by age 40 years. Secondary gastrointestinal cancer is also increased in pediatric cancer survivors and is related to radiation exposure as well as to certain types of chemotherapeutic agents (procarbazine, platinums).


Children experience pain to at least the same level as adults. Multiple studies have shown that neonates and infants perceive pain and have memory of these painful experiences. Frequently, children are underprescribed and underdosed for opioid and nonopioid analgesics due to excessive concerns of respiratory depression and/or poor understanding of the need for pain medications in children. Few data are available to guide the dosing of many pain medications and the majority of pain medications available on the market today are unlabeled for use in pediatric patients.

Pain Management & Pediatric Palliative & End-of-Life Care

Brian S. Greffe, MD
Jeffrey L. Galinkin, MD, FAAP
Nancy A. King, MSN, RN, CPNP

ACUTE PAIN

Definition Etiology
Acute pain is caused by an identifiable source. In most cases, it is self-limiting and treatment is a reflection of severity and type of injury. In children, the majority of acute pain is caused by trauma or, if in a hospital setting, an iatrogenic source such as surgery.

Treatment
Treatment of acute pain is dependent on the disposition of the individual patient. For outpatient care the mainstay of treatment is nonsteroidal anti-inflammatory drugs (NSAIDs) (Table 32–3). Acetaminophen is the most commonly used NSAID. Acetaminophen is administered via the oral or rectal routes. Acetaminophen is more predictable in its effects as an oral dose. It has also been found that round-the-clock administration (oral 10–15 mg/kg, rectal 20 mg/kg) is better than PRN dosing for both minor pain or as an adjunct for major pain. The toxicity of acetaminophen is low in clinically used doses. However, the use of acetaminophen combined with many over-the-counter and prescription combination products has been a frequent cause of toxicity. Liver damage or failure can occur with doses exceeding 200 mg/kg/d. Other oral analgesics available in suspension are ibuprofen (10–15 mg/kg) and naproxen (10–20 mg/kg).
When pain is more severe, oral opioids can be added for short-term use (Table 32–4). Many of these opioids come formulated with an NSAID, that is, oxycodone/acetaminophen (Percocet) and hydrocodone/acetaminophen (Lortab). When using these combination drugs, the dose of drug is based on the opioid component. Other concomitantly administered similar NSAIDs should be discontinued. The most commonly used oral opioids are oxycodone, hydrocodone, and codeine. The use of codeine is least recommended due to its metabolism. Codeine is metabolized to morphine via the cytochrome P-450 2D4 isoenzyme. From 1% to 10% people (Asians 1%–2%, African Americans 1%–3%, Caucasians 5%–10%) are poor metabolizers as a result of a genetic polymorphism. Thus, patients with this
Table 32–2. FLACC pain assessment tool.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Score 0</th>
<th>Score 1</th>
<th>Score 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>No particular expression or smile</td>
<td>Occasional grimace or frown, withdrawn,</td>
<td>Frequent to constant frown, clenched jaw,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disinterested</td>
<td>quivering chin</td>
</tr>
<tr>
<td>Legs</td>
<td>Normal position or relaxed</td>
<td>Uneasy, restless, tense</td>
<td>Kicking, or legs drawn up</td>
</tr>
<tr>
<td>Activity</td>
<td>Lying quietly, normal position, moves easily</td>
<td>Squirming, shifting back and forth, tense</td>
<td>Arched, rigid, or jerking</td>
</tr>
<tr>
<td>Cry</td>
<td>No cry (awake or asleep)</td>
<td>Moans or whimpers, occasional complaint</td>
<td>Crying steadily, screams or sobs, frequent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>complaints</td>
</tr>
<tr>
<td>Consolability</td>
<td>Content, relaxed</td>
<td>Reassured by occasional touching, hugging,</td>
<td>Difficult to console or comfort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or being talked to, distractible</td>
<td></td>
</tr>
</tbody>
</table>

Table 32–3. Suggested doses for nonopioid analgesics.

<table>
<thead>
<tr>
<th>Route</th>
<th>Dosage Guidelines</th>
<th>Half-life</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>10-15 mg/kg/dose every 4-6 h, maximum dose 4000 mg/d</td>
<td>Neonates: 2-5 h Adults: 2-3 h</td>
<td>4 h</td>
</tr>
<tr>
<td></td>
<td>40 mg/kg loading dose, followed by 10-20 mg/kg/dose every 6 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>4-10 mg/kg/dose every 6-8 h, maximum dose 40 mg/kg/d, no greater than 2400 mg/d</td>
<td>Children 1-7 y: 1-2 h Adults: 2-4 h</td>
<td>6-8 h</td>
</tr>
<tr>
<td></td>
<td>0.5 mg/kg/dose every 6 h, maximum of 30 mg/dose, maximum course of 8 doses</td>
<td>Children: ~ 6 h Adults: ~ 5 h</td>
<td>4-6 h</td>
</tr>
</tbody>
</table>

Whenever PCA is used, it is imperative to assess patients frequently (at least hourly) to ensure adequate pain relief.


**CHRONIC PAIN MANAGEMENT**

**Assessment**

Chronic pain is a pain that persists past the usual course of an acute illness or beyond the time that is expected for an acute injury. In children this is an increasingly recognized problem. It is estimated that chronic pain may affect as much as 10%–15% of the population. The most common problems include headache, chronic abdominal pain, myofascial pain, fibromyalgia, juvenile rheumatoid arthritis, complex regional pain syndrome, phantom limb pain, and pain associated with cancer. Chronic pain in children...
Table 32-4. Suggested doses of oral and intravenous opioids in infants and children.

<table>
<thead>
<tr>
<th>Opioid Drug</th>
<th>Route</th>
<th>Dosage Guidelines</th>
<th>Onset</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fentanyl</td>
<td>IV intermittent</td>
<td>0.5-1 mcg/kg/dose (best for intermittent short duration analgesia; titrate to effect)</td>
<td>1-3 min</td>
<td>30-60 min</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>IV</td>
<td>Children: 0.015 mg/kg/dose every 3-6 h Adolescents: 1-4 mg every 3-6 h</td>
<td>15 min</td>
<td>4-5 h</td>
</tr>
<tr>
<td>Methadone</td>
<td>IV</td>
<td>0.1 mg/kg/dose every 4 h for 2-3 doses, then every 6-12 h</td>
<td>10-20 min</td>
<td>6-8 h (22-48 h after repeated doses)</td>
</tr>
<tr>
<td>Morphine</td>
<td>IV intermittent</td>
<td>0.05-0.1 mg/kg/dose every 2-4 h</td>
<td>Neonates: 7-8 h 1-3 mo: 6 h 6 mo-2.5 y: 3 h 3-19 y: 1-2 h Adults: 2-4 h</td>
<td>2-4 h</td>
</tr>
<tr>
<td>Codeine</td>
<td>PO</td>
<td>0.5-1 mg/kg/dose every 4-6 h, maximum of 60 mg/dose</td>
<td>30-60 min</td>
<td>4-6 h</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>PO</td>
<td>Children: 0.03-0.1 mg/kg/dose every 4-6 h Adolescents: 1-4 mg every 3-4 h</td>
<td>15-30 min</td>
<td>4-5 h</td>
</tr>
<tr>
<td>Hydrocodone (in Vicodin, Lortab elixir)</td>
<td>PO</td>
<td>Children: 0.15-0.2 mg/kg/dose every 4-6 h Adolescents: 1-2 tabs every 4-6 h (limited due to acetaminophen content; see acetaminophen recommendations in text)</td>
<td>10-20 min</td>
<td>3-6 h</td>
</tr>
<tr>
<td>Methadone</td>
<td>PO-IR PO-ER</td>
<td>0.1 mg/kg/dose every 4-6 h for 2-3 doses, then every 6-12 h</td>
<td>30-60 min</td>
<td>6-8 h (22-48 h after repeated doses)</td>
</tr>
<tr>
<td>Morphine</td>
<td>PO-IR PO-ER</td>
<td>0.2-0.5 mg/kg/dose every 4-6 h 0.3-0.6 mg/kg/dose every 12 h</td>
<td>15-60 min</td>
<td>3-5 h 8-12 h</td>
</tr>
</tbody>
</table>


often has multiple other contributing factors, including psychological issues, psychosocial factors, sociologic factors, and family dynamics. Associating pain with a single physical cause can lead the physician to investigate the patient with repeated invasive testing, laboratory tests, and procedures and to overprescribe medications. A multidimensional assessment to chronic pain is optimal and often required.


Table 32-5. PCA dosing recommendations.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Morphine</th>
<th>Fentanyl</th>
<th>Hydromorphone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mg/mL</td>
<td>10 mcg/mL</td>
<td>0.1 mg/mL or 1 mg/mL</td>
<td></td>
</tr>
<tr>
<td>Initial dose</td>
<td>15-20 mcg/kg (max 1.5 mg)</td>
<td>0.25 mcg/kg</td>
<td>3-4 mcg/kg (max 0.3 mg)</td>
</tr>
<tr>
<td>Lockout time</td>
<td>8-10 min</td>
<td>8-10 min</td>
<td>8-10 min</td>
</tr>
<tr>
<td>Basal infusion</td>
<td>0-20 mcg/kg/h</td>
<td>0-1 mcg/kg/h</td>
<td>0-4 mcg/kg/h</td>
</tr>
<tr>
<td>Maximum starting dose (for nonopioid tolerant patients)</td>
<td>100 mcg/kg/h</td>
<td>1-2 mcg/kg/h</td>
<td>20 mcg/kg/h</td>
</tr>
</tbody>
</table>
Treatment

When possible, a multidisciplinary team approach is standard of care for treating chronic pain in children. All children evaluated for chronic pain should be seen on their initial visit by all primary members of the team to establish a management strategy. Team members should include a pain physician, a pediatric psychologist and/or a psychiatrist, occupational and physical therapists (OT/PT), advanced pain nurses (APNs), and a social worker. The majority of pediatric chronic pain management programs in the United States base their approach on combined intensive rehabilitation and intensive psychotherapy relying minimally on invasive procedures and pharmacotherapy.

A. Tolerance, Dependence, and Addiction

Physiologic and psychological responses to opioids are similar between adults and children. A consensus paper by the American Academy of Pain Medicine, American Pain Society, and American Society of Addiction Medicine defined important differences between normal and pathologic responses to opioids. The definitions of tolerance dependence and addiction are listed below.

1. Tolerance—A state of adaptation in which exposure to a drug induces changes that result in a diminution of one or more of the drug’s effects over time. Tolerance develops at different rates for different opioid effects, that is, tolerance to sleepiness and respiratory depression occurs earlier than that to constipation and analgesia.

2. Dependence—A state of adaptation that is manifested by a drug class-specific withdrawal syndrome that can be produced by abrupt cessation, rapid dose reduction, decreasing blood level of the drug, and/or administration of an antagonist.

3. Addiction—A primary, chronic, neurobiologic disease, with genetic, psychosocial, and environmental factors influencing its development and manifestations. It is characterized by behaviors that include one or more of the following:
   • Loss of Control over use of drug
   • Craving and Compulsive use of drug
   • Use despite adverse Consequences

Addiction is rare when opioids are used appropriately for acute pain on both inpatient and outpatient settings. It should be emphasized that tolerance and dependence do not equal addiction.


B. Withdrawal

1. Recognition—Withdrawal symptoms can be expected to occur for all patients after 1 week of opioid treatment. Signs of withdrawal in older children include agitation, irritability, dysphoria, tachycardia, tachypnea, nasal congestion, temperature instability, and feeding intolerance. In neonates with withdrawal (neonatal abstinence syndrome), common symptoms include neurologic excitability, gastrointestinal dysfunction, autonomic signs (increased sweating, nasal stuffiness, fever, mottling, poor weight gain), and skin excoriation secondary to excessive rubbing.

2. Treatment
   • Make a schedule/plan in conjunction with patient and family.
   • Factor in duration of time on opioid.
   • Consider switching to once-a-day opioid (see methadone dosing in Table 32–4).
   • Decrease the dose by 10%–25% every 1–2 days.
   • Look for signs of withdrawal.
   • Consider adding lorazepam 0.05–0.1 mg/kg every 6–8 hours.
   • Consider adding clonidine patch 0.1 mg/d (changed every fifth day).


PEDIATRIC PALLIATIVE & END-OF-LIFE CARE

INTRODUCTION

It has been estimated that almost 55,000 children die each year in the United States. At least 50% of these children die during the newborn period or within the first year of life. Many of these children, particularly those older than 1 year of age, suffer from illnesses that are clearly life-limiting. Thousands more children are diagnosed with life-limiting illnesses, resulting in a chronic condition that may last for many years, even decades. Furthermore, children who are diagnosed with life-threatening illnesses may be curable, such as cancer, continue to live with the potential of a recurrence of their malignancy for many years. The above populations are those where palliative and end-of-life care could play an important role during the illness of these patients.

Although commonly used interchangeably, palliative care and end-of-life care are not synonymous terms.
Palliative care aims to prevent, relieve, reduce, or soothe the symptoms produced by potential life-limiting illnesses or their treatments and to maintain the patient’s quality of life along the entire continuum of treatment. Provision of palliative care does not imply imminent death nor does it prohibit aggressive curative treatment modalities. Rather, it acknowledges the uncertainty and potential for suffering inherent in a potentially life-limiting condition such as cancer. Understanding how a family defines quality of life and suffering for their child is imperative and provides a framework for decision making between care provider and the family throughout treatment.

While a child is doing well with treatment, the primary focus will be on achieving cure or stabilization of the disease. Palliative care goals at this time focus on promoting quality of life in preparation for survivorship in the face of a potentially life-limiting illness. Some of these goals include helping a family come to terms with the diagnosis, addressing issues of treatment-related pain and distress, facilitating reintegration into the social realms of school and community, and promoting as much normalcy in the child’s life as possible. When it becomes clear that the chances for cure are poor or present an unreasonable cost to the child’s quality of life, the goals of palliative care will shift toward end-of-life care. The focus will still be on promoting quality of life but now in preparation for a comfortable and dignified end of life with increasingly less attention given to the treatment or cure of the disease itself.

When initiating a palliative or end of life care discussion with a patient and family it is important to keep in mind some useful guidelines such as choice of a quiet setting, avoidance of interruptions, assessment of family’s and patient’s perception of the situation, giving useful information to the patient and family, addressing emotional responses, and planning for next steps.

Palliative care not only comprises support in the pain and symptom management of the disease but also addresses equally the psychosocial, emotional, and spiritual needs of the patient with a potential life-limiting illness and their family.

**CHILDREN WHO MAY BENEFIT FROM PALLIATIVE CARE INTERVENTIONS**

In a recent review by Himelstein et al, conditions that are appropriate for palliative care were divided into four groups as follows:

1. **Conditions for which curative treatment is possible but may fail such as advanced or progressive cancer and complex and severe congenital or acquired heart disease**

2. **Conditions requiring intensive long-term treatment aimed at maintaining the quality of life such as HIV/AIDS, cystic fibrosis, and muscular dystrophy**

3. **Progressive conditions in which treatment is exclusively palliative after diagnosis such as progressive metabolic disorders and certain chromosomal abnormalities**

4. **Conditions involving severe, nonprogressive disability, causing extreme vulnerability to health complications such as severe cerebral palsy and anoxic brain injury**

The United States Congress mandated in 2010 that palliative care will be covered concurrently with curative therapies for children with terminal conditions who are receiving Medicaid. Based on the *Patient Protection and Affordable Care Act*, a voluntary election to receive hospice care for a child does not constitute a waiver of any rights of the child to be provided with, or to have payments made for services that are related to the treatment of the child’s condition. This significant milestone in pediatric palliative care should open the door to concurrent care being covered by private insurance companies in the future.

**PAIN MANAGEMENT IN PEDIATRIC PALLIATIVE CARE**

Optimal pain management is critical when providing pediatric palliative care. (See the section on pain management earlier, for definitions and guidelines for treatment.) As end of life approaches, dosing of comfort medications may eventually exceed normally prescribed doses. The goal at all times must be to achieve and maintain comfort. When pain management at the end of life is provided with this goal at the forefront and in concert with careful ongoing assessment and documentation of the child’s symptoms, there should be no reason to fear that this action is tantamount to euthanasia which is a conscious action intended to hasten death.

**QUALITY-OF-LIFE ADJUNCTS & SYMPTOM MANAGEMENT IN PÉDIA TRIC PALLIATIVE CARE**

When offering treatment to children with a life-limiting illness particularly at the end of life, certain nonpain symptoms and signs may develop more quickly in children when compared to the adult population. A thorough and complete history and physical examination should be obtained. It is critical to determine how much distress the symptom causes the child and how much it interferes with child and family’s routine when deciding upon treatment. Areas of management should include drug treatment, nursing care, and psychosocial support. Symptoms that commonly occur during disease progression and at the end of life in children with a life-limiting condition are listed in Table 32–6, with suggestions for management.

**Complementary & Alternative Modalities**

It is not unusual for families seek complementary or alternative modalities (CAM) for their child when mainstream
As children approach end of life, many families opt to try some form of CAM. The most common modalities reported in pediatrics are prayer/meditation, relaxation techniques, massage, chiropractic care including acupuncture, and nutritional supplements. The use of CAM in children is influenced primarily by parental use and acceptance of CAM. Culturally accepted beliefs and practices also play an important role. In Asia, the use of meditation and prayer as a method to control pain is well supported by the medical community. In Europe, the use of homeopathic remedies is commonplace.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Etiology</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea and vomiting</td>
<td>Chemotherapy, narcotics, metabolic</td>
<td>Diphenhydramine, hydroxyzine, 5-HT₃ inhibitors, prokinetic agents for GI motility</td>
</tr>
<tr>
<td>Anorexia</td>
<td>Cancer, pain, abnormal taste, GI alterations, metabolic changes, drugs,</td>
<td>Treat underlying condition, exercise, dietary consultation, appetite stimulants (dronabinol,</td>
</tr>
<tr>
<td></td>
<td>psychological factors</td>
<td>megestrol, steroid</td>
</tr>
<tr>
<td>Constipation/diarrhea</td>
<td>Narcotics, chemotherapy, malabsorption, drug related</td>
<td>Laxatives (must be initiated whenever starting narcotics), loperamide for diarrhea, peripheral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opioid agonists (methylaltrexone, alvimopan)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>Airway obstruction; decrease in functional lung tissue due to effusion,</td>
<td>Treatment of specific cause (surgery to alleviate obstruction, red blood cell transfusion,</td>
</tr>
<tr>
<td></td>
<td>infection, metastases; impaired chest wall movement; anemia</td>
<td>chemotherapy/radiation therapy for metastatic disease, nonpharmacologic management (reassurance,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>position of comfort, improvement of air circulation using electric fan, oxygen, and relaxation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>therapy), pharmacologic management with opioids given IV/SQ as continuous infusion, nebulized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>morphine in older patients, concomitant use of anxiolytics (lorazepam, midazolam) if agitation</td>
</tr>
<tr>
<td>Terminal respiratory</td>
<td>Airway/oral secretions at the end of life, resulting in rattiing, noisy,</td>
<td>Repositioning, anticholinergics such as hyoscine IV/SQ/PO or transdermal scopolamine</td>
</tr>
<tr>
<td>congestion</td>
<td>gurgling breath sounds</td>
<td></td>
</tr>
<tr>
<td>Pressure sores</td>
<td>Direct tissue damage, tissue fragility, immobility, diminished response</td>
<td>Prevention (avoidance of trauma, relieve pressure, good hygiene), treatment with local hygiene,</td>
</tr>
<tr>
<td></td>
<td>to pain or irritation</td>
<td>debridement, use of appropriate wound dressings, antibiotics, analgesics</td>
</tr>
<tr>
<td>Bone pain</td>
<td>Bony metastases, leukemic infiltration of bone marrow</td>
<td>Palliative radiation, bone-seeking isotopes, bisphosphonates, chemotherapy, analgesics</td>
</tr>
<tr>
<td>Agitation</td>
<td>Present in conjunction with pain, dyspnea, terminal phase of illness</td>
<td>Benzodiazepines (midazolam), barbiturates to achieve complete sedation in terminal restlessness</td>
</tr>
<tr>
<td>Urticaria, postherpetic</td>
<td>Urticaria, postherpetic neuralgia, cholestasis, uremia, opioids</td>
<td>Antihistamines (cholestasis, uremia, opioids), 5-HT₃ receptor antagonists (cholestasis, opioids)</td>
</tr>
<tr>
<td>Hematologic</td>
<td>Marrow infiltration by malignant cells (leukemia)</td>
<td>Transfusions (red blood cells, platelets) to relieve symptoms, hemostatics (aminocaproic acid)</td>
</tr>
<tr>
<td></td>
<td>Coagulopathy</td>
<td>Dark bath towel (black, burgundy, or dark purple) to help absorb and camouflage blood</td>
</tr>
<tr>
<td>Intractable Pain</td>
<td>Bleeding from erosive or ulcerative processes Various</td>
<td>Chronic Pain Team consult; consideration palliative sedation in very selected cases</td>
</tr>
</tbody>
</table>
Studies of the effectiveness of CAM use in children have been small and the data is often conflicting. There is generally an acceptance for the lack of harm associated with mind–body techniques such as prayer, meditation, touch and sensory modalities, and relaxation. Acupuncture and acupressure are gaining more acceptance in the Western medical community and may be beneficial in some children for relief of pain, nausea, and other symptoms. Touch and sensory modalities such as massage, Healing Touch, and aromatherapy can induce a relaxation response in some children which can be very helpful. The use of supplements including botanicals and vitamins has been of more concern due to the lack of dosing information for pediatrics and the potential for serious drug interactions and toxicities. Treatments touted as alternative “cures” are likely not beneficial and can have very dangerous consequences. The cost of CAM, particularly botanicals and alternative medicine treatments, can be prohibitive and the cost is rarely covered by insurance. Hospice providers frequently incorporate relaxation and mind/body/spirit modalities into their programs.

It is important for the healthcare provider to ask parents and adolescents about CAM usage and to be open to discussion with the family about modalities they are using or may wish to consider. Parents consistently have reported in studies their desire to inform and discuss CAM with their healthcare provider, but may be reluctant to do so if they are unsure what response they will get from the provider. Providing families with clear information about the treatment they are considering or using and any contraindications is key. In some cases, recommendation of complementary techniques such as massage, mind/body modalities, and acupuncture/acupressure may be appropriate.

**PSYCHOSOCIAL ASPECTS OF PEDIATRIC PALLIATIVE CARE**

Pediatric palliative care is unique in that caregivers must be familiar with children’s normal emotional and spiritual development. Working with a child at his or her level of development through the use of both oral and expressive communication will allow the child to be more open with respect to hopes, dreams, and fears. A child’s understanding of death will depend also on his or her stage of development. Children understand death as a changed state by 3 years of age, universality by 5–6 years of age, and personal mortality by 8–9 years of age. Table 32–7 gives a broad overview of children’s concepts of death and offers some helpful interventions.

**CHILDREN’S CONCEPT OF DEATH**

As end of life approaches, psychosocial support is invaluable to the child and family. Children may need someone to talk to outside of the family unit who can respond to their questions and concerns openly and honestly. Parents may need guidance and support in initiating discussions with or responding to questions from their child about death and dying. Children and adolescents may have specific tasks they wish to complete before they die. Some want to have input into funeral and memorial service plans and disposition of their body. Parents often need support in making funeral arrangements, handling financial concerns, talking with siblings and other family members, and coping with their own grief.

It is important to recognize that grief is not an illness but a normal, multidimensional, unique, dynamic process presenting as pervasive distress due to a perceived loss. Once parents have accepted the reality of the loss of the child, they must then complete the other tasks of grief such as experiencing the pain of their loss and adjusting to an environment without their child in order to move on with their lives. Parents who lose a child are at high risk for complicated grief reactions such as absent grief, delayed grief, and prolonged or unresolved grief. Siblings are also at risk for complicated grief and require special attention.

**SPIRITUAL & CULTURAL SUPPORT**

Healthcare decisions are often intertwined with a family’s culture and belief system. Understanding the influences of a family’s beliefs and culture allows the practitioner to provide sensitive, appropriate care, particularly at the end of life. Interaction with members of the family’s faith and cultural communities can often be instrumental in helping both the care team and the community support of the family. Allowing for specific prayers, rituals, or other activities may help facilitate procedures and discussions.

Families who speak a foreign language probably suffer from inadequate support the most. Every effort should be made to find and utilize a qualified interpreter, particularly for any discussion that involves delivering difficult news or making critical decisions. Many times, the role of interpreter is imposed upon a bilingual family member or friend who may not understand medical terminology well enough to translate clearly or who may deliberately translate the information inaccurately in an attempt to protect the family.

**WITHDRAWAL OF MEDICAL LIFE SUPPORT**

Medical technology has enabled many children with serious health conditions to enjoy a good quality of life. When technological support no longer enables a child’s quality and enjoyment of life or there are no viable options to restore quality of life to the child, it may be appropriate to discontinue it. Feeding tubes, ventilators, dialysis, parenteral nutrition, and implanted cardiac pacemakers are examples of medical modalities that may need to be reevaluated when a child’s condition deteriorates or in the case of a catastrophic injury.
There are five circumstances in which withdrawal of medical support and technology can be considered in children (Tournay, 2000) (see the table below).

At these times, it will be necessary to have a gentle but frank and honest discussion with the family that includes listening to their understanding of the child’s situation and prognosis. Helping them identify and define what quality of life means to their child and to the family and what would be an intolerable life for the child is important. It is critical to present in a clear and understandable format the child’s medical condition, test results, and the treatments that have been tried, what the expectations are for the child’s ability to survive or function and interact with his environment, and why it is believed that current or additional interventions will be futile or induce further suffering. These discussions should be conducted with sensitivity and without need for an immediate answer from the parents. It often takes several such discussions for families to come to a decision that they themselves will be able to live with and families should not be rushed into decision making. The family may request

<table>
<thead>
<tr>
<th>Table 32-7. Children’s concepts of death.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age Group and Cognitive Development</strong></td>
</tr>
<tr>
<td><strong>Infancy: Sense of self is directly related to having needs met</strong></td>
</tr>
<tr>
<td>Cognitive Understanding of Death</td>
</tr>
<tr>
<td>Response to Stress</td>
</tr>
<tr>
<td>Helpful Interventions</td>
</tr>
<tr>
<td><strong>Toddler: Egocentric, concrete thinking; see objects and events in relationship to their usefulness to self</strong></td>
</tr>
<tr>
<td>Cognitive Understanding of Death</td>
</tr>
<tr>
<td>Response to Stress</td>
</tr>
<tr>
<td>Helpful Interventions</td>
</tr>
<tr>
<td><strong>Preschool: Beginning to understand concept of time but limited sense of time permanence, curious, still quite concrete in thinking</strong></td>
</tr>
<tr>
<td>Cognitive Understanding of Death</td>
</tr>
<tr>
<td>Response to Stress</td>
</tr>
<tr>
<td>Helpful Interventions</td>
</tr>
<tr>
<td><strong>School age: Beginning of ability to apply logic; accept points of view other than their own</strong></td>
</tr>
<tr>
<td>Cognitive Understanding of Death</td>
</tr>
<tr>
<td>Response to Stress</td>
</tr>
<tr>
<td>Helpful Interventions</td>
</tr>
<tr>
<td><strong>Preadolescence and adolescence: Gaining mastery over themselves as individuals by exploring their own moral, ethical, and spiritual beliefs; increased reliance on peers for emotional support and information</strong></td>
</tr>
<tr>
<td>Cognitive Understanding of Death</td>
</tr>
<tr>
<td>Response to Stress</td>
</tr>
<tr>
<td>Helpful Interventions</td>
</tr>
</tbody>
</table>
Considered decision makers are identified and included in care planning as a four-step process. First, those individuals known their wishes about what to do in case of serious or life-threatening problems. Himelstein et al describe advance care planning allows patients and families to make decisions about end-of-life care while they are still able to do so. This process involves discussing end-of-life wishes and preferences, documenting these decisions in an advance directive, and sharing these decisions with healthcare providers, family members, and others involved in the patient’s care.

**ADVANCE CARE PLANNING**

Advance care planning allows patients and families to make known their wishes about what to do in case of serious or life-threatening problems. Himelstein et al describe advance care planning as a four-step process. First, those individuals considered decision makers are identified and included in the process. Second, an assessment of the patient’s and family’s understanding of the illness and prognosis is made and the impending death is described in terms that the child and family can understand. Third, on the basis of their understanding of the illness and prognosis, the goals of care are determined regarding current and future intervention—curative, uncertain, or primarily focused on providing comfort. Finally, shared decisions about the current and future use or abandonment of life-sustaining techniques and aggressive medical interventions are made. In the event of a disagreement between parents or parents and patient regarding these techniques or interventions, it may be prudent to involve the hospital’s ethics committee in order to resolve these issues.

Some states permit parents to sign an advanced directive that asserts their decision not to have resuscitative attempts made in the event of a cardiac or respiratory arrest outside of the hospital. When an advanced directive is in place, emergency responders are not required to provide cardio-pulmonary resuscitation (CPR) if called to the scene. Some school districts will respect an advanced directive on school property, many will not. If a child with an advanced directive in place wishes to go to school, a discussion between the medical team and school officials should be arranged to determine the best plan should the child have a cardiac or respiratory arrest at school.

Parents and, occasionally, the child may bring up the possibility of donating organs or body tissues after death. Although the tissues that may be donated by a child may be limited in some instances by the type of disease (eg, cancer), some parents find immense comfort in knowing their child was able to benefit another. If the parents have not discussed donation with the physician by the time of death and donation is possible, the physician should offer the opportunity to the family.

Autopsy is another subject many physicians find difficult to approach with a family, but it is an important option to discuss. In cases of anticipated death from natural causes, autopsies are generally not mandatory; however, information obtained from an autopsy may be useful for parental peace of mind or medical research. If death at home is to be followed by an autopsy, special arrangements for transporting and receiving the body will need to be made with the mortuary or the coroner.

**REFERENCES**


Web Resources

Education on Palliative and End of Life Care (EPEC; adult focused): www.epec.net.
End of Life Nursing Education Consortium (ELNEC) http://www.aacn.nche.edu/elnec.
Initiative for Pediatric Palliative Care (IPPC): www.ippcweb.org.
National Hospice and Palliative Care Organization (NHPCO)—Children’s Project on Palliative/Hospice Services (ChiPPs): www.nhpco.org.
Immune deficiencies that present in childhood comprise rare disorders that have been characterized by a combination of clinical patterns, immunologic laboratory tests, and often molecular identification of the mutant gene. Children with primary immunodeficiency (PID) commonly present with recurrent and/or severe bacterial infections, failure to thrive, and/or developmental delay as a result of infection. Immunodeficiency should be considered when infections are recurrent, severe, persistent, resistant to standard treatment, or caused by opportunistic organisms. Because delayed diagnosis of PIDs is common, heightened diagnostic suspicion is warranted.

The human immune system consists of the phylogenetically more primitive innate immune system and the adaptive immune system. For the purpose of clinical categorization, PIDs are commonly divided into four main groups: antibody deficiencies, combined T- and B-cell immunodeficiencies, phagocyte disorders, and complement deficiencies. Understanding the role each part of the immune system plays in host defense allows critical evaluation for possible immunodeficiency as the cause of recurrent infections.

**IMMUNODEFICIENCY EVALUATION: PRIMARY CONSIDERATIONS**

When evaluating for a possible PID, other conditions that increase susceptibility to infections have to be considered, such as allergic rhinitis, asthma, cystic fibrosis, foreign body aspiration, and conditions that interfere with skin barrier function. Common causes of secondary or acquired immunodeficiency need to be excluded. These include malnutrition, aging, certain drugs (chemotherapy, immunosuppressive medications, glucocorticoids, disease-modifying antirheumatic drugs, rituximab), protein loss via gastroenteropathy or kidney disease, and other diseases associated with impaired immunity (bone marrow and blood cell malignancies, and certain chronic infections, including AIDS). If a single site is involved, anatomic defects and foreign bodies may be present. Figure 33–1 outlines when PIDs should be considered.

Key clinical patterns can indicate the presence of a PID and the category of immune impairment. Frequency, severity, and age of onset of infections are important clues. The Modell Foundation warning signs for PID are shown in Figure 33–2. Children who meet two or more of these signs should be screened for PID. The type of infections should guide initial investigation, as antibody, complement, and phagocyte defects predispose mainly to bacterial infections, but diarrhea, superficial candidiasis, opportunistic infections, and severe herpesvirus infections are more characteristic of T-lymphocyte immunodeficiency. Combined immunodeficiency syndromes will present with a combination of infections typical for B- and T-lymphocyte deficiencies. Table 33–1 classifies PID into four main host immunity categories based on age of onset, infections with specific pathogens, affected organs, and other special features. Finally, male gender increases the likelihood of an X-linked (XL) PID, while consanguinity increases the likelihood of an autosomal recessive (AR) form of PID.

Research on deficiencies of the innate immune response is an evolving field. Pattern-recognition receptors (PRRs) are important for the recognition of pathogen-associated molecular patterns specific for different microbes, initiation of the innate immune response, and cross talk with adaptive immunity. They are expressed on the surface or in the cytoplasm of cells of the innate immune system, dependent on where specific microbes are encountered. Four classes of PRRs have been identified. Toll-like receptors (TLRs) recognize a spectrum of bacteria, viruses, selected fungi, and protozoa. C-type lectin receptors (CLR) that include dectin-1 and mannose-binding lectin are involved in recognition of bacteria and fungi. Cytoplasmic PRRs include nucleotide-binding oligomerization domain (NOD) leucine-rich-repeat containing receptors (NLRs) that recognize peptidoglycan structures on bacteria, and retinoic acid-inducible gene I protein (RIG-1) helicase receptors that recognize viral nucleic acids. Dependent on the defect in PRR signaling, patients may present with an increased susceptibility of bacterial, viral, or fungal infections.
Chapter 3

Figure 33–1. General approach to primary immunodeficiencies.

Step 1: “Too many” infections. See Figure 33–2 for warning signs.

Step 2: Rule out common causes of infection (asthma, foreign body) and secondary immunodeficiency (malnutrition, HIV).

Step 3: Consider primary immunodeficiencies—specifically considering types and locations of infections, age of child, and other associated findings. See Table 33–1 for details.

Step 4: Categorize the patient and order screening tests. See Table 33–2 for more details.

- Combined immunodeficiency (T and B lymphocytes)
  For SCID see Table 33–5
- Antibody deficiency (B lymphocyte)
  See Table 33–4
- Phagocyte disorders
- Complement deficiency
  See Figure 33–4

Step 5: Consider referral to immunology specialist and secondary laboratory tests.

Figure 33–2. Warning signs of primary immunodeficiency. (Data from the Jeffrey Modell Foundation.)

10 Warning signs of primary immunodeficiency

Primary immunodeficiency (PID) causes children and young adults to have infections that come back frequently or are unusually hard to cure. In America alone, up to 1/2 million people suffer from one of the 100 known PID diseases. If you or someone you know are affected by two or more of the following warning signs, speak to a physician about the possible presence of an underlying PID.

1. Eight or more new ear infections in 1 y.
2. Two or more serious sinus infections within 1 y.
3. Two or more months on antibiotics with little effect.
4. Two or more pneumonias within 1 y.
5. Failure of an infant to gain weight or grow normally.
6. Recurrent, deep skin or organ abscesses.
7. Persistent thrush in mouth or elsewhere on skin, after age 1.
8. Need for intravenous antibiotics to clear infections.
9. Two or more deep-seated infections.
10. A family history of primary immunodeficiency.
### Table 33–1. Clinical features of primary immunodeficiencies.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Combined Deficiency (T- and B-Lymphocyte Defect)</th>
<th>Antibody Deficiency (B-Lymphocyte Defect)</th>
<th>Phagocyte Defect</th>
<th>Complement Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age at onset of infections</strong></td>
<td>Early onset, usually before 6 mo</td>
<td>Onset after maternal antibodies decline, usually after 3-6 mo; some later in childhood or adults</td>
<td>Early onset</td>
<td>Any age</td>
</tr>
<tr>
<td><strong>Specific pathogens</strong></td>
<td><strong>Bacteria:</strong> Streptococcus pneumoniae, Campylobacter fetus, Staphylococcus aureus, Haemophilus influenzae, Pseudomonas aeruginosa, Mycoplasma hominis, Ureaplasma urealyticum, Listeria monocytogenes, Salmonella spp, enteric flora, atypical mycobacteria, and BCG</td>
<td><strong>Bacteria:</strong> S pneumoniae, C fetus, H influenzae, P aeruginosa, U urealyticum, S aureus, M hominis</td>
<td><strong>Bacteria:</strong> None</td>
<td><strong>Bacteria:</strong> Neisseria meningitidis and gonorrhoeae, S pneumoniae, S aureus, P aeruginosa, H influenzae</td>
</tr>
<tr>
<td></td>
<td><strong>Viruses:</strong> CMV, EBV, varicella, RSV, enterovirus, rotavirus</td>
<td><strong>Viruses:</strong> Enteroviruses</td>
<td><strong>Viruses:</strong> None</td>
<td><strong>Viruses:</strong> None</td>
</tr>
<tr>
<td></td>
<td><strong>Fungi/protozoa:</strong> Candida albicans, Aspergillus fumigatus, Toxoplasma gondii</td>
<td><strong>Fungi/protozoa:</strong> Giardia lamblia</td>
<td><strong>Fungi/protozoa:</strong> None</td>
<td><strong>Fungi/protozoa:</strong> None</td>
</tr>
<tr>
<td></td>
<td><strong>Other:</strong> Pneumocystis carinii, Cryptosporidium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Affected organs and infections</strong></td>
<td><strong>General:</strong> Failure to thrive</td>
<td><strong>Infections:</strong> Recurrent sinopulmonary pneumonia, meningitis</td>
<td><strong>Skin:</strong> Dermatitis, abscesses, cellulitis</td>
<td><strong>Infections:</strong> Meningitis, disseminated gonococcal infection, septicemia, pneumonia</td>
</tr>
<tr>
<td></td>
<td><strong>Infections:</strong> Severe infections (meningitis, septicemia, sinopulmonary), recurrent candidiasis, protracted diarrhea</td>
<td><strong>GI:</strong> Chronic malabsorption, IBD-like symptoms</td>
<td><strong>Lymph nodes:</strong> Suppurative adenitis</td>
<td><strong>Autoimmune disorders:</strong> SLE, vasculitis, dermatomyositis, scleroderma, glomerulonephritis</td>
</tr>
<tr>
<td></td>
<td><strong>Other:</strong> Arthritis</td>
<td><strong>Other:</strong> Arthritis</td>
<td><strong>Oral cavity:</strong> Periodontitis, ulcers</td>
<td><strong>Other:</strong> Hereditary angioedema, aHUS</td>
</tr>
<tr>
<td></td>
<td><strong>Lungs:</strong> Pneumonia, abscesses</td>
<td><strong>Other:</strong> Liver and brain abscesses, osteomyelitis</td>
<td><strong>Lungs:</strong> Pneumonia, abscesses</td>
<td><strong>Other:</strong> Liver and brain abscesses, osteomyelitis</td>
</tr>
<tr>
<td></td>
<td><strong>Other:</strong> Arthritis</td>
<td><strong>Other:</strong> Liver and brain abscesses, osteomyelitis</td>
<td><strong>Other:</strong> Liver and brain abscesses, osteomyelitis</td>
<td><strong>Other:</strong> Liver and brain abscesses, osteomyelitis</td>
</tr>
</tbody>
</table>

Laboratory investigation should be directed by the clinical presentation and the suspected category of host immunity impairment. A complete blood cell count (CBC) with cell differential and measurement of quantitative immunoglobulins (Igs) will identify the majority of patients with PID, as antibody deficiencies account for at least 50% of PIDs (Figure 33–3). Table 33–2 summarizes the approach to laboratory evaluation of PID.

### Antibodies & Immunoglobulins

The initial laboratory screening for antibody deficiency includes the measurement of serum Igs: IgG, IgM, IgA, and IgE, which have age-dependent normal ranges (Table 33–3). Normal IgG, IgM, and IgA and increased IgE levels are indicative of atopy. Some patients may have normal Ig levels but fail to make protective antibodies to certain microbes; other patients have...
subnormal Ig levels but make protective antibodies. Specific antibodies include isoagglutinins, naturally occurring IgM antibodies that are detectable by age 6 months except in children with blood group AB. Specific IgG antibodies to protein antigens (tetanus, diphtheria, rubella, mumps) and polysaccharide antigens (Haemophilus influenzae, Streptococcus pneumoniae) can be measured after immunization. The response to polysaccharide antigens develops during the second year of life, but protein-conjugated vaccines elicit an earlier response in immunocompetent children. Assessing the antibody response to pneumococcal polysaccharide antigens can be helpful in the face of repeated pneumococcal infections. The gold standard is comparison of pre- and postimmunization titers.

Obtaining a CBC with differential and T- and B-lymphocyte counts are recommended if an initial screen reveals very low concentrations of all Ig classes. Certain types of hypogammaglobulinemia are characterized by low levels of or absent B lymphocytes, such as XL Bruton agammaglobulinemia. Protein electrophoresis can help identify monoclonal gammopathy as seen in XL lymphoproliferative syndrome, which can be complicated by fatal Epstein-Barr virus (EBV) infection, and in heavy-chain diseases. Serum albumin should be measured in patients with hypogammaglobulinemia to exclude secondary deficiencies due to protein loss through bowel or kidneys. IgG or IgA subclass measurements may be abnormal in patients with varied immunodeficiency syndromes, but they are rarely helpful in an initial evaluation.

### T Lymphocytes

The initial laboratory screening for a T-lymphocyte deficiency includes a CBC with cell differential to evaluate for a decreased absolute lymphocyte count (< 1000/μL) and enumeration of absolute numbers of T cells and their subsets, B cells, and natural killer (NK) cells (see Table 33–2). T-cell function can be analyzed by in vitro lymphocyte proliferation assays to mitogens that stimulate all T cells

<table>
<thead>
<tr>
<th>Suspected Defect</th>
<th>Screening Evaluation</th>
<th>Secondary Evaluation</th>
<th>Advanced Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-lymphocyte defect</td>
<td>Quantitative immunoglobulins (IgG, IgM, IgA, IgE)</td>
<td>B-lymphocyte enumeration panel (CD19+ /20+ B cells) Antibody response to prior or repeat immunizations (tetanus, diphtheria, H influenzae) isoagglutinins</td>
<td>DNA analysis for specific genetic mutations Screen for memory B cells (IgM- IgD /CD27+/CD20- B cells)</td>
</tr>
<tr>
<td>Combined T- and B-lymphocyte defect</td>
<td>CBC, absolute lymphocyte count, HIV testing</td>
<td>T- and B-lymphocyte, NK-cell enumeration (T = CD3+, CD4+, or CD8+; B = CD19+/D20-; NK = CD56+/CD16+) Lymphocyte proliferation assay to mitogens and antigens Delayed-type hypersensitivity skin test</td>
<td>DNA analysis for specific genetic mutations ADA or PNP levels of RBC Cytotoxicity studies</td>
</tr>
<tr>
<td>Phagocyte disorder</td>
<td>WBC count with differential</td>
<td>DHR flow cytometry assay Nitroblue tetrazolium reduction assay</td>
<td>Bactericidal assays, CD11/18 analysis Chemotaxis assay</td>
</tr>
<tr>
<td>Complement deficiency</td>
<td>CH50</td>
<td>AH50</td>
<td>Individual complement levels and function</td>
</tr>
</tbody>
</table>

ADA, adenosine deaminase; CBC, complete blood cell count; CD, cluster of differentiation; DHR, dihydrorhodamine; HIV, human immunodeficiency virus; NK, natural killer; PNP, purine nucleoside phosphorylase; RBC, red blood cell; WBC, white blood cell.

Adapted, with permission, from Cunningham-Rundles C. Immune deficiency: office evaluation and treatment. Allergy Asthma Proc 2003;24:409-415 [PMID: 14763242].

![Figure 33–3. Relative frequencies of primary immunodeficiencies.](Adapted, with permission, from Stiehm ER et al (eds): Immunologic Disorders in Infants and Children, 5th ed. Elsevier; 2004.)
Table 33–3. Normal values for immunoglobulins by age.

<table>
<thead>
<tr>
<th>Age</th>
<th>IgG (mg/dL)</th>
<th>IgM (mg/dL)</th>
<th>IgA (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>1031 ± 200</td>
<td>11 ± 7</td>
<td>2 ± 3</td>
</tr>
<tr>
<td>1–3 mo</td>
<td>430 ± 119</td>
<td>30 ± 11</td>
<td>21 ± 13</td>
</tr>
<tr>
<td>4–6 mo</td>
<td>427 ± 186</td>
<td>43 ± 17</td>
<td>28 ± 18</td>
</tr>
<tr>
<td>7–12 mo</td>
<td>661 ± 219</td>
<td>55 ± 23</td>
<td>37 ± 18</td>
</tr>
<tr>
<td>13–24 mo</td>
<td>762 ± 209</td>
<td>58 ± 23</td>
<td>50 ± 24</td>
</tr>
<tr>
<td>25–36 mo</td>
<td>892 ± 183</td>
<td>61 ± 19</td>
<td>71 ± 34</td>
</tr>
<tr>
<td>3–5 y</td>
<td>929 ± 228</td>
<td>56 ± 18</td>
<td>93 ± 27</td>
</tr>
<tr>
<td>6–8 y</td>
<td>923 ± 256</td>
<td>65 ± 25</td>
<td>124 ± 45</td>
</tr>
<tr>
<td>9–11 y</td>
<td>1124 ± 235</td>
<td>79 ± 33</td>
<td>131 ± 60</td>
</tr>
<tr>
<td>12–16 y</td>
<td>946 ± 124</td>
<td>59 ± 20</td>
<td>148 ± 63</td>
</tr>
<tr>
<td>Adults</td>
<td>1158 ± 305</td>
<td>99 ± 27</td>
<td>200 ± 61</td>
</tr>
</tbody>
</table>


and by specific antigens that stimulate only antigen-specific T cells. Borderline function must be interpreted based on clinical correlation. T-lymphocyte function is often also studied in vivo by delayed hypersensitivity skin tests to specific antigens, including Candida albicans, tetanus, or mumps, but a negative result is not helpful, as it may be due to young age, chronic illness, vitamin D deficiency, or poor test technique. T-lymphocyte deficiencies will often not manifest as skin-test anergy until the impairment is severe, for example as in AIDS. It is important to evaluate a patient’s specific antibody production because proper B-lymphocyte function and antibody production are dependent on adequate T-lymphocyte function. Therefore, most T-lymphocyte deficiencies manifest as combined T- and B-lymphocyte deficiencies.

Phagocyte Immunity

The initial laboratory screening for phagocyte disorders, mainly impaired neutrophil function, should include a CBC and cell differential to look for neutropenia. A blood smear can detect Howell-Jolly bodies in erythrocytes, indicative of asplenia, and abnormalities in lysosomal granules in neutrophils. An abnormality of the neutrophil respiratory burst, which would lead to impaired neutrophil bactericidal activity, can be tested by nitroblue tetrazolium (NBT) reduction. The dihydrorhodamine (DHR) flow cytometry assay assesses the same function more quantitatively. Leukocyte adhesion molecules can be studied by flow cytometry. Assays to study neutrophil phagocytosis of bacteria and phagocytic microbicidal activity are available in specialized laboratories.

The clinical symptom pattern that suggests a possible defect of phagocytic cell function should dictate which tests are used.

Complement Pathways (Figure 33–4)

Testing for total hemolytic complement activity with the CH50 assay screens for most of the diseases of the complement system. A normal CH50 titer depends on the ability of all 11 components of the classic pathway and membrane attack complex to interact and then lyse antibody-coated sheep erythrocytes. Alternative complement pathway deficiencies are identified by subnormal lysis of rabbit erythrocytes in the AH50 assay. For both assays the patient’s serum must be separated and frozen at −70°C within 30–60 minutes after collection to prevent loss of activity. Measuring levels of individual components is not necessary when both CH50 and AH50 are normal. If both the CH50 and AH50 are low, a deficiency in their shared terminal pathway (C3, C5, C6, C7, C8, or C9) would be the most common explanation. If the CH50 is low but the AH50 is normal, the deficiency must affect C1, C4, C2, or components of the lectin pathway. If the AH50 is low but the CH50 is normal, a deficiency in factors D or B or properdin should be suspected.

Pattern-Recognition Receptors

Selected laboratories offer tests to assess TLR function upon stimulation with ligands for different TLRs that have been identified. Mannose-binding lectin levels can be measured in
clinical laboratories. However, expression or function of pattern recognition receptors (PRRs) and associated gene mutations are studied mostly in a research setting at the current time.

**ANTIBODY DEFICIENCY SYNDROMES**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Recurrent bacterial infections, typically due to encapsulated pyogenic bacteria.
- Low immunoglobulin levels.
- Inability to make specific antibodies to vaccine antigens or infections.

**General Considerations**

Antibody deficiency syndromes include both congenital and acquired forms of hypogammaglobulinemia with low levels of one or more of the immunoglobulins IgM, IgG, and IgA. Deficiencies result in recurrent bacterial infections, typically with encapsulated bacteria, including pneumonia, otitis, sinusitis, meningitis, cellulitis, and sepsis. As a group, antibody deficiencies represent nearly half of all PIDs. They can be divided into (1) early defects of B-cell development, with absent B cells and severe hypogammaglobulinemia; (2) hyper-IgM syndromes with defects in Ig class switching; (3) common variable immunodeficiency (CVID), with insufficient antibody production; and (4) specific antibody deficiencies. Table 33–4 outlines primary antibody deficiency syndromes, laboratory findings, and genetic inheritance in these disorders.

1. **X-Linked Agammaglobulinemia**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Infections early in life, usually after age 4 months.
- Typical bacterial infections include infections with encapsulated bacteria, for example, *H influenzae*, *S pneumoniae*, *Staphylococcus aureus*, and *Pseudomonas aeruginosa*, but also *Mycoplasma* species.
- Risk for severe enteroviral infections and, rarely, polio due to live polio vaccine.
- Failure to thrive and absent lymphoid tissue on examination.
- Very low levels of Igs and B lymphocytes.

**General Considerations**

X-linked agammaglobulinemia (XLA) accounts for 85% of congenital hypogammaglobulinemia and occurs in about 1:200,000 male births. Children with XLA typically present with infections after 4 months of age, when maternally derived IgG levels have declined. XLA is caused by a gene mutation on the X chromosome (Xq21.33–q22) that affects the expression of a B-cell–specific tyrosine kinase (*BTK*), halting the maturation of B cells and resulting in low or absent B-cell numbers and serum Igs. Early detection and diagnosis of XLA allow Ig-replacement therapy to start before a potentially life-threatening infection can occur.

**Clinical Findings**

A. **Symptoms and Signs**

Sinopulmonary infections due to *H influenzae* and *S pneumoniae* are common, but deep tissue infections and arthritis due to *Mycoplasma* or *Ureaplasma* species can occur. Recurrent pulmonary infections may lead to bronchiectasis. Antibody-deficient patients are also at risk for polio due to oral polio vaccine strains, resulting in paralysis, and echoviruses causing chronic encephalitis. At presentation, male infants have scant or absent lymphoid tissue, including tonsils, adenoids, and lymph nodes. A small proportion also has a history of poor growth.

B. **Laboratory Findings**

Most patients have low levels of or absent Igs M, G, A, and E, and, despite a normal leukocyte count, few or no B lymphocytes. T-lymphocyte numbers and function are normal. Genetic testing for a *BTK* gene mutation confirms the diagnosis in affected males. Female carriers can be detected by genetic testing or screening for *BTK* protein expression in platelets followed by mutation analysis if needed.

**Differential Diagnosis**

The differential diagnosis includes other causes of antibody deficiency and combined immunodeficiencies (see Table 33–4; Table 33–5). Additional causes of recurrent infections and low Ig levels include protein loss through renal or gastrointestinal disease, but patients with these disorders present with normal numbers of B lymphocytes and, typically, an isolated IgG deficiency.

**Treatment**

Current therapy consists of lifelong Ig-replacement therapy. In addition to preventing infections, Ig replacement usually results in resolution of inflammatory arthritis and improves growth. Because the severity of infections varies and antibiotics are widely used, the diagnosis is often delayed for years, but XLA should be considered in males with recurrent
### Table 33–4. Antibody deficiency disorders.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Serum Ig</th>
<th>Circulating B Cells</th>
<th>Genetic Mutation</th>
<th>Mode of Inheritance</th>
<th>Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Defects in early B-cell development</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL agammaglobulinemia</td>
<td>All isotypes low or absent</td>
<td>Profoundly decreased</td>
<td>BTK gene</td>
<td>XL</td>
<td>Severe bacterial infections</td>
</tr>
<tr>
<td>AR agammaglobulinemia</td>
<td>All isotypes low or absent</td>
<td>Profoundly decreased</td>
<td>μ (IGHM), Igα (CD79A, Igβ (CD79B), λ5 (IGL1, CD179B), BLNK or LRRCA genes</td>
<td>AR</td>
<td>Severe bacterial infections</td>
</tr>
<tr>
<td>Ig heavy-chain gene deletions</td>
<td>IgG, or IgGα, IgGγ absent, in some cases IgE and IgA, or IgAγ absent</td>
<td>Normal or decreased</td>
<td>Chromosomal deletion at 14q32</td>
<td>AR</td>
<td>Not always symptomatic</td>
</tr>
<tr>
<td>K chain deficiency</td>
<td>Ig(κ) decreased: Antibody response normal or decreased</td>
<td>Normal or decreased k-bearing cells</td>
<td>Point mutations at chromosome 2p11 in some patients</td>
<td>AR</td>
<td>None</td>
</tr>
<tr>
<td><strong>Hyper-IgM syndromes with defects in Ig class switch recombination</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40 ligand (CD154) deficiency</td>
<td>Low IgG, IgA; normal or elevated IgM</td>
<td>Normal</td>
<td>CD40L gene</td>
<td>XL</td>
<td>Bacterial and opportunistic infec-tions, neutropenia; T-cell defect</td>
</tr>
<tr>
<td>CD40 deficiency</td>
<td>Low IgG, IgA; normal or elevated IgM</td>
<td>Normal</td>
<td>CD40 gene</td>
<td>AR</td>
<td>Bacterial and opportunistic infec-tions</td>
</tr>
<tr>
<td>NFκB-signaling defects</td>
<td>Low IgG and/or IgA and/or specific antipolysaccharide antibodies</td>
<td>Normal</td>
<td>IKKBG (NEMO) gene</td>
<td>X arsonic</td>
<td>Bacterial and opportunistic infec-tions</td>
</tr>
<tr>
<td>AID deficiency</td>
<td>Low IgG, IgA; normal or elevated IgM</td>
<td>Normal</td>
<td>AICDA gene</td>
<td>AR, AD (AID C terminal defect)</td>
<td>Bacterial infections, enlarged lymph nodes</td>
</tr>
<tr>
<td>UNG deficiency</td>
<td>Low IgG, IgA; normal or elevated IgM</td>
<td>Normal</td>
<td>UNG gene</td>
<td>AR</td>
<td>Bacterial infections, enlarged lymph nodes</td>
</tr>
<tr>
<td><strong>Common variable immunodeficiency</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneous group of disorders</td>
<td>Normal or low IgM, low IgG, low IgA, poor specific antibody production</td>
<td>Normal or decreased</td>
<td>Variable; TACI (AD), ICOS (AR), CD19 (AR) genes</td>
<td>AD and AR</td>
<td>Recurrent infections, autoimmune disorders (TACI)</td>
</tr>
<tr>
<td><strong>Selective immunoglobulin deficiencies</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG subclass deficiency</td>
<td>Decrease in one or more IgG isotypes</td>
<td>Normal</td>
<td>Defects of isotype differentiation</td>
<td>Unknown</td>
<td>Not always symptomatic</td>
</tr>
<tr>
<td>IgA deficiency</td>
<td>Decrease in IgA1 and IgA2</td>
<td>Normal</td>
<td>Failure of terminal differentiation in IgA-positive B cells</td>
<td>Variable</td>
<td>Autoimmune or allergic disorders, some have infections</td>
</tr>
<tr>
<td>Specific antibody deficiency</td>
<td>Normal</td>
<td>Normal</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Inability to make antibody to specific antigens</td>
</tr>
<tr>
<td>Transient hypogammaglobulinemia of infancy</td>
<td>IgG and IgA decreased, but IgM usually normal</td>
<td>Normal</td>
<td>Differentiation defect: Delayed maturation of helper function</td>
<td>Unknown</td>
<td>Not always symptomatic, may have respiratory infections, otitis media</td>
</tr>
</tbody>
</table>

AD, autosomal dominant; AID/AICDA, activation-induced cytidine deaminase; AR, autosomal recessive; BTK, Bruton tyrosine kinase; ICOS, inducible costimulator, Ig (κ), immunoglobulin of κ light-chain type; IKKBG, I kappa B kinase gene; NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells; NFKBIA gene, NFκB inhibitor alpha gene; TACI, transmembrane activator and calcium-modulator and cyclophilin ligand interactor; UNG, uracil-DNA glycosylase; XL, X-linked.
infections regardless of severity. Early diagnosis can prevent permanent disability and premature death.

2. Autosomal Recessive Congenital Agammaglobulinemia

- **General Considerations**
  
  Autosomal recessive congenital agammaglobulinemia is rare, accounting for less than 15% of all congenital hypogammaglobulinemia, and occurs in both male and female children. In the most common form, it is caused by mutations of the IgM heavy-chain gene on chromosome 14q32. These mutations result in abnormal or absent IgM expression and abnormal development of B cells with decreased or absent antibody production.

- **Clinical Findings**

  - **A. Symptoms and Signs**
    
    Similarly to patients with XLA, children present with recurrent and severe bacterial infections, typically before age 6 months. Infections include pneumonia, otitis, sinusitis, meningitis, cellulitis, and sepsis. Chronic central nervous system (CNS) infections by enteroviruses have been observed.

- **B. Laboratory Findings**

  Patients usually have low numbers of circulating B lymphocytes and low levels of or absent immunoglobulins. Specific antibody function is poor. When the diagnosis is suspected, the detection of a mutation in the \( \mu \) heavy chain can confirm the most common type. Additional mutations include mutations of the genes encoding the Ig\( \alpha \) and Ig\( \beta \) molecules, the \( \lambda 5 \) surrogate light chain, BLNK or LRRC8 genes.

- **Differential Diagnosis**

  The differential diagnosis is similar to that of XLA and includes XLA for male patients.

- **Treatment**

  Treatment and prognosis are similar to those outlined for XLA.

3. Hyper-IgM Syndromes

Hyper-IgM (HIGM) syndromes are a heterogeneous group of genetic disorders (see Table 33–4) with impaired Ig class switching from IgM to production of IgG, IgA, or IgE associated with normal or elevated serum IgM. If signaling through CD40 is affected, patients present also with
opportunistic bacterial infections. Deficiencies of AID or UNG differ from CD40L and CD40 deficiencies in that the patients have large lymph nodes with germinal centers and are not susceptible to opportunistic infections. Patients with HIGM syndrome are at increased risk of autoimmune diseases. Treatment with Ig replacement decreases infections and often normalizes IgM levels. XL CD40L deficiency and NFkB signaling defects will be addressed further in section Other Combined Immunodeficiency Disorders.

4. Common Variable Immunodeficiency

General Considerations

Common variable immunodeficiency (CVID) is a diagnosis of exclusion after other causes of hypogammaglobulinemia have been eliminated. The onset may be at any age, and the incidence approaches 1:30,000. Many cases are sporadic, but a small percentage of patients have autosomal dominant or recessive inheritance, and some cases are associated with specific HLA-DR/DQ alleles (see Table 33–4).

Clinical Findings

A. Symptoms and Signs

Patients have recurrent infections, most often of the sinonasal tract, but chronic gastrointestinal infections may manifest with recurrent diarrhea. Patients with CVID are at risk for developing bronchiectasis, autoimmune diseases (idiopathic thrombocytopenic purpura, autoimmune hemolytic anemia, rheumatoid arthritis, and inflammatory bowel disease), and malignancies (especially gastric carcinoma and lymphoma).

B. Laboratory Findings

Laboratory findings are variable, but typically reveal low levels of IgG and IgA, normal numbers of B lymphocytes, low numbers of memory B lymphocytes (evaluated by flow cytometry), and abnormal specific antibody levels and responses. Some patients have evidence of T-lymphocyte abnormalities as well. Chronic gastrointestinal tract infections are often due to G lamblia or C jejuni.

Although CVID is typically a diagnosis of exclusion, recent research has revealed multiple specific genetic mutations in patients with CVID. One example is a mutation in a member of the tumor necrosis factor receptor family, identified as transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), which mediates isotype switching in B lymphocytes. TACI mutations were recently found in 10%–15% of patients with CVID, as well as in some relatives of CVID patients with IgA deficiency. The mutations appear to be autosomal dominant, with variable penetrance of clinical immunodeficiency and autoimmune disease, and impairment of T-regulatory cell function.

Differential Diagnosis

When a patient presents with recurrent infections, low immunoglobulin levels, and potentially autoimmune symptoms, many different diagnoses must be considered, including other causes of low immunoglobulin levels (loss and abnormal production) and autoimmune diseases. CVID patients have normal numbers of B lymphocytes despite their poor specific antibody responses, which differentiates them from patients with XLA and AR agammaglobulinemia. Patients with CVID also lack the specific mutations responsible for those other disorders. However, CVID patients often have decreased numbers of memory B cells (IgM−/IgD−/CD27+/CD20+ B cells).

Treatment

Treatment includes lifelong Ig-replacement therapy and routine assessment for bronchiectasis, autoimmune disorders, and malignancies. The prognosis can be good and depends on the time to diagnosis and implementation of Ig-replacement therapy. Other complications include B-cell hyperplasia in the gut that may be severe enough to resemble Crohn disease, and gastric atrophy with achlorhydria, sometimes followed by pernicious anemia. Lymphoreticular proliferation can occur after EBV infection and is not always malignant.

5. Acquired Hypogammaglobulinemia

Acquired forms of hypogammaglobulinemia are common and may develop at any age. Causes of secondary hypogammaglobulinemia (nephrotic syndrome and protein-losing enteropathy) should be excluded by measuring serum albumin. The loss of albumin (MW 69323 Da) is usually paralleled by a loss of IgG (MW 150000 Da). Generally, acquired forms are not treated with Ig-replacement therapy because, although immunoglobulin levels are low, antibody function is adequately protective. Morphologic disorders or associated syndromes may point to a specific diagnosis.

6. Transient Hypogammaglobulinemia

Serum IgG levels normally decrease during an infant’s first 4–6 months of life as maternal IgG transmitted in utero is metabolized. Transient hypogammaglobulinemia represents a delay in the onset of immunoglobulin synthesis that results in a prolonged nadir. Symptomatic patients present with recurrent infections, including upper respiratory tract infections, otitis, and sinusitis. The diagnosis is suspected in infants and young children with low levels of IgG and IgA (usually two standard deviations below normal for age), but normal levels of IgM and normal numbers of circulating B lymphocytes. Most affected children have normal specific antibody responses and T-lymphocyte function. Apart from appropriate antibiotics,
no treatment is required. Infants with severe infections and hypogammaglobulinemia could be given Ig replacement, but benefits and risk must be considered and this is rarely necessary. Recovery occurs between 18 and 30 months of age, and the prognosis for affected children is excellent provided infections are treated promptly and appropriately.

7. Selective Immunoglobulin Deficiencies

Selective IgA deficiency is the most common immune abnormality, found in approximately 1:700 persons. It is defined by a serum IgA level less than 7 mg/dL. Serum IgM, IgG, specific antibodies, and B- and T-lymphocyte numbers and function are normal. IgA is primarily effective in its secreted form on mucosal surfaces. Therefore, symptomatic patients with low serum IgA develop upper respiratory tract infections, diarrhea, or both, but most people are asymptomatic.

Associations also exist with inflammatory bowel disease, allergic disease, asthma, and autoimmune disorders (thyroiditis, arthritis, vitiligo, thrombocytopenia, and diabetes). IgA replacement is currently not feasible. For the majority of symptomatic IgA-deficient patients, antibiotics and appropriate autoimmune therapies are sufficient. Caution must be exercised, as IgA-deficient patients are at risk for developing anti-IgA antibodies with blood product exposure, and the administration of blood products can result in anaphylaxis. Therefore, when blood products are needed, washed packed red blood cells and volume expanders without blood products are recommended.

The possibility that deficiency of an IgG subclass (eg, abnormally low serum IgG₂, IgG₃, or IgG₄) might predispose to recurrent upper respiratory tract infections in patients with normal total serum immunoglobulin levels is not well established. Normally, IgG₃ comprises over 60% of total IgG, IgG₂ over 10%, IgG₁ about 5%, and IgG₄ may be undetectable in up to 20% of healthy persons. Additionally, serum levels are age related. It has been difficult to establish a link between IgG subclass deficiencies and any consistent pattern of infections. IgG replacement should be reserved for patients with defects in specific antibody production and recurrent infections, which is rarely seen in patients with selective IgA or IgG subclass deficiencies.

Treatment of Hypogammaglobulinemia

The mainstay of therapy for hypogammaglobulinemia is replacement with IgG, but appropriate management of infections is also important. Curative therapy with bone marrow transplantation (BMT) has been successful in patients with XL HIGM syndrome. Replacement IgG is usually given by intravenous infusions at a dose of 400–600 mg/kg every 3–4 weeks to maintain trough serum IgG levels above 500–800 mg/dL (a higher trough level is targeted for patients with established pulmonary disease). Subcutaneous replacement is available, but it requires more frequent injections and may limit maximum dosing. The aim of treatment is to prevent future infections and minimize any progression of chronic lung disease (bronchitis or bronchiectasis). Despite the passive immunity provided by replacement IgG, infections remain a persistent risk for affected patients. The prognosis also depends on timely and appropriate antibiotic therapy. Typical infecting organisms include encapsulated bacteria, but Ureaplasma and Mycoplasma species must also be considered. Infusions are generally well tolerated, with most reactions being mild, including headache, back and limb pain, anxiety, and chest tightness. Rare systemic reactions can occur, including tachycardia, shivering, fever, and, in severe cases, anaphylactoid shock. These adverse symptoms can be prevented by pretreatment with corticosteroids, antihistamines, and nonsteroidal anti-inflammatory drugs. For patients with congenital hypogammaglobulinemia, replacement therapy is currently lifelong. As a precautionary measure, patients with agammaglobulinemia or hypogammaglobulinemia should not receive live vaccines, but nonlive vaccines may be beneficial, particularly in patients with CVID.

SEVERE COMBINED IMMUNODEFICIENCY DISEASES

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Onset in first year of life.
- Recurrent infections caused by bacteria, viruses, fungi, and opportunistic pathogens.
- Chronic diarrhea and failure to thrive.
- Absent lymphoid tissue.

General Considerations

Severe combined immunodeficiency diseases (SCIDs) encompass congenital diseases caused by different genetic mutations that result in severe deficiency of T and B lymphocytes. Despite differences in underlying mutations, affected patients present similarly, with recurrent infections caused by bacteria, viruses, fungi, and opportunistic pathogens. Patients often suffer from chronic diarrhea and failure to thrive, and typically die within the first year of life without treatment. Children with atypical SCID usually survive longer due to mutations in SCID-associated genes with residual protein function. SCID must be considered in the differential diagnosis in any infant with diarrhea and hypogammaglobulinemia.

Clinical Findings

A. Symptoms and Signs

Common presentations include persistent cough, tachypnea, or hypoxia secondary to underlying Pneumocystis carinii...
infection, or persistent oral or diaper candidiasis. Physical examination is notable for a lack of lymphoid tissue including tonsils and lymph nodes. A chest radiograph usually demonstrates an absent thymic shadow.

**B. Laboratory Findings**

Laboratory evaluation often reveals lymphopenia and some degree of hypogammaglobulinemia. Occasionally, an infant with SCID will present with normal numbers of lymphocytes resulting from transfusion-related engraftment or maternal T-lymphocyte engraftment via peripartum transfusion. NK cells and B-lymphocyte numbers may be decreased, normal, or elevated. Numbers of CD31+/CD45RA+/CD4+ recent thymic emigrant T cells reflect thymic T-cell output and are usually decreased in SCID patients. Additionally, in vitro lymphocyte assays show poor response to mitogens, and specific antibodies are absent. Antenatal diagnosis is possible. Once the diagnosis of SCID is suspected, genetic testing should be pursued to confirm the diagnosis and the mutation present for both prognostic and genetic counseling purposes. Clinical presentation and treatment are generally similar. The variants of SCID can be organized by the presence or absence of specific lymphocytes, including T, B, and NK cells (see Table 33–5).

**Differential Diagnosis**

The differential diagnosis of SCID includes other causes of recurrent and severe infections and abnormal immune responses, most notably HIV disease. Other causes of hypogammaglobulinemia or agammaglobulinemia may be considered but can usually be ruled out in the presence of abnormal T-lymphocyte numbers and function. The infection spectrum and severity of presentation in children with SCID is more severe and of earlier onset than that seen with agammaglobulinemia. Symptoms of congenital abnormalities with combined immunodeficiency features are discussed later in this chapter (see section on Genetic Syndromes Associated With Immunodeficiency).

**Treatment**

When SCID is suspected, *Pneumocystis* prophylaxis with trimethoprim–sulfamethoxazole and replacement Ig therapy should be initiated. **Patients with suspected SCID should only be transfused with irradiated blood products and should not receive any live vaccines.** Confirmation of the diagnosis should include screening for SCID subtypes listed in Table 31–5. BMT offers the best possibility of cure, with use of a human leukocyte antigen (HLA)–matched sibling offering the highest chance of success. In affected patients without HLA-identical donors, HLA haploidentical bone marrow cells from family members or HLA-matched unrelated donors are used. For most patients, myeloablation is not necessary as the patient is without T lymphocytes. Additionally, most patients do not require prophylaxis for graft-versus-host disease (GVHD) unless the donor is unrelated. T-lymphocyte reconstitution takes approximately 4 months, but only about 50% of patients regain full B-lymphocyte function, with the majority requiring long-term Ig replacement. For months post transplantation, patients are susceptible to many serious infections, and prophylaxis is usually continued. Additionally, any signs or symptoms of infection must be promptly investigated and aggressively treated. The highest rate of success is in the youngest patients prior to developing infections (> 95% survival), but overall rates of survival range from 50% to 100% depending on the underlying mutation. XL SCID and ADA deficiency have been treated with gene therapy. Normal gene function was transduced in XL SCID patients, but owing to insertion of the retroviral vector near an oncogene, some patients developed lymphoproliferative disorders. At this time, safer vectors are being sought.

1. **X-Linked Severe Combined Immunodeficiency**

XL SCID, the most common form (40%) of SCID, results from mutations in *IL2RG* (IL-2 receptor gene) that encodes the common γ chain. The γ-chain protein is shared by multiple cell surface receptors for cytokines that are essential for T-lymphocyte maturation, including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Within the first 3 months of life, male infants present with diarrhea, cough, and rash. Laboratory evaluation reveals low T-lymphocyte numbers, normal numbers of B lymphocytes (which do not produce functional antibody), and absent NK cells.

2. **Adenosine Deaminase Deficiency**

Adenosine deaminase deficiency (ADA) is an AR form of SCID caused by absence of adenosine deaminase, which is important for removal of toxic metabolites formed in lymphocytes, including adenosine, 2′-deoxyadenosine, and 2′O-methyladenosine. Increased levels of these metabolites result in lymphocyte death. Subsequently, affected patients develop complete absence of T-lymphocyte function and progressive decrease in immunoglobulin production. ADA SCID is distinguished from other variants of SCID by the following findings: the most profound lymphopenia (< 500/mm3); skeletal abnormalities, including chondro-osseous dysplasia (flared costochondral junctions and bone-in-bone anomalies in vertebrae); and deficiency of all types of lymphocytes. Diagnosis is suspected in patients with profound lymphopenia and recurrent infections. The diagnosis is confirmed with a red blood cell assay for ADA activity. The genetic mutation is on chromosome 20q13.2–13.11. In addition to BMT, restoration of immune competence can occur in
some patients with weekly infusions of polyethylene glycol–stabilized ADA enzyme conjugate. Gene therapy of stem cells with an ADA-incorporating retroviral vector has been successful, but the vector caused oncogenic adverse effects.

3. Janus Kinase 3 Deficiency
Another form of AR SCID is due to mutations in the gene encoding janus kinase 3, which is important for intracellular signaling through the common γ chain. The clinical presentation and lymphocyte phenotype most closely resemble XL SCID, with low T and NK lymphocytes, and normal or elevated, nonfunctional B lymphocytes.

4. Interleukin-7-Receptor-α-Chain Deficiency
IL-7-receptor-α-chain (IL-7Rα) deficiency SCID is transmitted by AR inheritance. The IL-7 receptor is important for T-lymphocyte maturation and mutations result in low T-lymphocyte numbers, but normal numbers of dysfunctional B lymphocytes and NK cells.

5. Recombinase-Activating Gene Deficiencies
Another form of AR SCID is due to mutations in recombinase-activating genes (RAG1 and RAG2), which encode proteins critical for assembling antigen receptor genes for both T and B lymphocytes. Several mutations in these genes have been described. The clinical presentation is similar to that of other forms of SCID, but the lymphocyte phenotype differs, as patients with SCID due to RAG1 or RAG2 mutations lack both T and B lymphocytes but maintain normal or elevated numbers of NK cells.

Omenn syndrome is an autosomal AR syndrome characterized by SCID, eczematoid rash, hepatosplenomegaly, lymphadenopathy, and alopecia. The disease is caused by mutations in RAG1, RAG2, or Artemis mutations (see as follows). Laboratory evaluation reveals absent B lymphocytes, normal to elevated T-lymphocyte numbers with restricted function, and normal functional NK cells. Additionally, affected patients often have eosinophilia and elevated levels of IgE. The syndrome is typically fatal, although BMT has been used successfully.

6. CD3-δ-Chain Deficiency
CD3-δ-chain (CD3δ) deficiency is a rare form of AR SCID. Homozygous defects in the CD3δ chain halt T-lymphocyte maturation. Clinical presentation and lymphocyte phenotype are similar to IL-7Rα deficiency, but CD3δ-chain deficiency differs from other forms of SCID in that these patients have a normal-appearing thymic silhouette on chest radiograph.

7. CD45 Deficiency
Another rare form of AR SCID is due to mutations in the gene for CD45. CD45 is a tyrosine phosphatase important for regulating signal transduction. Affected patients have a similar presentation to other forms of SCID and a lymphocyte phenotype with low to absent T and NK cells, but normal B lymphocytes.

8. Artemis Deficiency
Artemis is a DNA repair factor important for repairing cuts in the double-stranded DNA essential for the assembly of antigen receptors for T and B lymphocytes. Inheritance is AR, and clinical presentation and lymphocyte phenotype are similar to those seen in RAG1 and RAG2 deficiencies.

9. ZAP-70 Deficiency
Deficiency of ζ-chain–associated protein (ZAP)-70 results in a rare form of AR SCID. ZAP-70 is a tyrosine kinase critical for T-lymphocyte signaling and activation. Clinical presentation is similar to that of other forms of SCID, but most affected patients have palpable lymph nodes and visible thymic silhouette. Lymphocyte evaluation reveals absence of CD8+ T lymphocytes, normal but nonfunctional CD4+ T lymphocytes, normal numbers of poorly functioning B lymphocytes, and normal numbers and function of NK cells.

OTHER COMBINED IMMUNODEFICIENCY DISORDERS
Combined immunodeficiencies include defects that directly impair both T and B lymphocytes, as well as T-lymphocyte–specific defects, because proper B-lymphocyte function and antibody production are dependent on T-lymphocyte help. Therefore, most T-lymphocyte deficiencies manifest as combined impairments.

1. Wiskott-Aldrich Syndrome
- Immunodeficiency with recurrent infections.
- Microplatelet thrombocytopenia.
- Eczema.
- Occurs only in males.
General Considerations

Wiskott-Aldrich syndrome (WAS) is an XL recessive disease characterized by immunodeficiency, microplatelet thrombocytopenia, and eczema. The syndrome results from mutations of the gene encoding WAS protein (WASP) at X11p. WASP is a protein involved in the rearrangement of actin and is important in interactions between T lymphocytes and antigen-presenting cells.

Clinical Findings

A. Symptoms and Signs

Common presenting symptoms include mucosal bleeding, bloody diarrhea, cerebral hemorrhage, and severe infections with polysaccharide-encapsulated bacteria, but the clinical presentation can vary from classic severe WAS to mild thrombocytopenia without immunodeficiency, or X-linked thrombocytopenia (XLT), depending on the mutation. Early deaths are due to bleeding and infections, but malignancies and autoimmune syndromes can develop over time. Survival beyond adolescence is rare in patients not receiving treatment, although XLT is sometimes diagnosed in adults.

B. Laboratory Findings

Laboratory findings that suggest the diagnosis are a low platelet count, small platelets, low or absent isohemagglutinins, and reduced antibody responses to polysaccharide antigens (S pneumoniae and H influenzae). IgM may be low; IgG is usually normal; and IgA and IgE are often high. The diagnosis can be confirmed by genetic testing for a mutation of the WASP gene or by assessing WASP expression. Genetic testing can also be used for carrier screening.

Differential Diagnosis

In addition to WAS and XLT, the differential diagnosis in a patient with a low platelet count must include other causes of platelet consumption, destruction, and abnormal production, such as idiopathic thrombocytopenic purpura, leukemia or myelodysplasia, drug adverse effect, and infection. WAS can be differentiated from these other conditions by small-sized platelets on smear evaluation, the presence of eczema and other atopic features, and documented immune dysfunction. Additionally, there is a continuous spectrum between WAS and XLT that lacks immunodeficiency. Subsequently, a scoring system has been developed to help clinicians distinguish WAS from XLT.

Treatment

Treatment includes infection prophylaxis with antibiotics (including trimethoprim-sulfamethoxazole for P carinii pneumonia) and IVIG-replacement therapy for patients with deficient antibody responses. Splenectomy to reduce thrombocytopenia has been helpful in some patients with XLT, but it must be followed by antibiotic prophylaxis because of the increased risk of septicemia and sudden death. Platelet transfusions should be avoided unless severe bleeding has occurred. Finally, BMT using the best-matched donor offers the possibility of a definitive cure, but it is associated with morbidity and mortality.

2. 22q11.2 Deletion Syndrome (DiGeorge Syndrome)

General Considerations

DiGeorge syndrome or 22q11.2 deletion syndrome is an AD syndrome, resulting in defective development of the third and fourth pharyngeal pouches. There is considerable variability in phenotype based on the location and extent of the deletion, but deletions that include the TBX1 gene appear relevant. Overlapping syndromes include velocardiofacial syndrome and Shprintzen syndrome. The incidence is about 1:4000 births, and the abnormal chromosome is usually inherited from the mother. The associated immunodeficiency is secondary to the aplastic or hypoplastic thymus, where T-lymphocyte maturation occurs. Surprisingly, most patients have no or only mild immune defects. The term partial DiGeorge syndrome is commonly applied to these patients with impaired rather than absent thymic function.

Clinical Findings

A. Symptoms and Signs

Clinical characteristics include congenital heart defects, hypocalcemia due to hypoparathyroidism, distinctive craniofacial features, renal anomalies, and thymic hypoplasia. The term partial DiGeorge syndrome is commonly applied to these patients with impaired rather than absent thymic function.
Patients have an increased risk to develop schizophrenia and autoimmune disorders.

B. Laboratory Findings

Laboratory evaluation typically reveals normal to decreased numbers of T lymphocytes with preserved T-lymphocyte function and normal B-lymphocyte function. In the rare patient with absent or dysfunctional T lymphocytes, B-lymphocyte function and antibody production may be abnormal. Over time, T-lymphocyte numbers normalize in the majority of patients who have low numbers of T lymphocytes at initial presentation. The diagnosis is confirmed via fluorescence in situ hybridization (FISH) chromosomal analysis for the microdeletion on chromosome 22, or microarray-based comparative genomic hybridization.

Treatment

Treatment of the 22q11.2 deletion syndrome may require surgery for cardiac defects, and vitamin D, calcium, or parathyroid hormone replacement to correct hypocalcemia and treat seizures. Transfusion products should be irradiated. Both thymic grafts and BMT have been used successfully in patients with absent T-lymphocyte immunity. Prior to giving live vaccines, T-cell numbers and function should be assessed if not done earlier, to prevent vaccine-related side effects.

3. Ataxia-Telangiectasia

Ataxia-telangiectasia (A-T) is a rare, neurodegenerative, AR-inherited disorder caused by mutations in the ataxia-telangiectasia–mutated (ATM) gene located on chromosome 11q22–23 that encodes the ATM protein, a protein kinase involved in repair of double-stranded DNA and cell cycle regulation. A-T is characterized by progressive cerebellar ataxia, telangiectasia, and variable immunodeficiency. Children usually present as toddlers with slurred speech and balance problems, and also with sinopulmonary infections. Telangiectasias of the conjunctivae and exposed areas (eg, nose, ears, and shoulders) follow later during childhood. Respiratory tract infections promoted by respiratory muscle weakness, swallowing dysfunction and recurrent aspirations, and malignancies, including carcinomas and lymphomas, are the major causes of death between the second and fourth decade of life. Abnormal findings in A-T include elevated α-fetoprotein levels that increase over time and are used diagnostically; immunoglobulin deficiencies, including low levels of IgA, IgE, or IgG; and defective ability to repair radiation-induced DNA fragmentation. There is no definitive treatment, although Ig replacement and aggressive antibiotics have been used with limited success. Heterozygotes have an increased risk for breast cancer.

Similarly to A-T, the Nijmegen breakage syndrome is a disorder associated with impaired DNA repair and mutations in the NBS1 gene that shows more severe clinical features, including microcephaly and facial dysmorphisms, small stature, immunodeficiency, and increased risk for lymphoid malignancies.

4. X-Linked Hyper-IgM Syndrome

X-linked hyper-IgM (HIGM) syndrome or CD40L deficiency is the most common and most severe form of HIGM syndrome and involves a mutation in the gene encoding for CD40L (CD154). CD40L is expressed on activated T lymphocytes and necessary for T cells to induce immunoglobulin isotype switching in B cells. Unlike the AR forms of HIGM syndrome, the mutation results in both antibody- and cell-mediated deficiencies, as the interaction between CD40L on T cells and CD40 on B cells and antigen-presenting cells is important for both antibody production and T-cell activation. Affected males have normal numbers of B lymphocytes, low levels of IgG and IgA, but normal or elevated levels of IgM. Typically, male infants present with recurrent bacterial and opportunistic infections such as P carinii pneumonia or Cryptosporidium diarrhea. Additionally, affected males have a high frequency of sclerosing cholangitis, increased liver and biliary tract carcinomas, neutropenia, and autoimmune syndromes, including thrombocytopenia, arthritis, and inflammatory bowel disease. Conservative treatment includes Ig replacement and antibiotic prophylaxis. Because the prognosis is still quite poor, BMT has been used with initial success.

5. NF-κB Signaling defects

Immunodeficiency due to mutations in the gene for nuclear factor-κB (NF-κB)—essential modulator (NEMO; IKBKG gene) is an XL syndrome in which male patients manifest ectodermal dysplasia (abnormal, conical teeth, fine sparse hair, and abnormal or absent sweat glands) and defects of T and B lymphocytes. NF-κB is involved in signaling through CD40 on B cells, and NEMO mutations result in abnormal immunoreceptor signaling. Many mutations are fatal in utero for male infants. Female carriers may have incontinence pigmented. Surviving males present with early serious infections, including opportunistic infections with P carinii and atypical mycobacteria. Laboratory evaluation reveals hypogammaglobulinemia that may present as HIGM syndrome and poor specific antibody production, but normal numbers of T and B lymphocytes. Functional evaluation of lymphocytes demonstrates variable response. Because patients with confirmed NEMO mutations are quite rare, the best treatment course is unknown, but aggressive antibiotic therapy in combination with Ig replacement as well as BMT has been used. The prognosis is dependent on the severity of immunodeficiency, with most deaths due to infection. Mutations in the NF-κB1A gene that encodes 1kBx (nuclear factor of kappa light
polypeptide gene enhancer in B-cell inhibitor alpha) result in an AD-inherited defect with similar clinical presentation.

6. Combined Immunodeficiency With Defective Expression of MHC I & II

Major histocompatibility complex class I (MHC I) deficiency or bare lymphocyte syndrome type I is an AR-combined immunodeficiency. Affected patients have abnormal expression of the transporter associated with antigen processing (TAP). TAP proteins are important for intracellular transport and expression of MHC I on cell surfaces. Patients with bare lymphocyte syndrome type I present with recurrent sinopulmonary and skin infections. The diagnosis is confirmed by demonstrating an absence of MHC I expression.

Major histocompatibility complex class II (MHC II) deficiency or bare lymphocyte syndrome type II is a rare AR-combined immunodeficiency in which cells lack MHC II expression due to mutations in CIITA, RFX-5, RXAP, or RFZANK genes. Clinical presentation includes recurrent viral, bacterial, and fungal infections. Patients with bare lymphocyte syndrome type II have normal numbers of T and B lymphocytes, but low CD4+ lymphocyte numbers, abnormal lymphocyte function, and hypogammaglobulinemia. They also have a high incidence of sclerosing cholangitis. When this diagnosis is suspected, demonstration of absent MHC II molecules confirms the disorder. Severe cases are fatal without BMT, but milder phenotypes may be managed with Ig replacement and aggressive use of antibiotics.

7. Purine Nucleoside Phosphorylase Deficiency

Purine nucleoside phosphorylase (PNP) deficiency is an immunodeficiency due to defects in the gene encoding PNP, which is important in the purine salvage pathway. Deficiency of PNP causes toxic metabolites that result in T-lymphocyte death, but in many patients B lymphocytes are spared. Not only does this AR disease result in recurrent and serious infections, but affected patients also have concomitant neurologic (developmental delay, ataxia, and spasticity) and autoimmune disorders. Infections present at variable ages. Laboratory evaluation reveals low numbers of or absent T lymphocytes and a variable B-lymphocyte deficiency. Without BMT, this disease is fatal due to infection or malignancy.

PHAGOCYTE DISORDERS

Phagocyte defects include abnormalities of both numbers (neutropenia) and function of polymorphonuclear neutrophils. Functional defects consist of impairments in adhesion, chemotaxis, bacterial killing, or, less often, of combinations of these.

1. Neutropenia

The presence of neutropenia should be considered when evaluating recurrent infections. The diagnosis and treatment of neutropenia is discussed in Chapter 30. Additionally, some PID syndromes are associated with neutropenia (e.g., XLA).

2. Chronic Granulomatous Disease

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Recurrent infections with catalase-positive bacteria and fungi.
- XL and AR forms.
- Caused by abnormal phagocytosis-associated generation of microbicidal oxygen metabolites (respiratory burst) by neutrophils, monocytes, and macrophages.

General Considerations

Chronic granulomatous disease (CGD) is caused by a defect in any of several genes encoding proteins in the enzyme complex nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which results in defective superoxide and hydrogen peroxide generation during ingestion of microbes. Most cases (probably 75%) are inherited as an XL recessive trait; the rest are AR in inheritance.

Clinical Findings

A. Symptoms and Signs

The typical clinical presentation is characterized by recurrent abscess formation in subcutaneous tissue, lymph nodes, lungs, and liver, and by pneumonia and eczematous and purulent skin rashes. Infecting organisms are typically catalase-positive bacteria, which can break down their own hydrogen peroxide and thus avoid death when captured in a CGD phagocytic vacuole. (Streptococci, pneumococci, and H influenzae lack catalase and are not unusually pathogenic in CGD.) Aspergillosis is also common and a frequent cause of death. Lymphadenopathy and hepatosplenomegaly are found on physical examination, and granulomas are seen in histopathologic sections. Granulomatous inflammation can narrow the outlet of the stomach or bladder in these patients, leading to vomiting or urinary obstruction.

B. Laboratory Findings

Patients typically present with serious infection, positive microbial cultures, and neutrophilia. The most common infecting organisms are S aureus, Aspergillus species,
Burkholderia cepacia, and Serratia marcescens. (Culture of either of the last two should suggest this diagnosis.) Patients also present with granulomas of lymph nodes, skin, liver, and genitourinary tract. The erythrocyte sedimentation rate may be elevated without obvious infection. The diagnosis is confirmed by demonstrating lack of hydrogen peroxide production using the DHR flow cytometry assay or lack of superoxide production using the NBT test. Both tests can demonstrate carrier status of XL disease.

Differential Diagnosis

The differential diagnosis includes other phagocyte abnormalities or deficiencies described in this section, as well as the rare neutrophil granule deficiency. Other immunodeficient states leading to severe bacterial or fungal infections should be considered, but none have the striking abscess formation and deficient phagocytosis-associated respiratory burst that characterize CGD.

Treatment

Daily intake of an antimicrobial agent such as trimethoprim-sulfamethoxazole is indicated in all patients; an oral antifungal agent like itraconazole and regular subcutaneous injections of interferon-γ can greatly reduce the risk of severe infections. BMT has been successful in some cases, but the risk of death is high unless the patient’s condition is stable. Gastric or GU obstruction can be relieved by short-term steroid therapy.

3. Leukocyte Adhesion Defects Types I & II

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Recurrent serious infections.
- “Cold” abscesses without pus formation.
- Poor wound healing.
- Gingival or periodontal disease (or both).

General Considerations

The ability of phagocytic cells to enter peripheral sites of infection is critical for effective host defense. In leukocyte adhesion defect (LAD), defects in proteins required for leukocyte adherence to and migration through blood vessel walls prevent these cells from arriving at the sites of infection. LAD I is an AR disease caused by mutations in the common chain of the β₂ integrin family (CD18) located on chromosome 21q22.3. These mutations result in impaired neutrophil migration, adherence, and antibody-dependent phagocytosis. LAD II is a rare AR disease caused by an inborn error in fucose metabolism that results in abnormal expression of leukocyte Sialyl-Lewis X (CD15s), which binds to selectins on the vessel endothelium. The resulting phenotype is similar to LAD I, with recurrent infections, lack of pus formation, poor wound healing, and periodontal disease. LAD II patients also have developmental delays, short stature, dysmorphic facies, and the Bombay (hh) blood group.

Clinical Findings

A. Symptoms and Signs

Patients present with variably severe phenotypes, including recurrent serious infections, lack of pus formation, poor wound healing, and gingival and periodontal disease. The hallmark is little inflammation and absent neutrophils on histopathologic evaluation of infected sites (ie, “cold” abscesses), especially when concurrent with neutrophilia, an expression of poor adherence to vessel walls. The most severe phenotype manifests with infections in the neonatal period, including delayed separation of the umbilical cord with associated omphalitis.

B. Laboratory Findings

Laboratory evaluation often demonstrates a striking neutrophilia. Diagnosis of suspected cases is confirmed by flow cytometry analysis for CD18 (LAD I) or CD15s (LAD II).

Treatment

Treatment includes aggressive antibiotic therapy. Fucose supplementation in LAD II has been reported with some success.

4. Glucose-6-Phosphate Dehydrogenase Deficiency

Rare forms of XL glucose-6-phosphate dehydrogenase deficiency with associated hemolytic anemia affect leukocytes as well as erythrocytes and result in recurrent infections due to an abnormal neutrophil respiratory burst, probably due to NAD/NADPH deficiency.

5. Myeloperoxidase Deficiency

Leukocyte myeloperoxidase (MPO) is important for intracellular destruction of C albicans. Although deficiency is quite common, only a very few patients with concurrent diabetes have had severe candidal infections. Diagnosis can be confirmed with assays measuring MPO levels in leukocytes.

COMPLEMENT DEFICIENCIES

Complement contributes to innate immunity and facilitates antibody-mediated immunity through opsonization, lysis of target cells, and recruitment of phagocytic cells. The complement system includes three interactive pathways
of enzymatic reactions: classic, alternative, and lectin (see Figure 33–4). All three pathways generate cleavage of C3 and result in promotion of inflammation, elimination of pathogens, and enhancement of the immune response. Activation of the complement system occurs through microbial products, tissue enzymes, and surface-bound IgG and IgM antibodies or pentraxins, for example C-reactive protein.

1. Complement Component Deficiencies

Deficiencies of individual complement components (C1–C9) are inherited as autosomal codominant traits, each parent contributing one null gene. Serum levels of the deficient component are about half normal in the parents and zero or almost zero in the patients. Deficiencies of C1, C2, or C4 predispose to increased infections but are particularly associated with autoimmune disorders such as systemic lupus erythematosus. Patients with homozygous C2 deficiency can present at any age in childhood with bacteremia or meningitis due to *S pneumoniae* or *H influenzae*. Primary C3 deficiency presents with severe pyogenic infections since C3 is critical for opsonization in both the classic and alternative pathways. Deficiency of the control protein factor I, which acts to break up the C3-cleaving complex formed in the classic or alternative pathway, leads to unbridled consumption of C3 and, thereby, severe bacterial infections. Deficiency of a terminal complement component in the membrane attack complex (C5, C6, C7, C8, and C9) or of properdin (an XL alternative pathway control protein) results in recurrent neisserial meningitis or disseminated gonococcal infection. Survivors of either of these serious neisserial infections should be screened for complement deficiency, first with a CH50 assay and later with an AH50 assay if the CH50 is normal.

Mannose-binding lectin and ficolins-1, 2, and 3 serve as the recognition components of the lectin pathway, which recognizes microbial surface carbohydrates. Deficiency of MBL has been linked to increased risk of infections in infancy and in patients who have another defect of host defense. Ficolin-3 deficiency has been associated with severe infections.

2. Hereditary Angioedema Due to C1 Inhibitor Deficiency

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Recurrent episodes of angioedema often triggered by trauma.
- No associated urticaria or pruritus.
- Onset at any age but more common after puberty.

**General Considerations**

Hereditary angioedema (HAE) is an autosomal dominant disorder caused by mutations in the SERPING1 gene, leading to deficiency of C1 inhibitor (C1-INH), which controls activation of the classic complement pathway, fibrinolytic and coagulation systems, and kallikrein-kinin system. Bradykinin is the most important vasoactive mediator contributing to recurrent swellings, but there is no increased susceptibility to infection. In HAE type I, C1-INH protein levels and function are decreased. In HAE type II, C1-INH protein levels are normal with decreased function. C1-INH protein and function are normal in patients with HAE type III, but they may present with mutations in the gene encoding for factor XII (F12). Acquired forms can occur with B-lymphocyte malignancies, autoantibodies against C1-INH and therefore reduced C1-INH and C1q levels, or use of an angiotensin-converting enzyme inhibitor as medication.

**Clinical Findings**

**A. Symptoms and Signs**

Affected patients can experience edema of skin and bowel and potentially life-threatening edema of the airway. Typical sites of swelling include the face, extremities, and genitals. Trauma, accidental or due to surgery, childbirth, or dental work, may induce edema. Typical problems include episodic intestinal obstruction and dental procedure–induced upper airway obstruction. The edema is usually nonpainful (unless it involves the bowel) and lasts 48–72 hours. There is no associated urticaria, redness, or pruritus. Age of onset is variable, and there is often a positive family history.

**B. Laboratory Findings**

Initial screening tests for C1-INH deficiency show a decreased CH50 or low levels of C4 and C2. C1q is usually normal. The diagnosis is confirmed by low or absent levels of C1-INH (type I, 85% of cases) or poor or absent C1-INH function (type II).

**Differential Diagnosis**

Other causes of acquired angioedema, including that associated with certain medications (most notably angiotensin-converting enzyme modifying drugs), autoimmune diseases, and lymphoproliferative diseases, should be considered. A normal level of C1q in HAE usually distinguishes this form from the acquired forms.

**Treatment**

Intravenous C1-INH concentrate is the treatment of choice for the emergency management of acute edema (eg, laryngeal or diffuse facial edema, severe abdominal attacks). Treatment with this concentrate can also be used for long-term prophylaxis.
when attacks occur monthly or have been life-threatening, or for preparation for surgery or dental work. Fresh frozen plasma may be used as a substitute in the acute situation. Synthetic androgens, for example, oxandrolone prevents attacks by increasing C1-INH levels, and this is approved for cautious use in children. Antihistamines, adrenalin, and steroids have no therapeutic value.

3. Factor H Deficiency & Atypical Hemolytic Uremic Syndrome

The effects of factor H deficiency are like those of factor I deficiency because factor H helps dismantle the alternative pathway C3-cleaving enzyme. Levels of C3, factor B, CH50, and AP50 are all decreased. Some patients have sustained serious infections, and many have had glomerulonephritis or atypical hemolytic uremic syndrome (aHUS). Mutations in genes encoding membrane control protein, factor I, factor B, C3, or the endothelial anti-inflammatory protein thrombomodulin, or autoantibodies to factor H, have also been associated with HUS. In a child with HUS, it seems advisable to screen for a complement deficiency, first with the CH50 assay. With an associated complement disorder the prognosis is less favorable, and recognizing the presence of a complement deficiency should alert the physician to the associated increased risk of infection and/or autoimmune disease.

OTHER WELL-DEFINED IMMUNODEFICIENCY SYNDROMES

1. Hyper-IgE Syndrome

Hyper-IgE syndrome (HIES), also known as Job syndrome, is a rare PID characterized by elevated levels of IgE (> 2000 IU/mL), neonatal eczematoid rash, recurrent infections with S aureus, recurrent pneumonia with pneumatocele formation, and typical facies. Mutations in a specific transcription factor, signal transducer and activator of transcription 3 (STAT3), underlie sporadic and AD forms of HIES. Additional clinical findings of HIES include retained primary teeth, scoliosis, hyperextensibility, high palate, and osteoporosis. In addition to staphylococcal infections, affected patients also have increased incidence of infections due to Streptococcus spp, Pseudomonas spp, C albicans, and even opportunistic infections with P carinii. AR HIES is associated with mutations in dedicator of cytokinesis 8 (DOCK8) and tyrosine kinase 2 (TYK2) genes. Patients with AR HIES have an increased susceptibility to viral infections, including recurrent molluscum contagiosum, warts, and herpes simplex infections. Increased susceptibility to mycobacterial infections is found in patients with TYK2 mutations. Laboratory evaluation reveals normal to profoundly elevated levels of IgE and occasionally eosinophilia. However, atopic dermatitis and parasite infection are much more common causes of elevated IgE. Diagnosis is often difficult due to variable presentation, which may become progressively severe with increasing age, but genetic testing for STAT3, DOCK8, and TYK2 mutations will help confirm the diagnosis of HIES particularly at a young age. All patients with HIES have impaired T\(_{h17}\) cell function, and measurement of T\(_{h}17^+\) cells in the peripheral blood can be used as screening test if HIES is suspected. The mainstay of treatment is prophylactic and symptomatic antibiotic use in combination with good skin care. Ig replacement has been used with some success to decrease infections and possibly modify IgE levels. Successful stem cell transplants have been conducted in DOCK8 deficiency.

2. Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked Syndrome

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare disease that usually manifests with severe diarrhea and insulin-dependent diabetes mellitus within the first months of life. Affected males also have severe eczema, food allergy, autoimmune cytopenias, lymphadenopathy, splenomegaly, and recurrent infections. Most die before 2 years of age due to malnutrition or sepsis. IPEX syndrome results from mutations in the FOXP3 gene that encodes a protein essential for developing regulatory T lymphocytes. Leukocyte counts and immunoglobulin levels are generally normal. Immunosuppression and nutritional supplementation produce temporary improvements, but the prognosis is poor and most cases result in early death. BMT has been attempted with variable success. More recently, IPEX-like syndromes have been described as associated with mutations of the gene encoding CD25, the high affinity IL-2 receptor (IL2R) which is constitutively expressed on regulatory T cells. If IPEX or IPEX-like syndromes are suspected, the presence of FOXP3\(^+\)/CD25\(^+\) regulatory T cells should be assessed not only in affected boys but also in girls. Genetic testing for FOXP3 mutations will be helpful to identify affected patients and carriers of the gene mutation.

3. X-Linked Lymphoproliferative Syndrome

X-linked lymphoproliferative syndrome is an immunodeficiency that usually develops following EBV infection. Affected males develop fulminant infectious mononucleosis with hemophagocytic syndrome, multiple organ system failure, and bone marrow aplasia. The mutated gene (SH2D1A/SAP/DSHP) encodes a signaling protein used by T lymphocytes and NK cells called SLAM-adapter protein (SAP). Affected boys are immunologically normal prior to EBV infection and during acute infection they produce antibody to EBV. In most instances, infection with EBV is fatal. Patients who survive the initial episode or who are
4. Chronic Mucocutaneous Candidiasis

Several gene defects have been associated with chronic mucocutaneous candidiasis (CMC), a disorder characterized by isolated candidal infections of the skin, nails, and mucous membranes. Systemic disease is not characteristic, but case reports of intracranial mycotic aneurysms exist. Primary CMC most commonly occurs as an isolated syndrome, but it can be associated with endocrine or autoimmune disorders. Mutations in the signal transducer and activator of transcription 3 (STAT3) gene and gain-of-function mutations in STAT1 can lead to defective T_{n17} responses, susceptibility to CMC, and *S. aureus* infections. Mutations in *IL17F* and *IL17R*, C-type lectin–associated 7 (CLEC7A or DECTIN1) or caspase recruitment domain-containing protein 9 (CARD9) cells have also been associated with CMC. An AR form of CMC with associated autoimmunity, also known as *autoimmune polyendocrinopathy, candidiasis, ectodermal dysplasia* (APECED) syndrome, is characterized by recurrent candidal infections, abnormal T-lymphocyte response to *Candida*, autoimmune endocrinopathies, and ectodermal dystrophies. APECED is caused by mutations in the gene for an important transcription regulator protein called *autoimmune regulator* (AIRE) that is critical for normal thymocyte development. In APECED, autoantibodies against IL17A and IL17F impair the T_{n17} response and contribute to CMC. Treatment of CMC includes antifungal therapy in combination with therapy for associated endocrinopathies.

5. Autoimmune Lymphoproliferative Syndrome

Autoimmune lymphoproliferative syndrome (ALPS) results from mutations of genes important for regulating programmed lymphocyte death (apoptosis). Most commonly, the defect is in Fas (CD95) or Fas ligand, but other defects in the Fas pathway have also been described (eg, caspase 10). Clinical presentation includes lymphadenopathy, splenomegaly, and autoimmune disorders (autoimmune hemolytic anemia, neutropenia, thrombocytopenia, and sometimes arthritis). Occasionally, patients have frequent infections. The diagnosis is suspected when T-lymphocyte subsets by flow cytometry demonstrate elevated numbers of CD3^+CD4^−CD8^− (double negative) T lymphocytes. Several different types of ALPS are distinguished by the response of lymphocytes to Fas-induced apoptosis. Patients are often heterozygous, and inheritance is mostly autosomal dominant. Treatment with prednisone often controls the lymphadenopathy. Infections should be treated appropriately. In some cases, BMT has been curative. Affected patients are also at risk for lymphoma. Mutations affecting another apoptosis-related protein, caspase 8, cause an ALPS variant syndrome in which the susceptibility to infection by herpes simplex virus also increases.

6. WHIM Syndrome

WHIM (warts, hypogammaglobulinemia, infection, myelokathexis) syndrome is a rare AD immunodeficiency caused by gain-of-function mutations in the gene encoding the chemokine receptor CXCR4. Patients have an increased susceptibility to viral infections (including HPV, EBV, and HSV) and recurrent bacterial infections. Laboratory evaluation reveals peripheral blood neutropenia with bone marrow hypercellularity, decreased B-cell numbers and hypogammaglobulinemia, and T-cell lymphopenia with normal CD4^+/CD8^− ratio.

7. Diseases Due to Defects in Interferon-γ & Interleukin-12 Pathways

IL-12 is a powerful inducer of interferon-γ (IFN-γ) production by T cells and NK cells. IFN-γ, and therefore the IFN-γ–IL-12 axis, is critical for macrophage activation and resistance to mycobacterial infections. Individuals with inherited deficiency in IL-12, macrophage receptors for IFN-γ, lymphocyte receptors for IL-12, or STAT1 signaling suffer a profound and selective susceptibility to infection by nontuberculous mycobacteria such as *Mycobacterium avium* complex or bacille Calmette-Guérin (BCG). About half of these patients have had disseminated salmonellosis. Treatment with supplemental IFN-γ is effective unless the IFN-γ receptor is not functional. Long-term mycobacterial prophylaxis should be considered in these individuals.

8. MonoMAC Syndrome

Disseminated infection by nontuberculous mycobacteria, viruses (ie, HPV), and fungi were recently described in association with GATA2 mutations or MonoMac (sporadic monocytopenia and mycobacterial infection) syndrome. Patients usually become symptomatic during adulthood, but younger patients may also be affected. Patients have peripheral blood monocytopenia, but presence of macrophages at sites of infections. B lymphocyte and NK cell numbers are reported low with variable T-cell numbers. This is an
autosomal dominant inherited disease with an increased risk for malignancies, especially myelodysplasia and leukemia.

9. Pattern-Recognition Receptor Defects

Pattern-recognition receptor (PRR) defects are associated with altered cytokine production and increased susceptibility to specific microbes. The clinical presentation of affected patients is most severe during infancy and early childhood with improvement of infections while patients get older, suggesting that adaptive immune responses compensate for defects in innate immunity. TLRs and members of the interleukin-1 receptor (IL-1R) family signal through IL-1R–associated kinases (IRAK) 1 and 4 while using the adaptor molecule MyD88, leading to activation of NF-κB and inflammatory cytokine production. Patients with AR deficiencies in MyD88 and IRAK-4 are predisposed to severe bacterial infections that are not associated with a high fever or significant increase in C-reactive protein at the beginning of infection. Laboratory results may reveal a decreased antibody response to polysaccharide antigens, increased IgG and IgG4 concentrations, and decreased IL-6 production upon whole blood stimulation through most TLR and IL-1R agonists. TLR3 deficiency increases susceptibility to infections with herpes simplex infections, while polymorphisms of TLR5 predispose to legionella pneumonia infections. Chronic mucocutaneous fungal infections have been linked to defects in the dectin-1/CARD9 pathway. Bacterial infections, specifically with *Neisseria meningitis*, but also viral and fungal infections can occur in context of mannose-binding lectin deficiency.

## GENETIC SYNDROMES ASSOCIATED WITH IMMUNODEFICIENCY

Several described genetic syndromes have associated immunodeficiency that is often identified after the syndrome has been diagnosed. Usually, the immune defect is not the major presenting clinical problem.

1. **Bloom Syndrome**

   Characteristics of Bloom syndrome include growth retardation, sunlight sensitivity, and telangiectasias of the face. The syndrome results from mutations in the *Blm* gene that encodes a RecQ-helicase involved in DNA repair. Affected patients present with growth retardation, microcephaly, and sun-sensitive rashes. They have an increased risk of malignancy and life-threatening infections. B- and T-cell numbers are low. Serum Igs are decreased, and T-lymphocyte function is abnormal.

2. **Transcobalamin Deficiency**

   Transcobalamin deficiency is a rare AR disease due to defective cellular transport of cobalamin associated with mutations in the *TCN2* gene. Patients present with megaloblastic anemia, diarrhea, poor growth, neurologic abnormalities, hypogammaglobulinemia, and poor specific antibody production.

3. **Immunodeficiency, Centromeric Instability, Facial Anomalies Syndrome**

   Immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome is a rare AR condition caused by abnormal DNA methyltransferase. In half of the patients, a mutation can be detected in the *DNMT3B* gene. Unlike other chromosome instability syndromes, ICF syndrome does not have an associated hypersensitivity to sunlight. Affected patients have severe respiratory, gastrointestinal, and skin infections due to low or absent immunoglobulins and abnormal T-lymphocyte numbers and function.

4. **Trisomy 21**

   Patients with trisomy 21 or Down syndrome have increased susceptibility to respiratory infection. Immunodeficiency is variable, and abnormal numbers and function of T and B lymphocytes have been reported. Additionally, patients have an increased incidence of autoimmune diseases.

5. **Turner Syndrome**

   Turner syndrome (partial or complete absence of one X chromosome) is associated with increased risk of otitis media, respiratory infections, and malignancies. Immune defects are variable but may include abnormal T-lymphocyte numbers and function and hypogammaglobulinemia.

6. **Chédiak-Higashi Syndrome**

   Chédiak-Higashi syndrome is a rare AR disease caused by mutations in a lysosomal trafficking regulator (*LYST*) gene. The neutrophils of affected individuals have giant lysosomes, impaired chemotaxis, neutropenia, and abnormal NK-cell cytotoxicity. Patients present with recurrent infections (particularly periodontitis), partial oculocutaneous albinism, and neuropathy. Most patients progress to generalized lymphohistiocytic infiltration syndrome, which is a common cause of death. Treatment strategies address infections and neuropathy, and the use of immunosuppression attempts to slow lymphoproliferative progression.

7. **Griscelli Syndrome**

   Characterized by partial albinism, neutropenia, thrombocytopenia, and lymphohistiocytosis, Griscelli syndrome is a rare AR syndrome resulting from mutations in the myosin VA gene. Affected patients have recurrent and serious infections caused by fungi, viruses, and bacteria. Immunologic evaluation demonstrates variable immunoglobulin levels and antibody function with impaired T-lymphocyte function.
BMT can correct the immunodeficiency. Griscelli syndrome is distinguished from Chédiak-Higashi syndrome by the lack of granules in white blood cells.

8. Netherton Syndrome
Patients with the AR Netherton syndrome present with trichorrhexis (brittle hair), ichthyosiform rash, and allergic diseases. A subset of patients develops recurrent infections. Immune function is variable but may include hypo- or hypergamma-globulinemia, abnormal T-lymphocyte function, or abnormal phagocyte function. The disease results from mutations in a serine protease inhibitor encoded on the SPINK5 gene.

9. Cartilage-Hair Hypoplasia
Cartilage-hair hypoplasia is an AR form of chondrodysplasia manifesting with short-limbed short stature, hypoplastic hair, defective immunity, and poor erythrogenesis. The immune defect is characterized by mild to moderate lymphopenia and abnormal lymphocyte function, but normal antibody function. Affected patients have increased susceptibility to infections and increased risk of lymphoma. The disorder results from mutation in the RMRP gene that encodes the RNA component of an RNase MRP complex. BMT can restore cell-mediated immunity but does not correct the cartilage or hair abnormalities.
Endocrine Disorders

Philip S. Zeitler, MD, PhD
Sharon H. Travers, MD
Kristen Nadeau, MD
Jennifer M. Barker, MD
Megan Moriarty Kelsey, MD
Michael S. Kappy, MD, PhD

GENERAL CONCEPTS

The classic concept that endocrine effects are the result of substances secreted into the blood with effects on a distant target cell has been updated to account for other ways in which hormonal effects occur. Specifically, some hormone systems involve the stimulation or inhibition of metabolic processes in neighboring cells (eg, within the pancreatic islets or cartilage). This phenomenon is termed paracrine. Other hormone effects reflect the action of hormones on the same cells that produced them. This action is termed autocrine. The discoveries of local production of insulin, glucagon, ghrelin, somatostatin, cholecystokinin, and many other hormones in the brain and gut support the concept of paracrine and autocrine processes in these tissues.

Another significant discovery in endocrine physiology was an appreciation of the role of specific hormone receptors in target tissues, without which the hormonal effects cannot occur. For example, in the complete androgen insensitivity syndrome (AIS), androgen receptors are defective, and the 46,XY individual develops varying degrees of undervirilization of the external genitalia and internal (wolfian) duct system despite the presence of testes and adequate testosterone production. Similarly, in nephrogenic diabetes insipidus or Albright hereditary osteodystrophy (AHO [pseudohypoparathyroidism [PHP]]), affected children have defective antidiuretic hormone or parathyroid hormone (PTH) receptor function, respectively, and show the metabolic effects of diabetes insipidus or hypoparathyroidism despite more-than-adequate hormone secretion. Alternatively, abnormal activation of a hormone receptor leads to the effects of the hormone without its abnormal secretion. Examples of this phenomenon include McCune-Albright syndrome (precocious puberty and hyperthyroidism), testotoxicosis (familial male precocious puberty), and hypercalciuric hypocalcemia.

HORMONE TYPES

Hormones are of three main chemical types: peptides and proteins, steroids, and amines. The peptide hormones include the releasing factors secreted by the hypothalamus, the hormones of the anterior and posterior pituitary gland, pancreatic islet cells, parathyroid glands, lung (angiotensin II), heart and brain (atrial and brain natriuretic hormones), and local growth factors such as insulin-like growth factor 1 (IGF-1). Steroid hormones are secreted primarily by the adrenal cortex, gonads, and kidney (active vitamin D [1,25(OH)2 D3]). The amine hormones are secreted by the adrenal medulla (epinephrine) and the thyroid gland (triiodothyronine [T3] and thyroxine [T4]).

As a rule, peptide hormones and epinephrine act after binding to specific receptors on the surface of their target cell. The metabolic effects of these hormones are usually stimulation or inhibition of the activity of preexisting enzymes or transport proteins (posttranslational effects). The steroid hormones, thyroid hormone, and active vitamin D, in contrast, act more slowly and bind to cytoplasmic receptors inside the target cell and subsequently to specific regions on nuclear DNA, where they direct a read-out of specific protein(s). Their metabolic effects are generally caused by stimulating or inhibiting the synthesis of new enzymes or transport proteins (transcriptional effects), thereby increasing or decreasing the amount rather than the activity of these proteins in the target cell.

Metabolic processes that require rapid response, such as blood glucose or calcium homeostasis, are usually controlled by peptide hormones and epinephrine, while processes that respond more slowly, such as pubertal development and metabolic rate, are controlled by steroid hormones and thyroid hormone. The control of electrolyte homeostasis is intermediate and is regulated by a combination of peptide and steroid hormones (Table 34-1).
FEEDBACK CONTROL OF HORMONE SECRETION

Hormone secretion is regulated, for the most part, by feedback in response to changes in the internal environment. When the metabolic imbalance is corrected, stimulation of the hormone secretion ceases and may even be inhibited. Overcorrection of the imbalance stimulates secretion of a counterbalancing hormone or hormones, so that homeostasis is maintained within relatively narrow limits.

Hypothalamic-pituitary control of hormonal secretion is also regulated by feedback. End-organ failure (endocrine gland insufficiency) leads to decreased circulating concentrations of endocrine gland hormones and thence to increased secretion of the respective hypothalamic releasing and pituitary hormones (see Table 34–1; Figure 34–1). If restoration of normal circulating concentration of hormones occurs, feedback inhibition at the pituitary and hypothalamus results in cessation of the previously stimulated secretion of releasing and pituitary hormones and restoration of their circulating concentrations to normal.

Similarly, if there is autonomous endocrine gland hyperfunction (eg, McCune-Albright syndrome, Graves disease, or adrenal tumor), the specific hypothalamic releasing and pituitary hormones are suppressed (see Figure 34–1).

Disturbances of growth and development are the most common problems evaluated by a pediatric endocrinologist. While most cases represent normal developmental variants, it is critical to identify abnormal growth patterns, as deviations from the norm can be the first or only manifestation of an endocrine disorder. Height velocity is the most critical parameter in evaluating a child’s growth. A persistent increase or decrease in height percentiles between age 2 years and the onset of puberty always warrants evaluation. Similarly, substantial deviations from target height may be indications of underlying endocrine or skeletal disorders. It is more difficult to distinguish normal from abnormal growth in the first 2 years of life, as infants may have catch-up or catch-down growth during this period. Similarly, the variable timing of the onset of puberty makes early adolescence another period during which evaluation of growth abnormalities may require careful consideration.

Appropriate standards must be used to evaluate growth. The National Center for Health Statistics provides standard cross-sectional growth charts for North American children (see Chapter 2) and the World Health Organization (WHO) growth charts use an ethnically more diverse sample. Normal growth standards may vary with country of origin. Growth charts are available for some ethnic groups in North America and for some syndromes with specific growth disturbance such as Turner or Down syndromes.

**TARGET HEIGHT & SKELETAL MATURATION**

A child’s growth and height potential is determined largely by genetic factors. The target (midparental) height of a child is calculated from the mean parental height plus 6.5 cm for boys or minus 6.5 cm for girls. This calculation helps identify a child’s genetic growth potential. Most children achieve an adult height within 8 cm of the midparental height. Another parameter that determines growth potential is skeletal maturation or bone age. Beyond the neonatal period, bone age is evaluated by comparing a radiograph of the child’s left hand and wrist with the standards of Greulich and Pyle. Delayed or advanced bone age is not diagnostic of any specific disease, but the extent of skeletal maturation allows determination of remaining growth potential as a percentage of total height and allows prediction of ultimate height.

**SHORT STATURE**

It is important to distinguish normal variants of growth (familial short stature and constitutional growth delay) from pathologic conditions (Table 34–2). Pathologic short stature is more likely in children whose growth velocity is abnormal (crossing major height percentiles on the growth curve) or who are significantly short for their family. Children with chronic illness or nutritional deficiencies may have poor linear growth, but this is typically associated with inadequate weight gain. In contrast, endocrine causes of short stature are usually associated with normal or excessive weight gain.

1. **Familial Short Stature & Constitutional Growth Delay**

Children with familial short stature typically have normal birth weight and length. In the first 2 years of life, their linear growth velocity decelerates as they near their genetically determined percentile. Once the target percentile is reached, the child resumes normal linear growth parallel to the growth curve, usually between 2 and 3 years of age. Skeletal maturation and timing of puberty are consistent with chronologic age. The child grows along his/her own growth percentile and the final height is short but appropriate for
Table 34–2. Causes of short stature.

<table>
<thead>
<tr>
<th>A. Genetic-familial short stature</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Constitutional growth delay</td>
</tr>
<tr>
<td>C. Endocrine disturbances</td>
</tr>
<tr>
<td>1. Growth hormone (GH) deficiency</td>
</tr>
<tr>
<td>a. Hereditary</td>
</tr>
<tr>
<td>(1) Growth hormone-releasing hormone (GHRH) receptor mutation</td>
</tr>
<tr>
<td>(2) GH gene deletion</td>
</tr>
<tr>
<td>(3) Congenital hypopituitarism—GH deficiency in combination with deficiency of other anterior pituitary hormones</td>
</tr>
<tr>
<td>b. Idiopathic—with and without associated abnormalities of midline structures of the central nervous system</td>
</tr>
<tr>
<td>(1) Isolated GH deficiency</td>
</tr>
<tr>
<td>(2) Combined pituitary hormone deficiency</td>
</tr>
<tr>
<td>c. Acquired</td>
</tr>
<tr>
<td>(1) Transient—eg, psychosocial short stature</td>
</tr>
<tr>
<td>(2) Organic—tumor, irradiation of the central nervous system, infection, or trauma</td>
</tr>
<tr>
<td>2. GH resistance/insulin-like growth factor 1 (IGF-1) deficiency</td>
</tr>
<tr>
<td>3. Hypothyroidism</td>
</tr>
<tr>
<td>4. Excess cortisol—Cushing disease and Cushing syndrome (including iatrogenic causes)</td>
</tr>
<tr>
<td>5. Diabetes mellitus (poorly controlled)</td>
</tr>
<tr>
<td>6. Pseudohypoparathyroidism</td>
</tr>
<tr>
<td>7. Rickets</td>
</tr>
<tr>
<td>D. Intrauterine growth restriction</td>
</tr>
<tr>
<td>1. Intrinsic fetal abnormalities—chromosomal disorders</td>
</tr>
<tr>
<td>2. Syndromes (eg, Russell-Silver, Noonan, Bloom, de Lange, Cockayne)</td>
</tr>
<tr>
<td>3. Congenital infections</td>
</tr>
<tr>
<td>4. Placental abnormalities</td>
</tr>
<tr>
<td>5. Maternal abnormalities</td>
</tr>
<tr>
<td>a. Hypertension/toxemia</td>
</tr>
<tr>
<td>b. Drug use</td>
</tr>
<tr>
<td>c. Malnutrition</td>
</tr>
<tr>
<td>E. Inborn errors of metabolism</td>
</tr>
<tr>
<td>1. Mucopolysaccharidosis</td>
</tr>
<tr>
<td>2. Other storage diseases</td>
</tr>
<tr>
<td>F. Intrinsic diseases of bone</td>
</tr>
<tr>
<td>1. Defects of growth of tubular bones or spine (eg, achondroplasia, metaphyseal dwarfism, diastrophic dwarfism, metaphyseal chondrodysplasia)</td>
</tr>
<tr>
<td>2. Disorganized development of cartilage and fibrous components of the skeleton (eg, multiple cartilaginous exostoses, fibrous dysplasia with skin pigmentation)</td>
</tr>
<tr>
<td>G. Short stature associated with chromosomal defects</td>
</tr>
<tr>
<td>1. Autosomal (eg, Down syndrome, Prader-Willi syndrome)</td>
</tr>
<tr>
<td>2. Sex chromosomal (eg, Turner syndrome-XO)</td>
</tr>
<tr>
<td>H. Chronic systemic diseases, congenital defects, and cancers</td>
</tr>
<tr>
<td>(eg, chronic infection and infestation, inflammatory bowel disease, hepatic disease, cardiovascular disease, hematologic disease, central nervous system disease, pulmonary disease, renal disease, malnutrition, cancers, collagen-vascular disease)</td>
</tr>
<tr>
<td>I. Psychosocial short stature (deprivation dwarfism)</td>
</tr>
</tbody>
</table>

the family (Figure 34–2). For example, an infant boy of a mother who is 5 ft 0 in and father who is 5 ft 5 in (calculated midparental height 5 ft 5 in) may have a birth length at the 50th percentile. However, this child’s length percentile will drift downward during the first 2 years of life and will settle in at the fifth percentile where it will stay.

Children with constitutional growth delay do not necessarily have short parents but have a growth pattern similar to those with familial short stature. The difference is that children with constitutional growth delay have a delay in skeletal maturation and a delay in the onset of puberty. In these children, growth continues beyond the time the average child stops growing, and final height is appropriate for target height (Figure 34–3). There is often a history of other family members being “late bloomers.”

2. Growth Hormone Deficiency

Human growth hormone (GH) is produced by the anterior pituitary gland. Secretion is stimulated by growth hormone–releasing hormone (GHRH) and inhibited by somatostatin. GH is secreted in a pulsatile pattern in response to sleep, exercise, and hypoglycemia and has direct growth-promoting and metabolic effects (Figure 34–4). GH also promotes growth indirectly by stimulating production of insulin-like growth factors, primarily IGF-1.

Growth hormone deficiency (GHD) is characterized by decreased growth velocity and delayed skeletal maturation in the absence of other explanations. Laboratory tests indicate subnormal GH secretion or action. GHD may be isolated or coexist with other pituitary hormone deficiencies and may be congenital (septo-optic dysplasia or ectopic posterior pituitary), genetic (GH or GHRH gene mutation), or acquired (craniopharyngioma, germinoma, histiocytosis, or cranial irradiation). Idiopathic GHD is the most common deficiency state with an incidence of about 1:4000 children. Patients have also been described with a GH resistance syndrome caused by mutations in the GH receptor or other components of the GH signaling pathway. The presentation of GH resistance is similar to that of GHD, but short stature is often severe, with little or no response to GH therapy. Some mutations, such as Laron dwarfism, are accompanied by facial and skeletal dysmorphology.

Infants with GHD have normal birth weight with only slightly reduced length, suggesting that GH is a minor contributor to intrauterine growth. GH deficient infants may present with hypoglycemia, particularly when associated with other pituitary deficiencies such as central adrenal insufficiency. Micropenis may be a feature of newborn males with gonadotropin and GH deficiency. Isolated GHD and hypopituitarism may be unrecognized until late in infancy or childhood as growth retardation may be delayed until later childhood. Regardless of onset, the primary manifestation of idiopathic or acquired GHD is subnormal growth velocity.
Typical pattern of growth in a child with familial short stature. After attaining an appropriate percentile during the first 2 years of life, the child will have normal linear growth parallel to the growth curve. Skeletal maturation and the timing of puberty are consistent with chronologic age. The height percentile the child has been following is maintained, and final height is short but appropriate for the family.
**Figure 34-3.** Typical pattern of growth in a child with constitutional growth delay. Growth slows during the first 2 years of life, similarly to children with familial short stature. Subsequently the child will have normal linear growth parallel to the growth curve. However, skeletal maturation and the onset of puberty are delayed. Growth continues beyond the time the average child has stopped growing, and final height is appropriate for target height.
The effects of GH on growth are partly due to its direct anabolic effects in muscle, liver, and bone. In addition, GH stimulates many tissues to produce IGF-1 locally, which stimulates the growth of the tissue itself (paracrine effect of IGF-1). The action of GH on the liver results in the secretion of IGF-1 (circulating IGF-1), which stimulates growth in other tissues (endocrine effect of IGF-1). The action of growth hormone on the liver also enhances the secretion of IGF-binding protein 3 (IGFBP-3) and acid-labile subunit (ALS), which form a high-molecular-weight complex with IGF-1. The function of this complex is to transport IGF-1 to its target tissues, but the complex also serves as a reservoir and possible inhibitor of IGF-1 action. In various chronic illnesses, the direct metabolic effects of GH are inhibited; the secretion of IGF-1 in response to GH is blunted, and in some cases IGFBP-3 synthesis is enhanced, resulting in marked inhibition in the growth of the child. IGF-1, insulin-like growth factor 1; GH, growth hormone; GHRH, growth hormone–releasing hormone.

Laboratory tests to assess GH status may be difficult to interpret. Children with normal short stature have a broad range of GH secretion patterns and there is significant overlap between normal and GH deficient children. Random samples for measurement of serum GH are of no value in the diagnosis of GHD, as GH secretion is pulsatile. Serum concentrations of IGF-1 give reasonable estimations of GH secretion and action in the adequately nourished child (see Figure 34–4), and are often used as a first step in the evaluation for GHD. IGF-binding protein 3 (IGFBP-3) is a much less sensitive marker of GH deficiency, but may be useful in the underweight child or in children under 4 years of age, since it is less affected by age or nutritional status. Provocative studies using such agents as insulin, arginine, levodopa, clonidine, or glucagon are traditionally done to clarify GH secretion, but are not physiologic and are often poorly reproducible, ultimately limiting their value in the clarification of GH secretion. When results of GH tests are equivocal and the clinical suspicion very high, a trial of GH treatment may help determine whether an abnormally short child will benefit from GH. Currently, the recommended treatment schedule for GHD is subcutaneous recombinant GH given subcutaneously 7 days per week with total weekly dose of 0.15–0.3 mg/kg.

GH therapy is approved by the U.S. Food and Drug Administration (FDA) for children with GHD and growth restriction associated with chronic renal failure, for girls with Turner syndrome, children with Prader-Willi and Noonan’s syndromes, and children born small for gestational age (SGA) who fail to demonstrate catch-up growth by age 4. Dose ranges for these non-GHD indications are generally different than for GHD (lower doses with Prader-Willi syndrome, higher doses with Turner syndrome and SGA). GH therapy has also been approved for children.
▲ Figure 34–5. Typical pattern of growth in a child with acquired growth hormone deficiency (GHD). Children with acquired GHD have an abnormal growth velocity and fail to maintain height percentile during childhood. Other phenotypic features (central adiposity and immaturity of facies) may be present. Children with congenital GHD will cross percentiles during the first 2 years of life, similarly to the pattern seen in familial short stature and constitutional delay, but will fail to attain a steady height percentile subsequently.
with idiopathic short stature whose current height is more than 2.25 standard deviations below the normal range for age. Final height may be 5–7 cm taller in this population. This last indication is controversial and the role of GH for idiopathic short stature is still unclear, especially due to the expense, long duration of treatment, and unclear psychological consequences. Side effects of recombinant GH are uncommon but include benign intracranial hypertension and slipped capital femoral epiphysis. With early diagnosis and treatment, children with GHD reach normal or near-normal adult height. Recombinant IGF-1 injections may be used to treat children with GH resistance or IGF-1 deficiency, but improvements in growth are not as substantial as seen with GH therapy for GH deficiency.

3. Small for Gestational Age/Intrauterine Growth Restriction

SGA infants have birth weights below the 10th percentile for the population’s birth weight–gestational age relationship. SGA infants include constitutionally small infants and infants with intrauterine growth restriction (IUGR).

SGA/IUGR may be a result of poor maternal environment, intrinsic fetal abnormalities, congenital infections, or fetal malnutrition. Intrinsic fetal abnormalities causing SGA/IUGR (often termed primordial short stature) include Russell-Silver, Seckel, Noonan, Bloom, and Cockayne syndromes, and progeria. Many children with mild SGA/IUGR and no intrinsic fetal abnormalities exhibit catch-up growth during the first 3 years. However, 15%–20% remain short throughout life, particularly those whose growth restriction in utero occurred over more than just the last 2–3 months of gestation. Catch-up growth may also be inadequate in preterm SGA/IUGR infants with poor postnatal nutrition. Children who do not show catch-up growth may have normal growth velocity, but follow a lower height percentile than expected for the family. In contrast to children with constitutional growth delay, those with SGA/IUGR have skeletal maturation that corresponds to chronologic age or is only mildly delayed.

GH therapy for SGA/IUGR children with growth delay is FDA approved and appears to increase growth velocity and final adult height.

4. Disproportionate Short Stature

There are more than 200 sporadic and genetic skeletal dysplasias that may cause disproportionate short stature. Measurements of arm span and upper-to-lower body segment ratio are helpful in determining whether a child has normal body proportions. If disproportionate short stature is found, a skeletal survey may be useful to detect specific radiographic features characteristic of some disorders. The effect of GH on most of these rare disorders is unknown.

5. Short Stature Associated With Syndromes

Short stature is associated with many syndromes, including Turner, Down, Noonan, and Prader-Willi. Girls with Turner syndrome often have recognizable features such as micrognathia, webbed neck, low posterior hairline, edema of hands and feet, multiple pigmented nevi, and an increased carrying angle. However, short stature can be the only obvious manifestation of Turner syndrome. Consequently, any girl with unexplained short stature for family warrants a chromosomal evaluation. Although girls with Turner syndrome are not usually GH deficient, GH therapy can improve final height by an average of 6.0 cm. Duration of GH therapy is a significant predictor of long-term height gain; consequently, it is important that Turner syndrome be diagnosed early and GH started as soon as possible.

GH is approved for treatment of growth failure in Prader-Willi syndrome. Many affected individuals are GH deficient and GH improves growth, body composition, and physical activity. A few deaths have been reported in Prader-Willi children receiving GH, all of which occurred in very obese children, children with respiratory impairments, sleep apnea, or unidentified respiratory infections. The role of GH, if any, in these deaths is unknown. However, as a precaution, it is recommended that all Prader-Willi patients be evaluated for upper airway obstruction and sleep apnea prior to starting GH therapy.

Children with Down syndrome should be evaluated for GHD only if their linear growth is abnormal compared with the Down syndrome growth chart.

6. Psychosocial Short Stature (Psychosocial Dwarfism)

Psychosocial short stature refers to growth retardation associated with emotional deprivation. Undernutrition probably contributes to growth retardation in some of these children. Other symptoms include unusual eating and drinking habits, bowel and bladder incontinence, social withdrawal, and delayed speech. GH secretion in children with psychosocial short stature is diminished, but GH therapy is usually not beneficial. A change in the psychological environment at home usually results in improved growth and improvement of GH secretion, personality, and eating behaviors.

Clinical Evaluation

Laboratory investigation should be guided by the history and physical examination. Data included in history and physical include history of chronic illness and medications, birth weight and height, pattern of growth since birth, familial growth patterns, pubertal stage, dysmorphic features, body segment proportion, and psychological health. In a child with
poor weight gain as the primary disturbance, a nutritional assessment is indicated. The following laboratory tests may be useful as guided by history and clinical judgment:

1. Radiograph of left hand and wrist for bone age
2. Complete blood count (to detect chronic anemia or leukocyte markers of infection)
3. Erythrocyte sedimentation rate (often elevated in collagen-vascular disease, cancer, chronic infection, and inflammatory bowel disease)
4. Urinalysis, blood urea nitrogen, and serum creatinine (occult renal disease)
5. Serum electrolytes, calcium, and phosphorus (renal tubular disease and metabolic bone disease)
6. Stool examination for fat, or measurement of serum tissue transglutaminase (malabsorption or celiac disease)
7. Karyotype (girls) and/or Noonan’s testing
8. Thyroid function tests: thyroxine (T4) and thyroid-stimulating hormone (TSH)
9. IGF-1 (IGFBP-3 is an alternative for children < 4 or in malnourished individuals)

Because the upper limit of acceptable height in both sexes is increasing, concerns about excessive growth in girls are less frequent than in the past. When such concerns arise, the family history, growth curve, pubertal stage, and assessment of skeletal maturation allow estimation of final adult height. Reassurance, counseling, and education may alleviate family and personal concerns. Rarely, when the predicted height is excessive and felt to be psychologically unacceptable, brief estrogen therapy may be used to accelerate bone maturation and shorten the growth period.

### Table 34-3. Causes of tall stature.

<table>
<thead>
<tr>
<th>Category</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Constitutional (familial)</td>
<td></td>
</tr>
<tr>
<td>B. Endocrine causes</td>
<td>1. Growth hormone excess (pituitary gigantism)</td>
</tr>
<tr>
<td></td>
<td>2. Precocious puberty</td>
</tr>
<tr>
<td></td>
<td>3. Hypogonadism</td>
</tr>
<tr>
<td>C. Nonendocrine causes</td>
<td>1. Klinefelter syndrome</td>
</tr>
<tr>
<td></td>
<td>2. XYY males</td>
</tr>
<tr>
<td></td>
<td>3. Marfan syndrome</td>
</tr>
<tr>
<td></td>
<td>4. Cerebral gigantism (Sotos syndrome)</td>
</tr>
<tr>
<td></td>
<td>5. Homocystinuria</td>
</tr>
</tbody>
</table>

ARGinine VAsopressin (Antidiuretic Hormone) PHYSIOLOGY

Vasopressin release is controlled primarily by serum osmolality and intravascular volume. Release is stimulated by minor increases in plasma osmolality (detected by osmo-receptors in the anterolateral hypothalamus) and large decreases in intravascular volume (detected by baroreceptors in the cardiac atria). Disorders of vasopressin release and action include (1) central (neurogenic) diabetes insipidus, (2) nephrogenic diabetes insipidus (see Chapter 24),
and (3) the syndrome of inappropriate secretion of antidiuretic hormone (see Chapter 45).

CENTRAL DIABETES INSIPIDUS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Polydipsia, polyuria (> 2 L/m²/d), nocturia, dehydration, and hypernatremia.
- Inability to concentrate urine after fluid restriction (urine specific gravity < 1.010; urine osmolality < 300 mOsm/kg).
- Plasma osmolality > 300 mOsm/kg with urine osmolality < 600 mOsm/kg.
- Low plasma vasopressin with antidiuretic response to exogenous vasopressin.

General Considerations

Central diabetes insipidus (DI) is an inability to synthesize and release vasopressin. Without vasopressin, the kidneys cannot concentrate urine, causing excessive urinary water loss. Genetic causes of central DI are rare and include mutations in the vasopressin gene (mostly in the neurophysin portion of the vasopressin precursor) and the WFS1 gene that causes DI, diabetes mellitus, optic atrophy, and deafness (Wolfram or DIDMOAD syndrome). Transcription factor mutations, such as PROP1 and PIT1, that are known to be associated with other anterior pituitary hormone deficiencies are not typically associated with DI. Midline brain abnormalities, such as septo-optic dysplasia and holoprosencephaly, are also associated with central DI. Traumatic brain injury or neurosurgery in or near the hypothalamus or pituitary can cause transient or permanent DI. Traumatic DI often has three phases. Initially, transient DI is caused by edema in the hypothalamus or pituitary area. In 2–5 days, unregulated release of vasopressin from dying neurons causes the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Finally, permanent DI occurs if a sufficient number of vasopressin neurons are destroyed.

Tumors and infiltrative diseases of the hypothalamus and pituitary may cause DI. In children with craniopharyngioma, DI usually develops after neurosurgical intervention. In contrast, germinomas often present with DI. Germinomas may be undetectable for several years; consequently, children with unexplained DI should have regularly repeated magnetic resonance imaging (MRI). Infiltrative diseases such as histiocytosis and lymphoctic hypophysitis can cause DI. In these conditions, as in germinomas, MRI scans characteristically show thickening of the pituitary stalk. Infections involving the base of the brain also cause transient DI.

Clinical Findings

Onset of DI is often abrupt, characterized by polyuria, nocturia, enuresis, and intense thirst. Children with DI typically crave cold water. Hypernatremia, hyperosmolality, and dehydration occur if insufficient fluid intake due to lack of access or impaired thirst mechanism does not keep up with urinary losses. In infants, symptoms may also include failure to thrive, vomiting, constipation, and unexplained fevers. Some infants may present with severe dehydration, circulatory collapse, and seizures. Vasopressin deficiency may be masked in patients with panhypopituitarism due to the impaired excretion of free water associated with adrenal insufficiency. Treating these patients with glucocorticoids may unmask their DI.

DI is confirmed when serum hyperosmolality is associated with urine hypoosmolality. If the history indicates that the child can go through the night comfortably without drinking, outpatient testing is appropriate. Oral fluid intake is prohibited after midnight. Osmolality, sodium, and specific gravity of the first morning void are obtained. If urine specific gravity is greater than 1.015, DI is excluded. If urine is not concentrated, a blood sample is obtained within a few minutes of the urine collection for osmolality, sodium, creatinine, and calcium concentration.

If screening results are unclear or if symptoms preclude safely withholding fluids at home, a water deprivation test performed in the hospital is indicated. In this test, fluid is withheld and the child is monitored. Serum osmolality greater than 290 mOsm/kg associated with inappropriately dilute urine (osmolality less than 600 mOsm/kg) is diagnostic for DI. Low serum vasopressin concentration and an antidiuretic response to vasopressin administration at the end of the test distinguishes central from nephrogenic DI. Children with central DI should have a head MRI scan with contrast to look for tumors or infiltrative processes. The posterior pituitary “bright spot” on MRI is often absent in DI.

Primary polydipsia must be distinguished from DI. Children with primary polydipsia tend to have lower serum sodium levels and usually can concentrate their urine with overnight fluid deprivation. Some may have secondary nephrogenic DI due to dilution of the renal medullary interstitium and decreased renal concentrating ability, but this resolves with restriction of fluid intake.

Treatment

Central DI is treated with oral or intranasal desmopressin acetate (DDAVP). The aim of therapy is to provide antidiuresis that allows uninterrupted sleep and approximately 1 hour of diuresis before the next dose. It is important to note that postsurgical DI can be associated with disruption of thirst mechanism and, for these patients, a prescribed volume of fluid intake needs to be determined. Children hospitalized with acute-onset DI can be managed with intravenous vasopressin. Due to the amount of antidiuresis, intravenous fluids
will need to be restricted to two-thirds the maintenance rate and electrolytes closely monitored to avoid water intoxication. Infants with DI should not be treated with DDAVP. Treatment with DDAVP in association with the volume of formula or breast milk needed to ensure adequate caloric intake could cause water intoxication. For this reason, infants are treated with extra free water, rather than DDAVP, to maintain normal hydration. A formula with a low renal solute load and chlorothiazides may be helpful in infants with central DI.


THYROID GLAND

FETAL DEVELOPMENT OF THE THYROID

The fetal thyroid synthesizes thyroid hormone as early as the 10th week of gestation. Thyroid hormone appears in the fetal serum by the 11th week of gestation and progressively increases throughout gestation. The fetal pituitary-thyroid axis functions largely independently of the maternal pituitary-thyroid axis because maternal TSH cannot cross the placenta. However, maternal thyroid hormone can cross the placenta in limited amounts.

At birth, there is a TSH surge peaking at about 70 mU/L within 30–60 minutes. Thyroid hormone serum level increases rapidly during the first days of life in response to this TSH surge. The TSH level decreases to childhood levels within a few weeks. The physiologic neonatal TSH surge can produce a false-positive newborn screen for hypothyroidism (ie, high TSH) if the blood sample for the screen is collected on the first day of life.

PHYSIOLOGY

Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the anterior pituitary gland to release TSH. In turn, TSH stimulates the thyroid gland to take up iodine, and to synthesize and release the active hormones, thyroxine (T₄) and triiodothyronine (T₃). This process is regulated by negative feedback involving the hypothalamus, pituitary, and thyroid (see Figure 34–1).

T₄ is the predominant thyroid hormone secreted by the thyroid gland. Most circulating T₃ and T₄ are bound to thyroxine-binding globulin (TBG), albumin, and prealbumin. Less than 1% of T₄ and T₃ exist as free T₃ (FT₃) and free T₄ (FT₄). T₃ is deiodinated in the tissues to either T₂ (active) or reverse T₃ (inactive). In peripheral tissues, T₂ binds to high-affinity nuclear thyroid hormone receptors in the cytoplasm and translocates to the nucleus, exerting its biologic effects by modifying gene expression.

The T₄ level is low in hypothyroidism. It may also be low in premature infants, malnutrition, severe illness, and following therapy with T₃. It is not clear whether premature infants with low T₄ benefit from treatment. Long-term studies have been proposed to assess cognitive outcomes for high-risk patients.

Total T₄ is also low in situations that decrease TBG. TBG levels are decreased in familial TBG deficiency, nephrosis, and in patients receiving androgens. In sepsis, TBG cleavage is increased. Treatment with certain medications (heparin, furosemide, salicylates, and phenytoin) results in abnormal binding to TBG. However, since these effects involve primarily TBG levels, and not thyroid function per se, TSH and FT₄ levels remain in the normal range. Conversely, Total T₃ and T₄ levels may be elevated in conditions associated with increased TBG levels (congenital TBG excess, pregnancy, estrogen therapy) and increased thyroid hormone binding to transport proteins. However, free hormone levels are not affected and patients are euthyroid.

HYPOTHYROIDISM (CONGENITAL & ACQUIRED)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Growth retardation, decreased physical activity, weight gain, constipation, dry skin, cold intolerance, and delayed puberty.
- Neonates with congenital hypothyroidism often look normal but may have thick tongue, large fontanelles, poor muscle tone, hoarseness, umbilical hernia, jaundice, and intellectual retardation.
- T₄, FT₄, and T₃ resin uptake are low; TSH levels are elevated in primary hypothyroidism.

General Considerations

Thyroid hormone deficiency may be congenital or acquired (Table 34–4). It can be due to defects in the thyroid gland (primary hypothyroidism) or in the hypothalamus or pituitary (central hypothyroidism).

Congenital hypothyroidism occurs in about 1:3000–1:4000 infants. Untreated, it causes severe neurocognitive impairment.
Most cases are sporadic resulting from hypoplasia or aplasia of the thyroid gland or failure of the gland to migrate to its normal anatomic location (ie, lingual or sublingual thyroid gland). Another cause of congenital hypothyroidism is dysmorphogenenic due to enzymatic defects in thyroid hormone synthesis. Since antithyroid drugs, including propylthiouracil (PTU) and methimazole, freely cross the placenta, goitrous hypothyroid newborns may be born to hyperthyroid mothers treated with these drugs during pregnancy.

Low T₄ levels may also be caused by decreased TSH secretion associated with prolonged glucocorticoid use, dopamine, or somatostatin. Cabbage, soybeans, aminosalicylic acid, thiourea derivatives, resorcinol, phenylbutazone, cobalt, and excessive iodine intake can cause goiter and hypothyroidism during pregnancy. Many of these agents cross the placenta and should be used with caution during pregnancy. Iodine deficiency also causes hypothyroidism. In severe maternal iodine deficiency, both the fetus and the mother are T₄-deficient, with irreversible brain damage in the fetus.

Juvenile hypothyroidism, particularly if goiter is present, is usually a result of chronic lymphocytic (Hashimoto) thyroiditis.

Several hundred patients with resistance to thyroid hormone have been described and present with elevations in T₄ and/or FT₄ with normal TSH. There is often a family history of the disorder. Clinical manifestations are highly variable due to differential expression of thyroid hormone receptor isoforms in different tissues.

### Clinical Findings

#### A. Symptoms and Signs

Even when the thyroid gland is completely absent, most newborns with congenital hypothyroidism appear normal at birth and gain weight normally for the first few months of life without treatment. Since congenital hypothyroidism must be treated as early as possible to prevent intellectual impairment, the diagnosis should be based on the newborn screening test and not on signs or symptoms. Jaundice associated with an unconjugated hyperbilirubinemia may be present in newborns with congenital hypothyroidism. Some infants may have obvious findings of thick tongue, hypotonia, large fontanels, constipation, umbilical hernia, hoarse cry, and dry skin.

Juvenile hypothyroidism often presents with short stature and abnormal weight gain. Other findings include delayed epiphyseal development, delayed closure of fontanels, and retarded dental eruption. The skin may be dry, thick, scaly, coarse, pale, cool, or mottled, or have a yellowish tinge. The hair may be dry, coarse, or brittle. Lateral thinning of the eyebrows may occur. Musculoskeletal findings include hypotonia and a slow relaxation component of deep tendon reflexes (best appreciated in the ankles). Muscular hypertrophy (Kocher-Debré-Sémélaigne syndrome) is not commonly seen in congenital hypothyroidism. Other findings include physical and mental sluggishness, nonpitting myxedema, constipation, large tongue, hypothermia, bradycardia, hoarse voice or cry, umbilical hernia, and transient deafness. Puberty may be delayed. Metromenorrhagia may occur in older girls. Sometimes, hypothyroidism induces pseudopuberty. Galactorrhea can also occur, due to stimulation of prolactin secretion.

In hypothyroidism resulting from enzymatic defects, ingestion of goitrogens, or chronic lymphocytic thyroiditis, the thyroid gland may be enlarged. Thyroid enlargement in

### Table 34-4. Causes of hypothyroidism.

<table>
<thead>
<tr>
<th>A. Congenital</th>
<th>B. Acquired (juvenile hypothyroidism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aplasia, hypoplasia, or maldescent of thyroid</td>
<td>1. Autoimmune (lymphocytic) thyroiditis</td>
</tr>
<tr>
<td>a. Embryonic defect of thyroid development</td>
<td>2. Thyrotoxicosis</td>
</tr>
<tr>
<td>2. Inborn errors of thyroid hormone synthesis, secretion, or recycling</td>
<td>b. Thyroid cancer</td>
</tr>
<tr>
<td>(due to autosomal recessive mutations)</td>
<td>3. Irradiation to the thyroid</td>
</tr>
<tr>
<td>a. Iodide transport defect</td>
<td>4. Thyrotoxicosis</td>
</tr>
<tr>
<td>b. Organification defect</td>
<td>a. Isolated</td>
</tr>
<tr>
<td>(1) Mutation in iodine peroxidase</td>
<td>b. Associated with other anterior pituitary hormone deficiencies</td>
</tr>
<tr>
<td>(2) Mutation in pendrin: Pendred syndrome, associated with congenital sensorineural deafness</td>
<td>5. TRH deficiency due to hypothalamic injury or disease</td>
</tr>
<tr>
<td>c. Coupling defect</td>
<td>6. Medications</td>
</tr>
<tr>
<td>d. Iodotyrosine deiodinase defect</td>
<td>a. Iodides</td>
</tr>
<tr>
<td>e. Abnormal iodinated polypeptide (thyroglobulin)</td>
<td>(1) Excess (eg, amiodarone)</td>
</tr>
<tr>
<td>f. Inability to convert T₄ to T₃</td>
<td>(2) Deficiency</td>
</tr>
<tr>
<td>3. Maternal antibody-mediated (inhibit TSH binding to receptor)</td>
<td>b. Lithium</td>
</tr>
<tr>
<td>4. TSH receptor defect</td>
<td>c. Cobalt</td>
</tr>
<tr>
<td>5. Thyroid hormone receptor defect</td>
<td>7. Large hemangiomas</td>
</tr>
<tr>
<td>6. In-utero exposures</td>
<td>8. Idiopathic</td>
</tr>
<tr>
<td>a. Radioidine</td>
<td>T₄, triiodothyronine; T₃, thyroxine, TRH, thyrotropin-releasing hormone; TSH, thyroid-stimulating hormone.</td>
</tr>
</tbody>
</table>
| b. Goitrogens (propylthiouracil, methimazole) | Cabbage, soybeans, aminosalicylic acid, thiourea derivatives, resorcinol, phenylbutazone, cobalt, and excessive iodine intake can cause goiter and hypothyroidism during pregnancy. Many of these agents cross the placenta and should be used with caution during pregnancy. Iodine deficiency also causes hypothyroidism. In severe maternal iodine deficiency, both the fetus and the mother are T₄-deficient, with irreversible brain damage in the fetus.

Juvenile hypothyroidism, particularly if goiter is present, is usually a result of chronic lymphocytic (Hashimoto) thyroiditis.

Several hundred patients with resistance to thyroid hormone have been described and present with elevations in T₄ and/or FT₄ with normal TSH. There is often a family history of the disorder. Clinical manifestations are highly variable due to differential expression of thyroid hormone receptor isoforms in different tissues.
children is usually symmetrical, and the gland is moderately firm and not nodular. In chronic lymphocytic thyroiditis, however, the thyroid frequently has a cobblestone surface.

B. Laboratory Findings
Total T4 and FT4 levels are decreased. T3 resin uptake (T3RU) is low. In primary hypothyroidism, the serum TSH level is elevated. In central hypothyroidism, the TSH level may be low or inappropriately normal. Circulating autoantibodies to thyroid peroxidase and thyroglobulin may be present. Serum prolactin may be elevated, resulting in galactorrhea. Serum GH may be decreased, with subnormal GH response to stimulation in children with severe primary hypothyroidism, as well as low IGF-1 or IGFBP-3 levels, or both.

C. Imaging
Thyroid imaging, while helpful in establishing the cause of congenital hypothyroidism, does not affect the treatment plan and is not necessary. Bone age is delayed. Centers of ossification, especially of the hip, may show multiple small centers or a single stippled, porous, or fragmented center (epiphyseal dysgenesis). Cardiomegaly is common. Longstanding primary hypothyroidism may be associated with thyrotrophic hyperplasia characterized by an enlarged sella or pituitary gland.

D. Screening Programs for Neonatal Hypothyroidism
All newborns should be screened for congenital hypothyroidism shortly after birth as most do not have suggestive physical findings. Depending on the state, the newborn screen measures either the total T4 or TSH level. Abnormal newborn screening results should be confirmed immediately with a T4 and TSH level. Treatment should be started as soon as possible. Initiation of treatment in the first month of life and good compliance during infancy usually results in a normal neurocognitive outcome.

E. Conditions Associated With Hypothyroidism
Children with Down syndrome, Turner syndrome, and autoimmune diseases such as celiac disease, vitiligo, alopecia, and type 1 diabetes are at an increased risk for the development of acquired autoimmune hypothyroidism. A detailed family history may reveal the presence of multiple autoimmune diseases in the family members of the affected individual. Individuals at a high risk based on a chromosomal disorder or other autoimmune disease benefit from careful monitoring of growth and development, routine screening (in the case of Down syndrome, Turner syndrome, and type 1 diabetes), and a low threshold for measurement of thyroid function.

Central hypothyroidism is associated with other disorders of the hypothalamus and pituitary including congenital defects such as septo-optic dysplasia and acquired defects such as tumors in the hypothalamic/pituitary region.

Treatment
Levothyroxine (75–100 mcg/m2/d) is the drug of choice for acquired hypothyroidism. In neonates with congenital hypothyroidism, the initial dose is 10–15 mcg/kg/d. Serum total T4 or FT4 concentrations are used to monitor the adequacy of initial therapy because the normally high neonatal TSH may not normalize for several days to weeks. Subsequently, T4 and TSH are used in combination, as elevations of serum TSH are sensitive early indicators of the need for increased medication or better compliance.

(and other endocrine autoimmune disorders) is associated with certain histocompatibility alleles.

**Clinical Findings**

**A. Symptoms and Signs**

The thyroid is characteristically enlarged, firm, freely movable, nontender, and symmetrical. It may be nodular. Onset is usually insidious. Occasionally patients note a sensation of tracheal compression or fullness, hoarseness, and dysphagia. No local signs of inflammation or systemic infection are present. Most patients are euthyroid. Some patients are symptomatically hypothyroid, and few patients are symptomatically hyperthyroid.

**B. Laboratory Findings**

Laboratory findings vary. Serum concentrations of TSH, T\(_4\), and FT\(_4\) are usually normal. Some patients are hypothyroid with an elevated TSH and low thyroid hormone levels. A few patients are hyperthyroid with a suppressed TSH and elevated thyroid hormone levels. Thyroid antibodies (antithyroglobulin, antithyroid peroxidase) are frequently elevated. Thyroid uptake scan adds little to the diagnosis. Surgical or needle biopsy is diagnostic but seldom necessary.

**Treatment**

There is controversy about the need to treat chronic lymphocytic thyroiditis with normal thyroid function. Full replacement doses of thyroid hormone may decrease the size of the thyroid, but may also result in hyperthyroidism. Hypothyroidism commonly develops over time. Consequently, patients require lifelong surveillance. Children with documented hypothyroidism should receive thyroid hormone replacement.

**Hypothyroidism**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Nervousness, emotional lability, hyperactivity, fatigue, tremor, palpitations, excessive appetite, weight loss, increased perspiration, and heat intolerance.
- Goiter, exophthalmos, tachycardia, widened pulse pressure, systolic hypertension, weakness, and smooth, moist, warm skin.
- TSH is suppressed. Thyroid hormone levels (T\(_4\), FT\(_4\), T\(_3\), T\(_3\)RU) are elevated.

**General Considerations**

In children, most cases of hyperthyroidism are due to Graves disease, caused by antibodies directed at the TSH receptor that stimulate thyroid hormone production. Hyperthyroidism may also be due to acute, subacute, or chronic thyroiditis; autonomous functioning thyroid nodules; tumors producing TSH; McCune-Albright syndrome; exogenous thyroid hormone excess; and acute iodine exposure.

**Clinical Findings**

**A. Symptoms and Signs**

Hyperthyroidism is more common in females than males. In children, it most frequently occurs during adolescence. The course of hyperthyroidism tends to be cyclic, with spontaneous remissions and exacerbations. Symptoms include worsening school performance, poor concentration, fatigue, hyperactivity, emotional lability, nervousness, personality disturbance, insomnia, weight loss (despite increased appetite), palpitations, heat intolerance, increased perspiration, diarrhea, polyuria, and irregular menses. Signs include tachycardia, systolic hypertension, increased pulse pressure, tremor, proximal muscle weakness, and moist, warm, skin. Accelerated growth and development may occur. Thyroid storm is a rare condition characterized by fever, cardiac failure, emesis, delirium, coma, and death. Most cases of Graves disease are associated with a diffuse firm goiter. A thyroid
bruin and thrill may be present. Many cases are associated with exophthalmos, but severe ophthalmopathy is rare.

B. Laboratory Findings
TSH is suppressed. $T_4$, FT$_4$, T$_3$, and FT$_3$ are elevated except in rare cases in which only the serum T$_3$ is elevated (T$_3$ thyrotoxicosis). The presence of thyroid-stimulating immunoglobulin (TSI) confirms the diagnosis of Graves disease. TSH receptor–binding antibodies (TRaB) are usually elevated.

C. Imaging
In Graves disease, radioactive iodine uptake by the thyroid is increased, whereas in subacute and chronic thyroiditis it is decreased. An autonomous hyperfunctioning nodule takes up iodine and appears as a “hot nodule” while the surrounding tissue has decreased iodine uptake. In children with hyperthyroidism, bone age may be advanced. In infants, accelerated skeletal maturation may be associated with premature fusion of the cranial sutures. Long-standing hyperthyroidism causes osteoporosis.

Differential Diagnosis
Hypermethabolic states (severe anemia, chronic infections, pheochromocytoma, and muscle-wasting disease) may resemble hyperthyroidism clinically but differ in thyroid function tests.

Treatment
A. General Measures
In untreated hyperthyroidism, strenuous physical activity should be avoided. Bed rest may be required in severe cases.

B. Medical Treatment
1. $\beta$-Adrenergic blocking agents—These agents are adjuncts to therapy. They can rapidly ameliorate symptoms such as nervousness, tremor, and palpitations, and are indicated in severe disease with tachycardia and hypertension. $\beta_1$ Specific agents such as atenolol are preferred because they are more cardioselective.

2. Antithyroid agents (propylthiouracil and methimazole)—Antithyroid agents are frequently used in the initial treatment of childhood hyperthyroidism. These drugs interfere with thyroid hormone synthesis, and usually take a few weeks to produce a clinical response. Adequate control is usually achieved within a few months. If medical therapy is unsuccessful, more definitive therapy, such as radioablation of the thyroid or thyroidectomy, should be considered.

In response to reports of severe hepatotoxicity related to PTU, recent recommendations state that PTU should not be used in infants, children, or adolescents, except when methimazole is contraindicated due to hypersensitivity or pregnancy.

a. Initial dosage—Methimazole is initiated at a dose of 10–60 mg/d (0.5–1 mg/kg/d) given once a day. Initial dosing is continued until FT$_4$ or T$_4$ have normalized and signs and symptoms have subsided.

b. Maintenance—The optimal dose of antithyroid agent for maintenance treatment remains unclear. Recent studies suggest that 10–15 mg/d of methimazole provides adequate long-term control in most patients with a minimum of side effects. If the TSH becomes elevated, many providers decrease the dose of the antithyroid agent. Some providers continue the same dose of antithyroid agent and add exogenous thyroid hormone replacement. Treatment usually continues for 2 years with the goal of inducing remission. If thyroid hormone levels are stable, a trial off medication could be considered at that point.

c. Toxicity—If rash, vasculitis, arthralgia, arthritis, granulocytopenia, or hepatitis occur, the drug must be discontinued.

3. Iodide—Large doses of iodide usually produce a rapid but short-lived blockade of thyroid hormone synthesis and release. This approach is recommended only for acute management of severely thyrotoxic patients.

C. Radiation Therapy
Radioactive iodine ablation of the thyroid is usually reserved for children with Graves disease who do not respond to antithyroid agents, develop adverse effects from the antithyroid agents, fail to achieve remission after several years of medical therapy, or have poor medication adherence. With recent concerns regarding potential hepatotoxicity of antithyroid medications, some pediatric endocrinologists advocate radioablation as first-line therapy for children with Graves disease. Antithyroid agents should be discontinued 4–7 days prior to radioablation to allow radioiodine uptake by the thyroid. $^{131}$I is administered orally which concentrates in the thyroid and results in gradual ablation of the gland. In the first 2 weeks following radioablation, hyperthyroidism may worsen as thyroid tissue is destroyed and thyroid hormone is released. Therapy with a $\beta$-adrenergic antagonist may be necessary for a few months until FT$_4$ and T$_4$ fall into the normal range. In most cases, hypothyroidism develops and thyroid hormone replacement is needed. Long-term follow-up studies have not shown any increased incidence of thyroid cancer, leukemia, infertility, or birth defects when ablative doses of $^{131}$I were used.

D. Surgical Treatment
Subtotal and total thyroidectomy are infrequently used in children with Graves disease. Surgery is indicated for
extremely large goiters, goiters with a suspicious nodule, very young or pregnant patients, or patients refusing radioiodine ablation. Before surgery, a β-adrenergic blocking agent is given to treat symptoms, and antithyroid agents are given for several weeks to minimize the surgical risks associated with hyperthyroidism. Iodide (eg, Lugol solution, 1 drop every 8 hours, or saturated solution of potassium iodide, 1–2 drops daily) is given for 1–2 weeks prior to surgery to reduce thyroid vascularity and inhibit release of thyroid hormone. Surgical complications include hypoparathyroidism, recurrent laryngeal nerve damage, and rarely, death. An experienced thyroid surgeon is crucial to good surgical outcome. After thyroidectomy, patients become hypothyroid and need thyroid hormone replacement.

**Course & Prognosis**

Partial remissions and exacerbations may continue for several years. Treatment with an antithyroid agent results in prolonged remissions in one-third to two-thirds of children.


**Neonatal Graves Disease**

Transient congenital hyperthyroidism (neonatal Graves disease) occurs in about 1% of infants born to mothers with Graves disease. It occurs when maternal TSH receptor antibodies cross the placenta and stimulate excess thyroid hormone production in the fetus and newborn. Neonatal Graves disease can be associated with irritability, IUGR, poor weight gain, flushing, jaundice, hepatosplenomegaly, and thrombocytopenia. Severe cases may result in cardiac failure and death. Hyperthyroidism may develop several days after birth, especially if the mother was treated with PTU (which crosses the placenta). Symptoms develop as PTU levels decline in the newborn. Thyroid studies should be obtained at birth and repeated within the first week. Immediate management should focus on the cardiac manifestations. Temporary treatment may be necessary with iodide, antithyroid agents, β-adrenergic antagonists, or corticosteroids. Hyperthyroidism gradually resolves over 1–3 months as maternal antibodies decline. As TSH receptor antibodies may still be present in the serum of previously hyperthyroid mothers after thyroidectomy or radioablation, neonatal Graves disease should be considered in all infants of mothers with a history of hyperthyroidism.


**THYROID CANCER**

Thyroid cancer is rare in childhood. Children usually present with a thyroid nodule or an asymptomatic asymmetrical neck mass. Dysphagia and hoarseness are unusual symptoms. Thyroid function tests are usually normal. A “cold” nodule is often seen on a technetium or radioiodine uptake scan of the thyroid. Fine-needle aspiration biopsy of the nodule assists in the diagnosis.

The most common thyroid cancer is papillary thyroid carcinoma, a well-differentiated carcinoma arising from the thyroid follicular cell. Children frequently present with local metastases to the cervical lymph nodes and occasionally with pulmonary metastases. Despite its aggressive presentation, children with papillary thyroid carcinoma have a relatively good prognosis, with a 20-year survival rate greater than 90%. Treatment consists of total thyroidectomy and removal of all involved lymph nodes, usually followed by radioiodine ablation to destroy residual thyroid remnant and metastatic tissue left behind after surgery. Thyroid hormone replacement is started to suppress TSH secretion and stimulation of residual thyroid tissue and to treat the hypothyroidism that results from surgical removal of the thyroid gland. Since papillary thyroid carcinoma in children is associated with a high recurrence rate, regular follow-up with serum thyroglobulin levels (a tumor marker), neck ultrasound, and radioiodine whole body scan are required.

Follicular thyroid carcinoma, medullary thyroid carcinoma, anaplastic carcinoma, and lymphoma are less common thyroid malignancies. Medullary thyroid carcinoma, due to autosomal dominant mutations in the RET protooncogene, arises from the thyroid C cells, which secrete calcitonin. It can occur sporadically or can be inherited in multiple endocrine neoplasia (MEN) type 2 and familial medullary thyroid carcinoma. It is associated with elevated serum calcitonin levels. In affected families, all members should be screened for the mutation, and those identified with the mutation should be treated with prophylactic thyroidectomy in early childhood.
Serum calcium concentration is tightly regulated by the coordinated actions of the parathyroid glands, kidney, liver, and small intestine. Low serum calcium concentrations, detected by calcium-sensing receptors on the surface of parathyroid cells, stimulate parathyroid hormone (PTH) release. PTH in turn promotes release of calcium and phosphorus from bone, reabsorption of calcium from urinary filtrate, and excretion of phosphorus in the urine. Another essential cofactor in calcium homeostasis is 1,25-dihydroxy vitamin D (calcitriol). The first step in production of this active form of vitamin D occurs in the liver where dietary vitamin D is hydroxylated to 25-hydroxy vitamin D. The final step in formation of calcitriol is 1-hydroxylation, which takes place in the kidney under control of PTH. The primary effect of calcitriol is to promote the absorption of calcium from the intestines. In concert with PTH, however, it also facilitates calcium and phosphorus mobilization from bones. Deficiencies or excesses of PTH or calcitriol, abnormalities in their receptors, or abnormalities of vitamin D metabolism lead to clinically significant aberrations in calcium homeostasis. Although calcitonin, released from the thyroid gland C cells, also reduces serum calcium concentration, changes in its serum concentration rarely cause clinically relevant disease.

**HYPOCALCEMIC DISORDERS**

A normal serum calcium concentration is approximately 8.9–10.2 mg/dL. The normal concentration of ionized calcium is approximately 1.1–1.3 mmol/L. Serum calcium levels in newborns, which are slightly lower than in older children and adults, may be as low as 7 mg/dL in premature infants. Fifty to sixty percent of calcium in the serum is protein-bound and metabolically fairly inactive. Thus, measurement of ionized serum calcium, the metabolically active form, is helpful if serum proteins are low or in conditions such as acidosis that cause abnormal calcium binding to protein.
Table 34–5. Hypocalcemia associated with rickets and other disorders.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pathogenesis</th>
<th>Disease States/Inheritance</th>
<th>Clinical Features</th>
<th>Initial Biochemical Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malabsorption</td>
<td>Impairment in intestinal absorption of any or all of the following: calcium, vitamin D, and magnesium</td>
<td>Cystic fibrosis, celiac or other intestinal disease, liver disease, Shwachman syndrome</td>
<td>Failure to thrive, poor weight gain, steatorrhea, superimposed vitamin D deficiency rickets</td>
<td>Serum Calcium: Low or normal, Serum Phosphorus: Low or normal, Serum Alkaline Phosphatase: Variable: usually high in vitamin D deficiency, but may be low with concomitant zinc deficiency, Other: Potentially low magnesium levels, potentially low 25-OH vitamin D</td>
</tr>
<tr>
<td>Chronic renal insufficiency</td>
<td>Decreased renal phosphate excretion, decreased 1-hydroxylase activity</td>
<td>Obstruction, glomerulonephritis, dysplastic kidneys</td>
<td>Uremia, growth failure, acidosis</td>
<td>Serum Calcium: Low or normal, Serum Phosphorus: Elevated, Serum Alkaline Phosphatase: Elevated or normal, Other: Elevated PTH levels in long-standing cases, low 1,25-OH vitamin D</td>
</tr>
<tr>
<td>Rhabdomyolysis</td>
<td>Muscle damage with liberation of large amounts of intracellular phosphate</td>
<td>Crush injuries of muscles, Pompe disease, carnitine deficiency</td>
<td>Hypocalcemic tetany, cardiac arrhythmia, risk of renal failure</td>
<td>Serum Calcium: Low, Serum Phosphorus: Elevated, Serum Alkaline Phosphatase: Normal, Other: Myoglobinuria</td>
</tr>
<tr>
<td>Tumor lysis syndrome</td>
<td>Release of intracellular phosphate and potassium</td>
<td>Initiation of chemotherapy for ALL, Burkitt lymphoma, or other malignancies</td>
<td>Hypocalcemic tetany, cardiac arrhythmia, risk of renal failure</td>
<td>Serum Calcium: Low, Serum Phosphorus: Elevated, Serum Alkaline Phosphatase: Normal, Other: Hyperkalemia, elevated uric acid</td>
</tr>
<tr>
<td>Vitamin D–deficiency rickets</td>
<td>Deficient dietary vitamin D, vitamin D malabsorption; other risk factors include dark skin and lack of sunlight exposure</td>
<td>May cluster in families due to shared risk factors</td>
<td>Characteristic skeletal changes appear early, poor growth, symptomatic hypocalcemia is a late finding</td>
<td>Serum Calcium: Normal until late in course, Serum Phosphorus: Low or normal, Serum Alkaline Phosphatase: Elevated, Other: Elevated PTH levels, low 25-OH vitamin D</td>
</tr>
<tr>
<td>Vitamin D–dependent rickets</td>
<td>Mutation in 1-hydroxylase enzyme required for synthesis of fully active 1,25-OH vitamin D</td>
<td>Autosomal recessive inheritance</td>
<td>Skeletal changes of rickets, symptomatic hypocalcemia</td>
<td>Serum Calcium: Low, Serum Phosphorus: Low or normal, Serum Alkaline Phosphatase: Elevated, Other: Elevated PTH, low 1,25-OH vitamin D</td>
</tr>
<tr>
<td>Vitamin D–resistant rickets</td>
<td>Mutation in 1,25 OH vitamin D receptor</td>
<td>Autosomal recessive inheritance</td>
<td>Severe skeletal changes of rickets, total alopecia, symptomatic hypocalcemia</td>
<td>Serum Calcium: Low, Serum Phosphorus: Low or normal, Serum Alkaline Phosphatase: Elevated, Other: Elevated PTH, elevated 1,25-OH vitamin D</td>
</tr>
<tr>
<td>Hypophosphatemic rickets</td>
<td>Excessive loss of phosphate in the urine</td>
<td>X-linked dominant</td>
<td>Skeletal changes primarily in the lower extremities—genu varum or valgus, short stature</td>
<td>Serum Calcium: Normal or low, Serum Phosphorus: Very low, Serum Alkaline Phosphatase: Usually high, Other: Normal PTH levels initially, abnormally high urinary phosphate excretion</td>
</tr>
</tbody>
</table>

ALL, acute lymphoblastic leukemia; PTH, parathyroid hormone.
### Table 34–6. Hypocalcemia associated with disorders of parathyroid hormone secretion or action.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pathogenesis</th>
<th>Inheritance Pattern</th>
<th>Clinical Features</th>
<th>Initial Biochemical Findings*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated hypoparathyroidism</td>
<td>Trauma, surgical destruction, isolated autoimmune destruction, rare familial forms</td>
<td>None; reports in familial forms of inheritance as X-linked recessive, autosomal recessive, or autosomal dominant</td>
<td>Symptoms of hypocalcemia</td>
<td>Serum Calcium: Low, Serum Phosphorus: High, Serum Alkaline Phosphatase: Normal or low, Serum PTH: Low, low 1,25-OH vitamin D</td>
</tr>
<tr>
<td>DiGeorge syndrome</td>
<td>Deletion in chromosome 22</td>
<td>Majority represent new mutations</td>
<td>Symptoms of hypocalcemia, cardiac anomalies, immune disorder</td>
<td>Serum Calcium: Low, Serum Phosphorus: High, Serum Alkaline Phosphatase: Normal or low, Serum PTH: Low, low 1,25-OH vitamin D</td>
</tr>
<tr>
<td>APS type 1</td>
<td>Autoimmune destruction</td>
<td>Autosomal recessive</td>
<td>Mucocutaneous candidiasis, Addison disease; potential for autoimmune destruction in other endocrine glands</td>
<td>Serum Calcium: Low, Serum Phosphorus: High, Serum Alkaline Phosphatase: Normal or low, Serum PTH: Low, low 1,25-OH vitamin D</td>
</tr>
<tr>
<td>PHP type IA</td>
<td>Mutation in stimulatory G protein; resistance to PTH action</td>
<td>Autosomal dominant</td>
<td>AHO phenotype, short stature, variable hypocalcemia, may have resistance to other hormones using G protein signaling</td>
<td>Serum Calcium: Low or normal, Serum Phosphorus: Elevated or normal, Serum Alkaline Phosphatase: Variable, Serum PTH: Very elevated, low 1,25-OH vitamin D</td>
</tr>
<tr>
<td>PPHP</td>
<td>Mutation in stimulatory G protein</td>
<td>Autosomal dominant—frequently found within same families with PHP type IA</td>
<td>AHO phenotype, biochemical parameters are normal</td>
<td>Serum Calcium: Normal, Serum Phosphorus: Normal, Serum Alkaline Phosphatase: Normal, Serum PTH: Normal</td>
</tr>
<tr>
<td>Transient tetany of the newborn-early</td>
<td>Deficiency in PTH secretion or action</td>
<td>Sporadic—associated with difficult deliveries, infants of diabetic mothers, or maternal hyperparathyroidism</td>
<td>Onset of symptoms of hypocalcemia within 2 wk of birth</td>
<td>Serum Calcium: Low, Serum Phosphorus: Normal or low, Serum Alkaline Phosphatase: Normal or low, Serum PTH: Normal or low, low 1,25-OH vitamin D</td>
</tr>
<tr>
<td>Transient tetany of the newborn-late onset</td>
<td>Deficiency in PTH secretion or action</td>
<td>Sporadic—associated with infant formulas that have a high phosphate content</td>
<td>Onset of symptoms of hypocalcemia after 2 wk of age</td>
<td>Serum Calcium: Low, Serum Phosphorus: Normal or low, Serum Alkaline Phosphatase: Normal or low, Serum PTH: Normal or low, low 1,25-OH vitamin D</td>
</tr>
<tr>
<td>Familial hypercalciuric hypocalcemia</td>
<td>Gain of functional mutation of calcium-sensing receptor</td>
<td>Autosomal dominant</td>
<td>Symptoms of hypocalcemia, family history</td>
<td>Serum Calcium: Low, Serum Phosphorus: High, Serum Alkaline Phosphatase: Normal or low, Serum PTH: Low, low 1,25-OH vitamin D</td>
</tr>
</tbody>
</table>

AHO, Albright hereditary osteodystrophy; APS, autoimmune polyglandular syndrome; PHP, pseudohypoparathyroidism; PPHP, pseudopseudohypoparathyroidism; PTH, parathyroid hormone.

*Urinary calcium excretion (calcium-creatinine ratio) is low in all but familial hypercalciuric hypocalcemia.
The early form of this condition (first 2 weeks of life) occurs in newborns with birth asphyxia. In mothers with hyperparathyroidism, maternal hypercalcemia may suppress fetal PTH secretion and cause early transient neonatal hypoparathyroidism. Likewise, women with gestational diabetes may have relative hyperparathyroidism in the third trimester and their infants may experience transient hypoparathyroidism. Associated hypomagnesemia often aggravates the symptoms associated with hypocalcemia. The late form of neonatal hypoparathyroidism (after 2 weeks of age) occurs in infants receiving high-phosphate formulas (whole cow’s milk is a well-known example). Phosphate binds calcium and produces functional hypocalcemia.

Tumor lysis syndrome and rhabdomyolysis cause cellular destruction that liberates large amounts of intracellular phosphate that complex with serum calcium, producing functional hypocalcemia. Malabsorption states such as celiac disease impair the absorption of calcium, vitamin D, and magnesium, all of which cause hypocalcemia (see Table 34–6). Hypomagnesemia, due to losses from the gastrointestinal tract or kidney, may cause or augment the severity of hypocalcemia by impairing the release of PTH.

Rickets is a term describing the characteristic clinical and bony radiologic features associated with vitamin D deficiency (see Chapter 11). Vitamin D deficiency, caused by lack of sunlight exposure or dietary deficiency, is the most common cause of rickets. Occult vitamin D deficiency is probably more common than is currently recognized. This concern forms the basis for the 2008 recommendation by the American Academy of Pediatrics that breast-fed infants receive vitamin D supplementation of at least 400 IU/d, or supplementation of breast-feeding women with 3–4000 IU/d. Rickets can also be caused by defects in the metabolism of vitamin D (see Table 34–5), including liver disease (impaired 25-hydroxylation), kidney disease (impaired 1-hydroxylation of 25-(OH) vitamin D), genetic deficiency of 1α-hydroxylase (vitamin D–dependent rickets), or end-organ resistance to vitamin D (vitamin D–resistant rickets).

Familial hypophosphatemic rickets has skeletal findings similar to those of vitamin D–related rickets. The defect in this condition is abnormal renal phosphate loss related to abnormal fibroblast growth factor 23 (FGF23) regulation. Dietary deficiency of calcium may also cause rickets but more often causes osteopenia.

Clinical Findings

A. Symptoms and Signs

Prolonged hypocalcemia from any cause is associated with tetany, photophobia, blepharospasm, and diarrhea. The symptoms of tetany are numbness, muscle cramps, twitching of the extremities, carpopedal spasm, and laryngospasm. Tapping the face in front of the ear causes facial spasms (Chvostek sign). Some patients with hypocalcemia exhibit bizarre behavior, irritability, loss of consciousness, and convulsions. Retarded physical and mental development may be present. Headache, vomiting, increased intracranial pressure, and papilledema may occur. In early infancy, respiratory distress may be a presenting finding.

B. Laboratory Findings

In rickets, calcium levels may be low or normal (see Tables 34–5 and 34–6). Phosphate levels in hypocalcemia disorders may be low, normal, or high depending on the cause of the hypocalcemia. Magnesium levels may also be low. PTH levels are reduced in many hypocalcemic conditions, but may be elevated in PHP or severe vitamin D deficiency. Measurement of urinary excretion of calcium as the calcium-creatinine ratio can assist in diagnosis and monitoring of therapy in children on calcitriol therapy.

C. Imaging

Soft tissue and basal ganglia calcification may occur in idiopathic hypoparathyroidism and PHP. Various skeletal changes are associated with rickets, including cupped and irregular long bone metaphyses. Torsional deformities can result in genu varum (bowleg). Accentuation of the costochondral junction gives the rachitic rosary appearance seen on the chest wall.

Differential Diagnosis

Tables 34–5 and 34–6 outline the features of disorders associated with hypocalcemia. In individuals with hypoalbuminemia, the total serum calcium may be low and yet the functional serum ionized calcium is normal. Ionized calcium is the test of choice for hypocalcemia in patients with low serum albumin.

Treatment

A. Acute or Severe Tetany

Hypocalcemia is corrected acutely by administration of intravenous calcium gluconate or calcium chloride; 10 mg/kg is the usual dose in acute treatment. Intravenous calcium infusions should not exceed 50 mg/min because of possible cardiac arrhythmia. Cardiac monitoring should be performed during calcium infusion.

B. Maintenance Management of Hypoparathyroidism or Chronic Hypocalcemia

The objective of treatment is to maintain the serum calcium and phosphate at near-normal levels without excess urinary calcium excretion.

1. Diet—Diet should be high in calcium with added calcium supplements starting at a dose of 50–75 mg of elemental
There are several types of PHP with variable biochemical and phenotypic features (see Table 34–6). Biochemical abnormalities in PHP (hypocalcemia and hyperphosphatemia) are similar to those seen in hypoparathyroidism, but the PTH levels are elevated. PHP may be accompanied by a characteristic phenotype known as Albright hereditary osteodystrophy (AHO), which includes short stature; round, full faces; irregularly shortened fourth metacarpal; a short, thick-set body; delayed and defective dentition; and mild mental retardation. Corneal and lenticular opacities and ectopic calcification of the basal ganglia and subcutaneous tissues (osteoma cutis) may occur with or without abnormal serum calcium levels. Treatment is the same as for hypoparathyroidism.

Pseudopseudohypoparathyroidism (PPHP) describes individuals with the AHO phenotype, but normal calcium homeostasis. PHP and PPHP can occur in the same cohort. Genomic imprinting is probably responsible for the different phenotypic expression of disease. Heterozygous loss of the maternal allele causes PHP and heterozygous loss of the paternal allele causes PPHP.


HYPERCALCEMIC STATES

Hypercalcemia is defined as a serum calcium level > 11 mg/dL. Severe hypercalcemia is a level > 13.5 mg/dL.

- Abdominal pain, polyuria, polydipsia, hypertension, nephrocalcinosis, failure to thrive, renal stones, intractable peptic ulcer, constipation, uremia, and pancreatitis.
- Bone pain or pathologic fractures, subperiosteal bone resorption, renal parenchymal calcification or stones, and osteitis fibrosa cystica.

**PSEUDOHYPOPARATHYROIDISM (RESISTANCE TO PARATHYROID HORMONE ACTION)**

In PHP, PTH production is adequate, but target organs (renal tubule, bone, or both) fail to respond because of receptor resistance. Resistance to PTH action is due to a heterozygous inactivating mutation in the stimulatory G protein subunit associated with the PTH receptor, which leads to impaired signaling. Resistance to other G protein–dependent hormones such as TSH, GHRH, and follicle-stimulating hormone (FSH)/luteinizing hormone (LH), may also be present.
Impaired concentration, altered mental status, mood swings, and coma.

General Considerations

More than 80% of hypercalcemic children or adolescents have either hyperparathyroidism or a malignant tumor. Table 34–7 summarizes the differential diagnosis of childhood hypercalcemia.

Hyperparathyroidism is rare in childhood and may be primary or secondary. The most common cause of primary hyperparathyroidism is parathyroid adenoma. Diffuse parathyroid hyperplasia or multiple adenomas may occur in families. Familial hyperparathyroidism may be an isolated disease, or it may be associated with MEN type 1, or rarely type 2A. Hypercalcemia of malignancy is associated with solid and hematologic malignancies and is due either to local destruction of bone by tumor or to ectopic secretion of PTH-related protein. When ectopic PTH-related protein is present, calcium is elevated, serum PTH is suppressed, and serum PTH–related protein is elevated. Chronic renal disease with impaired phosphate excretion is the most common secondary cause of hyperparathyroidism.

Table 34–7. Hypercalcemic states.

A. Primary hyperparathyroidism
   1. Parathyroid hyperplasia
   2. Parathyroid adenoma
   3. Familial, including MEN types 1 and 2
   4. Ectopic PTH secretion

B. Hypercalcemic states other than primary hyperparathyroidism associated with increased intestinal or renal absorption of calcium
   1. Hypervitaminosis D (including idiopathic hypercalcemia of infancy)
   2. Familial hypocalciuric hypercalcemia
   3. Lithium therapy
   4. Sarcoidosis
   5. Phosphate depletion
   6. Aluminum intoxication

C. Hypercalcemic states other than hyperparathyroidism associated with increased mobilization of bone minerals
   1. Hyperthyroidism
   2. Immobilization
   3. Thiazides
   4. Vitamin A intoxication
   5. Malignant neoplasms
      a. Ectopic PTH secretion or PTH-related protein (PTHrP)
      b. Prostaglandin-secreting tumor and perhaps prostaglandin release from subcutaneous fat necrosis
      c. Tumors metastatic to bone
      d. Myeloma

MEN, multiple endocrine neoplasia; PTH, parathyroid hormone.

Clinical Findings

A. Symptoms and Signs

1. Due to hypercalcemia—Manifestations include hypotonicity and muscle weakness; apathy, mood swings, and bizarre behavior; nausea, vomiting, abdominal pain, constipation, and weight loss; hyperextensibility of joints; and hypertension, cardiac irregularities, bradycardia, and shortening of the QT interval. Coma occurs rarely. Calcium deposits occur in the cornea or conjunctiva (band keratopathy) and are detected by slit-lamp examination. Intractable peptic ulcer and pancreatitis occur in adults but rarely in children.

2. Due to increased calcium and phosphate excretion—Loss of renal concentrating ability causes polyuria, polydipsia, and calcium phosphate deposition in renal parenchyma or as urinary calculi with progressive renal damage.

3. Due to changes in the skeleton—Initial findings include bone pain, osteitis fibrosa cystica, subperiosteal bone absorption in the distal clavicles and phalanges, absence of lamina dura around the teeth, spontaneous fractures, and moth-eaten appearance of the skull on radiographs. Later, there is generalized demineralization with high risk of subperiosteal cortical bone.

B. Imaging

Bone changes may be subtle in children. Technetium sestamibi scintigraphy is preferred over conventional procedures (ultrasound, computed tomography [CT], and MRI) for localizing parathyroid tumors.

Treatment

A. Symptomatic

Initial management is vigorous hydration with normal saline and forced calcium diuresis with a loop diuretic such as furosemide (1 mg/kg given every 6 hours). If response is inadequate, glucocorticoids or calcitonin may be used. Bisphosphonates, standard agents for the management of acute hypercalcemia in adults, are being used more often in refractory pediatric hypercalcemia.
B. Chronic

Treatment options vary with the underlying cause. Resection of parathyroid adenoma or subtotal removal of hyperplastic parathyroid glands is the preferred treatment. Postoperatively, hypocalcemia due to the rapid remineralization of chronically calcium-deprived bones may occur. A diet high in calcium and vitamin D is recommended immediately postoperatively and is continued until serum calcium concentrations are normal and stable. Treatment of secondary hyperparathyroidism from chronic renal disease is primarily directed at controlling serum phosphorus levels with phosphate binders. Pharmacologic doses of calcitriol are used to suppress PTH secretion. Long-term therapy for hypercalcemia of malignancy is the treatment of the underlying disorder.

Course & Prognosis

The prognosis after resection of a single adenoma is excellent. The prognosis following subtotal parathyroidectomy for diffuse hyperplasia or removal of multiple adenomas is usually good and depends on correction of the underlying defect. In patients with multiple sites of parathyroid adenoma or hyperplasia, MEN is likely, and other family members may be at risk. Genetic counseling and DNA analysis to determine the specific gene defect are indicated.

FAMILIAL HYPOCALCIURIC HYPERCALCEMIA
(FAMILIAL BENIGN HYPERCALCEMIA)

Familial hypocalciuric hypercalcemia is distinguished by low to normal urinary calcium excretion as a result of high renal reabsorption of calcium. PTH is normal or slightly elevated. In most cases, the genetic defect is a mutation in the membrane-bound calcium-sensing receptor expressed on parathyroid and renal tubule cells. It is inherited as an autosomal dominant trait with high penetrance. There is a low rate of new mutations. Most patients are asymptomatic, and treatment is unnecessary. A severe form of symptomatic neonatal hyperparathyroidism may occur in infants homozygous for the receptor mutation.

HYPERVITAMINOSIS D

Vitamin D intoxication is almost always the result of ingestion of excessive amounts of vitamin D. Signs, symptoms, and treatment of vitamin D–induced hypercalcemia are the same as those in other hypercalcemic conditions. Treatment depends on the stage of hypercalcemia. Severe hypercalcemia requires hospitalization and aggressive intervention. Due to the storage of vitamin D in the adipose tissue, several months of a low-calcium, low–vitamin D diet may be required.

IDIOPATHIC HYPERCALCEMIA OF INFANCY
(WILLIAMS SYNDROME)

Williams syndrome is an uncommon disorder of infancy characterized by elfin–appearing facies and hypercalcemia in infancy. Other features include failure to thrive, mental and motor retardation, cardiovascular abnormalities (primarily supravalvular aortic stenosis), irritability, purposeless movements, constipation, hypotonia, polyuria, polydipsia, and hypertension. A gregarious and affectionate personality is the rule in children with the syndrome. Hypercalcemia may not appear until several months after birth. Treatment consists of restriction of dietary calcium and vitamin D (Calcilo formula) and, in severe cases, moderate doses of glucocorticoids or even bisphosphonates.

A defect in the metabolism of, or responsiveness to, vitamin D is postulated as the cause of Williams syndrome. Elastin deletions localized to chromosome 7 have been identified in more than 90% of patients. Fluorescent in situ hybridization analysis (FISH) may be the best initial diagnostic tool. The risk of hypercalcemia generally resolves by age 4 and dietary restrictions can be relaxed.

IMMOBILIZATION HYPERCALCEMIA

Abrupt immobilization, particularly in a rapidly growing adolescent, may cause hypercalcemia and hypercalciuria. Abnormalities often appear 1–3 weeks after immobilization. Medical or dietary intervention may be required in severe cases.

HYPOPHOSPHATASIA

Hypophosphatasia is a rare autosomal recessive condition characterized by deficiency of alkaline phosphatase activity in serum, bone, and tissues. Enzyme deficiency leads to poor skeletal mineralization with clinical and radiographic features similar to rickets. Six different clinical forms are identified. The perinatal form is characterized by severe skeletal deformity and death within a few days of birth. The infantile form includes failure to thrive, hypotonia, and craniosynostosis. The childhood form manifests with variable skeletal findings, reduced bone mineral density, and premature loss of deciduous teeth. Serum calcium levels may be elevated. The diagnosis of hypophosphatasia is made by demonstrating elevated urinary phosphoethanolamine associated with low serum alkaline phosphatase. Therapy is generally supportive. Children who survive the neonatal period may experience gradual improvement. Calcitonin may be of value for the acute treatment of hypercalcemia.

GONADS (OVARIES & TESTES)

DEVELOPMENT & PHYSIOLOGY

The fetal gonads develop from bipotential anlagen in the genital ridge. In infants with a Y chromosome, the transcription factor SRY located on the short arm of the Y at location Yp11.3 directs the formation of testes from the bipotential gonads. Without expression of SRY, ovaries develop; however, a 46,XX complement of chromosomes is necessary for the development of normal ovaries. WT1 and many other transcription factors, including but not limited to SF1, DAX1, WNT4, and SOX9, are also important in gonadal differentiation. Two pairs of internal reproductive structures, the müllerian and wolffian ducts, develop in both sexes (Figure 34–6). Once testicular differentiation has been determined, the fetal testes produce two substances critical for male differentiation of these ducts. Antimüllerian hormone (AMH) from the sertoli cells of the testis promotes the regression of müllerian structures, and high local concentrations of testosterone from the Leydig cells stimulate growth of the wolffian structures. These structures become the epididymis, vas deferens, and seminal vesicle. In the absence of testes, as in a XX fetus, the lack of AMH production permits the müllerian structures to develop into the paired fallopian tubes, the midline uterus, and the upper portion of the vagina. The wolffian structures, without exposure to high local concentrations of testosterone, regress.

The external genitalia (Figure 34–7) develop from sexually indifferent structures called the genital tubercle (precursor of the penis or clitoris), the labioscrotal swellings (precursors of the scrotum or labia majora), and the urethral folds (precursors of the penile urethra or labia minora). Normal development of male external genitalia depends on an adequate circulating concentration of testosterone, which is converted to dihydrotestosterone (DHT) in the target tissues by the enzyme 5a-reductase. Sexual differentiation of the external genitalia is completed at about 12 weeks of gestation. Excessive androgen exposure of a female infant prior to this will lead to variable degrees of masculinization of the external genitalia, including posterior labial fusion and formation of penile urethra. Exposure after 12 weeks of gestation will only result in clitoromegaly.

DISORDERS OF SEXUAL DEVELOPMENT

Disorders of sexual development (DSD) is now the preferred terminology replacing terms such as “intersex” and “pseudohermaphrodite,” as these contain pejorative elements. DSD result from incomplete or disordered genital or gonadal development that causes a discordance between genetic sex, gonadal sex, and phenotypic sex. When an infant is born with genital ambiguity, immediate consultation with pediatric endocrinology, urology, and, if possible, psychiatry/psychology and genetics is required. Disorders of sexual development stem from alterations in three main processes: gonadal differentiation, steroidogenesis, or androgen action.

1. Disorders of Gonadal Differentiation

These abnormalities include XY gonadal dysgenesis, mosaicism involving the Y chromosome, XX sex reversal, and true hermaphroditism. Gonadal dysgenesis occurs as a result of abnormal gonadal development. Individuals with complete 46,XY gonadal dysgenesis have streak gonads that do not produce AMH or testosterone. Therefore, external genitalia and internal reproductive structures in complete gonadal dysgenesis are normal female external genitalia. Affected individuals typically present as girls with delayed puberty and amenorrhea. Partial XY gonadal dysgenesis is associated with incomplete testis development resulting in a phenotype of varying degrees of virilization. Mutations in the transcription factors SRY, WT1, SF1, and SOX9 have all been implicated in 46,XY gonadal dysgenesis. It is important...
to recognize that some of these mutations are associated with abnormalities separate from sexual development. For example, WTI mutations are associated with increased risk of Wilms tumor and nephropathy.

Mosaicism occurs when cells with two or more karyotypes are found in the same individual. The most common form of mosaicism is 45,X/46,XY. The majority of these individuals have normal male external genitalia but some may have ambiguity due to abnormal testicular formation. These individuals may also share some features of Turner syndrome such as short stature. XX sex reversal, characterized by masculine or ambiguous genital development in an XX individual, can be caused by translocation of the SRY gene to the X chromosome. A true hermaphrodite is defined as having both ovarian and testicular tissue and most often has a karyotype of 46,XX. Dysgenetic gonads have an increased risk for neoplastic transformation; therefore, if gonads are intra-abdominally located and cannot be brought down to the scrotum, gonadectomy is recommended.

2. Disorders of Steroidogenesis (Figure 34-8)

Testosterone biosynthesis in the testicular leydig cells depends on the function of multiple enzymes which are responsible for conversion of intermediary metabolites. Enzymatic defects in this pathway result in decreased or
absent testosterone synthesis and in affected XY individuals, there will be reduced or lack of virilization of the external genitalia. Wolffian duct derivatives can be absent, hypoplastic, or normal depending on the degree of the enzyme inactivity. Sertoli cell production of AMH is preserved so müllerian development is also inhibited. Disorders in this category include StAR deficiency, 3β-hydroxysteroid dehydrogenase deficiency, 17α-hydroxylase/17,20 lyase deficiency, and 17β-hydroxysteroid dehydrogenase deficiency. Additionally, defects in conversion of testosterone to dihydrotestosterone (DHT) from 5α-reductase deficiency also results in undervirilization. In this disorder, there is a deficiency of the type 2 isoenzyme of 5α-reductase, which is the primary isoenzyme present in the fetus. The type 1 isoenzyme becomes expressed at puberty at that time more DHT is produced and will masculinize the external genitalia. Since the gonads and adrenal gland share common enzymes of steroid hormone production, some of the enzymatic defects associated with male undervirilization may also affect production of cortisol and aldosterone, leading to cortisol deficiency and salt wasting (see later section on the Adrenal Cortex).

In an XX individual, the most common disorder in this category is congenital adrenal hyperplasia (CAH) secondary to 21-hydroxylase deficiency. In the classic salt-losing form of this disorder, infant girls present with genital ambiguity but have normal uterus and ovaries. A less common form of CAH is 3β-hydroxysteroid dehydrogenase deficiency, which presents in the same manner.

3. Disorders of Androgen Action

Androgen Insensitivity Syndrome (AIS) is caused by a mutation in the androgen receptor gene located on the proximal, long arm of the X chromosome at Xq11–12. In complete androgen insensitivity syndrome (CAIS), there is no androgen action; thus, 46,XY affected individuals have female external genitalia with a short, blind-ending vagina. The production of AMH in these individuals leads to müllerian regression and the absence of testosterone action leads
to absent or rudimentary wolffian structures. Gonads are located either intra-abdominally or in the inguinal canal. Some of these individuals present when surgery for an inguinal hernia reveals testis in the hernia sack. With partial androgen insensitivity syndrome (PAIS), the degree of virilization and ambiguity depends on the degree of abnormality in androgen binding.

4. Evaluation

A complete family and maternal history should be completed focusing on previous affected offspring, neonatal deaths, history of consanguinity, and maternal exposure to any drugs or hormones. On physical examination, dysmorphic features, other congenital anomalies, and hyperpigmentation of nipples and labia/scrotum should be noted. The genital examination should include measuring the width and length of the stretched phallus and noting the position of the urethral meatus. The normal stretched penile length (SPL) is greater than 2.5 cm (and diameter greater than 0.9 cm) in term infants, greater than 2 cm in 34-week infants, greater than 1.5 cm in 30-week infants, and greater than 0.8 cm in 25-week infants. The labioscrotal and inguinal regions should be palpated for presence of gonads. Since ovaries and streak gonads do not typically descend, the presence of a palpable gonad is suggestive of a 46,XY or 45X/46,XY karyotype. The labioscrotal area should also be evaluated for the degree of fusion and rugation.

In all infants, karyotype, FISH for SRY, electrolytes, LH, FSH, and testosterone should be done initially. Additional laboratory evaluation is usually based on these results. A pelvic ultrasound can be helpful to evaluate for the presence of a uterus; however, ultrasound findings can be unreliable so should be done in an institution which has expertise in pediatric imaging. Many times, laparoscopic examination is necessary to delineate internal structures. If the karyotype is 46,XX, a 17-hydroxyprogesterone level should be sent as the most common diagnosis will be congenital adrenal hyperplasia due to 21-hydroxylase deficiency. If the karyotype is 46,XY, then tests to evaluate for disorders of testicular development, steroidogenesis, and androgen action are recommended. It is important that gender assignment be avoided until expert evaluation by a multidisciplinary team is performed. The team should develop a plan for diagnosis, gender assignment, and treatment options before making any recommendations. Open communications with the parents is essential and their participation in decision making encouraged.

**Table 34–8. Causes of precocious pubertal development.**

| A. Central (GnRH-dependent) precocious puberty |
| 1. Idiopathic |
| 2. Central nervous system abnormalities |
| a. Acquired—abscess, chemotherapy, radiation, surgical trauma |
| b. Congenital—arachnoid cyst, hydrocephalus, hypothalamic hamartoma, septo-optic dysplasia, suprasellar cyst |
| c. Tumors—astrocytoma, craniopharyngioma, glioma |
| B. Peripheral (GnRH-independent) precocious puberty |
| 1. Congenital adrenal hyperplasia |
| 2. Adrenal tumors |
| 3. McCune-Albright syndrome |
| 4. Familial male-limited gonadotropin independent precocious puberty |
| 5. Gonadal tumors |
| 6. Exogenous estrogen—oral (contraceptive pills) or topical |
| 7. Ovarian cysts (females) |
| 8. HCG-secreting tumors (eg, hepatoblastomas, choriocarcinomas) (males) |

GnRH, gonadotropin-releasing hormone; HCG, human chorionic gonadotropin.


that of normal puberty. Central precocious puberty in girls is generally idiopathic but may be secondary to a central nervous system (CNS) abnormality that disrupts the prepubertal restraint on the GnRH pulse generator. Such CNS abnormalities include, but are not limited to, hypothalamic hamartomas, CNS tumors, cranial irradiation, hydrocephalus, and trauma. Peripheral precocious puberty (GnRH-independent) occurs independent of gonadotropin secretion. In girls, peripheral precocious puberty can be caused by ovarian or adrenal tumors, ovarian cysts, congenital adrenal hyperplasia, McCune-Albright syndrome, or exposure to exogenous estrogen. Estrogen-secreting ovarian or adrenal tumors are rare. Girls with these tumors typically present with markedly elevated estrogen levels and rapidly progressive pubertal changes. McCune-Albright syndrome is a triad of irregular café au lait lesions, polyostotic fibrous dysplasia, and GnRH-independent precocious puberty. It is caused by an activating mutation in the gene encoding the α-subunit of Gs, the G protein that stimulates adenyl cyclase. Endocrine cells with this mutation have autonomous hyperfunction and secrete excess amounts of their respective hormones.

**Clinical Findings**

**A. Symptoms and Signs**

Female central precocious puberty usually starts with breast development, followed by pubic hair growth and menarche. However, the order may vary and girls less than 5 years of age may not have pubic hair development. Girls with ovarian cysts or tumors generally have signs of estrogen excess such as breast development and possibly vaginal bleeding. Adrenal tumors or CAH produce signs of adrenarche (ie, pubic hair, axillary hair, acne, and sometimes, increased body odor). Children with precocious puberty usually have accelerated growth and skeletal maturation, and may temporarily be tall for age. However, because skeletal maturation advances at a more rapid rate than linear growth, final adult stature may be compromised.

**B. Laboratory Findings**

One of the first steps in evaluating a child with early pubertal development is obtaining a radiograph of the left hand and wrist to determine skeletal maturity (bone age). An estradiol level can also be drawn to rule out an ovarian tumor or cyst. If the bone age is advanced, further evaluation is warranted. In central precocious puberty, the basal serum concentrations of FSH and LH may still be in the prepubertal range. Thus, documentation of the maturity of the hypothalamic-pituitary axis depends on demonstrating a pubertal LH response after stimulation with a GnRH agonist. In peripheral precocious puberty, basal serum FSH and LH are low, and the LH response to GnRH stimulation is suppressed by feedback inhibition of the hypothalamic-pituitary axis by the autonomously secreted gonadal steroids (see Figure 34–1).

In girls with an ovarian cyst or tumor, estradiol levels will be markedly elevated. In girls with signs of adrenarche and an advanced bone age, androgen levels (testosterone, androstenedione, dehydroepiandrosterone-sulfate) and possibly adrenal intermediate metabolites (such as 17-hydroxyprogesterone) should be measured.

**C. Imaging**

When a diagnosis of central precocious puberty is made, a MRI of the brain should be done to evaluate for CNS lesions. It is unlikely that an abnormality will be found in girls 6–8 years of age, so the need for an MRI in this age group should be individually assessed. In girls whose laboratory tests suggest peripheral precocious puberty, an ultrasound of the ovaries and adrenal gland is indicated.

**Treatment**

Girls with central precocious puberty can be treated with GnRH analogues that downregulate pituitary GnRH receptors and thus decrease gonadotropin secretion. Currently, the two most common GnRH analogues used are (1) leuprolide, which is given as a monthly intramuscular injection or (2) histrelin subdermal implant, which is replaced annually. With treatment, physical changes of puberty regress or cease to progress and linear growth slows to a prepubertal rate. Projected final heights often increase as a result of slowing of skeletal maturation. After stopping therapy, pubertal progression resumes, and ovulation and pregnancy have been documented. Therapy is instituted for both psychosocial and final height considerations.

Treatment of peripheral precocious puberty is dependent on the underlying cause. In a girl with an ovarian cyst, intervention is generally not necessary, as the cyst usually regresses spontaneously. Serial ultrasounds are recommended to document this regression. Treatment with glucocorticoids is indicated for congenital adrenal hyperplasia. Surgical resection is indicated for the rare adrenal or ovarian tumor.

In McCune-Albright syndrome, therapy with antiestrogens (eg, tamoxifen), agents that block estrogen synthesis (ketoconazole), or aromatase inhibitors (eg, letrozole) may be effective. Regardless of the cause of precocious puberty or the medical therapy selected, attention to the psychological needs of the patient and family is essential.

**2. Benign Variants of Precocious Puberty**

Benign premature thelarche (benign early breast development) occurs most commonly in girls younger than 2 years of age. Girls present with isolated breast development without other signs of puberty such as linear growth acceleration and pubic hair development. The breast development is typically
present since birth and often waxes and wanes in size. It may be unilateral or bilateral. Benign thelarche is thought to be caused by greater ovarian hormone production during infancy. Treatment is parental reassurance regarding the self-limited nature of the condition. Observation of the child every few months is also indicated. Onset of thelarche after age 36 months or in association with other signs of puberty requires evaluation.

Benign premature adrenarche (benign early adrenal maturation) is manifested by early development of pubic hair, axillary hair, acne, and/or body odor. Benign premature adrenarche is characterized by normal linear growth and no or minimal bone age advancement. The timing of true puberty is not affected, and no treatment is required. Approximately 15% of girls with premature adrenarche are at risk for developing polycystic ovarian syndrome during puberty.


### 3. Delayed Puberty

Delayed puberty in girls should be evaluated if there are no pubertal signs by age 13 years or menarche by 16 years. Failure to complete pubertal development to Tanner stage V within 4 years of onset is also considered delay. Primary amenorrhea refers to the absence of menarche, and secondary amenorrhea refers to the absence of menses for at least 6 months after regular menses have been established. The most common cause of delayed puberty is constitutional growth delay (Table 34–9). This growth pattern, characterized by short stature, normal growth velocity, and a delay in skeletal maturation, is described in detail earlier in this chapter. The timing of puberty is commensurate to the bone age, not the chronologic age. Girls may also have delayed puberty from any condition that delays growth and skeletal maturation, such as hypothyroidism and GHD.

Primary hypogonadism in girls refers to a primary abnormality of the ovaries. The most common diagnosis in this category is Turner syndrome, in which the lack of or an abnormal second X chromosome leads to early loss of oocytes and accelerated stromal fibrosis. Other types of primary ovarian insufficiency are less common, including 46,XY gonadal dysgenesis, 46,XX gonadal dysgenesis, galactosemia, and autoimmune ovarian failure. Radiation and chemotherapy can also cause primary ovarian insufficiency. Girls who are premutation carriers for fragile X syndrome are also at increased risk of premature ovarian failure.

Central hypogonadism refers to a hypothalamic or pituitary deficiency of GnRH or FSH/LH, respectively. Central hypogonadism can be functional (reversible), caused by stress, undernutrition, prolactinemia, excessive exercise, or chronic illness. Permanent central hypogonadism is typically associated with conditions that cause multiple pituitary hormone deficiencies, such as congenital hypopituitarism, CNS tumors, or cranial irradiation. Isolated gonadotropin deficiency is rare but may occur in Kallmann syndrome, which is also characterized by hyposmia or anosmia. There are many genes that have been implicated in both isolated gonadotropin deficiency and Kallmann syndrome. In either primary or central hypogonadism, signs of adrenarche are generally present.

Delayed menarche or secondary amenorrhea may result from primary ovarian failure or central hypogonadism, or may be the consequence of hyperandrogenism, anatomic obstruction precluding menstrual outflow, or müllerian agenesis. This latter disorder is called Mayer-Rokitansky-Küster-Hauser syndrome and is characterized by an absent vagina and various uterine abnormalities, with or without renal and skeletal anomalies.

Girls with complete AIS (androgen receptor defect) typically present with primary amenorrhea, breast development, and absence of sexual hair. The affected individual (46,XY) has functioning testes that produce antimüllerian hormone during fetal life. Thus, no müllerian duct (oviduct or uterus) development occurs. External genitalia are female because of the lack of androgen action. At puberty, if the gonads have not been removed, testosterone produced

<table>
<thead>
<tr>
<th>Table 34–9. Cause of delayed puberty or amenorrhea.</th>
</tr>
</thead>
</table>
| **A. Constitutional growth delay**
| **B. Hypogonadism**
| 1. Primary ovarian insufficiency
| a. Gonadal dysgenesis (Turner syndrome, true gonadal dysgenesis)
| b. Premature ovarian failure
| (1) Autoimmune disease
| (2) Surgery, radiation, chemotherapy
| c. Galactosemia
| 2. Central hypogonadism
| a. Hypothalamic or pituitary tumor, infection, irradiation
| b. Congenital hypopituitarism
| c. Kallmann syndrome
| d. Functional (chronic illness, undernutrition, exercise, hyperprolactinemia
| **C. Anatomic**
| 1. Müllerian agenesis (Mayer-Rokitansky-Küster-Hauser syndrome)
| 2. Complete androgen resistance
in the testes is aromatized to estrogen resulting in breast development.

**Clinical Evaluation**

The history should ascertain whether and when puberty commenced, level of exercise, nutritional intake, stressors, sense of smell, symptoms of chronic illness, and family history of delayed puberty. Past growth records should be assessed to determine if height and weight velocity have been appropriate. Physical examination includes body proportions, breast and genital development, and stigmata of Turner syndrome. Pelvic examination or pelvic ultrasonography should be considered, especially in girls with primary amenorrhea.

A bone age radiograph should be obtained first. If the bone age is lower than that consistent with pubertal onset (<12 years in girls), evaluations should focus on finding the cause of the bone age delay. If short stature and normal growth velocity are present, constitutional growth delay is likely. If growth rate is abnormal, laboratory studies may include a complete blood count, erythrocyte sedimentation rate, chemistry panel, and renal and liver function tests to look for unsuspected chronic medical illness. Evaluation for hypothyroidism and GHD may also be indicated. Measurement of FSH and LH may not be helpful in the setting of delayed bone age since prepubertal levels are normally low. Determination of a karyotype should be considered if there is short stature, or any stigmata of Turner syndrome.

If the patient has attained a bone age of more than 12 years and there are minimal or no signs of puberty on physical examination, FSH and LH levels will distinguish between primary ovarian failure and central hypogonadism. Primary ovarian failure is also called hypergonadotropic hypogonadism, as there is lack of estrogen feedback to the brain with elevated FSH and LH. If gonadotropins are elevated, a karyotype is the next step, as Turner syndrome is the most common cause of female hypergonadotropic hypogonadism. Central hypogonadism is characterized by low gonadotropin levels, and evaluation is geared toward determining if the hypogonadism is functional or permanent. Laboratory tests should be directed toward identifying chronic disease and hyperprolactinemia. Cranial MRI may be helpful.

In girls with adequate breast development and amenorrhea, a progesterone challenge may be helpful to determine if sufficient estrogen is being produced. Girls who are producing estrogen have a withdrawal bleed after 5–10 days of oral progesterone, whereas those who are estrogen-deficient have little or no bleeding. The exception is girls with an absent uterus (androgen insensitivity or Mayer-Rokitansky-Küster-Hauser syndrome). They have sufficient estrogen but cannot have withdrawal bleeding. The most common cause of amenorrhea in girls with sufficient estrogen is polycystic ovarian syndrome. Girls who are estrogen-deficient should be evaluated similarly to those who have delayed puberty.

**Treatment**

Replacement therapy in hypogonadal girls begins with estrogen alone at the lowest available dosage. Oral preparations such as estradiol or topical patches are used. Cyclic estrogen–progesterone therapy is started 12–18 months later, and eventually the patient may be switched over to a birth control pill for convenience. Progesterone therapy is needed to counteract the effects of estrogen on the uterus, as unopposed estrogen promotes endometrial hyperplasia. Estrogen is also necessary to promote bone mineralization and prevent osteoporosis.


4. Secondary Amenorrhea

See discussion of amenorrhea in Chapter 4.

**ABNORMALITIES IN MALE PUBERTAL DEVELOPMENT & TESTICULAR FUNCTION**

1. Precocious Puberty in Boys

Puberty is considered precocious in boys if secondary sexual characteristics appear before age 9 years. While the frequency of central precocious puberty is much lower in boys than girls, boys are more likely to have an associated CNS abnormality (see Table 34–8).

Several types of gonadotropin-independent (peripheral) precocious puberty occur in boys (see Table 34–8). Increased adrenal androgen production from an adrenal tumor or from a virilizing form of CAH will cause pubertal changes in boys. Familial male-limited gonadotropin-independent puberty (familial testotoxicosis) is a condition in which a mutated LH receptor on the Leydig cell is autonomously activated, resulting in testicular production of testosterone despite prepubertal LH levels. McCune-Albright syndrome can also occur in boys. Leydig cell tumors of the testis cause rapid onset of unilateral testicular enlargement and physical signs of testosterone excess. Human chorionic gonadotropin (HCG)–secreting tumors such as teratomas, CNS germinomas, and hepatoblastomas also cause early puberty in boys, as HCG stimulates testosterone production from Leydig cells.

**Clinical Findings**

**A. Symptoms and Signs**

In precocious development, increased linear growth rate and growth of pubic hair are the most common presenting signs. Testicular size may differentiate central precocity, in
which the testes enlarge, from gonadotropin-independent causes such as CAH, in which the testes usually remain small (< 2 cm in the longitudinal axis). However, in familial testotoxicosis and HCG-mediated precocious puberty, there is some testicular enlargement but not to the degree as seen in central precocity. Tumors of the testis are associated with either asymmetrical or unilateral testicular enlargement.

### B. Laboratory Findings

Elevated testosterone levels verify early pubertal status but do not differentiate the source. As in girls, basal serum LH and FSH concentrations may not be in the pubertal range in boys with central precocious puberty, but the LH response to GnRH stimulation testing is pubertal. Sexual precocity caused by CAH is usually associated with abnormal plasma dehydroepiandrosterone, androstenedione, 17-hydroxyprogesterone (in CAH due to 21-hydroxylase deficiency), 11-deoxycortisol (in CAH due to 11-hydroxylase deficiency), or a combination of these steroids (see the section Adrenal Cortex, later). Serum β-HCG concentrations can signify the presence of an HCG-producing tumor (eg, CNS dysgerminoma or hepatoma) in boys who present with precocious puberty and testicular enlargement but suppressed gonadotropins following GnRH testing.

### C. Imaging

In all boys with central precocious puberty, cranial MRI should be obtained to evaluate for a CNS abnormality. If testing suggests peripheral precocious puberty, and laboratory studies are not consistent with CAH, ultrasonography may be useful in detecting hepatic, adrenal, and testicular tumors.

### Treatment

Treatment of central precocious puberty in boys is with GnRH analogues, similar to treatment in girls. Boys with McCune-Albright syndrome or familial testotoxicosis can be treated with agents that block steroid synthesis (ketoconazole), or with a combination of antiandrogens (spironolactone) and aromatase inhibitors (anastrozole or letrozole) which block the conversion of testosterone to estrogen.

### 2. Delayed Puberty

Boys should be evaluated for delayed puberty if they have no secondary sexual characteristics by 14 years of age or if more than 5 years have elapsed since the first signs of puberty without completion of genital growth.

The most common cause of delayed puberty in boys, as in girls, is constitutional growth delay, a normal variant of growth that is described in detail earlier in this chapter. Hypogonadism in boys may be primary, due to absence, malfunction, or destruction of testicular tissue, or central, due to pituitary or hypothalamic insufficiency. Primary testicular insufficiency may be due to anorchia, Klinefelter syndrome (47,XXY), or other sex chromosome abnormalities, enzymatic defects in testosterone synthesis, or inflammation or destruction of the testes following infection (mumps), autoimmune disorders, radiation, trauma, or tumor.

Central hypogonadism may accompany panhypopituitarism, Kallmann syndrome (GnRH deficiency with anosmia), or isolated LH or FSH deficiencies. Destructive lesions in or near the anterior pituitary (especially craniopharyngioma and glioma) or infection may also result in hypothalamic or pituitary dysfunction. Prader-Willi syndrome and Laurence-Moon syndrome (Bardet-Biedl syndrome) are frequently associated with LH and FSH deficiency in boys and girls secondary to GnRH deficiency. Deficiencies in gonadotropins may be partial or complete. Functional or reversible gonadotropin may occur with chronic illness, malnutrition, hyperprolactinemia, hypothyroidism, or excessive exercise.

#### Clinical Evaluation

The history should focus on whether and when puberty has started, testicular descent, symptoms of chronic illness, nutritional intake, sense of smell, and family history of delayed puberty. Physical examination should include body proportions, height and weight, pubertal stage, and testicular location, size, and consistency. Testes less than 2 cm in length are prepubertal; testes more than 2.5 cm in length suggest early pubertal growth.

A radiograph of the left hand and wrist to assess bone age should be the first step in evaluating a boy with delayed puberty. If bone age is delayed (< 12 years) and growth velocity is normal, constitutional growth delay is the most likely diagnosis. Laboratory evaluation includes LH and FSH levels (especially if bone age is > 12 years). Elevated gonadotropin levels indicate primary hypogonadism or testicular failure. The most common cause of primary hypogonadism in boys is Klinefelter syndrome; however, the usual presentation of this disorder is not delayed puberty but failure to complete puberty with a discrepancy noted between testicular size (small) and degree of virilization. If gonadotropin values are low, the working diagnosis is central hypogonadism and further evaluation should focus on looking for pituitary hormone deficiencies, chronic disease or undernutrition (or both), hyperprolactinemia, and CNS abnormalities.

#### Treatment

Boys with simple constitutional delay may be offered a short (4–6 months) course of low-dose depot testosterone (50–75 mg/mo) to stimulate their pubertal appearance and “jump-start” their endogenous development. In adolescents with permanent hypogonadism, treatment with depot testosterone, beginning with 50–75 mg intramuscularly each month, may be used until growth is complete. Thereafter, adult dosing (150–200 mg every 2–3 weeks) may be used.
An alternative to intramuscular injections is testosterone gel, either in single-dose packets or in a pump set to dispense a preset dose. Gel is applied daily after showering. Specific therapy for GnRH deficiency with pulsatile subcutaneous GnRH may promote fertility in patients with hypothalamic-pituitary insufficiency. However, the inconvenience of treatment and the need for repeated doses for long periods of time have limited its application in pediatrics.

3. Cryptorchidism

Cryptorchidism (undescended testis) is very common, affecting 2%–4% of full-term male newborns and up to 30% of premature infants. Short-term postnatal endogenous testosterone secretion decreases the incidence of cryptorchidism to 1% by 3 months of age. After 6 months of age, spontaneous descent occurs only very rarely. Consequently, intervention is typically considered beginning at this time.

Infertility and testicular malignancy are major risks of cryptorchidism. Fertility is impaired by approximately 33% after unilateral cryptorchidism and by 66% after bilateral disease. The cancer risk for adults after cryptorchidism in childhood is reported to be 5–10 times greater than normal. However, histologic changes clearly occur as early as age 6 months in children with undescended testes.

The cause of most cases of cryptorchidism is not completely understood. Cryptorchidism can occur in an isolated fashion or associated with other findings. Abnormalities in the hypothalamic-pituitary-gonadal axis predispose to cryptorchidism. Androgen biosynthesis or receptor defects also predispose to cryptorchidism and undervirilization.

The diagnosis of bilateral cryptorchidism in an apparently normal male newborn should never be made until the possibility that the child is actually a fully virilized female with potentially fatal salt-losing CAH has been considered.

Clinical Findings

In infants between 2 and 6 months of age, LH, FSH, and testosterone levels help determine whether testes are present. After this time, an HCG stimulation test can be done to confirm the presence or absence of functional abdominal testes. Ultrasonography, CT scanning, and MRI may detect testes in the inguinal region, but these studies are not completely reliable in finding abdominal testes.

Differential Diagnosis

In palpating the testis, the cremasteric reflex that causes the testis to retract into the inguinal canal or abdomen (pseudocryptorchidism) may be elicited. To prevent retraction during examination, the fingers first should be placed across the abdominal ring and the upper portion of the inguinal canal to obstruct testicular ascent. Examination while the child is in the squatting position or in a warm bath is helpful.

No treatment for retractile testes is necessary, and the prognosis for testicular descent and function is excellent.

Treatment

The current recommendation for treatment of cryptorchidism is that surgical orchidopexy be performed by an experienced surgeon if descent has not occurred by 6–12 months of age. The recommended timing of surgical intervention is based on the assumption that early surgery to relocate the testis into the low-temperature environment of the scrotum will allow normal germ cell development and decrease the risk for future infertility and cancer. However, in a certain number of cases, there is a primary abnormality of the testis which is thought to be responsible for the undescend and future risks. Hormonal therapy with HCG to induce descent of the testis only has a success rate of about 20%, and even less when retractile testes are excluded. HCG doses range from 250 to 1000 international units and are given twice weekly for 5 weeks. In the future, there may be a role for therapy with a GnRH analogue in addition to surgery as preliminary studies suggest that this treatment stimulates germ cell development and thus may improve future fertility.

4. Gynecomastia

Gynecomastia is a common, self-limited condition that may occur in up to 75% of normal pubertal boys. Adolescent gynecomastia typically resolves within 2 years but may not totally resolve if the degree of gynecomastia is extreme (> 2 cm of tissue). Gynecomastia may sometimes occur as part of Klinefelter syndrome, or it may occur in boys who are taking drugs such as antidepressants or marijuana. Medical therapy using antiestrogens and aromatase inhibitors have been used but generally the results are not deemed satisfactory. Surgical intervention is a reasonable option for prolonged and/or severe cases (see Chapter 4).
fasciculata makes cortisol and small amounts of mineralocorticoids. The innermost zona reticularis produces mainly androgens and estrogens. A fetal zone, or provisional cortex, that predominates during fetal development, produces glucocorticoids, mineralocorticoids, androgens, and estrogens. The fetal zone is relatively deficient in 3β-hydroxysteroid dehydrogenase (see Figure 34–8); hence placentally produced progesterone is the major precursor used in fetal adrenal production of cortisol and aldosterone.

The adrenal cortical production of cortisol is under the control of pituitary adrenocorticotropic hormone (ACTH; see Figure 34–1 and Table 34–1), which is in turn regulated by the hypothalamic peptide, corticotropin-releasing hormone (CRH). The complex interaction of CNS influences on CRH secretion, coupled with negative feedback of serum cortisol, leads to a diurnal pattern of ACTH and cortisol release. ACTH concentration is greatest during the early morning hours with a smaller peak in the late afternoon and a nadir at night. The pattern of serum cortisol concentration follows this pattern with a lag of a few hours. In the absence of cortisol feedback, there is dramatic CRH and ACTH hypersecretion.

Glucocorticoids are critical for gene expression in a many cell types. In excess, glucocorticoids are both catabolic and anabolic; that is, they promote the release of amino acids from muscle and increase gluconeogenesis while decreasing incorporation of amino acids into muscle protein. They also antagonize insulin activity and facilitate lipolysis. Glucocorticoids help maintain blood pressure by promoting peripheral vascular tone and sodium and water retention.

Mineralocorticoids (primarily aldosterone in humans) promote sodium retention and stimulate potassium excretion in the distal renal tubule. Although ACTH can stimulate aldosterone production, the predominant regulator of aldosterone secretion is the volume- and sodium-sensitive renin-angiotensin-aldosterone system. Elevations of serum potassium also directly influence aldosterone release from the cortex.

Androgens (dehydroepiandrosterone and androstenedione) production by the zona reticularis is insignificant before puberty. At the onset of puberty, androgen production increases and may be an important factor in the dynamics of puberty in both sexes. The adrenal gland is a major source of androgen in the pubertal and adult female.

### ADRENOCORTICAL INSUFFICIENCY (ADRENAL CRISIS, ADDISON DISEASE)

The leading causes of adrenal insufficiency are hereditary enzyme defects (congenital adrenal hyperplasia), autoimmune destruction of the glands (Addison disease), central adrenal insufficiency caused by intracranial neoplasm or its treatment, or congenital midline defects associated with optic nerve hypoplasia (septo-optic dysplasia). Rare forms of familial adrenal insufficiency occur in association with cerebral sclerosis and spastic paraplegia (adrenoleukodystrophy) or in association with achalasia and alacrimia in the triple A syndrome or Allgrove syndrome. Addison disease may be familial and has been described in association with hypoparathyroidism, mucocutaneous candidiasis, hypothyroidism, pernicious anemia, hypogonadism, and diabetes mellitus as one of the polyglandular autoimmune syndromes. Less commonly, the gland is destroyed by tumor, calcification, or hemorrhage (Waterhouse-Friderichsen syndrome). Adrenal disease secondary to opportunistic infections (fungal or tuberculous) is reported in AIDS. In children, central adrenal insufficiency due to anterior pituitary tumor is rare. Salt-losing disorders can occur from homozygous mutations affecting the aldosterone synthase enzyme (CYP11B2) or from partial or complete unresponsiveness of the mineralocorticoid receptor to aldosterone action (pseudoaldosteronism). A transient autosomal dominant form of pseudoaldosteronism has been reported in infancy. It is speculated to be secondary to a maturation disorder of function or number of aldosterone receptors and usually resolves by the first year of life.

Acute illness, surgery, trauma, or hyperthermia may precipitate an adrenal crisis in patients with adrenal insufficiency. Patients with primary adrenal insufficiency are at greater risk for life-threatening crisis than patients with central ACTH deficiency because mineralocorticoid secretion and low-level autonomous cortisol secretion remain intact in central ACTH deficiency.

#### Clinical Findings

**A. Symptoms and Signs**

1. **Acute form (adrenal crisis)**—Manifestations include nausea, vomiting, diarrhea, abdominal pain, dehydration, fever (sometimes followed by hypothermia), weakness, hypotension, circulatory collapse, confusion, and coma. Increased pigmentation may be associated with primary adrenal insufficiency caused by melanocyte-stimulating activity of the hypersecreted parent molecule of ACTH, pro-opiomelanocortin.

2. **Chronic form**—Manifestations include fatigue, hypotension, weakness, failure to gain weight, weight loss, salt craving (primary insufficiency), vomiting, and dehydration. Diffuse tanning with increased pigmentation over pressure points, scars, and mucous membranes may be present in primary adrenal insufficiency. A small heart may be seen on chest radiograph.

**B. Laboratory Findings**

1. **Suggestive of adrenocortical insufficiency**—In primary adrenal insufficiency, serum sodium and bicarbonate levels, arterial partial pressure of carbon dioxide, blood pH, and blood volume are decreased. Serum potassium and urea nitrogen levels are increased. Urinary sodium level and the
ratio of urinary sodium to potassium are inappropriate for the degree of hyponatremia. In central adrenal insufficiency, serum sodium levels may be mildly decreased as a result of impaired water excretion. Eosinophilia and moderate lymphopenia occur in both forms of insufficiency.

2. Confirmatory tests

A. ACTH (cosyntropin) stimulation test—In primary adrenal insufficiency (originating in the gland itself), plasma cortisol and aldosterone concentrations do not increase significantly over baseline 60 minutes after an intravenous dose of ACTH (250 mcg). To diagnose central adrenal insufficiency, a low dose of ACTH is given (1 mcg).

B. Baseline serum ACTH concentration—Values are elevated in primary adrenal failure and low in central adrenal insufficiency.

C. Urinary free cortisol—Values are decreased.

D. CRH test—This test assesses responsiveness of the entire hypothalamic-pituitary-adrenal axis. After administration of ovine CRH, serum concentrations of ACTH and cortisol are measured over 2 hours. Verification of an intact axis or localization of the site of impairment is possible with careful interpretation of results.

Differential Diagnosis

Acute adrenal insufficiency must be differentiated from severe acute infections, diabetic coma, various disturbances of the CNS, and acute poisoning. In the neonatal period, adrenal insufficiency may be clinically indistinguishable from respiratory distress, intracranial hemorrhage, or sepsis. Chronic adrenocortical insufficiency must be differentiated from anorexia nervosa, certain muscular disorders (myasthenia gravis), salt-losing nephritis, and chronic debilitating infections, and must be considered in cases of recurrent spontaneous hypoglycemia.

Treatment

A. Acute Insufficiency (Adrenal Crisis)

1. Hydrocortisone sodium succinate—Hydrocortisone sodium succinate is given initially at a dose of 50 mg/m² intravenously over 2–5 minutes or intramuscularly; thereafter, it is given intravenously, 12.5 mg/m², every 4–6 hours until stabilization is achieved and oral therapy can be tolerated.

2. Fluids and electrolytes—In primary adrenal insufficiency, 5%–10% glucose in normal saline, 10–20 mL/kg intravenously, is given over the first hour and repeated if necessary to reestablish vascular volume. Normal saline is continued thereafter at 1.5–2 times the maintenance fluid requirements. Intravenous boluses of glucose (10% glucose, 2 mL/kg) may be needed every 4–6 hours to treat hypoglycemia. In central adrenal insufficiency, routine fluid management is generally adequate after restoration of vascular volume and institution of cortisol replacement.

3. Fludrocortisone—When oral intake is tolerated, fludrocortisone, 0.05–0.15 mg daily, is started and continued as necessary every 12–24 hours for primary adrenal insufficiency.

4. Inotropic agents—Rarely, inotropic agents such as dopamine and dobutamine are needed. However, adequate cortisol replacement is critical because pressor agents may be ineffective in adrenal insufficiency.

5. Waterhouse-Friderichsen syndrome with fulminant infections—The use of adrenocorticosteroids and norepinephrine in the treatment or prophylaxis of fulminant infections remains controversial. Corticosteroids may augment the generalized Shwartzman reaction in fatal cases of meningococcemia. However, corticosteroids should be considered if there is possible adrenal insufficiency, particularly if there is hypotension and circulatory collapse.

B. Maintenance Therapy

Following initial stabilization, the most effective substitution therapy is hydrocortisone, combined with fludrocortisone in primary adrenal insufficiency. Overtreatment should be avoided as it causes obesity, growth retardation, and other cushingoid features. Additional hydrocortisone, fludrocortisone, or sodium chloride, singly or in combination, may be necessary with acute illness, surgery, trauma, or other stress reactions. Supportive adrenocortical therapy should be given whenever surgical operations are performed in patients who have at some time received prolonged therapy with adrenocorticosteroids.

1. Glucocorticoids—A maintenance dosage of 6–10 mg/m²/d of hydrocortisone (or equivalent) is given orally in two or three divided doses. The dosage of all glucocorticoids is increased to 30–50 mg/m²/d during intercurrent illnesses or other times of stress.

2. Mineralocorticoids—In primary adrenal insufficiency, fludrocortisone is given, 0.05–0.15 mg orally daily as a single dose or in two divided doses. Periodic monitoring of blood pressure is recommended to avoid overdosing.

3. Salt—The child should be given ready access to table salt. Frequent blood pressure determinations in the recumbent position should be made to check for hypertension. In the infant, supplementation of 3–5 mEq Na⁺/kg/d by adding a solution of 4 mg/mL to formula or breast milk is generally required until table foods are introduced.

C. Corticosteroids in Patients with Adrenocortical Insufficiency Who Undergo Surgery

1. Before operation—Hydrocortisone sodium succinate, 30–50 mg/m² IM or intravenously 1 hour before surgery.
2. During operation—Hydrocortisone sodium succinate, 25–100 mg intravenously with 5%–10% glucose in saline as a continuous drip throughout surgery.

3. During recovery—Hydrocortisone sodium succinate, 12.5 mg/m² intravenously every 4–6 hours until oral doses are tolerated. The oral hydrocortisone dose of three to five times the maintenance dose is continued until the acute stress is over, at which time the patient can be returned to the maintenance dose.

Course & Prognosis

The course of acute adrenal insufficiency is rapid, and death may occur within a few hours, particularly in infants, unless adequate treatment is given. Spontaneous recovery is unlikely. Patients who have received long-term treatment with adrenocorticosteroids may exhibit adrenal collapse if they undergo surgery or other acute stress. Pharmacologic doses of glucocorticoids during these episodes may be needed throughout life. In all forms of acute adrenal insufficiency, the patient should be observed carefully once the crisis has passed and evaluated with laboratory tests to assess the degree of permanent adrenal insufficiency.

Patients with chronic adrenocortical insufficiency who receive adequate therapy can lead normal lives.

Elevation of plasma 17-hydroxyprogesterone concentrations in the most common form; may be associated with hyponatremia, hyperkalemia, and metabolic acidosis, particularly in newborns.

General Considerations

Autosomal recessive mutations in the enzymes of adrenal steroidogenesis in the fetus cause impaired cortisol biosynthesis with increased ACTH secretion. ACTH excess subsequently results in adrenal hyperplasia with increased production of adrenal hormone precursors which are conveyed through the unblocked androgen pathway with resulting increase in androgen production. Increased pigmentation, especially of the scrotum, labia majora, and nipples, is common with excessive ACTH secretion. CAH is most commonly (> 90% of patients) the result of homozygous or compound heterozygous mutations in the cytochrome P-450 C21 (CYP21A2) gene causing 21-hydroxylase deficiency (see Figure 34–8). In its severe form, excess adrenal androgen production starting in the first trimester of fetal development causes virilization of the female fetus and life-threatening hypovolemic, hyponatremic shock (adrenal crisis) in the newborn. There are also other enzyme defects that less commonly result in CAH. The clinical syndromes associated with these defects are shown in Figure 34–8 and Table 34–10.

Studies of patients with 21-hydroxylase deficiency indicate that the clinical type (salt-wasting or non–salt-wasting) is usually consistent within a kindred and that a close genetic linkage exists between the 21-hydroxylase gene and the human leukocyte antigen complex on chromosome 6. Prenatal diagnosis is now possible by allele-specific PCR or direct sequencing of the fetal CYP21A2 gene. This can be done when there is a known index case in the family. Population studies indicate that the defective gene is present in 1:250–1:100 people and that the worldwide incidence of the disorder is 1:15,000 with increased incidence is certain ethnic groups. Mass screening for this enzyme defect, using a microfilter paper technique to measure serum 17-hydroxyprogesterone, has been established in all 50 U.S. states and many other countries worldwide.

Nonclassic presentations of 21-hydroxylase deficiency have been reported with increasing frequency. Affected persons have a normal phenotype at birth but may develop evidence of virilization during later childhood, adolescence, or early adulthood. In these cases, results of hormonal studies are characteristic of 21-hydroxylase deficiency with cosyntrpin stimulated 17-OHP levels being intermediate between those of nonaffected individuals and those with the classic form of the disease. Many individuals with the nonclassic form of the disease can be asymptomatic or only mildly symptomatic and do not need treatment. However, they can carry a severe CYP21A2 mutation and produce offspring with the classic form. Thus, it is recommended that these individuals should receive genetic counseling.
**Clinical Findings**

**A. Symptoms and Signs**

1. **In females**—Abnormality of the external genitalia varies from mild enlargement of the clitoris to complete fusion of the labioscrotal folds, forming an empty malrotated scrotum, a penile urethra, a penile shaft, and with clitoral enlargement sufficient to form a normal-sized glans (see Figure 34–7). Signs of adrenal insufficiency (salt loss) may occur in the first days of life but more typically appear in the second or third week. Rarely, signs of adrenal insufficiency do not occur for months or years. With milder enzyme defects, salt loss may not occur, and virilization predominates (simple virilizing form). In untreated non–salt-losing 21-hydroxylase deficiency congenital adrenal hyperplasia (CAH) may have normal aldosterone production and serum electrolytes, but some children have normal aldosterone production and serum electrolytes at the expense of elevated plasma renin activity and are, by definition, compensated salt-wasters. These children usually receive mineralocorticoid as well as glucocorticoid treatment. Children with 21-hydroxylase deficiency CAH should therefore have documented normal plasma renin activity in addition to normal serum electrolytes before they are considered non–salt-wasters.

2. **In males**—The male infant usually appears normal at birth but may present with salt-losing crisis in the first 2–4 weeks of life. In milder forms, salt-losing crises may not occur. In this circumstance, enlargement of the penis and increased pigmentation may be noted during the first few months. Other symptoms and signs are similar to those of affected females. The testes are not enlarged except in the rare male in whom aberrant adrenal cells (adrenal rests) are present in the testes, producing unilateral or asymmetrical bilateral enlargement. In the rare isolated defect of STAR protein, 17α-hydroxylase, or 3β-hydroxysteroid dehydrogenase activity, ambiguous genitalia may be present because of impaired androgen production (see Figure 34–8). Individuals with PORD present with skeletal malformations similar to the Antler Bixley syndrome in addition to genital ambiguity. Rare cases of 17α-hydroxylase mutations affecting only the 17–20 lyase functions of the enzyme have been reported. In those cases, patients present with isolated androgen deficiency and normal cortisol and aldosterone levels.

**B. Laboratory Findings**

1. **Blood**—Hormonal studies are essential for accurate diagnosis. Findings characteristic of the enzyme deficiencies are shown in Table 34–10.

2. **Genetic studies**—Rapid chromosomal diagnosis should be obtained in any newborn with ambiguous genitalia.

---

**Table 34–10. Clinical and laboratory findings in adrenal enzyme defects resulting in congenital adrenal hyperplasia.**

<table>
<thead>
<tr>
<th>Enzyme Deficiency</th>
<th>Elevated Plasma Metabolite</th>
<th>Plasma Androgens</th>
<th>Aldosterone</th>
<th>Hypertension/Salt Loss</th>
<th>External Genitalia</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR Protein</td>
<td>—</td>
<td>↓↓</td>
<td>↓↓</td>
<td>—/+</td>
<td>Males: ambiguous, Females: normal</td>
</tr>
<tr>
<td>3β-Hydroxysteroid dehydrogenase</td>
<td>17-OH pregnenolone (DHEA)</td>
<td>↑ (DHEA)</td>
<td>↓↓</td>
<td>—/+</td>
<td>Males: ambiguous, Females: possibly virilized</td>
</tr>
<tr>
<td>17α-Hydroxylase/17-20 lyase</td>
<td>Progesterone</td>
<td>↓↓</td>
<td>Normal to</td>
<td>±/−</td>
<td>Males: ambiguous, Females: normal</td>
</tr>
<tr>
<td>21-Hydroxylase*</td>
<td>17-OHP</td>
<td>↑↑</td>
<td>↓↓</td>
<td>−/+</td>
<td>Males: normal, Females: virilized</td>
</tr>
<tr>
<td>11-Hydroxylase</td>
<td>11-Deoxycortisol</td>
<td>↑↑ ↓↓</td>
<td>(↑ Deoxycorticosterone)</td>
<td>+/−</td>
<td>Males: normal, Females: virilized</td>
</tr>
<tr>
<td>P450 oxidoreductase</td>
<td>17-OHP (mild elevation)</td>
<td>↓↓</td>
<td>Normal or mildly elevated</td>
<td>+/−</td>
<td>Males: ambiguous, Females: ambiguous</td>
</tr>
</tbody>
</table>

DHEA, dehydroepiandrosterone; 17-OHP, 17-hydroxyprogesterone.

*Children with “simple virilizing (non–salt-wasting)” forms of 21-hydroxylase deficiency congenital adrenal hyperplasia (CAH) may have normal aldosterone production and serum electrolytes, but some children have normal aldosterone production and serum electrolytes at the expense of elevated plasma renin activity and are, by definition, compensated salt-wasters. These children usually receive mineralocorticoid as well as glucocorticoid treatment. Children with 21-hydroxylase deficiency CAH should therefore have documented normal plasma renin activity in addition to normal serum electrolytes before they are considered non–salt-wasters.
3. Urine—The diagnosis of P450 oxidoreductase deficiency is best done by gas chromatography/mass spectrometry analysis of urinary steroid metabolites, as serum steroids can be misleading. Pathognomonic findings include: increased pregnenolone and progesterone metabolites, increased 17-OHHP metabolites, and decreased androgen metabolites.

C. Imaging

Ultrasonography, CT scanning, and MRI may be useful in defining pelvic anatomy or enlarged adrenals or in localizing an adrenal tumor. Contrast-enhanced radiographs of the vagina and pelvic ultrasonography may be helpful in delineating the internal anatomy in a newborn with ambiguous genitalia.

▶ Treatment

A. Medical Treatment

Treatment goals in CAH are to replace deficient steroids with the smallest dose of glucocorticoid that will produce normalization of growth velocity and skeletal maturation by adequately suppressing excess build-up of androgen precursors. Excessive glucocorticoids cause the undesirable side effects of Cushing syndrome. Mineralocorticoid replacement sustains normal electrolyte homeostasis, but excessive mineralocorticoids cause hypertension and hypokalemia. Undervirilized males with the less frequent forms of CAH may require adult androgen replacement therapy in addition to glucocorticoid and mineralocorticoid replacement.

1. Glucocorticoids—Supraphysiologic doses of hydrocortisone are often needed to suppress androgen excess in CAH. Initially, parenteral or oral hydrocortisone (30–50 mg/m²/d) suppresses abnormal adrenal steroidogenesis within 2 weeks. When adrenal suppression has been accomplished, as evidenced by normalization of serum 17-hydroxyprogesterone, patients are placed on maintenance doses of 10–15 mg/m²/d in three divided doses. Dosage is adjusted to maintain normal growth rate and skeletal maturation. Various serum and urine androgens have been used to monitor therapy, including 17-hydroxyprogesterone, androstenedione, and urinary pregnanetriol. No one test is universally accepted. In adolescent girls, normal menses are a sensitive index of the adequacy of therapy. Therapy should be continued throughout life in both males and females because of the possibility of malignant degeneration of the hyperplastic adrenal gland. In pregnant females with CAH, suppression of adrenal androgen secretion is critical to avoid virilization of the fetus, particularly a female fetus. Suppression of adrenal androgen production is best begun before conception. Hydrocortisone is the preferred choice for glucocorticoid replacement therapy in pregnant women with CAH because it does not cross the placenta.

2. Mineralocorticoids—Fludrocortisone, 0.05–0.15 mg, is given orally once a day or in two divided doses. Periodic monitoring of blood pressure and plasma renin activity are recommended to adjust dosing.

B. Surgical Treatment

For affected females, consultation with a urologist or gynecologist experienced in female genital reconstruction should be arranged as soon as possible during infancy.

▶ Course & Prognosis

When therapy is initiated in early infancy, abnormal metabolic effects and progression of masculinization can be avoided. Treatment with glucocorticoids permits normal growth, development, and sexual maturation. If not adequately controlled, CAH results in sexual precocity and masculinization throughout childhood. Affected individuals will be tall as children but short as adults because of a rapid rate of skeletal maturation and premature closure of the epiphyses. If treatment is delayed or inadequate until somatic development is completed (12–14 years as determined by bone age), true central precocious puberty may occur in males and females.

Patient education stressing lifelong therapy is important to ensure compliance in adolescence and later life. Virilization and multiple surgical genital reconstructions are associated with a high risk of psychosexual disturbances in female patients. Ongoing psychological evaluation and support is a critical component of care.


ADRENOCORTICAL HYPERFUNCTION (CUSHING DISEASE, CUSHING SYNDROME)

▶ Cushing Syndrome.
▶ Truncal adiposity, thin extremities, moon facies, muscle wasting, weakness, plethora, easy bruising, purple...
Hypertension, osteoporosis, and glycosuria.

- Elevated serum corticosteroids, low serum potassium, eosinopenia, and lymphopenia.

**General Considerations**

Cushing syndrome may result from excessive secretion of adrenal steroids autonomously (adenoma or carcinoma), excess pituitary ACTH secretion (Cushing disease), ectopic ACTH secretion, or chronic exposure to exogenous glucocorticoids. In children younger than 12 years, Cushing syndrome is usually iatrogenic (secondary to exogenous ACTH or glucocorticoids). It may rarely be due to adrenal tumor, adrenal hyperplasia, pituitary adenoma, or extrapituitary ACTH-producing tumor.

**Clinical Findings**

A. Symptoms and Signs

1. Excess glucocorticoid—Manifestations include adiposity, most marked on the face, neck, and trunk (a fat pad in the interscapular area is characteristic); fatigue; plethoric facies; purplish striae; easy bruising; osteoporosis; hypertension; glucose intolerance; back pain; muscle wasting and weakness; and marked retardation of growth and skeletal maturation.

2. Excess mineralocorticoid—Patients have hypokalemia, mild hypernatremia with water retention, increased blood volume, edema, and hypertension.

3. Excess androgen—Hirsutism, acne, and varying degrees of virilization are present. Menstrual irregularities occur in older girls.

B. Laboratory Findings

1. Blood

   - **Plasma cortisol**—Values are elevated, with loss of normal diurnal variation. Determination of cortisol level between midnight and 2 AM may be a sensitive indicator of the loss of diurnal variation.

   - **Serum chloride and potassium**—Both values are usually low, but serum sodium and bicarbonate concentrations may be elevated with metabolic alkalosis.

   - **Serum ACTH**—ACTH concentration is decreased in adrenal tumor and increased with ACTH-producing pituitary or extrapituitary tumors.

   - **CBC**—Polymorphonuclear leukocytosis with lymphopenia and eosinopenia are common. Polycythemia occurs.

2. **Salivary cortisol**—This is a less invasive means by which to measure serial cortisol values, and the tests may be performed at home. Salivary cortisol obtained at midnight is a highly specific and sensitive test for hypercortisolism.

3. **24-Hour urinary free cortisol excretion**—This value is elevated. It is considered the most useful initial test to document hypercortisolism, although midnight salivary cortisol is considered a reasonable and more practical alternative. The urinary free cortisol/creatinine ratio is usually measured to correct for incomplete 24 hour collections.

4. **Response to dexamethasone suppression testing**—Suppression of adrenal function by a small dose (0.5–1.0 mg) of dexamethasone is seen in obese children who may have elevated urinary free cortisol excretion, but not in children with an ACTH-secreting tumor or adrenal tumor. Larger doses (4–16 mg/d in four divided doses) of dexamethasone cause suppression of adrenal activity when the disease is due to ACTH hypersecretion by a pituitary tumor, whereas hypercortisolism due to adrenal adenomas or adrenal carcinomas is rarely suppressed.

5. **CRH test**—The CRH stimulation test, in conjunction with petrosal sinus sampling, is effective in distinguishing pituitary and ectopic sources of ACTH excess and for lateralization of pituitary sources prior to surgery.

C. Imaging

Pituitary imaging may demonstrate a pituitary adenoma. Adrenal imaging by CT scan may demonstrate adenoma or bilateral hyperplasia. Radionuclide studies of the adrenals may be useful in complex cases. Osteoporosis, evident first in the spine and pelvis, with compression fractures may occur in advanced cases. Skeletal maturation is usually delayed.

**Differential Diagnosis**

Children with exogenous obesity accompanied by striae and hypertension are often suspected of having Cushing syndrome. The child’s height, growth rate, and skeletal maturation are helpful in differentiating the two. Children with Cushing syndrome have a poor growth rate, relatively short stature, and delayed skeletal maturation, while those with exogenous obesity usually have a normal or slightly increased growth rate, normal to tall stature, and advanced skeletal maturation. The color of the striae (purplish in Cushing syndrome, pink in obesity) and the distribution of the obesity may assist in differentiation. The urinary-free cortisol excretion (in milligrams per gram of creatinine) may be mildly elevated in obesity, but midnight salivary cortisol is normal, and cortisol secretion is suppressed by a relatively small dose of dexamethasone (see “Response to dexamethasone suppression testing”).
Treatment

In all cases of primary adrenal hyperfunction due to tumor, surgical removal is indicated if possible. Glucocorticoids should be administered parenterally in pharmacologic doses during and after surgery until the patient is stable. Supplemental oral glucocorticoids, potassium, salt, and mineralocorticoids may be necessary until the suppressed contralateral adrenal gland recovers, sometimes over a period of several months. The use of mitotane, a DDT derivative that is toxic to the adrenal cortex, and aminoglutethimide, an inhibitor of steroid synthesis, have been suggested, but their efficacy in children with adrenal tumors has not been determined. Pituitary microadenomas may respond to pituitary surgery or irradiation.

Prognosis

If the tumor is malignant, the prognosis is poor if it cannot be completely removed. If it is benign, cure is to be expected following proper preparation and surgery.

Primary Hyperaldosteronism

Primary hyperaldosteronism may be caused by an adrenal adenoma or adrenal hyperplasia. It is characterized by paresthesias, tetany, weakness, nocturnal enuresis, periodic paralysis, low serum potassium and elevated serum sodium levels, hypertension, metabolic alkalosis, and production of large volume, alkaline urine with low specific gravity. The specific gravity does not respond to vasopressin. Glucose tolerance test is frequently abnormal. Plasma and urinary aldosterone are elevated. In contrast to renal disease or Bartter syndrome, plasma renin activity is suppressed, creating a high aldosterone-renin ratio. In patients with adrenal tumor, ACTH may further increase the excretion of aldosterone. Marked improvement after the administration of an aldosterone antagonist such as spironolactone may be of diagnostic value.

Primary hyperaldosteronism is rare in pediatrics. However, there are three recognized genetic causes (types I–III). Type I occurs due to inheritance of a hybrid of the genes encoding 11β-hydroxylase and aldosterone synthase. Type III was recently described and results from mutations in the KCNJ5 gene encoding a K+ channel. Somatic mutations of this gene are also seen in later onset hyperaldosteronism. The genetic cause for type II is unknown.

Treatment is with glucocorticoids (glucocorticoid remediable hyperaldosteronism or familial hyperaldosteronism type I), spironolactone (familial hyperaldosteronism type II), or subtotal or total adrenalectomy for hyperplasia, and surgical removal if a tumor is present.

Uses of Glucocorticoids & Adrenocorticotropic Hormone in Treatment of Nonendocrine Diseases

Glucocorticoids are used for their anti-inflammatory and immunosuppressive properties in a variety of conditions in childhood. Pharmacologic doses are necessary to achieve these effects, and side effects are common. Numerous synthetic preparations possessing variable ratios of glucocorticoid to mineralocorticoid activity are available (Table 34–11).

Actions

Glucocorticoids exert a direct or permissive effect on virtually every tissue of the body; major known effects include the following:

1. Gluconeogenesis in the liver
2. Stimulation of fat breakdown (lipolysis) and redistribution of body fat
3. Catabolism of protein with an increase in nitrogen and phosphorus excretion
4. Decrease in lymphoid and thymic tissue and a decreased cellular response to inflammation and hypersensitivity
5. Alteration of CNS excitation
6. Retardation of connective tissue mitosis and migration; decreased wound healing
7. Improved capillary tone and increased vascular compartment volume and pressure

Side Effects of Therapy

When prolonged use of pharmacologic doses of glucocorticoids is necessary, clinical manifestations of Cushing syndrome are common. Side effects may occur with the use
of synthetic exogenous agents by any route, including inhalation and topical administration, or with the use of ACTH. Use of a larger dose of glucocorticoids given once every 48 hours (alternate-day therapy) lessens the incidence and severity of some of the side effects (Table 34–12).

### Tapering of Pharmacologic Doses of Steroids

Prolonged use of pharmacologic doses of glucocorticoids causes suppression of ACTH secretion and consequent

---

<table>
<thead>
<tr>
<th>Table 34–11. Potency equivalents for adrenocorticosteroids.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Adrenocorticosteroid</strong></td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td><strong>Glucocorticoids</strong></td>
</tr>
<tr>
<td>Hydrocortisone (cortisol)</td>
</tr>
<tr>
<td>Cortisone</td>
</tr>
<tr>
<td>Prednisone</td>
</tr>
<tr>
<td>Methylprednisolone</td>
</tr>
<tr>
<td>Triamcinolone</td>
</tr>
<tr>
<td>Dexamethasone</td>
</tr>
<tr>
<td>Betamethasone</td>
</tr>
<tr>
<td><strong>Mineralocorticoid</strong></td>
</tr>
<tr>
<td>Fludrocortisone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 34–12. Side effects of glucocorticoid use.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>A. Endocrine and metabolic effects</strong></td>
</tr>
<tr>
<td>1. Hyperglycemia and glycosuria (chemical diabetes)</td>
</tr>
<tr>
<td>2. Cushing syndrome</td>
</tr>
<tr>
<td>3. Persistent suppression of pituitary-adrenal responsiveness to stress with resultant hypoaldosteronism</td>
</tr>
<tr>
<td><strong>B. Effects on electrolytes and minerals</strong></td>
</tr>
<tr>
<td>1. Marked retention of sodium and water, producing edema, increased blood volume, and hypertension (more common in endogenous hyperadrenal states)</td>
</tr>
<tr>
<td>2. Potassium loss with symptoms of hypokalemia</td>
</tr>
<tr>
<td>3. Hypocalcemia, tetany</td>
</tr>
<tr>
<td><strong>C. Effects on protein metabolism and skeletal maturation</strong></td>
</tr>
<tr>
<td>1. Negative nitrogen balance, with loss of body protein and bone protein, resulting in osteoporosis, pathologic fractures, and aseptic bone necrosis</td>
</tr>
<tr>
<td>2. Suppression of growth, retarded skeletal maturation</td>
</tr>
<tr>
<td>3. Muscular weakness and wasting</td>
</tr>
<tr>
<td>4. Osteoporosis</td>
</tr>
<tr>
<td>5. Avascular necrosis</td>
</tr>
<tr>
<td><strong>D. Effects on the gastrointestinal tract</strong></td>
</tr>
<tr>
<td>1. Excessive appetite and intake of food</td>
</tr>
<tr>
<td>2. Activation or production of peptic ulcer</td>
</tr>
<tr>
<td>3. Gastrointestinal bleeding from ulceration or from unknown cause (particularly in children with hepatic disease)</td>
</tr>
<tr>
<td>4. Fatty liver with embolism, pancreatitis, nodular panniculitis</td>
</tr>
<tr>
<td><strong>E. Lowering of resistance to infectious agents; silent infection; decreased inflammatory reaction</strong></td>
</tr>
<tr>
<td>1. Susceptibility to bacterial, fungal, and parasitic infections</td>
</tr>
<tr>
<td>2. Activation of tuberculosis; false-negative tuberculin reaction</td>
</tr>
<tr>
<td>3. Reactivation and poor containment of herpesviruses</td>
</tr>
<tr>
<td><strong>F. Neuropsychiatric effects</strong></td>
</tr>
<tr>
<td>1. Euphoria, excitability, psychotic behavior, and status epilepticus with electroencephalographic changes</td>
</tr>
<tr>
<td>2. Increased intracranial pressure with pseudotumor cerebri syndrome</td>
</tr>
<tr>
<td><strong>G. Hematologic and vascular effects</strong></td>
</tr>
<tr>
<td>1. Bleeding into the skin as a result of increased capillary fragility</td>
</tr>
<tr>
<td>2. Thrombosis, thrombophlebitis, cerebral hemorrhage</td>
</tr>
<tr>
<td><strong>H. Miscellaneous effects</strong></td>
</tr>
<tr>
<td>1. Myocarditis, pleuritis, and arteritis following abrupt cessation of therapy</td>
</tr>
<tr>
<td>2. Cardiomegaly</td>
</tr>
<tr>
<td>3. Nephrosis, proteinuria</td>
</tr>
<tr>
<td>4. Acne (in older children), hirsutism, amenorrhea, irregular menses</td>
</tr>
<tr>
<td>5. Posterior subcapsular cataracts; glaucoma</td>
</tr>
</tbody>
</table>
adrenal atrophy. The abrupt discontinuation of glucocorticoids may result in adrenal insufficiency. ACTH secretion generally does not restart until the administered steroid has been given in subphysiologic doses (< 6 mg/m²/d orally) for several weeks.

If pharmacologic glucocorticoid therapy has been given for less than 10–14 days, the drug can be discontinued abruptly (if the condition for which it was prescribed allows) because adrenal suppression will be short-lived. However, it is advisable to educate the patient and family about the signs and symptoms of adrenal insufficiency in case problems arise.

If tapering is necessary in treating the condition for which the glucocorticoid is prescribed, a reduction of 25%–50% every 2–7 days is sufficiently rapid to permit observation of clinical symptomatology. An alternate-day schedule (single dose given every 48 hours) will allow for a 50% decrease in the total 2-day dosage while providing the desired pharmacologic effect. If tapering is not required for the underlying disease, the dosage can be rapidly decreased safely to the physiologic range. Although a rapid decrease in dose to the physiologic range will not lead to frank adrenal insufficiency (because adequate exogenous cortisol is being provided), some patients may experience a steroid withdrawal syndrome, characterized by malaise, insomnia, fatigue, and loss of appetite. These symptoms may necessitate a two- or three-step decrease in dose to the physiologic range.

Once a physiologic equivalent dose (8–10 mg/m²/d hydrocortisone or equivalent) is achieved and the patient’s underlying disease is stable, the dose can be decreased to 4–5 mg/m²/d given only in the morning. This will allow the adrenal axis to recover. After this dose has been given for 4–6 weeks, assessment of endogenous adrenal activity is estimated by obtaining fasting plasma cortisol concentrations between 7 and 8 AM prior to the morning steroid dose. When an alternate-day schedule is followed, plasma cortisol is measured the morning before treatment. Plasma cortisol concentration in the physiologic range (> 10 mg/dL) indicates return of basal physiologic adrenal rhythm. Exogenous steroids may then be discontinued safely, although it is advisable to continue giving stress doses of glucocorticoids when appropriate until recovery of the response to stress has been documented.

After basal physiologic adrenal function returns, the adrenal reserve or capacity to respond to stress and infection can be estimated by the low-dose ACTH stimulation test, in which 1 mcg of synthetic ACTH (cosyntropin) is administered intravenously. Plasma cortisol is measured prior to (zero time) and at 45–60 minutes after the infusion. A plasma cortisol concentration greater than 18 mg/dL at 60 minutes indicates a satisfactory adrenal reserve.

Even if the results of testing are normal, patients who have received prolonged treatment with glucocorticoids may develop signs and symptoms of adrenal insufficiency during acute stress, infection, or surgery for months to years after treatment has been stopped. Careful monitoring, and the use of stress doses of glucocorticoids, should be considered during severe illnesses and surgery.

Pheochromocytoma is an uncommon tumor, but up to 10% of reported cases occur in pediatric patients. The tumor can be located wherever chromaffin tissue (adrenal medulla, sympathetic ganglia, or carotid body) is present, possibly from decreased apoptosis of neural crest cells during development. It may be multiple, recurrent, and sometimes malignant. Familial forms include pheochromocytomas associated with the dominantly inherited neurofibromatosis type 1, MEN type 2, and von Hippel-Lindau syndromes, as well as mutations of the succinate dehydrogenase genes. Neuroblastomas, ganglioneuromas, and other neural crest tumors, as well as carcinoid tumors, may secrete pressor amines and mimic pheochromocytoma.

The symptoms of pheochromocytoma are generally caused by excessive secretion of epinephrine or norepinephrine and most commonly include headache, sweating, tachycardia, and hypertension. Other symptoms are anxiety, dizziness, weakness, nausea and vomiting, diarrhea, dilated pupils, blurred vision, abdominal and precordial pain, and vasomotor instability (flushing and postural hypotension). Sustained symptoms may lead to cardiac, renal, optic, or cerebral damage.

Laboratory diagnosis is possible in more than 90% of cases. Serum and urine catecholamines are elevated, but abnormalities may be limited to periods of symptomatology or paroxysm. Plasma-free metanephrine level (phenoxybenzamine, tricyclic antidepressants, and β-adrenoceptor blockers can create false-positive results) is the most sensitive test and the gold standard for diagnosis. Levels three times the normal range are diagnostic. Intermediate values may
require additional testing, with urinary vanillylmandelic acid and urinary total metanephrines providing the highest specificity. Provocative tests using histamine, tyramine, or glucagon and the phenolamine tests may be abnormal but are dangerous and are rarely necessary. After demonstrating a tumor biochemically, imaging methods including CT or MRI are used to localize the tumor. When available, functional ligands such as (123)I-MIBG, [18F]DA positron emission tomography scanning, and somatostatin receptor scintigraphy (with either [125I]Tyr3-octreotide or [111In] DTPA-octreotide) are useful in further diagnostic evaluation.

Laparoscopic tumor removal is the treatment of choice; however, the procedure must be undertaken with great caution and with the patient properly stabilized. Oral phenoxybenzamine or intravenous phentolamine is used preoperatively. Profound hypotension may occur as the tumor is removed but may be controlled with an infusion of noradrenaline, which may have to be continued for 1–2 days. Unless irreversible secondary vascular changes have occurred, complete relief of symptoms is to be expected after recovery from removal of a benign tumor. However, prognosis is poor in patients with metastases, which occur more commonly with large, extra-adrenal pheochromocytomas.

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Polyuria, polydipsia, and weight loss.
- Hyperglycemia and glucosuria often with ketonemia/ketonuria.

GENERAL CONSIDERATIONS

**Type 1 diabetes** (T1D) is the most common type of diabetes mellitus in people younger than 20 years, but can develop at any age and most cases are diagnosed after age 20. The classical presentation includes increased thirst (polydipsia), urination (polyuria), and weight loss; however, the patient may be overweight or even obese. T1D is further divided into T1a (autoimmune) (~95% of the cases) and T1b (idiopathic) diabetes. T1a diabetes is marked by presence of autoantibodies to islet cell autoantigens (insulin, GAD65, IA-2, and ZnT8) and high-risk HLA (human leucocyte antigen) haplotypes (DR4, DQ8, and DR3/DQ2). Insulin production, measured by fasting or stimulated C-peptide levels, is usually low. In the United States, T1D affects an estimated 1.5 million people, including 160,000–200,000 patients younger than age 20 (~25,000 diagnosed annually).

**Type 2 diabetes** (T2D) is a heterogeneous phenotype diagnosed most often in persons older than age 40 who are usually obese and initially not insulin-dependent. T2D is rare before age 10, but has increased in frequency in older children as a consequence of the epidemic of obesity. The vast majority of the 26 million patients with diabetes in the United States have T2D, but only approximately 16,000 patients are younger than age 20 (~5000 diagnosed annually).

**Monogenic forms of diabetes** can be diagnosed at any age. They account for less than 1% of childhood diabetes, but form the majority of cases diagnosed before the ninth month of life. Neonatal diabetes is transient in about half of the cases; if persistent, it presents a significant clinical challenge. Some infants respond better to sulfonylurea than insulin. Maturity-onset diabetes of the young (MODY) presents as a nonketotic and usually non–insulin-dependent diabetes in the absence of obesity or islet autoantibodies. A strong family history of early-onset diabetes is common. The most frequent forms are due to mutations in glucokinase or hepatic nuclear factor 1 or 2 genes. Glucokinase mutations rarely require therapy; other forms respond to oral hypoglycemic agents or insulin. Commercial and research-oriented genotyping services are available to aid correct diagnosis.

Pathogenesis

**A. Type 1 Diabetes**

Type 1 diabetes results from autoimmune destruction of the insulin-producing β cells of the pancreatic islets. This destruction occurs over months or years and symptoms do not appear until most of the pancreatic islets have been destroyed.

The incidence is the highest in children of European ancestry, followed by African Americans and Hispanics; the rates are low in Asians and Native Americans.

About 6% of siblings or offspring of persons with T1D also develop diabetes (compared with prevalence in the general population of 0.2%–0.3%). However, fewer than 10% of children newly diagnosed with T1D have a parent or sibling with the disease. More than 90% of children with T1D carry at least one of the two high-risk HLA haplotypes—DR4/DQ8 or DR3/DQ2—and 40% of US children diagnosed before age of 10 years have both (one from each parent), compared with only 2.5% of the general population. Over 30 non-HLA genetic variants have also been implicated.

Since the 1950s, the incidence of T1D has increased dramatically worldwide, doubling approximately every
20 years. Despite much research of early childhood infections and diet, the environmental factor(s) responsible for this epidemic are poorly defined. There is no effective prevention as of 2013; however, screening of high-risk groups for islet autoantibodies and intensive follow-up reduces the severity of the presentation.

B. Type 2 Diabetes

Type 2 diabetes has a strong genetic component, although the inherited defects vary in different families. Obesity, particularly central, and lack of exercise are major causes, but rarely sufficient alone to cause diabetes in youth. Most pediatric patients come from low socioeconomic strata and dysfunctional families; some present with psychiatric disorders. Obesity, T2D, and associated insulin resistance adversely affect cardiovascular health. Acanthosis nigricans, a thickening and darkening of the skin over the posterior neck, armpits, or elbows, is present in many obese children and has occasionally contributed to the diagnosis of T2D.

Prevention

A. Type 1 Diabetes

Islet autoantibodies are present for months to years prior to diagnosis in the serum of patients who develop T1a diabetes. Free antibody screening is now available for families having a relative with type 1 diabetes (1-800-425-8361). These antibodies, which do not mediate β-cell destruction, offer a useful screening tool. The β-cell damage is mediated by T lymphocytes. Immunosuppression at different checkpoints of the autoimmune process can slow down the damage, but has no durable effect when stopped. Immunomodulation, including induction of tolerance to islet autoantigens, with or without immunosuppression, is an area of intensive research.

B. Type 2 Diabetes

The Diabetes Prevention Program in adults with impaired glucose tolerance found that 30 minutes of exercise per day (5 d/wk) and a low-fat diet reduced the risk of diabetes by 58%. Taking metformin also reduced the risk of T2D by 31%.

Clinical Findings

A combination of polyuria, polydipsia, and weight loss in a child is unique to diabetes. Unfortunately, these symptoms are often missed by primary care providers or even emergency department staff. The frequency of diabetic ketoacidosis (DKA) in US children has not decreased in the past 20 years and is approaching 40%, a sign of poor provider and poor community awareness. More than half of DKA patients were observed by a provider in days preceding diagnosis and obvious symptoms and signs were missed. In contrast, only 10%–20% of newly diagnosed children in Scandinavia or Canada present with DKA. This embarrassing statistic could be greatly improved with better history taking and point-of-care urine analysis. Initial diagnosis can be easily confirmed by blood glucose and ketones measurement using widely available and inexpensive meters.

The clinical presentation of DKA includes abdominal pain, nausea, and vomiting that can mimic an acute abdomen. The patients are mildly to moderately dehydrated (5%–10%), may have Kussmaul respiration, and become progressively somnolent and obtunded. The distribution of diagnosis has shifted to younger age; infants, toddlers, and preschool age children are at particular risk. They often have symptoms of minor infection or gastrointestinal upset. A heavy diaper in a dehydrated child without diarrhea should always flash an alarm. Blood or urine glucose levels could be lifesaving. Blood glucose higher than 200 mg/dL in a child is always abnormal and must be promptly and meticulously followed in consultation with a pediatric endocrinology service. If the presentation is mild and an outpatient diabetes education service is available, hospitalization is usually not necessary.

Transient, “stress-” or steroid-induced hyperglycemia can occur with illness. In a well child, the diagnosis must not be based on a single plasma glucose test or a borderline result obtained using a glucose meter. Our center routinely tests such children for islet autoantibodies to rule out ongoing islet autoimmunity. Absence of the three most available autoantibodies (to insulin, GAD, and IA-2) provides 80% negative predictive value. If HbA1c is normal, we recommend home monitoring of blood glucose for several days. In children progressing to overt diabetes, hyperglycemia after dinner is usually the initial abnormality, which is detectable by self-blood glucose monitoring at home.

In the presence of typical symptoms, a random blood glucose level above 200 mg/dL (11 mmol/L) (confirmed on a CLIA [Clinical Laboratory Improvement Amendments]-certified instrument) is sufficient to make the diagnosis of diabetes. An oral glucose tolerance test is rarely necessary in children. In borderline or asymptomatic cases, a fasting plasma glucose level over 126 mg/dL (7 mmol/L) or a plasma glucose level above 200 mg/dL (11.1 mmol/L) 2 hours after an oral glucose load (1.75 g glucose/kg up to a maximum of 75 g) on 2 separate days confirms the diagnosis. Impaired (not yet diabetic) fasting glucose values are 100–125 mg/dL (5.5–6.9 mmol/L) and impaired 2-hour values are 140–200 mg/dL (7.8–11.1 mmol/L). Children with impaired fasting glucose or impaired glucose tolerance are at high risk of T2D and require careful follow-up and lifestyle modification with weight loss, if obese.

Treatment

Major variables in T1D treatment are insulin therapy, diet, exercise, and psychosocial support. All must be addressed to achieve safe and effective metabolic control. At present, the
 safest recommendation for glycemic control in children is to achieve an HbA1c < 7.5% or the lowest that can be sustained without severe hypoglycemia or frequent moderate hypoglycemia. The HbA1c level reflects the average blood glucose levels over the previous 3 months. Each child should have targets individually determined.

Intensive diabetes management includes: (1) three or more insulin injections per day, or insulin pump therapy based on carbohydrate counting; (2) at least four blood glucose determinations per day; (3) ketone monitoring during hyperglycemia; and (4) frequent contact with a diabetes healthcare provider. The Diabetes Control and Complications Trial (DCCT) showed that this approach improved HbA1c to approximately 7% and significantly reduced the risk for retinal, renal, cardiovascular, and neurologic complications of diabetes.

A. Patient and Family Education

Education about diabetes for all family members is essential for the home management of diabetes. The use of an educational book (see Understanding Diabetes and Understanding Insulin Pumps and Continuous Glucose Monitors) can be very helpful to the family. All caregivers need to learn about diabetes, how to give insulin injections, perform home blood glucose monitoring, and handle acute complications. Although teenagers can be taught to perform many of the tasks of diabetes management, they do better when supportive, not overbearing, parents continue to be involved in management of their disease. Children younger than age 12 years cannot reliably administer insulin without adult supervision because they may lack fine motor control and/or may not understand the importance of accurate dosage.

B. Insulin

Insulin has three key functions: (1) it allows glucose to pass into the cell for oxidative utilization; (2) it decreases the physiologic production of glucose, particularly in the liver; and (3) it turns off lipolysis and ketone production.

1. Treatment of new-onset diabetes—Children presenting in DKA (pH < 7.30 or bicarbonate < 15 mEq/L in presence of hyperglycemia and ketosis/ketonemia) require intravenous insulin in addition to replacement of fluids and electrolytes. Regular insulin is given as a continuous drip at a rate of 0.05–0.1 U/kg/h to achieve drop in blood glucose of approximately 100 mg/dL per hour. Giving an IV insulin bolus of insulin before the completion of the initial fluid bolus has been associated with brain edema. Fast-acting insulin analogs have no advantage over regular insulin when given intravenously.

In children who present without DKA and have adequate oral intake, the initial insulin dose can be administered subcutaneously as 0.2 U/kg of short-acting insulin (regular) or, preferentially, rapid-acting analog: lispro (Humalog), aspart (NovoLog), or glulisine (Apidra). At the same time, 0.2–0.3 U/kg of long-acting insulin analog—glargine (Lantus) or detemir (Levemir)—can be administered subcutaneously to limit the need for multiple insulin injections. This usually suffices for the initial 12–24 hours preceding systematic diabetes education.

The dose is adjusted with each injection during the first week. The rule of thumb is to start insulin at the low end of the estimated daily requirement and titrate it up based on frequent (q2–4h) blood-glucose monitoring. The initial daily dose of insulin is higher in the presence of ketosis, infection, obesity, or steroid treatment. It also varies with age and severity of onset. A total subcutaneous daily dose of 0.3–0.7 U/kg/day may suffice in prepubertal children, while pubertal or overweight children and those with initial HbA1c > 12% commonly require 1.0–1.5 U/kg/day of insulin during the initial week of treatment.

The insulin dose peaks about 1 week after diagnosis and decreases slightly with the waning of glucotoxicity and voracious appetite. Approximately 3–6 weeks after diagnosis, most school-children and adolescents experience a partial remission or “honeymoon period.” Temporary decrease in the insulin dose during this period is necessary to avoid severe hypoglycemia. The remission tends to last longer in older children, but is rarely complete and never permanent. Other types of diabetes should be considered in patients with unusually low insulin requirements.

2. Long-term insulin dosage—Children usually receive a rapid-acting insulin to cover food intake or correct high blood glucose and a long-acting insulin to suppress endogenous hepatic glucose production. This is achieved by combining insulins with the desired properties. Understanding the onset, peak, and duration of insulin activity is essential (Table 35–1).

Nearly all children diagnosed with T1D at our center receive a basal-bolus multiple daily injection (MDI) treatment. This usually consists of 3–4 injections (boluses) of rapid-acting analog before meals and 1–2 injections of long-acting analog insulin. The dose of premeal rapid-acting insulin is calculated based on anticipated carbohydrate content of the meal and additional insulin to correct for high blood glucose, if needed. Sliding scales for dosing of rapid-acting insulin are helpful initially, while families learn carbohydrate counting. This shortcut assumes that the content of carbohydrates does not vary, for example in dinner, from day to day, this may lead to significant under- and overdosing.

Children younger than 4 years usually need 1 or 2 units of rapid-acting insulin to cover carbohydrate intake. Children aged 4–10 years may require up to 4 units of rapid-acting insulin to cover breakfast and dinner, whereas 4–10 units of rapid-acting insulin are used in older children. These estimates do not include correction for high blood glucose.
Families gradually learn to make small weekly adjustments in insulin dosage based on home blood glucose testing. Rapid-acting analog insulin is given 10–20 minutes before eating to account for delay in insulin action. If slower human regular insulin is used, the injections should be given 30–60 minutes before meals—rarely a practical option. In young children who eat unpredictably, it is often necessary to wait until after the meal to decide on the appropriate dose of rapid-acting insulin, which is a compromise between avoiding hypoglycemia and tolerating hyperglycemia after meals.

A long-acting analog insulin glargine (Lantus) or detemir (Levemir) is given once or twice a day to maintain basal insulin levels between meals. Daily adjustments in long-acting insulin dose usually are not needed. However, decreases should be made for heavy activity (eg, sports, hikes, or over-night events).

In the past, most children would receive 2 injections per day of a rapid-acting insulin and an intermediate-acting insulin (NPH), often mixed just before injection. About two-thirds of the total dosage would be given before breakfast and the remainder before dinner. This regimen has been shown to be inferior in achieving recommended HbA1c levels and avoiding hypoglycemia, compared with the basal-bolus regimen described above. Analog insulin (glargine, detemir) works more efficiently than NPH. When changing a patient from NPH insulin to an analog, initially only 50% of the daily units of long-acting insulin is recommended.

### Table 35–1. Kinetics of insulin action.

<table>
<thead>
<tr>
<th>Type of Insulin</th>
<th>Begins Working</th>
<th>Main Effect</th>
<th>All Gone</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rapid-acting</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>30 min</td>
<td>95 min</td>
<td>6–9 h</td>
</tr>
<tr>
<td>Humalog, NovoLog, Apidra</td>
<td>10–15 min</td>
<td>55 min</td>
<td>4 h</td>
</tr>
<tr>
<td><strong>Intermediate-acting</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPH (neutral protamine Hagedorn)</td>
<td>2–4 h</td>
<td>6–8 h</td>
<td>12–15 h</td>
</tr>
<tr>
<td><strong>Long-acting</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lantus or Levemir</td>
<td>3–4 h</td>
<td>6–18 h</td>
<td>18–26 h</td>
</tr>
<tr>
<td>Premixed (available in various combinations)</td>
<td>15 min</td>
<td>1–8 h</td>
<td>12–15 h</td>
</tr>
</tbody>
</table>

### 3. Insulin pump treatment

Continuous subcutaneous insulin (insulin pump) therapy is the best way to restore the body’s physiologic insulin profile. The pump delivers a variable programmed basal rate that corresponds to the diurnal variation in insulin needs. Prepubertal children require higher basal rate in the early part of night, while postpubertal patients who experience the “dawn phenomenon” require higher rates in the morning. The user initiates bolus doses before meals and to correct hyperglycemia. Most pumps can receive wireless transmission of test results from glucose meters, but the patient or caregiver must still manually enter the amount of carbohydrate being consumed. The pump calculates the amount of insulin needed for a meal or correction based on previously entered parameters which include: insulin-to-carbohydrate ratios, insulin sensitivity factor, glycemic target, and duration of insulin action (set at 3–4 hours to protect from accumulating too much insulin). The user may override the suggestion or press a button to initiate the bolus.

Most clinical trials have demonstrated better HbA1c and less severe hypoglycemia with pump therapy, compared to MDI. Pump therapy can improve the quality of life in children who have trouble with or fear of injections or who desire greater flexibility in their lifestyle; for example, with sleeping in, sports, or irregular eating. Insulin pumps can be particularly helpful in young children or infants who have multiple meals and snacks and require multiple small doses of rapid-acting insulin. The newer generation of insulin pumps can deliver as little as 0.025 U/h, but higher rates using diluted insulin may be needed for uninterrupted flow.

Compliance problems include infrequent blood glucose testing, not reacting to elevated blood glucose, incorrect carbohydrate counting, or missing the boluses altogether. Side effects of insulin pump treatment include failures of insulin delivery because of a displaced or obstructed infusion set. Insulin pump treatment is significantly more expensive than regimens based on injections. For some patients, pumps may be too difficult to operate, or they cannot comply with the multiple testing and carbohydrate counting requirements, or the pump is unacceptable because of body image issues or extreme physical activity (swimming, contact sports). Disposable pumps are already available and much smaller “patch” pumps are in development.

### 4. “Closed-loop” systems

In the near future, insulin pumps will be directed automatically by a continuous glucose sensor (see section Home Blood Glucose Measurements) with minimal human input. Simple systems are already available that feature, for instance, sensor-initiated automatic suspension of insulin delivery at a predetermined low-glucose level and automatic resumption of the delivery at a safe level. Others, controlling postprandial glycemia are in clinical trials. A number of issues remain to be solved, for example, the accuracy and biocompatibility of
the sensors and infusion sets, limitations (lag time) of the systemic versus intraportal administration of insulin, lack of counterbalancing delivery of glucagon, and optimal delivery algorithms for various meals and activities.

5. Treatment of type 2 diabetes—Treatment of type 2 diabetes in children varies with the severity of the disease. If the HbA1c is still near normal, modification of lifestyle (preferably for the entire family) is the first line of therapy. This must include reducing caloric intake and increasing exercise. With mildly elevated HbA1c (6.2%–8.0%) and no ketosis, metformin is usually started at a dose of 500 mg twice daily along with modification of lifestyle. If needed, and if gastrointestinal adaptation has occurred, the dose can be gradually increased to 1 g twice daily. If the presentation is more severe, with ketosis, the initial treatment is similar to that of T1D, including IV or subcutaneous insulin. Of note, 10% of children with T2D present in DKA. Oral hypoglycemic agents may be tried at a later date, particularly if weight loss has been successful.

C. Diet

A thorough dietary history should be obtained including the family’s dietary habits and traditions, the child’s typical meal times, and patterns of food intake. Nutritional management in children with diabetes does not require a restrictive diet, just a healthy dietary regimen that the children and their families can benefit from. Insulin pump and MDI therapy utilize carbohydrate counting in which the grams of carbohydrate to be eaten are counted and a matching dose of insulin is administered. This plan allows for the most freedom and flexibility in food choices, but it requires expert education and commitment and may not be suitable for many families or situations, such as for school lunches and teenagers. Alternatively to a precise carb counting, “exchanges” are taught to estimate 10- or 15-g servings of carbohydrate.

A constant carbohydrate meal plan was used often in the past with insulin regimens based on NPH and regular insulin, where carbohydrate intake and the amount of insulin were kept relatively constant from day to day. This is now perceived as too restrictive and a potential source of conflict that will lead to poor control.

D. Exercise

Regular aerobic exercise is important for children with diabetes. Exercise fosters a sense of well-being; helps increase insulin sensitivity (a drop in glycemia in response to insulin); and helps maintain proper weight, blood pressure, and HDL-cholesterol levels.

Hypoglycemia during exercise or in the 2–12 hours after exercise can be prevented by careful monitoring of blood glucose before, during, and after exercise; reducing the dosage of the insulin active at the time of (or after) the exercise; and by providing extra snacks. Fifteen grams of glucose usually covers about 30 minutes of exercise. The use of drinks containing 5%–10% dextrose, such as Gatorade, during the period of exercise is often beneficial. Insulin dose for meals as well as the basal insulin pump rate should be reduced before, during, and sometimes after the exercise; the longer and more vigorous the activity, the greater the reduction in insulin dose.

E. Psychological Care

The diagnosis of T1D changes lives of the affected families and brings on relentless challenges. It is impossible to take “vacation” from diabetes without some unpleasant consequences. The stress imposed on the family around the time of initial diagnosis may lead to feelings of shock, denial, sadness, anger, fear, and guilt. Meeting with a counselor to express these feelings at the time of diagnosis helps with long-term adaptation. Children with T1D and their parents often experience difficult adjustment. Persisting adjustment problems may indicate underlying dysfunction of the family or psychopathology of the child or caregiver. Young people with T1D are more frequently diagnosed with and treated for psychiatric disorders, disordered eating, neurocognitive, learning problems, and poor coping skills than the general population.

Routine assessment should be made of developmental adjustment to and understanding of diabetes management, including diabetes-related knowledge, insulin adjustment skills, goal setting, problem-solving abilities, regimen adherence, and self-care autonomy and competence. This is especially important during late childhood and prior to adolescence. General and diabetes-related family functioning such as communication, parental involvement and support, and roles and responsibilities for self-care behaviors need to be assessed. Teaching parents effective behavior management skills, especially at diagnosis and prior to adolescence, emphasizes involvement and support, effective problem-solving, self-management skills, and realistic expectations. Adolescents should be encouraged to assume increased responsibility for diabetes management, but with continued, mutually agreed parental involvement and support. The transition to adult diabetes care should be negotiated and planned between adolescents, their parents, and the diabetes team well in advance of the actual transfer.

F. Home Blood Glucose Measurements

All families must be able to monitor blood glucose levels at least four times daily—and more frequently in patients who have glucose-control problems or intercurrent illnesses. Blood glucose levels can be monitored using any downloadable meter. Target levels when no food has been eaten for 2 or more hours vary according to age (Table 35–2). At least half of the values must be below the upper limit to have a good HbA1c.
The frequency of self-monitoring of blood glucose correlates with improved HbA1c. Patient acceptance may be enhanced by testing on the forearm, in addition to the fingertips; however, that site may be slower to reflect falling blood glucose.

Blood glucose results, insulin dosage, and events, for example, illness, parties, exercise, menses, and episodes of hypoglycemia or ketonuria/ketosis should be recorded in a logbook or downloaded. Regular evaluation by the family helps to see patterns, adjust insulin dosage and, if needed, communicate with healthcare providers. If more than 50% of the values are above the desired range for age or more than 14% below the desired range, the insulin dosage usually needs to be adjusted.

Some families are able to make these changes independently, whereas others need help from the healthcare provider by telephone, fax or email to optimize insulin dose between visits. Children with diabetes should be evaluated by a diabetes provider every 3 months to check compliance, adjust insulin dose according to growth, measure HbA1c, and review blood glucose patterns, as well as for routine review of systems, physical examination, and laboratory tests (Table 35–3).

Home continuous glucose monitoring (CGM) is now routinely available and can tremendously improve diabetes management if used most of the time. Subcutaneous glucose levels are obtained every 1–5 minutes from a sensor placed under the skin. The sensor must be replaced every 7–10 days. The sensor has to be calibrated a couple of times a day using a conventional glucose meter. A transmitter sends glucose levels via radio waves from the sensor to a receiver that can be inside an insulin pump. As with insulin pump therapy, intensive education and follow-up is required, usually at a specialty diabetes center. The user is trained on how to keep the real-time displayed blood glucose “between the lines,” that is, in the personalized range. Low- and high blood glucose alarms can be set and in some systems may change insulin pump delivery rate. At the time of consultation, data from CGM devices and pumps are routinely downloaded for analysis of patterns. CGM systems produced by DexCom and Medtronic are currently available by prescription in the United States.

### Table 35–2. Ideal glucose levels after 2 or more hours of fasting.

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Glucose Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤4</td>
<td>80–200 mg/dL (4.6–11 mmol/L)</td>
</tr>
<tr>
<td>5–11</td>
<td>70–180 mg/dL (3.9–10 mmol/L)</td>
</tr>
<tr>
<td>≥12</td>
<td>70–150 mg/dL (3.9–8.3 mmol/L)</td>
</tr>
</tbody>
</table>

### Table 35–3. Checklist of good diabetes management in children and adolescents.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency of Measurement</th>
<th>Tests and Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose</td>
<td>At least 4 times daily</td>
<td>See Table 35–2</td>
</tr>
<tr>
<td>Hemoglobin A1c</td>
<td>Every 3 mo</td>
<td>&lt; 7.5%</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>Every 3 mo</td>
<td>&lt; 95th percentile for age</td>
</tr>
<tr>
<td>Blood lipid panel</td>
<td>Within 1 year after diagnosis (age ≥ 2 y); if normal, repeat q 5 y</td>
<td>LDL &lt; 100 mg/dL (2.6 mmol/L), HDL &gt; 35 mg/dL (0.9 mmol/L), triglycerides &lt; 150 mg/dL (1.7 mmol/L).</td>
</tr>
<tr>
<td>Urine microalbumin</td>
<td>Annually after 3–5 y of diabetes (age ≥ 10 y)</td>
<td>AER &lt; 20 mcg/min A/C ratio &lt; 30 mg/g</td>
</tr>
<tr>
<td>Ophthalmology referral</td>
<td>Annually after 3–5 y of diabetes (age ≥ 10 y)</td>
<td>Retinal photographs</td>
</tr>
<tr>
<td>Signs of other endocrinopathy</td>
<td>Evaluate thyroid at least annually</td>
<td>TSH: 0.5–5.0 IU/mL; T4: 4.5–10 mcg/dL</td>
</tr>
<tr>
<td>Autoantibody screening every 1–2 y</td>
<td>Celiac disease; Addison disease</td>
<td></td>
</tr>
</tbody>
</table>

Ab, antibody; A/C, albumin/creatinine; AER, albumin excretion rate; LDL, low-density lipoprotein; HDL, high-density lipoprotein; T4, thyroxine; TSH, thyroid-stimulating hormone; TPO, thyroid peroxidase autoantibodies.

### G. Prevention of Chronic Complications

#### 1. Maintaining low HbA1c levels

-Elevated HbA1c predicts long-term microvascular and macrovascular complications. HbA1c values approximately 7% compared to values approximately 9% result in greater than 50% reductions in the eye, kidney, cardiovascular, and neurologic complications of diabetes. Normal values vary among laboratories but are usually below 6.2%. In diabetes, the desired ranges are less than 7.5% in children and less than 7% in adults. Higher levels may be acceptable in younger children at risk of severe hypoglycemia. Low HbA1c values are generally associated with a greater risk for hypoglycemia.

The HbA1c level reflects the average blood glucose levels over the previous 3 months and should be measured every 3 months. However, in the DCCT study, HbA1c 7% (53 mmol/mol) corresponded to a higher average blood glucose concentration (measured seven times a day) of 192 mg/dL in the conventionally treated patients compared...
with 163 mg/dL in the intensively treated patients. HbA1c is only one measure of optimal glycemic control, along with preventing hypoglycemia and maximizing quality of life.

The long-term prognosis of children diagnosed with T1D has improved tremendously over the past 20 years, primarily due to better control of blood glucose and blood pressure. While life expectancy is now only 3 years shorter in these patients, compared to the general population, the risk of cardiovascular disease is still four to ten times higher, especially in diabetic women. A checklist of routine tests is presented in Table 35–3.

2. Hypertension—Elevated blood pressure is one of the strongest predictors of both micro- and macrovascular diseases. Treatment of blood pressure is critical in reducing these complications in adults with diabetes and presumably in children and adolescents as well. Blood pressure should be checked and reviewed at each clinic visit. Hypertension is defined as systolic or diastolic blood pressure (measured on at least 3 separate days) above the 95th percentile for the child’s age, sex, and height. Care should be taken to ensure use of the appropriate size cuff in children to avoid inaccurate readings. If elevated blood pressure is confirmed, nondiabetic causes of hypertension should first be excluded. Angiotensin-converting enzyme inhibitors are the first-line agents; if not tolerated well, angiotensin II receptor blockers can be used.

3. Lipid abnormalities—Lipid profiles are generally favorable in children with T1D. The screening for dyslipidemia should commence after the age of 2 years and should be repeated every 5 years thereafter if normal. Good glycemic control should be established in newly diagnosed patients prior to screening, but screening should not be delayed more than 1 year after diagnosis. Children with LDL levels of 130–159 mg/dL (3.4–4.1 mmol/L) should receive dietary and exercise counseling for 6 months, with consideration of pharmacologic therapy if this fails. Statin therapy in addition to diet and lifestyle changes are recommended if LDL is more than 160 mg/dL (4.1 mmol/L). The treatment goals are LDL less than 100 mg/dL (2.6 mmol/L), HDL more than 35 mg/dL (0.9 mmol/L), and triglycerides less than 150 mg/dL (1.7 mmol/L). The use of lipid-lowering drugs in children has been the subject of much discussion. The American Heart Association recommends initiating therapy with statins at the lowest dose at age 10 years in boys, Tanner stage II or higher, and preferably after menarche in girls.

4. Nephropathy—Microalbuminuria is the first clinical manifestation of diabetic kidney disease and may be reversible with diligent glycemic and blood pressure control. Microalbuminuria is defined as: urinary albumin excretion rate between 20 and 200 μg/min or urinary albumin/creatinine ratio 2.5–25 mg/mmol or 30–300 mg/g (spot urine) in males and 3.5–25 mg/mmol in females. Screening for microalbuminuria with a random spot urine sample should occur annually in children once they are 10 years of age and have had diabetes for more than 3–5 years. If values are abnormal, borderline, or increasing, two timed overnight collections should occur and abnormal results should be repeated. The diagnosis of microalbuminuria requires documentation of two out of three abnormal samples over a period of 3–6 months. Once persistent microalbuminuria is confirmed, nondiabetic-related causes of renal disease should be excluded. Following this evaluation, treatment with an ACE inhibitor should be started, even if the blood pressure is normal. Patients should be counseled about the importance of glycemic control and smoking cessation, if applicable. Patients with T2D should have microalbuminuria assessed soon after diagnosis and then annually.

5. Retinopathy—The first dilated ophthalmologic examination should be obtained by an ophthalmologist or optometrist trained in diabetes-specific retinal examination once the child is ≥10 year old and has had diabetes for 3–5 years. The frequency of subsequent examination is generally every 1–2 years, depending on the patient risk profile and advice of the eye care provider. While rare in children, proliferative retinopathy does occur in adolescents with long duration and poor control of diabetes. Laser treatment to coagulate proliferating capillaries prevents bleeding and leakage of blood into the vitreous fluid or behind the retina. This treatment preserves useful vision.

6. Associated autoimmune diseases—Thyroid-stimulating hormone (TSH) level should be measured yearly in all patients. Thyroid peroxidase autoantibody (TPO) is usually the first test to become abnormal in the autoimmune thyroiditis affecting up to 20% of children with T1D. If TPO is positive, we recommend screening with TSH and free T4 every 6–12 months.

Transglutaminase autoantibodies offer a sensitive and specific screening test for celiac disease affecting up to 10% of children with T1D. Risk of celiac disease is most strongly associated with the HLA-DR3/DQ2 haplotype. We recommend routine screening at diagnosis of diabetes and, if negative, retesting every 1–2 year. About half of celiac disease cases develop several years after diagnosis of T1D. Most of the biopsy-confirmed children are “asymptomatic,” but report improved health status upon initiation of gluten-free diet. Untreated celiac disease may lead to severe hypoglycemia, increased bone turnover, and decreased bone mineralization, among many other long-term complications (see Chapter 21).

The 21-hydroxylase autoantibody, a marker of increased risk of Addison disease, is present in approximately 1.3% of patients with type 1 diabetes, although Addison disease develops (usually slowly) in only about one-third of these antibody-positive individuals.
Acute Complications

A. Hypoglycemia

Hypoglycemia (or insulin reaction) is defined as a blood glucose level below 60 mg/dL (3.3 mmol/L). For preschool children, values below 70 mg/dL (3.9 mmol/L) should be cause for concern. The common symptoms of hypoglycemia are hunger, weakness, shakiness, sweating, drowsiness (at an unusual time), headache, and behavioral changes. In the DCCT study, 10% of patients with standard management and 25% of those with intensive insulin management had one or more severe hypoglycemic reactions each year. Children learn to recognize hypoglycemia at different ages but can often report “feeling funny” as young as age 4–5 years. School personnel, sports coaches, and babysitters must be trained to recognize and treat hypoglycemia. If low blood glucose is not treated immediately with simple sugar, the hypoglycemia may result in loss of consciousness and seizures; brain damage or death can occur with prolonged hypoglycemia.

Consistency in daily routine, correct insulin dosage, regular blood glucose monitoring, controlled snacking, compliance of patients and parents, and good education are all important in preventing severe hypoglycemia. In addition, insulin should not be injected prior to getting into a hot tub, bath, or shower as the heat may cause more rapid insulin uptake. The use of insulin analogs has helped to reduce the occurrence of hypoglycemia.

The treatment of mild hypoglycemia involves giving 4 oz of juice, a sugar-containing soda drink, or milk, and waiting 10 minutes. If the blood glucose level is still below 60 mg/dL (3.3 mmol/L), the liquids are repeated. If the glucose level is above 60 mg/dL, solid foods are given. Moderate hypoglycemia, in which the person is conscious but incoherent, can be treated by squeezing one-half tube of concentrated glucose (eg, Insta-Glucose or cake frosting) between the gums and lips and stroking the throat to encourage swallowing.

Families are advised to have glucagon in the home and in their travel pack to treat severe hypoglycemia by giving subcutaneous or intramuscular injections of 0.3 mL (30 units in an insulin syringe) for children younger than age 5 years; 0.5 mL (50 units) to those older than age 5 years; and 1 mL (100 units) to those heavier than 100 lb. Smaller doses of glucagon (2 units + number of units equal to the age of the child, eg, 2 + 10 = 12 units in a 10-year-old) up to a maximum of 15 units can be used to prevent severe hypoglycemia during nondiabetic illness (gastroenteritis, respiratory infections).

Some patients, usually those who have had diabetes for more than 10 years or those tolerating routinely blood glucose 50–80 mg/dL, fail to recognize the symptoms of low blood glucose (hypoglycemic unawareness). For these individuals, glucose control must be liberalized to prevent severe hypoglycemia and CGM should be considered.

B. Sick Day and Diabetic Ketoacidosis

Families must be educated to check blood or urine ketone levels during any illness (including vomiting even once) or any time a fasting blood glucose level is above 240 mg/dL (13.3 mmol/L), or a randomly measured glucose level is above 300 mg/dL (16.6 mmol/L). If moderate or significant ketonuria is detected, or the blood ketone (β-hydroxybutyrate—using the Precision Xtra meter) is above 1.0 mmol/L, the healthcare provider should be called. Usually 10%–20% of the total daily insulin dosage is given subcutaneously as rapid-acting analog or regular insulin every 3–4 hours until blood glucose normalizes. This prevents ketonuria and ketonemia from progressing to ketoacidosis and allows most patients to receive treatment at home by telephone management. Water is the oral fluid of choice if blood glucose is more than 250 mg/dL; at lower levels of glycemia, one should switch to Gatorade/Poweraid or other glucose-containing beverages.

Mild ketonuria/ketonemia secondary to fasting or acute gastrointestinal upset and associated with normal or low blood glucose does not require supplemental insulin treatment. Of note, the brain uses β-hydroxybutyrate as the alternate fuel to glucose in the setting of hypoglycemia. Overtreatment with insulin during a sick day that begins with hyperglycemia and ketosis may lead to loss of consciousness and/or seizures due to severe hypoglycemia.

Acidosis (venous blood pH < 7.30 or bicarbonate <15 mEq/L) is unfortunately still a frequent acute complication in patients with established T1D. Acidosis may occur in those who miss insulin injections, do not check blood or urine ketone levels, or fail to seek help when ketones are elevated. Repeated episodes of ketoacidosis signify that counseling may be indicated, and that a responsible adult must take over the diabetes management. If for any reason this is not possible, a change in the child’s living situation may be necessary.

Treatment of DKA is based on four physiologic principles: (1) restoration of fluid volume; (2) intravenous insulin to inhibit lipolysis and return to glucose utilization; (3) replacement of electrolytes; and (4) correction of acidosis. Mild DKA is defined as a venous blood pH of 7.2–7.3; moderate DKA, a pH of 7.10–7.19; and severe DKA, a pH below 7.10. Patients with severe DKA should be hospitalized in a pediatric intensive care unit, if available. Laboratory tests at the start of treatment should include venous blood pH, glucose, and an electrolyte panel. More severe cases may benefit from determination of blood osmolality, calcium, phosphorus, and urea nitrogen levels. Severe and moderate episodes of DKA generally require hourly determinations of serum glucose, electrolytes, and venous pH levels, whereas these parameters can be measured every 2 hours if the pH level is 7.20–7.30.

1. Restoration of Fluid Volume—Dehydration is judged by estimated loss of body weight, dryness of oral mucous membranes, low blood pressure, and tachycardia.
Initial treatment is with normal saline (0.9%), 10–20 mL/kg during the first hour (can be repeated in severely dehydrated patients during the second hour). The total volume of fluid in the first 4 hours of treatment should not exceed 20–40 mL/kg because of the danger of cerebral edema. After initial expansion, 0.45%–0.9% saline is given at 1.5 times maintenance to replace losses over 24–36 hours. When blood glucose level falls below 250 mg/dL (13.9 mmol/L), 5% dextrose is added to the intravenous fluids. If blood glucose level falls below 120 mg/dL (6.6 mmol/L), 10% dextrose can be added.

2. Inhibition of Lipolysis and Return to Glucose Utilization—Insulin turns off fat breakdown and ketone formation. Regular insulin is given intravenously at a rate of 0.05–0.1 U/kg/h. The insulin solution should be administered by pump and can be made by diluting 30 units of regular insulin in 150 mL of 0.9% saline (1 U/5 mL). If necessary, the insulin dosage can be reduced, but it should not be discontinued before the venous blood pH reaches 7.30 and there is sufficient level of insulin from subcutaneous injections. The half-life of intravenous insulin is 6 minutes, whereas subcutaneous rapid-acting analog insulins take 10–15 minutes, and regular insulin takes 30–60 minutes, to begin activity. We recommend continuing intravenous insulin for at least 30 minutes after the initial subcutaneous insulin injection.

3. Replacement of Electrolytes—In patients with DKA, both sodium and potassium pass into the urine and are depleted. In addition, serum sodium concentrations may be falsely lowered by hyperglycemia, causing water to be drawn into the intravenous space, and by hyperlipidemia if fat replaces some of the water in the serum used for electrolyte analysis. Sodium is usually replaced adequately by the use of 0.45%–0.9% saline in the rehydration fluids. Serum potassium levels may be elevated initially because of inability of potassium to stay in the cell in the presence of acidosis (even though total body potassium is low). Potassium should not be given until the serum potassium level is known to be < 5.0 mEq/L and urine output is confirmed. It is then generally given in replacement fluid at a concentration of 40 mEq/L, with half of the potassium (20 mEq/L) either as potassium acetate or potassium chloride and the other half as potassium phosphate (20 mEq/L). Hypocalcemia can occur if all of the potassium is given as the phosphate salt; hypophosphatemia occurs if none of the potassium is of the phosphate salt.

4. Correction of Acidosis—Acidosis corrects spontaneously as the fluid volume is restored and insulin facilitates aerobic glycolysis and inhibits ketogenesis. Bicarbonate is generally not recommended.

5. Management of Cerebral Edema—Some degree of cerebral edema has been shown by computed tomography scan to occur commonly in DKA. Associated clinical symptoms are rare, unpredictable, and may be associated with demise. Cerebral edema may be related to the degree of dehydration, cerebral hypoperfusion, acidosis, and hyperventilation at the time of presentation. In general, it is recommended that no more than 40 mL/kg of fluids be given in the first 4 hours of treatment and that subsequent fluid replacement not exceed 1.5 times maintenance. Cerebral edema is more common when the serum sodium is noted to be falling rather than rising. Early neurologic signs may include headache, excessive drowsiness, and dilated pupils. Prompt initiation of therapy should include elevation of the head of the bed, mannitol (1 g/kg over 30 minutes), and fluid restriction. If the cerebral edema is not recognized and treated early, over 50% of patients will die or have permanent brain damage.

In summary, modern diabetes care can lead to excellent health outcomes. Tremendous progress in biotechnology (insulin analogs), insulin pumps, and continuous glucose sensing has made the prevention of acute and long-term complications achievable. However, comprehensive and ongoing education of patients and their families remains the foundation of healthy and quality life with diabetes.

REFERENCES

CGM devices approved by the FDA. www.fda.gov/MedicalDevices/default.htm or call 1-888-INFO-FDA (463-6332).
Disorders in which single gene defects cause clinically significant blocks in metabolic pathways are called inborn errors of metabolism. Once considered rare, the number of recognized inborn errors has increased dramatically and they are now recognized to affect 1:1500 children. Many of these disorders can be treated effectively. Even when treatment is not available, correct diagnosis permits parents to make informed decisions about future offspring.

The pathology in metabolic disorders usually results from accumulation of enzyme substrate behind a metabolic block or deficiency of a reaction product. In some cases, the accumulated enzyme substrate is diffusible and has adverse effects on distant organs; in other cases, as in lysosomal storage diseases, the substrate primarily accumulates locally. The clinical manifestations of inborn errors vary widely with both mild and severe forms of virtually every disorder. Many patients do not match the classic phenotype because mutations are not identical in different patients, even though they occur in the same gene.

A first treatment strategy is to enhance the reduced enzyme activity. Gene replacement is a long-term goal, but problems of gene delivery to target organs and control of gene action make this an unrealistic option at present. Enzyme-replacement therapy using intravenously administered recombinant enzyme has been developed as an effective strategy in lysosomal storage disorders. Organ transplantation (liver or bone marrow) can provide a source of enzyme for some conditions. Pharmacologic doses of a cofactor such as a vitamin can sometimes be effective in restoring enzyme activity. Residual activity can be increased by pharmacologically promoting transcription (transcriptional upregulation) or by stabilizing the protein product through therapy with chaperones. Alternatively, some strategies are designed to cope with the consequences of enzyme deficiency. Strategies used to avoid substrate accumulation include restriction of precursor in the diet (eg, low-phenylalanine diet for phenylketonuria), avoidance of catabolism, inhibition of an enzyme in the synthesis of the precursor (eg, NTBC in tyrosinemia type I (see Hereditary Tyrosinemia), or removal of accumulated substrate pharmacologically (eg, glycine therapy for isovaleric acidemia) or by dialysis. An inadequately produced metabolite can also be supplemented (eg, glucose administration for glycogen storage disease type I).

Inborn errors can manifest at any time, can affect any organ system, and can mimic many common pediatric problems. This chapter focuses on when to consider a metabolic disorder in the differential diagnosis of common pediatric problems. A few of the more important disorders are then discussed in detail.
in the context of a suspicious history include failure to thrive, microcephaly, rash, jaundice, hypotonia, and hypertonia. Finding an immediate cause of symptoms does not rule out an underlying inborn error. For example, renal tubular acidosis and cirrhosis may be due to an underlying inborn error. Acute crises may be brought on by intercurrent infections in some inborn errors. Some inborn errors suggest a diagnosis of nonaccidental trauma (eg, glutaric acidemia type I) or poisoning (eg, methylmalonic acidemia). In addition, children with inborn errors may be at higher risk for child abuse or neglect because of their frustrating irritability.

**LABORATORY STUDIES**

Table 36–1 lists common clinical and laboratory features of different groups of inborn errors. Table 36–2 lists the most common laboratory tests used to diagnose these diseases and offers suggestions about their use.

Laboratory studies are almost always needed for the diagnosis of inborn errors. Serum electrolytes and pH should be used to estimate anion gap and acid-base status. Serum lactate, pyruvate, and ammonia levels are available in most hospitals, but care is needed in obtaining samples appropriately. Amino acid, acylcarnitine, and organic acid studies must be performed at specialized facilities to ensure accurate analysis and interpretation. An increasing number of inborn errors are diagnosed with DNA sequencing, but interpretation of private mutations, that is, mutations only seen in a particular family, can be problematic. Knowing the causative mutation in the family allows prenatal diagnosis to be done by molecular analysis. This can be done on any material that contains fetal DNA such as chorionic villi, amniotic cells, or fetal blood obtained through umbilical cord blood sampling.

The physician should know what conditions a test can detect and when it can detect them. For example, urine organic acids may be normal in patients with medium-chain acyl-CoA dehydrogenase deficiency or biotinidase deficiency; glycine may be elevated only in cerebrospinal fluid (CSF) in patients with glycine encephalopathy. A result that is normal in one physiologic state may be abnormal in another. For instance, the urine of a child who becomes hypoglycemic upon prolonged fasting should be positive for ketones. In such a child, the absence of ketones in the urine suggests a defect in fatty acid oxidation.

Samples used to diagnose metabolic disease may be obtained at autopsy. Samples must be obtained in a timely fashion and may be analyzed directly or stored frozen until a particular analysis is justified by the results of postmortem examination, new clinical information, or developments in the field. Studies of other family members may help establish the diagnosis of a deceased patient. It may be possible to demonstrate that parents are heterozygous carriers of a particular disorder or that a sibling has the condition.

**COMMON CLINICAL SITUATIONS**

1. **Mental Retardation**

Some inborn errors can cause mental retardation without other distinguishing characteristics. Measurements of serum amino acids, urine organic acids, and serum uric acid should be obtained in every patient with nonspecific mental retardation. Urine screens for mucopolysaccharides and succinylpurines, and serum testing for carbohydrate-deficient glycoproteins are useful because these disorders do not always have specific physical findings. Absent speech can point to disorders of creatine. Abnormalities of the brain detected by magnetic resonance imaging can suggest specific groups of disorders (eg, cortical migrational abnormalities in peroxisomal biogenesis disorders).

2. **Acute Presentation in the Neonate**

Acute metabolic disease in the neonate is most often a result of disorders of protein or carbohydrate metabolism and may be clinically indistinguishable from sepsis. Prominent symptoms include poor feeding, vomiting, altered mental status or muscle tone, jitteriness, seizures, and jaundice. Acidosis, alkalosis, or altered mental status out of proportion to systemic symptoms should increase suspicion of a metabolic disorder. Laboratory measurements should include electrolytes, ammonia, lactate, glucose, blood pH, and urine ketones and reducing substances. Amino acids in CSF should be measured if glycine encephalopathy is suspected. Serum and urine amino acid, urine organic acid, and serum acylcarnitine analysis should be performed urgently. Neonatal cardiomyopathy or ventricular arrhythmias should be investigated with serum acylcarnitine analysis.

3. **Vomiting & Encephalopathy in the Infant or Older Child**

Electrolytes, ammonia, glucose, urine pH, urine reducing substances, and urine ketones should be measured in all patients with vomiting and encephalopathy before any treatment affects the results. Samples for serum amino acids, serum acylcarnitine profile, and urine organic acid analysis should be obtained early. In the presentation of a Reye-like syndrome (ie, vomiting, encephalopathy, and hepatomegaly), amino acids, acylcarnitines, carnitine levels, and organic acids should be assessed immediately. Hypoglycemia with inappropriately low urine or serum ketones suggests the diagnosis of fatty acid oxidation defects.

4. **Hypoglycemia**

Duration of fasting, presence or absence of hepatomegaly, and Kussmaul breathing provide clues to the differential diagnosis of hypoglycemia. Serum insulin, cortisol, and
Table 36–1. Presenting clinical and laboratory features of inborn errors.

<table>
<thead>
<tr>
<th>Neurodevelopmental</th>
<th>Defects of Carbohydrate Metabolism</th>
<th>Defects of Amino Acid Metabolism&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Organic Acid Disorders&lt;sup&gt;b&lt;/sup&gt;</th>
<th>Defects of Fatty Acid Oxidation</th>
<th>Defects of Purine Metabolism</th>
<th>Lysosomal Storage Diseases</th>
<th>Disorders of Peroxisomes</th>
<th>Disorders of Energy Metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mental/developmental retardation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Developmental regression</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute encephalopathy</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Seizures</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ataxia/movement disorder</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Hypotonia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hypertonia</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Abnormal behavior</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure to thrive</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Short stature</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Macrocephaly</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Microcephaly</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vomiting/anorexia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Food aversion or craving</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Odor</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Dysmorphic features</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Congenital malformations</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Organ-specific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Liver disease/cirrhosis</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Skeletal dysplasia</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tachypnea/hyperpnea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Rash</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alopecia or abnormal hair</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Cataracts or corneal opacity</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
</tbody>
</table>

(Continued)
### Table 36–1. Presenting clinical and laboratory features of inborn errors. (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Defects of Carbohydrate Metabolism</th>
<th>Defects of Amino Acid Metabolism</th>
<th>Organic Acid Disorders</th>
<th>Defects of Fatty Acid Oxidation</th>
<th>Defects of Purine Metabolism</th>
<th>Lysosomal Storage Diseases</th>
<th>Disorders of Peroxisomes</th>
<th>Disorders of Energy Metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinal abnormality</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Frequent infections</td>
<td>+ +</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+ +</td>
</tr>
<tr>
<td>Deafness</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+ +</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Hyperammonemia</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>+ +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+ + +</td>
</tr>
<tr>
<td>Respiratory alkalosis</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Elevated lactate/pyruvate</td>
<td>+ +</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+ + +</td>
</tr>
<tr>
<td>Elevated liver enzymes</td>
<td>+ +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Neutropenia or thrombocytopenia</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Hyperketosis</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Hypoketosis</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

+ + +, most conditions in group; + +, some; +, one or few; −, not found.

aIncludes disorders of the urea cycle but not maple syrup urine disease.
bIncludes maple syrup urine disease and disorders of pyruvate oxidation.

### Table 36–2. Obtaining and handling samples to diagnose inborn errors.

<table>
<thead>
<tr>
<th>Test</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid-base status</td>
<td>Accurate estimation of anion gap must be possible. Samples for blood gases should be kept on ice and analyzed immediately.</td>
</tr>
<tr>
<td>Blood ammonia</td>
<td>Sample should be kept on ice and analyzed immediately; artifactual elevation common.</td>
</tr>
<tr>
<td>Blood lactic acid and pyruvic acid</td>
<td>Sample should be collected without a tourniquet, kept on ice, and analyzed immediately. Conversion of lactic to pyruvic acid must be prevented. Normal values are for the fasting, rested state, with postprandial values 50% higher.</td>
</tr>
<tr>
<td>Amino acids</td>
<td>Blood and urine should be examined. CSF amino acids should be measured for encephalopathies such as nonketotic hyperglycinemia. Normal values are for the fasting state. Growth of bacteria in urine should be prevented.</td>
</tr>
<tr>
<td>Organic acids</td>
<td>Urine preferred for analysis. Serum or CSF organic acids are rarely indicated and often miss diagnoses.</td>
</tr>
<tr>
<td>Carnitine and acylcarnitine profile</td>
<td>Blood or plasma may be analyzed for total, free, and esterified carnitine; normal values are for the healthy, nonfasted state. Acylcarnitine profile in blood identifies compounds esterified to carnitine. Rarely urine and bile studies may be needed. Profiling in cultured fibroblasts after fat loading can be helpful in diagnosis of certain conditions.</td>
</tr>
<tr>
<td>Urine mucopolysaccharides</td>
<td>Variations in urine protein concentration may cause errors in screening tests. Diagnosis requires knowing which mucopolysaccharides are increased. Some patients with Morquio disease and many with Sanfilippo disease do not have abnormal mucopolysacchariduria.</td>
</tr>
<tr>
<td>Enzyme assays</td>
<td>Specific assays must be requested. Exposure to heat may cause loss of enzyme activity. Enzyme activity in whole blood may become normal after transfusion or vitamin therapy. Leukocyte or fibroblast pellets should be kept frozen prior to assays. Fibroblasts may be grown from skin biopsies taken up to 72 h after death. Tissues such as muscle, liver, and kidney should be taken as soon as possible after death (&lt; 2 h), frozen immediately, and kept at −70°C until assayed.</td>
</tr>
</tbody>
</table>

CSF, cerebrospinal fluid.
growth hormone should be obtained on presentation. Urine ketones, urine organic acids, plasma lactate, serum acylcarnitine profile, carnitine levels, ammonia, triglycerides, and uric acid should be measured. Ketone body production is usually not efficient in the neonate, and ketonuria in a hypoglycemic or acidic neonate suggests an inborn error. In the older child, inappropriately low urine ketone levels suggest an inborn error of fatty acid oxidation. Assessment of ketone generation requires simultaneous measurements of quantitative serum 3-hydroxybutyrate, acetoacetate, and free fatty acids in relation to a sufficient duration of fasting and age. Metabolites obtained during the acute episode can be very helpful and avoid the need for a formal fasting test.

5. Hyperammonemia

Symptoms of hyperammonemia may appear and progress rapidly or insidiously. Decreased appetite, irritability, and behavioral changes appear first with vomiting, ataxia, lethargy, seizures, and coma appearing as ammonia levels increase. Tachypnea inducing respiratory alkalosis due to a direct effect on respiratory drive is characteristic. Physical examination cannot exclude the presence of hyperammonemia, and serum ammonia should be measured whenever hyperammonemia is possible. Severe hyperammonemia may be due to urea cycle disorders, organic acidemias, or fatty acid oxidation disorders (such as carnitine-acylcarnitine translocase deficiency) or, in the premature infant, transient hyperammonemia of the newborn. The cause can usually be ascertained by measuring quantitative serum amino acids (eg, citrulline), plasma carnitine and acylcarnitine esters, and urine organic acids and orotic acid. Respiratory alkalosis is usually present in urea cycle defects and transient hyperammonemia of the newborn, while acidosis is characteristic of hyperammonemia due to organic acidemias.

6. Acidosis

Inborn errors may cause chronic or acute acidosis at any age, with or without an increased anion gap. Inborn errors should be considered when acidosis occurs with recurrent vomiting or hyperammonemia and when acidosis is out of proportion to the clinical status. Acidosis due to an inborn error can be difficult to correct. The main causes of anion gap metabolic acidosis are lactic acidosis, ketoacidosis (including abnormal ketone body production such as in β-ketothiolase deficiency), methylmalonic aciduria or other organic acidurias, intoxication (ethanol, methanol, ethylene glycol, and salicylate), and uremia. Causes of non–anion gap metabolic acidosis include loss of base in diarrhea or renal tubular acidosis (isolated renal tubular acidosis or renal Fanconi syndrome). If renal bicarbonate loss is found, a distinction must be made between isolated renal tubular acidosis and a more generalized renal tubular disorder or renal Fanconi syndrome by testing for renal losses of phosphorus and amino acids. Inborn errors associated with renal tubular acidosis or renal Fanconi syndrome include cystinosis, tyrosinemia type I, carnitine palmitoyltransferase I, galactosemia, hereditary fructose intolerance, Lowe syndrome, and mitochondrial diseases. Serum glucose and ammonia levels and urinary pH and ketones should be examined. Samples for amino acids and organic acids should be obtained at once and may be evaluated immediately or frozen for later analysis, depending on how strongly an inborn error is suspected. It is useful to test blood lactate and pyruvate levels in the chronically acidic patient even if urine organic acid levels are normal. Lactate and pyruvate levels are difficult to interpret in the acutely ill patient, but in the absence of shock, high levels of lactic acid suggest primary lactic acidosis.

MANAGEMENT OF METABOLIC EMERGENCIES

Patients with severe acidosis, hypoglycemia, and hyperammonemia may be very ill; initially mild symptoms may worsen quickly, and coma and death may ensue within hours. With prompt and vigorous treatment, however, patients can recover completely, even from deep coma. All oral intake should be stopped. Sufficient glucose should be given intravenously to avoid or minimize catabolism in a patient with a known inborn error who is at risk for crisis. Most conditions respond favorably to glucose administration, although a few (eg, primary lactic acidosis due to pyruvate dehydrogenase deficiency) do not. After exclusion of fatty acid oxidation disorders, immediate institution of intravenous fat emulsions (eg, intralipid) can provide crucial caloric input. Severe or increasing hyperammonemia should be treated pharmacologically or with dialysis (see Disorders of the Urea Cycle), and severe acidosis should be treated with bicarbonate. More specific measures can be instituted when a diagnosis is established.

NEWBORN SCREENING

Criteria for screening newborns for a disorder include its frequency, its consequences if untreated, the ability of therapy to mitigate consequences, the cost of testing, and the cost of treatment. With the availability of tandem mass spectrometry, newborn screening has expanded greatly to now include 20 core conditions and multiple secondary conditions screened by most states. In general, amino acidopathies, organic acidurias, and disorders of fatty acid oxidation are the disorders for which screening now occurs. Most states also screen for hypothyroidism, congenital adrenal hyperplasia, hemoglobinopathies, biotinidase deficiency, galactosemia, and cystic fibrosis. Screening for severe combined immune deficiency has been recently added. Screening should occur for all infants between 24 and 72 hours of life or before hospital discharge.
Some screening tests measure a metabolite (eg, phenylalanine) that becomes abnormal with time and exposure to diet. In such instances, the disease cannot be detected reliably until intake of the substrate is established. Other tests measure enzyme activity and can be performed at any time (eg, for biotinidase deficiency). Transfusions may cause false-negative results in this instance, and exposure of the sample to heat may cause false-positive results. Technologic advances have extended the power of newborn screening but have brought additional challenges. For example, although tandem mass spectrometry can detect many more disorders in the newborn period, consensus on diagnosis and treatment for some conditions is still under development.

Screening tests are not diagnostic, and diagnostic tests must be undertaken when an abnormal screening result is obtained. Further, because false-negative results occur, a normal newborn screening test does not rule out a condition.

The appropriate response to an abnormal screening test depends on the condition in question and the predictive value of the test. For example, when screening for galactosemia by enzyme assay, complete absence of enzyme activity is highly predictive of classic galactosemia. Failure to treat may rapidly lead to death. In this case, treatment must be initiated immediately while diagnostic studies are pending. In phenylketonuria, however, a diet restricted in phenylalanine is harmful to the infant whose screening test is a false-positive, while diet therapy produces an excellent outcome in the truly affected infant if treatment is established within the first weeks of life. Therefore, treatment for phenylketonuria should only be instituted when the diagnosis is confirmed. Physicians should review American College of Medical Genetics recommendations, state laws and regulations, and consult with their local metabolic center to arrive at appropriate strategies for each hospital and practice.


Wilcken B: Newborn screening: how are we traveling, and where should we be going? J Inherit Metab Dis 2011;34(3):569 [PMID: 21499716].

**DISORDERS OF CARBOHYDRATE METABOLISM**

**GLYCOGEN STORAGE DISEASES**

- Types 0, I, III, VI, and IX manifest with hypoglycemia in infants.
- Types II, V, and VII manifest with rhabdomyolysis or muscle weakness.
- Types IV and IX manifest with hepatic cirrhosis.

Glycogen is a highly branched polymer of glucose that is stored in liver and muscle. Different enzyme defects affect its biosynthesis and degradation. The hepatic forms of the glycogenoses cause growth failure, hepatomegaly, and severe fasting hypoglycemia. They include glucose-6-phosphatase deficiency (type I; von Gierke disease), debrancher enzyme deficiency (type III), hepatic phosphorylase deficiency (type VI), and phosphorylase kinase deficiency (type IX), which normally regulates hepatic phosphorylase activity. Glycogen synthase deficiency (GSD0) causes hypoglycemia usually after about 12 hours fasting, and can cause mild postprandial hyperglycemia and hyperlactatemia. There are two forms of glucose-6-phosphatase deficiency: in type Ia, the catalytic glucose-6-phosphatase is deficient, and in type Ib, the glucose-6-phosphate transporter is deficient. The latter form also has neutropenia. Glycogenosis type IV, brancher enzyme deficiency, usually presents with progressive liver cirrhosis, as do some rare forms of phosphorylase kinase deficiency.

The myopathic forms of glycogenosis affect skeletal muscle. Skeletal myopathy with weakness or rhabdomyolysis may be seen in muscle phosphorylase deficiency (type V), phosphofructokinase deficiency (type VII), and acid maltase deficiency (type II; Pompe disease). The infantile form of Pompe disease also has hypertrophic cardiomyopathy and macroglossia. The gluconeogenic disorder fructose-1,6-bisphosphatase deficiency presents with major lactic acidosis and delayed hypoglycemia on fasting.
GALACTOSEMIA

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Severely deficient neonates present with vomiting, jaundice, and hepatomegaly on initiation of lactose-containing feedings.
- Renal Fanconi syndrome, cataracts of the ocular lens, hepatic cirrhosis, and sepsis occur in untreated children.
- Delayed, apraxic speech and ovarian failure occur frequently even with treatment. Developmental delay, tremor, and ataxia occur less frequently.

Classic galactosemia is caused by almost total deficiency of galactose-1-phosphate uridyltransferase. Accumulation of galactose-1-phosphate causes hepatic parenchymal disease and renal Fanconi syndrome. Onset of the severe disease is marked in the neonate by vomiting, jaundice (both direct and indirect), hepatomegaly, and rapid onset of liver insufficiency after initiation of milk feeding. Hepatic cirrhosis is progressive. Without treatment, death frequently occurs within a month, often from Escherichia coli sepsis. Cataracts usually develop within 2 months in untreated cases but usually reverse with treatment. With prompt institution of a galactose-free diet, the prognosis for survival without liver disease is excellent. Even when dietary restriction is instituted early, patients with galactosemia are at increased risk for speech and language deficits and ovarian failure. Some patients develop progressive mental retardation, tremor, and ataxia. Milder variants of galactosemia with better prognosis exist.

The disorder is autosomal recessive with an incidence of approximately 1:40,000 live births.

Diagnosis

Initial tests include glucose, lactate, triglycerides, cholesterol, uric acid, transaminases, and creatine kinase. Functional testing includes responsiveness of blood glucose and lactate to fasting; for myopathic forms, an ischemic exercise test is helpful. Most glycogenoses can now be diagnosed by molecular analysis, including next-generation panels. Other diagnostic studies include enzyme assays of leukocytes, fibroblasts, liver, or muscle. Disorders diagnosable from analysis of red or white blood cells include deficiency of debrancher enzyme (type III) and phosphorylase kinase (type IX). Pompe disease can usually be diagnosed by assaying acid maltase in a blood spot with confirmation in fibroblasts.

Treatment

Treatment is designed to prevent hypoglycemia and avoid secondary metabolite accumulations such as elevated lactate in glycogenosis type I. In the most severe hepatic forms, the special diet must be strictly monitored with restriction of free sugars and measured amounts of uncooked cornstarch, which slowly releases glucose in the intestinal lumen. Good results have been reported following continuous nighttime carbohydrate feeding or uncooked cornstarch therapy. Late complications even after years of treatment include focal segmental glomerulosclerosis, hepatic adenoma or carcinoma, and gout. Enzyme-replacement therapy in Pompe disease corrects the cardiomyopathy, but the response in skeletal myopathy is variable with optimal results seen in patients treated early and who have mutations that allow formation of some residual protein which is detected as cross-reacting material on Western blotting. Immunomodulation is used for patients whose treatment response declines due to antibodies to the recombinant enzyme.

Bhattacharya K: Dietary dilemmas in the management of glycogen storage disease type I. J Inherit Metab Dis 2011;34:621 [PMID: 21491105].
Patient and parent support group website with useful information for families: http://www.agsdus.org.

When the diagnosis is suspected, galactose-1-phosphate uridyltransferase should be assayed in erythrocytes. Blood transfusions give false-negative results and sample deterioration false-positive results.

Newborn screening by demonstrating enzyme deficiency in red cells with the Beutler test or by demonstrating increased serum galactose allows timely institution of treatment.

**Treatment**

A galactose-free diet should be instituted as soon as the diagnosis is made. Compliance with the diet must be monitored by following galactose-1-phosphate levels in red blood cells. Appropriate diet management requires not only the exclusion of milk but an understanding of the galactose content of foods. Avoidance of galactose should be lifelong with appropriate calcium replacement, intake of which tends to be low due to the restriction of dairy products.

Diagnosis is made by sequencing the *HFI* gene. An alternative method for diagnosis is enzyme assay of fructose-1-phosphate aldolase in liver biopsy.

**Treatment**

Treatment consists of strict dietary avoidance of fructose. Vitamin supplementation is usually needed. Drugs and vitamins dispensed in a sucrose base should be avoided. Treatment monitoring can be done with transferrin glycoform analysis. If diet compliance is poor, physical growth retardation may occur. Growth will resume when more stringent dietary restrictions are reinstated. If the disorder is recognized early, the prospects for normal development are good. As affected individuals grow up, they may recognize the association of nausea and vomiting with ingestion of fructose-containing foods and selectively avoid them.

**Disorders of Energy Metabolism**

The most common disorders of central mitochondrial energy metabolism are pyruvate dehydrogenase deficiency and deficiencies of respiratory chain components. Disorders of the Krebs cycle include deficiencies in fumarase, 2-ketoglutarate dehydrogenase, and succinyl-CoA ligase. In many, but not in all, patients lactate is elevated in either blood or CSF. In pyruvate dehydrogenase deficiency, the lactate-pyruvate ratio is normal, whereas in respiratory chain disorders the ratio is often increased. Care must be taken to distinguish an elevated lactate level that is due to these conditions (called primary lactic acidoses) from elevated lactate that is a consequence of hypoxia, ischemia, or sampling problems. Table 36-3 lists some causes of primary lactic acidosis.

Patients with a defect in the pyruvate dehydrogenase complex often have agenesis of the corpus callosum or Leigh syndrome (lesions in the globus pallidus, dentate nucleus, and periaqueductal gray matter). They can have mild facial dysmorphism. Recurrent altered mental status, recurrent ataxia, and recurrent acidosis are typical of many disturbances of pyruvate metabolism. The most common genetic defect is in the X-linked E1-α component, with males carrying milder mutations and females carrying severe mutations leading to periventricular cystic brain lesions.

The respiratory chain disorders are frequent (1:5000) and involve a heterogenous group of genetic defects that produce a variety of clinical syndromes (now > 50) of varying severity and presentation. The disorders can affect multiple organs. The following set of symptoms (not intended as a comprehensive listing) can indicate a respiratory chain disorder:
Table 36–3. Causes of primary lactic acidosis in childhood.

<table>
<thead>
<tr>
<th>Defects of the pyruvate dehydrogenase complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 (pyruvate dehydrogenase) deficiency</td>
</tr>
<tr>
<td>E2 (dihydrolipoyl transacetylase) deficiency</td>
</tr>
<tr>
<td>E3 (lipoyl dehydrogenase) deficiency</td>
</tr>
<tr>
<td>E3-binding protein X deficiency</td>
</tr>
<tr>
<td>Pyruvate decarboxylase phosphate phosphatase deficiency</td>
</tr>
<tr>
<td>Thiamine pyrophosphokinase deficiency</td>
</tr>
<tr>
<td>Disorders of lipoate biosynthesis</td>
</tr>
<tr>
<td>Mitochondrial pyruvate carrier</td>
</tr>
</tbody>
</table>

**Abnormalities of gluconeogenesis**
- Pyruvate carboxylase deficiency
  - Isolated
  - Biotinidase deficiency
  - Holocarboxylase synthetase deficiency
  - Fructose-1,6-diphosphatase deficiency
  - Glucose-6-phosphatase deficiency (von Gierke disease)

**Defects in the mitochondrial respiratory chain**
- Complex I deficiency
- Complex IV deficiency (cytochrome c oxidase deficiency; frequent cause of Leigh disease)
- Complex V (ATPase) deficiency (frequent cause of Leigh disease)
- Complex II deficiency
- Complex III deficiency
- Combined deficiencies: due to defects in mitochondrial DNA maintenance (deletions or depletion) or in mitochondrial translation (eg, mitochondrial tRNA defects)
- Coenzyme Q10 deficiency
- Other respiratory chain disorders

**Defects in the Krebs cycle**
- Succinyl-CoA ligase deficiency

1. General: Failure to thrive
2. Brain: Progressive neurodegeneration, Leigh syndrome, myoclonic seizures, brain atrophy, and subcortical leukodystrophy
3. Eye: Optic neuropathy, retinitis pigmentosa, progressive external ophthalmoplegia, and cataracts
4. Ears: Nerve deafness
5. Muscle: Myopathy with decreased endurance or rhabdomyolysis
7. Endocrine: Diabetes mellitus and hypoparathyroidism
8. Intestinal: Pancreatic or liver insufficiency or pseudoobstruction
9. Skin: Areas of hypopigmentation
10. Heart: Cardiomyopathy, conduction defects, and arrhythmias

Respiratory chain disorders are among the more common causes of static, progressive, or self-limited neurodevelopmental problems in children. Patients may present with nonspecific findings such as hypotonia, failure to thrive, or renal tubular acidosis, or with more specific features such as ophthalmoplegia or cardiomyopathy. Symptoms are often combined in recognizable clinical syndromes with ties to specific genetic causes. Ragged red fibers and mitochondrial abnormalities may be noted on histologic examination of muscle. Thirteen of the more than 100 genes that control activity of the respiratory chain are part of the mitochondrial genome. Therefore, inheritance of defects in the respiratory chain may be mendelian or maternal.

**Diagnosis**

Pyruvate dehydrogenase deficiency is diagnosed by enzyme assay in leukocytes or fibroblasts. Confirmation can be obtained by molecular analysis. Diagnosis of respiratory chain disorders is based on a convergence of clinical, biochemical, morphologic, enzymatic, and molecular data. Classic pathologic features of mitochondrial disorders are the accumulation of mitochondria, which produces ragged red fibers in skeletal muscle biopsy, and abnormal mitochondrial shapes and inclusions inside mitochondria on electron microscopy. However, these findings are only present in 5% of children. Enzyme analysis on skeletal muscle or liver tissue is complicated by an overlap between normal and affected range. Blue native polyacrylamide gel electrophoresis (PAGE) analyzes the assembly of the respiratory chain enzyme complexes. Mitochondrial DNA (mtDNA) analysis in blood or tissue may identify a diagnostic mutation. A rapidly increasing number of nuclear genes (now > 100) causing respiratory chain defects are recognized. Children with defects in mtDNA maintenance (such as mtDNA polymerase γ, POLG1 gene) often present with liver disease and neurodegeneration and are diagnosed by sequencing the causative nuclear genes. Next-generation sequencing of panels of genes or exome sequencing is increasingly used due to the large number of genes involved, but functional testing is often required for confirmation of the pathogenicity of identified mutations. Although diagnostic criteria have been published, the cause of respiratory chain defects still cannot be defined in many patients. In some instances, the genetics and prognosis may be clear, but in many cases neither prognosis nor genetic risk can be predicted. Because of the high complexity of this group of disorders, many patients require a high degree of expertise and multiple studies to arrive at a final diagnosis.

**Treatment**

A ketogenic diet is useful in pyruvate dehydrogenase deficiency. In rare patients with primary coenzyme Q deficiency, coenzyme Q treatment is very effective. Other treatments are of theoretical value, with little data on efficacy. Thiamine and lipoic acid have been tried in patients with pyruvate
dehydrogenase complex deficiencies, and coenzyme Q and riboflavin have been helpful in some patients with respiratory chain defects. Dichloroacetic acid has limited clinical response in pyruvate dehydrogenase deficiency and has adverse effects. Avoidance of catabolism and of medications that impair mitochondrial function is an important component of treating patients with respiratory chain defects. Transcriptional upregulation in partial deficiencies of nuclear origin and new antioxidants such as EPI-743 offer new hope for the treatment of respiratory chain defects.

DISORDERS OF THE UREA CYCLE

Ammonia is derived from the catabolism of amino acids and is converted to an amino group in urea by enzymes of the urea cycle. Patients with severe defects (often those enzymes early in the urea cycle) usually present in infancy with severe hyperammonemia, vomiting, and encephalopathy, which is rapidly fatal. Patients with milder genetic defects may present with vomiting, encephalopathy, or liver failure after increased protein ingestion or infection. Although defects in argininosuccinic acid synthetase (citrullinemia) and argininosuccinic acid lyase (argininosuccinic acidemia) may cause severe hyperammonemia in infancy, the usual clinical course is chronic with mental retardation. Ornithine transcarbamylase deficiency is X-linked; the others are autosomal recessive. Age at onset of symptoms varies with residual enzyme activity, protein intake, growth, and stresses such as infection. Even within a family, males with ornithine transcarbamylase deficiency may differ by decades in the age of symptom onset. Many female carriers of ornithine transcarbamylase deficiency have protein intolerance. Some develop migraine-like symptoms after protein loads, and others develop potentially fatal episodes of vomiting and encephalopathy after protein ingestion, infections, or during labor and delivery. Trichorrhexis nodosa is common in patients with argininosuccinic aciduria.

Diagnosis

Blood ammonia should be measured in any acutely ill newborn in whom a cause is not obvious. In urea cycle defects, early hyperammonemia is associated with hyperventilation and respiratory alkalosis. Serum citrulline is low or undetectable in carbamoyl phosphate synthetase and ornithine transcarbamylase deficiency, high in argininosuccinic acidemia, and very high in citrullinemia. Large amounts of argininosuccinic acid are found in the urine of patients with argininosuccinic acidemia. Urine orotic acid is increased in infants with ornithine transcarbamylase deficiency. Citrullinemia and argininosuccinic acidemia can be diagnosed in utero by appropriate enzyme assays in uncultured chorionic villus sample (CVS) material or in amniocytes, but carbamoyl phosphate synthetase and ornithine transcarbamylase deficiency can be diagnosed in utero only by molecular methods.

Treatment

During treatment of acute hyperammonemic crisis, protein intake should be stopped, and glucose and lipids should be given to reduce endogenous protein breakdown from catabolism. Careful administration of essential amino acids facilitates protein anabolism. Arginine is given intravenously. It is an essential amino acid for patients with urea cycle defects and increases the excretion of waste nitrogen in citrullinemia and argininosuccinic acidemia. Sodium benzoate and sodium phenylacetate are given intravenously to increase excretion of nitrogen as hippuric acid and phenylacetylglutamine. Additionally, hemodialysis or hemofiltration is indicated for severe or persistent hyperammonemia, as is usually the case in the newborn. Peritoneal dialysis and exchange transfusion are ineffective. Long-term treatment includes low-protein diet, oral administration of arginine or citrulline, and sodium benzoate or sodium phenylbutyrate (a prodrug of sodium phenylacetate). Symptomatic heterozygous female carriers of ornithine transcarbamylase deficiency should also receive such treatment. Liver transplantation may be curative and is indicated for patients with severe disorders.

The outcome of urea cycle disorders depends on the genetic severity of the condition (residual activity) and the severity and prompt treatment of hyperammonemic episodes.
Brain damage depends on the duration and the degree of elevation of ammonia (and glutamine). Many patients with urea cycle defects, no matter what the enzyme defect, develop permanent neurologic and intellectual impairments, with cortical atrophy and ventricular dilation seen on computed tomographic scan. Rapid identification and treatment of the initial hyperammonemic episode improve outcome.

Patient and parent support group website with useful information for families: http://www.nucdf.org.

PHENYLKETONURIA & THE HYPERPHENYLALANINEMIAS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Mental retardation, hyperactivity, seizures, light complexion, and eczema characterize untreated patients.
- Newborn screening for elevated serum phenylalanine identifies most infants.
- Disorders of cofactor metabolism also produce elevated serum phenylalanine level.
- Early diagnosis and treatment with phenylalanine-restricted diet prevents mental retardation.

Probably the best-known disorder of amino acid metabolism is the classic form of phenylketonuria caused by decreased activity of phenylalanine hydroxylase, the enzyme that converts phenylalanine to tyrosine. In classic phenylketonuria, there is little or no phenylalanine hydroxylase activity. In the less severe hyperphenylalaninemia there may be significant residual activity. Rare variants can be due to deficiency of dihydropteridine reductase or defects in biopterin synthesis.

Phenylketonuria is an autosomal recessive trait, with an incidence in Caucasians of approximately 1:10,000 live births. On a normal neonatal diet, affected patients develop hyperphenylalaninemia. Patients with untreated phenylketonuria exhibit severe mental retardation, hyperactivity, seizures, a light complexion, and eczema.

Success in preventing severe mental retardation in phenylketonuric children by restricting phenylalanine starting in early infancy led to screening programs to detect the disease early. Because the outcome is best when treatment is begun in the first month of life, infants should be screened during the first few days. A second test is necessary when newborn screening is done before 24 hours of age, and should be completed by the third week of life.

Diagnosis & Treatment

The diagnosis of phenylketonuria is based on finding elevated serum phenylalanine and an elevated phenylalanine/tyrosine ratio in a child on a normal diet. The condition must be differentiated from other causes of hyperphenylalaninemia by examining pterins in urine and dihydropteridine reductase activity in blood.

Determination of carrier status and prenatal diagnosis of phenylketonuria or pterin defects is possible using molecular methods.

A. Phenylalanine Hydroxylase Deficiency: Classic Phenylketonuria and Hyperphenylalaninemia

In phenylketonuria, serum phenylalanine levels are persistently elevated above 1200 μM (20 mg/dL) on a regular diet, with normal or low serum levels of tyrosine, and normal pterins. Poor phenylalanine tolerance persists throughout life. Treatment to decrease phenylalanine levels is always indicated. Hyperphenylalaninemia is diagnosed in infants whose serum phenylalanine levels are usually 240–1200 μM (4–20 mg/dL), and pterins are normal while receiving a normal protein intake. Treatment to reduce phenylalanine levels is indicated if phenylalanine levels consistently exceed 600 μM (10 mg/dL). In contrast, in the rare case of transient hyperphenylalaninemia, serum phenylalanine levels are elevated early but progressively decline toward normal. Dietary restriction is only temporary, if required at all.

Treatment of all forms of phenylketonuria is aimed at maintaining phenylalanine levels less than 360 μM (6 mg/dL). Treatment can consist of dietary restriction of phenylalanine, increasing enzyme activity with pharmacologic doses of R-tetrahydrobiopterin, or new methods to interfere with phenylalnine absorption or to breakdown phenylalanine.
Dietary restriction of phenylalanine intake to amounts that permit normal growth and development is the most common therapy and results in good outcome if instituted in the first month of life and carefully maintained. Metabolic formulas deficient in phenylalanine are available but must be supplemented with normal milk and other foods to supply enough phenylalanine to permit normal growth and development. Serum phenylalanine concentrations must be monitored frequently while ensuring that growth, development, and nutrition are adequate. This monitoring is best done in experienced clinics. Children with classic phenylketonuria who receive treatment promptly after birth and achieve phenylalanine and tyrosine homeostasis will develop well physically and can be expected to have normal or near-normal intellectual development.

Phenylalanine restriction should continue throughout life. Patients who discontinued diet after treatment for several years have developed subtle changes in intellect and behavior, and risk neurologic damage. Counseling should be given during adolescence particularly to girls about the risk of maternal phenylketonuria (see as follows), and women’s diets should be monitored closely prior to conception and throughout pregnancy. Late treatment may still be of benefit in reversing behaviors such as hyperactivity, irritability, and distractibility, but it does not reverse the mental retardation.

Treatment with R-tetrahydrobiopterin results in improved phenylalanine tolerance in up to 50% of patients with a deficiency in phenylalanine hydroxylase. The best results and the most frequent responsiveness are seen in patients with hyperphenylalaninemia. Provision of high doses of large neutral amino acids results in a moderate reduction in phenylalanine and is used as an adjunctive treatment in some adults with phenylketonuria. Treatment trials with pegylated phenylalanine ammonia lyase administration to decrease phenylalanine levels show promise.

B. Biopterin Defects: Dihydropteridine Reductase Deficiency and Defects in Biopterin Biosynthesis

In these patients, serum phenylalanine levels vary. The pattern of pterin metabolites is abnormal. Clinical findings include myoclonus, tetraplegia, dystonia, oculogyric crises, and other movement disorders. Seizures and psychomotor regression occur even with diet therapy, probably because the enzyme defect also causes neuronal deficiency of serotonin and dopamine. These deficiencies require treatment with levodopa, carbidopa, 5-hydroxytryptophan, and folic acid. Tetrahydrobiopterin may be added for some biopterin synthesis defects.

C. Tyrosinemia of the Newborn

Serum phenylalanine levels are lower than those associated with phenylketonuria and are accompanied by marked hypertyrosinemia. Tyrosinemia of the newborn usually occurs in premature infants and is due to immaturity of 4-hydroxyphenylpyruvic acid oxidase, resulting in increase in tyrosine and its precursor phenylalanine. The condition resolves spontaneously within 3 months, almost always without sequelae.

D. Maternal Phenylketonuria

Offspring of phenylketonuric mothers may have transient hyperphenylalaninemia at birth. Elevated maternal phenylalanine causes mental retardation, microcephaly, growth retardation, and often congenital heart disease or other malformations in the offspring. The risk to the fetus is lessened considerably by maternal phenylalanine restriction with maintenance of phenylalanine levels below 360 μM (6 mg/dL) throughout pregnancy and optimally started before conception.


HEREDITARY TYROSINEMIA

Type I hereditary tyrosinemia is an autosomal recessive condition caused by deficiency of fumarylacetoacetase. It presents with acute or progressive hepatic parenchymal damage with elevated α-fetoprotein, renal tubular dysfunction with generalized aminoaciduria, hypophosphatemic rickets, or neuronopathic crises. Tyrosine and methionine are increased in blood and tyrosine metabolites and δ-aminolevulinic acid in urine. The key diagnostic metabolite is elevated succinylacetone in urine. Liver failure may be rapidly fatal in infancy or somewhat more chronic, with
a high incidence of liver cell carcinoma in long-term survivors. Tyrosinemia type II presents with corneal ulcers and keratotic lesions on palms and soles and very high serum tyrosine levels (> 600 μM).

**Diagnosis**

Similar clinical and biochemical findings may occur in other liver diseases such as galactosemia and hereditary fructose intolerance. Increased succinylacetone occurs only in fumarylacetoacetase deficiency and is diagnostic. Diagnosis is confirmed by mutation analysis or by enzyme assay in liver tissue. Prenatal diagnosis is possible. Tyrosinemia type II is diagnosed by molecular methods.

**Treatment**

A diet low in phenylalanine and tyrosine ameliorates liver disease, but it does not prevent carcinoma development. Pharmacologic therapy to inhibit the upstream enzyme 4-hydroxyphenylpyruvate dehydrogenase using 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) decreases the production of toxic metabolites, maleylacetoacetate and fumarylacetoacetate. It improves the liver disease and renal disease, prevents acute neuronopathic attacks, and greatly reduces the risk of hepatocellular carcinoma. Liver transplantation is effective therapy. Tyrosinemia type II symptoms respond well to treatment with dietary tyrosine restriction.


**MAPLE SYRUP URINE DISEASE**

**(BRANCHED-CHAIN KETOACIDURIA)**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Typical presentation is infantile encephalopathy.

Maple syrup urine disease is due to deficiency of the enzyme-catalyzing oxidative decarboxylation of the branched-chain keto acid derivatives of leucine, isoleucine, and valine. Accumulated keto acids of leucine and isoleucine cause the characteristic odor. Only leucine and its corresponding keto acid have been implicated in causing central nervous system (CNS) dysfunction. Many variants of this disorder have been described, including mild, intermittent, and thiamine-dependent forms. All are autosomal recessive traits.

Patients with classic maple syrup urine disease are normal at birth, but after about 1 week they develop feeding difficulties, coma, and seizures. Unless diagnosis is made and dietary restriction of branched-chain amino acids is begun, most will die in the first month of life. Nearly normal growth and development may be achieved if treatment is begun before about age 10 days, which is facilitated by newborn screening.

**Diagnosis**

Amino acid analysis shows marked elevation of branched-chain amino acids including alloisoleucine, a diagnostic transamination product of the keto acid of isoleucine. Urine organic acids demonstrate the characteristic keto acids. The magnitude and consistency of metabolite changes are altered in mild and intermittent forms. Prenatal diagnosis is possible by enzyme assay in cultured amniocytes or chorionic villi, and by molecular analysis of the mutation is known.

**Treatment**

Dietary leucine restriction and avoidance of catabolism are the cornerstones of treatment. Infant formulas deficient in branched-chain amino acids must be supplemented with normal foods to supply enough branched-chain amino acids to permit normal growth. Serum levels of branched-chain amino acids must be monitored frequently to deal with changing protein requirements. Acute episodes must be aggressively treated to prevent catabolism and negative nitrogen balance. Very high leucine levels may require hemodialysis.


Patient and parent support group website with useful information for families: http://www.msud-support.org.

**HOMOCYSTINURIA**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Consider in a child of any age with a marfanoid habitus, dislocated lenses, or thrombosis.

- Newborn screening allows early diagnosis and treatment resulting in a normal outcome.
Homocystinuria is most often due to deficiency of cystathionine β-synthase (CBS), but may also be due to deficiency of methylenetetrahydrofolate reductase (MTHFR) or to defects in the biosynthesis of methyl-B₁₂, the coenzyme for methionine synthase. All inherited forms of homocystinuria are autosomal recessive traits.

About 50% of patients with untreated CBS deficiency are mentally retarded, and most have arachnodactyly, osteoporosis, and a tendency to develop dislocated lenses and thromboembolic phenomena. Mild variants of CBS deficiency present with thromboembolic events. Patients with severe remethylation defects usually exhibit failure to thrive and a variety of neurologic symptoms, including brain atrophy, microcephaly, and seizures in infancy and early childhood. Very mild elevations of homocysteine, such as caused by a polymorphism of MTHFR resulting in a heat sensitive protein, are increasingly recognized as a factor in the etiology of vascular disease leading to myocardial infarction and stroke.

**Diagnosis**

Diagnosis is made by demonstrating elevated total serum homocysteine or by identifying homocystinuria in a patient who is not severely deficient in vitamin B₁₂. Serum methionine levels are usually high in patients with CBS deficiency and often low in patients with remethylation defects. Cystathionine levels are low in CBS deficiency. When the remethylation defect is due to deficiency of methyl-B₁₂ megaloblastic anemia or hemolytic uremic syndrome may be present and an associated deficiency of adenosyl-B₁₂ may cause methylmalonic aciduria. Mutation analysis or studies of cultured fibroblasts can make a specific diagnosis.

**Treatment**

About 50% of patients with CBS deficiency respond to large oral doses of pyridoxine. Pyridoxine nonresponders are treated with dietary methionine restriction and oral administration of betaine, which increases methylation of homocysteine to methionine and improves neurologic function. Early treatment prevents mental retardation, lens dislocation, and thromboembolic manifestations, which justifies the screening of newborn infants. Large doses of vitamin B₁₂ (e.g., 1–5 mg hydroxocobalamin administered daily intramuscularly or subcutaneously) are indicated in some patients with defects in cobalamin metabolism.

**NONKETOTIC HYPERGLYCINEMIA**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Severely affected newborns have apnea, hypotonia, lethargy, myoclonic seizures, and hiccups.
- Mental and motor retardation in most patients.
- Mildly affected children have developmental delay, hyperactivity, mild chorea, and seizures.
- Electroencephalography (EEG) shows burst suppression.
- CSF glycine is elevated.

Inherited deficiency of various subunits of the glycine cleavage enzyme causes nonketotic hyperglycinemia, also called glycine encephalopathy. Glycine accumulation in the brain disturbs neurotransmission of the glycinergic receptors and the N-methyl-d-aspartate type of glutamate receptor. In its most severe form, the condition presents in the newborn as hypotonia, lethargy proceeding to coma, myoclonic seizures, and hiccups, with a burst suppression pattern on EEG. Respiratory depression may require ventilator assistance in the first 2 weeks, followed by spontaneous recovery. The majority of patients develop severe mental retardation and seizures. Some patients have agenesis of the corpus callosum or posterior fossa malformations. Most patients have restricted diffusion on MRI in the already myelinated long tracts at birth. Some patients with an attenuated form present with seizures, developmental delay, and mild chorea later in infancy or in childhood. All forms of the condition are autosomal recessive.

**Diagnosis**

Nonketotic hyperglycinemia should be suspected in any neonate or infant with seizures, particularly those with burst suppression pattern on EEG. Diagnosis is confirmed by demonstrating a large increase in glycine in non-bloody CSF, with an abnormally high ratio of CSF glycine to serum glycine. Molecular analysis is diagnostic in more than 90% of cases. Enzyme analysis on liver tissue can confirm the diagnosis. Prenatal diagnosis is possible by molecular analysis if both mutations are known or by enzyme assay on uncultured CVS.

**Treatment**

In patients with mild disease, treatment with sodium benzoate (to normalize serum glycine levels) and dextromethorphan or ketamine (to block N-methyl-d-aspartate type of glutamate receptors) controls seizures and improves outcome.
Treatment of severely affected patients is generally unsuccessful. High-dose benzoate therapy can aid in seizure control but does not prevent severe mental retardation.


Patient and parent support group website with useful information for families: http://www.nkh-network.org.


Organic acidemias are disorders of amino and fatty acid metabolism in which non-amino organic acids accumulate in serum and urine. These conditions are usually diagnosed by examining organic acids in urine, a complex procedure that requires considerable interpretive expertise and is usually performed only in specialized laboratories. Table 36–4 lists the clinical features of organic acidemias, together with the urine organic acid patterns typical of each. Additional details about some of the more important organic acidemias are provided in the sections that follow.

**PROPIONIC & METHYLMALONIC ACIDEMIA (KETOTIC HYPERGLYCINEMIAS)**

The oxidation of threonine, valine, methionine, and isoleucine results in propionyl-CoA, which propionyl-CoA carboxylase converts into L-methylmalonyl-CoA, which is metabolized through methylmalonyl-CoA mutase to succinyl-CoA. Gut bacteria and the breakdown of odd-chain-length fatty acids also substantially contribute to propionyl-CoA production. Propionic acidemia is due to a defect in the biotin-containing enzyme propionyl-CoA carboxylase, and methylmalonic aciduria is due to a defect in methylmalonyl-CoA mutase. In most cases the latter is due to a defect in the mutase apoenzyme, but in others it is due to a defect in the biosynthesis of its adenosyl-B$_{12}$ coenzyme.

In some of these defects, only the synthesis of adenosyl-B$_{12}$ is blocked; in others, the synthesis of methyl-B$_{12}$ is also blocked, and hence homocysteine is also elevated in blood in addition to methylmalonic acid.

Clinical symptoms in propionic and methylmalonic acidemia vary according to the location and severity of the enzyme block. Children with severe blocks present with acute, life-threatening metabolic acidosis, hyperammonemia, and bone marrow depression in early infancy or with metabolic acidosis, vomiting, and failure to thrive during the first few months of life. Most patients with severe disease have mild or moderate mental retardation. Late complications include pancreatitis, cardiomyopathy, and basal ganglia stroke, and in methylmalonic aciduria, interstitial nephritis.

All forms of propionic and methylmalonic acidemia are autosomal recessive traits (except for CblX [cobalamin X]) and can be diagnosed in utero.

**Diagnosis**

Laboratory findings consist of increases in urinary organic acids derived from propionyl-CoA or methylmalonic acid (see Table 36–4). Hyperglycinemia can be present. In some forms of abnormal vitamin B$_{12}$ metabolism, homocysteine can be elevated. Confirmation is by molecular analysis or by assays in fibroblasts.

**Treatment**

Patients with enzyme blocks in B$_{12}$ metabolism usually respond to massive doses of vitamin B$_{12}$ given intramuscularly. Vitamin B$_{12}$ non-responsive methylmalonic acidemia and propionic acidemia require amino acid restriction, strict prevention of catabolism, and carnitine supplementation to enhance propionylcarnitine excretion. Intermittent metronidazole can help reduce the propionate load from the gut. In the acute setting, hemodialysis or hemofiltration may be needed. Combined liver-renal transplantation is an option for patients with renal insufficiency, and liver transplantation has shown promise for patients with life-threatening cardiomyopathy.


Table 36-4. Clinical and laboratory features of organic acidemias.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Enzyme Defect</th>
<th>Clinical and Laboratory Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isovaleric academia</td>
<td>Isovaleryl-CoA dehydrogenase</td>
<td>Acidosis and odor of sweaty feet in infancy, or growth retardation and episodes of vomiting, lethargy, and acidosis. Persistent isovalerylglycine and intermittent 3-hydroxyisovaleric acid in urine.</td>
</tr>
<tr>
<td>3-Methylcrotonyl-CoA carboxylase deficiency</td>
<td>3-Methylcrotonyl-CoA carboxylase</td>
<td>Usually asymptomatic. Acidosis and feeding problems in infancy, or Reye-like episodes in older child. 3-Methylcrotonylglycine and 3-hydroxyisovaleric acid in urine.</td>
</tr>
<tr>
<td>Combined carboxylase deficiency</td>
<td>Holocarboxylase synthetase</td>
<td>Hypotonia and lactic acidosis in infancy. 3-Hydroxyisovaleric acid in urine, often with small amounts of 3-hydroxypropionic and methylcitric acids. Often biotin-responsive.</td>
</tr>
<tr>
<td>Biotinidase deficiency</td>
<td>Biotinidase</td>
<td>Alopecia, seborrheic rash, seizures, and ataxia in infancy or childhood. Urine organic acids as above. Always biotin-responsive.</td>
</tr>
<tr>
<td>3-Hydroxy-3-methylglutaric acidemia</td>
<td>3-Hydroxy-3-methylglutaryl-CoA lyase</td>
<td>Hypoglycemia and acidosis in infancy; Reye-like episodes with nonketotic hypoglycemia or leukodystrophy in older children. 3-Hydroxy-3-methylglutaric, 3-methylglutaconic, and 3-hydroxyisovaleric acids in urine.</td>
</tr>
<tr>
<td>3-Ketothiolase deficiency</td>
<td>3-Ketothiolase</td>
<td>Episodes of vomiting, severe metabolic acidosis (hyperketosis), and encephalopathy. 2-Methyl-3-hydroxybutyric and 2-methylacetoacetic acids and tiglylglycine in urine, especially after isoleucine load.</td>
</tr>
<tr>
<td>Propionic acidemia</td>
<td>Propionyl-CoA carboxylase</td>
<td>Hyperammonemia and metabolic acidosis in infancy; ketotic hyperglycinemia syndrome later. 3-Hydroxypropionic and methylcitric acids in urine, with 3-hydroxy- and 3-ketovaleric acids during ketotic episodes.</td>
</tr>
<tr>
<td>Methylmalonic academia</td>
<td>Methylmalonyl-CoA mutase</td>
<td>Clinical features same as in propionic acidemia. Methylmalonic acid in urine, often with 3-hydroxypropionic and methylcitric acids.</td>
</tr>
<tr>
<td></td>
<td>Defects in B12 biosynthesis</td>
<td>Clinical features same as above when only adenosyl-B&lt;sub&gt;12&lt;/sub&gt;, synthesis is decreased; early neurologic features prominent when accompanied by decreased synthesis of methyl-B&lt;sub&gt;12&lt;/sub&gt;. In latter instance, hypomethioninemia and homocystinuria accompany methylmalonic aciduria.</td>
</tr>
<tr>
<td>Pyroglutamic acidemia</td>
<td>Glutathione synthetase</td>
<td>Acidosis and hemolytic anemia in infancy; chronic acidosis later. Pyroglutamic acid in urine.</td>
</tr>
<tr>
<td>Glutaric acidemia type I</td>
<td>Glutaryl-CoA dehydrogenase</td>
<td>Progressive extrapyramidal movement disorder in childhood, with episodes of acidosis, vomiting, and encephalopathy. Glutaric acid and 3-hydroxyglutaric acid in serum and urine.</td>
</tr>
<tr>
<td>Glutaric acidemia type II</td>
<td>ETF:ubiquinone oxidoreductase (ETF dehydrogenase) and ETF</td>
<td>Hypoglycemia, acidosis, hyperammonemia, and odor of sweaty feet in infancy, often with polycystic and dysplastic kidneys. Later onset may be with episodes of hypoketotic hypoglycemia, liver dysfunction, or slowly progressive skeletal myopathy. Glutaric, ethylmalonic, 3-hydroxyisovaleric, isovalerylglucine, and 2-hydroxyglutaric acids in urine, often with sarcosine in serum.</td>
</tr>
<tr>
<td>4-Hydroxybutyric acidemia</td>
<td>Succinic semialdehyde dehydrogenase</td>
<td>Seizures, ataxia, and developmental retardation. 4-Hydroxybutyric acid in urine.</td>
</tr>
</tbody>
</table>

CoA, coenzyme A; ETF, electron transfer flavoprotein.
ISOVALERIC ACIDEMIA

Isovaleric acidemia, caused by deficiency of isovaleryl-CoA dehydrogenase in the leucine oxidative pathway, was the first organic acidemia to be described in humans. Patients with this disorder usually present with poor feeding, metabolic acidosis, seizures, and an odor of sweaty feet during the first few days of life, with coma and death occurring if the condition is not recognized and treated. Other patients have a more chronic course, with episodes of vomiting and lethargy, hair loss, and pancreatitis precipitated by intercurrent infections or increased protein intake. The condition is autosomal recessive and can be diagnosed in utero.

**Diagnosis**

Isovalerylglycine is consistently detected in the urine by organic acid chromatography.

**Treatment**

Providing a low-protein diet or a diet low in leucine is effective. Conjugation with either glycine or carnitine helps in maintaining metabolic stability by removing toxic isovaleryl-CoA. Outcome is usually good.

GLUTARIC ACIDEMIA TYPE I

Isolated 3-methylcrotonyl-CoA carboxylase deficiency is frequently recognized on newborn screening using acylcarnitine analysis. It is usually a benign condition that only rarely causes symptoms of acidosis and neurologic depression. All carboxylases require biotin as a cofactor. Holocarboxylase synthetase and biotinidase are two enzymes of biotin metabolism. Holocarboxylase synthetase covalently binds biotin to the apocarboxylases for pyruvate, 3-methylcrotonyl-CoA, and propionyl-CoA; biotinidase releases biotin from these proteins and from proteins in the diet. Recessively inherited deficiency of either enzyme causes deficiency of all three carboxylases (ie, multiple carboxylase deficiency). Patients with holocarboxylase synthetase deficiency usually present as neonates with hypotonia, skin problems, and massive acidosis. Those with biotinidase deficiency present later with a syndrome of ataxia, seizures, seborrhea, and alopecia. Untreated patients can develop mental retardation, hearing loss, and optic nerve atrophy. Newborn screening is justified because the neurologic sequelae of the disorder in many patients are preventable if treated early.

**Diagnosis**

This diagnosis should be considered in patients with typical symptoms or in those with primary lactic acidosis. Urine organic acids are usually but not always abnormal (see Table 36–4). Diagnosis is made by enzyme assay of carboxylase activities in fibroblasts or leucocytes. Biotinidase can be assayed in serum, and holocarboxylase synthetase in leukocytes or fibroblasts.

**Treatment**

Oral administration of biotin in large doses often reverses the organic aciduria within days and the clinical symptoms within days to weeks. Hearing loss can occur in patients with biotinidase deficiency despite treatment.
Glutaric acidemia type I is due to deficiency of glutaryl-CoA dehydrogenase. Patients have frontotemporal atrophy with enlarged sylvian fissures and macrocephaly. Sudden or chronic neuronal degeneration in the caudate and putamen causes an extrapyramidal movement disorder in childhood with dystonia and athetosis. Children with glutaric acidemia type I may present with retinal hemorrhages and intracranial bleeding, and may thus be falsely considered victims of child abuse. Severely debilitated children often die in the first decade, but several reported patients have had only mild neurologic abnormalities. Most patients develop symptoms in the first 6 years of life. The condition is autosomal recessive and prenatal diagnosis is possible.

### Diagnosis
Glutaric acidemia type I should be suspected in patients with acute or progressive dystonia in the first 6 years of life. Magnetic resonance imaging of the brain is highly suggestive. The diagnosis is supported by finding glutaric, 3-hydroxyglutaric acid, and glutarylcarmitine in urine or serum or by finding two mutations in the GCDH gene. Demonstration of deficiency of glutaryl-CoA dehydrogenase in fibroblasts can further confirm the diagnosis. Prenatal diagnosis is by mutation analysis, enzyme assay, or quantitative metabolite analysis in amniotic fluid.

### Treatment
Strict catabolism prevention during any intercurrent illness is very important. Supplementation with large amounts of carnitine and provision of a lysine and tryptophan restricted diet may prevent degeneration of the basal ganglia, warranting newborn screening. Early diagnosis via newborn screening does not prevent neurologic disease in all patients, but it clearly reduces the risk. Neurologic symptoms, once present, do not resolve. Symptomatic treatment of severe dystonia is important for affected patients.

Deficiencies of very-long-chain and medium-chain acyl-CoA dehydrogenase (VLCAD, MCAD) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), three enzymes of fatty acid β-oxidation, usually cause Reye-like episodes of hypoketotic hypoglycemia, mild hyperammonemia, hepatomegaly, and encephalopathy. Sudden death in infancy is a less common presentation. The long-chain defects, which also include carnitine palmitoyltransferase deficiency I and II and carnitine-acylcarnitine translocase deficiency, often also cause skeletal myopathy with hypotonia and episodic rhabdomyolysis. They also cause cardiomyopathy and ventricular arrhythmias. LCHAD deficiency may produce progressive liver cirrhosis, peripheral neuropathy, and retinitis pigmentosa. Mothers of affected infants can have acute fatty liver of pregnancy or HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets). Mild carnitine palmitoyltransferase I deficiency may cause renal tubular acidosis and hypertriglyceridemia. MCAD deficiency is common, occurring in perhaps 1:9000 live births. Reye-like episodes may be fatal or cause residual neurologic damage. Episodes tend to become less frequent and severe with time. After the diagnosis is made and treatment instituted, morbidity decreases and mortality is avoided in MCAD deficiency.

Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is characterized by the presence of ethylmalonic acid in the urine, and although some patients have symptoms similar to those in MCAD deficiency, many are asymptomatic. Glutaric acidemia type II results from defects in the transfer of electrons from fatty acid oxidation and some amino acid oxidation into the respiratory chain. Some patients with glutaric acidemia type II have a clinical presentation resembling MCAD deficiency. Patients with a severe neonatal presentation also have renal cystic disease and dysmorphic features. The least affected patients can present with late-onset myopathy and be riboflavin responsive. Some develop cardiomyopathy or leukodystrophy. Deficiency of the ketogenic enzyme 3-hydroxyacylglycine oxidase presents with hypoketotic hypoglycemia. These conditions are autosomal recessive.
Diagnosis

The hypoglycemic presentation of Reye-like episodes is associated with a lack of an appropriate ketone response to fasting. Urine organic acid analysis in patients with MCAD deficiency reveals dicarboxylic acids and increased hexanoylglycine, suberylglycine, and phenylpropionylglycine. The finding of normal urine organic acids does not exclude these conditions, because the excretion of these acids is intermittent. Urine and blood findings in glutaric acidemia type II and SCAD deficiency are often diagnostic. The analysis of acylcarnitine esters is a first-line diagnostic test used in neonatal screening because it reveals diagnostic metabolites regardless of clinical status. MCAD deficiency is characterized by elevated octanoylcarnitine. A typical pattern can be recognized in deficiencies of VLCAD, LCHAD, carnitine-acylcarnitine translocase, and severe carnitine palmitoyltransferase. Further confirmation can be obtained from analysis of fatty acid oxidation in fibroblasts. Molecular sequencing is available for each defect with MCAD and LCHAD deficiencies, each having a common mutation. Assays for each enzyme can be done on fibroblasts in specialized laboratories.

Treatment

Management involves prevention of hypoglycemia by avoiding prolonged fasting (> 8–12 hours). This includes providing carbohydrate snacks before bedtime and vigorous treatment of fasting associated with intercurrent infections. Because fatty acid oxidation can be compromised by associated carnitine deficiency, young patients with MCAD deficiency usually receive oral carnitine. Restriction of dietary long-chain fats is not necessary in MCAD deficiency but is required for severe VLCAD and LCHAD deficiencies. Medium-chain triglycerides are contraindicated in MCAD deficiency but are an essential energy source for patients with severe VLCAD and LCHAD deficiencies or carnitine-acylcarnitine translocase deficiency. Riboflavin may be beneficial in some patients with glutaric acidemia type II. Outcome in MCAD deficiency is excellent but is more guarded in patients with the other disorders.

CARNITINE

Carnitine is an essential nutrient found in highest concentration in red meat. Its primary function is to transport long-chain fatty acids into mitochondria for oxidation. Primary defects of carnitine transport may manifest as Reye syndrome, cardiomyopathy, or skeletal myopathy with hypotonia. These disorders are rare compared with secondary carnitine deficiency, which may be due to diet (vegan diet, intravenous alimentation, or ketogenic diet), renal losses, drug therapy (especially valproic acid), and other metabolic disorders (especially disorders of fatty acid oxidation and organic acidemias). The prognosis depends on the cause of the carnitine abnormality. Primary carnitine deficiency is one of the most treatable causes of dilated cardiomyopathy in children.

Free and esterified carnitine can be measured in blood. Muscle carnitine may be low despite normal blood levels, particularly in respiratory chain disorders. If carnitine insufficiency is suspected, the patient should be evaluated to rule out disorders that might cause secondary carnitine deficiency.
Oral or intravenous L-carnitine is used in carnitine deficiency or insufficiency in doses of 25–100 mg/kg/d or higher. Treatment is aimed at maintaining normal carnitine levels. Carnitine supplementation in patients with some disorders of fatty acid oxidation and organic acidosis may also augment excretion of accumulated metabolites, although supplementation may not prevent metabolic crises in such patients.

### Treatment

Hyperhydration and alkalinization are essential to prevent kidney stones and urate nephropathy. Allopurinol and probenecid may be given to reduce hyperuricemia and prevent gout but do not affect the neurologic status. Physical restraints are often more effective than neurologic medications for automutilation. No effective treatment exists for adenylosuccinate lyase deficiency.

---

### LYSOSOMAL DISEASES

Lysosomes are cellular organelles in which complex macromolecules are degraded by specific acid hydrolases. Deficiency of a lysosomal enzyme causes its substrate to accumulate in the lysosomes, resulting in a characteristic clinical picture. These storage disorders are classified as mucopolysaccharidoses, lipidoses, or mucolipidoses, depending on the nature of the stored material. Two additional disorders, cystinosis and Salla disease, are caused by defects in lysosomal proteins that normally transport material from the lysosome to the cytoplasm. Table 36–5 lists clinical and laboratory features of these conditions. Most are inherited as autosomal recessive traits, and all can be diagnosed in utero.

### Diagnosis

The diagnosis of mucopolysaccharidosis is suggested by certain clinical and radiologic findings (dysostosis multiplex, which includes enlarged sella turcica, scaphocephaly, broad ribs, hook shaped vertebrae [L1 and L2 most affected], and prominent pointing of the metacarpals and broad phalanges). Urine screening tests can detect increased mucopolysaccharides and further identify which specific mucopolysaccharides are present. Diagnosis must be confirmed by enzyme assays of leukocytes or cultured fibroblasts. Analysis of urinary oligosaccharides indicates a specific disorder prior to enzymatic testing. Lipidoses present with visceral symptoms or neurodegeneration. The pattern of the leukodystrophy associated with many lipidoses can indicate a specific condition. Diagnosis is made by appropriate enzyme assays of peripheral leukocytes or cultured skin fibroblasts. Molecular analysis is also available for most conditions.
Table 36-5. Clinical and laboratory features of lysosomal storage diseases.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Enzyme Defect</th>
<th>Clinical and Laboratory Features</th>
<th>Available Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>I. Mucopolysaccharidoses</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurler syndrome</td>
<td>α-Iduronidase</td>
<td>Autosomal recessive. Mental retardation, hepatosplenomegaly, umbilical hernia, coarse facies, corneal clouding, dorsolumbar gibbus, severe heart disease. Heparan sulfate and dermatan sulfate in urine.</td>
<td>ERT, HSCT</td>
</tr>
<tr>
<td>Scheie syndrome</td>
<td>α-Iduronidase (incomplete)</td>
<td>Autosomal recessive. Corneal clouding, stiff joints, normal intellect. Clinical types intermediate between Hurler and Scheie common. Heparan sulfate and dermatan sulfate in urine.</td>
<td>ERT</td>
</tr>
<tr>
<td>Hunter syndrome</td>
<td>Sulfoiduronate sulfatase</td>
<td>X-linked recessive. Coarse facies, hepatosplenomegaly, mental retardation variable. Corneal clouding and gibbus not present. Heparan sulfate and dermatan sulfate in urine.</td>
<td>ERT, HSCT</td>
</tr>
<tr>
<td>Sanfilippo syndrome:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type A</td>
<td>Sulfamidase</td>
<td>Autosomal recessive. Severe mental retardation and hyperactivity, with comparatively mild skeletal changes, visceromegaly, and facial coarseness. Types cannot be differentiated clinically. Heparan sulfate in urine.</td>
<td></td>
</tr>
<tr>
<td>Type B</td>
<td>α-N-Acetylgalactosaminidase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type C</td>
<td>Acetyl-CoA: α-glucosaminide-N-acetyltransferase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type D</td>
<td>α-N-acetylgalactosamine-6-sulfatase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morquio syndrome</td>
<td>N-Acetylgalactosamine-6-sulfatase</td>
<td>Autosomal recessive. Severe skeletal changes, platyspondylisis, corneal clouding. Keratan sulfate in urine.</td>
<td></td>
</tr>
<tr>
<td>Maroteaux-Lamy syndrome</td>
<td>N-Acetylgalactosamine-4-sulfatase</td>
<td>Autosomal recessive. Coarse facies, growth retardation, dorsolumbar gibbus, corneal clouding, hepatosplenomegaly, normal intellect. Dermatan sulfate in urine.</td>
<td>HSCT</td>
</tr>
<tr>
<td>B-Glucuronidase deficiency</td>
<td>β-Glucuronidase</td>
<td>Autosomal recessive. Varies from mental retardation, dorsolumbar gibbus, corneal clouding, and hepatosplenomegaly to mild facial coarseness, retardation, and loose joints. Hearing loss common. Dermatan sulfate or heparan sulfate in urine.</td>
<td>HSCT</td>
</tr>
<tr>
<td><strong>II. Oligosaccharidoses</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannosidosis</td>
<td>α-Mannosidase</td>
<td>Autosomal recessive. Varies from severe mental retardation, coarse facies, short stature, skeletal changes, and hepatosplenomegaly to mild facial coarseness and loose joints. Hearing loss common. Abnormal oligosaccharides in urine.</td>
<td>HSCT</td>
</tr>
<tr>
<td>Fucosidosis</td>
<td>α-Fucosidase</td>
<td>Autosomal recessive. Variable: coarse facies, skeletal changes, hepatosplenomegaly, occasional angiokeratomas. Abnormal oligosaccharides in urine.</td>
<td>HSCT</td>
</tr>
<tr>
<td>I-cell disease</td>
<td>N-Acetylgalactosaminylphosphotransferase</td>
<td>Autosomal recessive; severe and mild forms known. Very short stature, mental retardation, early facial coarsening, clear cornea, and stiffness of joints. Increased lysosomal enzymes in serum. Abnormal sialyl oligosaccharides in urine.</td>
<td>HSCT</td>
</tr>
<tr>
<td></td>
<td>(mucolipidosis II)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
### Table 36-5. Clinical and laboratory features of lysosomal storage diseases. (Continued)

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Enzyme Defect</th>
<th>Clinical and Laboratory Features</th>
<th>Available Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. Lipidoses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niemann-Pick disease</td>
<td>Sphingomyelinase</td>
<td>Autosomal recessive. Acute and chronic forms known. Acute neuronopathic form common in eastern European Jews. Accumulation of sphingomyelin in lysosomes of RE system and CNS. Hepatosplenomegaly, developmental retardation, macular cherry-red spot. Death by 1-4 y in severe type A; mild type B develops respiratory insufficiency usually in adulthood.</td>
<td>HSCT†</td>
</tr>
<tr>
<td>Metachromatic leukodystrophy</td>
<td>Arylsulfatase A</td>
<td>Autosomal recessive. Late infantile form, with onset at 1-4 y, most common. Accumulation of sulfatide in white matter with central leukodystrophy and peripheral neuropathy. Gait disturbances (ataxia), motor incoordination, absent deep tendon reflexes, and dementia. Death usually in first decade.</td>
<td>HSCT†</td>
</tr>
<tr>
<td>Krabbe disease (globoid cell leukodystrophy)</td>
<td>Galactocerebroside α-galactosidase</td>
<td>Autosomal recessive. Globoid cells in white matter. Onset at 3-6 mo with seizures, irritability, retardation, and leukodystrophy. Death by 1-2 y. Juvenile and adult forms are rare.</td>
<td>HSCT</td>
</tr>
<tr>
<td>Fabry disease</td>
<td>α-Galactosidase A</td>
<td>X-linked recessive. Storage of trihexosylceramide in endothelial cells. Pain in extremities, angiokeratoma and (later) poor vision, hypertension, and renal failure.</td>
<td>ERT</td>
</tr>
<tr>
<td>Farber disease</td>
<td>Ceramidase</td>
<td>Autosomal recessive. Storage of ceramide in tissues. Subcutaneous nodules, arthropathy with deformed and painful joints, and poor growth and development. Death within first year.</td>
<td>HSCT†</td>
</tr>
<tr>
<td>G\textsubscript{M1} gangliosidosis</td>
<td>G\textsubscript{M1} ganglioside β-galactosidase</td>
<td>Autosomal recessive. Accumulation of G\textsubscript{M1} ganglioside in lysosomes of RE system and CNS. Infantile form: abnormalities at birth with dysostosis multiplex, hepatosplenomegaly, macular cherry-red spot, and death by 2 y. Juvenile form: normal development to 1 y of age, then ataxia, weakness, dementia, and death by 4-5 y. Occasional inferior beaking of vertebral bodies of L1 and L2.</td>
<td>HSCT†</td>
</tr>
</tbody>
</table>

(Continued)
### Table 36–5. Clinical and laboratory features of lysosomal storage diseases. (Continued)

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Enzyme Defect</th>
<th>Clinical and Laboratory Features</th>
<th>Available Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM2 gangliosidases</td>
<td><em>β</em>-N-Acetylhexosaminidase A</td>
<td>Autosomal recessive. Tay-Sachs disease common in eastern European Jews; Sandhoff disease is panethnic. Clinical phenotypes are identical, with accumulation of GM2 ganglioside in lysosomes of CNS. Onset at age 3–6 mo, with hypotonia, hyperacusis, retardation, and macular cherry-red spot. Death by 2-3 y. Juvenile and adult onset forms of Tay-Sachs disease are rare.</td>
<td>HSCT ERT</td>
</tr>
<tr>
<td>Tay-Sachs disease</td>
<td><em>β</em>-N-Acetylhexosaminidase A and B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandhoff disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolman disease</td>
<td>Acid lipase</td>
<td>Autosomal recessive. Accumulation of cholesterol esters and triglycerides in lysosomes of reticuloendothelial system. Onset in infancy with gastrointestinal symptoms and hepatosplenomegaly, and death in the first year. Adrenals commonly enlarged and calcified.</td>
<td></td>
</tr>
<tr>
<td>Niemann-Pick disease type C</td>
<td><em>NPC1</em> gene (95%), <em>NPC2</em> gene (5%)</td>
<td>Autosomal recessive. Blocked transport of lipids and cholesterol from late endosomes to lysosomes. Infantile cholestatic liver disease or later neurodegeneration with vertical supranuclear gaze palsy, ataxia, seizures, spasticity and loss of speech. Some have splenomegaly.</td>
<td>SIT</td>
</tr>
</tbody>
</table>

**CNS**, central nervous system; **ERT**, enzyme-replacement therapy; **HSCT**, hematopoietic stem cell transplantation; **RE**, reticuloendothelial; **SIT**, substrate inhibition therapy.

*a*May be useful in selected patients.

### Treatment

Most conditions cannot be treated effectively, but new avenues have given hope in many conditions. Hematopoietic stem cell transplantation can greatly improve the course of some lysosomal diseases and is first-line treatment in some, such as infantile Hurler syndrome. Several disorders are treated with infusions of recombinant modified enzyme. Treatment of Gaucher disease is very effective, and long-term data suggest excellent outcome. Similar treatments have been developed for Fabry disease, several mucopolysaccharidoses, and Pompe disease. Substantial improvements in these conditions have been reported but with limitations. New avenues for treatment through substrate inhibition and chaperone therapy are being developed. Treatment of cystinosis with cysteamine results in depletion of stored cystine and prevention of complications including renal disease.

---

**References**

Peroxisomal diseases are intracellular organelles that contain a large number of enzymes, many of which are oxidases linked to catalase. The enzyme systems in peroxisomes include β-oxidation of very-long-chain fatty acids, phytanic acid, and bile acids and the biosynthesis of plasmalogens. In addition, peroxisomes contain oxidases for D- and L-amino acids, pipecolic acid, and the biosynthesis of plasmalogens. In peroxisomal diseases, only a single enzyme is deficient. Zellweger (cerebrohepatorenal) syndrome, the best known among these, is caused by severe defects in organelle assembly. Patients present in infancy with seizures, hypotonia, characteristic facies with a large forehead and fontanel, and cholestatic hepatitis. At autopsy renal cysts and absent peroxisomes are seen. Patients with a similar but milder biochemical and clinical phenotype have neonatal adrenoleukodystrophy or neonatal Refsum disease. They often have detectable peroxisomes.

In other peroxisomal diseases, only a single enzyme is deficient. Primary hyperoxaluria (alanine-glyoxylate aminotransferase deficiency) causes renal stones and nephropathy. Mutations in the X-linked very-long-chain fatty acid transporter gene, ABCD1, cause either a rapid leukodystrophy with loss of function (adrenoleukodystrophy), slow progressive spasticity and neuropathy (adrenomyeloneuropathy), or adrenal insufficiency. Defective phytanic acid oxidation in adult Refsum disease causes ataxia, leukodystrophy, cardiomyopathy, neuropathy, and retinal dystrophy. Other isolated enzyme deficiencies can mimic Zellweger syndrome.

Abnormalities of plasmalogen synthesis are clinically associated with rhizomelic chondrodysplasia punctata. Except for adrenoleukodystrophy, all peroxisomal diseases are autosomal recessive and can be diagnosed in utero.

### Diagnosis

The best screening test for Zellweger syndrome and other biogenesis disorders is determination of very-long-chain fatty acids in serum or plasma. Urine bile acids are abnormal in other peroxisomal disorders. Phytanic acid and plasmalogens can also be measured. Together, these studies identify most peroxisomal diseases. Fibroblast enzyme assays followed by molecular analysis are needed for confirmation, especially when the parents plan further pregnancies.

### Treatment

Bone marrow transplantation may be an effective treatment at the early stages of adrenoleukodystrophy, and close monitoring of affected males is necessary. Adrenal insufficiency requires hydrocortisone substitution. Lorenzo’s oil, a mixture of glyceryl-trierucate and glyceryl-trioleate that suppresses endogenous very-long-chain fatty acid synthesis, in combination with a very-low-fat diet and essential fatty acid supplementation, is ineffective in patients with established symptoms but is under evaluation for prevention of neurologic symptoms in presymptomatic males with adrenoleukodystrophy. Dietary treatment is used and effective for adult Refsum disease. Liver transplantation protects the kidneys in severe primary hyperoxaluria.


Ebberink MS et al: Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder. Hum Mutat 2011;32:59 [PMID: 21031596].


of disorders that result from defects in the synthesis of glycans or in the attachment of glycans to other compounds. N-linked, O-linked, and combined N- and O-linked glycosylation defects have been described. The most common N-linked defect is phosphomannomutase 2 deficiency or congenital disorders of glycosylation type Ia (CDG-Ia). Children with type Ia disease usually present with prenatal growth disturbance, often with abnormal fat distribution, cerebellar hypoplasia, typical facial dysmorphic features, and mental retardation. The typical course includes chronic liver disease, peripheral neuropathy, endocrinopathies, retinopathy, and in some patients, acute life-threatening events. Patients with type Ib disease have a variable combination of liver fibrosis, protein-losing enteropathy, and hypoglycemia. More than a dozen other forms are characterized by additional key symptoms, including coloboma, cutis laxa, severe epilepsy, ichthyosis, immunoglobulin deficiency, and Dandy-Walker malformation. Biochemical differences and variations in clinical course (eg, the absence of peripheral neuropathy) characterize the other types. Pathophysiology probably relates to defects of those biochemical pathways that require glycosylated proteins. Recently, O-linked glycosylation defects have been found to underlie more classically described genetic syndromes such as multiple exostoses syndrome, Walker-Warburg syndrome, muscle-eye-brain disease, and a number of α-dystroglycanopathies. The syndromes appear to be inherited in an autosomal recessive manner with the exception of multiple exostoses syndrome which is autosomal dominant. The frequency of N-linked glycosylation defects is estimated to be as high as 1:20,000 in northern Europe.

**Diagnosis**

Diagnosis is supported by finding altered levels of glycosylated enzymes or other proteins such as transferrin, thyroxine-binding globulin, lysosomal enzymes, and clotting factors (IX, XI, antithrombin III, and proteins C and S). However, these levels may be normal in carbohydrate-deficient glycoprotein syndromes or abnormal in other conditions. Diagnosis is confirmed by finding typical patterns of abnormal glycosylation of selected proteins. Most diagnostic laboratories examine serum transferrin to screen for N-linked defects and apoC1 for O-linked defects. Confirmatory diagnosis is by assaying enzyme activity, analysis of lipid-linked oligosaccharides in fibroblasts, and mutation analysis.

**Treatment**

Treatment is supportive, including monitoring and providing early treatment for expected clinical features. Mannose treatment is curative for patients with type Ib deficiency only.

---


Patient and parent support group website with useful information for families: http://www.cdgs.com.


---

**SMITH-LEMLI-OPITZ SYNDROME & DISORDERS OF CHOLESTEROL SYNTHESIS**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Elevated 7- and 8-dehydrocholesterol in serum and other tissue is diagnostic in Smith-Lemli-Opitz (SLO) syndrome which presents with developmental delay and malformations.
- Chondrodysplasia punctata, skin defects, and neurological symptoms can indicate other cholesterol synthetic defects.

Several defects of cholesterol synthesis are associated with malformations and neurodevelopmental disability. SLO syndrome is an autosomal recessive disorder caused by a deficiency of the enzyme 7-dehydrocholesterol Δ7-reductase. It is characterized by microcephaly, poor growth, mental retardation, typical dysmorphic features of face and extremities (particularly two- to three-toe syndactyly), and often malformations of the heart and genitourinary system. It is further described in Chapter 37. Other cholesterol synthetic defects are seen in Conradi Hünnermann syndrome, which includes chondrodysplasia punctata and atrophic skin. Cholestanolosis (cerebrotendinous xanthomatosis) manifests with progressive ataxia and cataracts.

**Diagnosis**

In SLO, elevated 7- and 8-dehydrocholesterol in serum or other tissues, including amniotic fluid, is diagnostic. Serum cholesterol levels may be low or in the normal range.
Enzymes of cholesterol synthesis may be assayed in cultured fibroblasts or amniocytes, and mutation analysis is possible.

**Treatment**

Although postnatal treatment does not resolve prenatal injury, supplementation with cholesterol in SLO improves growth and behavior. The role of supplemental bile acids is controversial. Simvastatin reduces 7- and 8-dehydrocholesterol and increases cholesterol levels by induction of its synthetic enzymes, but its effect on clinical symptoms is limited.

Pyridoxine-dependent epilepsy manifests as a severe seizure disorder in the neonatal or early infantile period that responds to high doses of pyridoxine. The disorder is caused by deficient activity of the enzyme α-amino adipic semialdehyde dehydrogenase resulting from mutations in the antiquitin (ALDH7A1) gene. Pyridoxal-phosphate–responsive encephalopathy manifests as a severe seizure disorder in infancy that responds to pyridoxal-phosphate. This disorder is caused by mutations in the PNPO gene encoding pyridox(am)ine oxidase, which is necessary for activation of pyridoxine.

**Diagnosis**

Although some disorders can be diagnosed by examining serum amino acids or urine organic acids (eg, 4-hydroxybutyric aciduria), in most cases, diagnosis requires analysis of CSF. Spinal fluid samples for neurotransmitter analysis require special collection and handling, as the neurotransmitter levels are graduated along the axis of the CNS and are highly unstable once the sample is collected. A phenylalanine loading test can be diagnostic for mild defects in GTP-cyclohydrolase deficiency, in which neurotransmitter analysis may be insufficiently sensitive. Analysis of CSF shows elevated threonine and decreased pyridoxal-phosphate in pyridoxal-phosphate–responsive disease, and decreased serine and glycine in serine biosynthetic defects. Urine α-amino adipic acid or piperidine-6-carboxylate can be used to identify infants with seizures that may be pyridoxine dependent.

**Treatment**

Biosynthesis defects of dopamine and serotonin are usually treated with a combination of levodopa, 5-hydroxytryptophan, and carbidopa. Pyridoxine-dependent epilepsy is treated with pyridoxine in high doses and can benefit from a lysine-restricted diet, whereas pyridoxal-phosphate–responsive encephalopathy requires pyridoxal-phosphate. For some conditions, such as pyridoxine-responsive seizures, pyridoxal-phosphate–responsive encephalopathy, or dopa-responsive dystonia, response to treatment can be dramatic. For others, response to therapy is less satisfactory in part because of poor penetration of the blood-brain barrier. Supplementation with serine and glycine can substantially improve outcome in serine deficiency.
Creatine and creatine phosphate are essential for storage and transmission of phosphate-bound energy in muscle and brain. They spontaneously convert to creatinine. Three disorders of creatine synthesis are now known: arginine:glycine amidinotransferase (AGAT) deficiency, guanidinoacetate methyltransferase (GAMT) deficiency, and creatine transporter (CrT1) deficiency. GAMT and AGAT deficiencies are autosomal recessive disorders, whereas CrT1 deficiency is X-linked. All patients demonstrate developmental delay, mental retardation, autistic behavior, seizures, and severe expressive language disturbance. Patients may also show developmental regression and brain atrophy. Patients with GAMT deficiency have more severe seizures and an extrapyramidal movement disorder. The seizure disorder is milder in CrT1-deficient patients. Some female heterozygotes of CrT1 deficiency may also show developmental delay or learning disabilities.

**Diagnosis**

The common feature of all creatine synthesis defects is a severe depletion of creatine and creatine phosphate in the brain demonstrable by reduction to absence of signal on magnetic resonance spectroscopy. In GAMT deficiency, guanidinoacetate accumulates, whereas in AGAT deficiency, guanidinoacetate is decreased, particularly in urine. Guanidinoacetate seems to be responsible for the severe seizures and movement disorder found in GAMT deficiency. Blood, urine, and CSF creatine levels are decreased in GAMT deficiency but normal in AGAT deficiency. Urine excretion of creatine is elevated in CrT1 deficiency. Enzyme and molecular analyses are available for diagnostic confirmation.

**Treatment**

Treatment with oral creatine supplementation is in part successful in GAMT and AGAT deficiencies. It is not beneficial in CrT1 deficiency. Treatment by combined arginine restriction and ornithine substitution in GAMT deficiency can decrease guanidinoacetate concentrations and improve the clinical course.

**Quality Initiatives in the Field of Metabolic Disease**

Expanded newborn screening has had a large impact on the field of metabolic disorders. As desired, patients are being diagnosed earlier, and for some patients, this dramatically reduces the disease burden. Expanded newborn screening, however, has also uncovered problems or revealed unexpected consequences that need to be addressed. For example, the clinical spectrum of many disorders is being expanded to include mildly affected or asymptomatic patients. This raises care questions particularly in regard to the need for aggressive management in the more mildly affected patients or if therapy is needed all for some patients. It is unclear whether some patients diagnosed who are on the milder end of a disease spectrum would have ever become symptomatic or presented to care. Consequently, for some disorders, disease incidence appears to be changing. In addition, newborn screening for several conditions has brought to light our ability to detect maternal disease. Disorders such as maternal B₉ deficiency and maternal carnitine uptake deficiency pose management as well as risk questions for this largely asymptomatic population. Conditions felt by most to be benign are also being diagnosed as a consequence of expanded newborn screening. Further, owing to limitations in diagnostic testing, patients...
who may be carriers for a condition are now being treated, as the carrier status cannot be entirely confirmed nor the condition entirely excluded. This is particularly true for disorders such as glutaric acidemia, type I, and VLCAD deficiency. This not only adds to parental anxiety, but treatment of an unaffected child may entail risk to the child or to family dynamics.

Improvement in diagnostic testing, especially the sensitivity of molecular and enzymatic testing, may help improve the diagnostic conundrum. National initiatives are underway in an attempt to clarify other issues. Initiated under regional programs and now under the guidance of the American College of Medical Genetics and the Newborn Screening Translational Research Network (NBSTRN), uniform clinical data sets for disorders diagnosed via newborn screening have been developed. The hope is also for a national database for data collection integrating clinical care, public health, and state laboratories. The overall goal is to track the long-term outcome of individuals diagnosed with inborn errors of metabolism, to define best practice guidelines, and to determine the benefit of newborn screening. In addition, the NBSTRN seeks to stimulate research in newborn screening, advocate pilot screening programs, and establish a national, virtual dried blood spot repository for research. This national initiative is inclusive of all disorders for which newborn screening occurs, not just inborn errors of metabolism.

Another national focus is the expansion of newborn screening to other genetic disorders. Currently, some states are beginning to implement newborn screening for severe combined immunodeficiency (SCID) and for lysosomal storage disorders such as Pompe disease, Fabry disease, Gaucher disease, and Krabbe disease. A pilot study is also underway for screening for spinal muscular atrophy, and screening for disorders such as Fragile X syndrome and Prader Willi syndrome is being considered. As technology for early detection and treatment strategies advance, more disorders will likely be considered candidates for newborn screening. Additionally, some conditions being considered for screening affect an individual after the newborn period. Second-tier, childhood screening for such late-onset disorders may be a consideration in the future. Careful consideration will need to be given regarding the risks and benefits to screening for such conditions. The U.S. Secretary for Health and Human Services’ Advisory Committee on Heritable Disorders in Newborns and Children has established a rigorous process for disease review before recommending a disorder be considered for screening.

Genetics is an exciting and rapidly evolving field that has significant relevance to the understanding of human embryology, physiology, and disease processes. Tremendous advances in molecular biology and biochemistry are allowing more comprehensive understanding of mechanisms inherent in genetic disorders as well as improved diagnostic tests and management options. Many of the newer technologies and terms may be unfamiliar to the clinician in practice. Thus, the topics in the first part of the chapter serve as an introduction and review of the basic principles of genetics, including basic knowledge of cytogenetics and molecular biology. The second part discusses principles of inherited human disorders, encompassing different genetic mechanisms as well as how to obtain a genetic history and pedigree. Topics in the third part of the chapter focus on applied clinical genetics which include dysmorphology, teratology, and perinatology. Common clinical disorders with descriptions of the diseases and discussion of their pathogenesis, diagnosis, and management are also included.

**FOUNDATIONS OF GENETIC DIAGNOSIS**

**CYTOGENETICS**

Cytogenetics is the study of genetics at the chromosome level. Chromosomal anomalies occur in 0.4% of all live births and are a common cause of intellectual disabilities (formerly called mental retardation) and congenital anomalies. The prevalence of chromosomal anomalies is much higher among spontaneous abortions and stillbirths.

**Chromosomes**

Human chromosomes consist of DNA (the blueprint of genetic material), specific proteins forming the backbone of the chromosome (called histones), and other chromatin structural and interactive proteins. Chromosomes contain most of the genetic information necessary for growth and differentiation. The nuclei of all normal human cells, with the exception of gametes, contain 46 chromosomes, consisting of 23 pairs (Figure 37–1). Of these, 22 pairs are called autosomes. They are numbered according to their size; chromosome 1 is the largest and chromosome 22 the smallest. In addition, there are two sex chromosomes: two X chromosomes in females and one X and one Y chromosome in males. The two members of a chromosome pair are called homologous chromosomes. One homolog of each chromosome pair is maternal in origin (from the egg); the second is paternal (from the sperm). The egg and sperm each contain 23 chromosomes (haploid cells). During formation of the zygote, they fuse into a cell with 46 chromosomes (diploid cell).

**Cell Division**

Cells undergo cycles of growth and division that are controlled according to their needs and functions.

*Mitosis* is a kind of cell division, occurring in stages, during which DNA replication takes place and two daughter cells, genetically identical to the original parent cells, are formed. This cell division is typical for all somatic cells (cells other than the sperm or egg, which are called germine cells). There are four phases of mitosis: interphase, prophase, metaphase, and anaphase. In interphase, chromosomes are long, thin, and nonvisible. At this time, the genetic material is replicated. In prophase, the chromosomes are more condensed. During metaphase (the phase following DNA replication but preceding cell division), individual chromosomes can be visualized. Each arm consists of two identical parts, called chromatids. Chromatids of the same chromosome are called sister chromatids. In anaphase, the genetic material is separated into two cells.
Meiosis is a kind of cell division during which eggs and sperm are formed; it is a cell division limited to gametes. During meiosis, three unique processes take place:

1. Crossing over of genetic material between two homologous chromosomes (this recombination, or exchange of genetic material increases the viability of human beings).
2. Random assortment of maternally and paternally derived homologous chromosomes into the daughter cells.
3. Two cell divisions, the first of which is a reduction division—that is, separation between the homologous chromosomes. The second meiotic division is like mitosis, separating two sister chromatids into two daughter cells.

Chromosome Preparation & Analysis

Chromosome structure is visible only during mitosis, most often achieved in the laboratory by stimulating a blood lymphocyte culture with a mitogen for 3 days. Other tissues used for this purpose include skin, products of conception, cartilage, and bone marrow. Chorionic villi or amniocytes are used for prenatal diagnosis. Spontaneously dividing cells without a mitogen are present in bone marrow, and historically, bone marrow biopsy was done when immediate identification of a patient’s chromosome constitution was necessary for appropriate management (eg, to rule out trisomy 13 in a newborn with a complex congenital heart disease). However, this invasive test has been replaced by the availability of the FISH technique (see the following discussion).

Cells processed for routine chromosome analysis are stained on glass slides to yield a light-and-dark band pattern across the arms of the chromosomes (see Figure 37–1). This band pattern is characteristic and reproducible for each chromosome, allowing the chromosomes to be identified. Using different staining techniques, different banding patterns result: G, Q, and R banding. The most commonly used is G banding. The layout of chromosomes on a sheet of paper in a predetermined order is called a karyotype. High-resolution chromosome analysis is the study of more elongated chromosomes in prometaphase. Although the bands can be visualized in greater detail, subtle chromosomal rearrangements less than 5 million base pair (5 Mb) can still be missed.

Fluorescence in situ hybridization (FISH) is a powerful technique that labels a known chromosome sequence with DNA probes attached to fluorescent dyes, thus enabling visualization of specific regions of chromosomes by fluorescent microscopy. There are many different kinds of probes, including paint probes (a mixture of sequences throughout one chromosome), sequence-specific probes, centromere probes, and telomere probes. A cocktail of differently colored probes, one color for each chromosome, called multicolor FISH, or M-FISH, can detect complex rearrangements between chromosomes. FISH can detect submicroscopic structural rearrangements undetectable by classic cytogenetic techniques and can identify marker chromosomes. (For pictures of FISH studies, go to http://www.kumc.edu/gec/prof/cytogene.html.)

Interphase FISH allows noncultured cells (lymphocytes, amniocytes) to be rapidly screened for numerical abnormalities such as trisomy 13, 18, or 21, and sex chromosome anomalies. However, because of the possible background or contamination of the signal, the abnormality must be confirmed by conventional chromosome analysis in aneuploidy cases. Six hundred–cell FISH can also be used to ascertain mosaicism.
Chromosomal Microarray Analysis

Advances in computer technology and bioinformatics have led to the development of new genetic testing using comparative genomic hybridization with microarray technique. This technique allows detection of very small genetic imbalances anywhere in the genome. Its usefulness has been well documented in cancer research and more recently in assessing small chromosomal rearrangements. In particular, it has been used to detect interstitial and subtelomeric submicroscopic imbalances, to characterize their size at the molecular level, and to define the breakpoints of translocations. Clinically available arrays include (1) 0.5- to 1-Mb bacterial artificial chromosome arrays that can pick up rearrangements greater than 0.5 Mb, (2) oligonucleotide arrays using special probes that can pick up changes as small as 3 Kb, and (3) single nucleotide polymorphism (SNP) arrays, which are used more widely in research settings. Although this powerful new technology can identify extremely subtle DNA rearrangements and changes, many human polymorphisms, including small deletions and duplications, are not totally understood. Therefore, special caution and parental studies are often required in interpreting the results.


Chromosome Nomenclature

Visible under the microscope is a constriction site on the chromosome called the centromere, which separates the chromosome into two arms: p, for petite, refers to the short arm, and q, the letter following p, refers to the long arm. Each arm is further subdivided into numbered bands visible using different staining techniques. Centromeres are positioned at different sites on different chromosomes and are used to differentiate the chromosome structures seen during mitosis as metacentric (p arm and q arm of almost equal size), submetacentric (p arm shorter than q arm), and acrocentric (almost no p arm). The use of named chromosome arms and bands provides a universal method of chromosome description. Common symbols include del (deletion), dup (duplication), inv (inversion), ish (in situ hybridization), i (isochromosome), pat (paternal origin), mat (maternal origin), and r (ring chromosome). These terms are further defined in the section Chromosomal Abnormalities.

Chromosomal Abnormalities

There are two types of chromosomal anomalies: numerical and structural.

A. Abnormalities of Chromosomal Number

When a human cell has 23 chromosomes, such as human ova or sperm, it is in the haploid state (n). After conception, in cells other than the reproductive cells, 46 chromosomes are present in the diploid state (2n). Any number that is an exact multiple of the haploid number—for example, 46(2n), 69(3n), or 92(4n)—is referred to as euploid. Polyploid cells are those that contain any number other than the usual diploid number of chromosomes. Polyploid conceptions are usually not viable except in a “mosaic state,” with the presence of more than one cell line in the body (see later text for details).

Cells deviating from the multiple of the haploid number are called aneuploid, meaning not euploid, indicating an abnormal number of chromosomes. Trisomy, an example of aneuploidy, is the presence of three of a particular chromosome rather than two. It results from unequal division, called nondisjunction, of chromosomes into daughter cells. Trisomies are the most common numerical chromosomal anomalies found in humans (eg, trisomy 21 [Down syndrome], trisomy 18, and trisomy 13). Monosomies, the presence of only one member of a chromosome pair, may be complete or partial. Complete monosomies may result from nondisjunction or anaphase lag. All complete autosomal monosomies appear to be lethal early in development and only survive in mosaic forms. Sex chromosome monosomy, however, can be viable.

B. Abnormalities of Chromosomal Structure

Many different types of structural chromosomal anomalies exist. Figure 37–2 displays the formal nomenclature as well as the ideogram demonstrating chromosomal anomalies. In clinical context, the sign (+) or (−) preceding the chromosome number indicates increased or decreased number, respectively, of that particular whole chromosome in a cell. For example, 47, XY+21 designates a male with three copies of chromosome 21. The sign (+) or (−) after the chromosome number signifies extra material or missing material, respectively, on one of the arms of the chromosome. For example, 46, XX, 8q− denotes a deletion on the long arm of chromosome 8. Detailed nomenclature, such as 8q11, is required to further demonstrate a specific missing region so that genetic counseling can be provided.

1. Deletion (del) (see Figure 37–2A)—This refers to an absence of normal chromosomal material. It may be terminal (at the end of a chromosome) or interstitial (within a chromosome). The missing part is described using the code “del,” followed by the number of the chromosome involved in parentheses, and a description of the missing region of that chromosome, also in parentheses, for example, 46, XX, del(1) (p36.3). This chromosome nomenclature describes the loss of genetic material from band 36.3 of the short arm of chromosome 1, which results in 1p36.3 deletion syndrome. Some more common deletions result in clinically recognizable conditions associated with intellectual
disabilities and characteristic facial features. (See descriptions of common genetic disorders caused by chromosomal deletions later in the chapter.)

2. Duplication (dup) (see Figure 37–2B)—An extra copy of a chromosomal segment can be tandem (genetic material present in the original direction) or inverted (genetic material present in the opposite direction). A well-described duplication of chromosome 22q11 causes Cat eye syndrome, resulting in iris coloboma and anal or ear anomalies.

3. Inversion (inv) (see Figure 37–2C)—In this aberation, a rearranged section of a chromosome is inverted. It can be paracentric (not involving the centromere) or pericentric (involving the centromere).

4. Ring chromosome (r) (see Figure 37–2D)—Deletion of the normal telomeres (and possibly other subtelomeric sequences) leads to subsequent fusion of both ends to form a circular chromosome. Ring chromosomal anomalies often cause growth retardation and intellectual disability.

5. Translocation (trans) (see Figure 37–2E)—This interchromosomal rearrangement of genetic material may be balanced (the cell has a normal content of genetic material arranged in a structurally abnormal way) or unbalanced.
(the cell has gained or lost genetic material as a result of chromosomal interchange). Balanced translocations may further be described as reciprocal, the exchange of genetic material between two nonhomologous chromosomes, or Robertsonian, the fusion of two acrocentric chromosomes.

6. Insertion (ins) (see Figure 37–2F)—Breakage within a chromosome at two points and incorporation of another piece of chromosomal material is called insertion. This requires three breakpoints and may occur between two chromosomes or within the same chromosome. The clinical presentation or phenotype depends on the origin of the inserted materials.

C. Sex Chromosomal Anomalies
Abnormalities involving sex chromosomes, including aneuploidy and mosaicism, are relatively common in the general population. The most common sex chromosome anomalies include 45,X (Turner syndrome), 47,XXX,47,XXY (Klinefelter syndrome), 47,XYY, and different mosaic states. (See later text for clinical discussion.)

D. Mosaicism
Mosaicism is the presence of two or more different chromosome constitutions in different cells of the same individual. For example, a patient may have some cells with 47 chromosomes and others with 46 chromosomes (46,XX/47,XX,+21 indicates mosaicism for trisomy 21; similarly, 45,X/46,XX/47,XXX indicates mosaicism for a monosomy and a trisomy X). Mosaicism should be suspected if clinical symptoms are milder than expected in a nonmosaic patient with the same chromosomal abnormality, or if the patient’s skin shows unusual pigmentation. The prognosis is frequently better for a patient with mosaicism than for one with a corresponding chromosomal abnormality without mosaicism. In general, the smaller the proportion of the abnormal cell line, the better the prognosis. In the same patient, however, the proportion of normal and abnormal cells in various tissues, such as skin, brain, internal organs, and peripheral blood, may be significantly different. Therefore, the prognosis for a patient with chromosomal mosaicism can seldom be assessed reliably based on the karyotype in peripheral blood alone.

E. Uniparental Disomy
Under normal circumstances, one member of each homologous pair of chromosomes is of maternal origin from the egg and the other is of paternal origin from the sperm (Figure 37–3A). In uniparental disomy (UPD), both copies of a particular chromosome pair originate from the same parent. If UPD is caused by an error in the first meiotic division, both homologous chromosomes of that parent will be present in the gamete—a phenomenon called heterodisomy (Figure 37–3B). If the disomy is caused by an error in the second meiotic division, two copies of the same chromosome will be present through the mechanism of rescue, duplication, and complementation (Figure 37–3C through 37–3E)—a phenomenon called isodisomy. Isodisomy may also occur as a postfertilization error (Figure 37–3F).

A chromosomal analysis would not reveal an abnormality, but DNA analysis would reveal that the child inherited two copies of DNA of a particular chromosome from one parent without the contribution from the other parent. Possible mechanisms for the adverse effects of UPD include homozygosity for deleterious recessive genes and the consequences of imprinting (see discussion in the Imprinting section, later). It is suspected that UPD of some chromosomes is lethal.

UPD has been documented for certain human chromosomes, including chromosomes 7, 11, 15, and X, and has been found in patients with Prader-Willi, Angelman, and Beckwith-Wiedemann syndromes (BWS). In addition, cystic fibrosis with only one carrier parent (caused by maternal isodisomy) has been reported. UPD may cause severe prenatal and postnatal growth retardation.

F. Contiguous Gene Syndromes
Contiguous gene syndromes result when a deletion causes the loss of genes adjacent to each other on a chromosome. Although many genes may be missing, the deletion may still be too small to be detected by routine karyotype. Therefore, contiguous gene syndromes are sometimes called “microdeletion syndromes.” The genes involved in these syndromes are related only through their linear placement on the same chromosome segments and may not influence each other’s functions directly. Table 37–1 lists examples of some currently known contiguous gene syndromes and their associated chromosomal abnormalities. These deletions may be familial (passed on by a parent) or may occur de novo. The deletions may be diagnosed by high-resolution chromosome analysis in some affected individuals, or may be submicroscopic and detectable only with FISH or DNA analysis.

G. Chromosome Fragility
Disorders of DNA repair are associated with chromosomal breakage and death of somatic cells. Most are autosomal recessive. Phenotypes vary considerably (Table 37–2). As a group these disorders typically affect growth and CNS development. They show increased toxicity to mutagen exposures in vitro. Photosensitivity, increased cancer risks, and premature aging are prevalent. Treatment is largely supportive and focuses on surveillance for complications but in at least one disorder, Fanconi anemia, bone marrow transplant can be beneficial. See www.genereviews.org for excellent reviews of these disorders.

H. Chromosomal Abnormalities in Cancer
Numerical and structural chromosomal abnormalities are often identified in hematopoietic and solid-tumor neoplasms in individuals with otherwise normal chromosomes. These cytogenetic abnormalities have been categorized as primary and secondary. In primary abnormalities, their
presence is necessary for initiation of the cancer; an example is 13q− in retinoblastoma. Secondary abnormalities appear de novo in somatic cells only after the cancer has developed, for example, Philadelphia chromosome, t(9;22)(q34;q11), in acute and chronic myeloid leukemia. Primary and secondary chromosomal abnormalities are specific for particular neoplasms and can be used for diagnosis or prognosis. For example, the presence of the Philadelphia chromosome is a good prognostic sign in chronic myelogenous leukemia and indicates a poor prognosis in acute lymphoblastic leukemia. The sites of chromosome breaks coincide with the known loci of oncogenes and antioncogenes.

Table 37–1. Examples of common contiguous gene syndromes.

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Abnormal Chromosome Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prader-Willi/Angelman syndrome</td>
<td>del 15q11</td>
</tr>
<tr>
<td>Shprintzen/DiGeorge spectrum</td>
<td>del 22q11</td>
</tr>
<tr>
<td>Williams syndrome</td>
<td>del 7q11</td>
</tr>
<tr>
<td>Smith-Magenis syndrome</td>
<td>del 17p11</td>
</tr>
</tbody>
</table>

MOLECULAR GENETICS

Advances in molecular biology have revolutionized human genetics, as they allow for the localization, isolation, and characterization of genes that encode protein sequences. As the Human Genome Project has moved into the postcloning era, the function of gene products and their interaction with one another has become the main theme of molecular genetics. Molecular genetics can help explain the complex underlying biology involved in many human diseases.

Molecular diagnosis can be achieved using the following technology: Southern blot analysis is the molecular genetic technique used to look for changes in genomic DNA. A similar technique, called Northern blot analysis, is used to look for RNA abnormalities. Western blot analysis is used to look for protein changes. The polymerase chain reaction (PCR) replicates fragments of DNA between predetermined primers so that sufficient DNA is obtained for characterization or sequencing in the space of a few hours. Quantitative fluorescent PCR combines PCR amplification with fluorescent DNA probes to provide real-time replication and rapid determination of gene copy number and dosage effects. DNA sequencing is the process of determining the nucleotide order of a given DNA fragment. A new generation of sequencing technologies has provided unprecedented opportunities for high-throughput functional genomic research. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing which can be performed in 1 week; however, the interpretation of the sequencing requires more bioinformatics information. National Institutes of Health (NIH) predicted the eventual cost for whole genome can be reduced to $1000.


Table 37–2. DNA repair disorders.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fanconi anemia</td>
<td>Radial ray limb anomalies, short stature, pigment changes, mild cognitive deficiencies, increased chromosome breakage in vitro, increased cancer risk.</td>
</tr>
<tr>
<td>Ataxia-telangiectasia</td>
<td>Ataxia (onset by 1 y), cutaneous/conjunctival telangiectasia, cerebellar hypoplasia, sinusitis, bronchiectasis, diabetes, elevated α-fetoprotein, increased cancer risk.</td>
</tr>
<tr>
<td>Bloom syndrome</td>
<td>Short stature, chronic lung disease, sun exposure induced facial telangiectasia, increased sister chromatid exchange, increased cancer risk.</td>
</tr>
<tr>
<td>Cockayne syndrome</td>
<td>Severe growth deficiency, microcephaly, photosensitivity, aged facies, cataracts, pigmentary retinopathy, cognitive deficiency, cerebral atrophy, death frequently in early childhood, no increase in cancer risk.</td>
</tr>
<tr>
<td>Trichothiodystrophy</td>
<td>Brittle hair with diagnostic microscopic changes in polarized light, microcephaly, short stature, aged appearance, photosensitivity, no increase in cancer risk.</td>
</tr>
<tr>
<td>Xeroderma pigmentosum</td>
<td>Severe skin photosensitivity, normal cognitive function, increased risk for skin cancers including melanoma.</td>
</tr>
<tr>
<td>Seckel syndrome</td>
<td>Extreme growth deficiency, microcephaly, characteristic facies, pancytopenia, increased sister chromatid exchange.</td>
</tr>
</tbody>
</table>

Molecular Biology in Clinical Genetics & Genetic Diagnosis

Genetic diagnosis can be performed by direct detection of a mutant gene or by indirect methods. Direct detection is possible only when the gene causing the disease and the nature of the mutation are known. The advantage of a diagnostic study using the direct detection of a mutant gene is that it requires the affected individual only and need not involve the testing of other family members. The methods of direct DNA diagnosis include restriction analysis, direct sequencing with assistance of PCR, heteroduplex assay, and protein truncation assay. The molecular mechanisms causing human diseases include point mutations, deletions, insertions, and the unstable expansion of trinucleotide repeats, which leads to genetic anticipation. Some disorders that may be diagnosed via direct DNA mutational analysis include Duchenne muscular dystrophy, hemophilia, cystic fibrosis, and Fragile X syndrome.

Indirect detection of abnormal genes is used when the gene is known but there is extensive heterogeneity of the molecular defect between families, or when the gene responsible for a disease is unknown but its chromosome location is known. One form of indirect analysis is the linkage method.
Linkage traces the inheritance of the abnormal gene between members of a kindred. This method requires that the affected individual be studied, as well as parents and other relatives, both affected and unaffected. Linkage analysis is performed by using markers such as a restriction fragment length polymorphisms. Microsatellite polymorphisms are being used in sibling research studies to identify the multiple genes that contribute to polygenic traits such as diabetes and obesity. They are also used increasingly to identify gene changes in tumors.

Neurofibromatosis is an example of a disorder in which both the direct and indirect assay may be used. An estimated 90%–95% of patients with neurofibromatosis type 1 have a mutation or deletion that can be identified using a direct assay of the neurofibromin gene (NFI). The other cases must rely on indirect methods such as linkage analysis for prenatal diagnosis.

Molecular Biology in Prevention & Treatment of Human Diseases

Molecular diagnosis can prevent genetic disease by detection of mutation and permitting prenatal diagnosis. As diseases often present in spectrums and clinical features among disorders can overlap, molecular testing is useful to confirm a diagnosis. Family studies can also clarify the mode of inheritance, thus allowing more accurate determination of recurrence risks and appropriate options. For example, differentiation of gonadal mosaicism from decreased penetrance of a dominant gene has important implications for genetic counseling. In the past, the diagnosis of a genetic disease characterized by late onset of symptoms (eg, Huntington disease) could not be made prior to the appearance of clinical symptoms. In some inborn errors of metabolism, diagnostic tests (eg, measurement of enzyme activities) could be conducted only on inaccessible tissues. Gene identification (mutation analysis) techniques can enormously enhance the ability to diagnose both symptomatic and presymptomatic individuals, heterozygous carriers of gene mutations, and affected fetuses. However, presymptomatic DNA testing is associated with psychological, ethical, and legal implications and therefore should be used only with informed consent. Formal genetic counseling is indicated to best interpret the results of molecular testing.

A normal gene introduced into an individual affected with a serious inherited disorder during embryonic life (germline therapy) in principle has the potential to be transmitted to future generations, whereas its introduction into somatic cells (somatic therapy) affects only the recipient. Experimental gene therapy by bone marrow transplantation is being tried for adenosine deaminase deficiency. Recombinant enzyme replacement has been successfully applied in treating the nonneurologic form of Gaucher disease, Fabry disease, Pompe disease, mucopolysaccharidosis types I and II, and some types of lysosomal storage disease.

Proteomics is the large-scale study of proteins, particularly their structures and functions. The term “proteomics” was first coined in 1997 as an analogy to genomics, the study of the genes. “Proteome” means a blend of “protein” and “genome.” Understanding the proteome, the structure and function of each protein and the complexities of protein-protein interactions will be critical for developing effective diagnostic techniques and disease treatments. One of the most promising roles of proteomics has been the identification of potential new drugs for the treatment of disease. This relies on genome and proteome information to identify proteins associated with a disease, which computer software can then use as targets for new drugs. For example, in Alzheimer disease, elevations in beta secretase create amyloid/beta-protein, which causes plaque to build up in the patient’s brain, which is thought to play a role in dementia. Targeting this enzyme decreases the amyloid/beta-protein and so slows the progression of the disease.

Pharmacogenomics is a new field offering enormous promise for predicting drug response in patients. For example, by DNA analysis of two specific genes, CYP2C9 and VKORC1, it is now possible to predict response to warfarin anticoagulation therapy and to individualize the dose, saving the patient multiple blood tests and dosage adjustments. It is also possible to predict which patients would be at risk for hearing loss after receiving aminoglycoside treatment, based on mutations in the mitochondrial 12S rRNA gene.

Personalized medicine is an advancing field of medicine that offers increased precision and effectiveness than traditional medicine. A patient’s genomic information offers insight into the individual aspects of one’s medical management. The goal is to optimize care and overall outcomes, one example being the aforementioned area of pharmacogenomics and potential therapeutic responses.

Genetic testing allows practitioners to test patients for a wide variety of genetic conditions. Advances in this area of medicine have included the advent of parents requesting testing for adult onset disease, carrier status, and disease susceptibility in their children. There are significant ethical and legal issues surrounding this topic. The American College of Medical Genetics and Genomics and American Society of Human Genetics formed a consensus statement on the topic that educates families and healthcare providers on the potential negative impacts of such testing. In the face of whole exome or genome sequencing, single-gene analysis, and microarray analysis, carrier status for conditions may be revealed and this requires detailed genetic counseling. The decision-making capacity of the minor should also be taken into account where applicable.

or expression in different tissues or organ systems. In

Pleiotropy refers to the phenomenon whereby a single mutant allele can have widespread effects or expression in different tissues or organ systems. In other words, an allele may produce more than one effect on the phenotype. For example, Marfan syndrome has manifestations in different organ systems (skeletal, cardiac, ophthalmologic, etc) due to a single mutation within the fibrillin gene.

5. Penetrance—Penetrance refers to the proportion of individuals with a particular genotype that express the same phenotype. Penetrance is a proportion that ranges between 0 and 1 (or 0 and 100%). When 100% of mutant individuals express the phenotype, penetrance is complete. If some mutant individuals do not express the phenotype, penetrance is said to be incomplete, or reduced. Dominant conditions with incomplete penetrance, therefore, are characterized by “skipped” generations with unaffected, obligate gene carriers.

6. Expressivity—Expressivity refers to the variability in degree of phenotypic expression (severity) seen in different individuals with the same mutant genotype. Expressivity may be extremely variable or fairly consistent, both within and between families. Intrafamilial variability of expression may be due to factors such as epistasis, environment, genetic anticipation, presence of phenocopies, mosaicism, and chance (stochastic factors). Interfamilial variability of expression may be due to the previously mentioned factors, but may also be due to allelic or locus genetic heterogeneity.

7. Genetic heterogeneity—Several different genetic mutations may produce phenotypes that are identical or similar enough to have been traditionally considered as one diagnosis. “Anemia” or “mental retardation” are examples of this. There are two types of genetic heterogeneity, locus heterogeneity and allelic heterogeneity.

A. Locus heterogeneity—Locus heterogeneity describes a phenotype caused by mutations at more than one genetic locus; that is, mutations at different loci cause the same phenotype or a group of phenotypes that appear similar enough to have been previously classified as a single disease, clinical “entity,” or diagnostic spectrum. An example would be Sanfilippo syndrome (mucopolysaccharidosis types IIIA, B, C, and D), in which the same phenotype is produced by four different enzyme deficiencies.

B. Allelic heterogeneity—A phenotype causing different mutations at a single-gene locus. As an example, cystic fibrosis may be caused by many different genetic changes, such as homozygosity for the common ΔF508 mutation, or ΔF508 and an R117H mutation. The latter example represents compound heterozygosity.

8. Phenotypic heterogeneity or “clinical heterogeneity”—This term describes the situation in which more than one phenotype is caused by different allelic mutations at a single locus. For example, different mutations in the FGFR2 gene can cause different craniosynostosis disorders, including Crouzon
syndrome, Jackson-Weiss syndrome, Pfeiffer syndrome, and Apert syndrome. These syndromes are clinically distinguishable and are due to the presence of a variety of genetic mutations within single genes.

9. Homozygous—A cell or organism that has identical alleles at a particular locus is said to be homozygous. For example, a cystic fibrosis patient with a ΔF508 mutation on both alleles would be called homozygous for that mutation.

10. Heterozygous—A cell or organism that has nonidentical alleles at a genetic locus is said to be heterozygous. In autosomal dominant conditions, a mutation of only one copy of the gene pair is all that is necessary to result in a disease state. However, an individual who is heterozygous for a recessive disorder will not manifest symptoms (see the next section).

11. Karyotype—A profile of an organism’s chromosomes that is sorted according to size, shape, and number. It is available for analysis in a number of sample types (white blood cells, fibroblasts, etc). It is able to detect structural rearrangements such as inversions, positional insertions, and translocations. Imbalances below 5 million base pairs are difficult to detect.

12. Chromosomal microarray—Method of cytogenetic analysis via several platforms: BAC, oligonucleotide, and SNP. Patient DNA is hybridized with control DNA and each is labeled with a different fluorescent dye. Data is plotted on a log2 scale, as in the case of oligonucleotide arrays, and reviewed for numerical imbalances. Microarray is limited in the detection of balanced rearrangements and the structural nature of an imbalance.

13. Next-generation sequence analysis—Genetic analysis via breakage of the genome into fragments, attaching those segments of DNA to special adapters, or passage through specialized channels where the sequence is determined. Millions of segments are analyzed simultaneously, lending the term “high throughput” to this approach. Regions are repeatedly analyzed and compared with a reference human genome.

14. Whole exome sequencing—Determination of the sequence of an individual’s exome, the coding sequence of the human genome. Exome represents only about 1% of the genome.

15. Whole genome sequencing—Determination of the sequence of the entire human genome.


Hereditary Patterns

A. Autosomal Dominant Inheritance

Autosomal dominant inheritance has the following characteristics:

1. If a parent is affected, the risk for each offspring of inheriting the abnormal dominant gene is 50%, or 1:2. This is true whether the gene is penetrant or not in the parent.

2. Affected individuals in the same family may experience variable expressivity.

3. Nonpenetration is common, and the penetrance rate varies for each dominantly inherited condition.

4. Both males and females can pass on the abnormal gene to children of either sex, although the manifestations may vary according to sex. For example, pattern baldness is a dominant trait but affects only males. In this case, the trait is said to be sex-limited.

5. Dominant inheritance is typically said to be vertical, that is, the condition passes from one generation to the next in a vertical fashion (Figure 37–4).

6. In some cases, the patient appears to be the first affected individual in the family. This spontaneous appearance is often caused by a new mutation. The mutation rate increases with advancing paternal age (particularly after age 40 years).

7. Explanations for a negative family history include:
   A. Nonpaternity.
   B. Decreased penetrance or mild manifestations in one of the parents.
   C. Germline mosaicism (ie, mosaicism in the germ cell line of either parent). Germline mosaicism may

\[ \text{Figure 37–4.} \text{ Autosomal dominant inheritance.} \]

Variable expressivity in Neurofibromatosis type 1.
mimic autosomal recessive inheritance, because it leads to situations in which two children of completely normal parents are affected with a genetic disorder. Recurrence risks are in the range of 1%–7%.

D. The abnormality present in the patient may be a phenocopy, or it may be a similar but genetically different abnormality with a different mode of inheritance.

8. As a general rule, dominant traits are more often related to structural abnormalities of a protein.

9. If an abnormality represents a new mutation of a dominant trait, the parents of the affected individual run a low risk during subsequent pregnancies. The risk for an affected sibling is still slightly increased over the general population, because of the possibility of germ-line mosaicism.

10. Prevention options available for future pregnancies include prenatal diagnosis, artificial insemination, and germ cell donation.

**B. Autosomal Recessive Inheritance**

Autosomal recessive inheritance also has some distinctive characteristics:

1. The recurrence risk for parents of an affected child is 25%, or 1:4 for each pregnancy. The gene carrier frequency in the general population can be used to assess the risk of having an affected child with a new partner, for unaffected siblings, and for the affected individuals themselves.

2. There is less variability among affected persons. Parents are carriers and are clinically normal. (There are, however, exceptions to this rule. For example, carriers of sickle cell trait may become symptomatic if they become hypoxic.)

3. Males and females are affected equally.

4. Inheritance is horizontal; siblings may be affected (Figure 37–5).

5. The family history is usually negative, with the exception of siblings. However, in common conditions such as cystic fibrosis, a second- or third-degree relative may be affected.

6. Recessive conditions are frequently associated with enzyme defects.

7. In rare instances, a child with a recessive disorder and a normal karyotype may have inherited both copies of the abnormal gene from one parent and none from the other. This UPD was first described in a girl with cystic fibrosis and growth retardation.

8. Options available for future pregnancies include prenatal diagnosis, adoption, artificial insemination, and egg or sperm donation.

**C. X-Linked Inheritance**

When a gene for a specific disorder is on the X chromosome, the condition is said to be X-linked, or sex-linked. Females may be either homozygous or heterozygous, because they have two X chromosomes. Males, by contrast, have only one X, and a male is said to be hemizygous for any gene on his X chromosome. The severity of any disorder is greater in males than in females (within a specific family). According to the Lyon hypothesis, because one of the two X chromosomes in each cell is inactivated, and this inactivation is random, the clinical picture in females depends on the percentage of mutant versus normal alleles inactivated. The X chromosome is not inactivated until about 14 days of gestation, and parts of the short arm remain active throughout life.

1. **X-linked recessive inheritance**—The following features are characteristic of X-linked recessive inheritance:

   1. Males are affected, and heterozygous females are either normal or have mild manifestations.

   2. Inheritance is diagonal through the maternal side of the family (Figure 37–6A).
3. A female carrier has a 50% chance that each daughter will be a carrier and a 50% chance that each son will be affected.

4. All of the daughters of an affected male are carriers, and none of his sons are affected.

5. The mutation rate is high in some X-linked disorders, particularly when the affected male dies or is so incapacitated by the disorder that reproduction is unlikely. In such instances, the mutation is thought to occur as a new mutation in the affected male, and in the mother, each one-third of the time and to be present in earlier generations one-third of the time. For this reason, genetic counseling may be difficult in families with an isolated case.

6. On rare occasions, a female may be fully affected. Several possible mechanisms may account for a fully affected female: (a) unfavorable lyonization; (b) 45,X karyotype; (c) homozygosity for the abnormal gene; (d) an X-autosome translocation, or other structural abnormality of one X chromosome, in which the X chromosome of normal structure is preferentially inactivated; (e) UPD; and (f) nonrandom inactivation, which may be controlled by an autosomal gene.

Figure 37-6. A: X-linked recessive inheritance. B: X-linked dominant inheritance.
2. X-linked dominant inheritance—The X-linked dominant inheritance pattern is much less common than the X-linked recessive type. Examples include incontinentia pigmenti and hypophosphatemic or vitamin D–resistant rickets. The following features are characteristic of X-linked dominant inheritance:

1. The heterozygous female is symptomatic, and the disease is twice as common in females because they have two X chromosomes that can have the mutation.
2. Clinical manifestations are more variable in females than in males.
3. The risk for the offspring of heterozygous females to be affected is 50% regardless of sex.
4. All of the daughters but none of the sons of affected males will have the disorder (Figure 37–6B).
5. Although a homozygous female is possible (particularly in an inbred population), she would be severely involved. All of her children would also be affected but more mildly.
6. Some disorders (eg, incontinentia pigmenti) are lethal in males (and in homozygous females). Affected women have twice as many daughters as sons and an increased incidence of miscarriages, because affected males will be spontaneously aborted. A 47,XXY karyotype has allowed affected males to survive.

D. Y-Linked Inheritance

In Y-linked inheritance, also known as “holandric” inheritance, a disorder is caused by genes located on the Y chromosome. These conditions are relatively rare with only about 40 entries listed in McKusick’s catalog. Male-to-male transmission is seen in this category, with all sons of affected males being affected and no daughters or females being affected.

Multifactorial Inheritance

Many common attributes, such as height, are familial, and are the result of the actions of multiple rather than single genes. Inheritance of these traits is described as polygenic or multifactorial. The latter term recognizes that environmental factors such as diet also contribute to these traits. Geneticists are now finding that multiple genes are often expressed in hierarchies, in which the action of a small number of genes, two or three, explains much of the variation observed within affected populations.

Studies of twins have proven useful in determining the relative importance of genetic versus environmental factors in the expression of polygenic traits. If genetic factors are of little or no importance, then the concordance between monozygotic and dizygotic twins should be the same. (Dizygotic twins are no more genetically similar to each other than to other siblings.) If an abnormality is completely genetic, the concordance between identical twins should be 100%. In polygenic conditions, the concordance rate for identical twins is usually higher than that seen in dizygotic twins but is still not 100%, indicating that both genetic and environmental factors are playing a role.

Many disorders and congenital abnormalities that are clearly familial but do not segregate as mendelian traits (eg, autosomal dominant, recessive) show polygenic inheritance. For the most part, these conditions become manifest when thresholds of additive gene actions or contributing environmental factors are exceeded. Many common disorders ranging from hypertension, stroke, and thrombophlebitis to behavioral traits such as alcoholism demonstrate multifactorial (polygenic) inheritance. Some common birth defects, including isolated congenital heart disease, cleft lip and palate, and neural tube defects, also demonstrate polygenic inheritance. Neural tube defects provide a good model illustrating how identification of both environmental and genetic contributions to multifactorial traits can lead to preventive measures.

Polygenic or multifactorial inheritance has several distinctive characteristics:

1. The risk for relatives of affected persons is increased. The risk is higher for first-degree relatives (those who have 50% of their genes in common) and lower for more distant relations, although the risk for the latter is higher than for the general population (Table 37–3).
2. The recurrence risk varies with the number of affected family members. For example, after one child is born with a neural tube defect, the recurrence risk is 2%–3%. If a second affected child is born, the risk for any future child increases to 10%–12%. This is in contrast to single-gene disorders, in which the risk is the same no matter how many family members are affected.
3. The risk is higher if the defect is more severe. In Hirschsprung disease, another polygenic condition, the longer the aganglionic segment, the higher is the recurrence risk.
4. Sex ratios may not be equal. If a marked discrepancy exists, the recurrence risk is higher if a child of the less commonly affected sex has the disorder. This assumes that more genetic factors are required to raise the more resistant sex above the threshold. For example, pyloric stenosis is more common in males. If the first affected child is a female, the recurrence risk is higher than if the child is a male.
5. The risk for the offspring of an affected person is approximately the same as the risk for siblings, assuming that the spouse of the affected person has a negative family history. For many conditions, however, assortative mating, “like marrying like,” adds to risks in offspring.
**Table 37-3. Empiric risks for some congenital disorders.**

<table>
<thead>
<tr>
<th>Congenital Disorder</th>
<th>Incidence (average)</th>
<th>One affected child (%)</th>
<th>One affected parent (%)</th>
<th>Two affected children (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anencephaly and spina bifida</td>
<td>1:1000</td>
<td>2%-3%</td>
<td>4%-5%</td>
<td>10%-12%</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>1:2000 newborns</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occasional X-linked recessive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Often associated with neural tube defect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some environmental etiologies (eg, toxoplasmosis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence risk, one affected child</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td></td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some central nervous system abnormality:</td>
<td></td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsyndromic cleft lip and/or palate</td>
<td>1:1000</td>
<td>2%-4%</td>
<td>4%-6%</td>
<td>6%-8%</td>
</tr>
<tr>
<td>One affected parent, one affected child:</td>
<td></td>
<td>10%-20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsyndromic cleft palate</td>
<td>1:2000</td>
<td>2%</td>
<td>4%-6%</td>
<td>6%-8%</td>
</tr>
<tr>
<td>One affected parent, one affected child:</td>
<td></td>
<td>15%-20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital heart disease</td>
<td>8:1000</td>
<td>2%-3%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Clubfoot</td>
<td>1:1000 (male:female = 2:1)</td>
<td></td>
<td>2%-3%</td>
<td></td>
</tr>
<tr>
<td>Congenital dislocated hip</td>
<td>1:1000</td>
<td>(female &gt; male) with marked regional variation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One child affected: 2%-14%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyloric stenosis</td>
<td>Incidence, males: 1:200; females: 1:1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male index patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brothers</td>
<td>3.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sons</td>
<td>6.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sisters</td>
<td>3.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daughters</td>
<td>1.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female index patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brothers</td>
<td>13.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sons</td>
<td>20.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sisters</td>
<td>2.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daughters</td>
<td>11.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NONMENDELIAN INHERITANCE**

**Epigenetic Regulation**

Although development is regulated by genes, it is initiated and sustained by nongenetic processes. Epigenetic events are points of interaction between developmental programs and the physicochemical environments in differentiating cells. Genetic imprinting and DNA methylation are examples of epigenetic processes that affect development. Certain genes important in regulation of growth and differentiation are themselves regulated by chemical modification that occurs in specific patterns in gametes. For example, genes that are methylated are “turned off” and not transcribed. The pattern of which genes are methylated may be determined or affected by the sex of the parent of origin (see the next section). Expression of imprinted genes may sometimes be limited to specific organs (eg, the brain), and imprinting may be relaxed and methyl groups lost as development progresses. Disruption of imprinting is now recognized as contributing to birth defect syndromes (described in the next section). Certain techniques developed to assist infertile couples (advanced reproductive technology) may affect epigenetic processes and lead to genetic disorders in the offspring conceived via these methods.


**Imprinting**

Although the homologs of chromosome pairs may appear identical on routine karyotype analysis, it is now known that the parental origin of each homolog can affect which genes are actually transcribed and which are inactivated. The term imprinting refers to the process by which preferential transcription of certain genes takes place, depending on the parental origin, that is, which homolog (maternal or paternal) the gene is located on. Certain chromosomes, particularly chromosome X, and the autosomes 15, 11, and 7, have imprinted regions where some genes are only read from one homolog (ie, either the maternal or paternal allele) under normal circumstances, and the gene on the other homolog is normally inactivated. Errors in imprinting may arise because of uniparental disomy or UPD (in which a copy from one parent is missing), by a chromosomal deletion causing loss of the gene normally transcribed, or by mutations in the imprinting genes that normally code for transcription or inactivation of other genes downstream. A good example of how imprinting may affect human disease is Beckwith-Wiedemann syndrome, the gene for which is located on chromosome 11p15.

Genetic Anticipation

Geneticists coined the term “anticipation” to describe an unusual pattern of inheritance in which symptoms became manifest at earlier ages and with increasing severity as traits are passed to subsequent generations. Mapping of the genes responsible for these disorders led to the discovery that certain repeat sequences of DNA at disease loci were not stable when passed through meiosis. Repeated DNA sequences, in particular triplets (e.g., CGG and CAG), tended to increase their copy number. As these runs of triplets expanded, they eventually affected the expression of genes and produced symptoms. Curiously, all the disorders undergoing triplet repeat expansion detected thus far produce neurologic symptoms. Most are progressive. In general, the size of the triplet expansion is roughly correlated with the timing and severity of symptoms. The reasons for the meiotic instability of these sequences are not yet understood. The mechanisms appear to involve interactions between DNA structure (e.g., formation of hairpin loops) and replication enzymes (DNA polymerase complexes) during meiosis.

Triplet repeat instability can modify the inheritance of autosomal dominant, autosomal recessive, and X-linked traits. Autosomal dominant disorders include several spinal cerbellar atrophies, Huntington disease, and myotonic dystrophy. Unstable triplet repeat expansion contributes to at least one autosomal recessive disorder, Friedreich ataxia. The most common X-linked disorder demonstrating triplet repeat instability and expansion is Fragile X syndrome.

Mitochondrial Inheritance

Mitochondrial disorders can be caused by both nuclear and mitochondrial genes. The former would follow Mendelian inheritance, either AR, AD, or X-Linked, while the latter demonstrates mitochondrial inheritance. Mitochondrial DNA is double-stranded, circular, and smaller than nuclear DNA, and is found in the cytoplasm. It codes for enzymes involved in oxidative phosphorylation, which generates adenosine triphosphate. Since the 1990s, enormous advances in technology and improved clinical documentation have led to a better understanding of the interesting disorders caused by mutations in mitochondrial DNA (mtDNA).

Mitochondrial disorders can be associated with point mutations, deletions, or duplications in mtDNA. However, there is a threshold effect depending on the heteroplasmic (see next). Because of the difficulty in predicting mitochondrial DNA disorders and the variability of the clinical course, it is often difficult to calculate specific recurrence risks.

Mitochondrial disorders related to mtDNA have the following characteristics:

1. They show remarkable phenotypic variability.
2. They are maternally inherited, because only the egg has any cytoplasmic material, and during early embryo-genesis any sperm-born mitochondrial material will be eliminated.
3. In most mitochondrial disorders, cells are heteroplasmic (Figure 37–7). That is, all cells contain both normal and mutated or abnormal mtDNA. The proportion of normal to abnormal mtDNA in the mother’s egg seems to determine the severity of the offspring’s disease and the age at onset in most cases.
4. Those tissues with the highest adenosine triphosphate requirements—specifically, central nervous system (CNS) and skeletal muscle—seem to be most susceptible to mutations in mtDNA.
5. Somatic cells show an increase in mtDNA mutations and a decline in oxidative phosphorylation function with age. This explains the later onset of some of these disorders and may indeed be a clue to the whole aging process.


FAMILY HISTORY & PEDIGREE

Critical in the evaluation of a potential genetic condition is the construction of a family tree, also known as a pedigree. Underused by most medical personnel, the pedigree is a valuable record of genetic and medical information, which is
much more useful in visual form than in list form. Tips for pedigree preparation include the following:

- Start with the proband—the patient’s siblings and parents, and obtain a three-generational history at minimum, as possible.
- Always ask about consanguinity.
- Obtain data from both sides of the family.
- Ask about spontaneous abortions, stillbirths, infertility, children relinquished for adoption, and deceased individuals.

In the course of taking the family history, one may find information that is not relevant in elucidating the cause of the patients’ problem but may indicate a risk for other important health concerns. Conditions unrelated to the chief complaint should be directed for follow-up care. Examples of the latter scenario include: an overwhelming family history of early-onset breast and ovarian cancer, or multiple pregnancy.


DYSMORPHOLOGY & HUMAN EMBRYOLOGY

Birth defects are the leading cause of death in the first year of life. They are evident in 2%–3% of newborn infants and in up to 7% of adults. Many are now detected by ultrasound prior to birth. Clinical investigation of the causes and consequences of birth defects is called dysmorphology.

MECHANISMS

Developmental Biology

Cell proliferation and programmed cell death (apoptosis) both contribute to embryonic structural formation. The genes that control these processes continue to be further characterized. Products of other genes establish regulatory pathways in which positive and negative signaling loops initiate and maintain cell differentiation with precise timing. Cell biology provides techniques that allow experimental access to developmental pathways. Embryology has become more experimental than descriptive and practitioners can expect systems biology to soon begin to inform them about the origins of specific birth defects. Further understanding of these mechanisms will open the door to interventions that may well prevent birth defects or treat them prenatally.

An example of the evolution of the aforementioned process is the ground breaking fetal surgery for neural tube defects.

Cellular Interactions

The picture emerging from experimental studies of morphogenesis is one of a hierarchy of gene expression during development. Morphogenesis begins with expression of genes encoding transcription factors. These proteins bind to DNA in undifferentiated embryonic cells and recruit them into developmental fields, groups of cells primed to respond to specific signals later in development. The recruitment also establishes spatial relationships and orients cells with respect to their neighbors. As fields differentiate into identifiable tissues (eg, ectoderm, mesoderm, and endoderm), cellular proliferation, migration, and further differentiation are mediated through genes encoding cell signaling proteins.

Signaling proteins include growth factors and their receptors, cellular adhesion molecules, and extracellular matrix proteins that both provide structure and position signals to developing tissues.

Environmental Factors

The effects of exogenous agents during development are also mediated through genetically regulated pathways. At the cellular level, xenobiotics (compounds foreign to nature) cause birth defects either because they disrupt cell signaling and thereby misdirect morphogenesis, or because they are cytotoxic and lead to cell death in excess of the usual developmental program.

In general, drug receptors expressed in embryos and fetuses are the same molecules that mediate pharmacologic effects in adults. However, effector systems may be different, reflecting incomplete morphogenesis and differences between fetal and postnatal physiology. These circumstances allow prediction of dose-response relationships during development on the one hand, but call for caution about predicting effects on the other.

Xenobiotics must traverse the placenta to affect embryonic and fetal tissues. The human placenta is a relatively good barrier against microorganisms, but it is ineffective at excluding drugs and many chemicals. The physicochemical properties (eg, molecular size, solubility, and charge) that allow foreign chemicals to be absorbed into the maternal circulation also allow them to cross the placenta. The placenta can metabolize some xenobiotics but it is most active against steroid hormones and low-level environmental contaminants than drugs.

The timing of xenobiotic exposures is an important determinant of their effects. Morphogenic processes express the so-called critical periods, during which developing organs they produce are particularly susceptible to maldevelopment. Critical periods of susceptibility are not all confined to early gestation. The developing brain is susceptible to toxicity throughout pregnancy.

Over-the-counter, prescribed, and abused drugs that are pharmacologically active in mothers will be active across
the placenta. Exposure to agents achieving cytotoxic levels in adults is likely to be teratogenic (ie, cause birth defects). Abused substances such as alcohol that are toxic to adults are predictably toxic to embryos and fetuses. Drugs generally safe in adults will be generally safe for fetuses. An exception is ibuprofen with its prostaglandin blocking properties that can affect fetal circulation, which is prostaglandin dependent. It is important to keep in mind that embryonic and fetal physiology may differ from that of an adult with respect to drug action.

Effects of toxic environmental contaminants on the embryo and fetus are dose-dependent. Thus, the level of exposure to a toxin frequently becomes the primary determinant of its risk. Exposures producing symptoms in mothers can be assumed to be potentially toxic to the fetus.

Transplacental pharmacologic effects can be therapeutic. The potential for embryonic and fetal drug therapies during pregnancy is increasing. Folic acid supplementation can lower risks for birth defects such as spina bifida, and maternally administered corticosteroids can induce fetal synthesis and secretion of pulmonary surfactants prior to delivery.

**Mechanical Factors**

Much of embryonic development and all of fetal growth occurs normally within the low pressure and space provided by amniotic fluid. Loss or inadequate production of amniotic fluid can have disastrous effects, as can disruption of placental membranes. Disruption of placental membranes in early gestation leads to major structural distortion and most often lethal. Later, deformation or even amputation of fetal extremities (amniotic band sequence) can occur.

Movement is also important for morphogenesis. Fetal movement is necessary for normal development of joints and is the principal determinant of folds and creases present at birth in the face, hands, feet, and other areas of the body. Clubfoot is an etiologically heterogeneous condition in which the foot is malpositioned at birth. It more often results from mechanical constraint secondary to intrauterine crowding, weak fetal muscles, or abnormal neurologic function than from primary skeletal maldevelopment.

Lung and kidney development are particularly sensitive to mechanical forces. Constriction of the chest through maldevelopment of the ribs, lack of surrounding amniotic fluid, or lack of movement (fetal breathing) leads to varying degrees of pulmonary hypoplasia in which lungs are smaller than normal and develop fewer alveoli. The presentation at birth is respiratory distress and may be lethal.

Cystic renal dysplasia is frequently associated with obstruction ureters or bladder outflow. As pressure within obstructed renal collecting systems increases, it distorts cell interactions and alters histogenesis. Developing kidneys exposed to increased internal pressures for long periods eventually become nonfunctional.

**CLINICAL DYSMORPHOLOGY**

An important task for the clinician presented with an infant with a birth defect is to determine whether the problem is isolated or part of a larger embryopathy (syndromic).

**Terminology**

Classification of dysmorphic features strives to reflect mechanisms of maldevelopment. However, much of the terminology that describes abnormal development in humans remains historical and documents recognition of patterns prior to understanding of their biology. For example, birth defects are referred to as **malformations** when they result from altered genetic or developmental processes. When physical forces interrupt or distort morphogenesis, their effects are termed **disruptions** and **deformations**, respectively. The term **dysplasia** is used to denote abnormal histogenesis. Malformations occurring together more frequently than would be expected by chance alone may be classified as belonging to **associations**. Those in which the order of maldevelopment is understood may be referred to as **sequences**.

For example, Robin sequence (or Pierre Robin anomaly) is used to describe cleft palate that has occurred because poor growth of the jaw (retrognathia) has displaced the tongue and prevented posterior closure of the palate. **Syndromes** are simply recurrent patterns of maldevelopment, in many with a known genetic cause.

**Evaluation of the Dysmorphic Infant**

As with any medical problem the history and physical examinations provide most of the clues to diagnosis. Special aspects of these procedures are outlined in the following sections. The extent of an infant’s abnormalities may not be immediately apparent, and parents who feel grief and guilt are often desperate for information.

**A. History**

Pregnancy histories nearly always contain important clues to the diagnosis. Parental recall after delivery of an abnormal infant is better than recall after a normal birth. An obstetric wheel can help document gestational age and events of the first trimester: the last menstrual period, the onset of symptoms of pregnancy, the date of diagnosis of the pregnancy, the date of the first prenatal visit, and the physician’s impressions of fetal growth at that time. Family histories should always be reviewed. Environmental histories should include descriptions of parental habits and work settings in addition to medications and use of drugs, tobacco, and alcohol.

**B. Physical Examination**

Meticulous physical examination is crucial for accurate diagnosis in dysmorphic infants and children. In addition to
the routine procedures described in Chapter 2, special attention should be paid to the neonate’s physical measurements (Figure 37–8). Photographs are helpful and should include a consistent method of measurement for reference.

C. Imaging and Laboratory Studies

Radiologic investigation is fundamental in the assessment and management of dysmorphic patients. A series of 9 plain radiographs, called a skeletal survey, is useful in the evaluation of patients with suspected skeletal dysplasia. Magnetic resonance imaging (MRI), with or without angiogram, venogram, or spectroscopy, contributes to diagnostic evaluation. Computed tomography (CT) is useful for bony structure assessment, but less so for deep tissue evaluation in comparison to MRI. Ultrasonography also has case-dependent utility for noninvasive imaging. Consultation with a radiologist is encouraged if there is any question about which imaging modality would serve the patient best.

Traditional cytogenetic analysis provides specific diagnoses in approximately 5% of dysmorphic infants who survive the neonatal period. Chromosomal abnormalities are recognized in 10%–15% of infants who die. With the availability of chromosomal microarray at least 10%–15% additional subtle chromosomal anomalies have been identified. Of note, many copy number variations (CNVs) exist in different individuals; therefore, interpretation is sometimes difficult and may require parental samples for clarification. Common disorders such as trisomies 21, 13, and 18 can be determined rapidly through use of FISH, but this technique should be accompanied by a complete karyotype. As a rule, a normal karyotype does not rule out the presence of significant genetic disease. Any case requiring rapid diagnosis should be discussed with an experienced clinical geneticist.

D. Perinatal Autopsy

When a dysmorphic infant dies, postmortem examination can provide important diagnostic information. The pediatrician should discuss the case thoroughly with the pathologist, and photographs should be obtained. Radiologic imaging should be included whenever limb anomalies or disproportionate growth is present. Tissue, most often skin, can be submitted for cytogenetic analysis. Fibroblasts from cytogenetic analysis can routinely be frozen and preserved for future studies. The pediatrician and the pathologist should also consider whether samples of blood, urine, or other tissue should be obtained for biochemical analyses. Placental as well as fetal tissue can be used for viral culture.


TRISOMIES

1. Trisomy 21 (Down Syndrome)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Characteristic features include upslanting palpebral fissures, epicanthal folds, midface hypoplasia, and small, dysplastic pinnae.
- Generalized hypotonia.
- Cognitive disabilities (usually mild to moderate).
- Associated with congenital heart disease and gastrointestinal anomalies.

Down syndrome occurs in about 1:700 newborns. Cognitive disabilities in the mild/moderate range are characteristic of Down syndrome, as is generalized hypotonia. The affected newborn may have prolonged physiologic jaundice, polycythemia, and a transient leukemoid reaction. Feeding problems are common during infancy. Problems which may be seen during childhood include thyroid dysfunction, visual issues, hearing loss, obstructive sleep apnea, celiac disease, atlanto-occipital instability, and autism. Leukemia is 12–20 times more common in patients with Down syndrome.

Clinical Findings

The principal physical findings include a flattened occiput, characteristic facies (upslanting palpebral fissures, epicanthal folds, midface hypoplasia, and small, dysplastic pinnae), and minor limb abnormalities. About one-third to one-half of children with Down syndrome have congenital heart disease, most often endocardial cushion defects or other septal defects. Anomalies of the gastrointestinal tract, including esophageal and duodenal atresias, are seen in about 15% of cases.


2. Trisomy 18 Syndrome

The incidence of trisomy 18 syndrome is about 1:4000 live births, and the ratio of affected males to females is approximately 1:3. Trisomy 18 is characterized by prenatal and postnatal growth retardation, which is often severe, and hypertonicity.
## Neonatal Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Term (38–40 wk)</th>
<th>Preterm (32–37 wk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Head circumference</td>
<td>32–37</td>
<td>27–32</td>
</tr>
<tr>
<td>2 Anterior fontanelle (\frac{L-W}{2})</td>
<td>0.7–3.7</td>
<td>. . .</td>
</tr>
<tr>
<td>3 Interpupillary distance</td>
<td>3.3–4.5</td>
<td>3.1–3.9</td>
</tr>
<tr>
<td>4 Palpebral fissure</td>
<td>1.5–2.1</td>
<td>1.3–1.6</td>
</tr>
<tr>
<td>5 Inner canthal distance</td>
<td>1.5–2.5</td>
<td>1.4–2.1</td>
</tr>
<tr>
<td>6 Outer canthal distance</td>
<td>5.3–7.3</td>
<td>3.9–5.1</td>
</tr>
<tr>
<td>7 Philtrum</td>
<td>0.6–1.2</td>
<td>0.5–0.9</td>
</tr>
<tr>
<td>8 Ear length</td>
<td>3–4.3</td>
<td>2.4–3.5</td>
</tr>
<tr>
<td>9 Chest circumference</td>
<td>28–38</td>
<td>23–29</td>
</tr>
<tr>
<td>10 Internipple distance(^a)</td>
<td>6.5–10</td>
<td>5–6.5</td>
</tr>
<tr>
<td>11 Height</td>
<td>47–55</td>
<td>39–47</td>
</tr>
<tr>
<td>12 Ratio Upper body segment/Lower body segment</td>
<td>1.7</td>
<td>. . .</td>
</tr>
<tr>
<td>14 Hand (palm to middle finger)</td>
<td>5.3–7.8</td>
<td>4.1–5.5</td>
</tr>
<tr>
<td>15 Ratio of middle finger to hand</td>
<td>0.38–0.48</td>
<td>0.38–0.5</td>
</tr>
<tr>
<td>16 Penis (pubic bone to tip of glans)</td>
<td>2.7–4.3</td>
<td>1.8–3.2</td>
</tr>
</tbody>
</table>

\(^a\)Internipple distance should not exceed 25% of chest circumference.

### Figure 37–8
Neonatal measurements.
Complications are related to associated birth defects. Death is often caused by heart failure or pneumonia and usually occurs in infancy or early childhood, although a small percentage of patients reach adulthood. Surviving children show significant cognitive disabilities.

**Clinical Findings**

Infants with trisomy 18 are often small for gestational age and have dysmorphic features including a characteristic facies and extremities (overlapping fingers and rocker-bottom feet) and congenital heart disease (often ventricular septal defect or patent ductus arteriosus). To see clinical pictures of patients with trisomy 18, visit the following website: [http://medgen.genetics.utah.edu/photographs/pages/trisomy_18.htm](http://medgen.genetics.utah.edu/photographs/pages/trisomy_18.htm).

### 3. Trisomy 13 Syndrome

The incidence of trisomy 13 is about 1 per 12,000 live births, and 60% of affected individuals are female. Most infants with trisomy 13 have congenital anomalies that are incompatible with survival. Surviving children demonstrate failure to thrive, cognitive disabilities, apneic spells, seizures, and deafness. Death usually occurs in early infancy or by the second year of life, commonly as a result of heart failure or infection.

**Clinical Findings**

The symptoms and signs include characteristic features, often a normal birth weight, CNS malformations, eye malformations, cleft lip and palate, polydactyly or syndactyly, and congenital heart disease. The facies of an infant with trisomy 13 can be viewed at the following website: [www.trisomy.org](http://www.trisomy.org).

**Treatment of Trisomies**

#### A. Medical Therapy

Interventions for specific issues such as surgery or medications for heart problems, antibiotics for infections, serial thyroid function tests, infant stimulation programs, special education, and physical, occupational, and speech therapies are all indicated. The goal of treatment is to help affected children develop to their full potential. Parents’ participation in support groups such as the local chapter of the National Down Syndrome Congress should be encouraged. See the following website: [http://www.ndss.org/](http://www.ndss.org/).

There is no treatment other than general supportive care for trisomy 13 or 18. Rapid confirmation of suspected Trisomy 13 or 18 can be made by FISH. A support group for families of children with trisomies 13 and 18 who survive beyond infancy is called SOFT. See the following website: [http://www.trisomy.org/](http://www.trisomy.org/).

### 3. Trisomy 13 Syndrome

#### B. Genetic Counseling

Most parents of trisomic infants have normal karyotypes. The risk of having a child affected with a trisomy increases with maternal age. For example, age-specific risks are approximately 1 per 1500 for mothers aged 25 years; and 1 per 100 for mothers at age 40. The recurrence risk for trisomy in future pregnancies is equal to 1 per 100 plus the age-specific maternal risk.

If the child has a trisomy resulting from a translocation, and the parent has an abnormal karyotype, the risks are increased. When the mother is the carrier of a balanced Robertsonian translocation, there is a 10%–15% chance that the child will be affected and a 33% chance that the child will be a balanced translocation carrier. When the father is the carrier, there is a smaller than 0.5% chance of having another affected child. If the child has a 21/21 translocation and one parent has the translocation, the recurrence risk is 100%.

The mother’s age at the time of conception and the nature of the chromosomal abnormality are important in genetic counseling, which is indicated for parents of all children with chromosomal abnormalities. Prenatal diagnosis is available.

### SEX CHROMOSOME ABNORMALITIES

#### 1. Turner Syndrome (Monosomy X, Gonadal Dysgenesis)

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Webbed neck, triangular facies, short stature, wide-set nipples, amenorrhea, and absence of secondary sex characteristics.
- Associated with coarctation of the aorta and genitourinary malformations.
- IQ is usually normal but learning disabilities are common.
- Mosaic individuals may manifest only short stature and amenorrhea.

The incidence of Turner syndrome is 1 per 10,000 females. However, it is estimated that 95% of conceptuses with monosomy X are miscarried and only 5% are liveborn.

**Clinical Findings**

Newborns with Turner syndrome may have webbed neck, edema of the hands and feet, coarctation of the aorta, and a characteristic triangular facies. Later symptoms include
short stature, a shield chest with wide-set nipples, streak ovaries, amenorrhea, absence of secondary sex characteristics, and infertility. Some affected girls, particularly those with mosaicism, have only short stature and amenorrhea, without dysmorphic features.

Complications relate primarily to coarctation of the aorta, when present. Malformations of the urinary tract may be seen. Learning disabilities are common, secondary to difficulties in perceptual motor integration.

**Treatment**

In Turner syndrome the identification and treatment of perceptual difficulties before they become problematic is very important. Estrogen replacement therapy permits development of secondary sex characteristics and normal menstruation and prevents osteoporosis. Growth hormone therapy has been used to increase the height of affected girls. Females with 45,X or 45,X mosaicism have a low fertility rate, and those who become pregnant have a high risk of fetal wastage (spontaneous miscarriage, ~30%; stillbirth, 6%–10%). Furthermore, their liveborn offspring have an increased frequency of chromosomal abnormalities involving either sex chromosomes or autosomes and congenital malformations. Thus, prenatal ultrasonography and chromosome analysis are indicated for the offspring of females with sex chromosome abnormalities.

**2. Klinefelter Syndrome (XXY)**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Diagnosis is rarely made before puberty.
- Key findings include microorchidism; lack of libido; minimal facial hair; and tall, eunuchoid build.
- IQ can vary (normal to borderline with a small percentage showing cognitive disabilities).

The incidence of Klinefelter syndrome in the newborn population is roughly 1 per 1000, but it is about 1% among intellectual disabilities and about 3% among males seen at infertility clinics. The maternal age at birth is often advanced. Unlike Turner syndrome, Klinefelter syndrome is rarely the cause of spontaneous abortions. The diagnosis is seldom made before puberty except as a result of prenatal diagnosis, because prepubertal boys have a normal phenotype.

**Clinical Findings**

The characteristic findings after puberty include microorchidism associated with otherwise normal external genitalia, azoospermia, sterility, gynecomastia, normal to borderline IQ, diminished facial hair, lack of libido and potency, and a tall, eunuchoid build. In chromosome variants with three or four X chromosomes (XXXY and XXXXY), intellectual disabilities may be severe, and radioulnar synostosis may be present as well as anomalies of the external genitalia and cryptorchidism. In general, the physical and mental abnormalities associated with Klinefelter syndrome increase as the number of sex chromosomes increases.

**Treatment**

Males with Klinefelter syndrome require testosterone replacement therapy. The presence of the extra X chromosome may allow expression of what might normally be a lethal X-linked disorder to occur.

**3. XYY Syndrome**

Newborns with XYY syndrome in general are normal. Affected individuals may on occasion exhibit an abnormal behavior pattern from early childhood and may have mild intellectual disabilities. Fertility may be normal. Many males with an XYY karyotype are normal. There is no treatment.

**4. XXX Syndrome**

The incidence of females with an XXX karyotype is approximately 1 per 1000. Females with XXX are phenotypically normal. However, they tend to be taller than usual and to have lower IQs than their normal siblings. Learning and behavioral issues are relatively common. This is in contrast to individuals with XXXX, a much rarer condition causing more severe developmental issues, and a dysmorphic phenotype reminiscent of Down syndrome.
abnormality exists in mosaic form. Two examples of this include trisomy 8 and Cat eye syndrome, caused by extra genetic material, which is derived from a portion of chromosome 22.


CHROMOSOME DELETION DISORDERS

Three common chromosomal deletion disorders that were previously detected on routine karyotype analysis, and confirmed via FISH assay, but are now detected with microarray, are 1p36− syndrome, Wolf-Hirschhorn syndrome (4p−), and cri du chat syndrome (5p−). Microdeletion or contiguous gene syndrome are referring to those small deletion not readily picked up by karyotype but detected by microarray or FISH.

1. Deletion 1p36 Syndrome

Microcephaly and a large anterior fontanelle are characteristic features of 1p36− syndrome. Cardiac defects are common, and dilated cardiomyopathy may present in infancy. Intellectual disability, hypotonia, hearing loss, and seizures are usually seen.

2. Wolf-Hirschhorn Syndrome

Also known as 4p− (deletion of 4p16), this syndrome is characterized by microcephaly and unusual development of the nose and orbits that produces an appearance suggesting an ancient Greek warrior’s helmet. Other anomalies commonly seen include cleft lip and palate and cardiac and renal defects. Seizure disorders are common, and the majority of patients have severe intellectual disability.

3. Cri du Chat Syndrome

Also known as 5p− (deletion of terminal chromosome 5p), this disorder is characterized by unique facial features, growth retardation, and microcephaly. Patients have an unusual catlike cry. Most patients have major organ anomalies and significant intellectual disability.

CONTIGUOUS GENE DISORDERS

Three common contiguous gene disorders which are usually suspected on the basis of an abnormal phenotype and then confirmed microarray are Williams syndrome, Smith-Magenis syndrome, and Velocardiofacial syndrome. The meiotic mechanisms responsible for interstitial chromosomal deletions causing these disorders also result in duplications. We now understand that interstitial chromosomal duplications in the following regions also produce abnormal phenotypes:

1. Williams Syndrome

Williams syndrome is a contiguous gene disorder that deletes the gene for elastin and other neighboring genes at 7q11.2. It is characterized by short stature; congenital heart disease (supravalvular aortic stenosis); coarse, elfin-like facies with prominent lips; hypercalcaemia or hypercalciuria in infancy; developmental delay; and neonatal irritability evolving into an overly friendly personality. Calcium restriction may be necessary in early childhood to prevent nephrocalcinosis. The hypercalcaemia often resolves during the first year of life. The natural history includes progression of cardiac disease and predisposition to hypertension and spinal osteoarthritis in adults. Most patients have mild to moderate intellectual deficits.

Duplication of chromosome 7q11.2 results in a syndrome that includes speech delay, and features of autistic spectrum disorders. Physical features are less consistent than in Williams syndrome.


2. Smith-Magenis Syndrome

This syndrome is associated with microdeletion of 17p11 and is characterized by prominent forehead, deep-set eyes, cupid-shaped upper lip, self-mutilating behavior, sleep disturbance, and intellectual disabilities. Some patients also have seizure disorders, hearing loss, thyroid disease, and immunological and lipid abnormalities.

Duplication of 17p11 produces Potocki-Lupski syndrome that is characterized by growth failure, variable levels of cognitive deficiencies, autistic features, and, occasionally, structural abnormalities of the heart.


3. Velocardiofacial Syndrome

(Deletion 22q11 Syndrome)

Also known as DiGeorge syndrome, this condition was originally described in newborns presenting with cyanotic congenital heart disease, usually involving great vessel abnormalities; thymic hypoplasia leading to immunodeficiency; and hypocalcemia due to absent parathyroid glands. This chromosomal abnormality is associated with a highly variable phenotype. Characteristics include mild microcephaly, palatal clefting or incompetence, speech and language
1. Neurofibromatosis Type 1

Neurofibromatosis type 1 (NF-1) is one of the most common autosomal dominant disorders, occurring in 1 per 3000 births and seen in all races and ethnic groups. In general, the disorder is progressive, with new manifestations appearing over time. Neurofibromatosis type 2 (NF-2), characterized by bilateral acoustic neuromas, is a different disease caused by a different gene.

The gene for NF-1 is on the long arm of chromosome 17 and seems to code for a protein similar to a tumor suppressor factor. NF results from many different mutations of this gene. Approximately half of all NF cases are caused by new mutations. Careful evaluation of the parents is necessary to provide accurate genetic counseling. Recent evidence suggests that penetrance is close to 100% in those who carry one affected parent.

Café au lait macules may be present at birth, and about 80% of individuals with NF-1 will have more than six by age 1 year. Neurofibromas are benign tumors consisting of Schwann cells, nerve fibers, and fibroblasts; they may be discrete or plexiform. The incidence of Lisch nodules, which can be seen with a slit lamp, also increases with age. Affected individuals commonly have a large head, bony abnormalities on radiographic studies, scoliosis, and a wide spectrum of developmental problems. Although the average IQ is within the normal range, it is lower than in unaffected family members. (For more details of medical evaluation and treatment, see Chapter 25 of this book.) Useful information is provided on the following website: http://www.nfinc.org.

Hyperpigmented macules can occur in other conditions such as Albright, Noonan, Leopard, and Banayan-Riley-Ruvalcaba (BRR) syndromes. The genes for NF-1, Noonan, and Leopard syndromes are molecules which control cell cycling through the RAS-MAPK signal transduction pathways; therefore, it is not surprising that some features can be shared.

2. Marfan Syndrome

Genetic testing is available for mutations causing Marfan syndrome, but the diagnosis remains largely clinical and is based on the Ghent criteria (available at: http://www.gene-tests.org). Children most often present with a positive family history, suspicious skeletal findings, or ophthalmologic complications. Motor milestones are frequently delayed due to joint laxity and mild myopathy. Adolescents are prone to spontaneous pneumothorax. Dysrhythmias may be present. Aortic and valvular complications are not common in children but are more likely in sporadic cases. The characteristic facies is long and thin, with down-slanting palpebral fissures. The palate is high arched, and dentition is often crowded. The uvula may be bifid.

Marfan syndrome is genetically heterogeneous. Mutations in the gene for fibrillin-1 proteins (FBN1) are most common but mutations in (FBN2) and in transforming growth factor β receptors (TGFBR1 and 2) can also produce phenotypes that fit criteria for a clinical diagnosis of Marfan syndrome.

Differential Diagnosis

Homocystinuria should be excluded through metabolic testing in all individuals with marfanoid skeletal features. An X-linked recessive disorder, Lujan syndrome, combines marfanoid habitus with cognitive disability. Other connective tissue disorders, Ehlers-Danlos syndrome, and Stickler syndrome should also be considered.
Genes mutated in Marfan syndrome can also be mutated in related disorders: Beal syndrome (FBN2), Shprintzen-Goldberg syndrome (FBN1), and the recently described Loeys-Dietz syndrome (TGFBR1 and TGFBR2). The reader is referred to reviews available at http://www.genetests.org for descriptions of these disorders.

Complications
The skeletal problems including scoliosis are progressive. Astigmatism and myopia are very common and surveillance for lens dislocation is necessary.

The most serious associated medical problems involve the heart. Although many patients with Marfan syndrome have mitral valve prolapse, the most serious concern is progressive aortic root dilation, which may lead to aneurysmal rupture and death, and progressive or acute valvular (aortic more frequently than mitral) incompetency.

Families and practitioners seeking additional information about Marfan syndrome can be referred to the National Marfan Foundation (http://www.marfan.org).

Treatment
A. Medical Therapy
Medical treatment for patients with Marfan syndrome includes surveillance for and appropriate management of the ophthalmologic, orthopedic, and cardiac issues. Serial echocardiograms are indicated to diagnose and follow the degree of aortic root enlargement, which can be managed medically or surgically, in more severe cases. Prophylactic β-adrenergic blockade can slow the rate of aortic dilation and reduce the development of aortic complications.

Interest in the effects of deficient extracellular fibrillin-1 has led to the discovery that the mild myopathy in Marfan syndrome reflects excessive signaling by transforming growth factor β (TGFβ), an inhibitor of myoblast differentiation. Animal studies suggest that aortic aneurysm can be prevented by TGFβ antagonists, including blockers of angiotensin II type 1 receptors. Research studies are currently underway using this approach in human patients.

B. Genetic Counseling
Genetic testing for mutations in FBN1 and FBN2 and in TGFBR1 and TGFBR2 should be considered in all individuals with Marfan syndrome as penetrance is variable and apparently unaffected family members can carry and pass on mutations.

Achondroplasia, the most common form of skeletal dysplasia, is caused by a mutation in FGFR3.

Clinical Findings
The classic phenotype includes relative macrocephaly, midface hypoplasia, short-limbed dwarfism, and trident-shaped hands. The phenotype is apparent at birth. Individuals with achondroplasia are cognitively normal.

Treatment
A. Medical Therapy
Orthopedic intervention is necessary for spinal problems including severe lumbar lordosis and gibbus deformity. Long bone lengthening surgery may help to improve upper extremity function.

Head circumference during infancy must be closely monitored and plotted on a diagnosis-specific head circumference chart. Bony overgrowth at the level of the foramen magnum may lead to progressive hydrocephalus and brainstem compression, and may warrant neurosurgical intervention.

Many patients find support through organizations such as the Little People of America, at the following website: http://www.lpaonline.org.

B. Genetic Counseling
The vast majority of cases (approximately 90%) represent a new mutation. Two hemizygous parents with achondroplasia have a 25% risk of having a child homozygous for FGFR3 mutations, which is a lethal disorder.

4. Osteogenesis Imperfecta
Osteogenesis imperfecta (OI), or brittle bone disease, is a relatively common disorder. The more common forms are caused by mutations in type I collagen.

Clinical Findings
A number of types of OI have now been described, and abnormalities in Type I Collagen can now be tested via DNA analysis. The four most common types of OI are

1. Type I, a mild form, with increased incidence of fracturing and blue sclerae.
2. Type II, usually lethal in the newborn period with multiple congenital fractures and severe lung disease.
3. Type III, a severe form causing significant bony deformity secondary to multiple fractures (many of which are congenital), blue sclerae, short stature, and mild restrictive lung disease.
4. Type IV, another mild form with increased incidence of fracturing after birth; dentinogenesis imperfecta is common.
Treatment

A. Medical Therapy

A major advancement in the treatment of OI patients has been the use of pamidronate, and other bisphosphonate compounds, which have been reported to lead to a reduced incidence of fracture and improve bone density. Patients should be followed by an experienced orthopedist, as rodding of long bones and surgery to correct scoliosis are often required. Hearing assessments are indicated, because of the association between OI and deafness. Close dental follow-up is also necessary.

B. Genetic Counseling

The four main types of OI are associated with mutations in the genes coding for type I collagen. DNA analysis in blood can confirm the diagnosis. The milder forms may be seen as the result of dominant inheritance, while the more severe forms of OI generally result from new mutations.

5. Craniosynostosis Syndromes

The craniosynostosis disorders are common dominant disorders associated with premature fusion of cranial sutures. This class of disorders is usually caused by mutations in FGFR genes.

Crouzon syndrome is the most common of these disorders and is associated with multiple suture fusions, but with normal limbs. Other craniosynostosis disorders have limb as well as craniofacial anomalies, and include Pfeiffer, Apert, Jackson-Weiss, and Saethre-Chotzen syndromes.

Patients with craniosynostosis often have shallow orbits, midface narrowing that may result in upper airway obstruction, and hydrocephalus that may require shunting. Children with craniosynostosis may require multiple-staged craniofacial and neurosurgical procedures to address these issues, but usually have normal intelligence.

6. CHARGE Syndrome

CHARGE syndrome affects structures derived from rostral neural crest cells but also includes abnormal development of the eyes and midbrain. The acronym CHARGE serves as a mnemonic for associated abnormalities that include Colobomas, congenital Heart disease, choanal Atresia, growth Retardation, Genital abnormalities (hypogenitalism), and Ear abnormalities, with deafness. Facial asymmetry is a common finding. CHARGE is now known to be caused by mutations in the CHD7 gene on chromosome 8q. A website with information on CHARGE syndrome is available at http://www.chargesyndrome.org/.


7. Cornelia de Lange Syndrome

Cornelia de Lange syndrome is characterized by severe growth retardation; limb, especially hand, reduction defects (50%); congenital heart disease (25%); and stereotypical facies with hirsutism, medial fusion of eyebrows (synophrys), and thin, down-turned lips. The course and severity are variable, but the prognosis for survival and normal development is poor.

Heterozygous mutations in the cohesin regulator, NIPBL, or the cohesin structural components SMC1A and SMC3, have been identified in approximately 65% of individuals with CdLS. Cohesin regulates sister chromatid cohesion during mitosis and meiosis. In addition, cohesin has been demonstrated to play a critical role in the regulation of gene expression. Furthermore, multiple proteins in the cohesin pathway are also involved in additional fundamental biological events such as double-stranded DNA break repair, chromatin remodeling, and maintaining genomic stability.


8. Noonan Syndrome

Noonan syndrome is a common autosomal dominant disorder characterized by short stature, congenital heart disease, abnormalities of cardiac conduction and rhythm, webbed neck, down-slanting palpebral fissures, hearing loss, and low-set ears. The phenotype evolves with age and may be difficult to recognize in older patients. Mild developmental delays are often present. Recent advances in molecular genetic research have led to the definition of the RAS-mitogen-activated protein kinase (MAPK) pathway disorders or “RASopathies.” They comprise Noonan syndrome and related disorders (cardiofaciocutaneous and Costello syndromes), as well as neurofibromatosis type 1. A blood test that screens for the approximately 12 genes in this pathway is called a Noonan chip, and can help diagnose patients with Noonan syndrome and related disorders.

Products of proto-oncogenes help control cell cycling through RAS-MAPK signal transduction pathways. Cell cycling controls are also affected by mutations in other genes that produce more complicated Noonan-like disorders (ie, Costello and cardiofaciocutaneous syndromes) in which cardiomyopathies are prominent. Because mutations causing NF-1 also affect RAS proto-oncogene signaling, it is not surprising that there is an NF-1 subtype with a so-called Noonan phenotype.

Constitutional overactivation at various levels of the RAS-MAPK pathway causes overlapping syndromes, comprising characteristic facial features, cardiac defects, cutaneous
abnormalities, growth deficit, neurocognitive delay, and predisposition to malignancies. Each syndrome also exhibits unique features that probably reflect genotype-related specific biological effects.


AUTOSOMAL RECESSIVE DISORDERS

1. Cystic Fibrosis

The gene for cystic fibrosis, *CFTR*, is found on the long arm of chromosome 7. Approximately 1 in 22 persons are carriers. Many different mutations have been identified; the most common mutation in the Caucasian population is known as ΔF508.

Cloning of the gene for cystic fibrosis and identification of the mutation in the majority of cases have completely changed genetic counseling and prenatal diagnosis for this disorder, although the sweat chloride assay is still important in confirming the diagnosis.

The identification of the mutation in the cystic fibrosis gene has also raised the issue of mass newborn screening, because of the high frequency of this gene in the Caucasian population. Some states, such as Colorado, have offered newborn screening by trypsinogen assay, which can detect 70% of patients with cystic fibrosis. Although early detection can ensure good nutritional status starting at birth, newborn screening is controversial as there is no cure for cystic fibrosis. (For more details of medical management, see Chapters 19 and 22.)

2. Smith-Lemli-Opitz Syndrome

Smith-Lemli-Opitz syndrome is caused by a metabolic error in the final step of cholesterol production, resulting in low cholesterol levels and accumulation of the precursor 7-dehydrocholesterol (7-DHC). Because cholesterol is a necessary precursor for steroid hormones, bile acids and CNS myelin, and cholesterol content is crucial for the integrity of all cell membranes, the medical consequences of both cholesterol deficiency and 7-DHC accumulation are complex and severe. A number of other genetic disorders involving cholesterol biosynthesis more proximally in the pathway have been recently described (ie, Desmosterolosis), but are quite rare with a very severe and often lethal phenotype.

Clinical Findings

Patients with Smith-Lemli-Opitz syndrome present with a characteristic phenotype, including dysmorphic facial features (Figure 37–9), multiple congenital anomalies, hypotonia, growth failure, and intellectual disability. The diagnosis can be confirmed via a simple blood test looking for the presence of the precursor, 7-DHC. DNA analysis of mutations in the *DHR7* gene is also available. Prenatal testing is available.

Treatment

Treatment with cholesterol can ameliorate the growth failure and lead to improvement in medical issues, although treatment does not cure this complex disorder. Antioxidant treatment is being used to prevent progressive retinal degeneration.

3. Sensorineural Hearing Loss

Although there is marked genetic heterogeneity in causes of sensorineural hearing loss, including dominant, recessive, and X-linked patterns, nonsyndromic, recessively inherited deafness is the predominant form of severe inherited childhood deafness. Several hundred genes are known to
Duchenne muscular dystrophy (DMD) results from failure of synthesis of the muscle cytoskeletal protein dystrophin, the gene for which is located on the X chromosome, Xp12. Approximately 1 in 4000 male children is affected. Mutations in the same gene that result in partial expression of dystrophin protein produce a less severe phenotype, Becker muscular dystrophy (BMD). In both DMD and BMD, progressive degeneration of skeletal and cardiac muscle occurs. Boys with DMD exhibit proximal muscle weakness and pseudohypertrophy of calf muscles by age 5–6 years. Patients become nonambulatory by age 13. Serum creatine kinase levels are markedly elevated. Boys with DMD frequently die in their twenties of respiratory failure and cardiac dysfunction. The prognosis for BMD is more variable. Although corticosteroids are useful in maintaining strength, they do not slow progression of the disorder. Evolution of the natural history of dystrophinopathies in females is demonstrating an increased incidence of serious cardiovascular disease, including cardiomyopathy and arrhythmias.

The gene for dystrophin is very large and a common target for mutation. Large deletions or duplications can be detected in the gene for dystrophin in 65% of cases. Molecular analysis has largely replaced muscle biopsy for diagnostic purposes.

One-third of DMD cases presenting with a negative family history are likely to be new mutations. Genetic counseling is complicated by the fact that germline mosaicism for mutations in the dystrophin gene occur in approximately 15%–20% of families, which is among the highest rates for...
2. Hemophilia

Hemophilia A is an X-linked, recessive, bleeding disorder caused by a deficiency in the activity of coagulation factor VIII. Affected individuals develop a variable phenotype of hemorrhage into joints and muscles, easy bruising, and prolonged bleeding from wounds. The disorder is caused by heterogeneous mutations in the factor VIII gene, which maps to Xq28. Carrier detection and prenatal diagnosis are possible. Replacement of factor VIII is done using a variety of preparations derived from human plasma or recombinant techniques. Although replacement therapy is effective in most cases, 10%–15% of treated individuals develop neutralizing antibodies that decrease its effectiveness. (See Chapter 30 for additional discussion.)


3. Angelman Syndrome

Angelman syndrome also involves imprinting and results from a variety of mutations that inactivate a ubiquitin-protein ligase gene, UBE3A, located in the same region of chromosome 15 as SNRPN, the maternally imprinted gene involved in Prader-Willi syndrome (see the preceding section). UBE3A is paternally imprinted, and during normal development the maternal allele is expressed only in the brain. The classic phenotype includes severe intellectual disability with pronathism, seizures, and marked delay in motor milestones, abnormal gait and posturing, poor language development, autism, and paroxysmal laughter and tongue thrusting.

Angelman syndrome is most commonly caused when sequences detectable by microarray or FISH on 15q11 are deleted from the maternal homolog. Uniparental paternal disomy 15 is the least common cause. Mutations in UBE3A cause the disorder in about one-fourth of cases. Imprinting errors, which may be associated with advanced reproductive techniques, may also result in Angelman syndrome.


Children affected with BWS should undergo tumor surveillance protocols, including an abdominal ultrasound every 3 months until they reach age 8 years, as diagnosing malignancy at early stages leads to a significant improvement in outcome.

2. Prader-Willi Syndrome

Prader-Willi syndrome results from lack of expression of several imprinted genes, including SNRPN, located on chromosome 15q11. Clinical characteristics include severe hypotonia in infancy, often necessitating placement of a feeding gastrostomy tube. In older children, characteristic facies evolve over time, including almond-shaped eyes, along with frequent strabismus and obstructive sleep apnea. Short stature, obesity, hypogonitalism, and small hands and feet with tapering fingers are felt to be associated with growth hormone deficiency and GH treatment is now offered to PWS patients. Obsessive hyperphagia (usual onset 3–4 years) is the hallmark of this disorder.

Deletion of the paternally inherited allele of chromosome 15q11 (detected by FISH or microarray) is the most common chromosomal abnormality causing Prader-Willi syndrome, followed by maternal UPD, diagnosed by DNA methylation studies.
DISORDERS ASSOCIATED WITH ANTICIPATION

1. (Autosomal Dominant) Myotonic Dystrophy

Myotonic dystrophy is an autosomal dominant condition characterized by muscle weakness and tonic muscle spasms (myotonia). Additional features include: hypogonadism, frontal balding, cardiac conduction abnormalities, and cataracts. This disorder occurs when a CTG repeat in the DMPK gene on chromosome 19 expands to 50 or more copies. Normal individuals have from 5 to 35 CTG repeat copies. Individuals carrying 35–49 repeats are generally asymptomatic, but repeat copies greater than 35 are meiotically unstable and tend to further expand when passed to subsequent generations. Individuals with 50–100 copies may be only mildly affected (eg, cataracts). Most individuals with repeat copies greater than 100 will have symptoms or electrical myotonia as adults.

As unstable alleles continue to expand and copy numbers approach 400, symptoms become evident in children. Expansion from greater than 1000 copies produces fetal and neonatal disease that can be lethal. This occurs most frequently when the unstable repeats are passed through an affected mother. Therefore, an important component in the workup of the floppy or weak infant is a careful neurologic assessment of both parents for evidence of weakness or myotonia. Molecular testing that measures the number of CTG repeats is diagnostic clinically and prenatally. (See Chapter 25 for additional discussion.)

2. (Autosomal Recessive) Friedreich Ataxia

Symptoms of Friedreich ataxia include loss of coordination (cerebellar dysfunction) with both motor and sensory findings beginning in preadolescence and typically progressing through the teenage years. The gene involved, FDRA, is located on chromosome 9. Normal individuals carry 7–33 GAA repeats at this locus. Close to 96% of affected patients are homozygous for repeat expansions that exceed 66 copies. However, point mutations in the gene also occur. Meiotic instability for GAA repeats is more variable than for others and contractions occur more frequently than do expansions. Relationships between genotype and phenotype are also more complex. Molecular diagnostic testing requires careful interpretation with respect to prognosis and reproductive risks. (See Chapter 25 for additional discussion.)

3. (X-Linked) Fragile X Syndrome

Fragile X syndrome, present in approximately 1 in 1000 males, is the most common cause of cognitive disabilities in males. The responsible gene is FMR1, which has unstable CGG repeats at the 5’ end. Normal individuals have up to 50 CGG repeats. Individuals with 51–200 CGG repeats have a premutation and may manifest symptoms including developmental, behavioral, and physical traits; premature ovarian failure in a subset of females; and a progressive, neurologic deterioration in older males called FXTAS (Fragile X–associated tremor–ataxia syndrome). Affected individuals with Fragile X syndrome (full mutation) have more than 200 CGG repeats and also have hypermethylation of both the CGG expansion and an adjacent CpG island. This methylation turns off the FMR1 gene. DNA analysis, rather than cytogenetic testing, is the method of choice for confirming the diagnosis of Fragile X syndrome.

Clinical Features

Most males with Fragile X syndrome present with intellectual disabilities, oblong faces with large ears, and large testicles after puberty. Other physical signs include symptoms suggestive of a connective tissue disorder (eg, hyperextensible joints or mitral valve prolapse). Many affected individuals are hyperactive and exhibit behaviors along the autism spectrum.

Unlike other X-linked disorders where female heterozygotes are asymptomatic, females with a full mutation may exhibit a phenotype ranging from normal IQ to intellectual disability, and autism, and may manifest other behavioral problems.

Clinical expression of Fragile X differs in male and female offspring depending on which parent is transmitting the gene. The premutation can change into the full mutation only when passed through a female. Identification of the abnormal DNA amplification by direct DNA analysis can confirm the diagnosis of Fragile X in an affected individual and can detect asymptomatic gene carriers of both sexes. Therefore, DNA analysis is a reliable test for prenatal and postnatal diagnosis of Fragile X syndrome and facilitates genetic counseling. (Management considerations for patients with Fragile X syndrome are described in Chapter 3.)


MITochondRIAL DISORDERS

More than 100 point mutations and rearrangements of mtDNA have been identified, which are associated with a large number of human diseases. Symptoms of mitochondrial disorders are secondary to deficiency in the respiratory chain enzymes of oxidative phosphorylation, which supply energy to all cells. Mitochondrial diseases are usually progressive disorders with neurologic dysfunction including hypotonia, developmental delay, and seizures. Ophthalmologic issues, hearing loss, gastrointestinal tract dysfunction with growth failure, and renal, endocrine, cardiac, and autonomic dysfunction are some of the many issues which can affect patients with mitochondrial diseases. The following disorders are three of the more common ones.
1. MELAS
MELAS is an acronym for Mitochondrial Encephalopathy, Lactic Acidosis, and Strokelike episodes. Symptoms occur in the pediatric age group and include recurrent episodes resembling stroke (blindness, paralysis), headache, vomiting, weakness of proximal muscles, and elevated blood lactate. (Note: Lactate may be falsely elevated secondary to technical difficulties in obtaining a free-flowing blood specimen or delay in laboratory measurement.) The most common mutation causing MELAS is in the tRNA<sup>Leu</sup> gene (A3243G).

2. MERRF
MERRF is an acronym for Myoclonus Epilepsy with Ragged Red Fibers. Children with MERRF present with a variety of neurologic symptoms, including myoclonus, deafness, weakness of muscles, and seizures. Eighty percent of cases are due to a missense mutation in the mitochondrial tRNALys gene (A8344G).

3. Leigh Subacute Necrotizing Encephalomyelopathy
Multiple different abnormalities in respiratory chain function lead to Leigh disease, a very severe disorder associated with progressive loss of developmental milestones, along with extrapyramidal symptoms and brainstem dysfunction. Episodes of deterioration are frequently associated with an intercurrent febrile illness. Symptoms include hypotonia, unusual choreoathetoid hand movements, feeding dysfunction with failure to thrive, and seizures. Focal necrotic lesions of the brainstem and thalamus are hallmarks on MRI scan. Mitochondrial mutations affecting the respiratory chain, especially complexes I, II, and IV, and nuclear DNA mutations affecting complex II have been identified as causing Leigh disease.


- Cleft lip and palate may be isolated defects (nonsyndromic) or associated with other anomalies as part of a genetic disorder (syndromic).
- Pierre Robin sequence, the association of cleft palate, micrognathia, and glossoptosis may lead to severe airway complications in young infants, necessitating tracheostomy.

General Considerations
From a genetic standpoint, cleft lip with or without cleft palate is distinct from isolated cleft palate. Although both can occur in a single family, particularly in association with certain syndromes, this pattern is unusual. Racial background is a factor in the incidence of facial clefting. Among Asians, Caucasians, and blacks, the incidence is 1.61, 0.9, and 0.31, respectively, per 1000 live births.

Findings
A cleft lip may be unilateral or bilateral and complete or incomplete. It may occur with a cleft of the entire palate or just the primary (anterior and gingival ridge) or secondary (posterior) palate. An isolated cleft palate can involve only the soft palate or both the soft and hard palates. It can be a V-shaped or a wide horseshoe, U-shaped cleft. When the cleft palate is associated with micrognathia and glossoptosis (a tongue that falls back and causes respiratory or feeding problems), it is called the Pierre Robin sequence. Among individuals with facial clefts—more commonly those with isolated cleft palate—the incidence of other congenital abnormalities is increased, with up to a 60% association with other anomalies or syndromes. The incidence of congenital heart disease, for example, is 1%–2% in liveborn infants, but among those with Pierre Robin sequence it can be as high as 15%. Associated abnormalities should be looked for in the period immediately after birth and before surgery.

Differential Diagnosis
A facial cleft may occur in many different circumstances. It may be an isolated abnormality or part of a more generalized syndrome. Prognosis, management, and accurate determination of recurrence risks all depend on accurate diagnosis. In evaluating a child with a facial cleft, the physician must determine if the cleft is nonsyndromic or syndromic.

A. Nonsyndromic
In the past, nonsyndromic cleft lip or cleft palate was considered a classic example of polygenic or multifactorial inheritance. Several recent studies have suggested that one or more major autosomal loci, both recessive and dominant may be involved. Empirically, however, the recurrence risk is
Table 37-4. Syndromic isolated cleft palate (CP) and cleft lip with or without cleft palate (CL/CP).

<table>
<thead>
<tr>
<th>Environment</th>
<th>Maternal seizures, anticonvulsant usage (CL/CP or CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fetal alcohol syndrome (CP)</td>
</tr>
<tr>
<td></td>
<td>Amniotic band syndrome (CL/CP)</td>
</tr>
<tr>
<td>Chromosomal</td>
<td>Trisomies 13 and 18 (CL/CP)</td>
</tr>
<tr>
<td></td>
<td>Wolf-Hirschhorn or 4p- syndrome (CL/CP)</td>
</tr>
<tr>
<td></td>
<td>Shprintzen or 22q11.2 deletion syndrome (CP)</td>
</tr>
<tr>
<td>Single-gene disorders</td>
<td>Treacher-Collins syndrome, AD (CP)</td>
</tr>
<tr>
<td></td>
<td>Stickler syndrome, AD (CP—particularly Pierre-Robin)</td>
</tr>
<tr>
<td></td>
<td>Smith-Lemli-Opitz, AR (CP)</td>
</tr>
<tr>
<td>Unknown cause</td>
<td>Moebius syndrome (CP)</td>
</tr>
</tbody>
</table>

AD, autosomal dominant; AR, autosomal recessive.

still in the range of 2%–3% because of nonpenetrance or the presence of other contributing genes.

B. Syndromic

Cleft lip, with or without cleft palate, and isolated cleft palate may occur in a variety of syndromes that may be environmental, chromosomal, single gene, or of unknown origin (Table 37–4). Prognosis and accurate recurrence risks depend on the correct diagnosis.

Complications

Problems associated with facial clefts include early feeding difficulties, which may be severe; airway obstruction necessitating tracheostomy; recurrent serous otitis media associated with fluctuating hearing and language delays; speech problems, including language delay, hypernasality, and articulation errors; and dental and orthodontic complications.

Treatment

A. Medical Therapy

Long-term management ideally should be provided through a multidisciplinary cleft palate clinic.

B. Genetic Counseling

Accurate counseling depends on accurate diagnosis and the differentiation of syndromic from nonsyndromic clefts. A complete family history must be taken, and the patient and both parents must be examined. The choice of laboratory studies is guided by the presence of other abnormalities and clinical suspicions, and may include microarray analysis and metabolic and DNA studies. Clefts of both the lip and the palate can be detected on detailed prenatal ultrasound.

NEURAL TUBE DEFECTS

- Various defects, ranging from anencephaly to open or skin-covered lesions of the spinal cord, may occur in isolation or as part of a syndrome.
- Myelomeningocele is usually associated with hydrocephalus, Arnold-Chiari II malformation, neurogenic bladder and bowel, and congenital paralysis in the lower extremities.
- Anomalies of the CNS, heart, and kidneys may also be seen.
- MRI helps determine the extent of the anatomic defect in skin covered lesions.

General Considerations

Neural tube defects comprise a variety of malformations, including anencephaly, encephalocele, spina bifida (myelomeningocele), sacral agenesis, and other spinal dysraphisms. Evidence suggests that the neural tube develops via closure at multiple closure sites and that each closure site is mediated by different genes and affected by different teratogens. Hydrocephalus associated with the Arnold-Chiari type II malformation commonly occurs with myelomeningocele. Sacral agenesis, also called the caudal regression syndrome, occurs more frequently in infants of diabetic mothers.

Clinical Findings

At birth, neural tube defects can present as an obvious rachischisis (open lesion), or as a more subtle skin-covered lesion. In the latter case, MRI should be conducted to better define the anatomic defect. The extent of neurologic deficit depends on the level of the lesion and may include clubfeet, dislocated hips, or total flaccid paralysis below the level of the lesion. Hydrocephalus may be apparent at birth or may develop after the back has been surgically repaired. Neurogenic bladder and bowel are commonly seen. Other anomalies of the CNS may be present, as well as anomalies of the heart or kidneys.

Differential Diagnosis

Neural tube defects may occur in isolation (nonsyndromic) or as part of a genetic syndrome. They may result from teratogenic exposure to alcohol or the anticonvulsant valproate.
Any infant with dysmorphic features or other major anomalies in addition to a neural tube defect should be evaluated by a geneticist, and a microarray analysis should be performed.

- **Treatment**

  **A. Neurosurgical Measures**
  
  Infants with an open neural tube defect should be placed in prone position, and the lesion kept moist with sterile dressing. Neurosurgical closure should occur within 24–48 hours after birth to reduce risk of infection. The infant should be monitored closely for signs of hydrocephalus. Shunts are required in about 85% of cases of myelomeningocele and are associated with complications including malfunction and infection. Symptoms of the Arnold-Chiari II malformation include feeding dysfunction, abducens nerve palsy, vocal cord paralysis with stridor, and apnea. Shunt malfunction may cause an acute worsening of Arnold-Chiari symptoms that may be life-threatening.

- **B. Orthopedic Measures**
  
  The child’s ability to walk varies according to the level of the lesion. Children with low lumbar and sacral lesions walk with minimal support, while those with high lumbar and thoracic lesions are rarely functional walkers. Orthopedic input is necessary to address foot deformities and scoliosis. Physical therapy services are indicated.

- **C. Urologic Measures**
  
  Neurogenic bladders have variable presentations. Urodynamic studies are recommended early on to define bladder function, and management is guided by the results of these studies. Continence can often be achieved by the use of anticholinergic or sympathomimetic agents, clean intermittent catheterization, and a variety of urologic procedures. Renal function should be monitored regularly, and an ultrasound examination should be periodically repeated. Symptomatic infections should be treated.

  Symptoms of neurogenic bowel include incontinence and chronic constipation and are managed with a combination of dietary modifications, laxatives, stool softeners, and rectal stimulation. A surgical procedure called ACE (ante-grade continence enema) may be recommended for patients with severe constipation that is unresponsive to conservative management.

- **D. Genetic Counseling**
  
  Most isolated neural tube defects are polygenic, with a recurrence risk of 2%–3% in future pregnancies. The recurrence risk for siblings of the parents and siblings of the patients is 1%–2%. A patient with spina bifida has a 5% chance of having an affected child. Prenatal diagnosis is possible. In fetuses with open neural tube defects, maternal serum α-fetoprotein levels measured at 16–18 weeks’ gestation are elevated. α-Fetoprotein and acetylcholine esterase levels in amniotic fluid are also elevated. Ultrasound studies alone can detect up to 90% of neural tube defects.

  Prophylactic folic acid can significantly lower the incidence and recurrence rate of neural tube defects, if the intake of the folic acid starts at least 3 months prior to conception and continues for the first month of pregnancy, at a dose of 4 mg/d for women at increased risk. For women of childbearing age without a family history of neural tube defects, the dose is 0.4 mg of folic acid daily. Folic acid supplementation prior to conception may also lower the incidence of other congenital malformations such as conotruncal heart defects.

- **Special Issues & Prognosis**

  All children requiring multiple surgical procedures (ie, patients with spina bifida or urinary tract anomalies) have a significant risk for developing hypersensitivity type I (IgE-mediated) allergic reactions to latex. For this reason, nonlatex medical products are now routinely used when caring for patients with neural tube defects.

  Most individuals with spina bifida are cognitively normal, but learning disabilities are common. Individuals with encephalocele or other CNS malformations generally have a much poorer intellectual prognosis. Individuals with closed spinal cord abnormalities (eg, sacral lipomas) have more mild issues in general, and intelligence is usually normal. Spinal cord tethering may present later with symptoms of back pain, progressive scoliosis, and changes in bowel or bladder function. This often requires neurosurgical intervention.

  Individuals with neural tube defects have lifelong medical issues, requiring the input of a multidisciplinary medical team. A good support for families is the National Spina Bifida Association, at the following website: http://www.sbba.org.

### COMMON RECOGNIZABLE DISORDERS WITH VARIABLE OR UNKNOWN CAUSE

The text that follows describes several important and common human malformation syndromes. The best illustrations of these syndromes are found in Smith’s Recognizable Patterns of Human Malformation. An excellent Internet site at the University of Kansas Medical Center can be consulted for further information: http://www.kumc.edu/gec/support.

#### 1. Arthrogryposis Multiplex

The term *arthrogryposis* is often used as shorthand to describe multiple congenital contractures that affect two or more different areas of the body. Arthrogryposis is not a specific diagnosis, but rather a clinical finding, and it is a characteristic of more than 300 different disorders. Causes most often involve constraint, CNS maldevelopment or injury,
and neuromuscular disorders. Polyhydramnios is often present as a result of lack of fetal swallowing. Pulmonary hypoplasia may also be present, reflecting lack of fetal breathing. The workup includes brain imaging, careful consideration of metabolic disease, neurologic consultation, and, in some cases, electrophysiologic studies and muscle biopsy. The parents should be examined, and a family history reviewed carefully for findings such as muscle weakness or cramping, cataracts, and early-onset heart disease, suggesting myotonic dystrophy. Mutations in at least five genes (TNNI2, TNNT3, TPM2, MYH3, and MYH8) that encode components of the contractile apparatus of fast-twitch myofibers can cause distal arthrogryposis.

2. Goldenhar Syndrome

Goldenhar syndrome, also known as vertebral-auriculofacial syndrome, is an association of multiple anomalies involving the head and neck. The classic phenotype includes hemifacial microsomia (one side of the face smaller than the other), and abnormalities of the pinna on the same side with associated deafness. EAR anomalies may be quite severe and include anotia. A characteristic benign fatty tumor in the outer eye, called an epibulbar dermoid, is frequently present, as are preauricular ear tags. Vertebral anomalies, particularly of the cervical vertebrae, are common. The Arnold-Chiari type I malformation (herniation of the cerebellum into the cervical spinal canal) is a common associated anomaly. Cardiac anomalies and hydrocephalus are seen in more severe cases. Most patients with Goldenhar syndrome have normal intelligence. The cause is unknown; however, there is significant overlap with the Townes-Brocks syndrome, caused by mutations in the SALL1 gene. (See Craniofacial Microsomia Overview, GeneReviews, www.genereviews.org for an excellent discussion and differential diagnosis.)

3. Oligohydramnios Sequence (Potter Sequence)

This condition presents in newborns as severe respiratory distress due to pulmonary hypoplasia in association with positional deformities of the extremities, usually bilateral clubfeet, and typical facies consisting of suborbital creases, depressed nasal tip and low-set ears, and retrognathia. The sequence may be due to prolonged lack of amniotic fluid. Most often it is due to leakage, renal agenesis, or severe obstructive uropathy.

4. Overgrowth Syndromes

Overgrowth syndromes are becoming increasingly recognized as important childhood conditions. They may present at birth and are characterized by macrocephaly, motor delays (cerebral hypotonia), and occasional asymmetry of extremities. Bone age may be advanced. The most common overgrowth syndrome is Sotos syndrome. Patients with Sotos syndrome have a characteristic facies with a prominent forehead and down-slanting palpebral features. Mutations in NSD1 cause Sotos syndrome. Patients have a small but increased risk of cancer.

Other overgrowth syndromes include BWS (described earlier), and two single-gene disorders, Simpson-Golabi-Behmel syndrome and Bannayan-Riley-Ruvalcaba syndrome. Patients with Simpson-Golabi-Behmel syndrome exhibit a BWS-like phenotype, but with additional anomalies, including polydactyly and more severe facial dysmorphisms. Unlike patients with BWS, who have normal intelligence, patients with Simpson-Golabi-Behmel syndrome often have developmental delay. It is inherited as an X-linked disorder. Patients with Bannayan-Riley-Ruvalcaba syndrome have macrosomia, macrocephaly, and unusual freckling of the penis. They may present with autism. They may develop hemangiomatous or lymphangiomatous growths and have a predisposition to certain malignancies (thyroid, breast, colon cancer). The cause of Bannayan-Riley-Ruvalcaba syndrome is a mutation of the PTEN gene implicated in Cowden syndrome, the association of intestinal polyposis with malignant potential. Proteus syndrome was recently found to be caused by mosaic AKT-1 mutation.

5. Syndromic Short Stature

Short stature is an important component of numerous syndromes, or it may be an isolated finding. In the absence of nutritional deficiencies, endocrine abnormalities, evidence of skeletal dysplasia (disproportionate growth with abnormal skeletal films), or a positive family history, intrinsic short stature can be due to UPD. The phenotype of Russell-Silver syndrome—short stature with normal head growth (pseudohydradcephalus), normal development, and minor dysmorphic features (especially fifth finger clinodactyly)—has been associated in some cases with maternal UPD7.

6. VACTERL Association

The disorder is sporadic, and some of the defects may be life-threatening. The prognosis for normal development is good. The cause is unknown, but a high association with monozygotic twinning suggests a mechanism dating back to events perhaps as early as blastogenesis.

Careful examination and follow-up are important, because numerous other syndromes have overlapping features. Microarray studies and genetic consultation are warranted.
VACTERL association is described by an acronym denoting the association of the following:
- Vertebral defects (segmentation anomalies).
- Imperforate anus.
- Cardiac malformation (most often ventricular septal defect).
- Tracheoesophageal fistula.
- Renal anomalies.
- Limb (most often radial ray) anomalies.

### 7. Kabuki syndrome

Kabuki syndrome (KS) is characterized by typical facial features (elongated palpebral fissures with eversion of the lateral third of the lower eyelid; arched and broad eyebrows; short columella with depressed nasal tip; large, prominent, or cupped ears), minor skeletal anomalies, persistence of fetal fingertip pads, mild to moderate intellectual disability, and postnatal growth deficiency. Other findings may include: congenital heart defects, genitourinary anomalies, cleft lip and/or palate, gastrointestinal anomalies including anal atresia, ptosis and strabismus, and widely spaced teeth and hypodontia. Functional differences can include increased susceptibility to infections and autoimmune disorders, seizures, endocrinologic abnormalities including isolated premature thelarche in females, feeding problems, and hearing loss. Molecular genetic testing for MLL2, the only gene in which mutations are known to cause KS, is available on a clinical basis. The cause is heterogeneous, as not all individuals with Kabuki syndrome were found to have a MLL2 mutation.


### GENETIC EVALUATION OF THE CHILD WITH DEVELOPMENTAL DISABILITIES

Cognitive disabilities or developmental delays affect 8% of the population. Disorders associated with symptoms of delayed development are heterogeneous but frequently include heritable components. Evaluation should be multidisciplinary; Table 37–5 lists the main features of developmental delay, emphasizing the major clinical and genetic considerations. (See Chapter 3 for additional information about developmental delay and intellectual disability.)

### Table 37–5. Evaluation of the child with developmental delay.

<table>
<thead>
<tr>
<th>History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnancy history</td>
<td></td>
</tr>
<tr>
<td>Growth parameters at birth</td>
<td></td>
</tr>
<tr>
<td>Neonatal complications</td>
<td></td>
</tr>
<tr>
<td>Feeding history</td>
<td></td>
</tr>
<tr>
<td>History of somatic growth</td>
<td></td>
</tr>
<tr>
<td>Motor, language, and psychosocial milestones</td>
<td></td>
</tr>
<tr>
<td>Seizures</td>
<td></td>
</tr>
<tr>
<td>Loss of skills</td>
<td></td>
</tr>
<tr>
<td>Abnormal movements</td>
<td></td>
</tr>
<tr>
<td>Results of previous tests and examinations</td>
<td></td>
</tr>
</tbody>
</table>

Family history	
Developmental and educational histories	
Psychiatric disorders	
Pregnancy outcomes	
Medical history	
Consanguinity	

Physical examination	
General pediatric examination, including growth parameters	
Focused dysmorphologic evaluation including measurement of facial features and limbs	
Complete neurologic examination	
Parental growth parameters (especially head circumferences) and dysmorphic features should also be assessed	

| Imaging studies |  |
| See text |  |

Laboratory assessment	
Microarray analysis (this has replaced chromosome analysis and FISH testing in most cases)	
Fragile X testing (analysis of FMR1 gene for triplet repeats)	
Other blood analyses: comprehensive metabolic panel, acylcarnitine profile, creatinine kinase (CK), lactate, pyruvate (this testing is helpful in the case of hypotonia)	
Other metabolic tests may be helpful as second tier tests, including: Serum amino acid analysis	
Urine amino and organic acid analysis	
Urine analysis for mucopolysaccharides (if coarse features and organomegaly)	

Obtaining a detailed history, including pertinent prenatal and perinatal events, is critical. Feeding issues and slow growth velocity are seen in many genetic disorders causing developmental delay. Rate of developmental progress and particularly a history of loss of skills are important clues, as the latter might suggest a metabolic disorder with a neurodegenerative component. Family history can provide clues to suggest possible genetic etiologies, particularly if there is a history of consanguinity or a family pattern of other affected individuals.

Physical examination provides helpful clues. Referral to a clinical geneticist is indicated whenever unusual features are encountered. Neurologic, ophthalmologic, and audiologic
consultation should be sought when indicated. Brain imaging should be requested in cases involving unexplained deviations from normal head growth. Neuroimaging and skeletal studies may also be indicated when dysmorphic features are present.

Metabolic and genetic testing procedures other than those listed in the Table 37–5 may also be indicated.

**Interpretation & Follow-Up**

Clinical experience indicates that specific diagnoses can be made in approximately half of patients evaluated according to the protocol presented here. With specific diagnosis comes prognosis, ideas for management, and insight into recurrence risks. Prenatal diagnosis may also become possible.

Follow-up is important both for patients in whom diagnoses have been made and for those patients initially lacking a diagnosis. Genetic information is accumulating rapidly and can be translated into new diagnoses and better understanding with periodic review of clinical cases.

**Autism**

Autism is a developmental disorder comprising abnormal function in three domains: language development, social development, and behavior. Many patients with autism also have cognitive disabilities and might be appropriately evaluated according to the recommendations above. However, given the enormous increase in prevalence of autism in the past decade (1 in 88 children per latest CDC report), it is worth discussing the genetic evaluation of autism separately.

There are multiple known genetic causes of autism. Advances in molecular diagnosis, understanding of metabolic derangements, and technologies such as microarray are allowing more patients with autism to be identified with specific genetic disorders. This allows more accurate genetic counseling for recurrence risk, as well as diagnosis-specific interventions which may improve prognosis.

With this in mind, recommendations for the genetic evaluation of a child with autism include the following:

1. Genetic referral if dysmorphic features or cutaneous abnormalities are present (ie, hypopigmented spots such as those seen in patients with tuberous sclerosis).
2. Laboratory testing to include the following:
   A. Microarray.
   B. Molecular testing for Fragile X syndrome.
   C. Methylation testing for UPD15 if phenotype is suggestive of Angelman syndrome.
   D. Measurement of cholesterol and 7-DHC if syndactyly is present between the second and third toes, to rule out a mild form of Smith-Lemli-Opitz syndrome.
   E. MECP2 testing if clinical course is suggestive of Rett syndrome (ie, neurodegenerative course, progressive microcephaly, and seizures in a female patient).
   F. PTEN molecular testing if the head circumference is greater than 2 standard deviations above the mean, plus evidence of penile freckling, lipomatous lesions, or a strong family history of certain malignancies.

Autism spectrum disorders are discussed in more detail in Chapter 3.

**TERATOGENS**

1. **Drug Abuse & Fetal Alcohol Syndrome**

Fetal alcohol syndrome (FAS) results from excessive exposure to alcohol during gestation and affects 30%–40% of offspring of mothers whose daily intake of alcohol exceeds 3 ounces. Features of the syndrome include: short stature, poor head growth (may be postnatal in onset), developmental delay, and midface hypoplasia characterized by a poorly developed long philtrum, narrow palpebral fissures, and short nose with anteverted nares. Facial findings may be subtle, but careful measurements and comparisons with standards (see Figure 37–8) are helpful. Structural abnormalities occur in half of affected children. Cardiac anomalies and neural tube defects are commonly seen. Genitourinary tract anomalies are frequent. Neurobehavioral effects in FAS include: poor judgment and inappropriate social interactions, and lack of stranger anxiety in toddlers. Cognitive deficiencies and behavioral problems may occur without other classic physical characteristics of fetal alcohol syndrome and constitute an alcohol-related neurological disorder (ARND).

Maternal abuse of psychoactive substances is also associated with increased risks for adverse perinatal outcomes including miscarriage, preterm delivery, growth retardation, and increased risk for injury to the developing CNS. Methamphetamine and crack cocaine are particularly dangerous. Maternal abuse of inhalants, such as glue, appears to be associated with findings similar to those of fetal alcohol syndrome.

Careful evaluation for other syndromes and chromosomal disorders should be included in the workup of exposed infants. Behavioral abnormalities in older children may be the result of maternally abused substances but they may also reflect evolving psychiatric disorders. Psychiatric disorders, many recognized as heritable, affect large numbers of men and women with substance abuse problems. Fetal alcohol spectrum disorders are discussed in more detail in Chapter 3.

2. **Maternal Anticonvulsant Effects**

Anticonvulsant exposure during pregnancy is associated with adverse outcomes in approximately 10% of children born to women treated with these agents. A syndrome
characterized by small head circumference, antverted nares, cleft lip and palate (occasionally), and distal digital hypoplasia was first described in association with maternal use of phenytoin but also occurs with other anticonvulsants. Risks for spina bifida are increased, especially in pregnancies exposed to valproic acid.

3. Retinoic Acid Embryopathy

Vitamin A and its analogs are potent morphogens that have considerable teratogenic potential. Developmental toxicity occurs in approximately one-third of pregnancies exposed in the first trimester to the synthetic retinoid isotretinoin, commonly prescribed to treat acne. Exposure disrupts migration of rostral neural crest cells and produces CNS maldevelopment, especially of the posterior fossa; ear anomalies (often absence of pinnae); congenital heart disease (great vessel anomalies); and tracheoesophageal fistula. These findings constitute a partial phenocopy of DiGeorge syndrome and demonstrate the continuum of contributing genetic and environmental factors in morphogenesis. It is now recognized that vitamin A itself, when taken as active retinoic acid in doses exceeding 25,000 IU/d during pregnancy, can produce similar fetal anomalies. Vitamin A intake is limited to 10,000 IU/d of retinoic acid. Maternal ingestion of large amounts of vitamin A taken as retinol during pregnancy, however, does not increase risks, because conversion of this precursor to active retinoic acid is internally regulated.

ASSISTED REPRODUCTION

Assisted reproductive technologies including in vitro fertilization are now utilized in a significant number of pregnancies. Although healthy live births are accepted as the usual outcomes resulting from successful application of these procedures, the actual number of viable embryos is limited and questions about the risks of adverse effects continue to be raised. Increased rates of twinning, both monozygotic and dizygotic, are well recognized while the possibility of increased rates of birth defects remains controversial. Abnormal genetic imprinting appears to be associated with in vitro fertilization. Evidence supports increased prevalence of Beckwith-Wiedemann and Angelman syndromes among offspring of in vitro pregnancies.

PRENATAL DIAGNOSIS

Prenatal screening for birth defects is now routinely offered to pregnant women of all ages. Prenatal diagnosis introduces options for management.

Prenatal assessment of the fetus includes techniques that screen maternal blood, image the conceptus, fetal DNA analysis via maternal serum samples, and samples of fetal and placental tissues.

Maternal Blood Analysis

Elevated levels of maternal serum $\alpha$-fetoprotein correlate with open neural tube defects but low levels are associated with Down syndrome and other chromosomal abnormalities. First trimester measurements of PAPA (pregnancy-associated plasma protein A) and the free $\beta$-subunit of human chorionic gonadotropin screen for trisomies 21 and 18. In the second trimester maternal $\alpha$-fetoprotein, human chorionic gonadotropin, unconjugated estradiol, and inhibin (“quad screen”) combine to estimate risks for trisomies 21 and 18. Low estradiol levels can also predict cases of Smith-Lemli-Opitz syndrome, a devastating autosomal recessive disorder discussed earlier. Noninvasive prenatal testing, via maternal blood sample, can detect specific chromosome imbalances. Massive parallel sequencing technology is applied to the circulating cell free DNA in maternal samples. The detection rate is higher than traditional first trimester screening.

Analysis of Fetal Samples

A. Amniocentesis

Amniocentesis samples fluid surrounding the fetus; the cells obtained are cultured for cytogenetic, molecular, or metabolic analyses. $\alpha$-Fetoprotein and other chemical markers can also be measured. This is a safe procedure with a complication rate (primarily for miscarriage) of less than 0.01% in experienced hands.

B. Chorionic Villus Sampling (Placental)

Chorionic villus sampling is generally performed at 10–12 weeks’ gestation. Tissue obtained by chorionic villus sampling provides DNA for molecular analysis and contains dividing cells (cytotrophoblasts) that can be rapidly evaluated by FISH. However, direct cytogenetic preparations may be of poor quality and placental fibroblasts must be routinely grown and analyzed. In addition, chromosomal abnormalities detected by this technique may be confined to the placenta (confined placental mosaicism) and be less informative than amniocentesis.

C. Fetal Blood and Tissue

Fetal blood can be sampled directly in late gestation through ultrasound-guided percutaneous umbilical blood sampling (PUBS). A wide range of diagnostic tests ranging from biochemical to comparative genomic hybridization can be applied. Fetal urine sampled from the bladder or dilated proximal structures can provide important information about fetal renal function.

It is occasionally necessary to obtain biopsy specimens of fetal tissues such as liver or muscle for accurate prenatal diagnosis. These procedures are available in only a few perinatal centers.
D. Preimplantation Genetic Diagnosis

With the advent of single-cell PCR techniques as well as interphase FISH it is now possible to make genetic diagnoses in preimplantation human embryos by removing and analyzing blastocyst cells. Using this procedure parents can now consider selecting pregnancies for positive attributes such as becoming donors for transplantation of tissues to siblings affected by genetic disorders.

Fetal Imaging

Fetal ultrasonography has become routine and MRI imaging is becoming increasingly common during pregnancy, while fetal x-rays are seldom employed. Ultrasonography has joined maternal blood sampling as a screening technique for common chromosomal aneuploidies, neural tube defects, and other structural anomalies. Pregnancies at increased risk for CNS anomalies, skeletal dysplasias, and structural defects of the heart and kidneys should be monitored by careful ultrasound examinations. Fetal MRI has become routine in the workup of suspected fetal CNS abnormalities as well as in an increasing number of other fetal anomalies.
Allergic disorders are among the most common problems seen by pediatricians and primary care physicians, affecting over 25% of the population in developed countries. In the most recent National Health and Nutrition Examination Survey, 54% of the population had positive test responses to one or more allergens. According to a recent National Center for Health Statistics survey, the prevalence of food and skin allergies has increased over the past decade; with prevalence in 2009–2011 of 5% and 12.5%, respectively. While the prevalence of respiratory allergies has been stable, it is still the highest among children (17% in 2009–2011). In children, asthma, allergic rhinitis, and atopic dermatitis have been accompanied by significant morbidity and school absenteeism, with adverse consequences for school performance and quality of life, as well as economic burden measured in billions of dollars. In this chapter, atopy refers to a genetically determined predisposition to develop IgE antibodies found in patients with asthma, allergic rhinitis, and atopic dermatitis.

**ASTHMA**

**General Considerations**

Asthma is the most common chronic disease of childhood, affecting over 7 million children in the United States. While current prevalence rates for asthma have increased in the past decade (most recent estimate of 10%), the rate of asthma attack in the past year has been stable. Gender, race, and socioeconomic disparities in the prevalence of asthma exist: (1) More boys than girls are affected in childhood; (2) Higher percentage affected among black children compared to Hispanic and non-Hispanic white children; (3) Children belonging to poor families are more likely to be affected.

There is still a disproportionately higher healthcare utilization for asthma among children compared to adults affected by this disease. Asthma health care encounters in primary care settings have increased over time; death rates and emergency department (ED) visits related to asthma have declined, and hospitalizations due to asthma have been steady. Hospitalizations and emergency department or urgent ambulatory or office visits, all indicators of asthma severity, impose significant costs to the healthcare system and to families, caretakers, schools, and parents’ employers. Indirect costs primarily from loss of productivity due to school/work absences are harder to measure, yet considerable. Asthma remains a potentially life-threatening disease for children; the rate of asthma deaths was 28 per 1 million children with current asthma. Similar to disparities in prevalence, morbidity and mortality rates for asthma are higher among minority and inner city populations. The reasons for this are unclear but may be related to a combination of more severe disease, poor access to health care, lack of asthma education, delay in use of appropriate controller therapy, and environmental factors (eg, irritants including smoke and air pollutants, and perennial allergen exposure).

Up to 80% of children with asthma develop symptoms before their fifth birthday. Atopy (personal or familial) is the strongest identifiable predisposing factor. Sensitization to inhalant allergens increases over time and is found in the majority of children with asthma. The principal allergens associated with asthma are perennial aeroallergens such as dust mite, animal dander, cockroach, and *Alternaria* (a soil mold). Rarely, foods may provoke isolated asthma symptoms.

About 40% of infants and young children who have wheezing with viral infections in the first few years of life will have continuing asthma through childhood. Viral infections (eg, respiratory syncytial virus [RSV], rhinovirus, parainfluenza and influenza viruses, metapneumovirus) are associated with wheezing episodes in young children. RSV may be the predominant pathogen of wheezing infants in the emergency room setting, but rhinovirus can be detected in the majority of older wheezing children. Furthermore, RSV...
and parainfluenza have been associated with more severe respiratory illnesses, but in general, rhinovirus is the most commonly identified respiratory virus with wheezing episodes. It is uncertain if these viruses contribute to the development of chronic asthma, independent of atopy. Severe RSV bronchiolitis in infancy has been linked to asthma and allergy in childhood. Although speculative, individuals with lower airways vulnerability to common respiratory viral pathogens may be at risk for persistent asthma.

In addition to atopy and infections being associated with the development of asthma, observational studies have also demonstrated an increased risk of asthma attributed to acetaminophen exposure during prenatal periods, infancy, childhood, and even adulthood. Acetaminophen is the most commonly used antipyretic medication for children in the United States. Furthermore, there is evidence from secondary analyses suggesting that acetaminophen exposure increases the risk for subsequent asthma exacerbations or wheeze compared to ibuprofen; and that a dose dependent elevated risk of asthma symptoms could be found.

There are several mechanisms which have been proposed: acetaminophen interfering with glutathione (a tripeptide antioxidant that is involved in free radical scavenging and xenobiotic detoxification) pathway and impairing respiratory antioxidant defenses; presence of genetic polymorphisms in the glutathione pathway that are associated with increased susceptibility to asthma; and acetaminophen causing a switch to a TH2 from a TH1 response. Stronger pieces of evidence such as prospectively designed studies primarily addressing the questions of whether acetaminophen exposure truly increases the risk of the development of chronic asthma or even triggers acute asthma are needed.

Exposure to tobacco smoke, especially from the mother, is also a risk factor for asthma. Other triggers include exercise, cold air, cigarette smoke, pollutants, strong chemical odors, and rapid changes in barometric pressure. Aspirin sensitivity is uncommon in children. Psychological factors may precipitate asthma exacerbations and place the patient at high risk from the disease.

Pathologic features of asthma include shedding of airway epithelium, edema, mucus plug formation, mast cell activation, and collagen deposition beneath the basement membrane. The inflammatory cell infiltrate includes eosinophils, lymphocytes, and neutrophils, especially in fatal asthma exacerbations. Airway inflammation contributes to airway hyperresponsiveness, airflow limitation, and disease chronicity. Persistent airway inflammation can lead to airway wall remodeling and irreversible changes.

Clinical Findings

A. Symptoms and Signs

The diagnosis of asthma in children, especially among preschool aged, is based largely on clinical judgment and an assessment of symptoms, activity limitation, and quality of life. For example, if a child with asthma refrains from participating in physical activities so as not to trigger asthma symptoms, their asthma would be inadequately controlled but not detected by the standard questions. In the National Asthma Education and Prevention Program (NAEPP) clinical guidelines, asthma control is introduced as an approach to assess the adequacy of current treatment, and to improve care and outcomes for children with asthma. For children with asthma, numerous validated instruments and questionnaires for assessing health-related quality of life and asthma control have been developed. The Asthma Control Test (ACT, www.asthmacontrol.com), the Asthma Control Questionnaire (ACQ, www.qoltech.co.uk/Asthma1.htm), and the Asthma Therapy Assessment Questionnaire (ATAQ, www.ataqinstrument.com) for children 12 years of age and older, and the Childhood ACT for children 4–11 years of age are examples of self-administered questionnaires that have been developed with the objective of addressing multiple aspects of asthma control such as frequency of daytime and nocturnal symptoms, use of reliever medications, functional status, missed school or work, and so on. A five-item caregiver-administered instrument, the Test for Respiratory and Asthma Control in Kids (TRACK), has been validated as a tool to assess both impairment and risk presented in the NAEPP Expert Panel Report 3 (EPR3) guidelines in young children with recurrent wheezing or respiratory symptoms consistent with asthma.

Wheezing is the most characteristic sign of asthma, although some children may have recurrent cough and shortness of breath. Complaints may include “chest congestion,” prolonged cough, exercise intolerance, dyspnea, and recurrent bronchitis or pneumonia. Chest auscultation during forced expiration may reveal prolongation of the expiratory phase and wheezing. As the obstruction becomes more severe, wheezes become more high-pitched and breath sounds diminished. With severe obstruction, wheezes may not be heard because of poor air movement. Flaring of nostrils, intercostal and suprasternal retractions, and use of accessory muscles of respiration are signs of severe obstruction. Cyanosis of the lips and nail beds may be seen with underlying hypoxia. Tachycardia and pulsus paradoxus also occur. Agitation and lethargy may be signs of impending respiratory failure.

B. Laboratory Findings

Bronchial hyperresponsiveness, reversible airflow limitation, and airway inflammation are key features of asthma. Documentation of all these components is not always necessary, unless the presentation is rather atypical.

Bronchial hyperresponsiveness to nonspecific stimuli is a hallmark of asthma. These stimuli include inhaled pharmacologic agents such as histamine, methacholine, and mannitol, as well as physical stimuli such as exercise and cold air. Mannitol (Aridol) bronchoprovocation has been approved
During acute asthma exacerbations, FEV1 is diminished and can be measured by reduction in FEV1 and FEV1/FVC values, in the evaluation of airflow limitation in asthma. This spirometry over peak expiratory flow rate (PEFR) measurement may help to establish a diagnosis of asthma when the history, with the severity of asthma. Bronchoprovocation challenges The level of airway hyperresponsiveness usually correlates younger than age 5 years is greater than in older children. The level of airway hyperresponsiveness usually correlates with the severity of asthma. Bronchoprovocation challenges may help to establish a diagnosis of asthma when the history, examination, and pulmonary function tests are not definitive.

Recent asthma clinical guidelines reinforce the use of spirometry over peak expiratory flow rate (PEFR) measurements, in the evaluation of airflow limitation in asthma. This can be measured by reduction in FEV1 and FEV1/FVC values compared to reference or predicted values. By itself, it is not adequate in establishing a diagnosis, but it can be an important parameter to monitor asthma activity and treatment response. In children, FEV1 may be normal, despite frequent symptoms. Spirometric measures of airflow limitation can be associated with symptom severity, likelihood of exacerbation, hospitalization, or respiratory compromise. Regular monitoring of prebronchodilator (and ideally postbronchodilator) FEV1 can be used to track lung growth patterns over time. During acute asthma exacerbations, FEV1 is diminished and the flow-volume curve shows a “scooping out” of the distal portion of the expiratory portion of the loop (Figure 38–1).

Lung function assessment using body box plethysmography to determine lung volume measurements can also be informative. The residual volume, functional residual capacity, and total lung capacity are usually increased, while the vital capacity is decreased. Reversal or significant improvement of these abnormalities in response to inhaled bronchodilator therapy or with anti-inflammatory therapy can be observed.

PEFR monitoring can be a simple and reproducible tool to assess asthma activity in children with moderate or severe asthma, a history of severe exacerbations, or poor perception of airflow limitation or worsening condition. Significant changes in PEFR may occur before symptoms become evident. In more severe cases, PEFR monitoring enables earlier recognition of suboptimal asthma control.

Infant pulmonary function can be measured in sedated children with compression techniques. The forced oscillation technique can be used to measure airway resistance even in younger children.

Hypoxemia is present early with a normal or low PaCO2 level and respiratory alkalosis. Hypoxemia may be aggravated during treatment with a β2-agonist due to ventilation-perfusion mismatch. Oxygen saturation less than 91% is indicative of significant obstruction. Respiratory acidosis and increasing CO2 tension may ensue with further air-flow obstruction and signal impending respiratory failure. Hypercapnia is usually not seen until the FEV1 falls below 20% of predicted value. Metabolic acidosis has also been noted in combination with respiratory acidosis in children with severe asthma and indicates imminent respiratory failure. PaO2 less than 60 mm Hg despite oxygen therapy and PacO2 over 60 mm Hg and rising more than 5 mm Hg/h are relative indications for mechanical ventilation in a child in status asthmaticus.

Pulsus paradoxus may be present with moderate or severe asthma exacerbation. In moderate asthma exacerbation in a child, this may be between 10 and 25 mm Hg, and in severe asthma exacerbation between 20 and 40 mm Hg. Absence of pulsus paradoxus in a child with severe asthma exacerbation may signal respiratory muscle fatigue.

Clumps of eosinophils on sputum smear and blood eosinophilia are frequent findings. Their presence tends to reflect disease activity and does not necessarily mean that allergic factors are involved. Leukocytosis is common in acute severe asthma without evidence of bacterial infection and may be more pronounced after epinephrine administration. Hematocrit can be elevated with dehydration during prolonged exacerbations or in severe chronic disease. Noninvasive measures of airway inflammation include exhaled nitric oxide concentrations, serum eosinophil cationic protein levels, and induced sputum. Each test has its strengths and weaknesses.

C. Imaging

Evaluation of asthma usually does not need chest radiographs (posteroanterior and lateral views) since they often
appear normal, although subtle and nonspecific findings of hyperinflation (flattening of the diaphragms), peribronchial thickening, prominence of the pulmonary arteries, and areas of patchy atelectasis may be present. Atelectasis may be misinterpreted as the infiltrates of pneumonia. Some lung abnormalities, such as bronchiectasis, which may point to a different diagnosis implicating an asthma masquerader, such as cystic fibrosis, allergic bronchopulmonary mycoses (aspergillosis), ciliary dyskinesias, or immune deficiencies, can be better appreciated with high-resolution, thin-section chest computed tomography (HRCT) scans. It is primarily useful clinically in ruling out certain diagnoses in patients with difficult to manage asthma but radiation exposure should be considered when ordering HRCT.

Allergy testing is discussed in the section on General Measures under Treatment, Chronic Asthma.

Differential Diagnosis

Diseases that may be mistaken for asthma are often related to the patient’s age (Table 38–1). Congenital abnormalities must be excluded in infants and young children. Asthma can be confused with croup, acute bronchiolitis, pneumonia, and pertussis. Immunodeficiency may be associated with cough and wheezing. Foreign bodies in the airway may cause dyspnea or wheezing of sudden onset, and on auscultation, wheezing may be unilateral. Asymmetry of the lungs secondary to air trapping may be seen on a chest radiograph, especially with forced expiration. Cystic fibrosis can be associated with or mistaken for asthma.

Vocal cord dysfunction is an important masquerader of asthma, although the two can coexist. It is characterized by the paradoxical closure of the vocal cords that can result in dyspnea and wheezing. Diagnosis is made by direct visualization of the vocal cords. In normal individuals, the vocal cords abduct during inspiration and may adduct slightly during expiration. Asthmatic patients may have narrowing of the glottis during expiration as a physiologic adaptation to airway obstruction. In contrast, patients with isolated vocal cord dysfunction typically show adduction of the anterior two-thirds of their vocal cords during inspiration, with a small diamond-shaped aperture posteriorly. Because this abnormal vocal cord pattern may be intermittently present, a normal examination does not exclude the diagnosis. Bronchial challenges using exercise or methacholine can precipitate symptoms of vocal cord dysfunction. The flow-volume loop may provide additional clues to the diagnosis of vocal cord dysfunction. Truncation of the inspiratory portion can be demonstrated in most patients during an acute episode, and some patients continue to show this pattern even when they are asymptomatic (see Figure 38–1). Children with vocal cord dysfunction, especially adolescents, tend to be overly competitive, primarily in athletics and scholastics. A psychiatric consultation may help define underlying psychological issues and provide appropriate therapy. Treatment of isolated vocal cord dysfunction includes education regarding the condition and appropriate breathing exercises. Hypnosis, biofeedback, and psychotherapy have been effective for some patients.

Table 38–1. Differential diagnosis of asthma in infants and children.

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral bronchiolitis</td>
</tr>
<tr>
<td>Aspiration</td>
</tr>
<tr>
<td>Laryngotracheomalacia</td>
</tr>
<tr>
<td>Vascular rings</td>
</tr>
<tr>
<td>Airway stenosis or web</td>
</tr>
<tr>
<td>Enlarged lymph nodes</td>
</tr>
<tr>
<td>Mediastinal mass</td>
</tr>
<tr>
<td>Foreign body</td>
</tr>
<tr>
<td>Bronchopulmonary dysplasia</td>
</tr>
<tr>
<td>Obliterative bronchiolitis</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>Vocal cord dysfunction</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
</tr>
</tbody>
</table>
to the consequences of illness denial, poor coping or self-management skills, as well as to nonadherence with prescribed therapy. Recent studies have shown that less than 50% of inhaled asthma medications are taken as prescribed and that compliance does not improve with increasing severity of illness. Moreover, children requiring hospitalization for asthma, or their caregivers, have often failed to institute appropriate home treatment.

Complications

With acute asthma, complications are primarily related to hypoxemia and acidosis and can include generalized seizures. Pneumomediastinum or pneumothorax can be a complication in status asthmaticus. With chronic asthma, recent studies point to airway wall remodeling and loss of pulmonary function with persistent airway inflammation. Childhood asthma independent of any corticosteroid therapy has been shown to be associated with delayed maturation and slowing of prepubertal growth velocity.

Treatment

A. Chronic Asthma

1. General measures—Optimal asthma management includes an assessment and regular monitoring of disease activity, education and partnership to improve the child’s and his/her family’s knowledge and skills for self-management, identification and management of triggers and conditions that may worsen asthma, and appropriate medications selected to address the patient’s needs. The objective of asthma management is the attainment of the best possible asthma control.

An assessment of asthma severity (ie, the intrinsic intensity of disease) is generally most accurate in patients not receiving controller therapy. Hence, assessing asthma severity directs the level of initial therapy. For those already on treatment, asthma severity can be classified according to the level of medication requirement to maintain adequate asthma control. The two general categories are intermittent and persistent asthma, the latter further subdivided into mild, moderate, and severe (Table 38–2). In contrast, asthma control refers to the degree to which symptoms, ongoing functional impairments, and risk of adverse events are minimized and goals of therapy are met. Assessment of asthma control should be done at every visit as this is important in adjusting therapy. It is categorized as “well controlled,” “not well controlled,” and “very poorly controlled” (Table 38–3). Responsiveness to therapy is the ease with which asthma control is attained by treatment. It can also encompass monitoring for adverse effects related to medication use.

Classification of either asthma severity or control is based on the domains of current impairment and risk, recognizing that these domains may respond differently to treatment. The level of asthma severity or control is established upon the most severe component of impairment or risk. Generally, the assessment of impairment is symptom based, except for the use of lung function for school-aged children and youths. Impairment includes an assessment of the patient’s recent symptom frequency and intensity and functional limitations (ie, daytime symptoms, nighttime awakenings, need for short-acting β₂-agonists for quick relief, work or school days missed, ability to engage in normal or desired activities, and quality-of-life assessments) and airflow compromise preferably using spirometry. On the other hand, risk refers to an evaluation of the patient’s likelihood of developing asthma exacerbations, reduced lung growth in children (or progressive decline in lung function in adults), or risk of untoward effects from medications.

Education is important and partnership with the child’s family is a key component in the management to improve adherence and outcomes. The patient and family must understand the role of asthma triggers, the importance of disease activity even without obvious symptoms, how to use objective measures to gauge disease activity, and the importance of airway inflammation—and they must learn to recognize the warning signs of worsening asthma, allowing for early intervention. A stepwise care plan should be developed for all patients with asthma. Providing asthma action plans is currently a requirement that is tracked by many hospitals and others to document that educational instruction for chronic disease management has been given. Asthma action plans should be provided to school personnel and all those who care for children with asthma.

Because the degree of airflow limitation is poorly perceived by many patients, peak flow meters can aid in the assessment of airflow obstruction and day-to-day disease activity. Peak flow rates may provide early warning of worsening asthma. They are also helpful in monitoring the effects of medication changes. Spacer devices optimize delivery of medication from metered-dose inhalers (MDIs) to the lungs and, with inhaled steroids, minimize side effects. Large-volume spacers are preferred. Poor understanding by patients and families of proper device use can lead to inadequate delivery and treatment with inhaled medications, especially inhaled controllers. Short instructive videos for device use can be provided to educate families and other caregivers (URL: http://www.thechildrenshospital.org/conditions/lung/asthmavideos.aspx).

Patients should avoid exposure to tobacco smoke and allergens to which they are sensitized, exertion outdoors when levels of air pollution are high, β-blockers, and sulfite-containing foods. Patients with persistent asthma should be given the inactivated influenza vaccine yearly unless they have a contraindication.

For patients with persistent asthma, the clinician should use the patient’s history to assess sensitivity to seasonal allergens and Alternaria mold; use in vitro testing (either by skin or blood test) to assess sensitivity to perennial indoor
Table 38–2. Assessing severity and initiating treatment for patients who are not currently taking long-term control medications.

<table>
<thead>
<tr>
<th>Components of Severity</th>
<th>Intermittent</th>
<th>Mild</th>
<th>Persistent</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Impairment</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daytime symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nighttime awakenings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 0–4 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≥ 5 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SABA use for symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(not prevention of EiB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interference with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV₁, % predicted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≥ 5 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt; 80% predicted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV₁/FVC ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 5–11 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt; 85%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≥ 12 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exacerbations requiring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>systemic corticosteroids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 0–4 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1/y (see note)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≥ 5 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1/y (see note)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consider severity and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interval since last</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exacerbation. Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and severity may</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluctuate over time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for patients in any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>severity category.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative annual risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of exacerbations may</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>be related to FEV₁.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Recommended step for initiating therapy</strong></td>
<td>Step 1</td>
<td>Step 2</td>
<td>Age 0–4 y</td>
</tr>
<tr>
<td></td>
<td>Step 3</td>
<td>Step 3</td>
<td>Age 5–11 y</td>
</tr>
<tr>
<td></td>
<td>Step 3,</td>
<td>Step 3</td>
<td>Age ≥ 12 y</td>
</tr>
<tr>
<td></td>
<td>medium-dose</td>
<td>Step 3, medium-dose ICS option, OR step 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICS option</td>
<td></td>
<td>Age 5–11 y</td>
</tr>
<tr>
<td></td>
<td>OR step 4</td>
<td></td>
<td>Age ≥ 12 y</td>
</tr>
<tr>
<td></td>
<td>Step 4 or 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consider a short course of systemic corticosteroids</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- The stepwise approach is meant to assist, not replace, the clinical decision making required to meet individual patient needs.
- Level of severity is determined by both impairment and risk. Assess impairment domain by patient’s/caregiver’s recall of previous 2–4 weeks. Symptom assessment for longer periods should reflect a global assessment such as inquiring whether a patient’s asthma is better or worse since the last visit. Assign severity to the most severe category in which any feature occurs.
Table 38–3. Assessing asthma control and adjusting therapy in children.

<table>
<thead>
<tr>
<th>Components of Control</th>
<th>Classification of Asthma Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well Controlled</td>
</tr>
<tr>
<td>Impairment</td>
<td>≤ 2 d/wk but not more than once on each day</td>
</tr>
<tr>
<td><strong>Symptoms</strong></td>
<td>≤ 2 d/wk but not more than once on each day</td>
</tr>
<tr>
<td><strong>Nighttime awakenings</strong></td>
<td>Age 0–4 y</td>
</tr>
<tr>
<td></td>
<td>Age 5–11 y</td>
</tr>
<tr>
<td></td>
<td>Age ≥ 12 y</td>
</tr>
<tr>
<td></td>
<td>SABA use for symptoms (not EIB pretreatment)</td>
</tr>
<tr>
<td><strong>Interference with normal activity</strong></td>
<td>None</td>
</tr>
<tr>
<td><strong>Lung function</strong></td>
<td>Age 5–11 y</td>
</tr>
<tr>
<td></td>
<td>FEV1% predicted or peak flow</td>
</tr>
<tr>
<td></td>
<td>FEV1/FVC</td>
</tr>
<tr>
<td></td>
<td>Age ≥ 12 y</td>
</tr>
<tr>
<td></td>
<td>FEV1% predicted or peak flow</td>
</tr>
<tr>
<td><strong>Validated questionnaires</strong></td>
<td>Age ≥ 12 y</td>
</tr>
<tr>
<td></td>
<td>ATAQ</td>
</tr>
<tr>
<td></td>
<td>ACQ</td>
</tr>
<tr>
<td></td>
<td>ACT</td>
</tr>
<tr>
<td><strong>Risk</strong></td>
<td>Exacerbations requiring systemic corticosteroids</td>
</tr>
<tr>
<td></td>
<td>Age 0–4 y</td>
</tr>
<tr>
<td></td>
<td>Age ≥ 5 y</td>
</tr>
<tr>
<td>Consider severity and interval since last exacerbation.</td>
<td></td>
</tr>
<tr>
<td>Treatment-related adverse effects</td>
<td></td>
</tr>
<tr>
<td>Reduction in lung growth or progressive loss of lung function</td>
<td>Medication side effects can vary in intensity from none to very troublesome and worrisome. The level of intensity does not correlate to specific levels of control but should be considered in the overall assessment of risk.</td>
</tr>
<tr>
<td>Evaluation requires long-term follow-up care.</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 38-3. Assessing asthma control and adjusting therapy in children. (Continued)

<table>
<thead>
<tr>
<th>Components of Control</th>
<th>Classification of Asthma Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well Controlled</td>
</tr>
<tr>
<td><strong>Recommended action for treatment</strong></td>
<td></td>
</tr>
</tbody>
</table>

- Maintain current step.
- Regular follow-up every 1–6 mo to maintain control.
- Consider step-down if well controlled for at least 3 mo.
- Step up (1 step) and reevaluate in 2–6 wk.
- If no clear benefit in 4–6 wk consider alternative diagnoses or adjusting therapy.
- For side effects, consider alternative options.
- Consider short course of oral corticosteroids.
- Step up (1–2 steps), and reevaluate in 2 wk.
- If no clear benefit in 4–6 wk, consider alternative diagnoses or adjusting therapy.
- For side effects, consider alternative options.

**Notes:**
- The stepwise approach is meant to assist, not replace, the clinical decision making required to meet individual patient needs.
- The level of control is based on the most severe impairment or risk category. Assess impairment domain by caregiver’s recall of previous 2–4 weeks. Symptom assessment for longer periods should reflect a global assessment such as inquiring whether the patient’s asthma is better or worse since the last visit.
- At present, there are inadequate data to correspond frequencies of exacerbations with different levels of asthma control. In general, more frequent and intense exacerbations (eg, requiring urgent, unscheduled care, hospitalization, or ICU admission) indicate poorer disease control. For treatment purposes, patients who had ≥ 2 exacerbations requiring oral systemic corticosteroids in the past year may be considered the same as patients who have not-well-controlled asthma, even in the absence of impairment levels consistent with not-well-controlled asthma.
- Validated questionnaires for the impairment domain (the questionnaires do not assess lung function or the risk domain):
  a. ATAQ = Asthma Therapy Assessment Questionnaire
  b. ACQ = Asthma Control Questionnaire
  c. ACT = Asthma Control Test
  d. Minimal Important Difference: 1.0 for ATAQ; 0.5 for the ACQ; not determined for ACT; *ACQ values of 0.76–1.40 are indeterminate regarding well-controlled asthma.
- Before step-up therapy:
  a. Review adherence to medications, inhaler technique, and environmental control.
  b. If alternative treatment option was used in a step, discontinue it and use preferred treatment for that step. EIB, exercise-induced bronchospasm; FEV₁, forced expiratory volume in 1 second; FVC, forced vital capacity.

Allergens; assess the significance of positive tests in the context of the patient’s history; and identify relevant allergen exposures. For dust mite–allergic children, important environmental control measures include encasing the pillow and mattress in an allergen-impermeable cover and washing the sheets and blankets on the patient’s bed weekly in hot water. Other measures include keeping indoor humidity below 50%, minimizing the number of stuffed toys, and washing such toys weekly in hot water. Children allergic to fur-bearing animals or feathers should avoid indoor exposure to pets, especially for prolonged periods of time. If removal of the pet is not possible, the animal should be kept out of the bedroom with the door closed. Carpeting and upholstered furniture should be removed. While a high-efficiency particle-arresting filter unit in the bedroom may reduce allergen levels, symptoms may persist if the pet remains indoors. For cockroach–allergic children, control measures need to be instituted when infestation is present in the home. Poison baits, boric acid, and traps are preferred to chemical agents, which can be irritating if inhaled by asthmatic individuals. Indoor molds are especially prominent in humid or damp environments. Measures to control dampness or fungal growth in the home may be of benefit. Patients can reduce exposure to outdoor allergens by staying in an air-conditioned environment. Allergen immunotherapy may be useful for implicated aeroallergens that cannot be avoided. However, it should be administered only in facilities staffed and equipped to treat life-threatening reactions.

Patients should be treated for rhinitis, sinusitis, or gastro-esophageal reflux, if present. Treatment of upper respiratory tract symptoms is an integral part of asthma management. Intranasal corticosteroids are recommended to treat chronic rhinosinusitis in patients with persistent asthma because they reduce lower airway hyperresponsiveness and asthma symptoms. Intranasal cromolyn reduces asthma symptoms.
during the ragweed season but less so than intranasal corticosteroids. Treatment of rhinosinusitis includes medical measures to promote drainage and the use of antibiotics for acute bacterial infections (see Chapter 18). Medical management of gastroesophageal reflux includes avoiding eating or drinking 2 hours before bedtime, elevating the head of the bed with 6- to 8-in blocks, and using appropriate pharmacologic therapy.

2. Pharmacologic therapy—A revised stepwise approach to pharmacologic therapy, broken down by age categories, is recommended in the NAEPP EPR3 (http://www.nhlbi.nih.gov) (Table 38–4). This approach is based on the concepts of asthma severity and asthma control. A separate set of recommendations for younger children is provided given the lack of tools which can be used to assess lung function and quality of life otherwise available for older children. Treatment recommendations for older children and adults are better supported by stronger evidence from available clinical trials, whereas those for younger children have been extrapolated from studies in older children and adults.

The choice of initial therapy is based on assessment of asthma severity. For patients who are already on controller therapy, treatment can be adjusted based on assessment of asthma control and responsiveness to therapy. The goals of therapy are to reduce the components of both impairment (eg, preventing chronic and troublesome symptoms, allowing infrequent need of quick-relief medications, maintaining “normal” lung function, maintaining normal activity levels including physical activity and school attendance, meeting families’ expectations and satisfaction with asthma care) and risk (eg, preventing recurrent exacerbations, reduced lung growth, and medication adverse effects).

1. The stepwise approach is meant to assist, not replace, the clinical decision making required to meet individual patient needs.

2. In the absence of persistent symptoms, the new clinical guidelines recommend considering initiation of long-term controller therapy for infants and younger children who have risk factors for asthma (ie, modified asthma predictive index: parental history of asthma, physician-diagnosed atopic dermatitis, or sensitization to Aeroallergens or two of the following: wheezing apart from colds, sensitization to foods, or peripheral eosinophilia) and four or more episodes of wheezing over the past year that lasted longer than 1 day and affected sleep or two or more exacerbations in 6 months requiring systemic corticosteroids.

3. Inhaled corticosteroids, either as monotherapy or in combination with adjunctive therapy, are preferred treatment for all levels of persistent asthma.

4. Along with medium-dose inhaled corticosteroids, combination therapy with inhaled corticosteroids plus any of the following adjunctive therapies—long-acting inhaled β₂-agonists (LABAs), leukotriene modifying agents, cromones, and theophylline—is recommended as step 3 treatment for moderate persistent asthma, or as step-up therapy for uncontrolled persistent asthma for school-aged children and youths. In children aged 0–4 years, medium-dose inhaled corticosteroids as monotherapy remain the step 3 therapy, and combination therapy to be initiated only as a step 4 treatment. A rescue course of systemic corticosteroids may be necessary at any step.

Asthma medications are classified as long-term controller medications and quick-relief medications. The former includes anti-inflammatory agents, leukotriene modifiers, and long-acting bronchodilators. Although LABAs (salmeterol, formoterol) are β₂-agonists, they are considered to be daily controller medications, but unlike the other asthma controller medications with primarily anti-inflammatory properties, LABAs cannot be administered as monotherapy.

Inhaled corticosteroids are the most potent inhaled anti-inflammatory agents currently available. Different inhaled corticosteroids are not equivalent on a per puff or microgram basis (Table 38–5). Early intervention with inhaled corticosteroids can improve asthma control and prevent exacerbations during treatment, but they do not prevent the development of persistent asthma nor do they alter its natural history. Long-term inhaled corticosteroids may be associated with early slowing of growth velocity in children, and although this can impact the final adult height by a minimum degree, it is not a cumulative effect. Possible risks from inhaled corticosteroids need to be weighed against the risks from undertreated asthma. The adverse effects from inhaled corticosteroids are generally dose and duration dependent, so that greater risks for systemic adverse effects are expected with high doses. The various inhaled corticosteroids are delivered in different devices such as MDI (beclomethasone, ciclesonide, fluticasone, flunisolide, and triamcinolone), dry powder inhaler (DPI) (fluticasone [Diskus], budesonide [Flexhaler], and mometasone [Twisthaler]), and nebulized aerosol suspensions (budesonide respules). Inhaled medications delivered in MDI now use the more ozone friendly hydrofluoroalkane (HFA) propellant, which has replaced chlorofluorocarbons (CFC). See instructions for different device use at the following URL: http://www.thechildrenshospital.org/conditions/lung/asthmaideos.aspx.

Only inhaled corticosteroids have been shown to be effective in long-term clinical studies with infants. Nebulized budesonide is approved for children as young as 12 months. The suspension (available in quantities of 0.25 mg/2 mL, 0.5 mg/2 mL, and 1.0 mg/2 mL) is usually administered either once or twice daily in divided doses. For effective drug delivery, it is critical that the child has a mask secured on the face for the entire treatment, as blowing it in the face is not effective and yet a common practice by parents. Notably, this drug should not be given by ultrasonic nebulizer.
Table 38-4. Stepwise approach for managing asthma in children.

<table>
<thead>
<tr>
<th>Intermittent</th>
<th>Persistent Asthma: Daily Medication</th>
<th>Step 5</th>
<th>Step 6</th>
<th>Step down if possible (and asthma is well controlled at least 3 mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 0–4 y</td>
<td></td>
<td>Step 3</td>
<td>Preferred High-dose ICS + either LABA or LTRA</td>
<td></td>
</tr>
<tr>
<td>Age 5–11 y</td>
<td></td>
<td>Step 2</td>
<td>Preferred Medium-dose ICS + either LABA or LTRA</td>
<td></td>
</tr>
<tr>
<td>Age ≥ 12 y</td>
<td></td>
<td>Step 1</td>
<td>Preferred SABA PRN</td>
<td></td>
</tr>
</tbody>
</table>

Each step: Patient education, environmental control, and management of comorbidities.

Age ≥ 5 y: Steps 2–4: Consider subcutaneous allergen immunotherapy for patients who have allergic asthma.

Quick-Relief Medication for All Patients
- SABA as needed for symptoms. Intensity of treatment depends on severity of symptoms: up to three treatments at 20-minute intervals as needed. Short course of oral systemic corticosteroids may be needed.
- Caution: Use of SABA > 2 d/wk for symptom relief (not prevention of EIB) generally indicates inadequate control and the need to step up treatment.
- For ages 0–4 years: With viral respiratory infection: SABA q4-6h up to 24 hours (longer with physician consult). Consider short course of systemic corticosteroids if exacerbation is severe or patient has history of previous severe exacerbations.

Alphabetical order is used when more than one treatment option is listed within either preferred or alternative therapy.

Notes:
- The stepwise approach is meant to assist, not replace, the clinical decision making required to meet individual patient needs.
- If alternative treatment is used and response is inadequate, discontinue it and use the preferred treatment before stepping up.
- If clear benefit is not observed within 4–6 weeks and patient/family medication technique and adherence are satisfactory, consider adjusting therapy or alternative diagnosis.
Table 38-4. Stepwise approach for managing asthma in children. (Continued)

- Studies on children aged 0–4 years are limited. Step 2 therapy is based on Evidence A. All other recommendations are based on expert opinion and extrapolation from studies in older children.
- For age 5–11 years, steps 1 and 2 medications are based on Evidence A. Step 3 ICS + adjunctive therapy and ICS are based on Evidence B for efficacy of each treatment and extrapolation from comparator trials in older children and adults—comparator trials are not available for this age group; steps 4–6 are based on expert opinion and extrapolation from studies in older children and adults.
- For ages ≥ 12 years, steps 1, 2, and 3 preferred therapies are based on Evidence A; step 3 alternative therapy is based on Evidence A for LTRA, Evidence B for theophylline, and Evidence D for zileuton. Step 4 preferred therapy is based on Evidence B, and alternative therapy is based on Evidence B for LTRA and theophylline and Evidence D for zileuton. Step 5 preferred therapy is based on Evidence B. Step 6 preferred therapy is based on (EPR-1 1997) and Evidence B for omalizumab. In step 6, before oral systemic corticosteroids are introduced, a trial of high-dose ICS + LABA + either LTRA, theophylline, or zileuton may be considered, although this approach has not been studied in clinical trials.
- Clinicians who administer immunotherapy or omalizumab should be prepared and equipped to identify and treat anaphylaxis that may occur.
- Theophylline is a less desirable alternative due to the need to monitor serum concentration levels.
- Zileuton is less desirable alternative due to limited studies as adjunctive therapy and the need to monitor liver function.
- Immunotherapy for steps 2–4 is based on Evidence B for house dust mites, animal danders, and pollens; evidence is weak or lacking for molds and cockroaches. Evidence is strongest for immunotherapy with single allergens. The role of allergy in asthma is greater in children than in adults.
- ICS, inhaled corticosteroid; LABA, inhaled long-acting β₂-agonist; LTRA, leukotriene receptor antagonist; prn, as needed; SABA, inhaled short-acting β₂-agonist.


Table 38-5. Estimated comparative inhaled corticosteroid doses.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Low Daily Dose</th>
<th>Medium Daily Dose</th>
<th>High Daily Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–4 y</td>
<td>5–11 y</td>
<td>≥ 12 y</td>
</tr>
<tr>
<td>Beclomethasone HFA, 40 or 80 mcg/puff</td>
<td>NA</td>
<td>80–160 mcg</td>
<td>80–240 mcg</td>
</tr>
<tr>
<td>Budesonide DPI, 90, 80, or 200 mcg/ inhalation</td>
<td>NA</td>
<td>180–400 mcg</td>
<td>180–600 mcg</td>
</tr>
<tr>
<td>Budesonide inhaled suspension for nebulization, 0.25-, 0.5-, and 1.0-mg dose</td>
<td>0.25–0.5 mg</td>
<td>0.5 mg</td>
<td>NA</td>
</tr>
<tr>
<td>Flunisolide HFA, 80 mcg/puff</td>
<td>NA</td>
<td>160 mcg</td>
<td>320 mcg</td>
</tr>
<tr>
<td>Fluticasone DPI, 50, 100, or 250 mcg/ inhalation</td>
<td>NA</td>
<td>100–200 mcg</td>
<td>100–300 mcg</td>
</tr>
<tr>
<td>Mometasone DPI, 220 mg/inhalation</td>
<td>NA</td>
<td>NA</td>
<td>220 mcg</td>
</tr>
<tr>
<td>Triamcinolone acetonide, 75 mcg/puff</td>
<td>NA</td>
<td>300–600 mcg</td>
<td>300–750 mcg</td>
</tr>
</tbody>
</table>

Limited data suggest that inhaled corticosteroids may be effective even in very young children when delivered by MDI with a spacer and mask.

Fewer data are available with nedocromil, although data from the Childhood Asthma Management Program study showed that an inhaled corticosteroid was superior to nedocromil with respect to several efficacy parameters, including rate of hospitalization, symptom-free days, need for albuterol rescue, and longer time to treatment with prednisone, when each was compared to a placebo.

Theophylline is rarely used. Sustained-release theophylline, an alternative long-term control medication for older children, may have particular risks of adverse effects in infants, who frequently have febrile illnesses that increase theophylline concentrations. Hence, if theophylline is used, it requires monitoring of serum concentration to prevent numerous dose-related acute toxicities.

For school aged children whose asthma is uncontrolled on low dose inhaled corticosteroid (ie, requiring step 3 guidelines therapy), majority are likely to respond to a step up combination therapy with a long-acting β₂-agonist bronchodilator (eg, salmeterol and formoterol), although some respond best either to an increased dose of inhaled corticosteroid or to an addition of a leukotriene receptor antagonist. LABAs should not be used for treatment of acute symptoms, nor should they be used without any inhaled corticosteroid therapy, even if the patient feels better. Salmeterol is available as an inhalation powder (one inhalation twice daily for patients aged 4 years and older). It is also available combined with fluticasone (50 mcg salmeterol with 100, 250, or 500 mcg fluticasone in a DPI or 21 mcg salmeterol with 45, 115, or 230 mcg fluticasone in an MDI). For children 12 years and older, one inhalation DPI or two inhalations MDI can be taken twice daily. (Note: The 100/50 fluticasone/salmeterol combination is approved in children aged 4 and older.) Salmeterol can also be used 30 minutes before exercise (but not in addition to regularly used LABAs). Formoterol has a more rapid onset of action and is available singly as a DPI (Aerolizer, 12 mcg) or combined with an inhaled corticosteroid (formoterol fumarate, either 4.5 mcg with budesonide [80 or 160 mcg] or 5 mcg with mometasone [100 or 200 mcg], in an MDI). Formoterol DPI is approved for use in children 5 years and older, one inhalation (12 mcg) twice daily, while the combination product is approved for children 12 years and older, two inhalations twice daily. For long-term control, formoterol should be used in combination with an anti-inflammatory agent. It can be used for exercise-induced bronchospasm in patients 5 years and older, one inhalation at least 15 minutes before exercise (but not in addition to regularly used LABAs). Of note, the U.S. Food and Drug Administration (FDA) has requested the manufacturers of Advair Diskus and HFA (salmeterol and fluticasone), Serevent Diskus (salmeterol xinafoate), Foradil Aerolizer (formoterol fumarate), Symbicort HFA, and Brovana (arformoterol tartrate inhalation solution, a LABA approved for chronic obstructive pulmonary disease) to update their product information warning sections regarding an increase in severe asthma episodes associated with these agents. This action is in response to data showing an increased number of asthma-related deaths in patients receiving LABA therapy in addition to their usual asthma care as compared with patients not receiving LABAs. This notice is also intended to reinforce the appropriate use of LABAs in the management of asthma. Specifically, LABA products should not be initiated as first-line asthma therapy, used with worsening wheezing, or used for acute control of bronchospasm. No data are available regarding safety concerns in patients using these products for exercise-induced bronchoconstriction. Additional information, including copies of the Patient and Healthcare Professional information sheets, can be found at: http://www.fda.gov/cder/drug/infopage/LABA/default.htm.

Montelukast and zafirlukast are leukotriene-receptor antagonists available in oral formulations. Montelukast is given once daily and has been approved for treatment of chronic asthma in children aged 1 year and older, as an alternative step 2 monotherapy and add-on therapy for steps 3–6. It is also indicated for seasonal allergic rhinitis in patients 2 years and older, and for perennial allergic rhinitis in patients 6 months and older. To date, no drug interactions have been noted. The dosage is 4 mg for children 1–5 years (oral granules are available for children aged 12–23 months), 5 mg for children aged 6–14 years, and 10 mg for those aged 15 years and older. The drug is given without regard to mealtimes, preferably in the evening. Zafirlukast is approved for patients aged 5 years and older. The dose is 10 mg twice daily for those 5–11 years and 20 mg twice daily for those 12 years and older. It should be taken 1 hour before or 2 hours after meals. Zileuton is a 5-lipoxygenase inhibitor indicated for chronic treatment in children 12 years of age and older, available in regular 600 mg dose tablet four times a day or extended release 600 mg dose tablet, 2 tablets twice a day. Patients need to have hepatic transaminase levels evaluated at initiation of therapy, then once a month for the first 3 months, every 2–3 months for the remainder of the first year, and periodically thereafter if receiving long-term zileuton therapy. Rare cases of Churg-Strauss syndrome have been reported in adult patients with severe asthma whose steroid dosage was being tapered during concomitant treatment with leukotriene-receptor antagonists (as well as inhaled corticosteroids), but no causal link has been established. Both zafirlukast and zileuton are microsomal P-450 enzyme inhibitors that can inhibit the metabolism of drugs such as warfarin and theophylline. The FDA has requested that manufacturers include a precaution in the drug prescribing information (drug labeling) regarding neuropsychiatric events (agitation, aggression, anxiety, dream abnormalities and hallucinations, depression,
insomnia, irritability, restlessness, suicidal thinking and behavior, and tremor) based on postmarket reports of patients taking leukotriene modifying agents. Of note, in a study of children with mild to moderate persistent asthma that looked at whether responses to an inhaled corticosteroid and a leukotriene-receptor antagonist are concordant for individuals or whether asthmatic patients who do not respond to one medication respond to the other, response to fluticasone and montelukast were found to vary considerably. Children with low pulmonary function or high levels of markers associated with allergic inflammation responded better to the inhaled corticosteroid.

Children with persistent asthma who remain uncontrolled on inhaled corticosteroid monotherapy are more likely to respond to a combination treatment of an inhaled corticosteroid and a LABA; however, there are children who can respond best to a higher dose of inhaled corticosteroid, or even a low dose inhaled corticosteroid plus montelukast. It has not been definitely determined what clinical features would be helpful in selecting the most appropriate medication for any one patient. Recent studies in adults have also shown the efficacy of a long-acting antimuscarinic medication for any one patient. Recent studies in adults or even a low dose inhaled corticosteroid plus montelukast. It has not been definitely determined what clinical features would be helpful in selecting the most appropriate medication for any one patient. Recent studies in adults have also shown the efficacy of a long-acting antimuscarinic agent, tiotropium (Spiriva), as an add-on therapy to inhaled corticosteroids. Quick-relief medications include short-acting inhaled β₂-agonists (SABAs) such as albuterol, levalbuterol, pirbuterol, or terbutaline. Albuterol can be given by nebulizer, 0.05 mg/kg (with a minimal dose of 0.63 mg and a maximum of 5 mg) in 2–3 mL saline (although it is also available in a 2.5 mg/3 mL single vial or 5 mg/mL concentrated solution) or by MDI (90 mcg/actuation). It is better to use SABAs as needed rather than on a regular basis. Increasing use, including more than one canister per month, may signify inadequate asthma control and the need to step up or revise controller therapy. Levalbuterol, the (R)-enantiomer of racemic albuterol, is available in solution for nebulization in patients aged 6–11 years, 0.31 mg every 8 hours, and in patients 12 years and older, 0.63–1.25 mg every 8 hours. It has recently become available in an HFA formulation for children 4 years and older, two inhalations (90 mcg) every 4–6 hours as needed. Anticholinergic agents such as ipratropium, 1–3 puffs or 0.25–0.5 mg by nebulizer every 6 hours, may provide additive benefit when used together with an inhaled SABA. Systemic corticosteroids such as prednisone, prednisolone, and methylprednisolone can be given in a dosage of 1–2 mg/kg, usually not to exceed 60 mg/d in single or divided doses for 3–10 days. There is no evidence that tapering the dose following a “burst” prevents relapse.

Anti-IgE (omalizumab) is a recombinant DNA-derived humanized IgG1 monoclonal antibody that selectively binds to human IgE. It inhibits the binding of IgE to the high-affinity IgE receptor (FcεRI) on the surface of mast cells and basophils. Reduction in surface-bound IgE on FcεRI-bearing cells limits the degree of release of mediators of the allergic response. Treatment with omalizumab also reduces the number of FcεRI receptors on basophils in atopic patients. Omalizumab is indicated for patients 12 years of age and older with moderate to severe persistent asthma who have a positive skin test or in vitro reactivity to a perennial aeroallergen with total serum IgE of 30–700 IU/mL, and whose symptoms are inadequately controlled with medium to high dose inhaled corticosteroids. Omalizumab has been shown to decrease the incidence of asthma exacerbations and improve asthma control in these patients. Dosing is based on the patient’s weight and serum IgE level and is given subcutaneously every 2–4 weeks. The FDA has ordered a black box warning to the label because of new reports of serious and life-threatening anaphylactic reactions (bronchospasm, hypotension, syncope, urticaria, and angioedema of the throat or tongue) in patients after treatment with omalizumab (Xolair). Based on reports from approximately 39,500 patients, anaphylaxis following omalizumab treatment occurred in at least 0.1% of treated people. Although these reactions occurred within 2 hours of receiving a omalizumab subcutaneous injection, they also included reports of serious delayed reactions 2–24 hours or even longer after receiving the injections. Anaphylaxis occurred after any dose of omalizumab (including the first dose), even in patients with no allergic reaction to previous doses. Omalizumab-treated patients should be observed in the facility for an extended period after the drug is given, and medical providers who administer the injection should be prepared to manage life-threatening anaphylactic reactions. Patients who receive omalizumab should be fully informed about the signs and symptoms of anaphylaxis, their chance of developing delayed anaphylaxis following each injection, and how to treat it, including the use of autoinjectable epinephrine. The small risks of malignant neoplasms (a variety of types, e.g., breast, nonmelanoma skin, prostate, melanoma, and parotid) in clinical studies of adults and adolescents (≥12 years of age) with asthma and other allergic disorders were reported in 20 of 4127 (0.5%) omalizumab-treated patients compared to 5 of 2236 (0.2%) controls.

Immunotherapy (discussed in more detail in a subsequent section) can be considered for children 5 years and older with allergic asthma who require steps 2, 3, and 4 therapy.

Continual monitoring is necessary to ensure that control of asthma is achieved and sustained. Once control is established, gradual reduction in therapy is appropriate and may help determine the minimum amount of medication necessary to maintain control. Regular follow-up visits with the clinician are important to assess the degree of control and consider appropriate adjustments in therapy. At each step, patients should be instructed to avoid or control exposure to allergens, irritants, or other factors that contribute to asthma severity.

Referral to an asthma specialist for consultation or co-management is recommended if there are difficulties
in achieving or maintaining control. For children younger than age 5 years, referral is recommended for moderate persistent asthma or if the patient requires step 3 or 4 care and should be considered if the patient requires step 2 care. For children 5 years and older, consultation with a specialist is recommended if the patient requires step 4 care or higher and should be considered at step 3. Referral is also recommended if allergen immunotherapy or anti-IgE therapy is being considered.

3. Exercise-induced bronchospasm—Exercise-induced bronchospasm should be anticipated in all asthma patients. It typically occurs during or minutes after vigorous activity, reaches its peak 5–10 minutes after stopping the activity, and usually resolves over the next 20–30 minutes. Participation in physical activity should be encouraged in children with asthma, although the choice of activity may need to be modified based on the severity of illness, presence of other triggers such as cold air, and, rarely, confounding factors such as osteoporosis. Poor endurance or exercise-induced bronchospasm can be an indication of poorly controlled persistent asthma. If symptoms occur during usual play activities, either initiation of or a step-up in long-term therapy is warranted. However, for those with exercise-induced bronchospasm as the only manifestation of asthma despite otherwise being “well-controlled,” treatment immediately prior to vigorous activity or exercise is usually effective. SABAs, leukotriene receptor antagonists, cromolyn, or nedocromil can be used before exercise. The combination of a SABA with either cromolyn or nedocromil is more effective than either drug alone. Salmeterol and formoterol may block exercise-induced bronchospasm for up to 12 hours (as discussed earlier). However, decreased duration of protection against exercise-induced bronchospasm can be expected with regular use. Montelukast may be effective up to 24 hours. An extended warm-up period may induce a refractory state, allowing patients to exercise without a need for repeat medications.

B. Acute Asthma

1. General measures—The most effective strategy in managing asthma exacerbations involves early recognition of warning signs and early treatment. For patients with moderate or severe persistent asthma or a history of severe exacerbations, this should include a written action plan. The latter usually defines the patient’s green, yellow, and red zones based on symptoms (and PEFR for patients with poor symptom perception) with corresponding measures to take according to the state the patient is in. PEFR cut-off values are conventionally set as > 80% (green), 50%–80% (yellow), and < 50% (red) of the child’s personal best. Prompt communication with the clinician is indicated with severe symptoms or a drop in peak flow or with decreased response to SABAs. At such times, intensification of therapy may include a short course of oral corticosteroids. The child should be removed from exposure to any irritants or allergens that could be contributing to the exacerbation.

2. Management at home—Early treatment of asthma exacerbations may prevent hospitalization and a life-threatening event. Initial treatment should be with a SABA such as albuterol or levalbuterol; 2–6 puffs from an MDI can be given every 20 minutes up to three times, or a single treatment can be given by nebulizer (0.05 mg/kg [minimum dose, 1.25 mg; maximum, 2.5 mg]) of 0.5% solution of albuterol in 2–3 mL saline; or 0.075 mg/kg [minimum dose, 1.25 mg; maximum, 5 mg] of levalbuterol. If the response is good as assessed by sustained symptom relief or improvement in PEFR to over 80% of the patient’s best, the SABA can be continued every 3–4 hours for 24–48 hours. Patients should be advised to seek medical care once excessive doses of bronchodilator therapy are used or for prolonged periods (eg, > 12 puffs/d for > 24 hours). Doubling the dose of inhaled corticosteroids is not proven sufficient to prevent worsening of exacerbations; however, recent evidence indicates that quadrupling the inhaled corticosteroid dose at the early sign of deterioration might be effective. If the patient does not completely improve from the initial therapy or PEFR falls between 50% and 80% predicted or personal best, the SABA should be continued, an oral corticosteroid should be added, and the patient should contact the physician urgently. If the child experiences marked distress or if PEFR persists at 50% or less, the patient should repeat the SABA immediately and go to the emergency department or call 911 or another emergency number for assistance.

3. Management in the office or emergency department—Functional assessment of the patient includes obtaining objective measures of airflow limitation with PEFR or FEV1 and monitoring the patient’s response to treatment; however, very severe exacerbations and respiratory distress may prevent the execution of lung function measurements using maximal expiratory maneuver. Flow-volume loops should be obtained to differentiate upper and lower airway obstruction, especially in patients with atypical presentation. Other tests may include oxygen saturation and blood gases. Chest radiographs are not recommended routinely but should be considered to rule out pneumothorax, pneumomediastinum, pneumonia, or lobar atelectasis. If the initial FEV1 or PEFR is over 40%, initial treatment can be with a SABA by inhaler (albuterol, 4–8 puffs) or nebulizer (0.15 mg/kg of albuterol 0.5% solution; minimum dose, 2.5 mg), up to three doses in the first hour. Oxygen should be given to maintain oxygen saturation at greater than 90%. Oral corticosteroids (1–2 mg/kg/d in divided doses; maximum of 60 mg/d for children aged ≤ 12 years and 80 mg/d for those > 12 years) should be instituted if the patient responds poorly to therapy if the patient has recently been on oral corticosteroids. Sensitivity to adrenergic drugs may improve after initiation of corticosteroids. For severe exacerbations or if the initial FEV1 or PEFR is under 40%, initial treatment should be with a high-dose SABA plus ipratropium bromide, 1.5–3 mL every 20 minutes for 3 doses (each 3 mL vial contains 0.5 mg ipratropium bromide and 2.5 mg albuterol), then as
needed by nebulizer. Continuous albuterol nebulized treatments (0.5 mg/kg/hour for small and 10–15 mg/hour for older children) can be administered for evidence of persistent obstruction. Oxygen should be given to maintain oxygen saturation at greater than 90%, and systemic corticosteroids should be administered. For patients with severe exacerbation having no response to initial aerosolized therapy, or for those who cannot cooperate with or who resist inhalation therapy, adjunctive therapies such as intravenous magnesium sulfate (25–75 mg/kg up to 2 g in children) and heliox-driven albuterol nebulization should be considered. Epinephrine 1:1000 or terbutaline 1 mg/mL (both 0.01 mg/kg up to 0.3–0.5 mg) may be administered subcutaneously every 20 minutes for three doses; although the use of intravenous β₂-agonists is still unproven. For impending or ongoing respiratory arrest, patients should be intubated and ventilated with 100% oxygen, given intravenous corticosteroids, and admitted to an intensive care unit (ICU). Potential indications for ICU admission also include any FEV₁ or PEFR less than 25% of predicted that improves less than 10% after treatment or values that fluctuate widely. (See Asthma [life-threatening] in Chapter 14.) Further treatment is based on clinical response and objective laboratory findings. Hospitalization should be considered strongly for any patient with a history of respiratory failure.

4. Hospital management—For patients who do not respond to outpatient and emergency department treatment, admission to the hospital becomes necessary for more aggressive care and support. The decision to hospitalize should also be based on presence of risk factors for mortality from asthma, duration and severity of symptoms, severity of airflow limitation, course and severity of previous exacerbations, medication use at the time of the exacerbation, access to medical care, and home and psychosocial conditions. Fluids should be given at maintenance requirements unless the patient has poor oral intake secondary to respiratory distress or vomiting, because overhydration may contribute to pulmonary edema associated with high intrapleural pressures generated in severe asthma. Potassium requirements should be kept in mind because both corticosteroids and β₂-agonists can cause potassium loss. Moisturized oxygen should be titrated by oximetry to maintain oxygen saturation above 90%. Inhaled β₂-agonist should be continued by nebulization in single doses as needed or by continuous therapy, along with systemic corticosteroids (as discussed earlier). Ipratropium is no longer recommended during hospitalization. In addition, the role of methylxanthines in hospitalized children remains controversial. Antibiotics may be necessary to treat coexisting bacterial infection. Sedatives and anxiolytic agents are contraindicated in severely ill patients owing to their depressive effects on respiration. Chest physiotherapy is usually not recommended for acute exacerbations.

5. Patient discharge—Criteria for discharging patients home from the office or emergency department should include a sustained response of at least 1 hour to bronchodilator therapy with FEV₁ or PEFR greater than 70% of predicted or personal best and oxygen saturation greater than 90% in room air. Prior to discharge, the patient’s or caregiver’s ability to continue therapy and assess symptoms appropriately needs to be considered. Patients should be given an action plan for management of recurrent symptoms or exacerbations, and instructions about medications should be reviewed. The inhaled SABA and oral corticosteroids should be continued, the latter for 3–10 days. Finally, the patient or caregiver should be instructed about the follow-up visit, typically within 1 week. Hospitalized patients should receive more intensive education prior to discharge. Referral to an asthma specialist should be considered for all children with severe exacerbations or multiple emergency department visits or hospitalizations.

Prognosis

Since the 1970s, morbidity rates for asthma have increased, but mortality rates may have stabilized. Mortality statistics indicate that a high percentage of deaths have resulted from underrecognition of asthma severity and undertreatment, particularly in labile asthmatic patients and in asthmatic patients whose perception of pulmonary obstruction is poor. Long-term outcome studies suggest that children with mild symptoms generally outgrow their asthma, while patients with more severe symptoms, marked airway hyperresponsiveness, and a greater degree of atopy tend to have persistent disease. Data from an unselected birth cohort from New Zealand showed more than one in four children had wheezing that persisted from childhood to adulthood or that relapsed after remission. Recent evidence suggests that early intervention with anti-inflammatory therapy does not alter the development of persistent asthma, and it is also unclear if such intervention or environmental control measures influence the natural history of childhood asthma. Nonetheless, the pediatrician or primary care provider together with the asthma specialist has the responsibility to optimize control and, it is hoped, reduce the severity of asthma in children. Interventions that can have long-term effects such as halting progression or inducing remission are necessary to decrease the public health burden of this common condition.

Resources for healthcare providers, patients, and families include:

Asthma and Allergy Foundation of America
1233 20th St NW, Suite 402
Washington, DC 20036; (800) 7-ASTHMA
http://www.aafa.org/

Asthma and Allergy Network/Mothers of Asthmatics
2751 Prosperity Avenue, Suite 150
Fairfax, VA 22031; (800) 878-4403
http://www.aanma.org/


ALLERGIC RHINOCONJUNCTIVITIS

General Considerations

Allergic rhinoconjunctivitis is the most common allergic disease and significantly affects quality of life as well as school performance and attendance. It frequently coexists with asthma, can impact asthma control, and is a risk factor for subsequent development of asthma. Over 80% of patients with asthma have rhinitis and 10%–14% of patients with rhinitis have asthma. About 80% of individuals with allergic rhinitis develop their symptoms before age 20 years. It is estimated that 13% of children have a physician diagnosis of allergic rhinitis. Prevalence of this disease increases during childhood, peaking at 15% in the postadolescent years. Although allergic rhinoconjunctivitis is more common in boys during early childhood, there is little difference in incidence between the sexes after adolescence. Race and socioeconomic status are not considered to be important factors.

The pathologic changes in allergic rhinoconjunctivitis are chiefly hyperemia, edema, and increased serous and mucoid secretions caused by mediator release, all of which lead to variable degrees of nasal obstruction and conjunctival injection, nasal and ocular pruritus, or nasal and ocular discharge. Ocular allergies can occur in isolation, but more commonly, they are in conjunction with nasal symptoms. This process may involve other structures, including the sinuses and possibly the middle ear. Inhalant allergens are primarily responsible for symptoms, but food allergens can cause symptoms as well. Children with allergic rhinitis seem to be more susceptible to—or at least may experience more symptoms from—upper respiratory infections, which, in turn, may aggravate the allergic rhinitis.

Allergic rhinoconjunctivitis has been classified as perennial, seasonal (hay fever), or episodic; however, there are areas where pollens and soil molds may be present year round while exposure to typical perennial allergens such as indoor furred animals may be intermittent. For this reason, the preferred terms are intermittent (ie, symptoms present < 4 days a week or for < 4 weeks) and persistent (ie, symptoms present > 4 days a week and for > 4 weeks). In addition, severity should be noted as mild (ie, without impairment or disturbance of sleep, daily activities, leisure, sport, school, or work, or without troublesome symptoms) or moderate-severe (ie, presence of one or more of the aforementioned). The major pollen groups in the temperate zones include trees (late winter to early spring), grasses (late spring to early summer), and weeds (late summer to early fall), but seasons can vary significantly in different parts of the country. Mold spores also cause seasonal allergic rhinitis, principally in the summer and fall. Seasonal allergy symptoms may be aggravated by coincident exposure to perennial allergens.

Clinical Findings

A. Symptoms and Signs

Patients may complain of itching of the nose, eyes, palate, or pharynx and loss of smell or taste. Nasal itching can cause paroxysmal sneezing and epistaxis. Repeated rubbing of the nose (so-called allergic salute) may lead to a horizontal crease across the lower third of the nose. Nasal obstruction is associated with mouth breathing, nasal speech, allergic salute, and snoring. Nasal turbinates may appear pale blue and swollen with dimpling or injected with minimal edema. Typically, clear and thin nasal secretions are increased, with anterior rhinorrhea, sniffing, postnasal drip, and congested cough. Nasal secretions often cause poor appetite, fatigue,
and pharyngeal irritation. Conjunctival injection, tearing, periorbital edema, and infraorbital cyanosis (so-called allergic shiners) are frequently observed. Increased pharyngeal lymphoid tissue (“cobblestoning”) from chronic drainage and enlarged tonsillar and adenoidal tissue may be present.

B. Laboratory Findings

Eosinophilia often can be demonstrated on smears of nasal secretions or blood. This is a frequent but nonspecific finding and may occur in nonallergic conditions. Although serum IgE may be elevated, measurement of total IgE is a poor screening tool owing to the wide overlap between atopic and nonatopic subjects. Skin testing to identify allergen-specific IgE is the most sensitive and specific test for inhalant allergies; alternatively, the Phadia ImmunoCAP assay, radioallergosorbent test (RAST), or other in vitro tests can be done for suspected allergens.

Differential Diagnosis

Disorders that need to be differentiated from allergic rhinitis include infectious rhinosinusitis. Foreign bodies and structural abnormalities such as choanal atresia, marked septal deviation, nasal polyps, and adenoideal hypertrophy may cause chronic symptoms. Overuse of topical nasal decongestants may result in rhinitis medicamentosa (rebound congestion). Use of medications such as propranolol, clonidine, and some psychoactive drugs may cause nasal congestion. Illicit drugs such as cocaine can cause rhinorrhea. Spicy or hot foods may cause gustatory rhinitis. Nonallergic rhinitis with eosinophilia syndrome is usually not seen in young children. Vasomotor rhinitis is associated with persistent symptoms but without allergic exposure. Less common causes of symptoms that may be confused with allergic rhinitis include pregnancy, congenital syphilis, hypothyroidism, tumors, and cerebrospinal fluid rhinorrhea.

As in the differential diagnoses for allergic rhinitis, infectious conjunctivitis (secondary to viral, bacterial, or chlamydial etiology) can mimic allergic eye disorders. In this case, it typically develops in one eye first, and symptoms include stinging or burning sensation (rather than pruritus) with a foreign body sensation and eye discharge (watery, mucoid, or purulent). Nasolacrimal duct obstruction, foreign body, blepharoconjunctivitis, dry eye, uveitis, and trauma are other masqueraders of ocular allergy.

The other conditions which comprise allergic eye diseases, presenting with bilateral conjunctivitis, include atopic keratoconjunctivitis, vernal conjunctivitis, and giant papillary conjunctivitis. Except for giant papillary conjunctivitis, the three (allergic conjunctivitis, atopic keratoconjunctivitis, and vernal conjunctivitis) are associated with allergic sensitization. Atopic keratoconjunctivitis and vernal conjunctivitis are both vision-threatening. Atopic keratoconjunctivitis is rarely seen before late adolescence and it most commonly involves the lower tarsal conjunctiva. Ocular symptoms (itching, burning, and tearing) are more severe than in allergic conjunctivitis and persist all year round, with accompanying eyelid eczema with erythema and thick, dry scaling skin, which can extend to the periorbital skin and cheeks. Vernal conjunctivitis is characterized by giant papillae, described as cobblestoning, seen in the upper tarsal conjunctiva. It affects boys more often than girls and patients of Asian and African descent are more predisposed. It affects individuals in temperate areas, with exacerbations in the spring and summer months. In addition to severe pruritus which can be exacerbated by exposure to irritants, light, or perspiration, other accompanying signs and symptoms include photophobia, foreign body sensation, lacrimation, and presence of stringy or thick, ropey discharge, transient yellow-white points in the limbus (Trantas dots) and conjunctiva (Horner points), corneal “shield” ulcers, Dennie lines (prominent skin folds that extend in an arc form from the inner canthus beneath and parallel to the lower lid margin), and prominently long eyelashes. Giant papillary conjunctivitis is associated with exposure to foreign bodies such as contact lenses, ocular prostheses, and sutures. It is characterized by mild ocular itching, tearing, and mucoid discharge especially on awakening. Trantas dots, limbal infiltration, bulbar injection, and edema may also be found. One eye condition, contact allergy, which can also involve the conjunctivae especially when associated with use of topical medications, contact lens solutions, and preservatives, typically affects the eyelids.

Complications

Sinusitis may accompany allergic rhinitis. Allergic mucosal swelling of the sinus ostia can obstruct sinus drainage, interfering with normal sinus function and predisposing to chronic mucosal disease. Nasal polyps due to allergy are unusual in children, and cystic fibrosis should be considered if they are present. Unlike vision-threatening complications associated with atopic keratoconjunctivitis and vernal conjunctivitis, allergic conjunctivitis manifests primarily with significant pruritus and discomfort affecting the patients’ quality of life.

Treatment

A. General Measures

The value of identification and avoidance of causative allergens cannot be overstated. Reducing indoor allergens through environmental control measures as discussed in the section on asthma can be very effective. Nasal saline irrigation may be useful. For ocular allergies, cold compresses and lubrication are also important.

B. Pharmacologic Therapy

Evidence-based clinical practice guidelines such as the Allergic Rhinitis and its Impact on Asthma (ARIA) which include the
pharmacologic management of allergic rhinitis have been developed based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. While ARIA recommends the use of intranasal corticosteroids for adults with allergic rhinitis, the use of the topical corticosteroids over oral antihistamines for children is suggested.

The treatment of mild intermittent rhinitis includes oral or intranasal H₁ antihistamines and intranasal decongestants (for < 10 days and not to be repeated more than twice a month). Oral decongestants are not usually recommended in children. Options for moderate-severe intermittent rhinitis are oral or intranasal antihistamines, oral H₁ antihistamines and decongestants, intranasal corticosteroids, and cromones. The same medication options are available for persistent rhinitis, but a stepwise approach is proposed both for treatment of mild and moderate-severe persistent rhinitis. For mild persistent rhinitis, reassessment after 2–4 weeks is recommended and treatment should be continued, with a possible reduction in intranasal corticosteroids, even if the symptoms have abated. If, however, the patient has persistent mild symptoms while on H₁ antihistamines or cromones, an intranasal corticosteroid is appropriate. For moderate-severe persistent disease, use of intranasal corticosteroids as first-line therapy is recommended. For severe nasal congestion, either a short 1- to 2-week course of an oral corticosteroid or an intranasal decongestant for less than 10 days may be added. If the patient improves, the treatment should last for at least 3 months or until the pollen season is over. If the patient does not improve within 2–4 weeks despite adequate compliance and use of medications, comorbidities such as nasal polyps, sinusitis, and significant allergen exposure should be considered, as well as the possibility of misdiagnosis. Once these are ruled out, options include increasing the dose of the intranasal corticosteroid, combination therapy with an H₁ antihistamine (particularly if major symptoms are sneezing, itching, or rhinorrhea), ipratropium bromide (if major symptom is rhinorrhea), or an oral H₁ antihistamine and decongestant. Referral to a specialist may be considered if the treatment is not sufficient.

For allergic rhinoconjunctivitis, topical nasal corticosteroids also reduce ocular symptoms, presumably through a naso-ocular reflex. For ocular allergies which persist or occur independent of rhinitis, pharmacologic treatment includes use of oral or topical antihistamines, topical decongestants, mast cell stabilizers, and anti-inflammatory agents. In general, topical ophthalmic drops should not be used with contact lenses. Topical decongestants relieve erythema, congestion, and edema but do not affect the allergic response. Combined therapy with an antihistamine and a vasoconstrictive agent is more effective than either agent alone. Topical medications with both antihistamine and mast cell blocking properties provide the most benefits which incorporate fast-acting symptom relief and anti-inflammatory action. Refrigerating ophthalmic drops before use can provide soothing relief as well. However, children can get wary of eye drops and prefer oral preparations. Avoiding contamination by preventing the applicator tip from touching the eye or eyelid is important. Severe ocular allergy can be treated with topical, or rarely, oral corticosteroids. In such a case, a referral to an ophthalmologist is warranted, as these treatments can be associated with elevation of the intraocular pressure, viral infections, and cataract formation.

Allergen immunotherapy can be very effective in allergic rhinoconjunctivitis and may decrease the requirement for medications to control the symptoms in the long term.

1. **Antihistamines**—Antihistamines help control itching, sneezing, and rhinorrhea. Sedating antihistamines include diphenhydramine, chlorpheniramine, hydroxyzine, and clemastine. Sedating antihistamines may cause daytime somnolence and negatively affect school performance and other activities, especially during. Second-generation antihistamines include loratadine, desloratadine, cetirizine, and fexofenadine. Cetirizine is approved for use in children aged 6–23 months (2.5 mg daily), 2–5 years (2.5–50 mg/d or 2.5 mg twice a day), and 6 years or older (5–10 mg/d).

   It is now available without a prescription. Loratadine is approved for use in children aged 2–5 years (5 mg/d) and 6 years or older (10 mg/d), and is available without prescription in tablet, rapidly disintegrating tablet, and liquid formulations. Desloratadine is approved for use in children aged 6–11 months (1 mg/d), 1–5 years (1.25 mg/d), and for 12 years and older (5 mg/d). Fexofenadine is approved for children aged 6–23 months (15 mg twice a day), 2–11 years (30 mg twice a day), and 12 years or older (60 mg twice a day or 180 mg once daily), and is also now available without a prescription. Levocetirizine (5 mg/d) is approved for children aged 6 years and older. Loratadine, fexofenadine, and cetirizine are available in combination with pseudoephedrine for patients aged 12 years or older, although regular use of these combination products is not recommended. Azelastine is available in nasal and ophthalmic formulations. Levocabastine and emedastine are available as ophthalmic preparations. They should not be used for treatment of contact lens–related irritation and caution should be implemented with concomitant use of soft contact lenses.

2. **Mast cell stabilizers**—Intranasal ipratropium can be used as adjunctive therapy for rhinorrhea. Intranasal cromolyn may be used alone or in conjunction with oral antihistamines and decongestants. It is most effective when used prophylactically, one to two sprays/nostril, four times a day. This dose may be tapered if symptom control is achieved. Rarely, patients complain of nasal irritation or burning. Most patients find complying with four-times-daily dosing difficult. Cromolyn is also available in an ophthalmic solution (see also Chapter 16). It can be used to treat giant papillary and vernal conjunctivitis. Other ophthalmic mast cell...
stabilizers include lodoxamide 0.1% solution (can be used for vernal keratoconjunctivitis as well), one to two drops four times a day; nedocromil sodium 2%, one to two drops two times a day; and pemirolast potassium 0.1%, one to two drops four times a day.

### 3. Decongestants and Vasoconstrictor Agents
Nasal α-adrenergic agents help to relieve nasal congestion and ophthalmic vasoconstrictors relieve ocular erythema, edema, and congestion. Topical nasal decongestants such as phenylephrine and oxymetazoline should not be used for more than 4 days for severe episodes because prolonged use may be associated with rhinitis medicamentosa. As with nasal decongestants, a rebound phenomenon (ie, conjunctivitis medicamentosa with hyperemia and stinging/burning) can occur with chronic use of ophthalmic vasoconstrictive agents such as naphazoline and tetrahydrozoline. Oral decongestants, including pseudoephedrine, phenylephrine, and phenylpropanolamine, are often combined with antihistamines or expectorants and cough suppressants in over-the-counter (OTC) cold medications, but there are no convincing data to support the use of decongestants for upper respiratory illnesses in children nor for regular use in patients with allergic rhinitis. They may cause insomnia, agitation, tachycardia, and, rarely, cardiac arrhythmias. Of note, the FDA has recommended the removal of phenylpropanolamine from all drug products due to a public health advisory concerning the risk of hemorrhagic stroke associated with its use.

### 4. Corticosteroids
Intranasal corticosteroid sprays are effective in controlling allergic rhinitis if used chronically. They are minimally absorbed in usual doses and are available in pressurized nasal inhalers and aqueous sprays. Mometasone and fluticasone furoate nasal sprays have been approved for use in children as young as age 2 years (one spray in each nostril once daily) and in children 12 years or older (two sprays/nostril once daily). Fluticasone propionate nasal spray is approved for children 4 years or older, and budesonide and triamcinolone nasal sprays are approved for those 6 years or older (one to two sprays/nostril once daily). Flunisolide is approved for ages 6–14 years (one spray/nostril three times a day or two sprays/nostril twice a day). Ciclesonide is approved for seasonal allergic rhinitis in children 6 years and older and those with perennial allergic rhinitis for children 12 years and older, two sprays in each nostril once daily. Side effects include nasal irritation, soreness, and bleeding, although epistaxis occurs commonly in patients with allergic rhinitis if corticosteroids are used chronically. Rarely, these drugs can cause septal perforation. Excessive doses may produce systemic effects, especially if used together with orally inhaled steroids for asthma. Onset of action is within hours, although clinical benefit is usually not observed for a week or more. They may be effective alone or together with antihistamines.

Use of oral or topical (eg, loteprednol etabonate) corticosteroids for the treatment of ocular allergy should be worked out in conjunction with an ophthalmologist due to potential complications mentioned in the preceding section.

### 5. Other Pharmacologic Agents
Montelukast is approved for perennial allergic rhinitis in children aged 6 months and older (4 mg/d for ages 6–23 months) and seasonal allergic rhinitis in children 2 years and older in doses as discussed in the preceding section on Pharmacologic Therapy under Treatment, Chronic Asthma. Oral antihistamines are also available in combination with a decongestant. Ketorolac, a nonsteroidal anti-inflammatory drug (NSAID), is available as an ophthalmic solution but should be avoided in patients with aspirin or NSAID sensitivity and should be used with caution in those with complicated eye surgeries, corneal denervation or epithelial defects, ocular surface diseases, diabetes mellitus, or rheumatoid arthritis. Combination ophthalmic preparations are available. Both antazoline and pheniramine are antihistamine/vasoconstrictor formulations. Olopatadine 0.1%, epinastine 0.05%, and ketotifen 0.025% ophthalmic solutions have antihistamine and mast cell–stabilizing actions and can be given to children older than age 3 years as one drop twice a day (8 hours apart) for olopatadine and every 8–12 hours for ketotifen, respectively. Ketotifen fumarate 0.025% is now available as an OTC ophthalmic medication. Olopatadine 0.2% is the first once-daily ophthalmic medication available for the treatment of ocular pruritus associated with allergic conjunctivitis.

### C. Surgical Therapy
Surgical procedures, including turbinectomy, polypectomy, and functional endoscopic sinus surgery, are rarely indicated in allergic rhinitis or chronic hyperplastic sinusitis.

### D. Immunotherapy
Allergen immunotherapy should be considered when symptoms are severe and due to unavoidable exposure to inhalant allergens, especially if symptomatic measures have failed. Immunotherapy is the only form of therapy that may alter the course of the disease. It should not be prescribed by sending the patient’s serum to a laboratory where extracts based on in vitro tests are prepared for the patient (ie, the remote practice of allergy). Subcutaneous immunotherapy should be done in a facility where a physician prepared to treat anaphylaxis is present. Patients with concomitant asthma should not receive an injection if their asthma is not under good control (ie, peak flows preinjection are below 80% of personal best), and the patient should wait for 25–30 minutes after an injection before leaving the facility. Outcomes with single allergen immunotherapy show success rates of approximately 80%. The optimal duration of therapy is unknown, but data suggest that immunotherapy
for 3–5 years may have lasting benefit. Sublingual immunotherapy has been developed and recommended in Europe, Argentina, Brazil, the Gulf States, and South Africa, for treatment of allergic rhinitis caused by pollens in both adults and children, and for allergic rhinitis caused by dust mites only in adults. Although local adverse effects are common (in about 35%), this form of immunotherapy allows for a less stringent administration as this can be given at home. This is still considered experimental in the United States, as extracts have not been FDA-approved.

**Prognosis**

Allergic rhinoconjunctivitis associated with sensitization to indoor allergens tends to be protracted unless specific allergens can be identified and eliminated from the environment. In seasonal allergic rhinoconjunctivitis, symptoms are usually most severe from adolescence through mid-adult life. After moving to a region devoid of problem allergens, patients may be symptom-free for several years, but they can develop new sensitivities to local Aeroallergens.

**Clinical Findings**

**A. Symptoms and Signs**

Atopic dermatitis has no pathognomonic skin lesions or laboratory parameters. Diagnosis is based on the clinical features, including severe pruritus, a chronically relapsing course, and typical morphology and distribution of the skin lesions. Acute atopic dermatitis is characterized by intensely pruritic, erythematous papules associated with excoriations, vesiculations, and serous exudate; subacute atopic dermatitis by erythematous, excoriated, scaling papules; and chronic atopic dermatitis by thickened skin with accentuated markings (lichenification) and fibrotic papules. Patients with chronic atopic dermatitis may have all three types of lesions present concurrently. Patients usually have dry, “lackluster” skin. During infancy, atopic dermatitis involves primarily the face, scalp, and extensor surfaces of the extremities. The diaper area is usually spared. When involved, it may be secondarily infected with *Candida*. In older patients with longstanding disease, the flexural folds of the extremities are the predominant location of lesions.

**B. Laboratory Findings**

Identification of allergens involves taking a careful history and performing selective immediate hypersensitivity skin tests or in vitro tests when appropriate. Negative skin tests with proper controls have a high predictive value for ruling out a suspected allergen. Positive skin tests have a lower correlation with clinical symptoms in suspected food allergen–induced atopic dermatitis and should be confirmed with double-blind, placebo-controlled food challenges unless there is a coincidental history of anaphylaxis to the suspected food. Alternatively, specific IgE levels to milk, egg, peanut, and fish proteins have been established with the Phadia ImmunoCAP assay correlating with a greater than 95% chance of a clinical reaction.

Elevated serum IgE levels can be demonstrated in 80%–85% of patients with atopic dermatitis, and a similar number have positive immediate skin tests or in vitro tests with food and inhalant allergens. Several well-controlled studies suggest that specific allergens can influence the course of this disease. However, triggers for clinical disease cannot be predicted simply by performing allergy testing. Double-blind, placebo-controlled food challenges show that food allergens can cause exacerbations in a subset of patients with atopic dermatitis. Although lesions induced by single positive challenges are usually transient, repeated challenges, more typical of real-life exposure, can result in eczematous lesions. Furthermore, elimination of food allergens results in amelioration of skin disease and a decrease in spontaneous basophil histamine release. Exacerbation of atopic dermatitis can occur with exposure to Aeroallergens such as house dust mites, and environmental control measures have been
shown to result in clinical improvement. Patients can make specific IgE directed at *Staphylococcus aureus* toxins secreted on the skin, and this correlates with clinical severity better than total serum IgE levels. Eosinophilia may occur. Routine skin biopsy does not differentiate atopic dermatitis from other eczematous processes but may be helpful in atypical cases. Tests for the most common filaggrin gene mutations using DNA from buccal swabs or blood are available. Testing may identify patients who would be at increased risk for more severe, persistent atopic dermatitis and be more likely to develop allergic sensitizations and asthma.

### Differential Diagnosis

Scabies can present as a pruritic skin disease. However, distribution in the genital and axillary areas and the presence of linear lesions as well as skin scrapings may help to distinguish it from atopic dermatitis. Seborrheic dermatitis may be distinguished by a lack of significant pruritus; its predilection for the scalp (so-called cradle cap); and its coarse, yellowish scales. Allergic contact dermatitis may be suggested by the distribution of lesions with a greater demarcation of dermatitis than in atopic dermatitis. Occasionally, allergic contact dermatitis superimposed on atopic dermatitis may appear as an acute flare of the underlying disease. Nummular eczema is characterized by coin-shaped plaques. Although unusual in children, mycosis fungoides or cutaneous T-cell lymphoma has been described and is diagnosed by skin biopsy. Eczematous rash has been reported in patients with human immunodeficiency virus (HIV) infection. Other disorders that may resemble atopic dermatitis include Wiskott-Aldrich syndrome, severe combined immunodeficiency disease, hyper-IgE syndrome, immunodeficiency with DOCK8 mutations, IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome, zinc deficiency, phenylketonuria, and Letterer-Siwe disease.

### Complications

Ocular complications associated with atopic dermatitis can lead to significant morbidity. Atopic keratoconjunctivitis is always bilateral, and symptoms include itching, burning, tearing, and copious mucoid discharge. It is frequently associated with eyelid dermatitis and chronic blepharitis, and may result in visual impairment from corneal scarring (see Chapter 16). Keratoconus in atopic dermatitis is believed to result from persistent rubbing of the eyes in patients with atopic dermatitis and allergic rhinitis. Anterior subcapsular cataracts may develop during adolescence or early adult life.

Patients with atopic dermatitis have increased susceptibility to infection or colonization with a variety of organisms. These include viral infections with herpes simplex, molluscum contagiosum, and human papillomavirus. Of note, even a past history of atopic dermatitis is considered a contraindication for receiving the current smallpox (vaccinia) vaccine. Superimposed dermatophytosis may cause atopic dermatitis to flare. *S. aureus* can be cultured from the skin of more than 90% of patients with atopic dermatitis, compared with only 5% of normal subjects. Patients with atopic dermatitis often have toxin-secreting *S. aureus* cultured from their skin and can make specific IgE antibodies against the toxins found on their skin. *S. aureus* toxins can act as superantigens, contributing to persistent inflammation or exacerbations of atopic dermatitis. Patients without obvious superinfection may show a better response to combined antistaphylococcal and topical corticosteroid therapy than to corticosteroids alone. Although recurrent staphylococcal pustulosis can be a significant problem in atopic dermatitis, invasive *S. aureus* infections occur rarely and should raise the possibility of an immunodeficiency such as hyper-IgE syndrome. Patients with atopic dermatitis may be predisposed to colonization and infections by microbial organisms due to decreased synthesis of antimicrobial peptides in the skin, which may be mediated by increased levels of TH2-type cytokines.

Patients with atopic dermatitis often have a nonspecific hand dermatitis. This is frequently irritant in nature and aggravated by repeated wetting.

Nutritional disturbances may result from unwarranted and unnecessarily vigorous dietary restrictions imposed by physicians and parents.

Poor academic performance and behavioral disturbances may be a result of uncontrolled intense or frequent itching, sleep loss, and poor self-image. Severe disease may lead to problems with social interactions and self-esteem.

### Treatment

#### A. General Measures

Patients with atopic dermatitis have a lowered threshold of irritant responsiveness. Avoidance of irritants such as detergents, chemicals, and abrasive materials as well as extremes of temperature and humidity is important in managing this disease. New clothing should be washed to reduce the content of formaldehyde and other chemicals. Because residual laundry detergent in clothing may be irritating, using a liquid rather than a powder detergent and adding an extra rinse cycle is beneficial. Occlusive clothing should be avoided in favor of cotton or cotton blends. Temperature in the home and work environments should be controlled to minimize sweating. Swimming is usually well tolerated; however, because swimming pools are treated with chlorine or bromine, patients should shower and use a mild cleanser to remove these chemicals, then apply a moisturizer or occlusive agent. Sunlight may be beneficial to some patients with atopic dermatitis, but nonsensitizing sunscreens should be used to avoid sunburn. Prolonged sun exposure can cause evaporative losses, overheating, and sweating, all of which can be irritating.
In children who have undergone controlled food challenges, eggs, milk, peanuts, soy, wheat, and fish account for approximately 90% of the food allergens that exacerbate atopic dermatitis. Avoidance of foods implicated in controlled challenges can lead to clinical improvement. Extensive elimination diets, which can be nutritionally unsound and burdensome, are almost never warranted because even patients with multiple positive skin tests rarely react to more than three foods on blinded challenges.

In patients who demonstrate specific IgE to dust mite allergen, environmental control measures aimed at reducing the dust mite load improve atopic dermatitis. These include use of dust mite–proof covers on pillows and mattresses, washing linens weekly in hot water, decreasing indoor humidity levels, and in some cases removing bedroom carpeting.

Counseling may be of benefit when dealing with the frustrations associated with atopic dermatitis. Relaxation, behavioral modification, or biofeedback training may help patients with habitual scratching. Patients with severe or disfiguring disease may require psychotherapy.

Clinicians should provide the patient and family with both general information and specific written skin care recommendations. The patient or parent should demonstrate an appropriate level of understanding to help ensure a good outcome. Educational pamphlets and a video about atopic dermatitis can be obtained from the National Eczema Association, a national nonprofit, patient-oriented organization, at: (800) 818-7546; http://www.nationaleczema.org.

### B. Hydration

Patients with atopic dermatitis have evaporative losses due to a defective skin barrier, so soaking the affected area or bathing for 10–15 minutes in warm water, then applying an occlusive agent to retain the absorbed water, is an essential component of therapy. Oatmeal or baking soda added to the bath may feel soothing to certain patients but does not improve water absorption. Atopic dermatitis of the face or neck can be treated by applying a wet facecloth or towel to the involved area. The washcloth may be more readily accepted by a child if it is turned into a mask and also allows the older patient to remain functional. Lesions limited to the hands or feet can be treated by soaking in a basin. Daily baths may be needed and increased to several times daily during flares of atopic dermatitis, while showers may be adequate for patients with mild disease. It is important to use an occlusive preparation within a few minutes after soaking the skin to prevent evaporation, which is both drying and irritating.

### C. Moisturizers and Occlusives

An effective emollient combined with hydration therapy will help skin healing and can reduce the need for topical corticosteroids. Moisturizers are available as lotions, creams, and ointments. Because lotions contain more water than creams, they are more drying because of their evaporative effect. Preservatives and fragrances in lotions and creams may cause skin irritation. Moisturizers often need to be applied several times daily on a long-term basis and should be obtained in the largest size available. Crisco shortening can be substituted as an inexpensive alternative. Petroleum jelly (Vaseline) is an effective occlusive agent when used to seal in water after bathing. Topical nonsteroidal creams approved as medical devices (thus, currently requiring prescriptions) for relief and management of signs and symptoms of dermatoses include Atopiclair, MimiX, EpiCeram, and Eletone.

### D. Corticosteroids

Corticosteroids reduce the inflammation and pruritus in atopic dermatitis. Topical corticosteroids can decrease S aureus colonization. Systemic corticosteroids, including oral prednisone, should be avoided in the management of this chronic relapsing disease. The dramatic improvement observed with systemic corticosteroids may be associated with an equally dramatic flaring of atopic dermatitis following their discontinuation. Topical corticosteroids are available in a wide variety of formulations, ranging from extremely high-potency to low-potency preparations (see Table 15–3). Choice of a particular product depends on the severity and distribution of skin lesions. Patients need to be counseled regarding the potency of their corticosteroid preparation and its potential side effects. In general, the least potent agent that is effective should be used. However, choosing a preparation that is too weak may result in persistence or worsening of the atopic dermatitis. Side effects include thinning of the skin, telangiectasias, bruising, hypopigmentation, acne, and striae, although these occur infrequently when low- to medium-potency topical corticosteroids are used appropriately. In contrast, use of potent topical corticosteroids for prolonged periods—especially under occlusion—may result in significant atrophic changes as well as systemic side effects. The face (especially the eyelids) and intertriginous areas are especially sensitive to corticosteroid side effects, and only low-potency preparations should be used routinely on these areas. Because topical corticosteroids are commercially available in a variety of bases, including ointments, creams, lotions, solutions, gels, and sprays, there is no need to compound them. Ointments are most occlusive and in general provide better delivery of the medication while preventing evaporative losses. However, in a humid environment, creams may be better tolerated than ointments because the increased occlusion may cause itching or even folliculitis. Creams and lotions, while easier to spread, can contribute to skin dryness and irritation. Solutions can be used on the scalp and hirsute areas, although they can be irritating, especially to open lesions. With clinical improvement, a less potent corticosteroid should be prescribed and
the frequency of use decreased. Topical corticosteroids can be discontinued when inflammation resolves, but hydration and moisturizers need to be continued. Several topical steroids including fluticasone 0.05% cream and desonide 0.05% hydrogel have been approved in infants as young as 3 months of age for up to 28 days.

E. Topical Calcineurin Inhibitors

Tacrolimus and pimecrolimus are immunomodulatory agents that inhibit the transcription of proinflammatory cytokines as well as other allergic mediators and target key cells in allergic inflammation. They are available in topical formulations, and long-term studies have confirmed both efficacy and safety. Local burning at the site of application, which occurs more frequently with tacrolimus ointment, has been the most common side effect, although this is usually a transient problem. Tacrolimus ointment—0.03% for children 2–15 years of age and 0.1% for older patients—is approved for twice daily short-term and intermittent long-term use in moderate to severe atopic dermatitis. Pimecrolimus 1% cream is approved for patients 2 years of age or older who have mild to moderate atopic dermatitis. As a precaution, patients should wear sunscreen with both drugs. In Europe, tacrolimus ointment is approved as twice weekly maintenance therapy for patients 2 years and older with a relapsing course after clearing up eczema with reevaluation of need for continued therapy after 12 months.

Although there is no evidence of a causal link between cancer and the use of topical calcineurin inhibitors, the FDA has issued a boxed warning for pimecrolimus cream and tacrolimus ointment because of a lack of long-term safety data (see U.S. package inserts for Elidel [Novartis] and Protopic [Astellas]). The new labeling states that these drugs are recommended as second-line treatment for short-term and noncontinuous chronic treatment and that their use in children younger than the age of 2 years is currently not recommended.

F. Tar Preparations

Tar preparations are used primarily in shampoos and rarely as bath additives. Side effects associated with tar products include skin dryness or irritation, especially if applied to inflamed skin, and, less commonly, photosensitivity reactions and folliculitis.

G. Wet Dressings

Wet dressings are used together with hydration and topical corticosteroids for the treatment of severe atopic dermatitis. They can serve as an effective barrier against the persistent scratching that often undermines therapy. Total body dressings can be applied by using wet pajamas or long underwear with dry pajamas or a sweat suit on top. Hands and feet can be covered by wet tube socks with dry tube socks on top. Alternatively, wet gauze with a layer of dry gauze over it can be used and secured in place with an elastic bandage. Dressings can be removed when they dry out, usually after several hours, and are often best tolerated at bedtime. Incorrect use of wet dressings can result in chilling, maceration of the skin, or secondary infection.

H. Anti-Infective Therapy

Systemic antibiotic therapy may be important when treating atopic dermatitis secondarily infected with S. aureus. For limited areas of involvement, a topical antibiotic such as mupirocin or retapamulin ointment may be effective. A first- or second-generation cephalosporin or semisynthetic penicillin is usually the first choice for oral therapy, as erythromycin-resistant organisms are fairly common. Overuse may result in colonization by methicillin-resistant S. aureus. Bleach baths (6% sodium hypochlorite, ½ cup in a full tub of water) two times per week in combination with nasal mupirocin (twice daily for 5 consecutive days per month) may be helpful for patients with recurrent methicillin-resistant S. aureus, although some patients find this treatment irritating.

Disseminated eczema herpeticum usually requires treatment with systemic acyclovir. Patients with recurrent cutaneous herpetic lesions can be given prophylactic oral acyclovir. Superficial dermatophytosis and Malassezia sympodialis infection can be treated with topical or (rarely) systemic antifungal agents.

I. Antipruritic Agents

Pruritus is usually the least well-tolerated symptom of atopic dermatitis. Oral antihistamines and anxiolytics may be effective owing to their tranquilizing and sedating effects and can be taken mostly in the evening to avoid daytime somnolence. Nonsedating antihistamines may be less effective in treating pruritus, although beneficial effects have been reported in blinded studies. Use of topical antihistamines and local anesthetics should be avoided because of potential sensitization.

J. Recalcitrant Disease

Patients who are erythrodermic or who appear toxic may need to be hospitalized. Hospitalization may also be appropriate for those with severe disease who fail outpatient management. Marked clinical improvement often occurs when the patient is removed from environmental allergens or stressors. In the hospital, compliance with therapy can be monitored, the patient and family can receive intense education, and controlled provocative challenges can be conducted to help identify triggering factors.

Limited published data are available on use of cyclosporine in children treated with both continuous and intermittent therapy (5 mg/kg daily) for up to 1 year. Patients treated with this agent should have their dose titrated to the lowest
effective dose after the disease is brought under control with appropriate monitoring, under the care of a specialist familiar with the drug. Mycophenolate mofetil has also been shown to be safe and effective in children with severe atopic dermatitis although this was a retrospective case series.

Ultraviolet light therapy can be useful for chronic recalcitrant atopic dermatitis in a subset of patients under the supervision of a dermatologist. Photochemotherapy with oral methoxypsoralen therapy followed by UVA (ultraviolet A) has been used in a limited number of children with severe atopic dermatitis unresponsive to other therapy, and significant improvement has been noted. However, the increased long-term risk of cutaneous malignancies from this therapy prevents its widespread use.

K. Experimental and Unproved Therapies

Subcutaneous desensitization to dust mite allergen has been shown to improve atopic dermatitis in adult patients and one blinded, placebo-controlled study of sublingual desensitization in dust mite allergic children showed benefit in mild-moderate atopic dermatitis (currently not FDA approved); however, further controlled trials are needed before this form of therapy can be recommended for atopic dermatitis in children. Treatment of atopic dermatitis with high-dose intravenous immunoglobulin and omalizumab is currently investigational. Although disturbances in the metabolism of essential fatty acids have been reported in patients with atopic dermatitis, controlled trials with fish oil and evening primrose have shown no clinical benefit.

Prognosis

While many children, especially those with mild disease will outgrow their atopic dermatitis, patients with filaggrin gene mutations are more likely to have more persistent and severe disease. In addition, these patients appear to be the ones at greater risk for developing asthma and allergic sensitizations.

About half of patients will have concomitant urticaria and angioedema, whereas 40% will have only urticaria and 10% only angioedema. Urticarial lesions are arbitrarily designated as acute, lasting less than 6 weeks, or chronic, lasting more than 6 weeks. Acute versus chronic urticaria can also be distinguished by differences in histologic features. A history of atopy is common with acute urticaria or angioedema. In contrast, atopy does not appear to be a factor in chronic urticaria. Note that bradykinin-mediated hereditary angioedema is discussed in the immunodeficiency chapter (Chapter 33).

Mast cell degranulation, dilated venules, and dermal edema are present in most forms of urticaria or angioedema. The dermal inflammatory cells may be sparse or dense depending on the chronicity of the lesions. Mast cells are thought to play a critical role in the pathogenesis of urticaria or angioedema through release of a variety of vasoactive mediators. Mast cell activation and degranulation can be triggered by different stimuli, including cross-linking of Fc receptor–bound IgE by allergens or anti-FcεRI antibodies. Non–IgE-mediated mechanisms have also been identified, including complement anaphylatoxins (C3a, C5a), radiocontrast dyes, and physical stimuli. Chronic urticarial lesions have greater numbers of perivascular mononuclear cells, consisting primarily of T cells. There is also a marked increase in cutaneous mast cells.

The cause of acute disease can be identified in about half of patients and includes allergens such as foods, aeroallergens, latex, drugs, and insect venoms. Infectious agents, including streptococci, mycoplasmas, hepatitis B virus, and Epstein-Barr virus, can cause acute urticaria. Urticaria or angioedema can occur after the administration of blood products or immunoglobulin. This results from immune complex formation with complement activation, vascular alterations, and triggering of mast cells by anaphylatoxins. Opiate analgesics, polymyxin B, tubocurarine, and radiocontrast media can induce acute urticaria by direct mast cell activation. These disorders can also occur following ingestion of aspirin or nonsteroidal anti-inflammatory agents (see later section on Adverse Reactions to Drugs & Biologicals).

Physical urticarias represent a heterogeneous group of disorders in which urticaria or angioedema is triggered by physical stimuli, including pressure, cold, heat, water, or vibrations. Dermographism is the most common form of physical urticaria, affecting up to 4% of the population and occurring at skin sites subjected to mechanical stimuli. Many physical urticarias are considered to be acute because the lesions are usually rapid in onset, with resolution within hours. However, symptoms can recur for months to years.

The cause of chronic urticaria is usually not due to allergies and typically cannot be determined. It can be associated with autoimmunity, such as autoimmune thyroid disease, or the presence of basophil-activating IgG autoantibodies directed at the high-affinity receptor for IgE or at IgE.

URTICARIA & ANGIOEDEMA

General Considerations

Urticaria and angioedema are common dermatologic conditions, occurring at some time in up to 25% of the population.

Clinical Findings

A. Symptoms and Signs

Cold-induced urticaria or angioedema can occur within minutes of exposure to a decreased ambient temperature or as the skin is warmed following direct cold contact. Systemic features include headache, wheezing, and syncope. If the entire body is cooled, as may occur during swimming, hypotension and collapse can occur. Two forms of dominantly inherited cold urticaria have been described. The immediate form is known as familial cold urticaria, in which erythematous macules appear rather than wheals, along with fever, arthralgias, and leukocytosis. The delayed form consists of erythematous, deep swellings that develop 9–18 hours after local cold challenge without immediate lesions.

In solar urticaria, which occurs within minutes after exposure to light of appropriate wavelength, pruritus is followed by morbilliform erythema and urticaria.

Cholinergic urticaria occurs after increases in core body and skin temperatures and typically develops after a warm bath or shower, exercise, or episodes of fever. Occasional episodes are triggered by stress or the ingestion of certain foods. The eruption appears as small punctate wheals surrounded by extensive areas of erythema. Rarely, the urticarial lesions become confluent and angioedema develops. Associated features can include one or more of the following: headache, syncope, bronchospasm, abdominal pain, vomiting, and diarrhea. In severe cases, systemic anaphylaxis may develop.

In pressure urticaria or angioedema, red, deep, painful swelling occurs immediately or 4–6 hours after the skin has been exposed to pressure. The immediate form is often associated with dermographism. The delayed form, which may be associated with fever, chills, and arthralgias, may be accompanied by elevated erythrocyte sedimentation rate and leukocytosis. Lesions are frequently diffuse, tender, and painful rather than pruritic. They typically resolve within 48 hours.

B. Laboratory Findings

Laboratory tests are selected on the basis of the history and physical findings. Testing for specific IgE antibody to food or inhalant allergens may be helpful in implicating a potential cause. Specific tests for physical urticarias, such as an ice cube test or a pressure test, may be indicated. Intradermal injection of methacholine reproduces clinical symptoms locally in about one-third of patients with cholinergic urticaria. A throat culture for streptococcal infection may be warranted with acute urticaria. In chronic urticaria, selected screening studies to look for an underlying disease may be indicated, including a complete blood count, erythrocyte sedimentation rate, biochemistry panel, and urinalysis. Antithyroid antibodies may be considered. Intradermal testing with the patient’s serum has been suggested as a method of detecting histamine-releasing activity, including autoantibodies (autologous serum skin test). In patients with well-characterized autoimmune urticaria, donor basophil and mast cell activation markers including CD63 and CD203c have been shown to be upregulated in patient serum. Other tests should be done based on suspicion of a specific underlying disease. If the history or appearance of the urticarial lesions suggests vasculitis, a skin biopsy for immunofluorescence is indicated. Patient diaries occasionally may be helpful to determine the cause of recurrent hives. A trial of food or drug elimination may be considered.

Differential Diagnosis

Urticarial lesions are usually easily recognized—the major dilemma is the etiologic diagnosis. Lesions of urticarial vasculitis typically last for more than 24 hours. “Papular urticaria” is a term used to characterize multiple papules from insect bites, found especially on the extremities, and is not true urticaria. Angioedema can be distinguished from other forms of edema because it is transient, asymmetrical, and nonpitting and does not occur predominantly in dependent areas. Hereditary angioedema is a rare autosomal dominant disorder caused by a quantitative or functional deficiency of C1-esterase inhibitor and characterized by episodic, frequently severe, nonpruritic angioedema of the skin, gastrointestinal tract, or upper respiratory tract (discussed in Chapter 33). Life-threatening laryngeal angioedema may occur. Rare autoinflammatory disorders with urticaria or urticaria-vasculitic-like lesions include cold-induced autoinflammatory syndrome, Muckle-Wells syndrome, and Schnitzler syndrome.

Complications

In severe cases of cholinergic urticaria, systemic anaphylaxis may develop. In cold-induced disease, sudden cooling of the entire body as can occur with swimming can result in hypotension and collapse.

Treatment

A. General Measures

The most effective treatment is identification and avoidance of the triggering agent. Underlying infection should be treated appropriately. Patients with physical urticarias should avoid the relevant physical stimulus. Patients with cold urticaria should be counseled not to swim alone and prescribed autoinjectable epinephrine in case of generalized mast cell degranulation with immersion in cold water or other widespread cold exposures.

B. Antihistamines

For the majority of patients, H1 antihistamines given orally or systemically are the mainstay of therapy. Antihistamines
are more effective when given on an ongoing basis rather than after lesions appear. Second-generation antihistamines (discussed previously under Allergic Rhinconjunctivitis) are long acting, show good tissue levels, are non- or minimally sedating at usual dosing levels, and lack anticholinergic effects. They are the preferred treatment for treating urticaria. The addition of H₂ antihistamines may benefit some patients who fail to respond to H₁-receptor antagonists alone. In school-aged children, but especially adolescents who are of driving age or who operate machinery, nonseating antihistamines should be used during the day and sedating antihistamines can be added at bedtime, if needed. Patients with urticaria may require treatment with higher than usual doses of antihistamines if they have breakthrough symptoms.

C. Corticosteroids

Although corticosteroids are usually not indicated in the treatment of acute or chronic urticaria, severe recalcitrant cases may require alternate-day or low dose therapy in an attempt to diminish disease activity or short-term use to facilitate control with antihistamines. However, high-dose chronic steroid use should be avoided. Systemic corticosteroids may also be needed in the treatment of urticaria or angioedema secondary to necrotizing vasculitis, an uncommon occurrence in patients with serum sickness or collagen-vascular disease.

D. Other Pharmacologic Agents

Limited studies suggest that some patients may benefit from treatment with a leukotriene-receptor antagonist. The tricyclic antidepressant doxepin blocks both H₁ and H₂ histamine receptors and may be particularly useful in chronic urticaria, although its use may be limited by the sedating side effect. Cyclosporine has been shown to be effective in multiple trials of severe chronic urticaria, but it does require blood pressure and renal function monitoring. Omalizumab trials for refractory chronic urticaria have shown promising results, but it is not currently FDA-approved for this condition. A limited number of patients—including euthyroid patients—with chronic urticaria and antithyroid antibodies have improved when given thyroid hormone, although this treatment remains controversial. Treatment of chronic urticaria with hydroxychloroquine, sulfasalazine, dapsone, colchicine, and intravenous immune globulin should be considered investigational.

Prognosis

Spontaneous remission of urticaria and angioedema is frequent, but some patients have a prolonged course, especially those with physical urticaria. In one natural history study, approximately 58% of children with chronic urticaria became symptom free after 6 months. Reassurance is important, because this disorder can cause significant frustration. Periodic follow-up is indicated, particularly for patients with laryngeal edema, to monitor for possible underlying cause.


ANAPHYLAXIS

General Considerations

Anaphylaxis is an acute life-threatening clinical syndrome that occurs when large quantities of inflammatory mediators are rapidly released from mast cells and basophils after exposure to an allergen in a previously sensitized patient. Anaphylactoid reactions mimic anaphylaxis but are not mediated by IgE antibodies. They may be mediated by anaphylatoxins such as C3a or C5a or through nonimmune mast cell degranulating agents. Some of the common causes of anaphylaxis or anaphylactoid reactions are listed in Table 38–6. Idiopathic anaphylaxis by definition has no recognized external cause. The clinical history is the most important tool in making the diagnosis of anaphylaxis.

<table>
<thead>
<tr>
<th>Causes of anaphylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drugs</td>
</tr>
<tr>
<td>Antibiotics</td>
</tr>
<tr>
<td>Anesthetic agents</td>
</tr>
<tr>
<td>Foods</td>
</tr>
<tr>
<td>Peanuts, tree nuts, shellfish, and others</td>
</tr>
<tr>
<td>Biologicals</td>
</tr>
<tr>
<td>Latex</td>
</tr>
<tr>
<td>Insulin</td>
</tr>
<tr>
<td>Allergen extracts</td>
</tr>
<tr>
<td>Antisera</td>
</tr>
<tr>
<td>Blood products</td>
</tr>
<tr>
<td>Enzymes</td>
</tr>
<tr>
<td>Monoclonal antibodies (eg, omalizumab)</td>
</tr>
<tr>
<td>Insect venoms</td>
</tr>
<tr>
<td>Radiocontrast media</td>
</tr>
<tr>
<td>Aspirin and other nonsteroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>Anesthetic agents</td>
</tr>
<tr>
<td>Idiopathic</td>
</tr>
</tbody>
</table>

Table 38–6. Common causes of systemic allergic and pseudoallergic reactions.
Clinical Findings

A. Symptoms and Signs

The history is the most important tool to determine whether a patient has had anaphylaxis. The symptoms and signs of anaphylaxis depend on the organs affected. Onset typically occurs within minutes after exposure to the offending agent and can be short-lived, protracted, or biphasic, with recurrence after several hours despite treatment.

Anaphylaxis is highly likely when any one of the following three criteria is fulfilled:

1. Acute onset of an illness (minutes to several hours) with involvement of the skin, mucosal tissue, or both (eg, generalized hives, pruritus or flushing, swollen lips-tongue-uvula) and at least one of the following:
   a. Respiratory compromise (eg, dyspnea, wheeze, bronchospasm, stridor, reduced peak expiratory flow, hypoxemia)
   b. Reduced blood pressure or associated symptoms of end-organ dysfunction (eg, hypotonia [collapse], syncope, incontinence)

2. Two or more of the following that occur rapidly after exposure to a likely allergen for that patient (minutes to several hours):
   a. Involvement of the skin-mucosal tissue (eg, generalized urticaria, itch-flush, swollen lips-tongue-uvula)
   b. Respiratory compromise (eg, dyspnea, wheeze, bronchospasm, stridor, reduced PEFR, hypoxemia)
   c. Reduced blood pressure or associated symptoms (eg, hypotonia [collapse], syncope, incontinence)
   d. Persistent gastrointestinal symptoms (eg, crampy abdominal pain, vomiting)

3. Reduced blood pressure after exposure to a known allergen for that patient (minutes to several hours)
   a. Infants and children: low systolic blood pressure (age specific) or greater than 30% decrease in systolic pressure
   b. Low systolic blood pressure in children, defined as less than 70 mm Hg in those aged from 1 month to 1 year, less than (70 mm Hg + [2 × age]) in those 1–10 years of age, and less than 90 mm Hg in those 11–17 years

B. Laboratory Findings

An absence of laboratory findings does not rule out anaphylaxis. Tryptase released by mast cells can be measured in the serum and may be helpful when the diagnosis of anaphylaxis is in question. The blood sample should be obtained within 3 hours of onset of the reaction, although tryptase levels are often normal, particularly in individuals with food-induced anaphylaxis. The complete blood count may show an elevated hematocrit due to hemoconcentration. Elevation of serum creatine kinase, aspartate aminotransferase, and lactic dehydrogenase may be seen with myocardial involvement. Electrocardiographic abnormalities may include ST-wave depression, bundle branch block, and various arrhythmias. Arterial blood gases may show hypoxemia, hypercapnia, and acidosis. The chest radiograph may show hyperinflation.

Differential Diagnosis

Although shock may be the only sign of anaphylaxis, other diagnoses should be considered, especially in the setting of sudden collapse without typical allergic findings. Other causes of shock along with cardiac arrhythmias must be ruled out (see Chapters 12 and 14). Respiratory failure associated with asthma may be confused with anaphylaxis. Mastocytosis, hereditary angioedema, scombroid poisoning, vasovagal reactions, vocal cord dysfunction, and anxiety attacks may cause symptoms mistaken for anaphylaxis.

Complications

Depending on the organs involved and the severity of the reaction, complications may vary from none to asthmatic pneumonia, acute tubular necrosis, bleeding diathesis, or sloughing of the intestinal mucosa. With irreversible shock, heart and brain damage can be terminal. Risk factors for fatal or near-fatal anaphylaxis include age (adolescents and young adults), reactions to peanut or tree nuts, associated asthma, strenuous exercise, and ingestion of medications such as β-blockers.

Prevention

Strict avoidance of the causative agent is extremely important. An effort to determine its cause should be made, beginning with a thorough history. Typically, there is a strong temporal relationship between exposure and onset of symptoms. Testing for specific IgE to allergens with either in vitro or skin testing may be indicated. With exercise-induced anaphylaxis, patients should be instructed to exercise with another person and to stop exercising at the first sign of symptoms. If prior ingestion of food has been implicated, eating within 4 hours—perhaps up to 12 hours—before exercise should be avoided. Patients with a history of anaphylaxis should carry epinephrine for self-administration, preferably in the form of an autoinjector (eg, Auvi-Q or EpiPen in 0.15- and 0.3-mg doses), and they and all caregivers should be instructed on its use. When epinephrine autoinjectors are unavailable or unaffordable, patients in some communities have been provided with unsealed syringes containing premeasured epinephrine doses, but this is not the recommended form since it needs to be replaced every few months on a regular basis due to lack of stability and the use of a syringe is more unwieldy in an emergent situation. They should also carry an oral antihistamine such as diphenhydramine, preferably in liquid or fast-melt preparation to hasten absorption, and consider wearing...
a medical alert bracelet. Patients with idiopathic anaphylaxis may require prolonged treatment with oral corticosteroids. Specific measures for dealing with food, drug, latex, and insect venom allergies as well as radiocontrast media reactions are discussed in the next sections.

**Treatment**

**A. General Measures**

Anaphylaxis is a medical emergency that requires rapid assessment and treatment. Exposure to the triggering agent should be discontinued. Airway patency should be maintained and blood pressure and pulse monitored. Simultaneously and promptly, emergency medical services or a call for help to a resuscitation team should be made. The patient should be placed in a supine position with the legs elevated unless precluded by shortness of breath or emesis. Oxygen should be delivered by mask or nasal cannula with pulse oximetry monitoring. If the reaction is secondary to a sting or injection into an extremity, a tourniquet may be applied proximal to the site, briefly releasing it every 10–15 minutes.

**B. Epinephrine**

Epinephrine is the treatment of choice for anaphylaxis. Epinephrine 1:1000, 0.01 mg/kg to a maximum of 0.5 mg in adults and 0.3 mg in children, should be injected intramuscularly in the midanterolateral thigh, without delay. This dose may be repeated at intervals of 5–15 minutes as necessary for controlling symptoms and maintaining blood pressure. If the precipitating allergen has been injected intradermally or subcutaneously, absorption may be delayed by giving 0.1 mL of epinephrine subcutaneously at the injection site unless the site is a digit. There is no precisely established dosing regimen for intravenous epinephrine in anaphylaxis, but a 5–10 mcg intravenous bolus for hypotension and 0.1–0.5 mg intravenously for cardiovascular collapse has been suggested.

**C. Antihistamines**

Diphenhydramine, an H₁-blocker, 1–2 mg/kg up to 50 mg, can be given orally, intramuscularly or intravenously. Intravenous antihistamines should be infused over a period of 5–10 minutes to avoid inducing hypotension. Alternatively in young patients, cetirizine 0.25 mg/kg to a maximum dose of 10 mg could be given orally, as it was shown to have a longer duration of action and reduced sedation profile. Addition of ranitidine, an H₂-blocker, 1 mg/kg up to 50 mg intravenously, may be more effective than an H₁-blocker alone, especially for hypotension, but histamine blockers should be considered second-line treatment for anaphylaxis.

**D. Fluids**

Treatment of persistent hypotension despite epinephrine requires restoration of intravascular volume by fluid replacement, initially with a crystalloid solution, 20–30 mL/kg in the first hour.

**E. Bronchodilators**

Nebulized β₂-agonists such as albuterol 0.5% solution, 2.5 mg (0.5 mL) diluted in 2–3 mL saline, or levalbuterol, 0.63 mg or 1.25 mg, may be useful for reversing bronchospasm. Intravenous methylxanthines are generally not recommended because they provide little benefit over inhaled β₂-agonists and may contribute to toxicity.

**F. Corticosteroids**

Although corticosteroids do not provide immediate benefit, when given early they may prevent protracted or biphasic anaphylaxis. Intravenous methylprednisolone, 50–100 mg (adult) or 1 mg/kg, maximum 50 mg (child), can be given every 4–6 hours. Oral prednisone, 1 mg/kg up to 50 mg, might be sufficient for less severe episodes.

**G. Vaspressors**

Hypotension refractory to epinephrine and fluids should be treated with intravenous vasopressors such as noradrenaline, vasopressin, or dopamine (see Chapter 14).

**H. Observation**

The patient should be monitored after the initial symptoms have subsided, because biphasic or protracted anaphylaxis can occur despite ongoing therapy. Biphasic reactions occur in 1%–20% of anaphylactic reactions, but no reliable clinical predictors have been identified. Observation periods should be individualized based on the severity of the initial reaction, but a reasonable time for observation is 4–6 hours in most patients, with prolonged observation or admission for severe or refractory symptoms.

**Prognosis**

Anaphylaxis can be fatal. In two reports describing children, adolescents, and adults who died from food-induced anaphylaxis (eg, from peanuts, tree nuts, fish, shellfish, and milk) over the past 12 years, treatment with epinephrine was delayed for more than 1 hour after onset as it was not readily accessible in the majority of subjects. The prognosis, however, is good when signs and symptoms are recognized promptly and treated aggressively, and the offending agent is subsequently avoided. Exercise-induced and idiopathic anaphylaxis may be recurrent. Because accidental exposure to the causative agent may occur, patients, parents, and
caregivers must be prepared to recognize and treat anaphylaxis (emergency action plan).


ADVERSE REACTIONS TO DRUGS & BIOLOGICALS

The majority of adverse drug reactions are not immunologically mediated and may be due to idiosyncratic reactions, overdosage, pharmacologic side effects, non-specific release of pharmacologic effector molecules, or drug interactions.

Patients or caregivers often label any adverse drug reaction as an “allergy.” Adverse drug reactions are any undesirable and unintended response elicited by a drug. Allergic or hypersensitivity drug reactions are adverse reactions involving immune mechanisms. Although hypersensitivity reactions account for only 5%–10% of all adverse drug reactions, they are the most serious, with 1:10,000 resulting in death. Clinicians can report adverse drug reactions and get updated information on drugs, vaccines, and biologics at the FDA’s MedWatch website.

1. Antibiotics

Antibiotics constitute the most frequent cause of allergic drug reactions. Amoxicillin, trimethoprim–sulfamethoxazole, and ampicillin are the most common causes of cutaneous drug reactions.

Most antibiotics and their metabolites are low-molecular-weight compounds that do not stimulate immunity until they have become covalently bound to a carrier protein. The penicillins and other β-lactam antibiotics, including cephalosporins, carbacephems, carbapenems, and monobactams, share a common β-lactam ring structure and a marked propensity to couple to carrier proteins. Penicilloyl is the predominant metabolite of penicillin and is called the major determinant. The other penicillin metabolites are present in low concentrations and are referred to as minor determinants. Sulfonamide reactions are mediated presumably by a reactive metabolite (hydroxylamine) produced by cytochrome P-450 oxidative metabolism. Slow acetylators appear to be at increased risk. Other risk factors for drug reactions include previous exposure, previous reaction, age (20–49 years), route (parenteral), and dose of administration (high, intermittent). Atopy does not predispose to development of a reaction, but atopic individuals have more severe reactions.

Immunopathologic reactions to antibiotics include type I (IgE-mediated) reactions resulting from a drug or metabolite interaction with preformed specific IgE bound to the surfaces of tissue mast cells or circulating basophils. Release of mediators such as histamine and leukotrienes contributes to the clinical development of angioedema, urticaria, bronchospasm, or anaphylaxis immediately after the dose. Type II (cytotoxic) reactions involve IgG or IgM antibodies that recognize drug bound to cell membranes. In the presence of serum complement, the antibody-coated cell is either cleared or destroyed, causing drug-induced hemolytic anemia or thrombocytopenia. Type III (immune complex) reactions are caused by soluble complexes of drug or metabolite with IgG or IgM antibody. If the immune complex is deposited on blood vessel walls and activates the complement cascade, serum sickness may result. Type IV (T-cell–mediated) reactions require activated T lymphocytes that recognize a drug or its metabolite as seen in allergic contact dermatitis. Sensitization usually occurs via the topical route of administration. Immunopathologic reactions not fitting into the types I–IV classification include Stevens-Johnson syndrome, exfoliative dermatitis, and the maculopapular rash associated with penicillin or ampicillin. The prevalence of morbilliform rashes in patients given ampicillin is between 5.2% and 9.5% of treatment courses. However, patients given ampicillin during Epstein-Barr virus and cytomegalovirus infections or with acute lymphoblastic anemia have a 69%–100% incidence of non–IgE-mediated rash. Serum sickness–like reactions resemble type III reactions, although immune complexes are not documented; β-lactams, especially cefaclor, and sulfonamides have been implicated most often. They may result from an inherited propensity for hepatic biotransformation of drug into toxic or immunogenic metabolites. The incidence of “allergic” cutaneous reactions to trimethoprim–sulfamethoxazole in patients with AIDS has been reported to be as high as 70%. The mechanism is thought to relate to severe immune dysregulation, although it may be due to glutathione deficiency resulting in toxic metabolites.

Clinical Findings

A. Symptoms and Signs

Allergic reactions can result in pruritus, urticaria, angioedema, or anaphylaxis. Serum sickness is characterized by fever, rash, lymphadenopathy, myalgias, and arthralgias. Cytotoxic drug reactions can result in symptoms and signs associated with the underlying anemia or thrombocytopenia. Delayed-type hypersensitivity may cause contact dermatitis.

B. Laboratory Findings

Skin testing is the most rapid, useful, and sensitive method of demonstrating the presence of IgE antibody to
a specific allergen. Skin testing to nonpenicillin antibiotics may be difficult, however, because many immunologic reactions are due to metabolites rather than to the parent drug and because the relevant metabolites for most drugs other than penicillin have not been identified. Because metabolites are usually low-molecular-weight haptenst, they must combine with carrier proteins to be useful for diagnosis. Skin testing for immediate hypersensitivity is helpful only in predicting reactions caused by IgE antibodies. Most nonpruritic maculopapular rashes will not be predicted by skin testing. In the case of contact sensitivity reactions to topical antibiotics, a 48-hour patch test can be useful.

Solid-phase in vitro immunoassays for IgE to penicillins are available for identification of IgE to penicilloyl, but are considerably less sensitive than skin testing and the predictive values are not known. Assays for specific IgG and IgM have been shown to correlate with a drug reaction in immune cytopenias, but in most other instances such assays are not clinically useful. Approximately 80% of patients with a history of penicillin allergy will have negative skin tests. Penicillin therapy in patients with a history of an immediate hypersensitivity reaction to penicillin, but with negative skin tests to both penicilloyl and the minor determinant mixture, is accompanied by a 1%–3% chance of urticaria or other mild allergic reactions at some time during therapy, with anaphylaxis occurring in less than 0.1% of patients. In contrast, the predictive value of a positive skin test is approximately 60%. Testing with penicilloyl linked to polylysine (PPL) alone has a sensitivity of about 76%; use of both PPL and penicillin G (used as a minor determinant) increases sensitivity to about 95%. Not using the minor determinant mixture in skin testing can result in failure to predict potential anaphylactic reactions. Unfortunately, the minor determinant mixture is still not commercially available, although some academic allergy centers make their own. Approximately 4% of subjects tested who have no history of penicillin allergy have positive skin tests. Rarely, patients may have skin test reactivity only to a specific semisynthetic penicillin. Resensitization in skin test–negative children occurs infrequently (<1%) after a course of oral antibiotic. Of note, the manufacturing of the major determinant of penicillin testing reagent Pre-Pen (penicilloyl-polylysine) in the United States was discontinued for several years. AllerQuest received approval from the FDA in January 2008 to manufacture Pre-Pen and the product is once again available (distributed by ALK-Abello, Inc).

The degree of cross-reactivity of determinants formed from cephalosporins with IgE to other β-lactam drugs remains unresolved, especially because haptenst that may be unique to cephalosporin metabolism remain unknown. The degree of clinical cross-reactivity is much lower than the in vitro cross-reactivity. A clinical adverse reaction rate of 3%–7% for cephalosporins may be expected in patients with a history of immediate reaction to penicillins with positive skin tests to penicillin. Antibodies to the second, third, and fourth generation cephalosporins appear to be directed at the unique side chains rather than at the common ring structure. The present literature suggests that a positive skin test to a cephalosporin used at a concentration of 1 mg/mL would place the patient at increased risk for an allergic reaction to that antibiotic. However, a negative skin test would not exclude sensitivity to a potentially relevant metabolite. One review concluded that there is no increased incidence of allergy to second- and third-generation cephalosporins in patients with penicillin allergy and that penicillin skin testing does not identify patients who develop cephalosporin allergy. However, another study suggested that although only 2% of penicillin-allergic patients would react to a cephalosporin, they would be at risk for anaphylaxis.

Carbacephems (loracarbef) are similar to cephalosporins, although the degree of cross-reactivity is undetermined. Carbapenems (imipenem) represent another class of β-lactam antibiotics with a bicyclic nucleus and a high degree of cross-reactivity with penicillin although recent prospective studies suggest an incidence of cross-reactivity on skin testing of approximately 1%. Monobactams (aztreonam) contain a monocyclic rather than bicyclic ring structure, and limited data suggest that aztreonam can be safely administered to most penicillin-allergic subjects. In contrast, administration of aztreonam to a patient with ceftazidime allergy may be associated with increased risk of allergic reaction due to similarity of side chains.

Skin testing for non–β-lactam antibiotics is less reliable, because the relevant degradation products are for the most part unknown or multivalent reagents are unavailable.

**Treatment**

**A. General Measures**

Withdrawal of the implicated drug is usually a central component of management. Acute IgE-mediated reactions such as anaphylaxis, urticaria, and angioedema are treated according to established therapeutic guidelines that include the use of epinephrine, H1- and H2-receptor blocking agents, volume replacement, and systemic corticosteroids (see previous sections). Antibiotic-induced immune cytopenias can be managed by withdrawal of the offending agent or reduction in dose. Drug-induced serum sickness can be suppressed by drug withdrawal, antihistamines, and corticosteroids. Contact allergy can be managed by avoidance and treatment with antihistamines and topical corticosteroids. Reactions such as toxic epidermal necrolysis and Stevens-Johnson syndrome require immediate drug withdrawal and supportive care.

**B. Alternative Therapy**

If possible, subsequent therapy should be with an alternative drug that has therapeutic actions similar to the drug in question but with no immunologic cross-reactivity.
C. Desensitization

Administering gradually increasing doses of an antibiotic either orally or parenterally over a period of hours to days may be considered if alternative therapy is not acceptable. This should be done only by a physician familiar with desensitization, typically in an intensive care setting. Of note, desensitization is only effective for the course of therapy for which the patient was desensitized, unless maintained on a chronic prophylactic dose of the medication as patients revert from a desensitized to allergic state after the drug is discontinued. In addition, desensitization does not reduce or prevent non–IgE-mediated reactions. Patients with Stevens-Johnson syndrome should not be desensitized because of the high mortality rate.

Prognosis

The prognosis is good when drug allergens are identified early and avoided. Stevens-Johnson syndrome and toxic epidermal necrolysis may be associated with a high mortality rate.

2. Latex Allergy

General Considerations

Allergic reactions to latex and rubber products have become increasingly common since the institution of universal precautions for exposure to bodily fluids. Children with spina bifida appear to have a unique sensitivity to latex, perhaps because of early and frequent latex exposure as well as altered neuroimmune interactions. Atopy—especially symptomatic latex allergy—appears to be significantly increased in patients with spina bifida experiencing anaphylaxis during general anesthesia. Other conditions requiring chronic or recurrent exposure to latex such as urogenital anomalies and ventriculoperitoneal shunt have also been associated with latex hypersensitivity. The combination of atopy and frequent exposure seems to synergistically increase the risk of latex hypersensitivity.

Latex is the milky fluid obtained by tapping the cultivated rubber tree, *Hevea brasiliensis*. During manufacture of latex products, various antioxidants and accelerators such as thiurams, carbamates, and mercaptobenzothiazoles are added. IgE from latex-sensitized individuals reacts with different protein components, supporting the notion that more than one clinically important latex antigen exists. New allergenic epitopes are generated during the manufacturing process. Thus, polypeptides from latex glove extracts vary both quantitatively and qualitatively with different brands and lots of gloves. Identification of the causative antigens is important because it may be possible to alter the manufacturing process to reduce the final allergen content.

Latex is ubiquitous in medical settings, and many sources may be inconspicuous. Synthetic alternatives to some latex products—including gloves, dressings, and tape—are available. Avoidance of contact with latex-containing items, however, may be insufficient to prevent allergic reactions, because lubricating powders may serve as vehicles for aerosolized latex antigens. The use of powder-free latex gloves is an important control measure for airborne latex allergen.

Nonmedical sources of latex are also common and include balloons, toys, rubber bands, erasers, condoms, and shoe soles. Pacifiers and bottle nipples have also been implicated as sources of latex allergen, although these products are molded rather than dipped, and allergic reactions to molded products are less common. Latex-allergic patients and their caregivers must be continuously vigilant for hidden sources of exposure.

Clinical Findings

A. Symptoms and Signs

The clinical manifestations of IgE-mediated reactions to latex can involve the full spectrum of symptoms associated with mast cell degranulation. Localized pruritus and urticaria occur after cutaneous contact; conjunctivitis and rhinitis can result from aerosol exposure or direct facial contact. Systemic reactions, including bronchospasm, laryngospasm, and hypotension, may occur with more substantial exposure or in extremely sensitive individuals. Finally, vascular collapse and shock leading to fatal cardiovascular events may occur. Intraoperative anaphylaxis represents a common and serious manifestation of latex allergy.

Allergic contact dermatitis to rubber products typically appears 24–48 hours after contact. The primary allergens include accelerators and antioxidants used in the manufacturing process. The diagnosis is established by patch testing. Shoe soles are an important source of exposure. The skin lesions appear primarily as a patchy eczema on exposed surfaces, although reactions can become generalized.

B. Laboratory Findings

Epicutaneous prick testing is a rapid, inexpensive, and sensitive test that detects the presence of latex-specific IgE on skin mast cells although a standardized antigen is not yet commercially available. Reports of life-threatening anaphylactic events have been associated with skin testing to latex, and intradermal testing may be especially dangerous.

Immunoassay testing involves the in vitro measurement of specific IgE, which binds latex antigens. Antigen sources used for testing have included native plant extracts, raw latex, and finished products. When compared with a history of latex-induced symptoms or positive skin tests, the sensitivity of immunoassays testing for latex antigens ranges from 50% to 100% with specificity between 63% and 100%. These broad ranges may reflect the patient population studied and the source of latex antigen as well as the assay employed. A positive immunoassay test to latex in the presence of a highly suggestive latex allergy history is useful and may circumvent...
the potential concerns associated with prick skin testing in certain patients. Patch testing with standardized T.R.U.E. Test or other sources of antigens can identify antigens used in the manufacturing of latex products that can cause allergic contact dermatitis.

Cross-reactivity has been demonstrated between latex and a number of other antigens such as foods. Banana, avocado, and chestnut have been found to be antigenically similar to latex both immunologically and clinically.

**Complications**

Complications may be similar to those caused by other allergens. Prolonged exposure to aerosolized latex may lead to persistent asthma. Chronic allergic contact dermatitis, especially on the hands, can lead to functional disability.

**Treatment**

Avoidance remains the cornerstone of treatment for latex allergy. Prevention and supportive therapy are the most common methods for managing this problem. Patients identified as being allergic to latex may need to have a personal supply of vinyl or latex-free gloves for use when visiting a physician or dentist. “Hypoallergenic gloves” are poorly classified with respect to their ability to induce IgE-mediated reactions; the FDA currently uses this term to designate products that have a reduced capacity to induce contact dermatitis. Nonlatex gloves include nitrile and vinyl ones. A glove made from guayule latex has been approved by the FDA. Autoinjectable epinephrine and medical identification bracelets may be prescribed for latex-allergic patients along with avoidance counseling.

Prophylactic premedication of latex-allergic individuals has been used in some surgical patients at high risk for latex allergy. The rationale for this therapy is derived from the pretreatment protocols developed for iodinated radiocontrast media and anesthetic reactions. Although there has been some success using this regimen, anaphylaxis has occurred despite pretreatment. This approach should not substitute for careful avoidance measures.

**Prognosis**

Owing to the ubiquitous nature of natural rubber, the prognosis is guarded for patients with severe latex allergy. Chronic exposure to airborne latex particles may lead to chronic asthma. Chronic dermatitis can lead to functional disability.

**3. Vaccines**

Mumps-measles-rubella (MMR) vaccine has been shown to be safe in egg-allergic patients (although rare reactions to gelatin or neomycin can occur). Although the amount of ovalbumin in influenza vaccine is variable, content does not appear to predict risk of reaction and several studies suggest that egg allergic children can safely receive influenza vaccine injection as a single full dose. Skin prick testing and graded dosing is no longer recommended for egg-allergic patients who have not reacted to the influenza vaccine. Egg allergic patients should be observed for 30 minutes after receiving influenza vaccine and if there are concerns about administration, they should be referred to an allergist. In addition, the live intranasal influenza vaccine has not been studied in egg-allergic children so its safety is unknown.

**4. Radiocontrast Media**

Non–IgE-mediated anaphylactoid reactions may occur with radiocontrast media with up to a 30% reaction rate on reexposure. Management involves using a low-molarity agent and premedication with prednisone, diphenhydramine, and possibly an H₂-blocker.

**5. Insulin**

Approximately 50% of patients receiving insulin have positive skin tests, but IgE-mediated reactions occur rarely. Insulin resistance is mediated by IgG. If less than 24 hours has elapsed after an allergic reaction to insulin, do not discontinue insulin but rather reduce the dose by one-third, then increase by 2–5 units per injection. Skin testing and desensitization are necessary if the interval between the allergic reaction and subsequent dose is greater than 24 hours.

**6. Local Anesthetics**

Less than 1% of reactions to local anesthetics are IgE-mediated. Management involves selecting a local anesthetic from another class. Esters of benzoic acid include benzocaine and procaine; amides include lidocaine and mepivacaine. Alternatively, the patient can be skin tested with the suspected agent, followed by a provocative challenge. To rule out paraben sensitivity, skin testing can be done with 1% lidocaine from a multidose vial.

**7. Aspirin & Other Nonsteroidal Anti-Inflammatory Drugs**

Adverse reactions to aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs) include urticaria and angioedema; rhinosinusitis, nasal polyps, and asthma (Aspirin-exacerbated respiratory disease AERD); anaphylactoid reactions; and NSAID-related hypersensitivity pneumonitis. After a systemic reaction, a refractory period of 2–7 days occurs. Most aspirin-sensitive patients tolerate sodium salicylate. All NSAIDs inhibiting cyclooxygenase (COX) cross-react with aspirin. Cross-reactivity between aspirin and tartrazine (yellow dye No. 5) has not been substantiated in controlled trials. No skin test or in vitro test is available to
diagnose aspirin sensitivity. Oral challenge can induce severe bronchospasm in AERD patients. Aspirin desensitization can be performed to ameliorate the symptoms of AERD. Desensitization and cross-desensitization to NSAIDs can be achieved in most patients and maintained for a long term. Leukotriene-receptor antagonists or 5-lipoxygenase inhibitors attenuate the reaction to aspirin challenge and may be beneficial adjunct treatment in aspirin-sensitive asthmatic patients. COX-2 inhibitors are tolerated by patients with AERD.

8. Biological Agents

In recent years, a growing number of biological agents have become available for the treatment of autoimmune, neoplastic, cardiovascular, infectious, and allergic diseases, among others. Their use may be associated with a variety of adverse reactions, including hypersensitivity reactions. The FDA issued a boxed warning regarding risk of anaphylaxis and need for patient monitoring with use of omalizumab (see section on Pharmacologic Therapy under Treatment, Chronic Asthma, earlier). Updated information can be found at the FDA’s MedWatch website under Vaccines, Blood, and Biologics.

9. Hypersensitivity to Retroviral Agents

Adverse drug reactions are being reported with increasing frequency to antiretroviral agents, including reverse transcriptase inhibitors, protease inhibitors, and fusion inhibitors. Hypersensitivity to abacavir is a well-described, multiorgan, potentially life-threatening reaction that occurs in HIV-infected children. The reaction is independent of dose with onset generally within 9–11 days of initiation of drug therapy. Rechallenge can be accompanied by significant hypotension and given a mortality rate of 0.03%; hypersensitivity to abacavir is an absolute contraindication for subsequent use. Prophylaxis with prednisolone does not appear to prevent hypersensitivity reactions to abacavir. Importantly, genetic susceptibility appears to be conferred by the HLA-B*5701 allele with a positive predictive value of > 70% and negative predictive value of 95%–98%. Genetic screening would be cost-effective in Caucasians, but not in African or Asian populations as their HLA-B*5701 allele frequency is < 1%.

10. Adverse Reactions to Chemotherapeutic Agents

A number of chemotherapeutic agents, including monoclonal antibodies, have been implicated in hypersensitivity reactions. Rapid desensitization to unrelated agents, including carboplatin, paclitaxel, and rituximab, has been reported. This 12-step protocol appeared to be successful in both IgE- and non–IgE-mediated reactions.

FOOD ALLERGY

A. Symptoms and Signs

A thorough medical history is crucial in identifying symptoms associated with potential food allergy; a history of a temporal...
Table 38–7. Food allergy disorders.

<table>
<thead>
<tr>
<th>IgE-mediated</th>
<th>Mixed IgE- and non–IgE-mediated</th>
<th>Non–IgE-mediated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal: pollen-food allergy syndrome, immediate GI anaphylaxis</td>
<td>Gastrointestinal: eosinophilic esophagitis/gastroenteritis/colitis</td>
<td>Gastrointestinal: food protein–induced enterocolitis, proctocolitis, and enteropathy syndromes; celiac disease</td>
</tr>
<tr>
<td>Cutaneous: urticaria, angioedema, morbilliform rashes, and flushing</td>
<td>Cutaneous: atopic dermatitis</td>
<td>Cutaneous: contact dermatitis, dermatitis herpetiformis</td>
</tr>
<tr>
<td>Respiratory: acute rhinoconjunctivitis, acute wheezing</td>
<td>Respiratory: asthma</td>
<td>Respiratory: food-induced pulmonary hemosiderosis (Heiner syndrome)</td>
</tr>
<tr>
<td>Generalized: anaphylactic shock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relationship between the ingestion of a suspected food and onset of a reaction—as well as the nature and duration of symptoms observed—is important in establishing the diagnosis. For all IgE-mediated reactions, reactions to foods occur within minutes and up to 2 hours after ingestion. For the non–IgE-mediated and mixed disorders, reactions can be delayed in onset for more than several hours, such as in food protein–induced enterocolitis, to possibly days later with onset of vomiting or an eczema flare after food exposure due to eosinophilic esophagitis or atopic dermatitis, respectively. At times, acute symptoms may occur, but the cause may not be obvious because of hidden food allergens. A symptom diary kept for 7–14 days may be helpful in establishing an association between ingestion of foods and symptoms and also provides a baseline observation for the pattern of symptom expression. It is important to record both the form in which the food was ingested and the foods ingested concurrently.

Hives, flushing, facial angioedema, and mouth or throat itching are common. In severe cases, angioedema of the tongue, uvula, pharynx, or upper airway can occur. Contact urticaria can occur without systemic symptoms in some children. Gastrointestinal symptoms include abdominal discomfort or pain, nausea, vomiting, and diarrhea. Children with food allergy may occasionally have isolated rhinoconjunctivitis or wheezing. Rarely, anaphylaxis to food may involve only cardiovascular collapse.

B. Laboratory Findings

Typically, fewer than 50% of histories of food allergy will be confirmed by blinded food challenge (although this percentage is much higher in food-induced anaphylaxis). Prick skin testing is useful to rule out a suspected food allergen, because the predictive value is high for a properly performed negative test with an extract of good quality (negative predictive accuracy of > 95%). In contrast, the predictive value for a positive test is approximately 50%. Serum food-specific IgE tests have lower specificity and positive predictive values. In contrast, food-specific IgE levels to milk, egg, peanut, and fish proteins have been established with the ImmunoCAP assay correlating with a greater than 95% chance of a clinical reaction, but values have not been established for other foods. A list of nonstandardized and unproven procedures for the diagnosis of food allergy, including the measurement of allergen-specific-IgG to foods, is provided in the Food Allergy Guidelines.

The double-blind, placebo-controlled food challenge is considered the gold standard for diagnosing food allergy, except in severe reactions. If there is high suspicion of possible allergic reactivity to a food with a negative skin test or an undetectable IgE level (or both), a food challenge may be necessary to confirm the presence or absence of allergy. Even when multiple food allergies are suspected, most patients will test positive to three or fewer foods on blinded challenge. Therefore, extensive elimination diets are almost never indicated, and an evaluation by an allergist is preferred before multiple foods are eliminated from the diet unnecessarily. Elimination without controlled challenge is a less desirable but at times more practical approach for suspected food allergy. Elimination diets and food challenges may also be the only tools for evaluation of suspected non–IgE-mediated food reactions.

Differential Diagnosis

Repeated vomiting in infancy may be due to pyloric stenosis or gastroesophageal reflux. With chronic gastrointestinal symptoms, enzyme deficiency (eg, lactase), cystic fibrosis, celiac disease, chronic intestinal infections, gastrointestinal malformations, and irritable bowel syndrome should be considered.

Treatment

Treatment consists of eliminating and avoiding foods that have been documented to cause allergic reactions. This involves educating the patient, parent, and caregivers regarding hidden food allergens, the necessity for reading labels, and the signs and symptoms of food allergy and its appropriate management (emergency action plan; a copy of this plan is provided in the Food Allergy Guidelines). New food labeling laws went into effect in January 2006 requiring simple terms to indicate the presence of the major food allergens listed previously (eg, milk instead of casein). Consultation with a dietitian familiar with food allergy may be helpful, especially when common foods such as milk, egg, peanut, soy, or wheat are involved. All patients with a history of IgE-mediated food allergy should carry self-injectable...
epinephrine (Auvi-Q or Epipen) and a fast-acting antihistamine, have an anaphylaxis action plan, and consider wearing medical identification jewelry. Clinical trials of oral and sublingual immunotherapy are currently under investigation as potential future treatments of food allergy. However, diets containing extensively heated (baked) milk and egg are potential alternative approaches to food oral immunotherapy and are changing the previous standard of strict avoidance diets for patients with food allergy.

Prognosis

The prognosis is good if the offending food can be identified and avoided. Unfortunately, accidental exposure to food allergens in severely allergic patients can result in death. Most children outgrow their food allergies to milk, egg, wheat, and soy but not to peanut or tree nuts (only 20% and 10% of children may outgrow peanut and tree nut allergy, respectively). The natural history of food allergy can be followed by measuring food-specific IgE levels and performing food challenges when indicated. Approximately 3%–4% of children will have food allergy as adults. Resources for food-allergic patients include the Food Allergy Research & Education at: (800) 929-4040; www.foodallergy.org; and the Consortium of Food Allergy Research: www.cofargroup.org.

INSECT ALLERGY

Allergic reactions to insects include symptoms of respiratory allergy as a result of inhalation of particulate matter of insect origin, local cutaneous reactions to insect bites, and anaphylactic reactions to stings. The latter are almost exclusively caused by Hymenoptera and result in approximately 40 deaths each year in the United States. The order Hymenoptera includes honeybees, yellow jackets, yellow hornets, white-faced hornets, wasps, and fire ants. Africanized honeybees, also known as killer bees, are a concern because of their aggressive behavior and excessive swarming, not because their venom is more toxic. Rarely, patients sensitized to reduviid bugs (also known as kissing bugs) may have episodes of nocturnal anaphylaxis. Lepidopterism refers to adverse effects secondary to contact with larval or adult butterflies and moths. Salivary gland antigens are responsible for immediate and delayed skin reactions in mosquito-sensitive patients.

Clinical Findings

A. Symptoms and Signs

Insect bites or stings can cause local or systemic reactions ranging from mild to fatal responses in susceptible persons. The frequency increases in the summer months and with outdoor exposure. Local cutaneous reactions include urticaria as well as papulovesicular eruptions and lesions that resemble delayed hypersensitivity reactions. Papular urticaria is almost always the result of insect bites, especially of mosquitoes, fleas, and bedbugs. Toxic systemic reactions consisting of gastrointestinal symptoms, headache, vertigo, syncope, convulsions, or fever can occur following multiple stings. These reactions result from histamine-like substances in the venom. In children with hypersensitivity to fire ant venom, sterile pustules occur at sting sites on a nonimmunologic basis due to the inherent toxicity of piperidine alkaloids in the venom. Mild systemic reactions include itching, flushing, and urticaria. Severe systemic reactions may include dyspnea, wheezing, chest tightness, hoarseness, fullness in the throat, hypotension, loss of consciousness, incontinence, nausea, vomiting, and abdominal pain. Delayed systemic reactions occur from 2 hours to 3 weeks following the sting and include serum sickness, peripheral neuritis, allergic vasculitis, and coagulation defects.

B. Laboratory Findings

Skin testing is indicated for children with systemic reactions.Venoms of honeybee, yellow jacket, yellow hornet, white-faced hornet, and wasp are available for skin testing and treatment. Fire ant venom is not yet commercially available, but an extract made from fire ant bodies appears adequate to establish the presence of IgE antibodies to fire ant venom. Of note, venom skin test results can be negative in patients with systemic allergic reactions, especially in the first few weeks after a sting, and the tests may need to be repeated. The presence of a positive skin test denotes prior sensitization but does not predict whether a reaction will occur with the patient’s next sting, nor does it differentiate between local and systemic reactions. It is common for children who have had an allergic reaction to have positive skin tests to more than one venom. This might reflect sensitization from prior stings that did not result in an allergic reaction or cross-reactivity between closely related venoms. In vitro testing (compared with skin testing) has not substantially improved the ability to predict anaphylaxis. With venom RAST, there
is a 15%–20% incidence of both false-positive and false-negative results. Tests for mosquito saliva antigens or other insect allergy are not commercially available.

**Complications**

Secondary infection can complicate allergic reactions to insect bites or stings. Serum sickness, nephrotic syndrome, vasculitis, neuritis, and encephalopathy may be seen as late sequelae of reactions to stinging insects.

**Treatment**

For cutaneous reactions caused by biting insects, symptomatic therapy includes cold compresses, antipruritics (including antihistamines), and occasionally potent topical corticosteroids. Treatment of stings includes careful removal of the stinger, if present, by flicking it away from the wound and not by grasping in order to prevent further envenomation. Topical application of monosodium glutamate, baking soda, or vinegar compresses is of questionable efficacy. Local reactions can be treated with ice, elevation of the affected extremity, oral antihistamines, and NSAIDs as well as potent topical corticosteroids. Large local reactions, in which swelling extends beyond two joints or an extremity, may require a short course of oral corticosteroids. Anaphylactic reactions following Hymenoptera stings should be managed essentially the same as anaphylaxis (see section on Anaphylaxis). Children who have had severe or anaphylactic reactions to Hymenoptera stings—or their parents and caregivers—should be instructed in the use of epinephrine. Patients at risk for anaphylaxis from an insect sting should also wear a medical alert bracelet indicating their allergy. Children at risk from insect stings should avoid wearing bright-colored clothing and perfumes when outdoors and should wear long pants and shoes when walking in the grass. Patients who experience severe systemic reactions and have a positive skin test should receive venom immunotherapy. Immunotherapy is not indicated for children with only urticarial or local reactions.

**Prognosis**

Children generally have milder reactions than adults after insect stings, and fatal reactions are extremely rare. Patients aged 3–16 years with reactions limited to the skin, such as urticaria and angioedema, appear to be at low risk for more severe reactions with subsequent stings.


Antimicrobial Therapy

John W. Ogle, MD

PRINCIPLES OF ANTIMICROBIAL THERAPY

Antimicrobial therapy of infections is arguably the most important scientific development of 20th-century medicine. It contributes significantly to the quality of life of many people and reduces the morbidity and mortality due to infectious disease. The remarkable success of antimicrobial therapy has been achieved with comparatively little toxicity and expense. The relative ease of administration and the widespread availability of these drugs have led many to adopt a philosophy of broad-spectrum empiric antimicrobial therapy for many common infections.

Unfortunately this era of cheap, safe, and reliable therapy is being limited by the increasing frequency of antimicrobial resistance in previously susceptible microorganisms. The problem of antimicrobial resistance is not new—resistance was recognized for sulfonamides and penicillins shortly after their introduction. What is new is the worldwide dissemination of resistant clones of microorganisms, such as *Streptococcus pneumoniae* and *Staphylococcus aureus*, which are more virulent and commonly cause serious infections, not only among hospitalized patients, but also among outpatients.

Until recently the recognition of new resistant clones was balanced by the promise of newer and more potent antimicrobial agents. Today, because fewer new agents are under development, clinicians are beginning to encounter limitations in their ability to treat some serious bacterial infections. Many factors contribute to the selection of resistant clones. Our success in treating chronic diseases and immune-compromising conditions, which has resulted in additional years of life for patients, has increased opportunities for selection of resistant strains in inpatient units and chronic care facilities. Overuse of antimicrobial agents also contributes to the selection of resistant strains. Examples include antimicrobial treatment of mildly ill patients with self-limited conditions, such as viral infections, and administration of broad-spectrum antimicrobials to patients whose conditions could be treated with narrow-spectrum agents. Similarly, failure to document infection with cultures obtained prior to starting therapy limits our willingness to stop or narrow the spectrum of antimicrobials. Insufficient research has been conducted to determine the optimal duration of therapy for many infections, with the result that we probably often treat longer than is necessary. Prophylactic strategies, as used for prevention of recurrent otitis media or urinary tract infection (UTI), create a selection pressure for antibiotic resistance.

The decision-making process for choosing an appropriate antimicrobial agent is summarized in Table 39–1. Accurate clinical diagnosis is based on the history, physical examination, and initial laboratory tests. The clinical diagnosis then leads to a consideration of the organisms most commonly associated with the clinical condition, the usual pattern of antimicrobial susceptibility of these organisms, and past experience with successful treatment regimens.

Data regarding US outpatient pediatric antimicrobial prescriptions show a decreased number of antimicrobial prescriptions in 2010 compared to 2002. The most frequently prescribed antimicrobials are amoxicillin, azithromycin, amoxicillin-clavulanate, and cefdinir. However, neither azithromycin nor cefdinir is recommended as first line agent for the most common pediatric conditions, suggesting that these agents may be overprescribed.

Cultures should be obtained in potentially serious infections. Empiric antimicrobial therapy may be initiated and then modified according to the patient’s response and the culture results. Often several equally safe and efficacious antimicrobials are available. In this circumstance, the relative cost and ease of administration of these choices should be considered.

Other important considerations include the patient’s age, immune status, and exposure history. Neonates and young infants may present with nonspecific signs of infection,
making the differentiation of serious disease from mild illness difficult. In older children, clinical diagnosis is more precise, which may permit therapy to be avoided or allow use of a narrower-spectrum antibiotic. Immune deficiency may increase the number and types of potential infecting organisms that need to be considered, including organisms that are usually avirulent, but in the altered host may cause serious infections that are difficult to treat. An abnormal immune response may also diminish the severity of the clinical signs and symptoms of infection, leading to underestimation of the severity of illness. The exposure history may suggest the greater likelihood of certain types of infecting organisms. This history includes exposures from family members, classmates, and day care environments, and exposure to unusual organisms by virtue of travel, diet, or contact with animals.

Final important considerations are the pace and seriousness of the illness. A rapidly progressive and severe illness should be treated initially with broad-spectrum antimicrobials until a specific etiologic diagnosis is made. A mildly ill outpatient should receive treatment preferentially with narrow-spectrum antimicrobials.

Antimicrobial susceptibility, antimicrobial families, and dosing recommendations are listed in Tables 39–2 to 39–6.

### ANTIMICROBIAL SUSCEPTIBILITY TESTING

Cultures and other diagnostic material must be obtained prior to initiating antimicrobial therapy—especially when the patient has a serious infection, initial attempts at therapy have failed, a patient has an unusual exposure, or multiagent therapy is anticipated. Whenever cultures identify the causative organism, therapy can be narrowed or optimized according to susceptibility results. Antimicrobial susceptibility testing should be done in a laboratory using carefully defined procedures (as defined by the Clinical and Laboratory Standards Institute).

There are several ways to test antimicrobial susceptibility. Identification of an antibiotic-destroying enzyme (eg, β-lactamase) implies resistance to β-lactam–containing antimicrobial agents. Tube or microtiter broth dilution techniques can be used to determine the minimum inhibitory concentration (MIC) of an antibiotic, which is the amount of antibiotic (in mcg/mL) necessary to inhibit the organism under specific laboratory conditions. Disk susceptibility testing (also performed under carefully controlled conditions) yields similar results. The E-test is a standardized test for some organisms that correlates well with MICs. Clinical laboratories usually define antimicrobial susceptibility (susceptible, intermediate, and resistant) in relation to levels of the test antibiotic achievable in the blood or another body fluid (cerebrospinal fluid [CSF] or urine).

Organisms are usually considered susceptible to an antibiotic if the MIC of the antibiotic for the organism is significantly lower than levels of that agent achieved in the blood using appropriate parenteral dosages. This assumption of susceptibility should be reconsidered whenever the patient has a focus of infection (eg, meningitis, osteomyelitis, or abscesses) in which poor antibiotic penetration might occur, because the levels of antibiotic in such areas might be lower than the MIC. Conversely, although certain organisms may be reported to be resistant to an antibiotic because sufficiently high blood concentrations cannot be achieved, urine concentrations may be much higher. If so, a UTI might respond to an antibiotic that would not be adequate for treatment of septicemia.

Thus, antimicrobial susceptibility testing, although a very important part of therapeutic decision making, reflects assumptions that the clinician must understand, especially for serious infections. Ultimately the true test of the efficacy of therapy is patient response. Patients who do not respond to seemingly appropriate therapy may require reassessment, including reconsidering the diagnosis, reculturing, and repeat susceptibility testing, to determine whether resistant strains have evolved or superinfection with a resistant organism is present. Antimicrobial therapy cannot be expected to

### Table 39–1. Steps in decision making for use of antimicrobial agents.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Determine diagnosis</td>
<td>Septic arthritis</td>
</tr>
<tr>
<td>2</td>
<td>Consider age and preexisting condition</td>
<td>Previously healthy 2-year-old child</td>
</tr>
<tr>
<td>3</td>
<td>Consider common organisms</td>
<td>Staphylococcus aureus, Kingella kingae</td>
</tr>
<tr>
<td>4</td>
<td>Consider organism susceptibility</td>
<td>Penicillin- or ampicillin-resistant; frequency MRSA* in community</td>
</tr>
<tr>
<td>5</td>
<td>Obtain proper culturesa</td>
<td>Blood, joint fluid</td>
</tr>
<tr>
<td>6</td>
<td>Initiate empiric therapy based on above considerations and past experience (eg, personal, literature)</td>
<td>Nafcillin and cefotaxime, substitute vancomycin for nafcillin if obviously ill or MRSA prevalent</td>
</tr>
<tr>
<td>7</td>
<td>Modify therapy based on culture results and patient response</td>
<td><em>S aureus</em> isolated. Discontinue cefotaxime. Substitute nafcillin for vancomycin if susceptible</td>
</tr>
<tr>
<td>8</td>
<td>Follow clinical response</td>
<td>Interval physical examination</td>
</tr>
<tr>
<td>9</td>
<td>Stop therapy</td>
<td>Clinically improved or well, minimum 3-4 wk</td>
</tr>
</tbody>
</table>

*aMethicillin-resistant *S aureus.*

*bIndicated for serious or unusual infections or those with unpredictable clinical response to empiric therapy.*
Table 39–2. Susceptibility of some common pathogenic microorganisms to various antimicrobial drugs.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Potentially Useful Antibiotics&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bacteria</strong></td>
<td></td>
</tr>
<tr>
<td>Anaerobic bacteria&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Cefotetan,&lt;sup&gt;i&lt;/sup&gt; cefoxitin,&lt;sup&gt;i&lt;/sup&gt; clindamycin, doripenem,&lt;sup&gt;e&lt;/sup&gt; ertapenem, imipenem, meropenem, metronidazole, penicillins with or without β-lactamase inhibitor, tigecycline&lt;sup&gt;e&lt;/sup&gt;</td>
</tr>
<tr>
<td><em>Bacillus anthracis</em></td>
<td>Amoxicillin, ciprofloxacin, clindamycin, doxycycline, levofloxacin, rifampin, vancomycin</td>
</tr>
<tr>
<td><em>Bartonella henselae</em></td>
<td>Azithromycin, ciprofloxacin, clarithromycin, doxycycline, erythromycin, rifampin</td>
</tr>
<tr>
<td><em>Bordetella pertussis</em></td>
<td>Amoxicillin, azithromycin, clarithromycin, erythromycin, trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td><em>Borrelia burgdorferi</em></td>
<td>Amoxicillin, cefuroxime, cephalexins (III),&lt;sup&gt;c&lt;/sup&gt; clarithromycin, doxycycline</td>
</tr>
<tr>
<td><em>Campylobacter</em> spp</td>
<td>Azithromycin, carbapenems, erythromycin, fluoroquinolones,&lt;sup&gt;c,e&lt;/sup&gt; tetracyclines</td>
</tr>
<tr>
<td><em>Clostridium</em> spp</td>
<td>Clindamycin, metronidazole, penicillins, tetracyclines</td>
</tr>
<tr>
<td><em>Clostridium difficile</em></td>
<td>Bacitracin (PO), metronidazole, vancomycin (PO)</td>
</tr>
<tr>
<td><em>Corynebacterium diphtheriae</em></td>
<td>Clindamycin, erythromycin, penicillins</td>
</tr>
<tr>
<td><em>Enterobacteriaceae</em>&lt;sup&gt;c&lt;/sup&gt;</td>
<td>Aminoglycosides,&lt;sup&gt;f&lt;/sup&gt; ampicillin, aztreonam, carbapenems, cefepime, cephalexins, fluoroquinolones,&lt;sup&gt;c,e&lt;/sup&gt; tigecycline, trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td><em>Enterococcus</em></td>
<td>Ampicillin (with aminoglycoside), carbapenems (not <em>E faecium</em>), linezolid, quinupristin-dalfopristin&lt;sup&gt;c&lt;/sup&gt; (<em>E faecium</em> only), tigecycline, vancomycin</td>
</tr>
<tr>
<td><em>Haemophilus influenzae</em></td>
<td>Amoxicillin-clavulanate, ampicillin (if β-lactamase-negative),&lt;sup&gt;b&lt;/sup&gt; cephalexins (II and III),&lt;sup&gt;e&lt;/sup&gt; chloramphenicol, fluoroquinolones,&lt;sup&gt;c,e&lt;/sup&gt; rifampin, trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td><em>Listeria monocytogenes</em></td>
<td>Ampicillin with aminoglycoside, trimethoprim-sulfamethoxazole, vancomycin</td>
</tr>
<tr>
<td><em>Moraxella catarrhalis</em></td>
<td>Amoxicillin-clavulanate, ampicillin (if β-lactamase-negative),&lt;sup&gt;b&lt;/sup&gt; cephalexins (II and III),&lt;sup&gt;e&lt;/sup&gt; erythromycin, fluoroquinolones, trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td><em>Neisseria gonorrhoeae</em></td>
<td>Ampicillin (if β-lactamase-negative),&lt;sup&gt;b&lt;/sup&gt; cephalexins (III),&lt;sup&gt;e&lt;/sup&gt; penicillins, spectinomycin</td>
</tr>
<tr>
<td><em>Neisseria meningitidis</em></td>
<td>Ampicillin, cephalexins (II and III),&lt;sup&gt;e&lt;/sup&gt; fluoroquinolones,&lt;sup&gt;c,e&lt;/sup&gt; penicillins, rifampin</td>
</tr>
<tr>
<td><em>Nocardia asteroides</em></td>
<td>Tetracycline, trimethoprim-sulfamethoxazole (+ amikacin for severe infections), meropenem or cephalexins (II and III)&lt;sup&gt;f&lt;/sup&gt; for brain abscess</td>
</tr>
<tr>
<td><em>Pasteurella multocida</em></td>
<td>Amoxicillin-clavulanate, ampicillins, penicillins, tetracyclines</td>
</tr>
<tr>
<td><em>Pseudomonas aeruginosa</em></td>
<td>Aminoglycosides,&lt;sup&gt;f&lt;/sup&gt; anti-<em>Pseudomonas</em> penicillins,&lt;sup&gt;c&lt;/sup&gt; aztreonam, cefepime, ceftazidime, ciprofloxacin,&lt;sup&gt;i&lt;/sup&gt; doripenem, imipenem, meropenem</td>
</tr>
<tr>
<td><em>Salmonella</em> spp</td>
<td>Ampicillin, azithromycin, cephalexins (III),&lt;sup&gt;f&lt;/sup&gt; fluoroquinolones,&lt;sup&gt;c,e&lt;/sup&gt; trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td><em>Shigella</em> spp</td>
<td>Ampicillin, azithromycin, cephalexins (III),&lt;sup&gt;f&lt;/sup&gt; fluoroquinolones,&lt;sup&gt;c,e&lt;/sup&gt; tetracyclines, trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td><em>Staphylococcus aureus</em></td>
<td>Antistaphylococcal penicillins,&lt;sup;i&lt;/sup&gt; cefepime, cephalexins (I and II), ciprofloxacin, clindamycin, erythromycin, rifampin, trimethoprim-sulfamethoxazole, vancomycin</td>
</tr>
<tr>
<td><em>S aureus</em> (methicillin-resistant)</td>
<td>Clindamycin, daptomycin,&lt;sup&gt;c&lt;/sup&gt; linezolid, quinupristin-dalfopristin,&lt;sup&gt;c&lt;/sup&gt; tigecycline,&lt;sup&gt;c&lt;/sup&gt; trimethoprim-sulfamethoxazole, vancomycin</td>
</tr>
<tr>
<td><em>Staphylococci</em> (coagulase-negative)</td>
<td>Cephalexins (I and II),&lt;sup&gt;i&lt;/sup&gt; clindamycin, rifampin, vancomycin</td>
</tr>
<tr>
<td><em>Streptococci</em> (most species)</td>
<td>Ampicillin, cephalexins, clindamycin, enhanced fluoroquinolones,&lt;sup&gt;c,e&lt;/sup&gt; erythromycin, meropenem, penicillins, vancomycin</td>
</tr>
<tr>
<td><em>Streptococcus pneumoniae</em></td>
<td>Ampicillin, cephalexins, enhanced fluoroquinolones,&lt;sup&gt;c,e&lt;/sup&gt; erythromycin, meropenem, penicillins, vancomycin</td>
</tr>
</tbody>
</table>

(Continued)
Table 39–2. Susceptibility of some common pathogenic microorganisms to various antimicrobial drugs. *(Continued)*

<table>
<thead>
<tr>
<th>Organism</th>
<th>Potentially Useful Antibiotics&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Intermediate organisms</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Chlamydia spp</strong></td>
<td>Clarithromycin, erythromycin, levofloxacin&lt;sup&gt;c&lt;/sup&gt;, ofloxacin&lt;sup&gt;c&lt;/sup&gt;, tetracyclines</td>
</tr>
<tr>
<td><strong>Mycoplasma spp</strong></td>
<td>Azithromycin, clarithromycin, erythromycin, fluoroquinolones&lt;sup&gt;c&lt;/sup&gt;,&lt;sup&gt;e&lt;/sup&gt; tetracyclines</td>
</tr>
<tr>
<td><strong>Rickettsia spp</strong></td>
<td>Fluoroquinolones&lt;sup&gt;c&lt;/sup&gt;,&lt;sup&gt;e&lt;/sup&gt; tetracyclines</td>
</tr>
<tr>
<td><strong>Fungi</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Candida spp</strong></td>
<td>Amphotericin B, anidulafungin&lt;sup&gt;c&lt;/sup&gt;, caspofungin, fluconazole, flucytosine, itraconazole, ketoconazole, micafungin, nystatin, posaconazole&lt;sup&gt;c&lt;/sup&gt;, voriconazole&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td><strong>Fungi, systemic</strong></td>
<td>Amphotericin B, anidulafungin&lt;sup&gt;c&lt;/sup&gt;, caspofungin, fluconazole, itraconazole, ketoconazole, micafungin, posaconazole&lt;sup&gt;c&lt;/sup&gt;, voriconazole&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td><strong>Dermatophytes</strong></td>
<td>Butenafine, ciclopirox olamine, clotrimazole, econazole, fluconazole, griseofulvin, haloprogin, itraconazole, ketoconazole, miconazole, natifine, oxiconazole, seraconazole, sulconazole, terbinafine, tolnaftate</td>
</tr>
<tr>
<td><strong>Pneumocystis jiroveci</strong></td>
<td>Atovaquone, clindamycin-primaquine, dapsone, pentamidine, trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td><strong>Viruses</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Herpes simplex</strong></td>
<td>Acyclovir, cidofovir, penciclovir&lt;sup&gt;c&lt;/sup&gt;, famciclovir, foscarnet&lt;sup&gt;c&lt;/sup&gt;, idoxuridine&lt;sup&gt;p&lt;/sup&gt;, trifluridine&lt;sup,p&lt;/sup&gt;, valacyclovir</td>
</tr>
<tr>
<td><strong>Human immunodeficiency virus</strong></td>
<td>Six classes: (1) nucleoside reverse transcriptase inhibitors, (2) nonnucleoside reverse transcriptase inhibitors, (3) protease inhibitors, (4) fusion inhibitors, (5) integrase inhibitors, (6) CCR-5 coreceptor antagonists; optimally combinations of ≥ 3 drugs from 2 different classes should be used (see Chapter 41)</td>
</tr>
<tr>
<td><strong>Influenza virus</strong></td>
<td>Amantadine&lt;sup&gt;m&lt;/sup&gt;, oseltamivir, rimantidine&lt;sup,m&lt;/sup&gt;, zanamivir</td>
</tr>
<tr>
<td><strong>Respiratory syncytial virus</strong></td>
<td>Ribavirin&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td><strong>Varicella-zoster virus</strong></td>
<td>Acyclovir, famciclovir, foscarnet&lt;sup&gt;c&lt;/sup&gt;, valacyclovir</td>
</tr>
<tr>
<td><strong>Cytomegalovirus</strong></td>
<td>Cidofovir, famciclovir, foscarnet&lt;sup&gt;c&lt;/sup&gt;, valacyclovir</td>
</tr>
<tr>
<td><strong>Hepatitis B&lt;sup&gt;c&lt;/sup&gt;</strong></td>
<td>Adefovir, entecavir, interferon-α, lamivudine, tebivudine, tenofovir</td>
</tr>
<tr>
<td><strong>Hepatitis C&lt;sup&gt;c&lt;/sup&gt;</strong></td>
<td>Interferon-α&lt;sub&gt;c&lt;/sub&gt;, ribavirin</td>
</tr>
</tbody>
</table>

<sup>a</sup>In alphabetical order. Selection depends on patient’s age, diagnosis, site of infection, severity of illness, antimicrobial susceptibility of suspected organism, and drug risk.

<sup>b</sup>Species-dependent.

<sup>c</sup>Not FDA-approved for use in children.

<sup>d</sup>Refer to first (I), second (II)<sup>–</sup>, or third (III)<sup>–</sup> generation cephalosporins.

<sup>e</sup>Includes ciprofloxacin, levofloxacin, lomefloxacin, norfloxacin, ofloxacin, moxifloxacin, gatifloxacin, gemifloxacin.

<sup>f</sup>Includes *E coli, Klebsiella* spp, *Enterobacter* spp, and others; antimicrobial susceptibilities should always be measured.

<sup>g</sup>Amikacin, gentamicin, kanamycin, tobramycin.

<sup>h</sup>Also applies to amoxicillin and related compounds.

<sup>i</sup>Cloxacillin, dicloxacillin, methicillin, nafcillin, oxacillin.

<sup>j</sup>Only if the coagulase-negative *Staphylococcus* is also methicillin- or oxacillin-sensitive.

<sup>k</sup>Includes levofloxacin, lomefloxacin, moxifloxacin, gatifloxacin, gemifloxacin.

<sup>l</sup>Because of increasing frequency of *S pneumoniae* strains resistant to penicillin and cephalosporins, presumptive therapy for severe infections (eg, meningitis) should include vancomycin until susceptibility studies are available.

<sup>m</sup>Influenza A only. Resistance is common, currently recommended in the United States only for seasonal H1N1 strains.

<sup>n</sup>FDA-approved for therapy of respiratory syncytial virus by aerosol, but clinical studies show variable efficacy.

<sup>o</sup>Used to treat infections with acyclovir-resistant virus.

<sup>p</sup>Ophthalmic preparation.
Table 39-3. Groups of common antibacterial agents.

<table>
<thead>
<tr>
<th>Group</th>
<th>Examples</th>
<th>Some Common Susceptible Organisms</th>
<th>Common Resistant Organisms</th>
<th>Common or Unique Adverse Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Penicillin group</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins</td>
<td>Penicillin G, V</td>
<td>Streptococcus, Neisseria</td>
<td>Staphylococcus, Haemophilus, Enterobacteriaceae</td>
<td>Rash, anaphylaxis, drug fever, bone marrow suppression</td>
</tr>
<tr>
<td>Ampicillins</td>
<td>Ampicillin, amoxicillin</td>
<td>(Same as penicillins), plus Haemophilus (β-lactamase negative), Escherichia coli, Enterococcus</td>
<td>Staphylococcus, many Enterobacteriaceae</td>
<td>Diarrhea</td>
</tr>
<tr>
<td><strong>Antistaphylococcal penicillins</strong></td>
<td>Cloxacillin, dicloxacillin, methicillin, nafcillin, oxacillin</td>
<td>Streptococcus, Staphylococcus aureus</td>
<td>Gram-negative, Staphylococcus (coagulase-negative), Enterococcus, MRSA</td>
<td>Renal (interstitial nephritis)</td>
</tr>
<tr>
<td><strong>Anti-Pseudomonas penicillins</strong></td>
<td>Azlocillin, piperacillin, ticarcillin</td>
<td>(Same as ampicillins), plus Pseudomonas</td>
<td>(Same as ampicillins)</td>
<td>Decreased platelet adhesiveness, hypokalemia, hypernatremia, high sodium load</td>
</tr>
<tr>
<td></td>
<td>Penicillins with β-lactamase inhibitor combination</td>
<td>Amoxicillin-clavulanate, ampicillin-sulbactam, ticarcillin-clavulanate</td>
<td>Broad-spectrum</td>
<td>Some Enterobacteriaceae, Pseudomonas</td>
</tr>
<tr>
<td></td>
<td>Carbapenems</td>
<td>Imipenem-cilastatin, meropenem, ertapenem, doripenem</td>
<td>Broad-spectrum, gram-negative rods, anaerobes, Pseudomonas</td>
<td>MRSA, many enterococci</td>
</tr>
<tr>
<td><strong>Cephalosporin group</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-generation (I)</td>
<td>Cefazolin, cephalixin, cephalothin, cepharpin, cephadine</td>
<td>Gram-positive</td>
<td>Gram-negative, Enterococcus, some Staphylococcus (coagulase-negative)</td>
<td>Rash; anaphylaxis, drug fever</td>
</tr>
<tr>
<td>Second-generation (II)</td>
<td>Cefaclor, cepfozil, cefuroxime, loracarbef</td>
<td>Gram-positive, some Haemophilus, some Enterobacteriaceae</td>
<td>Enterococcus, Pseudomonas, some Staphylococcus (coagulase-negative)</td>
<td>Serum sickness (cefaclor)</td>
</tr>
<tr>
<td></td>
<td>Cefoxitin, cefotetan</td>
<td>Same as second-generation plus anaerobes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third-generation (III)</td>
<td>Cefotaxime, ceftizoxime, ceftriaxone, cefpodoxime, cefditoren, cefdinir Cefazidine, cefepime</td>
<td>Streptococcus, Haemophilus, Enterobacteriaceae, Neisseria (Same as other third-generation cephalosporins), plus Pseudomonas, some Staphylococcus</td>
<td>Pseudomonas, Staphylococcus</td>
<td>Biliary sludging (ceftriaxone) rash</td>
</tr>
<tr>
<td><strong>Other drugs</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Clindamycin</td>
<td>Gram-positive, anaerobes, some MRSA</td>
<td>Gram-negative, Enterococcus</td>
<td>Nausea, vomiting, hepatotoxicity</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>Vancomycin</td>
<td>Gram-positive</td>
<td>Gram-negative</td>
<td>“Red man” syndrome, shock, ototoxicity, renal</td>
</tr>
</tbody>
</table>

(Continued)
### Table 39–3. Groups of common antibacterial agents. (Continued)

<table>
<thead>
<tr>
<th>Group</th>
<th>Examples</th>
<th>Some Common Susceptible Organisms&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Common Resistant Organisms</th>
<th>Common or Unique Adverse Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrolides and azalides</td>
<td>Erythromycin, clarithromycin, azithromycin</td>
<td>Gram-positive <em>Bordetella</em>, <em>Haemophilus</em>, <em>Mycoplasma</em>, <em>Chlamydia</em>, <em>Legionella</em>, <em>Salmonella</em>, <em>Shigella</em></td>
<td>Some gram-negative</td>
<td>Nausea and vomiting Pyloric stenosis (erythromycin newborns) Atrrhymias (azithromycin)</td>
</tr>
<tr>
<td>Monobactams</td>
<td>Aztreonam</td>
<td>Gram-negative aerobes, <em>Pseudomonas</em></td>
<td>Gram-positive cocci</td>
<td>Rash, diarrhea</td>
</tr>
<tr>
<td>Oxazolidinones</td>
<td>Linezolid</td>
<td>Gram-positive aerobes</td>
<td>Gram-negative aerobes</td>
<td>Diarrhea, thrombocytopenia</td>
</tr>
<tr>
<td>Streptogramins</td>
<td>Quinupristin-dalfopristin</td>
<td>Gram-positive aerobes</td>
<td>Gram-negative aerobes</td>
<td>Arthralgia, myalgia</td>
</tr>
<tr>
<td>Fluoroquinolones&lt;sup&gt;c&lt;/sup&gt;</td>
<td>Ciprofloxacin, ofloxacin</td>
<td>Gram-negative, <em>Chlamydia</em>, <em>Mycoplasma</em>, <em>Pseudomonas</em> (ciprofloxacin)</td>
<td>Enterococcus, <em>Streptococcus</em>, <em>S pneumoniae</em>, anaerobes, <em>Staphylococcus</em></td>
<td>Gastrointestinal (GI), rash, CNS</td>
</tr>
<tr>
<td></td>
<td>Gatifloxacin, levofloxacin, moxifloxacin</td>
<td>Gram-negative, streptococci, <em>Streptococcus pneumoniae</em>, <em>staphylococci</em></td>
<td>Some Enterococcus</td>
<td>GI, rash, CNS</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline, doxycycline, minocycline</td>
<td>Anaerobes, <em>Mycoplasma</em>, <em>Chlamydia</em>, <em>Rickettsia</em>, <em>Ehrlichia</em></td>
<td>Many Enterobacteriaceae, <em>Staphylococcus</em></td>
<td>Teeth stained&lt;sup&gt;d&lt;/sup&gt;, rash, flora overgrowth, hepatotoxicity, pseudotumor cerebri</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Many</td>
<td>Gram-negative (urine)</td>
<td>Gram-positive</td>
<td>Rash, renal, bone marrow suppression, Stevens-Johnson syndrome</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>Trimethoprim-sulfamethoxazole</td>
<td><em>S aureus</em>, gram-negative, <em>S pneumoniae</em>, <em>Haemophilus influenzae</em></td>
<td><em>Streptococcus</em>, <em>Pseudomonas</em>, anaerobes</td>
<td>Rash, renal, bone marrow suppression, Stevens-Johnson syndrome</td>
</tr>
<tr>
<td>Rifampin</td>
<td>Rifampin</td>
<td><em>Neisseria</em>, <em>Haemophilus</em>, <em>Staphylococcus</em>, <em>Streptococcus</em></td>
<td>Resistance develops rapidly if used as sole agent</td>
<td>Rash, GI, hepatotoxicity, CNS, bone marrow suppression, alters metabolism of other drugs</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Amikacin, gentamicin, tobramycin</td>
<td>Gram-negative, including <em>Pseudomonas aeruginosa</em></td>
<td>Gram-positive, anaerobes, some pseudomonads</td>
<td>Nephrotoxicity, ototoxicity, potentiates neuromuscular blocking agents</td>
</tr>
</tbody>
</table>

<sup>a</sup>Not all strains susceptible; always obtain antimicrobial susceptibility tests on significant isolates.

<sup>b</sup>MRSA = methicillin-resistant *S aureus*.

<sup>c</sup>Fluoroquinolones are used with caution in children.

<sup>d</sup>Dose-dependent in children younger than age 9 years.

Cure some infections unless additional supportive treatment (usually surgical) is undertaken.

### ALTERATION OF DOSE & MEASUREMENT OF BLOOD LEVELS

Certain antimicrobial agents have not been approved (and often not tested) for use in newborns. For those that have been approved, it is important to recognize that both dose and frequency of administration may need to be altered (see Tables 39–4 and 39–5), especially in young (7 days or younger) or low-birth-weight neonates (< 2000 g).

Antimicrobial agents are excreted or metabolized through various physiologic mechanisms (eg, renal, hepatic). It is important to consider these routes of excretion and alter the antimicrobial dosage appropriately in any patient with some degree of organ dysfunction. (See Chapter 24.) As indicated in Table 39–4, an assessment of renal or hepatic function may routinely be necessary for patients receiving certain drugs (eg, renal function for aminoglycosides, hepatic function...
Table 39–4. Guidelines for use of common parenteral antibacterial agents in children age 1 month or older.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Route</th>
<th>Dose (mg/kg/d)</th>
<th>Maximum Dose</th>
<th>Interval (h)</th>
<th>Adjustment</th>
<th>Blood Levelsa (mcg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peak</td>
</tr>
<tr>
<td>Amikacin</td>
<td>IM, IV</td>
<td>15-22.5</td>
<td>1.5 g</td>
<td>8</td>
<td>R</td>
<td>15-25</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>IM, IV</td>
<td>100-400</td>
<td>12 g</td>
<td>4-6</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Aztreonam</td>
<td>IM, IV</td>
<td>90-120</td>
<td>6 g</td>
<td>6-8</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Cefazolin</td>
<td>IM, IV</td>
<td>50-100</td>
<td>6 g</td>
<td>8</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Cefepime</td>
<td>IM, IV</td>
<td>100-150</td>
<td>4-6 g</td>
<td>8-12</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>IM, IV</td>
<td>100-200</td>
<td>12 g</td>
<td>6-8</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>IM, IV</td>
<td>80-160</td>
<td>12 g</td>
<td>4-6</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>IM, IV</td>
<td>100-150</td>
<td>6 g</td>
<td>8</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Ceftizoxime</td>
<td>IM, IV</td>
<td>150-200</td>
<td>12 g</td>
<td>6-8</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>IM, IV</td>
<td>50-100</td>
<td>4 g</td>
<td>12-24</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>IM, IV</td>
<td>100-150</td>
<td>6 g</td>
<td>6-8</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Cephalothin</td>
<td>IM, IV</td>
<td>75-125</td>
<td>12 g</td>
<td>4-6</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Cephradine</td>
<td>IM, IV</td>
<td>50-100</td>
<td>8 g</td>
<td>6</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Clindamycin</td>
<td>IM, IV</td>
<td>25-40</td>
<td>4 g</td>
<td>6-8</td>
<td>R,H</td>
<td></td>
</tr>
<tr>
<td>Gentamicinf,e</td>
<td>IM, IV</td>
<td>3-7.5</td>
<td>300 mg</td>
<td>8</td>
<td>R</td>
<td>5-10</td>
</tr>
<tr>
<td>Linezolid</td>
<td>IV, PO</td>
<td>20</td>
<td>1.2 g</td>
<td>12</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td>IV</td>
<td>60-120</td>
<td>2 g</td>
<td>8</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Metronidazole</td>
<td>IV</td>
<td>30</td>
<td>4 g</td>
<td>6</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Nafcillin</td>
<td>IM, IV</td>
<td>150</td>
<td>12 g</td>
<td>6</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Penicillin G</td>
<td>IM, IV</td>
<td>100,000-250,000 U/kg</td>
<td>20 million units</td>
<td>4-6</td>
<td>H,R</td>
<td></td>
</tr>
<tr>
<td>Penicillin G (benzathine)</td>
<td>IM</td>
<td>50,000 U/kg</td>
<td>2.4 million units</td>
<td>Single dose</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Penicillin G (procaine)</td>
<td>IM</td>
<td>25,000-50,000 U/kg</td>
<td>4.8 million units</td>
<td>12-24</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td>IV</td>
<td>20-30</td>
<td>2 g</td>
<td>12</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Ticarcillin</td>
<td>IV</td>
<td>200-300</td>
<td>24 g</td>
<td>4-6</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Tobramycinf,e</td>
<td>IM, IV</td>
<td>3-6</td>
<td>300 mg</td>
<td>8</td>
<td>R</td>
<td>5-10</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>IV</td>
<td>40-60</td>
<td>2 g</td>
<td>6</td>
<td>R</td>
<td>20-40</td>
</tr>
</tbody>
</table>

aNot including some newly released drugs, ones not recommended for use in children, or ones not widely used.
bAlways consult package insert for complete prescribing information. Dosage may differ for alternative routes, newborns (see Table 39–6), or patients with liver or renal failure (see Adjustment column) and may not be recommended for use in pregnant women or newborns. Maximum dosage may be indicated only in severe infections.
cMode of excretion (R = renal, H = hepatic) of antimicrobial agent should be assessed at the onset of therapy and dosage modified or levels determined as indicated in package insert.
dSuggested levels to reduce toxicity.
eAminoglycosides are sometimes given as a once-daily dose. See text.
fUse with caution in children younger than age 9 years because of tooth staining with repeated doses.
gTarget peak and trough vancomycin levels are not well correlated with either toxicity or outcome. Measure selectively in meningitis, impaired or changing renal function, or altered volume of distribution. Higher trough levels sometimes indicated for difficult to treat infections.
### Table 39-5. Guidelines for use of common oral antibacterial agents in children age 1 month or older.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Doseb (mg/kg/d)</th>
<th>Interval (h)</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>40</td>
<td>8–12</td>
<td>Gastrointestinal (GI) side effects</td>
</tr>
<tr>
<td>Amoxicillin (high dose)</td>
<td>80–90</td>
<td>12</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Amoxicillin-clavulanated</td>
<td>45</td>
<td>8–12</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>50</td>
<td>6</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>10 (first dose) then 5; 12 for pharyngitis</td>
<td>24</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Cefadroxil</td>
<td>30</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Cefdinir</td>
<td>14</td>
<td>12–24</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Cefpodoxime</td>
<td>10</td>
<td>12</td>
<td>Taste (suspension)</td>
</tr>
<tr>
<td>Cefprozil</td>
<td>30</td>
<td>12</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Cefotibuten</td>
<td>9</td>
<td>24</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>30–40</td>
<td>12</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>25–50</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>20–30</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>15</td>
<td>12</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>20–30</td>
<td>6</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Dicloxacillin</td>
<td>12-25</td>
<td>6</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Doxycyclineb</td>
<td>2-4</td>
<td>12-24</td>
<td>Teeth stained &lt; 9 y</td>
</tr>
<tr>
<td>Erythromycinc</td>
<td>20–50</td>
<td>6–12</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Erythromycin-sulfisoxazole</td>
<td>40 (erythromycin)</td>
<td>6–8</td>
<td></td>
</tr>
<tr>
<td>Levofloxacin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 5 y</td>
<td>20</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>&gt; 5 y</td>
<td>10</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td>20</td>
<td>12</td>
<td>GI side effects</td>
</tr>
<tr>
<td>Loracarbef</td>
<td>15; 30 for otitis</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Metronidazole</td>
<td>15–35</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>5–7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Oxacillin</td>
<td>50–100</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Penicillin V</td>
<td>25–50</td>
<td>6</td>
<td>Taste (suspension)</td>
</tr>
<tr>
<td>Rifampin</td>
<td>10–20</td>
<td>12–24</td>
<td></td>
</tr>
<tr>
<td>Sulfisoxazole</td>
<td>120–150</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td>25–50</td>
<td>6</td>
<td>Teeth stained &lt; 9 y</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>8–12 (TMP)</td>
<td>12</td>
<td>Stevens-Johnson syndrome</td>
</tr>
</tbody>
</table>

---

*aNot including some newly released drugs, ones not recommended for use in children, or ones not widely used.

*bAlways consult package insert for complete prescribing information. Dosage may differ for alternative routes, newborns (see Table 39–6), or patients with liver or renal failure (see Table 39–4, Adjustment column) and may not be recommended for use in pregnant women or newborns. Maximum dosage may be indicated only in severe infections.

cHigher-dose amoxicillin indicated for therapy of otitis media in regions where rates of penicillin-resistant *S pneumoniae* are high.

dSeveral formulations with differing clavulanate concentrations available.

ePreparation-dependent.

fUse with caution in children younger than age 9 years because of tooth staining with repeated doses.
### Table 39–6. Guidelines for use of selected antimicrobial agents in newborns.

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Route</th>
<th>Body Wt (g)</th>
<th>Maximum Dosage (mg/kg/d) [Frequency]</th>
<th>Blood Levels (mcg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>&lt; 7 d Interval (h)</td>
<td>8–30 d Interval (h)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>IV, IM</td>
<td>&lt; 2000</td>
<td>100 12 150 8</td>
<td>150 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 2000</td>
<td>150 8</td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>IV, IM</td>
<td>&lt; 2000</td>
<td>100 12 150 8</td>
<td>150 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 2000</td>
<td>100 8</td>
<td></td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>IV, IM</td>
<td>&lt; 2000</td>
<td>100 12 150 8</td>
<td>150 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 2000</td>
<td>100 8</td>
<td></td>
</tr>
<tr>
<td>Clindamycin</td>
<td>IV, IM, PO</td>
<td>&lt; 2000</td>
<td>10 12 15 8</td>
<td>15 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 2000</td>
<td>15 8</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td>PO</td>
<td>&lt; 2000</td>
<td>20 12 12 30</td>
<td>30 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 2000</td>
<td>20 12</td>
<td>30</td>
</tr>
<tr>
<td>Naflcin</td>
<td>IV</td>
<td>&lt; 2000</td>
<td>50 12 75 8</td>
<td>75 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 2000</td>
<td>75 8</td>
<td></td>
</tr>
<tr>
<td>Penicillin G &amp;</td>
<td>IV</td>
<td>&lt; 2000</td>
<td>100,000 12 150,000 8</td>
<td>150,000 200,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 2000</td>
<td>150,000 8</td>
<td></td>
</tr>
<tr>
<td>Ticarcillin-clavulanate</td>
<td>IV, IM</td>
<td>&lt; 2000</td>
<td>150 8 225 8</td>
<td>225 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 2000</td>
<td>225 8</td>
<td></td>
</tr>
<tr>
<td>Vancomycinb</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a* Penicillin dosages are in Units/kg/d. Other preparations (eg, benzathine penicillin) may be given IM. See specific diseases for dosage.

*b* Vancomycin dosing is dependent on gestational age and serum creatinine with monitoring of levels. 10–15 mg/kg/dose every 12–48 hours.

for erythromycin or clindamycin); otherwise, harmful drug levels may accumulate. In some circumstances a patient may be receiving multiple drugs where the drug interactions are unknown. If significant organ dysfunction is present, drug clearance may be delayed and dosage modification may be necessary (see detailed descriptions in individual drug information packets), and measurement of drug levels may be indicated.

Serum levels of drugs posing a high risk of toxicity (eg, aminoglycosides) are ordinarily measured. Measurement of other drugs (eg, vancomycin) may be useful in selected circumstances (see the following discussion). For certain serious bacterial infections (eg, bacterial endocarditis), measurement of the serum concentration of an antimicrobial may be important to determine optimal therapy.

Certain drug interactions may require modification of drug dosage or other therapeutic alterations. For example, rifampin stimulates the metabolism of warfarin, progesterone, prednisone, and anticonvulsants by stimulating the cytochrome P450 (CYP450) metabolic pathway. Dosage adjustments or alternative medications may be necessary to avoid significant adverse events. Another common example is erythromycin, which may inhibit the metabolism of theophylline, resulting in toxic theophylline levels. Although many drug interactions are known and well documented, it may be difficult to predict interactions that result from a combination of four, five, or more different medications. A high level of suspicion regarding adverse clinical events should be maintained.

### The Use of New Antimicrobial Agents

New antibiotics are introduced frequently, often with claims about unique features that distinguish these usually more expensive products from existing compounds. Often these drugs share many properties with existing drugs. The role that any new antimicrobial will play can only be determined over time, during which new or previously unrecognized side effects might be described and the clinical efficacy established. Clinical trials may not be confirmed in the larger number of patients subsequently treated in practice. Because this may take many years, a conservative approach to using new antibiotics seems fitting, especially because their costs are often higher, and appropriate antimicrobial choices for...
most common infections already exist. It is appropriate to ask if a new antimicrobial has been proved to be as effective as (or more effective than) the current drug of choice, and whether its side effects are comparable (or less common) and its cost reasonable. The withdrawal of moxalactam and trovafloxacin due to unexpected serious side effects, which were not anticipated despite extensive premarket testing, highlight the caution necessary before using new antimicrobials. The heavy marketing of new cephalosporins and fluoroquinolones, which are very similar to existing drugs, is typical of the difficulty in evaluating antimicrobials.

The development of new antibiotics is important as a response to the emergence of resistant organisms and for treatment of infections that are clinically difficult to treat (eg, viruses, fungi, and some resistant bacteria). Fortunately, these infections are either rare or (usually) self-limited in immunocompetent hosts.

**PROPHYLACTIC ANTIMICROBIAL AGENTS**

Antimicrobials can be used to decrease the incidence of postoperative infections (Table 39–7). A dose of an antimicrobial given 30 minutes to 2 hours prior to surgery can reduce postoperative wound infection. The goal is to achieve high levels in the serum at the time of incision and by this means—to along with good surgical technique—to minimize viable bacterial contamination of the wound. During a lengthy procedure, a second dose may be given. No evidence exists that multiple subsequent doses of antimicrobials confer additional benefit. The antimicrobial(s) used for prophylaxis are directed toward the flora that most commonly cause postoperative infection at a given anatomic site. Gram-positive cocci, such as *S aureus* that colonize the skin, are usually targeted, and a first-generation cephalosporin (eg, cefazolin) is a cost-effective choice. Third-generation cephalosporins and other broad-spectrum agents are more expensive and offer less benefit because they are less active than cefazolin against *S aureus*. Cefoxitin and cefotetan, which have activity against anaerobic bacteria, are useful for procedures, such as colorectal surgery, although cefazolin has been effective for most gynecologic patients. In colorectal surgery, orally administered antimicrobials such as neomycin and erythromycin may be as effective as parenteral antimicrobials.

In hospitals where the predominant *S aureus* strains are methicillin resistant or in cases where the patient is allergic to penicillin and cephalosporins, vancomycin can be considered. However, prophylactic vancomycin has caused hypotension at the time of induction of general anesthesia. Frequent use of vancomycin as a prophylactic antimicrobial will contribute to the development of vancomycin-resistant strains such as *Enterococcus faecalis*. For these reasons, vancomycin should generally not be used for prophylaxis, although it might prove useful for individual patients at extremely high risk.

Endocarditis prophylaxis is recommended for certain dental procedures in high-risk cardiac patients. Patients with prosthetic cardiac valves or prosthetic cardiac material during the 6 months following the procedure, unrepaired cyanotic heart disease, children with prior endocarditis, and children with other prosthetic patches, which inhibit endothelialization, should receive prophylaxis. Dental procedures that would trigger prophylaxis are those that involve manipulation of gingival tissue, periapical tissues. Patients with indwelling venous catheters undergoing similar extensive dental procedures should receive prophylaxis. Prophylaxis is not recommended for routine cleanings or orthodontic applications. Prophylaxis is not recommended for other gastrointestinal or genitourinary procedures.

Prophylaxis against infection with group A streptococci reduces the recurrence rate for acute rheumatic fever. Postexposure prophylaxis is given after exposure to pertussis, *Haemophilus influenzae* type b (Hib) infection (depending on age), meningococcus, gonococcus, tuberculosis (household exposure), plague, aerosolized tularemia or

<table>
<thead>
<tr>
<th>Route</th>
<th>Body Wt (g)</th>
<th>&lt; 7 d</th>
<th>8-30 d</th>
<th>Peak</th>
<th>Trough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>IV, IM</td>
<td>&lt; 2000</td>
<td>15</td>
<td>15</td>
<td>15-25</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>IV, IM</td>
<td>&lt; 2000</td>
<td>5</td>
<td>4</td>
<td>24-48</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>IV, IM</td>
<td>&lt; 2000</td>
<td>4</td>
<td>4</td>
<td>24-48</td>
</tr>
</tbody>
</table>

*aAminoglycoside dosing in neonates requires careful attention to changes in renal function and changes in the volume of distribution. For infant younger than 1200 g smaller doses may be needed.*
anthrax, and other high-risk infections. Family or close contacts of patients with severe invasive streptococcal disease may benefit from prophylaxis. Silver nitrate, erythromycin, povidone-iodine, and tetracycline are used in ophthalmic preparations for prevention of gonococcal ophthalmia neonatorum. Children with asplenia or sickle cell disease receive prophylactic penicillin to protect against overwhelming *S. pneumoniae* sepsis, usually started immediately with the onset of fever.

Prophylactic antimicrobials are sometimes used for some children at high risk for recurrent UTI, but the rate of infection has not been proven to decrease.

Chemoprophylaxis of children at high risk for influenza but not immunized against influenza should be considered, including some immunocompromised children and unimmunized caregivers of at-risk children and children at high risk for 2 weeks after immunization. Oseltamivir or Zanamivir would be used as each is usually active against influenza A and B.

**INITIAL EMPIRIC ANTIMICROBIAL CHOICES FOR SELECTED CONDITIONS**

General recommendations for specific conditions are as follows. A specific selection depends on the patient’s age, diagnosis, site of infection, severity of illness, antimicrobial susceptibility of bacterial isolates, and history of drug allergy. Always consult the package insert for detailed prescribing information. Tables 39–2 to 39–6 include further information.

**Neonatal Sepsis & Meningitis**

The newborn with sepsis may have signs of focal infection, such as pneumonia or respiratory distress syndrome, or may have subtle nonfocal signs. Group B streptococci, *Escherichia coli*, and other gram-negative rods are commonly encountered. *Listeria monocytogenes* is now uncommon in many nurseries, but a recent nationwide outbreak demonstrates the pathogenic potential of this organism. Ampicillin and gentamicin (or another aminoglycoside) are preferred. If meningitis is present, many clinicians substitute a third-generation cephalosporin for the aminoglycoside. *S. pneumoniae* is an uncommon cause of meningitis in neonates. However, if the Gram stain shows gram-positive cocci suggesting *S. pneumoniae*, substitution of vancomycin for ampicillin should be considered. In the newborn with cellulitis, *S. aureus* including methicillin-resistant *S. aureus* (MRSA) and group A streptococci are additional considerations. Nafcillin, oxacillin, or a first-generation cephalosporin is usually added. Vancomycin is added if MRSA is common in the geographic area. Ophthalmia is often polymicrobial, and *Enterococcus* species, gram-negative aerobes, and anaerobes may be causative. Clindamycin, ampicillin, and an aminoglycoside or cefotaxime cover the most likely organisms; early surgical intervention is indicated.

**Sepsis in an Infant**

*S. pneumoniae* and *Neisseria meningitidis* are most commonly encountered in infants. Hib infection may occur in unimmunized children. A third-generation cephalosporin is appropriate. Intermediate-level penicillin and cephalosporin resistance in *S. pneumoniae* usually do not cause therapy to fail unless meningitis or another difficult-to-treat infection, such as endocarditis or osteomyelitis, is present.

Occult bacteremia may be encountered in young infants with high fever. Prior to immunization with vaccines effective against Hib, persistent bacteremia and complications including meningitis were seen in approximately 50% of children infected with occult Hib bacteremia. With widespread use of Hib vaccine, Hib is a very uncommon cause of occult bacteremia in young children with fever. Similarly, prior to the introduction of the conjugate pneumococcal vaccine, *S. pneumoniae* bacteremia was demonstrated in 3%–5% of infants aged 3–36 months with fever of 39°C or greater, no identified source for fever on examination, and white blood cell count (WBC) of 15,000/mm³. The risk of bacteremia was 6%–10% in younger children with fever greater than 40°C and WBC of 20,000/mm³ or higher. The risk of developing meningitis due to persistent *S. pneumoniae* is estimated at 3% of those who are known to be bacteremic. The risk of *S. pneumoniae* bacteremia and its complications is significantly reduced in children immunized with the conjugate pneumococcal vaccines. In clinical trials and subsequent national surveillance for the incidence of disease, the 7-valent pneumococcal vaccine reduced the incidence of invasive pneumococcal diseases by approximately 90%. Studies are underway with the newer 13 valent pneumococcal vaccines. Observation without antimicrobials, but with appropriate plans for follow-up examinations, is appropriate for most febrile young children who are fully immunized.

**Nosocomial Sepsis**

Many bacterial pathogens can cause infection in hospitalized patients. Recent local experience is usually the best guide to etiologic diagnosis. For example, some intensive care units experience frequent infections due to *Enterobacter cloacae*, whereas in other units *Klebsiella pneumoniae* is the most common nosocomial isolate. Initial therapy should include antibiotics effective for MRSA and resistant *Pseudomonas aeruginosa* if these are frequent isolates. *E. faecalis* is a common cause of nosocomial bacteremia in patients with central catheters, particularly in units where cephalosporins are heavily used. Coagulase-negative staphylococci are commonly isolated from patients with indwelling central catheters. In seriously ill patients, when the local experience suggests that *Enterococcus* species or coagulase-negative staphylococci are common, the initial regimen should include vancomycin.
Because *Enterococcus* species and coagulate-negative staphylococci commonly cause fever without significant morbidity or mortality, initial regimens without vancomycin are appropriate, with adjustment of treatment after susceptibility is known. If *P. aeruginosa* or other resistant gram-negative rods are common, ceftazidime or cefepime should be included in initial therapy. *Candida* is a common isolate from blood cultures from immunocompromised or seriously ill patients in the intensive care unit. Empiric antifungal therapy is initiated in some high-risk patients.

**Meningitis**

Bacterial meningitis in neonates is usually caused by infection with group B streptococci, *E. coli*, other gram-negative rods, or *L. monocytogenes*. A combination of ampicillin and a third-generation cephalosporin is started initially. In an infant or older child, *S. pneumoniae* or *N. meningitidis* are the most common isolates. Hib is uncommon now because of widespread immunization. Increasingly, *S. pneumoniae* with resistance to a third-generation cephalosporin (MIC > 2 mcg/mL) may occur in 3%–5% of isolates.

In bacterial meningitis, peak CSF antimicrobial concentrations 10 or more times greater than the MIC of the organism are desirable, but this may be difficult to achieve if organisms are resistant. The therapeutic problem is complicated if dexamethasone, which reduces the entry of some antimicrobials into the CSF, is also given. Thus, initial therapy of bacterial meningitis in an older child should include vancomycin and a third-generation cephalosporin. Alternatively, meropenem has also been successful. A lumbar puncture should be considered 24–48 hours after the start of therapy to assess the sterility of the CSF. Rifampin should be added if the Gram stain or cultures of CSF are positive on repeated lumbar puncture, if the child fails to improve, or if an organism with a very high MIC to ceftriaxone is isolated. The optimal therapy of highly resistant *S. pneumoniae* meningitis is not well established.

Meningitis in a child with a ventriculoperitoneal shunt is most commonly caused by coagulate-negative staphylococci, many of which are methicillin-resistant, or *Corynebacterium* species, which are resistant to many antimicrobials. In many of these patients who are not seriously ill, therapy should be postponed while awaiting the appropriate shunt fluid for Gram stain and culture. Seriously ill patients should initially be given vancomycin and a third-generation cephalosporin, because *S. aureus* and gram-negative rods are also possible and can cause serious infection.

**Urinary Tract Infection**

*E. coli* is the most common isolate from the urinary tract. Outpatients with symptoms of lower urinary tract disease or with mild illness can be given ampicillin, cephalaxin, or trimethoprim-sulfamethoxazole (TMP-SMX). Local experience and resistance rates should guide initial therapy. In selected patients with pyelonephritis, outpatient therapy is effective using parenteral aminoglycosides or ceftriaxone once per day. Oral cefixime and amoxicillin-clavulanate can be used in place of ceftriaxone for outpatient therapy. Ciprofloxacin has been approved by the US Food and Drug Administration for therapy of urinary tract infection (UTI) in children older than 1 year, but it should be reserved for complicated cases. For hospitalized patients with UTI and suspected bacteremia, ampicillin and gentamicin or a third-generation cephalosporin is appropriate. Gram stain should be used to guide the initial choice. For patients with known or suspected resistant organisms, such as *P. aeruginosa*, or for patients with urosepsis, an aminoglycoside and ceftazidime, cefepime, or ticarcillin may be started. Unit-specific data on typical bacterial species and their patterns of susceptibility should guide the antimicrobial choice for nosocomial UTIs.

**Bacterial Pneumonia**

Bacterial pneumonia in newborns generally should be treated with the same antimicrobial choices as sepsis. Infants and older children are frequently infected with *S. pneumoniae*. Ampicillin and amoxicillin are effective in most patients eligible for outpatient therapy.

Previously healthy children admitted to the hospital with uncomplicated pneumonia can be treated successfully with amoxicillin, ampicillin, or penicillin.

Children with inadequate immunization, children with high-level pneumococcal resistance (penicillin MIC ≥ 4.0 mg/mL), and children who are critically ill may benefit from a third-generation cephalosporin.

Children with culture-positive parapneumonic effusions should be treated based on the culture and susceptibility report. Children with small or culture-negative parapneumonic effusions should be treated based on the severity of illness.

A rapidly progressive pneumonia, with pneumatoceles or large empyema, may be due to MRSA or group A streptococci, Hib, or another gram-negative rod. Vancomycin should be used in addition to a third-generation cephalosporin in these instances.

Children aged 6 years and older more frequently have infection with *Mycoplasma pneumoniae* or *Chlamydia pneumoniae*. Azithromycin is usually preferred for initial empiric therapy.

**Skin & Soft Tissue Infections**

*S. aureus* and *Streptococcus pyogenes* are the most common causes of skin and soft tissue infections (SSTIs) in children.
Community-acquired MRSA infections are common in many communities and complicate clinical decision making. Culture and susceptibility testing of abscesses, cellulitis, and more serious SSTIs is very important for optimal clinical management. Children with cellulitis more commonly have infection with group A streptococci, and empiric outpatient therapy with cephalaxin or dicloxacillin is preferred. Children with small (<5 cm) abscesses usually are effectively treated with incision and drainage without an antimicrobial. Outpatient therapy of large (>5 cm) abscesses includes incision and drainage and empiric clindamycin or TMP-SMX, depending on local susceptibility patterns. However, in many communities, 50% or more of MRSA isolates are also resistant to clindamycin, fluoroquinolones, and erythromycin. Knowledge of the local resistance pattern of community-acquired MRSA is helpful in choosing initial antimicrobial therapy. Adequate cultures, the thoroughness of drainage procedures, and careful outpatient follow-up are needed to ensure optimal outcomes. Group A streptococcal infections are not adequately treated with TMP-SMX.

Penicillinase-Resistant Penicillins

S aureus is usually resistant to penicillin and amoxicillin owing to penicillinase production. Nafcillin, oxacillin, methicillin, and first- and second-generation cephalosporins are stable to penicillinase and are usually equivalent for intravenous therapy. Methicillin is associated with more frequent interstitial nephritis. Oxacillin and methicillin are renally excreted, whereas nafcillin is excreted through the biliary tract. These properties are occasionally considered in children with renal or liver failure. Cost should usually be the deciding factor for choosing an agent. Often both S aureus and S pyogenes are suspected initially (eg, in cellulitis or postoperative wound infections). The penicillinase-resistant penicillins (PRPs) and first- and second-generation cephalosporins are efficacious for most streptococcal infections, although penicillin remains the drug of choice.

MRSA is an increasingly common and serious community-acquired infection in children and may cause nosocomial infection. MRSA infections are also resistant to all of the PRPs and cephalosporins. Vancomycin is effective against MRSA and coagulase-negative staphylococci. S aureus infections range in severity from minor infections treated on an outpatient basis to life-threatening infections. Severe infections due to MRSA are a serious concern in many communities. It is important to culture and determine antimicrobial susceptibility of suspected S aureus infections. In communities with frequent MRSA infections in children, initial therapy of seriously ill children should include vancomycin. MRSA may also be resistant to macrolides and clindamycin by alteration in the bacterial 23S-ribosomal RNA. Many strains reported as clindamycin-susceptible and erythromycin-resistant are truly resistant to clindamycin. This inducible resistance to clindamycin may be detected in erythromycin-resistant MRSA that demonstrates a D-zone in disk susceptibility testing to clindamycin. Community-acquired MRSA is more likely to be susceptible to TMP-SMX, clindamycin, and tetracyclines than hospital-acquired infections.

For outpatient therapy, cloxacillin, dicloxacillin, and first- or second-generation cephalosporins are usually equally effective for infections due to susceptible S aureus. Cost may determine the choice between drugs.

Anti-Pseudomonas Penicillins

Ticarcillin, mezlocillin, and piperacillin are active intravenously against streptococci, ampicillin-susceptible enterococci, H influenzae, gram-negative rods (including more resistant gram-negative rods such as Enterobacter, Proteus, and P aeruginosa), and gram-negative anaerobes such as Bacteroides fragilis. P aeruginosa is inherently resistant to most antimicrobials, and high levels of these drugs are
### Table 39–8. Antimicrobial prophylaxis and preferred prophylactic agents: selected conditions and pathogens,

<table>
<thead>
<tr>
<th>Pathogen (Indication)</th>
<th>Prophylactic Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Bacillus anthracis</em> b</td>
<td>Amoxicillin (if proved susceptible), ciprofloxacin, doxycycline</td>
</tr>
<tr>
<td>Bacterial endocarditis c</td>
<td>Ampicillin, ceftriaxone, cefazolin</td>
</tr>
<tr>
<td><em>Bordetella pertussis</em> (exposure to respiratory secretions)</td>
<td>Azithromycin, clarithromycin, erythromycin</td>
</tr>
<tr>
<td><em>Chlamydia trachomatis</em> (genital contact)</td>
<td>Azithromycin, doxycycline</td>
</tr>
<tr>
<td><em>Haemophilus influenzae</em> type b (household exposure)</td>
<td>Rifampin</td>
</tr>
<tr>
<td><em>Mycobacterium tuberculosis</em> (household exposure)</td>
<td>Isoniazid or rifampin</td>
</tr>
<tr>
<td><em>Neisseria meningitidis</em> (household exposure)</td>
<td>Rifampin, ciprofloxacin</td>
</tr>
<tr>
<td><em>Neisseria gonorrhoeae</em> (ophthalmia neonatorum)</td>
<td>Erythromycin, silver nitrate ophthalmic, povidone-iodine</td>
</tr>
<tr>
<td>N <em>gonorrhoeae</em> (sexual contact)</td>
<td>Ceftriaxone</td>
</tr>
<tr>
<td><em>Treponema pallidum</em> (sexual contact)</td>
<td>Penicillin</td>
</tr>
<tr>
<td><em>Streptococcus pneumoniae</em> (sickle cell disease, asplenia)</td>
<td>Penicillin</td>
</tr>
<tr>
<td>Postoperative wound infection a</td>
<td>Cefazolin, vancomycin, and other regimens a</td>
</tr>
<tr>
<td>Group A streptococci (rheumatic fever) f</td>
<td>Benzathine penicillin G, penicillin, sulfadiazine</td>
</tr>
<tr>
<td>Group B streptococcal sepsis</td>
<td>Ampicillin (to mother prior to delivery)</td>
</tr>
<tr>
<td>Pneumonic <em>Yersinia pestis</em> f (exposure)</td>
<td>Tetracycline f</td>
</tr>
<tr>
<td><em>Francisella tularensis</em> f (aerosolized exposure)</td>
<td>Tetracycline f</td>
</tr>
<tr>
<td><em>Vibrio cholera</em></td>
<td>Tetracycline, trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td>Recurrent urinary tract infection</td>
<td>Nitrofurantoin, trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td><em>Pneumocystis jiroveci</em> – (HIV, some immunocompromised patients)</td>
<td>Atovaquone, clindamycin-primaquine, dapsone, trimethoprim-sulfamethoxazole, pentamidine</td>
</tr>
</tbody>
</table>

---

*Decisions for prophylaxis must take a number of factors into account, including the evidence for efficacy of therapy, the degree of the exposure to an infecting agent, the risk and consequences of infection, the susceptibility of the infecting agent to antimicrobials, and the patient’s ability to tolerate and comply with the antimicrobial agent. See individual chapters for discussion.*

*Prophylaxis provided to family if contacts include unimmunized or partially immunized children younger than age 4 years. Some experts provide prophylaxis in day care settings after one case and some after two cases of Hib infection.*

*Alternative regimens may be used, depending on the site of surgery and the degree of contamination. Vancomycin may be used when the patient is known to be colonized with MRSA or if MRSA is a common postoperative infection.*

*Pneumocystis jiroveci – (HIV, some immunocompromised patients) often require combination therapy due to drug resistance.*

*Oral prophylaxis may be indicated in some patients. Alternative regimens indicated for penicillin-allergic patients. See discussion in chapter.*

*Prophylaxis not well established. Carefully assess risk on a case-by-case basis.*

*Usualy not indicated for children younger than age 9 years because of tooth staining with repeated doses.*

---

usually required. The combination of ticarcillin or piperacillin and an aminoglycoside is synergistic against *P aeruginosa* and many other enteric gram-negative rods. Ticarcillin in a fixed combination with clavulanic acid has activity against β-lactamase–producing strains of *Klebsiella*, *S aureus*, and *Bacteroides*. Piperacillin is more active in vitro against many gram-negative enteric infections and may be advantageous in some circumstances, but it is not approved in children. Piperacillin-tazobactam is another combination antimicrobial and β-lactamase inhibitor that has enhanced activity against many β-lactamase producers.

Antipseudomonal penicillins cause the same toxicities as penicillin and therefore are usually very safe. Carbenicillin, ticarcillin, and piperacillin contain large amounts of sodium,
which may cause problems for some patients with cardiac or renal disease.

GLYCOPEPTIDE AGENTS

Vancomycin and teicoplanin are glycopeptide antimicrobial agents active against the cell wall of gram-positive organisms. Only vancomycin is licensed in the United States. Vancomycin is useful for parenteral therapy of resistant gram-positive cocci such as penicillin- and cephalosporin-resistant *S. pneumoniae*, MRSA, methicillin-resistant coagulase-negative staphylococci, and ampicillin-resistant enterococci. Vancomycin is also used orally for therapy of colitis due to *Clostridium difficile*, although it should not be used as the drug of first choice.

The empiric use of vancomycin has increased tremendously over the last decade. As a result, vancomycin-resistant enterococci (VRE) and coagulase-negative staphylococci have become problems, particularly in inpatient units, intensive care units, and oncology wards. *S. aureus* with increased MICs to vancomycin has been reported in the United States and Japan. This resistance is of concern because of the inherent virulence of many *S. aureus* strains. Vancomycin use should be monitored carefully in hospitals and their intensive care units. It should not be used empirically when an infection is mild or when other antimicrobial agents are likely to be effective. Vancomycin should be stopped promptly if infection is found to be due to organisms susceptible to other antimicrobials.

Rapid infusion of vancomycin is associated with the “red man syndrome,” characterized by diffuse red flushing, at times pruritus, and occasionally tachycardia and hypotension. As a result, vancomycin is infused slowly over 1 hour or longer in some cases. Diphenhydramine or hydrocortisone (or both) may also be used as premedication.

Measurement of peak-and-trough serum vancomycin concentrations is not necessary in most clinical situations, because the levels achieved with standard dosing are usually predictable and nontoxic. Measurement of serum concentrations is helpful in patients with abnormal or unpredictable renal function; in those with altered volume of distribution, as occurs in nephrotic syndrome or shock; and in those receiving higher-dose therapy (eg, for meningitis or other difficult-to-treat infections). For patients receiving antimicrobials for weeks to months, weekly monitoring of clinical signs and symptoms and of urinalysis, creatinine, and complete blood count will allow detection of toxicity.

OXAZOLIDINONES

Linezolid is the first drug in this class of antimicrobials which have a distinct new mechanism of action; they bind to the 50s-ribosomal RNA subunit and prevent initiation of protein synthesis. Because of this unique mechanism, there is no cross-resistance with other classes of antimicrobials. The in vitro development of resistance has also been uncommon.

Linezolid is active against aerobic gram-positive organisms, including streptococci, staphylococci, enterococci, and pneumococci. Because linezolid is active against gram-positive organisms resistant to other antimicrobials (eg, MRSA, methicillin-resistant coagulase-negative staphylococci, VRE, and penicillin-resistant *S. pneumoniae*), it is useful for these difficult-to-treat infections.

Linezolid is safe and well tolerated in children. Gastrointestinal symptoms are the most commonly encountered side effect. Neutropenia and thrombocytopenia have been reported, and linezolid should therefore be used with monitoring in patients at increased risk for these problems or in patients receiving therapy for 2 weeks or longer. Linezolid is an inhibitor of monoamine oxidase (MAO) and should not be used in patients taking MAO inhibitors, or in patients taking phenylpropanolamine or pseudoephedrine.

Linezolid should be used only for infections due to a proven gram-positive pathogen that is known or strongly suspected to be resistant to other available agents.

QUINUPRISTIN-DALFOPRISTIN

Quinupristin and dalfopristin are two antimicrobials of the streptogramin class, which individually are bacteriostatic, but in combination are synergistic and bacteriocidal. These drugs are combined in a fixed ratio of 70:30, known as Synercid. Streptogramins inhibit protein synthesis by binding to the 50s-ribosomal subunit. The streptogramins were discovered many years ago, but interest has increased only recently due to the activity of these agents against some very difficult-to-treat gram-positive infections.

The quinupristin-dalfopristin combination has activity against staphylococci, streptococci, pneumococci, and some enterococci. Quinupristin-dalfopristin is primarily indicated for serious infections due to vancomycin-resistant *Enterococcus faecium* and MRSA. Quinupristin-dalfopristin is not active against *E. faecalis* and, therefore, differentiation of these strains from *E. faecium* is important prior to initiating therapy.

Quinupristin-dalfopristin is not approved for therapy in children younger than 12 years. Nonetheless, therapy has been initiated in some pediatric patients seriously ill with difficult-to-treat infections due to resistant organisms.

Arthralgias and myalgias have at times been severe in adult patients. Other significant side effects include elevated bilirubin and inflammation at intravenous sites.

Quinupristin-dalfopristin is a significant inhibitor of CYP-450 3A4 and, therefore, must be used with caution in patients receiving drugs metabolized by this mechanism (eg, clarithromycin, itraconazole, erythromycin, and many others).
CEPHALOSPORINS

Cephalosporin agents make up a large and often confusing group of antimicrobials. Many of these drugs are similar in antibacterial spectrum and side effects and may have similar names. Clinicians should learn well the properties of one or two drugs in each class. Cephalosporins are often grouped as “generations” to signify their similar antimicrobial activity. First-generation cephalosporins such as cefazolin intravenously and cephalaxin orally are useful mainly for susceptible S. aureus infection and UTI due to susceptible E. coli. Second-generation cephalosporins, such as cefuroxime intravenously and cefprozil and cefuroxime orally, have somewhat reduced, but acceptable, activity against gram-positive cocci, and greater activity against some gram-negative rods compared with first-generation cephalosporins. They are active against H. influenzae and Moraxella catarrhalis, including strains that produce β-lactamase capable of inactivating ampicillin. Third-generation cephalosporins have substantially less activity against gram-positive cocci, such as S. aureus, but greatly augmented activity against aerobic gram-negative rods. Cefotaxime and ceftriaxone are examples of intravenous drugs, whereas cefpodoxime and cefibuten are representative oral drugs. Cefepime is often described as fourth-generation cephalosporins because of its broad activity against gram-positive and gram-negative organisms, including P. aeruginosa. Cefepime is stable to β-lactamase degradation and is a poor inducer of β-lactamase. Cefepime will be most useful for organisms resistant to other drugs.

Ceftaroline is a new cephalosporin that has expanded activity against MRSA and some Enterococcus faecalis, while retaining the gram-negative activity of third-generation cephalosporins. Ceftaroline does not have sufficient activity against P. aeruginosa or Acinetobacter to be useful. Ceftaroline is not approved for use in children younger than 18 years old.

No cephalosporin agent, except ceftaroline, has substantial activity against L. monocytogenes, enterococci, or MRSA. The only cephalosporins useful for treating anaerobic infections are cefoxitin and cefotetan, which are second-generation cephalosporins with excellent activity against B. fragilis. Ceftazidime and cefepime are cephalosporins with activity against P. aeruginosa.

Allergy to β-lactam antimicrobials is reported commonly by parents. Immediate hypersensitivity reactions, including anaphylaxis or hives, most commonly predict IgE-mediated allergy. In contrast, most delayed reactions and nonspecific rashes are likely due to the underlying infection or nonallergic reactions. (See Chapter 38.) Cephalosporins should be used with caution in children with immediate hypersensitivity reactions to penicillins or cephalosporins.

Resistance to cephalosporins is common among aerobic gram-negative rods. The presence of inducible cephalosporinases in some gram-negative rod organisms, such as P. aeruginosa, Serratia marcescens, Citrobacter, and Enterobacter, has led to clinical failures because of the emergence of resistance during therapy. Extended-spectrum β-lactamases mediate broad resistance to all penicillins, aminopenicillins, cephalosporins, and monobactams. Carbapenems, fluoroquinolones, or combinations including these drugs are used for serious infections due to gram-negative organisms with these enzymes. Active laboratory-based surveillance is necessary to detect resistance in these gram-negative organisms.

AZTREONAM

Aztreonam is the only monobactam antimicrobial agent approved in the United States. Although it is not approved for use in children younger than age 9 months, there is considerable pediatric experience with its use, including in neonates and premature infants. Aztreonam is active against aerobic gram-negative rods, including P. aeruginosa. Aztreonam has activity against H. influenzae and M. catarrhalis, including those that are β-lactamase producers. Most patients with allergy to penicillin or cephalosporins are not sensitized to aztreonam, except that children with prior reactions to ceftazidime may have reactions to aztreonam because aztreonam and ceftazidime have a common side chain.

Aztreonam delivered by aerosolization by a proprietary nebulization system is approved for therapy of Pseudomonas aeruginosa infection in patients with cystic fibrosis. Safety and efficacy have not been established in children younger than 7 years. Therapy is delivered three times daily for 28 days with a goal to improve respiratory symptoms.

CARBAPENEMS

Meropenem, ertapenem, doripenem, and imipenem are broad-spectrum β-lactam antimicrobials. Imipenem–cilastatin is a combination of an active antibiotic and cilastatin, which inhibits the metabolism of imipenem in the kidneys and thereby results in high serum and urine levels of imipenem. These carbapenems are also active against S. pneumoniae, including many penicillin- and cephalosporin-resistant strains. Carbapenems have been used successfully to treat meningitis and may be considered if vancomycin is not tolerated. An increased frequency of seizures is encountered when central nervous system infections are treated with carbapenems. These agents are broadly active against streptococci, methicillin-susceptible S. aureus, some enterococci, and gram-negative rods such as P. aeruginosa, β-lactamase–producing H. influenzae, and gram-negative anaerobes. Ertapenem has less activity against P. aeruginosa, Acinetobacter species, and Enterococcus species than meropenem and imipenem. Because carbapenems are active against so many species of bacteria, there is a strong temptation to use them as single-drug empiric therapy. Units that have used carbapenems heavily have encountered resistance in many different species of gram-negative rods.
MACROLIDES & AZALIDES

Erythromycin was once the most commonly used macrolide antimicrobial agent, but now azithromycin and clarithromycin are preferred because of decreased side effects. It is active against many bacteria that are resistant to cell wall–active antimicrobials, and is the drug of choice for Bordetella pertussis, Legionella pneumophila, C pneumoniae, M pneumoniae, and Chlamydia trachomatis infections (in children in whom tetracycline is not an option). Erythromycin is used for outpatient therapy of streptococcal and staphylococcal infections in patients with penicillin allergy. More serious infections due to streptococci and staphylococci are usually treated with penicillins, clindamycin, PRPs, or cephalosporins because of a significant incidence of erythromycin resistance in both species. S pneumoniae resistant to erythromycin and the related macrolides are now frequent in many communities. This limits the utility of macrolide antimicrobials for therapy of pneumonia, otitis media, and sinusitis. Gastrointestinal side effects are common. Interactions with theophylline, carbamazepine, terfenadine, cycloserine, and other drugs may require dosage modifications of erythromycin and clarithromycin. Significant interactions with azithromycin are less common. Erythromycin exposure is associated with pyloric stenosis in newborns, so azithromycin is preferred in most neonates.

Erythromycin is available in many formulations, including the base, estolate, ethyl succinate, and stearate, but is sometimes unavailable due to drug shortages and decreased prescribing of these drugs. Transient hepatic toxicity occurs in adults, but is much less common in children. Erythromycin base and stearate should be taken with meals for best absorption.

Clarithromycin and azithromycin, macrolide and azalide antimicrobials, respectively, are much less likely than erythromycin to cause nausea, vomiting, and diarrhea. These agents are useful in children who cannot tolerate erythromycin. Clarithromycin is more active than erythromycin against H influenzae, M catarrhalis, and Neisseria gonorrhoeae and is the drug of choice, usually in combination, for some nontuberculous mycobacterial infections. Azithromycin has a prolonged tissue half-life that achieves a prolonged antimicrobial effect. Azithromycin is dosed once daily for 5 days, but must be taken 1 hour before or 2 hours after meals because food interferes with absorption. Although azithromycin is active against H influenzae, some authors report poor eradication of H influenzae from the middle ear. Azithromycin can be used for single-dose therapy of C trachomatis infections. It is beneficial in adolescents when compliance with erythromycin or tetracycline is a concern. Azithromycin is useful for therapy of Shigella and Salmonella infections, including typhoid fever resistant to ampicillin and TMP-SMX. Alternatives include third-generation cephalosporins and fluoroquinolones. Clarithromycin is effective against Lyme disease, but amoxicillin is the drug of choice in young children. Clarithromycin and azithromycin are alternative drugs for toxoplasmosis in sulfonamide-allergic patients and as alternatives to erythromycin in legionellosis. In vitro and limited clinical experience in providing treatment to contacts of pertussis patients suggests efficacy equal to that of erythromycin. Clarithromycin and azithromycin are considerably more expensive than most erythromycin formulations, and for that reason are usually preferred, but they are advantageous by virtue of their twice-daily and once-daily dosing, respectively. Some failures of the newer macrolides have occurred in S pneumoniae sepsis and meningitis, perhaps because of low serum levels despite the high tissue levels achieved. High rates of resistance to macrolides and azalides have been encountered in some communities. The frequent use of azithromycin for respiratory infections and acute otitis media has contributed to selection of resistant strains. Azithromycin is not recommended as first-line therapy for S pneumoniae infection.

CLINDAMYCIN

Clindamycin is active against S aureus, some MRSA, S pyogenes, other streptococcal species except enterococci, and both gram-positive and gram-negative anaerobes. Clindamycin or metronidazole is frequently combined with other antimicrobials for empiric therapy of suspected anaerobic or mixed anaerobic and aerobic infections. Empiric use of clindamycin is justified in suspected anaerobic infections because cultures frequently cannot be obtained and, if obtained, may be slow in confirming anaerobic infection. Examples are pelvic inflammatory disease, necrotizing enterocolitis, other infections in which the integrity of the gastrointestinal or genitourinary tracts is compromised, and sinusitis. Clindamycin does not achieve high levels in CSF, but brain abscesses, toxoplasmosis, and other central nervous system infections, where disruption of the blood-brain barrier occurs, can be successfully treated with clindamycin. Clindamycin should be added to regimens for treatment of serious streptococcal and staphylococcal infections, such as necrotizing fasciitis and toxic shock syndrome. Both in vitro and clinical data suggest increased bactericidal killing, and improved outcomes occur with clindamycin. For most oral anaerobes (eg, in a dental abscess), penicillin is more active than clindamycin. Clindamycin has been associated with the occurrence of C difficile–related pseudomembranous colitis. Although diarrhea is a frequent side effect, pseudomembranous colitis is uncommonly due to clindamycin in children.

SULFONAMIDES

Sulfonamides—the oldest class of antimicrobials—remain useful for treatment of UTIs, and for other infections due to E coli and for Nocardia. Although useful for rheumatic fever prophylaxis in penicillin-allergic patients, sulfonamides fail
to eradicate group A streptococci and cannot be used for treatment of acute infections.

TMP-SMX is a fixed combination that is more active than either drug alone. Gram-positive cocci, including some S pneumoniae, many staphylococci, Haemophilus, and many gram-negative rods, are susceptible. Unfortunately, resistance to TMP-SMX has become more common. S pneumoniae resistant to penicillin and cephalosporins is often also resistant to TMP-SMX and erythromycin. In communities, where Shigella and Salmonella enteritidis strains remain susceptible, as do most E coli strains, TMP-SMX is very useful for treatment of both UTIs and bacterial dysentery. TMP-SMX is also the drug of choice for treatment or prophylaxis against Pneumocystis jiroveci infection. Myelosuppressive side effects especially anemia limit the use of TMP-SMX in some children infected with HIV.

Sulfonamide is associated with several cutaneous reactions, including urticaria, photosensitivity, Stevens-Johnson syndrome, purpura, and maculopapular rash. Hematologic side effects such as leukopenia, thrombocytopenia, and hemolytic anemia are uncommon. Common gastrointestinal side effects are nausea and vomiting. The dermatologic and hematologic side effects are thought to be more common and more severe with TMP-SMX than with sulfonamide alone.

**TETRACYCLINES**

Tetracyclines, which are effective against a broad range of bacteria, are not commonly used in children because alternative effective drugs are available. Many different tetracycline formulations are available. Tetracyclines are effective against B pertussis and E coli and many species of Rickettsia, Chlamydia, and Mycoplasma. Doxycycline or minocycline is the drug of choice for eradication of C trachomatis in pelvic inflammatory disease and nongonococcal urethritis.

Staining of permanent teeth was noted in young children given repeated courses of tetracyclines. As a result, tetracyclines are generally not given to children younger than age 9 years unless alternative drugs are unavailable. A single course of tetracycline does not pose a significant risk of tooth staining. Mucous membrane candidiasis, photosensitivity, nausea, and vomiting are other common side effects. Tetracycline should be taken on an empty stomach, either 1 hour before or 2 hours after a meal. Doxycycline is well absorbed even in the presence of food; administration with food may minimize gastrointestinal side effects. Doxycycline is often preferred because it is better tolerated than tetracycline, and twice-daily administration is convenient.

Tetracycline is used for therapy of rickettsial infections such as Rocky Mountain spotted fever, ehrlichiosis, rickettsialpox, murine typhus, and Q fever; as an alternative to erythromycin for M pneumoniae and C pneumoniae infections; and for treatment of psittacosis, brucellosis, P multocida infection, and relapsing fever.

Tigecycline is a new polyketide antimicrobial that is an analogue of tetracycline and a bacteriostatic inhibitor of protein synthesis. Tigecycline is active against gram-negative aerobes, anaerobes, and many gram-positive cocci including MRSA. It is approved for intravenous therapy of adults with complicated SSTIs and complicated intra-abdominal infections.

**AMINOGLYCOSIDES**

The aminoglycosides bind to ribosomal subunits and inhibit protein synthesis. They are active against aerobic gram-negative rods, including P aeruginosa. Streptomycin was the first drug in this class, but today it is used only to treat tuberculosis and the occasional cases of plague and tularemia.

Aminoglycosides are used to treat serious gram-negative infections and are given intravenously or intramuscularly. They are also used to treat pyelonephritis, suspected gram-negative sepsis, and in other settings where P aeruginosa infections are common, such as cystic fibrosis and burns. Aminoglycosides have activity against gram-positive organisms and, combined with penicillin or ampicillin, may achieve synergistic killing of L monocytogenes and group B streptococci. Penicillin, ampicillin, or vancomycin combined with gentamicin is indicated for therapy of serious enterococcal infections, such as sepsis or endocarditis because of more rapid clinical improvement with combined therapy. Aminoglycosides have activity against S aureus, but are always used in combination with other antistaphylococcal antibiotics.

Aminoglycosides are not active in an acidic environment and may not be effective against abscesses. Aminoglycosides diffuse poorly into the CSF and achieve only about 10% of serum concentrations. As a result, a third-generation cephalosporin is preferred for treatment of meningitis.

Aminoglycosides kill bacteria in a concentration-dependent manner. They also have a prolonged suppressive effect on the regrowth of susceptible organisms (postantibiotic effect). These principles have led some investigators to establish guidelines for once-daily dosing of aminoglycosides, using larger initial doses given every 24 hours. Although aminoglycosides are associated with both renal and eighth nerve toxicity, the entry of the drug into renal and cochlear cells is saturable. It therefore was predicted that once-daily dosing would result in less toxicity than traditional twice-daily or three-times-daily dosing. Studies in adult patients confirm that once-daily dosing is as efficacious as traditional dosing and is associated with less toxicity. Although there is extensive experience with dosing intervals of 18–36 hours in premature infants, small total daily doses are customarily used (2.0–2.5 mg/kg per dose of gentamicin or tobramycin). A convenient and cost-effective approach in children is based on the experience with adult patients and uses larger daily doses (4–7 mg/kg per dose every 24 hours).
Nevertheless, traditional twice-daily or three-times-daily dosing regimens of aminoglycosides, with monitoring of serum levels, are still widely used. Careful monitoring is necessary, particularly in children with abnormal or changing renal function, premature infants, and infants with rapidly changing volumes of distribution. Aminoglycosides are usually infused over 30–45 minutes, and the peak serum concentration is measured 30–45 minutes after the end of the infusion. A trough serum concentration is measured prior to the next dose. The efficacious and nontoxic serum concentrations for gentamicin and tobramycin are trough less than 2 mcg/mL and peak 5–10 mcg/mL; for amikacin, trough less than 10 mcg/mL and peak 15–25 mcg/mL (see Table 39–4). Aminoglycoside levels and creatinine levels should be measured in children expected to receive more than 3 days of therapy, and repeated weekly in children on long-term therapy, even when renal function is normal and stable.

**FLUOROQUINOLONES**

Modification of the quinolone structure of nalidixic acid has led to many new compounds called fluoroquinolones, which are well absorbed after oral administration and possess excellent antibacterial activity against resistant gram-negative pathogens. The currently available fluoroquinolones vary in their activity against specific organisms. Fluoroquinolones are active against most of the Enterobacteriaceae, including *E coli*, *Enterobacter*, *Klebsiella*, in some cases *P aeruginosa*, and many other gram-negative bacteria such as *H influenzae*, *M catarrhalis*, *N gonorrhoeae*, and *N meningitidis*. Some fluoroquinolones (ofloxacin and levofloxacin) are active against *C trachomatis* and *Mycoplasma*. The fluoroquinolones are active against some enterococci, *S aureus*, MRSA, and coagulase-negative staphylococci. The newer quinolones have good activity against penicillin- and cephalosporin-resistant *S pneumonia*.

Ciprofloxacin and its otic and ophthalmic preparations are the only fluoroquinolone antimicrobials currently approved for use in children older than 1 year, although fluoroquinolones offer very attractive alternatives to other approved agents. The objection to quinolones is based on the recognition that nalidixic acid and other quinolones cause arthropathy when tested experimentally in newborn animals of many species. The fear that children would also be more susceptible than adults to cartilage injury has not been realized in clinical experience. Both retrospective long-term follow-up studies of children given nalidixic acid and prospective studies of children receiving treatment under protocols with fluoroquinolones have shown similar rates of toxicity compared with adult patients. Arthropathy occurs uncommonly, although tendon rupture is a reported rare, serious complication which occurs more commonly in adults. For these reasons, quinolones should be considered for use in children when the benefit clearly outweighs the risk, when no alternative drug is available, and after discussion with the parents.

Ciprofloxacin is useful for oral therapy of resistant gram-negative UTIs, such as those caused by *P aeruginosa*. Fluoroquinolones are no longer recommended for single-dose therapy of gonorrhea due to frequent resistance, but ofloxacin and levofloxacin are an alternative therapy for treating *Chlamydia* infections and pelvic inflammatory disease. Ciprofloxacin, levofloxacin, and ofloxacin are used as therapy of resistant cases of shigellosis. Levofloxacin and ciprofloxacin are usually the drugs of choice for treatment of traveler’s diarrhea. Ciprofloxacin is useful for treatment of *P aeruginosa* infection in patients with cystic fibrosis, and as therapy for chronic suppurative otitis media. Several quinolones are used as therapy for pneumonia due to *Legionella*, *Mycoplasma*, or *C pneumoniae*, although a macrolide is often preferred, and as prophylactic therapy of meningococcal infection. Ofloxacin and levofloxacin are used for treatment of some cases of *Mycobacterium tuberculosis* and some atypical mycobacterial infections.

**METRONIDAZOLE**

Metronidazole has excellent activity against most anaerobes, particularly gram-negative anaerobes, such as *Bacteroides* and *Fusobacterium*, and against gram-positive anaerobes such as *Clostridium*, *Prevotella*, and *Porphyromonas*. Gram-positive anaerobic cocci such as *Peptococcus* and *Peptostreptococcus* are often more susceptible to penicillin or to clindamycin. Because metronidazole lacks activity against aerobic organisms, it is usually given with one or more other antibiotics. Metronidazole is well absorbed after oral administration and has excellent penetration into the central nervous system. Metronidazole is the drug of choice for bacterial vaginosis and for *C difficile* enterocolitis. It is active against many parasites, including *Giardia lamblia* and *Entamoeba histolytica*.

**DAPTOMYCIN**

Daptomycin has broad bactericidal activity against gram-positive cocci. Daptomycin is a lipopeptide that binds to bacterial cell membranes, resulting in membrane depolarization and cell death. Daptomycin is active against methicillin-sensitive and -resistant *S aureus*, *S pyogenes*, and *Streptococcus agalactiae*, as well as *E faecium* (including vancomycin-resistant strains) and *E faecalis* (vancomycin-sensitive strains). Daptomycin is given as a once-daily intravenous infusion of 4 mg/kg and is approved for therapy of complicated SSTIs in adults, but has not been sufficiently studied in children younger than 18 years to make recommendations for dosing and use. Daptomycin therapy of pneumonia was unsuccessful in a large percentage of cases, and should not be used. Daptomycin is excreted renally, so a modification of dosing is needed in patients with impaired renal function.
Nausea, constipation, and headache are the most common side effects of therapy. In patients with muscle pain, monitoring creatinine phosphokinase levels should be done.

**REFERENCES**


**Web Resources**

Alliance for the Prudent Use of Antibiotics: http://www.tufts.edu/med/apua.


Infectious Diseases Society of America: http://www.idsociety.org/.
Infections: Viral & Rickettsial

Myron J. Levin, MD
Adriana Weinberg, MD

**VIRAL INFECTIONS**

Viruses cause most pediatric infections. Mixed viral or viral-bacterial infections of the respiratory and intestinal tracts are very common, as is prolonged asymptomatic shedding of some viruses in childhood, especially in young children. Thus, the detection of a virus is not always proof that it is the cause of a given illness. Viruses are often a predisposing factor for bacterial respiratory infections (eg, otitis, sinusitis, and pneumonia).

Many respiratory and herpesviruses can now be detected within 24–48 hours by combining culture and monoclonal antibody techniques (“rapid culture technique”) or through antigen or nucleic acid detection techniques. These techniques are more rapid than isolation of viruses in tissue culture and in most cases are equally sensitive or more so. Polymerase chain reaction (PCR) amplification of viral genes has led to recognition of previously undetected infections. New diagnostic tests have changed some basic concepts about viral diseases and made diagnosis of viral infections both more certain and more complex. Only laboratories with excellent quality-control procedures should be used, and the results of new tests must be interpreted cautiously. The availability of specific antiviral agents increases the value of early diagnosis for some serious viral infections. New diagnostic tests have changed some basic concepts about viral diseases and made diagnosis of viral infections both more certain and more complex. Only laboratories with excellent quality-control procedures should be used, and the results of new tests must be interpreted cautiously. The availability of specific antiviral agents increases the value of early diagnosis for some serious viral infections.

**RESPIRATORY INFECTIONS**

Many viral infections can cause either upper or lower respiratory tract signs and symptoms, sometimes both in the same patient. Those that produce a predominance of these signs and symptoms are described in the text that follows. Many so-called respiratory viruses can also produce distinct nonrespiratory disease (eg, enteritis or cystitis or myocarditis caused by adenoviruses; parotitis caused by parainfluenza viruses). Respiratory viruses can cause disease in any area of the respiratory tree. Thus, they can cause coryza, pharyngitis, sinusitis, tracheitis, bronchitis, bronchiolitis, and pneumonia—although certain viruses tend to be closely associated with one anatomic area (eg, parainfluenza with croup, respiratory syncytial virus [RSV] with bronchiolitis) or discrete epidemics (eg, influenza, RSV, parainfluenza). Thus it is impossible on clinical grounds to be certain of the specific viral cause of an infection in a given child. This information, which is provided by the virology laboratory, is often important for epidemiologic, therapeutic, and preventive reasons. In immunocompromised patients these annoying, but otherwise benign, viruses can cause severe pneumonia.

**VIRUSES CAUSING THE COMMON COLD**

The common cold syndrome (also called upper respiratory infection) is characterized by combinations of runny nose, nasal congestion, sore throat, tearing, cough, and sneezing. Low-grade fever may be present. The causal agent is usually not sought or determined. Epidemiologic studies indicate that rhinoviruses, which are the most common cause (30%–40%; much more in some series), are present throughout the year, but are more prevalent in the colder months in temperate climates. Adenoviruses also cause colds in all seasons and epidemics are common. Respiratory syncytial virus, parainfluenza viruses, human metapneumovirus, and influenza viruses cause the cold syndrome during epidemics from late fall through winter. Multiple strains of coronaviruses account for 5%–10% of colds in winter. Equally prevalent in aggregate are other newly identified respiratory viruses such as the human bocavirus (a parvovirus) and several...
Table 40–1. Some viral causes of clinical syndromes.

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>Enterovirus, Adenovirus, Measles, Rubella, Human herpesvirus type 6 or 7, Varicella, Parvovirus B19, Epstein-Barr virus, Dengue and other arboviral diseases, Human immunodeficiency virus (HIV), acute syndrome</td>
</tr>
<tr>
<td>Fever</td>
<td>Enterovirus, Epstein-Barr virus, Human herpesvirus type 6 or 7, Cytomegalovirus, Influenza, Rhinovirus, Arboviruses, Most others</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>Adenovirus, Enterovirus 70, Measles, Herpes simplex virus</td>
</tr>
<tr>
<td>Parotitis</td>
<td>Mumps, Parainfluenza, Enterovirus, Cytomegalovirus, Epstein-Barr virus, HIV</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>Adenovirus, Enterovirus, Epstein-Barr virus, Herpes simplex virus, Influenza, Other respiratory viruses</td>
</tr>
<tr>
<td>Adenopathy</td>
<td>Epstein-Barr virus, Cytomegalovirus, Rubella, HIV</td>
</tr>
<tr>
<td>Croup</td>
<td>Parainfluenza, Influenza, Adenovirus, Other respiratory viruses</td>
</tr>
<tr>
<td>Bronchiolitis</td>
<td>Respiratory syncytial virus, Adenovirus, Parainfluenza, Influenza, Human metapneumovirus</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>Respiratory syncytial virus, Adenovirus, Parainfluenza, Influenza, Human metapneumovirus</td>
</tr>
<tr>
<td>Enteritis</td>
<td>Rotavirus, Enteric adenovirus, Enterovirus, Astrovirus, Calicivirus, Norovirus, Cytomegalovirus</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>Hepatitis A, B, C, D, E, Epstein-Barr virus, Adenovirus, Cytomegalovirus, Varicella, Parvovirus B19</td>
</tr>
<tr>
<td>Arthritis (Arthralgia)</td>
<td>Parovirus B19, Rubella, Hepatitis B, Dengue and chikungunya fever</td>
</tr>
<tr>
<td>Congenital or perinatal infection</td>
<td>Adenovirus, Cytomegalovirus, Hepatitis B, Hepatitis C, Rubella, HIV, Parovirus B19, Enterovirus, Varicella, Herpes simplex virus</td>
</tr>
<tr>
<td>Meningoencephalitis</td>
<td>Enterovirus, Mumps, Arboviruses (includes West Nile virus), Herpes simplex virus, Cytomegalovirus, Lymphocytic choriomeningitis virus, Measles, Varicella, Adenovirus, HIV, Epstein-Barr virus, Influenza, Rabies</td>
</tr>
</tbody>
</table>

- aRoseola agents.
- bErythema infectiosum agent.
- cConjunctivitis rare, only in primary infections; keratitis in older patients.
- dMay cause isolated pharyngeal vesicles at any age.
- eMay cause adenopathy without rash, especially postauricular.
- fOver 70% of cases.
- gImmunosuppressed, pregnant, rarely other adults.
- hUsually only in young infants.
- iSeverely immunosuppressed at risk.
- iAnicteric cases more common in children; these may resemble viral gastroenteritis.
- iCommon, but only mild laboratory abnormalities, severe in immunosuppressed.
- jEspecially when the mother is HIV-positive.
### Table 40–2. Diagnostic tests for viral infections.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Rapid Antigen Detection (Specimen)</th>
<th>Tissue Culture Mean Days to Positive (Range)</th>
<th>Serology</th>
<th>PCR</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus</td>
<td>+ (respiratory and enteric)</td>
<td>10 (1-21)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Enteric” strains detected by culture on special cell line, antigen detection, or PCR</td>
</tr>
<tr>
<td>Arboviruses</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acute serum may diagnose many forms</td>
</tr>
<tr>
<td>Astrovirus</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diagnosis by electron microscopy</td>
</tr>
<tr>
<td>Calicivirus</td>
<td>− RL</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diagnosis by electron microscopy; PCR generally available for norovirus; present in RL for others</td>
</tr>
<tr>
<td>Colorado tick virus</td>
<td>On RBC</td>
<td>−</td>
<td>−</td>
<td>RL</td>
<td>CDC+</td>
</tr>
<tr>
<td>Coronavirus</td>
<td>−</td>
<td>RL</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>+ (tissue biopsy, urine, blood, respiratory secretions)</td>
<td>2 (2-28)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diagnosis by presence of IgM antibody; rapid culture method generally available; low avidity antibody indicates recent infection.</td>
</tr>
<tr>
<td>Dengue</td>
<td>−</td>
<td>5 days (RL)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Testing at CDC; 90% seropositive at 6 days</td>
</tr>
<tr>
<td>Enterovirus</td>
<td>−</td>
<td>3 (2-8) Coxackie A difficult to culture</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Epstein-Barr virus</td>
<td>−</td>
<td>−</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Single serologic panel defines infection status; heterophil antibodies less sensitive</td>
</tr>
<tr>
<td>Hantavirus</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>ND</td>
<td>RL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diagnosis by presence of IgM antibody</td>
</tr>
<tr>
<td>Hepatitis A virus</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>ND</td>
<td>RL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diagnosis by presence of IgM antibody</td>
</tr>
<tr>
<td>Hepatitis B virus</td>
<td>+ (blood)</td>
<td>−</td>
<td></td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diagnosis by presence of surface antigen or anticore IgM antibody</td>
</tr>
<tr>
<td>Hepatitis C virus</td>
<td>−</td>
<td>−</td>
<td></td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Positive serology suggests that hepatitis C could be the causative agent; PCR is confirmatory. PCR may be positive before serology</td>
</tr>
<tr>
<td>Herpes simplex virus</td>
<td>+ (mucosa, tissue biopsy, respiratory secretions, skin)</td>
<td>1 (1-7)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Serology rarely used for herpes simplex; IgM antibody used in selected cases</td>
</tr>
<tr>
<td>Human herpesvirus 6 and 7</td>
<td>−</td>
<td>2 (RL)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roseola agent</td>
</tr>
<tr>
<td>Human immunodeficiency virus</td>
<td>+ (blood) (acid dissociation of immune complexes); not done in the United States</td>
<td>15 (5-28)</td>
<td></td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antibody proves infection unless passively acquired (maternal antibody gone by age 15 mo); culture not widely available; PCR definitive for early diagnosis in infant (detect RNA or DNA)</td>
</tr>
<tr>
<td>Human metapneumovirus</td>
<td>+</td>
<td>2</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza virus</td>
<td>+ (respiratory secretions)</td>
<td>2 (2-14)</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antigen detection 40%-90% sensitive (varies with virus strain)</td>
</tr>
</tbody>
</table>

(Continued)
### Table 40–2. Diagnostic tests for viral infections. (Continued)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Rapid Antigen Detection (Specimen)</th>
<th>Tissue Culture Mean Days to Positive (Range)</th>
<th>Serology</th>
<th>PCR</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytic choriomeningitis virus</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>RL</td>
<td>Can be isolated in suckling mice</td>
</tr>
<tr>
<td>Measles virus</td>
<td>+ (respiratory secretions)</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>Difficult to grow; IgM serology diagnostic</td>
</tr>
<tr>
<td>Mumps virus</td>
<td>−</td>
<td>&gt; 5</td>
<td>+</td>
<td>+</td>
<td>IgM ELISA antibody may allow single-specimen diagnosis</td>
</tr>
<tr>
<td>Parovirus B19</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>ND</td>
<td>Erythema infectiosum agent; IgM serology is often diagnostic, but may be positive for a prolonged period</td>
</tr>
<tr>
<td>Parainfluenza virus</td>
<td>+ (respiratory secretions)</td>
<td>2 (2-14)</td>
<td>−</td>
<td>+</td>
<td>Rapid antigen detection</td>
</tr>
<tr>
<td>Rabies virus</td>
<td>+ (skin, conjunctiva, suspected animal source tissue biopsy)</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>Usually diagnosed by antigen detection</td>
</tr>
<tr>
<td>Respiratory syncytial virus</td>
<td>+ (respiratory secretions)</td>
<td>2 (2-21)</td>
<td>−</td>
<td>+</td>
<td>Rapid antigen detection; 90% sensitive; PCR has excellent sensitivity</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>−</td>
<td>4 (2-7)</td>
<td>−</td>
<td>−</td>
<td>Too many strains to type serologically</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>+ (feces)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>Rapid assay methods are usually reliable</td>
</tr>
<tr>
<td>Rubella virus</td>
<td>−</td>
<td>&gt; 10</td>
<td>+</td>
<td>+</td>
<td>Recommended that paired sera be tested simultaneously</td>
</tr>
<tr>
<td>Varicella-zoster virus</td>
<td>+ (skin scraping)</td>
<td>3 (3-21) RL</td>
<td>+</td>
<td>+</td>
<td>IgM antibody usually detected by 1 wk; PCR is useful only on CSF</td>
</tr>
<tr>
<td>West Nile virus</td>
<td>−</td>
<td>RL</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

CSF, cerebrospinal fluid; ELISA, enzyme-linked immunosorbent assay; PCR, polymerase chain reaction; RBC, red blood cell. **Plus signs** signify commercially or widely available; **minus signs** signify not commercially available. *Note:* Results from some commercial laboratories are unreliable. **RL** indicates research laboratory only; **CDC:** Specific antibody titers or PCR available by arrangement with individual research laboratories or the Centers for Disease Control and Prevention. **ND:** Not done.

Polymaviruses. The precise role of these newly discovered viruses in childhood disease is under study. Enteroviruses cause the “summer cold.” One outcome of the common cold is morbidity continuing for 5–7 days. It is also likely that changes in respiratory epithelium, local mucosal swelling, and altered local immunity are sometimes the precursors of more severe illnesses such as otitis media, pneumonia, and sinusitis. During and following a cold, the bacterial flora changes and bacteria are found in normally sterile areas of the upper airway. Asthma attacks are frequently provoked by any of the viruses that cause the common cold. These “cold viruses” are a common cause of lower respiratory tract infection in young children. There is no evidence that antibiotics will prevent complications of the common cold, and the unjustified widespread use of antibiotics for cold symptoms has contributed to the emergence of antibiotic-resistant respiratory flora.

In 5%–10% of children, symptoms from these virus infections persist for more than 10 days. This overlap with the symptoms of bacterial sinusitis presents a difficult problem for clinicians, especially because colds can produce an abnormal computed tomography (CT) scan of the sinuses. Viruses that cause a minor illness in immunocompetent children, such as rhinoviruses, influenza, RSV, and metapneumovirus, can cause severe lower respiratory disease in immunologically or anatomically compromised children.
### Table 40–3. Some red rashes in children.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Incubation Period (d)</th>
<th>Prodrome</th>
<th>Rash</th>
<th>Laboratory Tests</th>
<th>Comments, Other Diagnostic Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus</td>
<td>4-5</td>
<td>URI; cough; fever</td>
<td>Morbilliform (may be petechial)</td>
<td>Normal; may see leukopenia or lymphocytosis</td>
<td>Upper or lower respiratory symptoms are prominent. No Koplik spots. No desquamation.</td>
</tr>
<tr>
<td>Drug allergy</td>
<td>–</td>
<td>None, or fever alone, or with myalgia, pruritus</td>
<td>Macular, maculopapular, urticarial, or erythoderma</td>
<td>Leukopenia, eosinophilia</td>
<td>Rash variable. Severe reactions may resemble measles, scarlet fever; Kawasaki disease; marked toxicity possible.</td>
</tr>
<tr>
<td>Enterovirus</td>
<td>2-7</td>
<td>Variable fever, chills, myalgia, sore throat</td>
<td>Usually macular, maculopapular on trunk or palms, soles; vesicles or petechiae also seen</td>
<td>Variable; PCR</td>
<td>Varied rashes may resemble those of many other infections. Pharyngeal or hand-foot-mouth vesicles may occur.</td>
</tr>
<tr>
<td>Ehrlichiosis (monocytic)</td>
<td>5-21</td>
<td>Fever; headache; flulike; myalgia; GI symptoms</td>
<td>Variable; maculopapular, petechial, scarlatiniform, vasculitic</td>
<td>Leukopenia, thrombocytopenia, abnormal liver function. Serology for diagnosis; morulae in monocytes</td>
<td>Geographic distribution is a clue; seasonal; tick exposure; rash present in only 45%.</td>
</tr>
<tr>
<td>Erythema multiforme</td>
<td>–</td>
<td>Usually none or related to underlying cause</td>
<td>Discrete, red maculopapular lesions; symmetrical, distal, palms and soles; target lesions classic</td>
<td>Normal or eosinophilia</td>
<td>Reaction to drugs (especially sulfonamides), or infectious agents (Mycoplasma; herpes simplex virus). Urticaria, arthralgia also seen.</td>
</tr>
<tr>
<td>Infectious mononucleosis (EBV infection)</td>
<td>30–60</td>
<td>Fever, malaise</td>
<td>Macular, scarlatiniform, or urticarial in 5% to almost 100% who are on penicillins and related drugs (not a penicillin allergy)</td>
<td>Atypical lymphocytosis; heterophil antibodies; EBV-specific antibodies in an acute pattern EBV; abnormal liver function tests</td>
<td>Pharyngitis, lymphadenopathy, hepatosplenomegaly.</td>
</tr>
<tr>
<td>Juvenile rheumatoid arthritis (systemic; Still diseases)</td>
<td>–</td>
<td>High fever, malaise</td>
<td>Evanescent salmon-pink macules, especially in pressure areas (prominent when fever is present)</td>
<td>Increased inflammatory markers; leukocytosis; thrombocytosis</td>
<td>Oligo- or polyarticular arthritis; asymptomatic anterior uveitis.</td>
</tr>
<tr>
<td>Kawasaki disease</td>
<td>Unknown</td>
<td>Fever, cervical adenopathy, irritability</td>
<td>Polymorphous (may be erythoderma) on trunk and extremities; red palms and soles, conjunctiva, lips, tongue, pharynx. Late desquamation is common. Some of these findings may be absent with atypical disease</td>
<td>Leukocytosis, thrombocytosis, elevated ESR or CRP; pyuria; decreased albumin; negative cultures and streptococcal serology; resting tachycardia</td>
<td>Swollen hands, feet; prolonged illness; uveitis; aseptic meningitis; no response to antibiotics. Vasculitis and aneurysms of coronary and other arteries occur (cardiac ultrasound).</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>4-19</td>
<td>Fever (biphasic), myalgia, chills</td>
<td>Variable erythoderma</td>
<td>Leukocytosis; hematuria, proteinuria; hyperbilirubinemia</td>
<td>Conjunctivitis; hepatitis, aseptic meningitis may be seen. Rodent, dog contact.</td>
</tr>
<tr>
<td>Measles</td>
<td>9-14</td>
<td>Cough, rhinitis, conjunctivitis</td>
<td>Maculopapular; face to trunk; lasts 7-10 d; Koplik spots in mouth</td>
<td>Leukopenia; anti-measles IgM</td>
<td>Toxic. Bright red rash becomes confluent, may desquamate. Fever falls after rash appears. Inadequate measles vaccination.</td>
</tr>
</tbody>
</table>
### Table 40–3. Some red rashes in children. (Continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Incubation Period (d)</th>
<th>Prodrome</th>
<th>Rash</th>
<th>Laboratory Tests</th>
<th>Comments, Other Diagnostic Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parvovirus (erythema infectiosum)</td>
<td>10–17 (rash)</td>
<td>Mild (flulike)</td>
<td>Maculopapular on cheeks (“slapped cheek”), forehead, chin; then down limbs, trunk, buttocks; may fade and reappear for several weeks</td>
<td>IgM-EIA; PCR</td>
<td>Purpuric stocking-glove rash is rare, but distinctive; aplastic crisis in patients with chronic hemolytic anemia. May cause arthritis or arthralgia.</td>
</tr>
<tr>
<td>Rocky Mountain spotted fever</td>
<td>3–12</td>
<td>Headache (retro-orbital); toxic; GI symptoms; high fever; flulike</td>
<td>Onset 2–6 d after fever; palpable maculopapular on palms, soles, extremities, with spread centrally; petechial</td>
<td>Leukopenia; thrombocytopenia; abnormal liver function; CSF pleocytosis; serology positive at 7–10 d of rash; biopsy will give earlier diagnosis</td>
<td>Eastern seaboard and southeastern United States; April–September; tick exposure.</td>
</tr>
<tr>
<td>Roseola (exanthem subitum) (HHV-6)</td>
<td>10–14</td>
<td>Fever (3–4 d)</td>
<td>Pink, macular rash occurs at the end of febrile period; transient</td>
<td>Normal</td>
<td>Fever often high; disappears when rash develops; child appears well. Usually occurs in children 6 mo to 3 y of age. Seizures may complicate.</td>
</tr>
<tr>
<td>Rubella</td>
<td>14–21</td>
<td>Usually none</td>
<td>Mild maculopapular; rapid spread face to extremities; gone by day 4</td>
<td>Normal or leukopenia</td>
<td>Pastauricular, occipital adenopathy common. Polyarthritis in some older girls. Mild clinical illness. Inadequate rubella vaccination.</td>
</tr>
<tr>
<td>Staphylococcal scalded skin</td>
<td>Variable</td>
<td>Irritability, absent to low fever</td>
<td>Painful erythroderma, followed in 1–2 d by cracking around eyes, mouth; bullae form with friction (Nikolsky sign)</td>
<td>Normal if only colonized by staphylococci; leukocytosis and sometimes bacteremia if infected</td>
<td>Normal pharynx. Look for focal staphylococcal infection. Usually occurs in infants.</td>
</tr>
<tr>
<td>Staphylococcal scarlet fever</td>
<td>1–7</td>
<td>Variable fever</td>
<td>Diffuse erythroderma; resembles streptococcal scarlet fever except eyes may be hyperemic and no “strawberry” tongue; pharynx spared</td>
<td>Leukocytosis is common because of infected focus</td>
<td>Focal infection usually present.</td>
</tr>
<tr>
<td>Stevens-Johnson syndrome</td>
<td>—</td>
<td>Pharyngitis, conjunctivitis, fever, malaise</td>
<td>Bullous erythema multiforme; may slough in large areas; hemorrhagic lips; purulent conjunctivitis</td>
<td>Leukocytosis</td>
<td>Classic precipitants are drugs (especially sulfonamides); Mycoplasma pneumoniae and herpes simplex infections. Pneumonitis and urethritis also seen.</td>
</tr>
<tr>
<td>Streptococcal scarlet fever</td>
<td>1–7</td>
<td>Fever, abdominal pain, headache, sore throat</td>
<td>Diffuse erythema, “sandpaper” texture; neck, axillae, inguinal areas; spreads to rest of body; desquamates 7–14 d; eyes not red</td>
<td>Leukocytosis; positive group A Streptococcus culture of throat or wound; positive streptococcal antigen test in pharynx</td>
<td>Strawberry tongue, red pharynx with or without exudate. Eyes, perioral and periorbital area, palms, and soles spared. Pastia lines. Cervical adenopathy. Usually occurs in children 2–10 y of age.</td>
</tr>
<tr>
<td>Toxic shock syndrome</td>
<td>Variable</td>
<td>Fever, myalgia, headache, diarrhea, vomiting</td>
<td>Nontender erythroderma; red eyes, palms, soles, pharynx, lips</td>
<td>Leukocytosis; abnormal liver enzymes and coagulation tests; proteinuria</td>
<td>Staphylococcus aureus infection; toxin-mediated multiorgan involvement. Swollen hands, feet. Hypotension or shock.</td>
</tr>
</tbody>
</table>

CRP, C-reactive protein; CSF, cerebrospinal fluid; EIA, enzyme immunoassay; ESR, erythrocyte sedimentation rate; GI, gastrointestinal; HHV-6, human herpesvirus 6; IFA, immunofluorescent assay; PCR, polymerase chain reaction; URI, upper respiratory infection.
There is conflicting evidence that symptomatic relief for children can be achieved with oral antihistamines, decongestants, or cough suppressants. The FDA has recommended that such over-the-counter medications not be used in children less than 2 years old. Topical decongestants provide temporary improvement in nasal symptoms. Vitamin C has not been shown to have a significant preventative or therapeutic role. Zinc therapy of the common cold and prevention with zinc may be effective in adults, but there is great uncertainty about dosing and some adverse effects. Humidified air and garlic do not alter the course of colds.


INFECTIONS DUE TO ADENOVIRUSES

■ Multiple syndromes, depending on the type of adenovirus.
■ Upper respiratory infections; most notable is severe pharyngitis with tonsillitis and cervical adenopathy.
■ Conjunctivitis.
■ Pneumonia.
■ Enteric adenoviruses cause mild diarrheal illnesses.
■ Definitive diagnosis by antigen detection, PCR, or culture.

There are 57 types of adenoviruses, which account for 5%–15% of all respiratory illnesses in childhood, usually pharyngitis or tracheitis, but including 5% of childhood lower respiratory tract infections. Adenoviral infections, which are common early in life (most prior to age 2 years), occur 3–10 days after exposure to respiratory droplets or fomites. Enteric adenoviruses are an important cause of childhood diarrhea. Epidemic respiratory disease from adenoviruses occurs in winter and spring, especially in closed environments such as day care centers and institutions.

Because of latent infection in lymphoid tissue, asymptomatic shedding from the respiratory or intestinal tract is common.

Specific Adenoviral Syndromes

A. Pharyngitis

Pharyngitis is the most common adenoviral disease, and the most common viral cause of severe pharyngitis in children. Fever and adenopathy are common. Tonsillitis may be exudative. Rhinitis and an influenza-like systemic illness may be present. Laryngotracheitis or bronchitis may accompany pharyngitis.

B. Pharyngoconjunctival Fever

Conjunctivitis may occur alone and be prolonged, but most often is associated with preauricular adenopathy, fever, pharyngitis, and cervical adenopathy. Foreign body sensation in the eye and other symptoms last less than a week. Lower respiratory symptoms are uncommon.

C. Epidemic Keratoconjunctivitis

Symptoms are severe conjunctivitis with punctate keratitis and occasionally visual impairment. A foreign body sensation, photophobia, and swelling of conjunctiva and eyelids are characteristic. Preauricular adenopathy and subconjunctival hemorrhage are common.

D. Pneumonia

Severe pneumonia may occur at all ages. It is especially common in young children (age < 3 years). Chest radiographs show bilateral peribronchial and patchy ground-glass interstitial infiltrates in the lower lobes. Symptoms persist for 2–4 weeks. Adenoviral pneumonia can be necrotizing and cause permanent lung damage, especially bronchiectasis. A pertussis-like syndrome with typical cough and lymphocytosis can occur with lower respiratory tract infection. A new variant of adenovirus serotype 14 can cause unusually severe, sometimes fatal pneumonia in children and adults.

E. Rash

A diffuse morbilliform (rarely petechial) rash resembling measles, rubella, or roseola may be present. Koplik spots are absent.

F. Diarrhea

Enteric adenoviruses (types 40 and 41) cause 3%–5% of cases of short-lived diarrhea in afebrile children, especially in those less than 4 years old.

G. Mesenteric Lymphadenitis

Fever and abdominal pain may mimic appendicitis. Pharyngitis is often associated. Adenovirus-induced adenopathy may be a factor in appendicitis and intussusception.
H. Other Syndromes

Immunosuppressed patients, including neonates, may develop severe or fatal pulmonary or gastrointestinal infections or multisystem disease. Hemorrhagic cystitis can be a serious problem in immunocompromised children. Other rare complications that can occur in the immune competent child include encephalitis, hepatitis, and myocarditis. Adenoviruses have been implicated in the syndrome of idiopathic myocardiopathy.

Laboratory & Diagnostic Studies

Diagnosis can be made by conventional culture of conjunctival, respiratory, or stool specimens, but several days to weeks are required. Viral culture using the rapid culture technique with immunodiagnostic reagents detects adenovirus in 48 hours. Adenovirus infection can also be diagnosed using these reagents directly on respiratory secretions. This is quicker, but less sensitive, than the culture methods. PCR is an important, relatively rapid and sensitive diagnostic method for adenovirus infections. Special cells are needed to isolate enteric adenoviruses. ELISA tests rapidly detect enteric adenoviruses in diarrheal specimens. Respiratory adenovirus infections can be detected retrospectively by comparing acute and convalescent sera, but this is not helpful during an acute illness.

Treatment

There is no specific treatment for adenovirus infections. Intravenous immuno globulin (IVIG) may be tried in immunocompromised patients with severe pneumonia. There are anecdotal reports of successful treatment of immunocompromised patients with cidofovir, which inhibits adenovirus in vitro.


INFLUENZA

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Fever, cough, pharyngitis, malaise, congestion.
- Pneumonia.
- Encephalitis.

Seasonal: late fall through mid-spring.

Detection of virus, viral antigens, or nucleic acid in respiratory secretions.

Symptomatic infections are common in children because they lack immunologic experience with influenza viruses. Infection rates in children are greater than in adults and are instrumental in initiating community outbreaks. Epidemics occur in fall and winter. Three main types of influenza viruses (A/H1N1, A/H3N2, B) cause most human epidemics, with antigenic drift ensuring a supply of susceptible hosts of all ages. In recent years, avian influenza A/H5N1 has caused isolated human outbreaks in Asia that are associated with high rates of hospitalization and death. A swine-origin influenza A/H1N1 initiated a human pandemic in the spring of 2009. Almost 50 million Americans were infected with this virus in 2009. Illnesses caused by this virus tend to be more severe in older children and young adults. In addition, the rates of hospitalization and death are higher than typically observed with seasonal influenza.

Clinical Findings

Spread of influenza occurs by way of airborne respiratory secretions. The incubation period is 2–7 days.

A. Symptoms and Signs

Influenza infection in older children and adults produces a characteristic syndrome of sudden onset of high fever, severe myalgia, headache, and chills. These symptoms overshadow the associated coryza, pharyngitis, and cough. Usually absent are rash, marked conjunctivitis, adenopathy, exudative pharyngitis, and dehydrating enteritis. Fever, diarrhea, vomiting, and abdominal pain are common in young children. Infants may develop a sepsis-like illness and apnea. Chest examination is usually unremarkable. Unusual clinical findings include croup (most severe with type A influenza), exacerbation of asthma, myositis (especially calf muscles), myocarditis, parotitis, encephalopathy (distinct from Reye syndrome), nephritis, and a transient maculopapular rash. Acute illness lasts 2–5 days. Cough and fatigue may last several weeks. Viral shedding may persist for several weeks in young children.

B. Laboratory Findings

The leukocyte count is normal to low, with variable shift. Influenza infections may be more difficult to recognize in children than in adults even during epidemics, and therefore a specific laboratory test is highly recommended. The virus can be found in respiratory secretions by direct fluorescent antibody staining of nasopharyngeal epithelial cells, ELISA,
optic immunoassay (OIA), and PCR. PCR has the highest sensitivity and specificity, close to 100%, and is rapidly becoming the preferred test. It can also be cultured within 3–7 days from pharyngeal swabs or throat washings. Many laboratories use the rapid culture technique by centrifuging specimens onto cultured cell layers and detecting viral antigen after 48 hours. Other body fluids or tissues (except lung) rarely yield the virus in culture and are more appropriately tested by PCR, which, due to its high sensitivity, can increase influenza detection in respiratory specimens. A late diagnosis may be made with paired serology, using hemagglutination inhibition assays.

C. Imaging

The chest radiograph is nonspecific; it may show hyperaeration, peribronchial thickening, diffuse interstitial infiltrates, or bronchopneumonia in severe cases. Hilar nodes are not enlarged. Pleural effusion is rare in uncomplicated influenza.

Differential Diagnosis

The following may be considered: all other respiratory viruses, *Mycoplasma pneumoniae* or *Chlamydia pneumoniae* (longer incubation period, prolonged illness), streptococcal pharyngitis (pharyngeal exudate or petechiae, adenitis, no cough), bacterial sepsis (petechial or purpuric rash may occur), toxic shock syndrome (rash, hypotension), and ricketsial infections (rash, different season, insect exposure). High fever, the nature of preceding or concurrent illness in family members, and the presence of influenza in the community are distinguishing features from parainfluenza or RSV infections.

Complications & Sequelae

Lower respiratory tract symptoms are most common in children younger than age 5 years. Hospitalization rates are highest in children younger than 2 years. Influenza can cause croup in these children. Secondary bacterial infections (classically staphylococcal) of the middle ear, sinuses, or lungs (pneumococcal was common in the swine-origin H1N1 pandemic of 2009) are common. Of the viral infections that precede Reye syndrome, varicella and influenza (usually type B) are most notable. During an influenza outbreak, ill children who develop protracted vomiting or irrational behavior should be evaluated for Reye syndrome. Influenza can also cause viral or postviral encephalitis, with cerebral symptoms much more prominent than those of the accompanying respiratory infection. Although the myositis is usually mild and resolves promptly, severe rhabdomyolysis and renal failure have been reported.

Children with underlying cardiopulmonary, metabolic, neuromuscular, or immunosuppressive disease may develop severe viral pneumonia. During the H1N1 pandemic, new high risk conditions were described: obesity and the first 2 weeks of postpartum.

Prevention

The trivalent inactivated influenza vaccine is moderately protective in older children (see Chapter 10). A live attenuated influenza vaccine (FluMist) is significantly more efficacious in children and is currently recommended for immunocompetent children 2 years of age or older. It is currently recommended that all children 6 months and older, and adults should be immunized with one of the available influenza vaccines, and that two doses be administered during the first year of immunization to children less than 9 years old. There is an ongoing effort to broaden the influenza B coverage by adding an additional influenza B strain to the seasonal vaccine. Quadrivalent live attenuated and inactivated influenza vaccines have been approved by the FDA; the quadrivalent live vaccine will become available for the 2013–2014 season. Widespread resistance to adamantanes of seasonal influenza A H3N2 and pandemic influenza A H1N1/2009 has made these drugs obsolete for the treatment and prevention of influenza. For prophylaxis oseltamivir is the most widely used agent (children < 15 kg, 30 mg daily; those 15–23 kg, 45 mg daily; those 23–40 kg, 60 mg daily; and those > 40 kg, 75 mg daily). Zanamivir (10 mg daily inhalations) can also be used in children older than age 5 years. Chemoprophylaxis should be considered during an epidemic for high-risk children who cannot be immunized or who have not yet developed immunity (about 6 weeks after primary vaccination or 2 weeks after a booster dose). For outbreak prophylaxis, therapy should be maintained for 2 weeks or more and for 1 week after the last case of influenza is diagnosed.

Treatment & Prognosis

Treatment consists of general support and management of pulmonary complications, especially bacterial superinfections. Antivirals are of benefit against seasonal influenza in immunocompetent hosts if begun within 48 hours after symptom onset. Treatment duration is 5 days and the doses are twice those used for prophylaxis (see earlier). Studies in immunocompromised patients during the 2009/2010 pandemic showed that oseltamivir was useful in this population even when initiated later than 2 days after the onset of disease.

Recovery is usually complete unless severe cardiopulmonary or neurologic damage has occurred. Fatal cases occur in very young infants, immunodeficient and anatomically compromised children, pregnant women including the first 2 weeks of postpartum, and obese individuals.

Effective treatment or prophylaxis of influenza in children markedly reduces the incidence of acute otitis media and antibiotic usage during the flu season.
PARAINFLUENZA (CROUP)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Fever, nasal congestion, sore throat, cough.
- Croup.
- Detection of live virus, antigens, or nucleic acid in respiratory secretions.

Parainfluenza viruses (types 1–4) are the most important cause of croup. Most infants are infected with type 3 within the first 3 years of life, often in the first year. Type 3 appears annually, with a peak in the spring or summer. Infection with types 1 and 2 is experienced gradually over the first 5 years of life, usually during outbreaks in the fall; most primary infections are symptomatic and frequently involve the lower respiratory tract. The concept that parainfluenza 4 is less pathogenic is currently being reevaluated. Its epidemiology seems to overlap with that of parainfluenza 3.

Clinical Findings

A. Symptoms and Signs

Clinical diseases include febrile upper respiratory infection (especially in older children with reexposure), laryngitis, tracheobronchitis, croup, and bronchiolitis (second most common cause after RSV). The relative incidence of these manifestations is type-specific. Parainfluenza viruses (especially type 1) cause 65% of cases of croup in young children, 25% of tracheobronchitis, and 50% of laryngitis. Croup is characterized by a barking cough, inspiratory stridor (especially when agitated), and hoarseness. Type 2 parainfluenza is more likely to cause bronchiolitis. Parainfluenza virus can cause pneumonia in infants and immunodeficient children, and causes particularly high mortality among stem cell recipients. Onset is acute. Most children are febrile. Symptoms of upper respiratory tract infection often accompany croup.

B. Laboratory Findings

Diagnosis is often based on clinical findings. These viruses can be identified by conventional or rapid culture techniques (48 hours), by direct immunofluorescence on nasopharyngeal epithelial cells in respiratory secretions (<3 hours), or by PCR (<24 hours).

Differential Diagnosis

Parainfluenza-induced respiratory syndromes are difficult to distinguish from those caused by other respiratory viruses. Viral croup must be distinguished from epiglottitis caused by Haemophilus influenzae (abrupt onset, toxicity and high fever, drooling, dyspnea, little cough, left shift of blood smear, and a history of inadequate immunization).

Treatment

No specific therapy or vaccine is available. Croup management is discussed in Chapter 19. Ribavirin is active in vitro and has been used in immunocompromised children, but its efficacy is unproved.

RESPIRATORY SYNCYTIAL VIRUS DISEASE

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Diffuse wheezing and tachypnea following upper respiratory symptoms in an infant (bronchiolitis).
- Epidemics in late fall to early spring (January–February peak).
- Hyperinflation on chest radiograph.
- Detection of RSV antigen or nucleic acid in nasal secretions.

General Considerations

RSV is the most important cause of lower respiratory tract illness in young children, accounting for more than 70% of cases of bronchiolitis and 40% of cases of pneumonia. RSV is a ubiquitous virus of early childhood. Almost all children develop upper respiratory symptoms; of these 20%–30% will develop lower respiratory infection. Outbreaks occur annually, and attack rates are high; 60% of children are infected in the first year of life, and 90% by age 2 years. During peak season (cold weather in temperate climates), the clinical diagnosis of RSV infection in infants with bronchiolitis is as accurate as most laboratory tests. Despite the presence of serum antibody, reinfecation is common. Two distinct genotypes can co-circulate or one may predominate in a community. Yearly shift in prevalence of these genotypes is a partial
explanation for reinfection. However, reinfection generally causes only upper respiratory symptoms in anatomically normal children. Immunosuppressed patients may develop progressive severe pneumonia. Children with congenital heart disease with increased pulmonary blood flow, children with chronic lung disease (eg, cystic fibrosis), and premature infants younger than age 6 months (especially when they have chronic lung disease of prematurity) are also at higher risk for severe illness. No vaccine is available.

Clinical Findings

A. Symptoms and Signs

Initial symptoms are those of upper respiratory infection. Low-grade fever may be present. The classic disease is bronchiolitis, characterized by diffuse wheezing, variable fever, cough, tachypnea, difficulty feeding, and, in severe cases, cyanosis. Hyperinflation, crackles, prolonged expiration, wheezing, and retractions are present. The liver and spleen may be palpable because of lung hyperinflation, but are not enlarged. The disease usually lasts 3–7 days in previously healthy children. Fever is present for 2–4 days; it does not correlate with pulmonary symptoms and may be absent during the height of lung involvement.

Apnea, poor feeding, and lethargy may be presenting manifestations, especially in premature infants, in the first few months of life. Apnea usually resolves after a few days, often being replaced by obvious signs of bronchiolitis.

RSV infection in older children is more likely to cause tracheobronchitis or upper respiratory tract infection. Exceptions are immunocompromised children and those with severe chronic lung or heart disease, who may have especially severe or prolonged primary infections and are subject to additional attacks of severe pneumonia.

B. Laboratory Findings

Rapid detection of RSV antigen in nasal or pulmonary secretions by fluorescent antibody staining or ELISA requires only several hours and is more than 90% sensitive and specific. Real-time PCR is more sensitive than antigen testing, but is more expensive. Often the PCR is multiplexed to detect four or more viral respiratory pathogens in the same assay. Rapid tissue culture methods take 48 hours and have comparable sensitivity, but require a carefully collected and handled specimen.

C. Imaging

Diffuse hyperinflation and peribronchiolar thickening are most common; atelectasis and patchy infiltrates also occur in uncomplicated infection, but pleural effusions are rare. Consolidation (usually subsegmental) occurs in 25% of children with lower respiratory tract disease.

Differential Diagnosis

Although almost all cases of bronchiolitis are due to RSV during an epidemic, other viruses, including parainfluenza, rhinovirus, and especially human metapneumovirus, cannot be excluded. Mixed infections with other viruses, chlamydiae, or bacteria can occur. Wheezing may be due to asthma, a foreign body, or other airway obstruction. RSV infection may closely resemble chlamydial pneumonitis when fine crackles are present and fever and wheezing are not prominent. The two may also coexist. Cystic fibrosis may present with respiratory symptoms resembling RSV infection; a positive family history or failure to thrive associated with GI symptoms, hyponatremia or hypoalbuminemia should prompt a sweat chloride test. Pertussis should also be considered in this age group, especially if cough is prominent and the infant is younger than age 6 months. A markedly elevated leukocyte count should suggest bacterial superinfection (neutrophilia) or pertussis (lymphocytosis).

Complications

RSV commonly infects the middle ear. Symptomatic otitis media is more likely when secondary bacterial infection is present (usually due to pneumococci or H influenzae). This is the most common complication (10%–20%) of RSV infection. Bacterial pneumonia complicates only 0.5%–1% of hospitalized patients. Sudden exacerbations of fever and leukocytosis should suggest bacterial infection. Respiratory failure or apnea may require mechanical ventilation, but occurs in less than 2% of hospitalized previously healthy full-term infants. Cardiac failure may occur as a complication of pulmonary disease or myocarditis. RSV commonly causes exacerbations of asthma. Nosocomial RSV infection is so common during outbreaks that elective hospitalization or surgery, especially for those with underlying illness, should be postponed. Well-designed hospital programs to prevent nosocomial spread are imperative (see next section).

Prevention & Treatment

Children who are very hypoxic or cannot feed because of respiratory distress must be hospitalized and given humidified oxygen as directed by oxygen saturation, and given tube or intravenous feedings. Antibiotics, decongestants, and expectorants are of no value in routine infections. RSV-infected children should be kept in respiratory isolation. Cohorting ill infants in respiratory isolation during peak season (with or without rapid diagnostic attempts) and emphasizing good hand washing may greatly decrease nosocomial transmission.

The utility of bronchodilator therapy alone has not been consistently demonstrated. Often a trial of bronchodilator therapy is given to determine response and is subsequently discontinued if there is no improvement. Racemic epinephrine occasionally works when β-agonists fail. This therapeutic
trial should only be undertaken in a hospital setting and care taken to observe children for an extended period after a positive response. The use of corticosteroids is also controversial in RSV bronchiolitis without complicating features such as asthma and chronic lung disease of prematurity. A meta-analysis of numerous studies of corticosteroid therapy indicated a significant effect on hospital stay, especially in those most ill at the time of treatment, but use of a single dose of corticosteroids in an outpatient setting had no lasting effect on respiratory status and did not prevent hospitalization. The combined use of racemic epinephrine and 5 days of oral dexamethasone significantly reduced hospitalization in one trial, but needs more evaluation before it can be recommended.

Ribavirin is the only licensed antiviral therapy used for RSV infection. It is given by continuous aerosolization. It is rarely used in infants without significant anatomic or immunologic defects. At best, there is a very modest effect on disease severity in immunocompetent infants with no underlying anatomic abnormality. Even in high-risk infants, a favorable clinical response to ribavirin therapy was not demonstrated in several studies, although some data suggest that it might be more efficacious if initiated early in the illness. Nevertheless, ribavirin is sometimes used in severely ill children who are immunologically or anatomically compromised and in those with severe cardiac disease.

Monthly intramuscular administration of humanized RSV monoclonal antibody is now recommended to prevent severe disease in selected high-risk patients during epidemic periods. Monthly administration should be considered during the RSV season for high-risk children (described in Chapter 10). Use of passive immunization for immunocompromised children is logical but not established. RSV antibody is not effective for treatment of established infection.

**Prognosis**

Although mild bronchiolitis does not produce long-term problems, 30%–40% of patients hospitalized with this infection will wheeze later in childhood, and RSV infection in infancy may be an important precursor to asthma. Chronic restrictive lung disease and bronchiolitis obliterans are rare sequelae.

**General Considerations**

Human metapneumovirus (hMPV) is a common agent of respiratory tract infections that is very similar to RSV in epidemiologic and clinical characteristics. Like RSV, parainfluenza, mumps, and measles, hMPV belongs to the paramyxovirus family. Humans are its only known reservoir. Seroepidemiologic surveys indicate that the virus has worldwide distribution. More than 90% of children contract hMPV infection by age 5 years, typically during late autumn through early spring outbreaks. hMPV accounts for 15%–25% of the cases of bronchiolitis and pneumonia in children younger than 2 years. Older children and adults can also develop symptomatic infection.

**Clinical Findings**

**A. Symptoms and Signs**

The most common symptoms are fever, cough, rhinorrhea, and sore throat. Bronchiolitis and pneumonia occur in 40%–70% of the children who acquire hMPV before the age of 2 years. Asymptomatic infection is uncommon. Other manifestations include otitis, conjunctivitis, diarrhea, and myalgia. Acute wheezing has been associated with hMPV in children of all ages, raising the possibility that this virus, like RSV, might trigger reactive airway disease. Dual infection with hMPV and RSV or other respiratory viruses seems to be a common occurrence and may increase morbidity and mortality.

**B. Laboratory Findings**

The virus has very selective tissue culture tropism, which accounts for its late discovery in spite of its presence in archived specimens from the mid-1950s. The preferred method of diagnosis is PCR performed on respiratory specimens. Rapid shell vial culture is an acceptable, albeit less sensitive, alternative. Antibody tests are available, but are most appropriately used for epidemiologic studies.

**C. Imaging**

Lower respiratory tract infection frequently shows hyperinflation and patchy pneumonitis on chest radiographs.
Treatment & Prognosis

No antiviral therapy is available to treat hMPV. Ribavirin has in vitro activity against human metapneumovirus, but there are no data to support its therapeutic value. Children with lower respiratory tract disease may require hospitalization and ventilatory support, but less frequently than with RSV-associated bronchiolitis. Duration of hospitalization in hMPV is typically shorter than in RSV.

INFECTIONS DUE TO ENTEROVIRUSES

Essentials of Diagnosis & Typical Features

- Acute febrile illness with headache and sore throat.
- Summer–fall epidemics.
- Other common features: rash, nonexudative pharyngitis.
- Common cause of aseptic meningitis.
- Complications: myocarditis, neurologic damage, life-threatening illness in newborns.

Enteroviruses are a major cause of illness in young children. The multiple types have similar nucleic acid and protein components, and may produce identical syndromes, but they differ antigenically, which makes vaccine development impractical and has hindered development of antigen detection and serologic tests. However, common RNA sequences and group antigens have led to diagnostic tests for viral nucleic acid and proteins. A PCR assay is available in many medical centers, but tissue culture is still used in some centers as a diagnostic method for echoviruses, polioviruses, and coxsackie B viruses. Although cultures may turn positive in 2–4 days, the relatively rapid answer obtained with PCR facilitates clinical decisions, particularly in cases of meningococcal meningitis and severe unexplained illness in neonates.

Parechoviruses are a genus of the family picornaviruses which were formerly considered to be enteroviruses (echoviruses 22 and 23). It is now realized that these are responsible for a significant number of pediatric infections. Some of the 15 types of parechoviruses infect almost every child before the age of 2 years; others before age 5 years.

Transmission of enteroviruses is fecal-oral or from upper respiratory secretions. Multiple enteroviruses circulate in the community at any one time; summer–fall outbreaks are common in temperate climates, but infections are seen year-round. After poliovirus, coxsackie B virus is most virulent, followed by echovirus. Neurologic, cardiac, and overwhelming neonatal infections are the most severe forms of illness.

ACUTE FEBRILE ILLNESS

Accompanied by nonspecific upper respiratory or enteric symptoms, the sudden onset of fever and irritability in infants or young children is often enteroviral in origin, especially in late summer and fall. More than 90% of enteroviral infections are not distinctive. Occasionally a petechial rash is seen; more often a diffuse maculopapular or morbilliform eruption (often prominent on palms and soles) occurs on the second to fourth day of fever. Rapid recovery is the rule. More than one febrile enteroviral illness can occur in the same patient in one season. The leukocyte count is usually normal. Infants, because of fever and irritability, may undergo an evaluation for bacteremia or meningitis and be hospitalized to rule out sepsis. Approximately half of these infants have aseptic meningitis. In the summer months enterovirus infection is more likely than human herpesvirus 6 (HHV-6) to cause an acute medical visit for fever. Duration of illness is 4–5 days.

RESPIRATORY TRACT ILLNESSES

1. Febrile Illness with Pharyngitis

This syndrome is most common in older children, who complain of headache, sore throat, myalgia, and abdominal discomfort. The usual duration is 3–4 days. Vesicles or papules may be seen in the pharynx. There is no exudate. Occasionally, enteroviruses are the cause of croup, bronchiitis, or pneumonia. They may also exacerbate asthma.

2. Herpangina

Herpangina is characterized by an acute onset of fever and posterior pharyngeal grayish white vesicles that quickly form ulcers (< 20 in number), often linearly arranged on the posterior palate, uvula, and tonsillar pillars. Bilateral faucial ulcers may also be seen. Dysphagia, vomiting, abdominal pain, and anorexia also occur and, rarely, parotitis or vaginal ulcers. Symptoms disappear in 4–5 days. The epidemic form is due to several coxsackie A viruses; coxsackie B viruses and echoviruses cause sporadic cases.

The differential diagnosis includes primary herpes simplex gingivostomatitis (ulcers are more prominent
anteriorly, and gingivitis is present), aphthous stomatitis (fever absent, recurrent episodes, anterior lesions), trauma, hand-foot-and-mouth disease (see later discussion), and Vincent angina (painful gingivitis spreading from the gum line, underlying dental disease). If the enanthema is missed, tonsillitis might be incorrectly diagnosed.

3. Acute Lymphonodular Pharyngitis

Coxsackievirus A10 has been associated with a febrile pharyngitis characterized by nonulcerative yellow-white posterior pharyngeal papules in the same distribution as herpangina. The duration is 1–2 weeks; therapy is supportive.

4. Pleurodynia (Bornholm Disease, Epidemic Myalgia)

Caused by coxsackie B virus (epidemic form) or many nonpolio enteroviruses (sporadic form), pleurodynia is associated with an abrupt onset of unilateral or bilateral spasmodic pain of variable intensity over the lower ribs or upper abdomen. Associated symptoms include headache, fever, vomiting, myalgias, and abdominal and neck pain. Physical findings include fever, chest muscle tenderness, decreased thoracic excursion, and occasionally a friction rub. The chest radiograph is normal. Hematologic tests are nondiagnostic. The illness generally lasts less than 1 week.

This is a disease of muscle, but the differential diagnosis includes bacterial pneumonia, bacterial and tuberculous effusion, and endemic fungal infections (all excluded radiographically and by auscultation),costochondritis (no fever or other symptoms), and a variety of abdominal problems, especially those causing diaphragmatic irritation.

There is no specific therapy. Potent analgesic agents and chest splinting alleviate the pain.

Cardiac Involvement

Myocarditis and pericarditis can be caused by a number of nonpolio enteroviruses, particularly type B coxsackieviruses. Most commonly, upper respiratory symptoms are followed by substernal pain, dyspnea, and exercise intolerance. A friction rub or gallop may be detected. Ultrasound will define ventricular dysfunction or pericardial effusion, and electrocardiography may show pericarditis or ventricular irritability. Creatine phosphokinase may be elevated. The disease may be mild or fatal; most children recover completely. In infants, other organs may be involved at the same time; in older patients, cardiac disease is usually the sole manifestation (see Chapter 20 for therapy). Enteroviral RNA is present in cardiac tissue in some cases of dilated cardiomyopathy or myocarditis; the significance of this finding is unknown. Epidemics of enterovirus 71, which occur in Asia, as well as sporadic cases in the United States, are associated with severe left ventricular dysfunction and pulmonary edema following typical mucocutaneous manifestations of enterovirus infection. Enterovirus 71 also can cause isolated severe neurologic disease or neurologic disease in combination with myocardial disease.

Severe Neonatal Infection

Sporadic and nosocomial nursery cases of severe systemic enteroviral disease occur. Clinical manifestations include combinations of fever, rash, pneumonitis, encephalitis, hepatitis, gastroenteritis, myocarditis, pancreatitis, and myositis. The infants, usually younger than 1 week, may appear septic, with cyanosis, dyspnea, and seizures. The differential diagnosis includes bacterial and herpes simplex infections, necrotizing enterocolitis, other causes of heart or liver failure, and metabolic diseases. Diagnosis is suggested by the finding of cerebrospinal fluid (CSF) mononuclear pleocytosis and confirmed by the isolation of virus or detection of enteroviral RNA in urine, stool, CSF, or pharynx. Therapy is supportive. IVIG is often administered, but its value is uncertain. Passively acquired maternal antibody may protect newborns from severe disease. For this reason, labor should not be induced in pregnant women near term who have suspected enteroviral disease. Some of these infections are now known to be caused by parechoviruses.

Rashes (Including Hand-Foot-And-Mouth Disease)

The rash can be macular, maculopapular, urticarial, scarlatiniform, petechial, or vesicular. One of the most characteristic is that of hand-foot-and-mouth disease (caused by coxsackieviruses, especially types A5, A10, and A16), in which vesicles or red papules are found on the tongue, oral mucosa, hands, and feet. Often they appear near the nails and on the heels. Associated fever, sore throat, and malaise are mild. The rash may appear when fever abates, simulating roseola.

CENTRAL NERVOUS SYSTEM ILLNESSES

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Inadequate immunization or underlying immune deficiency.
- Headache, fever, muscle weakness.
- Aseptic meningitis.
- Asymmetrical, flaccid paralysis; muscle tenderness and hyperesthesia; intact sensation; late atrophy.

1. Poliomyelitis

General Considerations

Poliomavirus infection is subclinical in 90%–95% of cases; it causes nonspecific febrile illness in about 5% of cases and aseptic meningitis, with or without paralytic disease, in 1%–3%. In endemic areas, most of older children and adults are immune because of prior inapparent infections. Occasional cases in the United States occur in patients who travel to foreign countries or come in contact with visitors from areas that have poliovirus outbreaks. Severe poliovirus infection was a rare complication of OPV (oral poliovirus vaccine) vaccination as a result of reversion of the vaccine virus. The incidence of vaccine-associated paralytic poliomyelitis (VAPP) in the United States was 1:750,000 and 1:2.4 million doses for the first and second dose of OPV, respectively. Although rare, VAPP became more common than wild-type poliomyelitis in the United States in the 1980s. This led to a change in the recommended immunization regimen, substituting inactivated poliovirus vaccine (IPV) for OPV (see Chapter 10).

Clinical Findings

A. Symptoms and Signs

The initial symptoms are fever, myalgia, sore throat, and headache for 2–6 days. In less than 10% of infected children, several symptom-free days are followed by recurrent fever and signs of aseptic meningitis: headache, stiff neck, spinal rigidity, and nausea. Mild cases resolve completely. In only 1%–2% of these children do high fever, severe myalgia, and anxiety portend progression to loss of reflexes and subsequent flaccid paralysis. Sensation remains intact, although hyperesthesia of skin overlying paralyzed muscles is common and pathognomonic.

Paralysis is usually asymmetrical. Proximal limb muscles are more often involved than distal, and lower limb involvement is more common than upper. Bulbar involvement affects swallowing, speech, and cardiorespiratory function and accounts for most deaths. Bladder distention and marked constipation characteristically accompany lower limb paralysis. Paralysis is usually complete by the time the temperature normalizes. Weakness often resolves completely. Atrophy is usually apparent by 4–8 weeks. Most improvement of muscle paralysis occurs within 6 months.

B. Laboratory Findings

In patients with meningeal symptoms, the CSF contains up to several hundred leukocytes (mostly lymphocytes) per μL; the glucose level is normal, and protein concentration is mildly elevated. Poliovirus is easy to grow in cell culture and can be readily differentiated from other enteroviruses. It is rarely isolated from spinal fluid but is often present in the throat and stool for several weeks following infection. Paired serology is also diagnostic. Laboratory methods are available to differentiate wild from attenuated vaccine isolates.

Differential Diagnosis

Aseptic meningitis due to poliovirus is indistinguishable from that due to other viruses. Paralytic disease in the United States is usually due to nonpolio enteroviruses. Polio may resemble Guillain-Barré syndrome (minimal sensory loss, ascending symmetrical loss of function; minimal pleocytosis, high protein concentration in spinal fluid), polyneuritis (sensory loss), pseudoparalysis due to bone or joint problems (eg, trauma, infection), botulism, or tick paralysis.

Complications & Sequelae

Complications are the result of the acute and permanent effects of paralysis. Respiratory, pharyngeal, bladder, and bowel malfunction are most critical. Deaths are usually due to complications arising from respiratory dysfunction. Limbs injured near the time of infection, such as by intramuscular injections, excessive prior use, or trauma, tend to be most severely involved and have the worst prognosis for recovery (provocation paralysis).

Treatment & Prognosis

Therapy is supportive. Bed rest, fever and pain control (heat therapy is helpful), and careful attention to progression of weakness (particularly of respiratory muscles) are important. No intramuscular injections should be given during the acute phase. Intubation or tracheostomy for secretion control and catheter drainage of the bladder may be needed. Assisted ventilation and enteral feeding may also be needed. Disease is worse in adults and pregnant women than in children. Postpolio muscular atrophy occurs in 30%–40% of paralyzed...
limbs 20–30 years later, characterized by increasing weakness and fasciculations in previously affected, partially recovered limbs.

2. Nonpolio Viral Meningitis

Nonpolio enteroviruses cause over 80% of cases of aseptic meningitis at all ages. In the summer and fall, cases may be seen associated with circulation of multiple neurotropic strains. Nosocomial outbreaks also occur.

Clinical Findings

The usual enteroviral incubation period is 4–6 days. Because many enteroviral infections are subclinical or not associated with central nervous system (CNS) symptoms, a history of contact with a patient with meningitis is unusual. Neonates may acquire infection from maternal blood, vaginal secretions, or feces at birth; occasionally the mother has had a febrile illness just prior to delivery.

A. Symptoms and Signs

Incidence is much greater in children younger than age 1 year. Onset is usually acute with variable fever, marked irritability, and lethargy in infants. Older children also describe frontal headache, photophobia, and myalgia. Abdominal pain, diarrhea, and vomiting may occur. The incidence of rash varies with the infecting strain. If rash occurs, it is usually seen after several days of illness and is diffuse, macular or maculopapular, occasionally petechial, but not purpuric. Oropharyngeal vesicles and rash on the palms and soles suggest an enterovirus. The anterior fontanelle may be full. Meningismus may be present. The illness may be biphasic, with nonspecific symptoms and signs preceding those related to the CNS. In older children, it is easier to demonstrate meningeal signs. Seizures are unusual, and focal neurologic findings, which are rare, should lead to a search for an alternative cause. Frank encephalitis, which is uncommon at any age, occurs most often in neonates. Because of the overall frequency of enteroviral disease in children, 5%–10% of all cases of encephalitis of proved viral origin are caused by enteroviruses. Enteroviruses tend to cause less severe encephalitis than other viral agents. However, parechoviruses, which have recently been demonstrated to be a significant cause of aseptic meningitis, sometimes cause white matter defects.

Enterovirus 71 infections that begin with typical mucocutaneous manifestations of enteroviruses can be complicated by severe brainstem encephalitis and polio-like flaccid paralysis. Enterovirus 70 outbreaks have resulted in hemorrhagic conjunctivitis together with paralytic poliomyelitis. Other nonpolio enteroviruses cause sporadic cases of acute motor weakness similar to that seen with poliovirus infection. Children with congenital immune deficiency, especially agammaglobulinemia, are subject to chronic enteroviral meningoencephalitis that is often fatal or associated with severe sequelae.

B. Laboratory Findings

Blood leukocyte counts are often normal. The spinal fluid leukocyte count is 100–1000/μL. Early in the illness, polymorphonuclear cells predominate; a shift to mononuclear cells occurs within 8–36 hours. In about 95% of cases, spinal fluid parameters include a total leukocyte count less than 3000/μL, protein less than 80 mg/dL, and glucose more than 60% of serum values. Marked deviation from any of these findings should prompt consideration of another diagnosis (see following section). The syndrome of inappropriate secretion of antidiuretic hormone may occur, but is rarely clinically significant.

Culture of CSF may yield an enterovirus within a few days (< 70%). However, PCR for enteroviruses is the most useful diagnostic method in many centers (sensitivity > 90%) and can give an answer within 24–48 hours. Parechoviruses will be detected by most PCR methods, but will be identified as “enterovirus.” Virus may be detected in acellular CSF. Detection of an enterovirus from throat or stool suggests, but does not prove, enteroviral meningitis. Vaccine-strain poliovirus present in feces in infants being evaluated for aseptic meningitis (outside of the United States) may confuse the diagnosis, but can usually be distinguished by growth characteristics.

C. Imaging

Cerebral imaging is not often indicated; if done, it is usually normal. Subdural effusions, infarcts, edema, or focal abnormalities seen in bacterial meningitis are absent except for the rare case of focal encephalitis.

Differential Diagnosis

The leading cause of aseptic meningitis is enteroviruses, especially in the summer and fall. Other causative viruses are mosquito-borne viruses (flavivirus, bunyavirus). These are usually considered during an investigation of encephalitis, but many of them are more likely to cause isolated meningitis and should be considered when seasonal clusters of viral meningitis occur. Primary herpes simplex infection can cause aseptic meningitis in adolescents who have a genital herpes infection. In neonates, early herpes simplex meningoencephalitis may mimic enteroviral disease (see section on Infections due to Herpesviruses). This is an important alternative diagnosis to exclude because of the need for urgent antiviral therapy. Lymphocytic choriomeningitis virus causes meningitis in children in contact with rodents (pet or environmental exposure). Meningitis occurs in some patients...
at the time of infection with human immunodeficiency virus (HIV).

Other causes of aseptic meningitis that may resemble entroviral infection include partially treated bacterial meningitis (recent antibiotic treatment, CSF parameters resembling those seen in bacterial disease and bacterial antigen sometimes present); parameningeal foci of bacterial infection such as brain abscess, subdural empyema, mastoiditis (predisposing factors, glucose level in CSF may be lower, focal neurologic signs, and characteristic imaging); tumors or cysts (malignant cells detected by cytologic examination, a history of neurologic symptoms, higher protein concentration or lower glucose level in CSF); trauma (presence, without exception, of red blood cells, which may be erroneously assumed to be due to traumatic lumbar puncture, but are crenated and fail to clear); vasculitis (other systemic or neurologic signs, found in older children); tuberculous or fungal meningitis (see Chapters 42 and 43); cysticercosis; parainfectious encephalopathies (M pneumoniae, cat-scratch disease, respiratory viruses [especially influenza]); Lyme disease; leptospirosis; and rickettsial diseases.

**Prevention & Treatment**

No specific therapy exists. Infants are usually hospitalized, isolated, and treated with fluids and antipyretics. Moderately to severely ill infants are given appropriate antibiotics for bacterial pathogens until cultures are negative for 48–72 hours. This practice is changing, and hospital stay shortened, in areas where the PCR assay for enteroviruses is available. If patients, especially older children, are mildly ill, antibiotics may be withheld and the child observed. The illness usually lasts less than 1 week. Codeine compounds or other strong analgesics may be needed. C-reactive protein and lactate levels are usually low in the CSF of children with viril meningitis; both may be elevated with bacterial infection. With clinical deterioration, repeat lumbar puncture, cerebral imaging, neurologic consultation, and more aggressive diagnostic tests should be considered. Herpesvirus encephalitis is an important consideration in such cases, particularly in infants younger than age 1 month, and often warrants empiric acyclovir therapy until an etiologic diagnosis is made.

**Prognosis**

In general, entroviral meningitis has no significant short-term neurologic or developmental sequelae. Developmental delay may follow severe neonatal infections. Unlike mumps, enterovirus infections rarely cause hearing loss.

Clinical Findings

A. Symptoms and Signs

1. Gingivostomatitis—High fever, irritability, and drooling occur in infants. Multiple oral ulcers are seen on the tongue and on the buccal and gingival mucosa, occasionally extending to the pharynx. Pharyngeal ulcers may predominate in older children and adolescents. Diffusely swollen red gums that are friable and bleed easily are typical. Cervical nodes are swollen and tender. Duration is 7–14 days. Herpangina, aphthous stomatitis, thrush, and Vincent angina should be excluded.

2. Vulvovaginitis or urethritis (See Chapter 44)—Genital herpes (especially HSV-2) in a prepubertal child should suggest sexual abuse. Vesicles or painful ulcers on the vulva, vagina, or penis, and tender adenopathy are seen. Systemic symptoms (fever, flulike illness, myalgia) are common with the initial episode. Painful urination is frequent, especially in females. Primary infection lasts 10–14 days before healing. Lesions may resemble trauma, syphilis (ulcers are painless), or chancroid (ulcers are painful and nodes are erythematous and fluctuant) in the adolescent, and bullous impetigo or severe chemical irritation in younger children.

3. Cutaneous infections—Direct inoculation onto cuts or abrasions may produce localized vesicles or ulcers. A deep HSV infection on the finger (called herpetic whitlow) may be mistaken for a bacterial felon or paronychia; surgical drainage is of no value and is contraindicated. HSV infection of eczematous skin may result in extensive areas of vesicles and shallow ulcers (eczema herpeticum), which may be mistaken for impetigo or severe chemical irritation in younger children.

4. Recurrent mucocutaneous infection—Recurrent oral shedding is asymptomatic. Perioral recurrences often begin with a prodrome of tingling or burning limited to the vermilion border, followed by vesiculation, scabbing, and crusting around the lips over 3–5 days. Recurrent intraoral lesions are rare. Fever, adenopathy, and other symptoms are absent. Recurrent cutaneous herpes most closely resembles impetigo, but the latter is often outside the perinasal and perioral region, recurs infrequently in the same area of skin, responds to antibiotics, yields a positive result on Gram stain, and Streptococcus pyogenes or Staphylococcus aureus can be isolated. Recurrent genital disease is common after the initial infection with HSV-2. It is shorter (5–7 days) and milder (mean, four lesions) than primary infection and is not associated with systemic symptoms. Recurrent genital disease, which may also recur on the thighs and buttocks, is also preceded by a cutaneous sensory prodrome. Recurrence of HSV-1 in the genital region is much less common than occurs after HSV-2 infection.

5. Keratoconjunctivitis—Keratoconjunctivitis may be part of a primary infection due to spread from infected saliva. Most cases are caused by reactivation of virus latent in the ciliary ganglion. Keratoconjunctivitis produces photophobia, pain, and conjunctival irritation. With recurrences, dendritic corneal ulcers may be demonstrable with fluorescein staining. Stromal invasion may occur. Corticosteroids should never be used for unilateral keratitis without ophthalmologic consultation. Other causes of these symptoms include trauma, bacterial infections, and other viral infections (especially adenovirus if pharyngitis is present; bilateral involvement makes HSV unlikely) (see Chapter 16).

6. Encephalitis—Although unusual in infants outside the neonatal period, encephalitis may occur at any age, usually without cutaneous herpes lesions. In older children, HSV encephalitis can follow a primary infection, but often represents reactivation of latent virus. HSV is the most common cause of sporadic severe encephalitis. Diagnosing this cause of encephalitis is very important because it can be treated with specific antiviral therapy. Acute onset is associated with fever, headache, behavioral changes, and focal neurologic deficits and/or focal seizures. Mononuclear pleocytosis is typically present along with an elevated protein concentration, which continues to rise on repeat lumbar punctures. In older children, hypodense areas with a medial and inferior temporal lobe predilection are seen on CT scan, especially after 3–5 days, but the findings in infants may be more diffuse. Magnetic resonance imaging (MRI) is more sensitive and is positive sooner. Periodic focal epileptiform discharges are seen on electroencephalograms, but are not diagnostic of HSV infection. Viral cultures of CSF are rarely positive. The PCR assay to detect HSV DNA in CSF is a sensitive and specific rapid test. Without early antiviral therapy, the prognosis is poor. The differential diagnosis includes mumps, mosquito-borne and other viral encephalitides, parainfectious and postinfectious encephalopathy, brain abscess, acute demyelinating syndromes, and bacterial meningoencephalitis.

7. Neonatal infections—Infection is occasionally acquired by ascending spread prior to delivery (< 5% of cases), but most often occurs at the time of vaginal delivery from a mother with genital infection. Eight to fifteen percent of HSV-2-seropositive pregnant women at delivery have HSV-2 detected by PCR in the genital tract. However, in most cases this represents reactivation of infection acquired in the distant past. Neonatal infection is rarely acquired from mothers with reactivation disease, whereas it is frequently acquired during delivery of mothers with current or very recent primary infection. This is because transplacentally acquired antibody is usually protective. Occasionally, the infection is acquired in the postpartum period from oral secretions of family members or hospital personnel. A history of genital herpes in the mother may be absent. Within a few days and up to 6 weeks (most often within 4 weeks), skin vesicles appear (especially at sites of trauma, such as...
where scalp monitors were placed). Some infants (45%) have infection limited to the skin, eye, or mouth. Other infants are acutely ill, presenting with jaundice, shock, bleeding, or respiratory distress (20%). Some infants appear well initially, but dissemination of the infection to the brain or other organs becomes evident during the ensuing week. HSV infection (and empiric therapy) should be strongly considered in newborns with the sepsis syndrome that is unresponsive to antibiotic therapy and has negative bacterial cultures. Some infected infants exhibit only neurologic symptoms at 2–3 weeks after delivery: apnea, lethargy, fever, poor feeding, or persistent seizures. The brain infection in these children is often diffuse and is best diagnosed by MRI. The skin lesions may resemble impetigo, bacterial scalp abscesses, or miliaria. Skin lesions may be absent at the time of presentation or may never develop. Skin lesions may recur over weeks or months after recovery from the acute illness. Progressive culture–negative pneumonitis is another manifestation of neonatal HSV. Most cases of neonatal herpes infection are acquired from mothers with undiagnosed genital herpes, most of whom acquired the infection during the pregnancy—especially near term.

**B. Laboratory Findings**

With multisystem disease, abnormalities in platelets, clotting factors, and liver function tests are often present. A finding of lymphocytic pleocytosis and elevated CSF protein indicates viral meningitis or encephalitis. Virus may be cultured from infected epithelial sites (vesicles, ulcers, or conjunctival scrapings). Cultures of CSF yield positive results in about 50% of neonatal cases, but are uncommon in older children. HSV will be detected within 2 days by rapid tissue culture methods, but PCR is the preferred diagnostic method for all specimens. A positive test from skin, throat, eye, or stool of a newborn is diagnostic. Vaginal culture of the mother may offer circumstantial evidence for the diagnosis, but may be negative. Rapid diagnostic tests include immunofluorescent stains or ELISA to detect viral antigen in skin or mucosal scrapings. The PCR assay for HSV DNA is positive (> 95%) in the CSF when there is brain involvement. Serum is often positive in the presence of multisystem disease. Typing of genital HSV isolates from adolescents has prognostic value, since HSV-1 genital infection recurs much less frequently than genital HSV-2 infection.

**Complications, Sequelae, & Prognosis**

Gingivostomatitis may result in dehydration due to dysphagia; severe chronic oral disease and esophageal involvement may occur in immunosuppressed patients. Primary vulvovaginitis may be associated with aseptic meningitis, paresthesias, autonomic dysfunction due to neuritis (urinary retention, constipation), and secondary candidal infection. HIV transmission from individuals who are also seropositive for HSV infection is facilitated, and HIV acquisition is enhanced in HSV-infected contacts. Extensive cutaneous disease (as in eczema) may be associated with dissemination and bacterial superinfection. Keratitis may result in corneal opacification or perforation. Untreated encephalitis is fatal in 70% of patients and causes severe damage in most of the remainder. When acyclovir treatment is instituted early, 20% of patients die and 40% are neurologically impaired.

Disseminated neonatal infection (25% of cases) is fatal for 30% of neonates in spite of therapy, and 20% of survivors are often impaired. Infants with CNS infection (30% of cases) have a 5% mortality with therapy and 70% of survivors are impaired; treated neonates with infection limited to skin, eye, and mouth survive, most often without sequelae.

**Treatment**

**A. Specific Measures**

HSV is sensitive to antiviral therapy.

1. **Topical antivirals**—Antiviral agents are effective for cutaneous and mucocutaneous infections and include 1% trifluridine and 3% acyclovir (1–2 drops five times daily). These agents should be used with the guidance of an ophthalmologist and used concurrently with oral antiviral therapy. They are inferior to oral formulations for treating mucocutaneous and genital infections.

2. **Mucocutaneous HSV infections**—These infections respond to administration of oral nucleoside analogues (acyclovir, valacyclovir, or famciclovir). The main indications are severe genital HSV infection in adolescents (see Chapter 44; acyclovir, 400 mg three times daily for 7–10 days) and severe gingivostomatitis in young children. Antiviral therapy is beneficial for primary disease when begun early. Recurrent disease rarely requires therapy. Frequent genital recurrences may be suppressed by oral administration of nucleoside analogues (acyclovir, 400 mg twice daily), but this approach should be used sparingly. Other forms of severe cutaneous disease, such as eczema herpeticum, respond to these antivirals. Intravenous acyclovir may be required when disease is extensive in immunocompromised children (10–15 mg/kg or 500 mg/m² every 8 hours for 14–21 days). Oral acyclovir, which is available in suspension, is also used within 72–96 hours for severe primary gingivostomatitis in immunocompetent young children (20 mg/kg per dose [maximum of 400 mg per dose] four times a day for 7 days). Antiviral therapy does not alter the incidence or severity of subsequent recurrences of oral or genital infection. Development of resistance to antivirals, which is very rare after treating immunocompetent patients, occurs in immunocompromised patients who receive frequent and prolonged therapy.

3. **Encephalitis**—Treatment consists of intravenous acyclovir, 20 mg/kg (500 mg/m²) every 8 hours for 21 days.
4. Neonatal infection—Newborns receive intravenous acyclovir, 20 mg/kg every 8 hours for 21 days (14 days if infection is limited to skin, eye, or mouth). Therapy should not be discontinued in neonates with CNS disease unless a repeat CSF HSV PCR assay is negative near the end of treatment. The outcome at one year is improved in infants that receive oral acyclovir (300 mg/m²/dose three times daily) for 6 months after completion of IV therapy.

B. General Measures

1. Gingivostomatitis—Gingivostomatitis is treated with pain relief and temperature control measures. Maintaining hydration is important because of the long duration of illness (7–14 days). Nonacidic, cool fluids are best. Topical anesthetic agents (eg, viscous lidocaine or an equal mixture of kaolin–attapulgite [Kaopectate], diphenhydramine, and viscous lidocaine) may be used as a mouthwash for older children who will not swallow it; ingested lidocaine may be toxic to infants or may lead to aspiration. Antiviral therapy is indicated in normal hosts with severe disease. Antibiotics are not helpful.

2. Genital infections—Genital infections may require pain relief, assistance with voiding (warm baths, topical anesthetics, rarely catheterization), and psychological support. Lesions should be kept clean; drying may shorten the duration of symptoms. Sexual contact should be avoided during the interval from prodrome to crusting stages. Because of the frequency of asymptomatic shedding, the only effective way to prevent spread is the use of condoms. Candidal superinfection occurs in 10% of women with primary genital infections.

3. Cutaneous lesions—Skin lesions should be kept clean, dry, and covered if possible to prevent spread. Systemic analgesics may be helpful. Secondary bacterial infection is uncommon in patients with lesions on the mucosa or involving small areas. Secondary infection should be considered and treated if necessary (usually with an antistaphylococcal agent) in patients with more extensive lesions.

4. Recurrent cutaneous disease—Recurrent disease is usually milder than primary infection. Sun block lip balm helps prevent labial recurrences that follow intense sun exposure. There is no evidence that the many popular topical or vitamin therapies are efficacious.

5. Keratoconjunctivitis—An ophthalmologist should be consulted regarding the use of cycloplegics, anti-inflammatory agents, local debridement, and other therapies.

6. Encephalitis—Extensive support will be required for obtunded or comatose patients. Rehabilitation and psychological support are often needed for survivors.

7. Neonatal infection—The affected infant should be isolated and given acyclovir. Cesarean delivery is indicated if the mother has obvious cervical or vaginal lesions, especially if these represent primary infection (35%–50% transmission rate). With infants born vaginally to mothers who have active lesions of recurrent genital herpes, appropriate cultures should be obtained at 24–48 hours after birth, and the infant should be observed closely. Treatment is given to infants whose culture results are positive or who have suggestive signs or symptoms. Infants born to mothers with obvious primary genital herpes should receive therapy before the culture results are known. For women with a history of genital herpes infection, but no genital lesions, vaginal delivery with peripartum cultures of maternal cervix is the standard. Clinical follow-up of the newborn is recommended when maternal culture results are positive. Repeated cervical cultures during pregnancy are not useful.

A challenging problem is the newborn, especially in the first 3 weeks of life, that presents with fever (or hypothermia) and a sepsis-like picture. This is further confounded in the late summer by the existence of circulating enteroviruses. These infants should be considered for empiric acyclovir therapy, pending results of PCR studies, given the poor outcome of disseminated herpes in the newborn. The index of suspicion is increased when there is a CSF pleocytosis, elevated hepatic transaminase levels, a very ill-appearing infant, rash, or respiratory distress.


VARICELLA & HERPES ZOSTER

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Varicella (chickenpox):
  - Exposure to varicella or herpes zoster 10–21 days previously; no prior history of varicella.
  - Widely scattered red macules and papules concentrated on the face and trunk, rapidly progressing to clear vesicles on an erythematous base, pustules, and then crusts, over 5–6 days.
  - Variable fever and nonspecific systemic symptoms.
Herpes zoster (shingles):
- History of varicella.
- Dermatomal paresthesias and pain prior to eruption (more common in older children).
- Dermatomal distribution of grouped vesicles on an erythematous base.

General Considerations
Primary infection with varicella-zoster virus results in varicella, which generally confers lifelong immunity, but the virus remains latent lifelong in sensory ganglia. Herpes zoster, which represents reactivation of this latent virus, occurs in 30% of individuals at some time in their life. The incidence of herpes zoster is highest in elderly individuals and in immunosuppressed patients, but herpes zoster occurs in immune competent children. Spread of varicella from a close contact is by respiratory secretions or fomites from vesicles or pustules, with an 85% infection rate in susceptible persons. Exposure to herpes zoster is about one-third as likely to cause varicella in a susceptible host. Over 95% of young adults with a history of varicella are immune, as are 90% of native-born Americans who are unaware of having had varicella. Many individuals from tropical or subtropical regions fail to develop varicella in their childhood and remain susceptible through early adulthood. Humans are the only reservoir.

Clinical Findings
Exposure to varicella or herpes zoster has usually occurred 14–16 days previously (range, 10–21 days). Contact may not have been recognized, since the index case of varicella is infectious 1–2 days before rash appears. Although varicella is the most distinctive childhood exanthem, inexperienced observers may mistake other diseases for varicella. A 1- to 3-day prodrome of fever, malaise, respiratory symptoms, and headache may occur, especially in older children. The unilateral, dermatomal vesicular rash and pain of herpes zoster is very distinctive. The preeruptive pain of herpes zoster may last several days and be mistaken for other illnesses.

A. Symptoms and Signs
1. Varicella—The usual case consists of mild systemic symptoms followed by crops of red macules that rapidly become small vesicles with surrounding erythema (described as a “dew drop on a rose petal”), form pustules, become crusted, and then scab over and rarely leave a scar. The rash appears predominantly on the trunk and face. Lesions occur in the scalp, and sometimes in the nose, mouth (where they are nonspecific ulcers), conjunctiva, and vagina. The magnitude of systemic symptoms usually parallels skin involvement. Up to five crops of lesions may be seen. New crops usually stop forming after 5–7 days. Pruritus is often intense. If varicella occurs in the first few months of life, it is often mild as a result of transplacentally acquired maternal antibody. Once crusting begins, the patient is no longer contagious. A modified form of varicella occurs in about 15% of vaccinated children exposed to varicella, in spite of receiving a single dose of varicella vaccine. This is usually much milder than typical varicella, with fewer lesions that heal rapidly. Cases of modified varicella are contagious, especially if the modified case has 50 or more skin lesions.

2. Herpes zoster (shingles)—This eruption involves a single dermatome (thus unilateral), usually truncal or cranial; occasionally a contiguous dermatome is involved. Especially in older children this is preceded by neuropathic pain or itching in the same area (designated the “prodrome”). The rash does not cross the midline. Ophthalmic zoster may be associated with corneal involvement. The closely grouped vesicles, which resemble a localized version of varicella or herpes simplex, often coalesce. Crusting occurs in 7–10 days. Postherpetic neuralgia is rare in children. A few vesicles are occasionally seen outside the involved dermatome. Herpes zoster is a common problem in HIV-infected or other immunocompromised children, and is also common in children who had varicella in early infancy (< 1–2 years old) or whose mothers had varicella during pregnancy.

B. Laboratory Findings
Leukocyte counts are normal or low. Leukocytosis suggests secondary bacterial infection. The virus can be identified by fluorescent antibody staining of a lesion smear. Rapid culture methods take 48 hours. When the etiology is critical, as in immune compromised children with atypical disease, PCR is definitive. Diagnosis made with paired serology is not clinically useful. Serum aminotransferase levels may be modestly elevated during typical varicella.

C. Imaging
Varicella pneumonia classically produces numerous bilateral nodular densities and hyperinflation. This is very rare in immunocompetent children. Abnormal chest radiographs are seen more frequently in adults and immunocompromised children.

Differential Diagnosis
Varicella is usually distinctive. Similar rashes include those of coxsackievirus infection (fewer lesions, lack of crusting), impetigo (fewer lesions, smaller area, no classic vesicles, positive Gram stain, perioral or peripheral lesions), papular urticaria (insect bite history, nonvesicular rash), scabies (burrows, no typical vesicles; failure to resolve), parapsoriasis...
Complications & Sequelae

A. Varicella

Secondary bacterial infection with staphylococci or group A streptococci is most common, presenting as impetigo, cellulitis or fasciitis, abscesses, scarlet fever, or sepsis. Bacterial superinfection occurs in 2%–3% of children. Before a vaccine became available, hospitalization rates associated with varicella were 1:750–1:1000 cases in children and 10-fold higher in adults.

Protracted vomiting or a change in sensorium suggests Reye syndrome or encephalitis. Because Reye syndrome usually occurs in patients who are also receiving salicylates, these should be avoided in patients with varicella. Encephalitis occurs in less than 0.1% of cases, usually in the first week of illness, and is usually limited to cerebellitis with ataxia, which resolves completely. Diffuse encephalitis can be severe.

Varicella pneumonia usually afflicts immunocompromised children (especially those with leukemia or lymphoma or those receiving high doses of corticosteroids or chemotherapy) and adults; pregnant women may be at special risk. Cough, dyspnea, tachypnea, rales, and cyanosis occur several days after onset of rash. Varicella may be life-threatening in immunosuppressed patients. In addition to pneumonitis, their disease may be complicated by hepatitis and encephalitis. The acute illness in these children often begins with unexplained severe abdominal pain. Varicella exposure in severely varicella-naïve immunocompromised children must be evaluated immediately for postexposure prophylaxis (see Chapter 10).

Hemorrhagic varicella lesions may be seen without other complications. This is most often caused by autoimmune thrombocytopenia, but hemorrhagic lesions can occasionally represent idiopathic disseminated intravascular coagulation (purpura fulminans).

Neonates born to mothers who develop varicella from 5 days before to 2 days after delivery are at high risk for severe or fatal (5%) disease and must be given varicella-zoster immune globulin (VariZIG) and followed closely (see Chapter 10).

Varicella occurring during the first 20 weeks of pregnancy may cause (2% incidence) congenital infection associated with cicatricial skin lesions, associated limb anomalies, and cortical atrophy.

Unusual complications of varicella include optic neuritis, myocarditis, transverse myelitis, orchitis, and arthritis.

B. Herpes Zoster

Complications of herpes zoster include secondary bacterial infection, motor or cranial nerve paralysis, meningitis, encephalitis, keratitis and other ocular complications, and dissemination in immunosuppressed patients. These complications are rare in immune competent children, and they do not develop prolonged pain. Postherpetic neuralgia does occur in immunocompromised children.

Prevention

Varicella-specific hyperimmune globulin is available for postexposure prevention of varicella of high-risk susceptible persons (see Chapter 10). In immune competent children postexposure prophylaxis with acyclovir is effective when it is started at 7–9 days after exposure and is continued for 7 days, as is varicella vaccine when given within 3–5 days of the exposure.

Two doses of the live attenuated varicella vaccine are now part of routine childhood immunization, and “catch-up” immunization is recommended for all other susceptible children and adults.

Treatment

A. General Measures

Supportive measures include maintenance of hydration, administration of acetaminophen for discomfort, cool soaks or antipruritics for itching (diphenhydramine, 1.25 mg/kg every 6 hours, or hydroxyzine, 0.5 mg/kg every 6 hours), and observance of general hygiene measures (keep nails trimmed and skin clean). Care must be taken to avoid overdosage with antihistaminic agents. Topical or systemic antibiotics may be needed for bacterial superinfection.

B. Specific Measures

Acyclovir is the preferred drug for varicella and herpes zoster infections. Recommended parenteral acyclovir dosage for severe disease is 10 mg/kg (500 mg/m²) intravenously every 8 hours, each dose infused over 1 hour, for 7–10 days. Parenteral therapy should be started early in immunocompromised patients or high-risk infected neonates. Hyperimmune globulin is of no value for established disease. The effect of oral acyclovir (80 mg/kg/d, divided in four doses) on varicella in immunocompetent children was modestly beneficial and nontoxic, but only when administered within 24 hour after the onset of varicella. Oral acyclovir should be used selectively in immunocompetent children (eg, when intercurrent illness is present; possibly when the index case is a sibling or when the patient is an adolescent—both of which are associated with more severe disease) and in children with underlying chronic illnesses. Valacyclovir and famciclovir are superior antiviral agents.
because of better absorption; only acyclovir and valacyclovir are available as a pediatric suspension. Herpes zoster in an immunocompromised child should be treated with intravenous acyclovir when it is severe, but oral valacyclovir or famciclovir can be used in immunocompromised children when the nature of the illness and the immune status support this decision.

**Prognosis**

Except for secondary bacterial infections, serious complications are rare and recovery complete in immune competent hosts.


**ROSEOLA INFANTUM (EXANThem SUBITUM)**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- High fever in a child aged 6–36 months.
- Minimal toxicity.
- Rose-pink maculopapular rash appears when fever subsides.

**General Considerations**

Roseola infantum is a benign illness caused by HHV-6 or HHV-7. HHV-6 is a major cause of acute febrile illness in young children. Its significance is that it may be confused with more serious causes of high fever and its role in inciting febrile seizures.

**Clinical Findings**

The most prominent historical feature is the abrupt onset of fever, often reaching 40.6°C, which lasts up to 8 days (mean, 4 days) in an otherwise mildly ill child. The fever then ceases abruptly, and a characteristic rash may appear. Roseola occurs predominantly in children aged 6 months to 3 years, with 90% of cases occurring before the second year. HHV-7 infection tends to occur somewhat later in childhood. These viruses are the most common recognized cause of exanthematous fever in this age group and are responsible for 20% of emergency department visits by children aged 6–12 months.

**A. Symptoms and Signs**

Mild lethargy and irritability may be present, but generally there is a dissociation between other systemic symptoms and the febrile course. The pharynx, tonsils, and tympanic membranes may be injected. Conjunctivitis and pharyngeal exudate are notably absent. Diarrhea and vomiting occur in one-third of patients. Adenopathy of the head and neck often occurs. The anterior fontanelle is bulging in one-quarter of HHV-6–infected infants. If rash appears (20%–30% incidence), it coincides with lysis of fever and begins on the trunk and spreads to the face, neck, and extremities. Rose-pink macules or maculopapules, 2–3 mm in diameter, are nonpruritic, tend to coalesce, and disappear in 1–2 days without pigmentation or desquamation. Rash may occur without fever.

**B. Laboratory Findings**

Leukopenia and lymphocytopenia are present early. Laboratory evidence of hepatitis occurs in some patients, especially adults.

**Differential Diagnosis**

The initial high fever may require exclusion of serious bacterial infection. The relative well-being of most children and the typical course and rash soon clarify the diagnosis. The erythrocyte sedimentation rate is normal. If the child has a febrile seizure, it is important to exclude bacterial meningitis. The CSF is normal in children with roseola. In children who receive antibiotics or other medication at the beginning of the fever, the rash may be attributed incorrectly to drug allergy.

**Complications & Sequelae**

Febrile seizures occur in up to 10% of patients (even higher percentages in those with HHV-7 infections). There is evidence that HHV-6 can directly infect the CNS, causing meningoencephalitis or aseptic meningitis. Multiorgan disease (pneumonia, hepatitis, bone marrow suppression, encephalitis) may occur in immunocompromised patients.

**Treatment & Prognosis**

Fever is managed readily with acetaminophen and sponge baths. Fever control should be a major consideration in children with a history of febrile seizures. Roseola infantum is otherwise entirely benign.

Primary infection:
• Asymptomatic or minor illness in young children.
• Mononucleosis-like syndrome without pharyngitis in postpubertal individuals.

Congenital infection:
• Intrauterine growth retardation.
• Microcephaly with intracerebral calcifications and seizures.
• Retinitis and encephalitis.
• Hepatosplenomegaly with thrombocytopenia.
• “Blueberry muffin” rash.
• Sensorineural deafness.

Immunocompromised hosts:
• Retinitis and encephalitis.
• Pneumonitis.
• Enteritis and hepatitis.
• Bone marrow suppression.

General Considerations
Cytomegalovirus (CMV) is a ubiquitous herpesvirus transmitted by many routes. It can be acquired in utero following maternal viremia or postpartum from birth canal secretions or maternal milk. Young children are infected by the saliva of playmates; older individuals are infected by sexual partners (eg, from saliva, vaginal secretions, or semen). Transfused blood products and transplanted organs can be a source of CMV infection. Clinical illness is determined largely by the patient’s immune competence. Immunocompetent individuals usually develop a mild self-limited illness, whereas immunocompromised children can develop severe, progressive, often multiorgan disease. In utero infection can be teratogenic.

1. In Utero Cytomegalovirus Infection
Approximately 0.5%–1.5% of children are born with CMV infections acquired during maternal viremia or postpartum from birth canal secretions or maternal milk. Young children are infected by the saliva of playmates; older individuals are infected by sexual partners (eg, from saliva, vaginal secretions, or semen). Transfused blood products and transplanted organs can be a source of CMV infection. Clinical illness is determined largely by the patient’s immune competence. Immunocompetent individuals usually develop a mild self-limited illness, whereas immunocompromised children can develop severe, progressive, often multiorgan disease. In utero infection can be teratogenic.

Clinical Findings
A. Symptoms and Signs
Severely affected infants are born ill; they are often small for gestational age, floppy, and lethargic. They feed poorly and have poor temperature control. Hepatosplenomegaly, jaundice, petechiae, seizures, and microcephaly are common. Characteristic signs are a distinctive chorioretinitis and periventricular calcification. A purpuric (so-called blueberry muffin) rash similar to that seen with congenital rubella may be present. The mortality rate is 10%–20%. Survivors usually have significant sequelae, especially mental retardation, neurologic deficits, retinopathy, and hearing loss. Isolated hepatosplenomegaly or thrombocytopenia may occur. Even mildly affected children may subsequently manifest mental retardation and psychomotor delay. However, most infected infants (90%) are born to mothers with preexisting immunity who experienced a reactivation of latent CMV during pregnancy. These children have no clinical manifestations at birth. Of these, 10%–15% develop sensorineural hearing loss, which is often bilateral and may appear several years after birth.

B. Laboratory Findings
In severely ill infants, anemia, thrombocytopenia, hyperbilirubinemia, and elevated aminotransferase levels are common. Lymphocytosis occurs occasionally. Pleocytosis and an elevated protein concentration are found in CSF. The diagnosis is readily confirmed by isolation of CMV from urine or saliva within 48 hours, using rapid culture methods combined with immunoassay. The presence in the infant of IgM-specific CMV antibodies suggests the diagnosis. Some commercial ELISA kits are 90% sensitive and specific for these antibodies. Universal screening of asymptomatic children using blood or saliva CMV PCR during the first weeks of life is useful for early detection of children at high risk of developing hearing loss.

C. Imaging
Head radiologic examinations may show microcephaly, periventricular calcifications, and ventricular dilation. These findings strongly correlate with neurologic sequelae and retardation. Long bone radiographs may show the “celery stalk” pattern characteristic of congenital viral infections. Interstitial pneumonia may be present.

Differential Diagnosis
CMV infection should be considered in any newborn that is seriously ill shortly after birth, especially once bacterial
sepsis, metabolic disease, intracranial bleeding, and cardiac disease have been excluded. Other congenital infections to be considered in the differential diagnosis include toxoplasmosis (serology, more diffuse calcification of the CNS, specific type of retinitis, macrocephaly), rubella (serology, specific type of retinitis, cardiac lesions, eye abnormalities), enteroviral infections (time of year, maternal illness, severe hepatitis, PCR), herpes simplex (skin lesions, cultures, severe hepatitis, PCR), and syphilis (serology for both infant and mother, skin lesions, bone involvement).

**Prevention & Treatment**

Support is rarely required for anemia and thrombocytopenia. Most children with symptoms at birth have significant neurologic, intellectual, visual, or auditory impairment. Ganciclovir, 5 mg/kg every 12 hours, for up to 6 weeks is recommended for children with severe, life- or sight-threatening disease, or if end-organ disease recurs or progresses. Studies are currently ongoing to determine if early and more prolonged treatment (6 months) with valganciclovir decreases the risk or magnitude of hearing loss, which affects 6%–23% of children with asymptomatic CMV at birth. While studies are ongoing, several publications reported anecdotal success of prolonged valganciclovir therapy (32 mg/kg/d in two doses) for 6 months.

Recent developments in the diagnosis of primary CMV infection during pregnancy using anti-CMV IgM and low-avidity IgG assays followed by quantitative CMV PCR testing of the amniotic fluid at 20–24 weeks gestation have made possible the diagnosis of congenital CMV infection before birth. Many pregnant women elect to terminate gestation under these circumstances, but a recent study has also shown that passive immunoprophylaxis with hyperimmune CMV IgG may prevent development of congenital disease. A subunit CMV vaccine administered to CMV-seronegative pregnant women had a 50% efficacy for prevention of congenital CMV infection.

### 2. Perinatal Cytomegalovirus Infection

CMV infection can be acquired from birth canal secretions or shortly after birth from maternal milk. In some socioeconomic groups, 10%–20% of infants are infected at birth and excrete CMV for many months. Infection can also be acquired in the postnatal period from unscreened transfused blood products.

**Clinical Findings**

**A. Symptoms and Signs**

Ninety percent of immunocompetent infants infected by their mothers at birth develop subclinical illness (ie, virus excretion only) or a minor illness within 1–3 months. The remainder develop an illness lasting several weeks characterized by hepatosplenomegaly, lymphadenopathy, and interstitial pneumonitis in various combinations. The severity of the pneumonitis may be increased if there is simultaneous presence of *Chlamydia trachomatis*. Infants who receive blood products are often premature and immunologically impaired. If they are born to CMV-negative mothers and subsequently receive CMV-containing blood, they frequently develop severe infection and pneumonia after a 2- to 6-week incubation period.

**B. Laboratory Findings**

Lymphocytosis, atypical lymphocytes, anemia, and thrombocytopenia may be present, especially in premature infants. Liver function is abnormal. CMV is readily isolated from urine and saliva. Secretions obtained at bronchoscopy contain CMV and epithelial cells bearing CMV antigens. Serum levels of CMV antibody rise significantly.

**C. Imaging**

Chest radiographs show a diffuse interstitial pneumonitis in severely affected infants.

**Differential Diagnosis**

CMV infection should be considered as a cause of any prolonged illness in early infancy, especially if hepatosplenomegaly, lymphadenopathy, or atypical lymphocytosis is present. This must be distinguished from granulomatous or malignant diseases and from congenital infections (syphilis, toxoplasmosis, hepatitis B, HIV) not previously diagnosed. Other viruses (Epstein-Barr virus [EBV], HIV, adenovirus) can cause this syndrome. CMV is a recognized cause of viral pneumonia in this age group. Because asymptomatic CMV excretion is common in early infancy, care must be taken to establish the diagnosis and to rule out concomitant pathogens such as *Chlamydia* and RSV. Severe CMV infection in early infancy may indicate that the child has a congenital or acquired immune deficiency.

**Prevention & Treatment**

The self-limited disease of normal infants requires no therapy. Severe pneumonitis in premature infants requires oxygen administration and often intubation. Very ill infants should receive ganciclovir (6 mg/kg every 12 hours). CMV infection acquired by transfusion can be prevented by excluding CMV-seropositive blood donors. Milk donors should also be screened for prior CMV infection. It is likely that high-risk infants receiving large doses of IVIG for other reasons will be protected against severe CMV disease.
3. Cytomegalovirus Infection Acquired in Childhood & Adolescence

Young children are readily infected by playmates, especially because CMV continues to be excreted in saliva and urine for many months after infection. The cumulative annual incidence of CMV excretion by children in day care centers exceeds 75%. In fact, young children in a family are often the source of primary CMV infection of their mothers during subsequent pregnancies. An additional peak of CMV infection takes place when adolescents become sexually active. Sporadic acquisition of CMV occurs after blood transfusion and transplantation.

Clinical Findings
A. Symptoms and Signs
Most young children who acquire CMV are asymptomatic or have a minor febrile illness, occasionally with adenopathy. They provide an important reservoir of virus shedders that facilitates spread of CMV. Occasionally a child may have prolonged fever with hepatosplenomegaly and adenopathy. Older children and adults, many of whom are infected during sexual activity, are more likely to be symptomatic in this fashion and can present with a syndrome that mimics the infectious mononucleosis syndrome that follows EBV infection (1–2 weeks of fever, malaise, anorexia, splenomegaly, mild hepatitis, and some adenopathy; see next section). This syndrome can also occur 2–4 weeks after transfusion of CMV-infected blood.

B. Laboratory Findings
In the CMV mononucleosis syndrome, lymphocytosis and atypical lymphocytes are common, as is a mild rise in amino-transferase levels. CMV is present in saliva and urine; CMV DNA can be uniformly detected in plasma or blood.

Differential Diagnosis
In older children, CMV infection should be included as a possible cause of fever of unknown origin, especially when lymphocytosis and atypical lymphocytes are present. CMV infection is distinguished from EBV infection by the absence of pharyngitis, the relatively minor adenopathy, and the absence of serologic evidence of acute EBV infection. Mononucleosis syndromes also are caused by Toxoplasma gondii, rubella virus, adenovirus, hepatitis A virus, and HIV.

Prevention
Screening of transfused blood or filtering blood (thus removing CMV-containing white blood cells) prevents cases related to this source.

4. Cytomegalovirus Infection in Immunocompromised Children

In addition to symptoms experienced during primary infection, immunocompromised hosts develop symptoms with reinfec tion or reactivation of latent CMV. This is clearly seen in children with acquired immunodeficiency syndrome (AIDS), after transplantation, or with congenital immunodeficiencies. However, in most immunocompromised patients, primary infection is more likely to cause severe symptoms than is reactivation or reinfection. The severity of the resulting disease is generally proportionate to the degree of immunosuppression.

Clinical Findings
A. Symptoms and Signs
A mild febrile illness with myalgia, malaise, and arthralgia may occur, especially with reactivation disease. Severe disease often includes subacute onset of dyspnea and cyanosis as manifestations of interstitial pneumonitis. Auscultation reveals only coarse breath sounds and scattered rales. A rapid respiratory rate may precede clinical or radiographic evidence of pneumonia. Hepatitis without jaundice or hepatomegaly is common. Diarrhea, which can be severe, occurs with CMV colitis, and CMV can cause esophagitis with symptoms of odynophagia or dysphagia. These enteropathies are most common in AIDS, as is the presence of a retinitis that often progresses to blindness. Encephalitis and polyradiculitis also occur in AIDS.

B. Laboratory Findings
Neutropenia and thrombocytopenia are common. Atypical lymphocytosis is infrequent. Serum aminotransferase levels are often elevated. The stools may contain occult blood if enteropathy is present. CMV is readily isolated from saliva, urine, buffy coat, and bronchial secretions. Results are available in 48 hours. Interpretation of positive cultures is made difficult by asymptomatic shedding of CMV in saliva and urine in many immunocompromised patients. CMV disease correlates more closely with the presence of CMV in the blood or lung lavage fluid. Monitoring for the appearance of CMV DNA in plasma or CMV antigen in blood mononuclear cells is used as a guide to early antiviral (“preemptive”) therapy.

C. Imaging
Bilateral interstitial pneumonitis is present on chest radiographs.

Differential Diagnosis
The initial febrile illness must be distinguished from treatable bacterial or fungal infection. Similarly, the pulmonary...
disease must be distinguished from intrapulmonary hemorrhage; drug-induced or radiation pneumonitis; pulmonary edema; and bacterial, fungal, parasitic, and other virus infections. CMV infection causes bilateral and interstitial abnormalities on chest radiographs, cough is nonproductive, chest pain is absent, and the patient is not usually toxic. *Pneumocystis jiroveci* infection may have a similar presentation. These patients may have polymicrobial disease. It is suspected that bacterial and fungal infections are enhanced by the neutropenia that can accompany CMV infection. Infection of the gastrointestinal tract is diagnosed by endoscopy. This will exclude candidal, adenoviral, and herpes simplex infections and allows tissue confirmation of CMV-induced mucosal ulcerations.

**Prevention & Treatment**

Blood donors should be screened to exclude those with prior CMV infection, or blood should be filtered. Ideally, seronegative transplant recipients should receive organs from seronegative donors. Severe symptoms, most commonly pneumonitis, often respond to early therapy with intravenous ganciclovir (5 mg/kg every 12 hours for 14–21 days). Neutropenia is a frequent side effect of this therapy. Foscarnet and cidofovir are alternative therapeutic agents recommended for patients with ganciclovir-resistant virus. Prophylactic use of oral or intravenous ganciclovir or foscarnet may prevent CMV infections in organ transplant recipients. Preemptive therapy can be used in transplant recipients by monitoring CMV in blood by PCR and instituting therapy when the results reach a certain threshold regardless of clinical signs or symptoms.

**General Considerations**

Mononucleosis is the most characteristic syndrome produced by EBV infection. Young children infected with EBV have either no symptoms or a mild nonspecific febrile illness. As the age of the host increases, EBV infection is more likely to produce the typical features of the mononucleosis syndrome, including 20%–25% of infected adolescents. EBV is acquired readily from asymptomatic carriers (15%–20% of whom excrete the virus in saliva on any given day) and from recently ill patients, who excrete virus for many months. Young children are infected from the saliva of playmates and family members. Adolescents may be infected through sexual activity. EBV can also be transmitted by blood transfusion and organ transplantation.

**Clinical Findings**

**A. Symptoms and Signs**

After an incubation period of 1–2 months, a 2- to 3-day prodrome of malaise and anorexia yields, abruptly or insidiously, to a febrile illness with temperatures exceeding 39°C. The major complaint is pharyngitis, which is often (50%) exudative. Lymph nodes are enlarged, firm, and mildly tender. Any area may be affected, but posterior and anterior cervical nodes are almost always enlarged. Splenomegaly is present in 50%–75% of patients. Hepatomegaly is common (30%), and the liver is frequently tender. Five percent of patients have a rash, which can be macular, scarlatiniform, or urticarial. Rash is almost universal in patients taking penicillin or ampicillin. Soft palate petechiae and eyelid edema are also observed.

**B. Laboratory Findings**

1. **Peripheral blood**—Leukopenia may occur early, but an atypical lymphocytosis (comprising over 10% of the total leukocytes at some time in the illness) is most notable. Hematologic changes may not be seen until the third week of illness and may be entirely absent in some EBV syndromes (eg, neurologic).

2. **Heterophil antibodies**—These nonspecific antibodies appear in over 90% of older patients with mononucleosis, but in fewer than 50% of children younger than age 5 years. They may not be detectable until the second week of illness and may persist for up to 12 months after recovery. Rapid screening tests (slide agglutination) are usually positive if the titer is significant; a positive result strongly suggests but does not prove EBV infection.
3. **Anti-EBV antibodies**—It may be necessary to measure specific antibody titers when heterophile antibodies fail to appear, as in young children. Acute EBV infection is established by detecting IgM antibody to the viral capsid antigen (VCA) or by detecting a fourfold or greater change of IgG anti-VCA titers (in normal hosts, IgG antibody peaks by the time symptoms appear; in immunocompromised hosts, the tempo of antibody production may be delayed). The absence of anti–EBV nuclear antigen (EBNA) antibodies, which are typically first detected at least 4 weeks after the initiation of symptoms, may also be used to diagnose acute infection in immunocompetent hosts. However, immunocompromised hosts may fail to develop anti-EBNA antibodies.

4. **EBV PCR**—Detection of EBV DNA is the method of choice for the diagnosis of CNS and ocular infections. Quantitative EBV PCR in peripheral blood mononuclear cells has been used to diagnose EBV-related lymphoproliferative disorders in transplant patients.

### Differential Diagnosis

Severe pharyngitis may suggest group A streptococcal infection. Enlargement of only the anterior cervical lymph nodes, a neutrophilic leukocytosis, and the absence of splenomegaly suggest bacterial infection. Although a child with a positive throat culture result for *Streptococcus* usually requires therapy, up to 10% of children with mononucleosis are asymptomatic streptococcal carriers. In this group, penicillin therapy is unnecessary and often causes a rash. Severe primary herpes simplex pharyngitis, occurring in adolescence, may also mimic infectious mononucleosis. With herpes simplex pharyngitis, some anterior mouth ulcerations should suggest the correct diagnosis. Adenoviruses are another cause of severe, often exudative pharyngitis. EBV infection should be considered in the differential diagnosis of any perplexing prolonged febrile illness. Similar illnesses that produce atypical lymphocytosis include rubella (pharyngitis not prominent, shorter illness, less adenopathy and splenomegaly), adenovirus (upper respiratory symptoms and cough, conjunctivitis, less adenopathy, fewer atypical lymphocytes), hepatitis A or B (more severe liver function abnormalities, no pharyngitis, no lymphadenopathy), and toxoplasmosis (negative heterophil test, less pharyngitis). Serum sickness–like drug reactions and leukemia (smear morphology is important) may be confused with infectious mononucleosis. CMV mononucleosis is a close mimic except for minimal pharyngitis and less adenopathy; it is much less common. Serologic tests for EBV and CMV should clarify the correct diagnosis. The acute initial manifestation of HIV infection can be a mononucleosis-like syndrome.

### Complications

Splenic rupture is a rare complication, which usually follows significant trauma. Hematologic complications, including hemolytic anemia, thrombocytopenia, and neutropenia, are more common. Neurologic involvement can include aseptic meningitis, encephalitis, isolated neuropathy such as Bell palsy, and Guillain-Barré syndrome. Any of these may appear prior to or in the absence of the more typical signs and symptoms of infectious mononucleosis. Rare complications include myocarditis, pericarditis, and atypical pneumonia. Recurrence or persistence of EBV-associated symptoms for 6 months or longer characterizes chronic active EBV. This disease is due to continuous viral replication and warrants specific antiviral therapy. Rarely EBV infection becomes a progressive lymphoproliferative disorder characterized by persistent fever, multiple organ involvement, neutropenia or pancytopenia, and agammaglobulinemia. Hemicytaphagia is often present in the bone marrow. An X-linked genetic defect in immune response has been inferred for some patients (Duncan syndrome, X-linked lymphoproliferative disorder). Children with other congenital immunodeficiencies or chemotherapy-induced immunosuppression can also develop progressive EBV infection, EBV-associated lymphoproliferative disorder, lymphoma, and other malignancies.

### Treatment & Prognosis

Bed rest may be necessary in severe cases. Acetaminophen controls high fever. Potential airway obstruction due to swollen pharyngeal lymphoid tissue responds rapidly to systemic corticosteroids. Corticosteroids may also be given for hematologic and neurologic complications, although no controlled trials have proved their efficacy in these conditions. Fever and pharyngitis disappear by 10–14 days. Adenopathy and splenomegaly can persist several weeks longer. Some patients complain of fatigue, malaise, or lack of well-being for several months. Although corticosteroids may shorten the duration of fatigue and malaise, their long-term effects on this potentially oncogenic viral infection are unknown, and indiscriminate use is discouraged. Patients with splenic enlargement should avoid contact sports for 6–8 weeks. Acyclovir, valacyclovir, penciclovir, ganciclovir, and foscarnet are active against EBV and are indicated in the treatment of chronic active EBV.

Management of EBV-related lymphoproliferative disorders relies primarily on decreasing the immunosuppression whenever possible. Adjunctive therapy with acyclovir, ganciclovir, or another antiviral active against EBV as well as γ globulin has been used without scientific evidence of efficacy.

In the United States, mosquitoes are the most common insect vectors that spread viral infections (Table 40–4). As a consequence, these infections—and others that are spread by ticks—tend to occur as summer–fall epidemics that coincide with the seasonal breeding and feeding habits of the vector, and the etiologic agent varies by region. Other insect-borne viral infections are seen in international travelers. Thus, a careful travel and exposure history is critical for correct diagnostic workup.

**ENCEPHALITIS**

### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Fever and headache.
- Change in mental status or behavior (or both), with or without focal neurologic deficits.
- CSF shows a mononuclear cell pleocytosis, elevated protein level, and normal glucose level.

Encephalitis is a common severe manifestation of many infections spread by insects (see Table 40–4). With many viral pathogens, the infection is most often subclinical, or a mild CNS disease such as meningitis is present. These infections have some distinguishing features in terms of subclinical infection rate, unique neurologic syndromes, associated systemic symptoms, and prognosis. The diagnosis is generally made clinically during recognized outbreaks and is confirmed by virus-specific serology. Prevention consists of control of mosquito vectors and precautions with proper clothing and insect repellents to minimize mosquito and tick bites. It is essential before making the diagnosis of arboviral encephalitis, which is not treatable, to exclude herpes encephalitis, which warrants specific antiviral therapy. Delay in administering this therapy may have dire consequences.

### West Nile Virus Encephalitis

This flavivirus is the most important arbovirus infection in the United States. In 2003 there were more than 10,000 clinically apparent infections, more than 2900 nervous system infections, and 265 deaths, in 47 states. Prevalence had declined significantly, but in 2012 there was a resurgence to more than 5000 reported cases, of which approximately half were neuroinvasive; 240 were fatal. The reservoir of West Nile virus includes more than 160 species of birds whose migration explains the extent of endemic disease. Epidemics occur in summer–fall; most infected individuals are asymptomatic. Approximately 20% develop West Nile fever, which is characterized by fever, headache, retro-orbital pain, nausea and vomiting, lymphadenopathy, and a maculopapular rash (20%–50%). Less than 1% of infected patients develop meningitis or encephalitis, but 10% of these cases are fatal (0.2% of all infections). Children are most likely to have neuroinvasive disease limited to meningitis. The major risk factor for severe disease is age older than 50 years and immune compromise. Children, especially adolescents, develop West Nile fever; less than one-third of children with clinically apparent infection have neuroinvasive disease. The neurologic manifestations are most often those found with other meningoencephalitides. However, distinguishing atypical features include polio-like flaccid paralysis, movement disorders (parkinsonism, tremor, myoclonus), brainstem symptoms, polyneuropathy, and optic neuritis. Muscle weakness, facial palsy, and hyporeflexia are common (20% of each finding). Recovery is slow and serious sequela occur in some severely affected patients. Diagnosis is best made by detecting IgM antibody (enzyme immunoassay [EIA]) to the virus in CSF. This will be present by 5–6 days (95%) after onset. PCR is a specific diagnostic tool, but is less sensitive than antibody detection. Antibody rise in serum can also be used for diagnosis.

Treatment is supportive, although various antivirals and specific immune globulin are being studied. The infection is not spread between contacts, but can be spread by donated organs, blood, and breast milk, and transplacentally.


### DENGUE

### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Travel or residence in an endemic area.
- First infection (first episode) results in nonspecific rash and fever; retro-orbital pain, severe myalgia, and arthralgia may occur.
- Subsequent infection with a different (heterotypic) serotype of dengue may result in dengue hemorrhagic fever (thrombocytopenia, bleeding, plasma leak syndrome); this may progress to shock (dengue shock syndrome).
Table 40–4. Some insect-borne viral diseases occurring in the United States or in returning U.S. travelers.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Natural Reservoir (Vector)</th>
<th>Geographic Distribution</th>
<th>Incubation Period</th>
<th>Clinical Presentations</th>
<th>Laboratory Findings</th>
<th>Complications, Sequelae</th>
<th>Diagnosis, Therapy, Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Flaviviruses</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Louis encephalitis (SLE)</td>
<td>Birds (Culex mosquitoes)</td>
<td>Southern Canada, central and southern United States, Texas, Caribbean, South America</td>
<td>2-5 d (up to 3 wk)</td>
<td>Second most common cause of arbovirus encephalitis. Abrupt onset of fever, chills, headache, nausea, vomiting; may develop generalized weakness, seizures, coma, ataxia, cranial nerve palsies. Aseptic meningitis is common in children.</td>
<td>Modest leukocytosis, neutrophilia, elevated liver enzymes. CSF: 100-200 WBCs/μL; PMNs predominate early.</td>
<td>Mortality rate 2%-5% at age &lt; 5 or &gt; 50 y. Neurologic sequelae in 1%-20%.</td>
<td>~15 cases/y, &lt; 2% symptomatic. (Worse in elderly.) Therapy: supportive. Diagnosis: serology. Specific antibody often present within 5 d.</td>
</tr>
<tr>
<td>Dengue</td>
<td>Humans (Aedes mosquitoes)</td>
<td>Asia, Africa, Central and South America, Caribbean; observed in Texas/Mexico border area and Key West, Florida</td>
<td>4-7 d (range, 3-14 d)</td>
<td>Fever, headache, myalgia, joint and bone pain, retroocular pain, nausea and vomiting; maculo-papular or petechial rash in 50%, sparing palms and soles; adenopathy. Biphasic course may occur. Meningoencephalitis in 5%-10% of children.</td>
<td>Leukopenia, thrombocytopenia. CSF: 100-500 mononuclear cells/μL if neurologic signs are present.</td>
<td>Hemorrhagic fever, shock syndrome, prolonged weakness, encephalitis.</td>
<td>High infection rate. 100-150 cases occur in the U.S. travelers to endemic areas. Therapy: supportive. Diagnosis: serology; IgM-EIA antibody by day 6.</td>
</tr>
<tr>
<td>West Nile</td>
<td>Birds (Culex mosquitoes); small mammals</td>
<td>North Africa, Middle East, parts of Asia, Europe, continental United States</td>
<td>2-14 d</td>
<td>Abrupt onset of fever, headache, sore throat, myalgia, retroocular pain, conjunctivitis; 20%-50% with rash; adenopathy. Meningitis alone is most common in children. Encephalitis may be accompanied by muscle weakness, flaccid paralysis, or movement disorders.</td>
<td>Mild leukocytosis; 10%-15% lymphopenic or thrombocytopenic; CSF pleocytosis with &lt; 500 cells; may be neutrophils early.</td>
<td>Mortality rate 10%, of those with CNS symptoms, but rare in children; weakness and myalgia may persist for an extended period.</td>
<td>Most important mosquito-borne encephalitis in the United States. (~150 cases reported each year.) Diagnosis: IgM-EIA serology; cross-reacts with St. Louis encephalitis; positive by 5-6 d after onset of CNS symptoms. Diagnosis by PCR is less sensitive. Therapy: supportive.</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Birds, large mammals; reptiles (Culex mosquitoes)</td>
<td>SE Asia; Australia</td>
<td>5-14 d</td>
<td>Onset with fever, cough, coryza, headache. Aseptic meningitis is common in children.</td>
<td>CSF: 10-100 lymphocytes/μL; atypical lymphocytes may be present; protein may reach 200 mg/dL.</td>
<td>Seizures are common in children; when encephalitis occurs, it can result in lasting motor, learning, and behavioral abnormalities.</td>
<td>Vaccination is an important consideration for children visiting or residing in endemic areas.</td>
</tr>
</tbody>
</table>

(Continued)
### Infections: Viral & Rickettsial

<table>
<thead>
<tr>
<th>Virus Type</th>
<th>Hosts</th>
<th>Geographical Spread</th>
<th>Incubation Period</th>
<th>Clinical Features</th>
<th>Diagnostic Tests</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Alpha togavirus</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Eastern equine encephalitis</em></td>
<td>Birds (<em>Culiseta</em> mosquitoes)</td>
<td>Eastern seaboard United States, Caribbean, South America</td>
<td>2–5 d</td>
<td>Similar to that of St. Louis encephalitis, but more severe. Progresses rapidly in one-third to coma and death.</td>
<td>Leukocytosis with neutrophilia. CSF: 500–2000 WBCs/µL; PMNs predominate early.</td>
<td>Mortality rate 20%–50%; neurologic 50% of children.</td>
</tr>
<tr>
<td><em>Western equine encephalitis</em></td>
<td>Birds (<em>Culiseta</em> mosquitoes)</td>
<td>Canada, Mexico, and United States west of Mississippi River</td>
<td>2–5 d</td>
<td>Similar to that of St. Louis encephalitis. Most infections are subclinical.</td>
<td>Variable white counts. CSF: 10–300 WBCs/µL.</td>
<td>Permanent brain damage, 10% overall; most severe in older adults.</td>
</tr>
<tr>
<td><em>Venezuelan equine encephalitis</em></td>
<td>Horses (10 species of mosquitoes)</td>
<td>South and Central America, Texas</td>
<td>1–6 d</td>
<td>Similar to that of St. Louis encephalitis.</td>
<td>Lymphopenia, mild thrombocytopenia, abnormal liver function tests. CSF: 50–200 mono-nuclear cells/µL.</td>
<td>Severe disease more common in infants; 20% fatality rate for encephalitis.</td>
</tr>
<tr>
<td><strong>Bunyavirus</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>California encephalitis serogroup</em> (LaCrosse, Jamestown Canyon, California)</td>
<td>Chipmunks and other small mammals (<em>Aedes</em> mosquitoes)</td>
<td>Northern and mid-central United States, southern Canada</td>
<td>3–7 d</td>
<td>Second most common arbovirus etiology, especially LaCrosse. Symptoms are similar to those of St. Louis encephalitis; sore throat and respiratory symptoms are common; focal neurologic signs in up to 25%. Seizures prominent. Prepubertal children are most likely to have severe disease. Can mimic herpes simplex encephalitis.</td>
<td>Variable white counts. CSF: 30–200 up to 600 WBCs/µL; variable PMNs; protein often normal.</td>
<td>Mortality rate &lt; 2%. Seizures may occur during acute illness.</td>
</tr>
<tr>
<td><strong>Coltivirus</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Colorado tick fever</em></td>
<td>Small mammals (<em>Dermacentor andersoni</em>, or wood tick)</td>
<td>Rocky Mountain region of United States and Canada</td>
<td>3–4 d (range, 2–14 d)</td>
<td>Fever, chills, myalgia, conjunctivitis, headache, retro-orbital pain; rash in &lt; 10%. No respiratory symptoms. Biphasic fever in 50%.</td>
<td>Leukopenia (maximum at 4–6 d), mild thrombocytopenia.</td>
<td>Rare encephalitis, coagulopathy.</td>
</tr>
</tbody>
</table>

CNS, central nervous system; CSF, cerebrospinal fluid; EIA, enzyme immunoassay; FA, fluorescent antibody; PCR, polymerase chain reaction; PMN, polymorphonuclear neutrophil; WBC, white blood cell.
In endemic areas, more than 50 million cases of dengue occur each year, often in severe forms. In the United States, more than 400 cases are diagnosed, most often in travelers from the Caribbean or Asia and less often in those visiting Central and South America, making it the most common arboviral disease in travelers. Dengue is the second most common cause of fever (after malaria) in returning travelers. Dengue occurs in Mexico; Texas and Key West have sporadic indigenous outbreaks and the disease has been epidemic in Puerto Rico. The spread of dengue requires the requisite species (which is present in the United States) of mosquito, which transmits virus from a reservoir of viremic humans in endemic areas. Most patients have mild disease, especially young children, who may have a nonspecific fever and rash. Severity is a function of age, and prior infection with other serotypes of dengue virus is a prerequisite for severe hemorrhagic complications.

Clinical Findings

A. Symptoms and Signs

Dengue fever begins abruptly 4–7 days after transmission (range, 3–14 days) with fever, chills, severe retro-orbital pain, severe muscle and joint pain, nausea, and vomiting. Erythema of the face and torso may occur early. After 3–4 days, a centrifugal maculopapular rash appears in half of the patients. The rash can become petechial, and mild hemorrhagic signs (epistaxis, gingival bleeding, microscopic blood in stool or urine) may be noted. The illness lasts 5–7 days, although rarely fever may reappear for several additional days. Fever may become relatively lower on the third day, only to become higher until defervescence. Since there are four distinct serotypes of dengue virus, multiple sequential infections can occur.

B. Laboratory Findings

Leukopenia and a mild drop in platelets are common. Liver function tests are usually normal. Diagnosis is made by viral culture of plasma (50% sensitive up to the fifth day), detection of viral antigenemia (90% sensitive during the febrile phase of first infections), detection of IgM-specific ELISA antibodies (90% sensitive at the sixth day), or by detecting a rise in type-specific antibody. PCR testing is available for diagnosis in some areas.

Differential Diagnosis

This diagnosis should be considered for any traveler to an endemic area who has symptoms suggestive of a systemic viral illness, although less than 1 in 1000 travelers to these areas develops dengue. Often the areas visited have other unique pathogens circulating (eg, malaria, typhoid fever, leptospirosis, rickettsial diseases, other endemic alphaviruses and flaviviruses, and measles). Especially relevant in travelers from India and the Indian ocean islands is chikungunya fever, which also presents with fever, and rash. This illness is associated with arthralgia/arthritis, rather than myalgia as is seen with dengue. EBV, influenza, enteroviruses, and acute HIV infection may produce a similar illness. Dengue is not associated with sore throat or cough. An illness that starts 2 weeks after the trip ends or that lasts longer than 2 weeks is not dengue or chikungunya fever.

Complications

Rarely dengue fever is associated with meningoencephalitis (5%–10%) or hepatic damage. More common in endemic areas is the appearance of dengue hemorrhagic fever, which is defined by significant thrombocytopenia (< 100,000 platelets/μL, bleeding, and a plasma leak syndrome [hematocrit > 20% higher than baseline], hypoaalbuminemia, and pleural or peritoneal effusions). This occurs most frequently with a second or subsequent attack of dengue, as a consequence of circulating antibody and other immune responses acquired from prior dengue virus infections; thus, it is rarely seen in typical travelers. Failure to recognize and treat this complication may lead to dengue shock syndrome, which is defined by signs of circulatory failure and hypotension or shock, and has a high fatality rate (10%). Dengue can be transmitted in utero from a pregnant woman infected within 2 weeks prior to delivery.

Prevention

Prevention of dengue fever involves avoiding high-risk areas and using conventional mosquito avoidance measures. The main vector is a daytime feeder. Several vaccines to prevent dengue are being tested.

Treatment

Dengue fever is treated by oral replacement of fluid lost from gastrointestinal symptoms. Analgesic therapy, which is often necessary, should not include drugs that affect platelet function. Recovery is complete without sequelae. The hemorrhagic syndrome requires prompt fluid therapy with plasma expanders and isotonic saline.

COLORADO TICK FEVER

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Travel in endemic area; tick bite.
- Fever, chills, headache, retro-orbital pain, myalgia.
- Biphasic fever curve.
- Leukopenia early in the illness.

Colorado tick fever is endemic in the high plains and mountains of the central and northern Rocky Mountains and northern Pacific coast of the United States. The reservoir of the virus consists of squirrels and chipmunks. Many hundreds of cases of Colorado tick fever occur each year in visitors or laborers entering this region, primarily from May through July.

Clinical Findings

A. Symptoms and Signs

After a 3- to 4-day incubation period (maximum, 14 days), fever begins suddenly together with chills, lethargy, headache, ocular pain, myalgia, abdominal pain, and nausea and vomiting. Conjunctivitis may be present. A nondistinctive maculopapular rash occurs in 5%-10% of patients. The illness lasts 7–10 days, and half of patients have a biphasic fever curve with several afebrile days in the midst of the illness.

B. Laboratory Findings

Leukopenia is characteristic early in the illness. Platelets are modestly decreased. Specific ELISA testing is available, but 2–3 weeks may elapse before seroconversion. Fluorescent antibody staining will detect virus-infected erythrocytes during the illness and for weeks after recovery. RT-PCR is available in some areas that will be positive within the first week of illness.

Differential Diagnosis

Early findings, especially if rash is present, may suggest enterovirus, measles, or rubella infection. Enteric fever may be an early consideration because of the presence of leukopenia and thrombocytopenia. A history of tick bite, which is often obtained; information about local risk; and the biphasic fever pattern will help with the diagnosis. Because of the wilderness exposure, diseases such as leptospirosis, borreliosis, tularemia, ehrlichiosis, and Rocky Mountain spotted fever will be considerations.

Complications

Meningoencephalitis occurs in 3%–7% of patients. Cardiac and pulmonary complications are rare.

Prevention & Treatment

Prevention involves avoiding endemic areas and using conventional means to avoid tick bite. Therapy is supportive. Do not use analgesics that modify platelet function.


OTHER MAJOR VIRAL CHILDHOOD EXANTHEMS

See the earlier section on Infections due to Herpesviruses for a discussion of varicella and roseola, the two other major childhood exanthems.

ERYTHEMA INFECTIOSUM

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Fever and rash with “slapped-cheek” appearance, followed by a symmetrical, full-body maculopapular rash.
- Arthritis in older children.
- Profound anemia in patients with impaired erythrocyte production.
- Nonimmune hydrops fetalis following infection of pregnant women.

General Considerations

This benign exanthematous illness of school-aged children is caused by the human parvovirus designated B19. Spread is respiratory, occurring in winter–spring epidemics. A nonspecific mild flulike illness may occur during the viremia at 7–10 days; the characteristic rash occurring at 10–17 days represents an immune response. The patient is viremic and contagious prior to—but not after—the onset of rash.

Approximately half of infected individuals have a subclinical illness. Most cases (60%) occur in children between ages 5 and 15 years, with an additional 40% occurring later in life. Forty percent of adults are seronegative. The disease is moderately contagious; the secondary attack rate in a school or household setting is 50% among susceptible children and 20%–30% among susceptible adults.
Clinical Findings

Owing to the nonspecific nature of the exanthem and the many subclinical cases, a history of contact with an infected individual is often absent or unreliable. Recognition of the illness is easier during outbreaks.

A. Symptoms and Signs

Typically, the first sign of illness is the rash, which begins as raised, fiery red maculopapular lesions on the cheeks that coalesce to give a “slapped-cheek” appearance. The lesions are warm, nontender, and sometimes pruritic. They may be scattered on the forehead, chin, and postauricular areas, but the circumoral region is spared. Within 1–2 days, similar lesions appear on the proximal extensor surfaces of the extremities and spread distally in a symmetrical fashion. Palms and soles are usually spared. The trunk, neck, and buttocks are also commonly involved. Central clearing of confluent lesions produces a characteristic lacelike pattern. The rash fades in several days to several weeks but frequently reappears in response to local irritation, heat (bathing), sunlight, and stress. Nearly 50% of infected children have some rash remaining (or recurring) for 10 days. Fine desquamation may be present. Mild systemic symptoms occur in up to 50% of children. These symptoms include low-grade fever, mild malaise, sore throat, and coryza. These symptoms appear for 2–3 days followed by a week-long asymptomatic phase before the rashes appear.

Purpuric stocking-glove rashes, neurologic disease, and severe disorders resembling hemolytic-uremic syndrome have also been described in association with parvovirus B19.

B. Laboratory Findings

A mild leukopenia occurs early in some patients, followed by leukocytosis and lymphocytosis. Specific IgM and IgG serum antibody tests are available, but care must be used in choosing a reliable laboratory for this test. IgM antibody is present in 90% of patients at the time of the rash. Nucleic acid detection tests are often definitive, but parvovirus DNA may be detectable in blood for as long as 9 months after infection. The disease is not diagnosed by routine viral culture.

Differential Diagnosis

In children immunized against measles and rubella, parvovirus B19 is the most frequent agent of morbilliform and rubelliform rashes. The characteristic rash and the mild nature of the illness distinguish erythema infectiousum from other childhood exanthems. It lacks the prodromal symptoms of measles and the lymphadenopathy of rubella. Systemic symptoms and pharyngitis are more prominent with enteroviral infections and scarlet fever.

Complications & Sequelae

A. Arthritis

Arthritis is more common in older patients, beginning with late adolescence. Approximately 10% of older children have severe joint symptoms. Girls are affected more commonly than boys. Pain and stiffness occur symmetrically in the peripheral joints. Arthritis usually follows the rash and may persist for 2–6 weeks but resolves without permanent damage.

B. Aplastic Crisis and Other Hematologic Abnormalities

Parvovirus B19 replicates primarily in erythroid progenitor cells. Consequently, reticulocytopenia occurs for approximately 1 week during the illness. This goes unnoticed in individuals with a normal erythrocyte half-life, but results in severe anemia in patients with chronic hemolytic anemia.

Pure red cell aplasia, leukopenia, pancytopenia, idiopathic thrombocytopenic purpura, and a hemophagocytic syndrome have been described. Patients with HIV infection and other immunosuppressive illnesses may develop prolonged anemia or pancytopenia. Patients with hemolytic anemia and aplastic crisis, or with immunosuppression, may be contagious and should be isolated while in the hospital.

C. Other End-Organ Infections

Parvovirus is under study as a potential cause of a variety of collagen-vascular diseases. Parvovirus has been associated with neurologic syndromes, hepatitis, and suppression of bone marrow lineages. It is implicated as a cause of myocarditis.

D. In Utero Infections

Infection of susceptible pregnant women may produce fetal infection with hydrops fetalis. Fetal death occurs in about 6% of cases; most fatalities occur in the first 20 weeks. This is higher than the rate of fetal loss expected in typical pregnancies. Congenital anomalies have not been associated with parvovirus B19 infection during pregnancy.

Treatment & Prognosis

Erythema infectiousum is a benign illness for immunocompetent individuals. Patients with aplastic crisis may require blood transfusions. It is unlikely that this complication can be prevented by quarantine measures, because acute parvovirus infection in contacts is often unrecognized and is most contagious prior to the rash. Pregnant women who are exposed to erythema infectiousum or who work in a setting in which an epidemic occurs should be tested for evidence of prior infection. Susceptible pregnant women should then be followed up for evidence of parvovirus infection.
Approximately 1.5% of women of childbearing age are infected during pregnancy. If maternal infection occurs, the fetus should be followed by ultrasonography for evidence of hydrops and distress. In utero transfusion or early delivery may salvage some fetuses. Pregnancies should not be terminated because of parvovirus infection. The risk of fetal death among exposed pregnant women of unknown serologic status is less than 2.5% for homemakers and less than 1.5% for school teachers.

Intramuscular immune globulin is not protective. High-dose IVIG has stopped viremia and led to marrow recovery in some cases of prolonged aplasia. Its role in immunocompetent patients and pregnant women is unknown.


MEASLES (RUBEOLA)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Exposure to measles 9–14 days previously.
- Prodrome of fever, cough, conjunctivitis, and coryza.
- Koplik spots (few to many small white papules on a diffusely red base on the buccal mucosa) 1–2 days prior to and after onset of rash.
- Maculopapular rash spreading down from the face and hairline to the trunk over 3 days and later becoming confluent.
- Leukopenia.

Clinical Findings

A history of contact with a suspected case may be absent because airborne spread is efficient and patients are contagious during the prodrome. Contact with an imported case may not be recognized. In temperate climates, epidemic measles is a winter–spring disease. Because measles is uncommon in the United States, many suspected cases are misdiagnoses of other viral infections.

A. Symptoms and Signs

High fever and lethargy are prominent. Sneezing, eyelid edema, tearing, copious coryza, photophobia, and harsh cough ensue and worsen. Koplik spots are white macular lesions on the buccal mucosa, typically opposite the lower molars. These are almost pathognomonic for rubeola, although they may be absent. A discrete maculopapular rash begins when the respiratory symptoms are maximal and spreads quickly over the face and trunk, coalescing to a bright red. As it spreads to the extremities, the rash fades from the face and is completely gone within 6 days; fine desquamation may occur. Fever peaks when the rash appears and usually falls 2–3 days thereafter.

B. Laboratory Findings

Lymphopenia is characteristic. Total leukocyte counts may fall to 1500/µL. The diagnosis is usually made by detection of measles IgM antibody in serum drawn at least 3 days after the onset of rash; diagnosis may be made later by detection of a significant rise in IgG antibody. Direct detection of measles antigen by fluorescent antibody staining of nasopharyngeal cells is a useful rapid method. PCR testing of oropharyngeal secretions or urine is extremely sensitive, specific, and can detect infection up to 5 days before symptoms.

C. Imaging

Chest radiographs often show hyperinflation, perihilar infiltrates, or parenchymal patchy, fluffy densities. Secondary consolidation or effusion may be visible.

Differential Diagnosis

Table 40–3 lists other illnesses that may resemble measles.

Complications & Sequelae

A. Respiratory Complications

These complications occur in up to 15% of patients. Bacterial superinfection of the lungs, middle ear, sinus, and cervical
nodes are most common. Fever that persists after the third or fourth day of rash suggests such a complication, as does leukocytosis. Bronchospasm, severe croup, and progressive viral pneumonia or bronchiolitis (in infants) also occur. Immunosuppressed patients are at much greater risk for fatal pneumonia than are immunocompetent patients.

B. Cerebral Complications

Encephalitis occurs in 1 in 2000 cases. Onset is usually within a week after appearance of rash. Symptoms include combativeness, ataxia, vomiting, seizures, and coma. Lymphocytic pleocytosis and a mildly elevated protein concentration are usual CSF findings, but the fluid may be normal. Forty percent of patients so affected die or have severe neurologic sequelae.

Subacute sclerosing panencephalitis (SSPE) is a slow measles virus infection of the brain that becomes symptomatic years later in about 1 in 100,000 previously infected children. This progressive cerebral deterioration is associated with myoclonic jerks and a typical electroencephalographic pattern. It is fatal in 6–12 months. High titers of measles antibody are present in serum and CSF.

C. Other Complications

These include hemorrhagic measles (severe disease with multorgan bleeding, fever, cerebral symptoms), thrombocytopenia, appendicitis, keratitis, myocarditis, and premature delivery or stillbirth. Mild liver function test elevation is detected in up to 50% of cases in young adults; jaundice may also occur. Measles causes transient immunosuppression; thus, reactivation or progression of tuberculosis (including transient cutaneous anergy) can occur in children with untreated tuberculosis.

Prevention

The current two-dose active vaccination strategy is successful. Vaccine should not be withheld for concurrent mild acute illness, tuberculosis or positive tuberculin skin test, breast feeding, or exposure to an immunodeficient contact. The vaccine is recommended for HIV-infected children without severe HIV complications and adequate CD4 cells (≥ 15%).

Treatment & Prognosis

Vaccination prevents the disease in susceptible exposed individuals if given within 72 hours (see Chapter 10). Immune globulin (0.25 mL/kg intramuscularly; 0.5 mL/kg if immunocompromised) will prevent or modify measles if given within 6 days. Suspected cases should be diagnosed promptly and reported to the local health department.

Recovery generally occurs 7–10 days after onset of symptoms. Therapy is supportive: eye care, cough relief (avoid opioid suppressants in infants), and fever reduction (acetaminophen, lukewarm baths; avoid salicylates). Secondary bacterial infections should be treated promptly; antimicrobial prophylaxis is not indicated. Ribavirin is active in vitro and may be useful in infected immunocompromised children. In malnourished children, vitamin A supplementation should be given to attenuate the illness.

RUBELLA

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- History of rubella vaccination usually absent.
- Prodromal nonspecific respiratory symptoms and adenopathy (postauricular and occipital).
- Maculopapular rash beginning on face, rapidly spreading to the entire body, and disappearing by fourth day.
- Few systemic symptoms.
- Congenital infection.
  - Retarded growth, development.
  - Cataracts, retinopathy.
  - Purpuric “blueberry muffin” rash at birth.
  - Jaundice, thrombocytopenia.
  - Deafness.
  - Congenital heart defect.

General Considerations

If it were not teratogenic, rubella would be of little clinical importance. Clinical diagnosis is difficult in some cases because of its variable expression. In one study, over 80% of infections were subclinical. Rubella is transmitted by aerosolized respiratory secretions. Patients are infectious 5 days before until 5 days after the rash. Endemic rubella is absent in the United States and the Americas, and congenital rubella in infants born to unimmunized women and the occasional woman who is reinfected in pregnancy, is now very rare. Sporadic cases occur in migrants to the United States.
Clinical Findings

The incubation period is 14–21 days. The nondistinctive signs may make exposure history unreliable. A history of immunization makes rubella unlikely but still possible. Congenital rubella usually follows maternal infection in the first trimester.

A. Symptoms and Signs

1. Infection in children—Young children may only have rash. Older patients often have a nonspecific prodrome of low-grade fever, ocular pain, sore throat, and myalgia. Postauricular and suboccipital adenopathy (sometimes generalized) is characteristic. This often precedes the rash or may occur without rash. The rash consists of erythematous discrete maculopapules beginning on the face. A “slapped-cheek” appearance or pruritus may occur. Scarletiform or morbilliform rash variants may occur. The rash spreads quickly to the trunk and extremities after fading from the face; it is gone by the fourth day. Enanthema is usually absent.

2. Congenital infection—More than 80% of women infected in the first 4 months of pregnancy (25% near the end of the second trimester) deliver an affected infant; congenital disease occurs in less than 5% of women infected later in pregnancy. Later infections can result in isolated defects, such as deafness. The main manifestations are as follows:

a. Growth retardation—Between 50% and 85% of infants are small at birth and remain so.

b. Cardiac anomalies—Pulmonary artery stenosis, patent ductus arteriosus, ventricular septal defect.

c. Ocular anomalies—Cataracts, microphthalmia, glaucoma, retinitis.

d. Deafness—Sensorineural (> 50% of cases).

e. Cerebral disorders—Chronic encephalitis; retardation.

f. Hematologic disorders—Thrombocytopenia, dermal nests of extramedullary hematopoiesis or purpura (“blueberry muffin” rash), lymphopenia.

g. Others—Hepatitis, osteomyelitis, immune disorders, malabsorption, diabetes.

B. Laboratory Findings

Leukopenia is common, and platelet counts may be low. Congenital infection is associated with low platelet counts, abnormal liver function tests, hemolytic anemia, and CSF pleocytosis. Total serum IgM is elevated, and IgA and IgG levels may be depressed.

C. Imaging

Pneumonitis and bone metaphyseal longitudinal lucencies may be present in radiographs of children with congenital infection.

C. Imaging

Pneumonitis and bone metaphyseal longitudinal lucencies may be present in radiographs of children with congenital infection.

Differential Diagnosis

Rubella may resemble infections due to enterovirus, adenovirus, measles, EBV, roseola, parvovirus, and T. gondii. Drug reactions may also mimic rubella. Because public health implications are great, sporadic suspected cases should be confirmed serologically or virologically.

C. Rubella in Pregnancy

Infection in the mother is self-limited and not severe.

Complications & Sequelae

A. Arthralgia and Arthritis

Both occur more often in adult women. Polyarticular involvement (fingers, knees, wrists), lasting a few days to weeks, is typical. Frank arthritis occurs in a small percentage of patients. It may resemble acute rheumatoid arthritis.

B. Encephalitis

With an incidence of about 1:6000, this is a nonspecific paramyxovirus associated with a low mortality rate. A syndrome resembling SSPE (see section on Measles) has also been described in congenital rubella.

C. Rubella in Pregnancy

Infection in the mother is self-limited and not severe.

Prevention

Rubella is one of the infections that could be eradicated (see Chapter 10 for the indication and efficacy of rubella vaccine). Standard prenatal care should include rubella antibody testing. Seropositive mothers are at no risk; seronegative mothers are vaccinated after delivery.
A pregnant woman possibly exposed to rubella should be tested immediately; if seropositive, she is immune and need not worry. If she is seronegative, a second specimen should be drawn in 4 weeks, and both specimens should be tested simultaneously. Seroconversion in the first trimester is associated with high fetal risk; such women require counseling regarding therapeutic abortion.

When pregnancy termination is not an option, some experts recommend intramuscular administration of immune globulin (up to 0.55 mL/Kg IM) within 72 hours after exposure in an attempt to prevent infection. (This negates the value of subsequent antibody testing.) The efficacy of this practice is unknown.

Treatment & Prognosis

Symptomatic therapy is sufficient. Arthritis may improve with administration of anti-inflammatory agents. The prognosis is poor in congenitally infected infants, in whom most defects are irreversible or progressive. The severe cognitive defects in these infants seem to correlate closely with the degree of growth failure.


INFECTIONS DUE TO OTHER VIRUSES

HANTAVIRUS CARDIOPULMONARY SYNDROME

Essentials of Diagnosis & Typical Features

- Influenza-like prodrome (fever, myalgia, headache, cough).
- Rapid onset of unexplained pulmonary edema and myocardopathy.
- Residence or travel in endemic area; exposure to aerosols from deer mouse droppings or secretions.

General Considerations

Hantavirus cardiopulmonary syndrome is the first native bunyavirus infection endemic in the United States. This syndrome is distinctly different in mode of spread (no arthropod vector) and clinical picture from other bunyavirus diseases.

Clinical Findings

The initial cases of hantavirus cardiopulmonary syndrome involved travel to or residence in a limited area in the southwestern United States where there was a potential for exposure to the reservoir, the deer mouse. Since this and many other related rodents live in many other locales, the disease has been confirmed in more than 30 states and Canada. Epidemics occur when environmental conditions favor large increases in the rodent population and increased prevalence of virus in this reservoir.

A. Symptoms and Signs

After an incubation period of 1–3 weeks, onset is sudden, with a nonspecific virus-like prodrome: fever; back, hip, and leg pain; chills; headache; and nausea and vomiting. Abdominal pain may be present. Sore throat, conjunctivitis, rash, and adenopathy are absent, and respiratory symptoms are absent or limited to a dry cough. After 1–10 days (usually 3–7), dyspnea, tachypnea, and evidence of a pulmonary capillary leak syndrome appear. This often progresses rapidly over hours. Hypotension is common, not only from hypoxemia but also from myocardial dysfunction. Copious, amber-colored, nonpurulent secretions are common. Decreased cardiac output due to myocardiopathy and elevated systemic vascular resistance distinguish this disease from early bacterial sepsis.

B. Laboratory Findings

The hemogram shows leukocytosis with a prominent left shift and immunoblasts, thrombocytopenia, and hemococoncentration. Lactate dehydrogenase (LDH) is elevated, as are liver function tests; serum albumin is low. Creatinine is elevated in some patients, and proteinuria is common. Lactic acidosis and low venous bicarbonate are poor prognostic signs. A serum IgM ELISA test is positive early in the illness. Otherwise, the diagnosis is made by specific staining of tissue or PCR, usually at autopsy.

C. Imaging

Initial chest radiographs are normal. Subsequent radiographs show bilateral interstitial infiltrates with the typical butterfly pattern of acute pulmonary edema, bibasilar airspace disease, or both. Significant pleural effusions are often present. These findings contrast with those of other causes of acute respiratory distress syndrome.

Differential Diagnosis

In some geographic areas, plague and tularemia may be possibilities. Infections with viral respiratory pathogens and *Mycoplasma* have a slower tempo, do not elevate the LDH, and do not cause the hematologic changes seen in this
syndrome. Q fever, psittacosis, toxin exposure, legionellosis, and fungal infections are possibilities, but the history, tempo of the illness, and blood findings, as well as the exposure history, should be distinguishing features. Hantavirus cardiopulmonary syndrome is a consideration in previously healthy persons with a febrile illness associated with unexplained pulmonary edema.

**Treatment & Prognosis**

Ribavirin, to which hantaviruses and other bunyaviruses are susceptible, has not been demonstrated to alter the course of the illness. Management should concentrate on oxygen therapy and mechanical ventilation as required. Because of capillary leakage, Swan-Ganz catheterization to monitor cardiac output and inotropic support—rather than fluid therapy—should be used to maintain perfusion. Venoarterial extracorporeal membrane oxygenation can provide short-term support for selected patients. The strains of virus present in North America are not spread by person-to-person contact. No isolation is required. The case fatality rate is 30%–40%. Guidelines are available for reduction of exposure to the infectious agent.


**MUMPS**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- No prior mumps immunization.
- Parotid gland swelling.
- Aseptic meningitis with or without parotitis.

**General Considerations**

Mumps was one of the classic childhood infections; virus spread by the respiratory route attacked almost all unimmunized children (asymptomatically in 30%–40% of cases), and produced lifelong immunity. The vaccine is so efficacious that clinical disease is rare in immunized children. As a result of subclinical infections or childhood immunization, 95% of adults are immune, although immunity can wane in late adolescence. When susceptibles accumulate occasional epidemics (~400 cases in 2012) can occur, which are aborted by reimmunization of the at-risk population. Infected patients can spread the infection from 1 to 2 days prior to the onset of symptoms and for 5 additional days. The incubation period is 14–21 days.

A history of exposure to a child with parotitis is not proof of mumps exposure. In an adequately immunized individual, parotitis is usually due to another cause. Currently in the United States, less than one case is reported per 100,000 population.

**Clinical Findings**

**A. Symptoms and Signs**

1. **Salivary gland disease**—Tender swelling of one or more glands, variable fever, and facial lymphedema are typical. Parotid involvement is most common; this is bilateral in 70% of patients. The ear is displaced upward and outward; the mandibular angle is obliterated. Systemic toxicity is usually absent. Parotid stimulation with sour foods may be quite painful. The orifice of the Stensen duct may be red and swollen; yellow secretions may be expressed, but pus is absent. Parotid swelling dissipates after 1 week.

2. **Meningoencephalitis**—Prior to widespread immunization, mumps was the most common cause of aseptic meningitis, which is usually manifested by mild headache or asymptomatic mononuclear pleocytosis. Fewer than 10% of patients have clinical meningitis or encephalitis. Cerebral symptoms do not correlate with parotid symptoms, which are absent in many patients with meningoencephalitis. Although neck stiffness, nausea, and vomiting can occur, encephalitic symptoms are rare (1:4000 cases of mumps); recovery in 3–10 days is the rule.

3. **Pancreatitis**—Abdominal pain may represent transient pancreatitis. Because salivary gland disease may elevate serum amylase, specific markers of pancreatic function (lipase, amylase isoenzymes) are required for assessing pancreatic involvement.

4. **Orchitis, oophoritis**—Involvement of the gonads is associated with fever, local tenderness, and swelling. Epididymitis is usually present. Orchitis is unusual in young children, but occurs in up to one-third of affected postpubertal males. Usually, it is unilateral and resolves in 1–2 weeks. Although one-third of infected testes atrophy, bilateral involvement and sterility are rare.

5. **Other**—Thyroiditis, mastitis (especially in adolescent females), arthritis, and presternal edema (occasionally with dysphagia or hoarseness) may be seen.

**B. Laboratory Findings**

Peripheral blood leukocyte count is usually normal. Up to 1000 cells/μL (predominantly lymphocytes) may be present.
in the CSF, with mildly elevated protein and normal to slightly decreased glucose. Viral culture or PCR tests of saliva, throat, urine, or spinal fluid may be positive for at least 1 week after onset. Paired sera assayed by ELISA or a single positive IgM antibody test are currently used for diagnosis.

**Differential Diagnosis**

Mumps parotitis may resemble the following conditions: cervical adenitis (the jaw angle may be obliterated, but the ear does not usually protrude; the Stensen duct orifice is normal; leukocytosis and neutrophilia are observed), bacterial parotitis (pus in the Stensen duct, toxicity, exquisite tenderness), recurrent parotitis (idiopathic or associated with calculi), tumors or leukemia, and tooth infections. Many viruses, including parainfluenza, enteroviruses, EBV, CMV, and influenza virus, can cause parotitis. Parotid swelling in HIV infection is less painful and tends to be bilateral and chronic, but bacterial parotitis occurs in some children with HIV infection.

Unless parotitis is present, mumps meningitis resembles that caused by enteroviruses or early bacterial infection. An elevated amylase level is a useful clue in this situation. Isolated pancreatitis is not distinguishable from many other causes of epigastric pain and vomiting. Mumps is a classic cause of orchitis, but torsion, bacterial or chlamydial epididymitis, *Mycoplasma* infection, other viral infections, hematomas, hernias, and tumors must also be considered.

**Complications**

The major neurologic complication is nerve deafness (usually unilateral) which can result in inability to hear high tones. It may occur without meningitis. Permanent damage is rare, occurring in less than 0.1% of cases of mumps. Aqueductal stenosis and hydrocephalus (especially following congenital infection), myocarditis, transverse myelitis, and facial paralysis are other rare complications.

**Treatment & Prognosis**

Treatment is supportive and includes provision of fluids, analgesics, and scrotal support for orchitis. Systemic corticosteroids have been used for orchitis, but their value is anecdotal.

---

RABIES

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- History of animal bite 10 days to 1 year (usually < 90 days) previously.
- Paresthesias or hyperesthesia in bite area.
- Progressive limb and facial weakness in some patients (dumb rabies; 30%).
- Irritability followed by fever, confusion, combativeness, muscle spasms (especially pharyngeal with swallowing) in all patients (furious rabies).
- Rabies antigen detected in corneal scrapings or tissue obtained by brain or skin biopsy; Negri bodies seen in brain tissue.

**General Considerations**

Rabies remains a potentially serious public health problem wherever animal immunization is not widely practiced or when humans play or work in areas with sylvan rabies. Although infection does not always follow a bite by a rabid animal (about 40% infection rate), infection is almost invariably fatal. Any warm-blooded animal may be infected, but susceptibility and transmissibility vary with different species. Bats often carry and excrete the virus in saliva or feces for prolonged periods; they are the major cause of rabies in the United States. Dogs and cats are usually clinically ill within 10 days after becoming contagious (the standard quarantine period for suspect animals). Valid quarantine periods or signs of illness are not fully known for many species. Rodents rarely transmit infection. Animal vaccines are very effective when properly administered, but a single inoculation may fail to produce immunity in up to 20% of dogs.

The risk is assessed according to the type of animal (bats are always considered to have a high likelihood of being rabid; raccoons, skunks, foxes in many areas), wound extent and location (infection more common after head or hand bites, or if wounds have extensive salivary contamination and are not quickly and thoroughly cleaned), geographic area (urban rabies is rare to nonexistent in the U.S. cities; rural rabies is possible, especially outside the United States), and animal vaccination history (risk low if documented).

Most rabies in the United States is caused by genotypes found in bats, yet a history of bat bite is often not obtained. Aerosolized virus in caves inhabited by bats has caused infection.

---


**Clinical Findings**

**A. Symptoms and Signs**

Paresthesias at the bite site is usually the first symptom. Nonspecific anxiety, excitability, or depression follows, then muscle spasms, drooling, hydrophobia, delirium, and lethargy. Swallowing or even the sensation of air blown on the face may cause pharyngeal spasms. Seizures, fever, cranial nerve palsies, coma, and death follow within 7–14 days after onset. In a minority of patients, the spastic components are initially absent and the symptoms are primarily flaccid paralysis and cranial nerve defects. The furious components appear subsequently.

**B. Laboratory Findings**

Leukocytosis is common. CSF is usually normal, but may show elevation of protein and mononuclear cell pleocytosis. Cerebral imaging and electroencephalography are not diagnostic.

Infection in an animal may be determined by use of the fluorescent antibody test to examine brain tissue for antigen. Rabies virus is excreted in the saliva of infected humans, but the diagnosis is usually made by antigen detection in scrapings or tissue samples of richly innervated epithelium, such as the cornea or the hairline of the neck. Classic Negri cytoplasmic inclusion bodies in brain tissue are not always present. Serocconversion occurs after 7–10 days.

**Differential Diagnosis**

Failure to elicit the bite history in areas where rabies is rare may delay diagnosis. Other disorders to be considered include parainfectious encephalopathy; encephalitis due to herpes simplex, mosquito-borne viruses, or other causes of viral encephalitis; and Guillain-Barré syndrome. However, classic furious rabies is not readily confused with these alternative diagnoses.

**Prevention**

See Chapter 10 for information regarding vaccination and postexposure prophylaxis. Rabies immune globulin and diploid cell vaccine have made prophylaxis more effective and minimally toxic. Because rabies is almost always fatal, presumed exposures must be managed carefully.

**Treatment & Prognosis**

Survival is very rare, but has been reported in patients receiving meticulous intensive care and a variety of antiviral therapies of unproven benefit. Early diagnosis is important for the protection and prophylaxis of individuals exposed to the patient.


---

**Rickettsial Infections**

Rickettsiae are pleomorphic, gram-negative coccobacilli that are obligate intracellular parasites. Rickettsial diseases are often included in the differential diagnosis of febrile rashes. Severe headache, myalgia, and pulmonary symptoms are prominent manifestations of rickettsial disease. The endothelium is the primary target tissue, and the ensuing vasculitis is responsible for severe illness.

All rickettsioses are transmitted by cutaneous arthropod contact (ticks, fleas, mice, lice—depending on the disease), either by bite or by contamination of skin breaks with vector feces. In all except Rocky Mountain spotted fever and murine typhus, there is a characteristic eschar at the bite site, called the tache noire. Evidence of such contact by history or physical examination may be completely lacking, especially in young children. The geographic distribution of the vector is often the primary determinant for suspicion of these infections. Therapy often must be empiric. Many new broad-spectrum antimicrobials are inactive against these cell wall–deficient organisms; tetracycline is usually effective.

Q fever, which is not rickettsiae, is included here because it was long classified as such and, like rickettsiae, is an obligate intracellular bacterium. It is not transmitted by an insect vector and is not characterized by rash.

**Human Ehrlichiosis**

**Essentials of Diagnosis & Typical Features**

- Residing or travel in endemic area when ticks are active.
- Tick bite noted (~75%).
- Fever, headache, rash (~67%), gastrointestinal symptoms.
- Leukopenia, thrombocytopenia, elevated serum transaminases, hypoalbuminemia.
- Definitive diagnosis by specific serology.

In children, the major agent of North American human ehrlichiosis is *Ehrlichia chaffeensis*. The reservoir hosts are probably wild rodents, deer, and sheep; ticks are the vectors. Most cases caused by this agent are reported in the south-central, southeastern, and middle Atlantic states. Arkansas, Missouri, Oklahoma, Kentucky, Tennessee, and North Carolina are high-prevalence areas. Almost all cases occur between March and October, when ticks are active.

A second ehrlichiosis syndrome, seen in the upper Midwest and Northeast (Connecticut, Wisconsin, Minnesota, and New York are high-prevalence areas), is...
caused by *Anaplasma phagocytophilum* and *Ehrlichia ewingii*. Anaplasmosis also occurs in the western United States. New pathogenic *Ehrlichia* species have been discovered recently. *E. chaffeensis* has a predilection for mononuclear cells, whereas *A. phagocytophilum* and *E. ewingii* infect and produce intracytoplasmic inclusions in granulocytes. Hence, diseases caused by these agents are referred to as human monocytic ehrlichiosis or human granulocytic ehrlichiosis, respectively. Ehrlichiosis, Lyme disease, and babesiosis share some tick vectors; thus, dual infections are common and should be considered in patients who fail to respond to therapy.

**Clinical Findings**

In approximately 75% of patients, a history of tick bite can be elicited. The majority of the remaining patients report having been in a tick-infested area. The usual incubation period is 5–21 days.

**A. Symptoms and Signs**

Fever is universally present and headache is common (less so in children). Gastrointestinal symptoms (abdominal pain, anorexia, nausea, and vomiting) are reported in most pediatric patients. Distal limb edema may occur. Chills, photophobia, conjunctivitis, and myalgia occur in more than half of patients. Rash occurs in two-thirds of children with monocytic ehrlichiosis, but is less common (~50%) in granulocytic ehrlichiosis. Rash may be erythematous, macular, papular, petechial, scarlatiniform, or vasculitic. Meningitis occurs. Interstitial pneumonitis, acute respiratory distress syndrome, and renal failure occur in severe cases. Physical examination reveals rash (not usually palms and soles), mild adenopathy, and hepatomegaly. In children without a rash, infection may present as a fever of unknown origin.

**B. Laboratory Findings**

Laboratory abnormalities include leukopenia with left shift, lymphopenia, thrombocytopenia, and elevated aminotransferase levels. Hypoalbuminemia and hyponatremia are common. Disseminated intravascular coagulation can occur in severe cases. Anemia occurs in one-third of patients. CSF pleocytosis (mononuclear cells; increased protein) is common. The definitive diagnosis is made serologically, either by a single high titer or a fourfold rise in titer. The Centers for Disease Control and Prevention uses appropriate antigens in an immunofluorescent antibody test in order to distinguish between the etiologic agents. Intracytoplasmic inclusions (morulae) may occasionally be observed in mononuclear cells in monocytic ehrlichiosis, and are usually observed in polymorphonuclear cells from the peripheral blood or bone marrow in granulocytic ehrlichiosis. Specific PCR testing can provide an early diagnosis where this is available.

**Differential Diagnosis**

In regions where these infections exist, ehrlichiosis should be included in the differential diagnosis of children who present during tick season with fever, leukopenia or thrombocytopenia (or both), increased serum transaminase levels and rash. The differential diagnosis includes septic or toxic shock, other rickettsial infections (especially Rocky Mountain spotted fever), Colorado tick fever, leptospirosis, Lyme borreliosis, relapsing fever, EBV, CMV, viral hepatitis and other viral infections, Kawasaki disease, systemic lupus erythematosus, and leukemia.

**Treatment & Prognosis**

Asymptomatic or clinically mild and undiagnosed infections are common in some endemic areas. The disease may last several weeks if untreated. One-quarter of hospitalized children require intensive care. Meningoencephalitis and persisting neurologic deficits occur in 5%–10% of patients. Doxycycline, 2 mg/kg every 12 hours (IV or PO; maximum 100 mg per dose) for 7–10 days, is the treatment of choice. Patients with suspected disease must be treated preemptively concurrently with attempts to establish the diagnosis. Response to therapy should be evident in 24–48 hours. Deaths are uncommon in children but do occur. Immune compromise and asplenia are risk factors for severe disease.


**ROCKY MOUNTAIN SPOTTED FEVER**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Residing or travel in endemic area when ticks are active.
- Fever, rash (palms and soles), gastrointestinal symptoms, headache.
- Tick bite (50%).
- Thrombocytopenia, hyponatremia.
- Definitive diagnosis by specific serology.

*Rickettsia rickettsii* causes one of many similar tick-borne illnesses characterized by fever and rash that occur worldwide. Most are named after their geographic area. Dogs...
and rodents, as well as large mammals, are reservoirs of *R. rickettsii*.

Rocky Mountain spotted fever is the most severe rickettsial infection and the most important (~1000 cases per year) in the United States. It occurs predominantly along the eastern seaboard; in the southeastern states; and in Arkansas, Texas, Missouri, Kansas, and Oklahoma. It is much less common in the west. Most cases occur in children exposed in rural areas from April to September. Because tick attachment lasting 6 hours or longer is needed, frequent tick removal is a preventive measure. Infection can be acquired from dog ticks.

**Clinical Findings**

**A. Symptoms and Signs**

After the incubation period of 3–12 days (mean, 7 days), there is high fever (> 40°C, often hectic), usually of abrupt onset, myalgia, severe and persistent headache (retro-orbital), toxicity, photophobia, vomiting, abdominal pain, and diarrhea. A rash occurs in more than 95% of patients and appears 2–6 days after fever onset as macules and papules; most characteristic (65%) is involvement of the palms, soles, and extremities. The rash becomes petechial and spreads centrally from the extremities. The rash reflects infection of endothelial cells, which also causes vascular leak and resulting edema, hypovolemia, and hypotension. Conjunctivitis, splenomegaly, pneumonia, meningismus, and confusion may occur.

**B. Laboratory Findings**

Laboratory findings are nonspecific and reflect diffuse vasculitis: thrombocytopenia, hyponatremia, early mild leukopenia, proteinuria, mildly abnormal liver function tests, hypoalbuminemia, and hematuria. CSF pleocytosis is common. Serologic diagnosis is achieved with indirect fluorescent or latex agglutination antibody methods, but generally is informative only 7–10 days after onset of the illness. Skin biopsy with specific fluorescent staining is a specific and moderately sensitive diagnostic method available during the first week of the illness.

**Differential Diagnosis**

The differential diagnosis includes meningococcemia, measles, meningococcal meningitis, staphylococcal sepsis, enteroviral infection, leptospirosis, Colorado tick fever, scarlet fever, murine typhus, Kawasaki disease, and ehrlichiosis.

**Treatment & Prognosis**

To be effective, therapy for Rocky Mountain spotted fever must be started early, most often on the basis of a high clinical suspicion prior to rash onset in endemic areas. It is important to remember that atypical presentations, such as the absence of pathognomonic rash, often lead to delay in appropriate therapy. Rash is rarely present during the first day of diagnosis and in 50% within 3 days of onset of fever. Doxycycline is the treatment of choice for children, regardless of age. Dosing is 2 mg/kg every 12 hours (IV or PO; maximum 100 mg per dose) for 2 or 3 days after the temperature has returned to normal for a full day. A minimum of 10 days of therapy is recommended.

Complications and death result from severe vasculitis, especially in the brain, heart, and lungs. The mortality rate is 5%–7%. Persistent neurologic deficits occur in 10%–15% of children who recover. Delay in therapy is an important determinant of sequelae and mortality.

**ENDEMIC TYPHUS (MURINE TYPHUS)**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Residing in endemic area.
- Fever for 10–14 days.
- Headache, chills, myalgia.
- Maculopapular rash spreading from trunk to extremities (not on palms and soles) 3–7 days after fever onset.
- Definitive diagnosis by serology.

Endemic typhus is present in the southern United States, mainly in southern Texas, and in Southern California, and in Hawaii. The disease is transmitted by fleas from infected rodents or by inhalation. Domestic cats, dogs, and opossums may play a role in the transmission of suburban cases. No eschar appears at the inoculation site, which may go unnoticed. The incubation period is 6–14 days. Headache, myalgia and arthralgia, and chills slowly worsen. Fever may last 10–14 days. After 3–7 days, a rash appears. Truncal macules and papules spread to the extremities; the rash is rarely petechial. The rash resolves in less than 5 days. The location of the rash in typhus, with sparing of the palms and soles, helps distinguish the disease from Rocky Mountain spotted fever. Rash may be absent in 20%–40% of patients. Hepatomegaly may be present. Intestinal and respiratory symptoms may occur. Mild thrombocytopenia and elevated liver enzymes may be present. The illness is usually self-limited and milder than epidemic typhus. More prolonged neurologic
symptoms have been described. Clinicians in endemic areas should consider early treatment when presented with a child with protracted fever, rash, and headache. Doxycycline is the drug of choice, which should be continued for 3 days after evidence of clinical improvement. Fluorescent antibody and ELISA tests are available.


Q FEVER

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Exposure to farm animals (sheep, goats, cattle) and pets.
- Flulike illness (fever, severe headache, myalgia).
- Cough; atypical pneumonia.
- Hepatomegaly and hepatitis.
- Diagnosis by serology.

Coxiella burnetii is transmitted by inhalation rather than by an arthropod bite. Q fever is also distinguished from rickettsial diseases by the infrequent occurrence of cutaneous manifestations and by the prominence of pulmonary disease. The birth tissues and excreta of domestic animals and of some rodents are major infectious sources. The organisms may be carried long distances in fine particle aerosols. Unpasteurized milk from infected animals may also transmit disease.

Clinical Findings

A. Symptoms and Signs

Most patients have a self-limited flulike syndrome of chills, fever, severe headache, and myalgia of abrupt onset occurring 10–25 days after exposure. Abdominal pain, vomiting, chest pain, and dry cough are prominent in children. Examination of the chest may produce few findings, as in other atypical pneumonias. Hepatosplenomegaly is common. The illness lasts 1–4 weeks and frequently is associated with weight loss.

Only about 50% of infected patients develop significant symptoms, but develop serologic evidence of infection.

B. Laboratory Findings

Leukopenia with left shift is characteristic. Thrombocytopenia is unusual and another distinction from rickettsial diseases. Aminotransferase and γ-glutamyl transferase levels are elevated, but significant bilirubin elevation is unusual. Diagnosis is made by finding an antibody response (fourfold rise or single high titer in ELISA; IFA, or CF antibody assay) to the phase II organism. Chronic infection is indicated by antibody against the phase I organism. IgM ELISA and specific PCR tests are also available.

C. Imaging

Pneumonitis occurs in 50% of patients. Multiple segmental infiltrates are common, but the radiographic appearance is not pathognomonic. Consolidation and pleural effusion are rare.

Differential Diagnosis

In the appropriate epidemiologic setting, Q fever should be considered in evaluating causes of atypical pneumonias, such as M pneumoniae, viruses, Legionella, and C pneumoniae. It should also be included among the causes of mild to moderate hepatitis without rash or adenopathy in children with exposure to farm animals.

Treatment & Prognosis

Typically the illness lasts 1–2 weeks without therapy. The course of the uncomplicated illness is shortened with doxycycline. Therapy is continued for several days after the patient becomes afebrile (usually 10–14 days). Quinolones are also effective.

One complication is chronic disease, which often implies myocarditis or granulomatous hepatitis. Meningoencephalitis is a rare complication. C burnetii is also one of the causes of so-called culture-negative endocarditis. Coxiella endocarditis often occurs in the setting of valve abnormalities and is difficult to treat; mortality approaches 50%.

Human Immunodeficiency Virus Infection

Elizabeth J. McFarland, MD

**General Considerations**

Human immunodeficiency virus (HIV) is a retrovirus that primarily infects cells of the immune system, including helper T lymphocytes (CD4 T lymphocytes), monocytes, and macrophages. The function and number of CD4 T lymphocytes and other affected cells are diminished by HIV infection, resulting in profound effects on both humoral and cell-mediated immunity. In the absence of treatment, HIV infection causes generalized immune incompetence, leading to conditions that meet the definition of acquired immunodeficiency syndrome (AIDS) and, eventually, death. The clinical diagnosis of AIDS is made when an HIV-infected child develops any of the opportunistic infections, malignancies, or conditions listed in category C (Table 41–1). In adults and adolescents, the criteria for a diagnosis of AIDS also include an absolute CD4 T-lymphocyte count of 200 cells/μL or less.

Highly active antiretroviral treatment (HAART) can forestall disease progression for many years (≥ 20 years) if taken consistently. However, current treatment fails to eradicate the virus and treatment must be lifelong. The full duration of the favorable outcome of therapy is not yet defined, and it is not known whether adverse effects due to medications and incomplete immune restoration will limit use or impact mortality. Nevertheless, HIV infection can be considered a chronic disease for people with access to treatment rather than an acutely terminal disease.

Early diagnosis offers the opportunity to optimize treatment outcomes for children, adolescents, and adults. Treatment reduces the risk of transmission to others and thus has a public health benefit as well. In an effort to improve early diagnosis, the Centers for Disease Control and Prevention (CDC) recommends that HIV screening tests be conducted in routine health care settings with patient knowledge and right to refuse for patients aged 13–64 years and that all adults should be tested at least once for HIV during their lives. In 2011, the American Academy of Pediatrics recommended at least one-time testing for 16- to 18-year-old adolescents, irrespective of risk factors, living in areas of high (≥ 0.1%) or unknown seroprevalence. In areas of lower seroprevalence, testing is encouraged for all sexually active adolescents and those with other risk factors for HIV infection.


**Epidemiology**

The World Health Organization (WHO) estimated in 2012 that there were 32 million adults and 3.3 million children living with HIV (http://www.who.int/hiv/data/2012_epi_core_en.png). Over 90% live in low- and middle-income countries, primarily sub-Saharan Africa and South and Southeast Asia. Although the number of new infections is estimated to have peaked globally in 1997, infection and mortality rates remain high. Among children younger than 15 years, there were 260,000 new infections and 210,000 deaths in 2012. High rates of new pediatric infections are the result of ongoing mother-to-child transmission (MTCT) in resource-limited settings where access to preventative measures is often not accessible; fewer than 60% of pregnant women received recommend treatment in 2011.

MTCT rates are 20%–40%, overall, if there is no intervention. Transmission occurs in utero, at the time of labor and delivery (peripartum), or during breast-feeding (postnatal transmission). However, MTCT can be reduced to less than 1%–2% with prenatal, perinatal, and postnatal interventions (see Prevention section). The successful implementation of
Table 41–1. Centers for disease control and prevention clinical categories of children with human immunodeficiency virus infection.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Category N: Not symptomatic</strong></td>
<td>No signs or symptoms or only one of the conditions listed in category A</td>
</tr>
<tr>
<td><strong>Category A: Mildly symptomatic</strong></td>
<td>Having two or more of the following conditions:</td>
</tr>
</tbody>
</table>
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&n

Adapted from MMWR Recomm Rep 1994;43(RR-12): 6, 8.

> Mode of Transmission and Pathogenesis

In most cases, HIV infection occurs via mucosal exposure. Information on the early events of HIV infection is based on nonhuman primate models and studies in adults infected by sexual transmission; the events in MTCT are less well studied. At the time of exposure, virus breaches the mucosal barrier, is transported to regional lymph nodes,
replicates, and spreads throughout all lymphoid tissues. Based on nonhuman primate models, replicating virus is found throughout the lymphoid tissue by 48 hours postinfection. During the first days after infection, there is a massive loss of mature CD4 T-helper lymphocytes, especially in the gut mucosa. Approximately 2 weeks after exposure, high levels of HIV are detected in the bloodstream. In adults, the level of viremia declines, without therapy, concurrent with the appearance of an HIV-specific host immune response, and plasma viremia usually reaches a steady-state level about 6 months after primary infection. The amount of virus present in the plasma at that point, known as the “set point,” and thereafter is predictive of the rate of disease progression for the individual. A period of clinical latency usually occurs, lasting from 1 year to more than 12 years, during which the infected person is asymptomatic. However, ongoing viremia and immune activation causes subclinical injury to the immune and other organ systems. The virus and anti-HIV immune responses are in a steady state such that CD4 T-lymphocyte parameters may be stable. Eventually, the balance favors the virus, and the viral burden increases as the CD4 T-lymphocyte count declines, at which time the individual becomes susceptible to opportunistic infections.

Infants with in utero HIV infection have virus detectable in the blood at birth. Those infected peripartum test negative for virus at birth but have virus detected by 2–4 weeks of age. Infant viremia rises steeply, as is also seen in adults reaching a peak at age 1–2 months. In contrast with adults, infants will have only a very gradual decline in plasma viremia that extends to age 4–5 years. Up to 50% of infants will have rapid disease progression to AIDS or death by age 2 years. Although this rapid progression is associated with high-level viremia, measurement of plasma virus and/or CD4 T-lymphocyte parameters do not identify all infants at risk for rapid progression.


PERINATALLY HIV-EXPOSED INFANT

---Clinical Findings---

Newborns with perinatal HIV infection are rarely symptomatic at birth, and there is no recognized primary infection syndrome in these infants. Physical features are not different from uninfected neonates. However, 30%–80% of infected infants have symptoms within the first year of life. Hepatomegaly, splenomegaly, lymphadenopathy, parotitis, and recurrent respiratory tract infections are signs associated with slow progression. Severe bacterial infections, progressive neurologic disease, anemia, and fever are associated with rapid progression. Early ARV therapy can slow or prevent disease progression. Hence, early diagnosis is critical and can be accomplished using laboratory testing during the first months of life.

---Laboratory Diagnosis---

Infants born to HIV-infected mothers will have HIV antibody until 6–18 months of age, regardless of infection status, owing to transplacental passage of maternal antibody. Therefore, diagnosis must be made by direct detection of virus. Age-specific laboratory criteria defining infection status are outlined in Table 41–2. The preferred test for infant diagnosis is detection of HIV DNA or RNA in blood, collectively referred to as nucleic acid amplification testing (NAT). Positive HIV NAT at any age requires repeat testing.

---Table 41-2. Age-specific laboratory criteria defining infection status.---

<table>
<thead>
<tr>
<th>Age ≥ 18 mo:</th>
<th>Infected:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Positive results on two separate determinations on blood or tissue (excluding cord blood) for one or more of the following HIV detection tests: HIV nucleic acid detection (DNA or RNA), HIV antigen (p24), HIV culture.</td>
<td></td>
</tr>
<tr>
<td>Definitively uninfected—lacking prior positive nucleic acid tests or clinical evidence of HIV infection (see Table 41-1) and one of the following:</td>
<td></td>
</tr>
<tr>
<td>• Two negative HIV nucleic acid (DNA or RNA) detection tests from separate specimens, one obtained at age ≥ 1 mo and another at age ≥ 4 mo.</td>
<td></td>
</tr>
<tr>
<td>Or</td>
<td></td>
</tr>
<tr>
<td>• Two negative HIV antibody tests from separate specimens obtained at age ≥ 6 mo.</td>
<td></td>
</tr>
<tr>
<td>Presumptively uninfected—lacking prior positive nucleic acid tests or clinical evidence of HIV infection (see Table 41-1) and one of the following:</td>
<td></td>
</tr>
<tr>
<td>• Two negative HIV nucleic acid detection (DNA or RNA) tests from separate specimens, one obtained at age ≥ 14 d and another at age ≥ 4 wk.</td>
<td></td>
</tr>
<tr>
<td>Or</td>
<td></td>
</tr>
<tr>
<td>• One negative HIV nucleic acid detection test obtained at age ≥ 8 wk.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age &lt; 18 mo:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infected:</td>
</tr>
<tr>
<td>• Positive HIV EIA antibody test with a positive confirmatory test (Western blot, immune fluorescent antibody, rapid antibody test).</td>
</tr>
<tr>
<td>• Positive HIV rapid antibody test with confirmation by a second antibody test from a different manufacturer using a different antigen or test principle.</td>
</tr>
<tr>
<td>• Positive HIV nucleic acid amplification test (HIV DNA or RNA).</td>
</tr>
</tbody>
</table>
Management and Outcome of the Perinatally HIV-Exposed Infant

HIV-infected infants have a high risk of *Pneumocystis jiroveci* pneumonia (PCP), with the peak incidence at age 2–6 months. Thus, prophylaxis for *P jiroveci* pneumonia is given to infants born to HIV-infected mothers beginning at age 4–6 weeks. PCP prophylaxis may be deferred for infants who are demonstrated to be presumptively HIV-uninfected by age 6 weeks. Infants with ongoing HIV exposure via breast-feeding are recommended to continue PCP prophylaxis until HIV infection has been excluded after cessation of breast-feeding.

During the period of postnatal ARV prophylaxis, some infants have reversible anemia or neutropenia that is usually not clinically significant. Subsequently, children who have been exposed to HIV and to ARV drug prophylaxis (but who remain uninfected) are generally healthy. Ongoing studies have found alterations in some growth, neurocognitive development, immune, and organ function parameters, but their clinical significance is not yet known. Some studies have found symptoms consistent with mitochondrial toxicity; other studies have failed to confirm the findings. There is biological plausibility for this toxicity because the nucleoside analogue drugs used during pregnancy and postnatally to prevent transmission may cause mitochondrial toxicity. The issue remains controversial, but at present it is clear that the benefit of prenatal and postnatal treatment to prevent HIV transmission outweighs the potential risk. Ongoing studies are important to elucidate the affects of in utero and perinatal HIV and ARV exposure.

**ACUTE RETROVIRAL SYNDROME**

Among adolescents and adults with primary acute HIV infection, nonspecific symptoms (e.g., flu- or mild mononucleosis-like illness) beginning 2–4 weeks after exposure occur in 30%–90%, but they are frequently not severe enough to be brought to medical attention. This *acute retroviral syndrome*, with symptoms of fever, malaise, and pharyngitis, is often indistinguishable from other similar viral illnesses. Less common but more distinguishing features are generalized lymphadenopathy, rash, oral and genital ulcerations, aseptic meningitis, and thrush. In the early weeks after acute, behaviorally acquired infection, HIV antibody may be absent. Most patients will seroconvert by 6 weeks after exposure, but occasionally seroconversion does not occur for 3–6 months. When acute HIV infection is suspected, nucleic acid amplification tests will detect HIV infection. Additional information on behaviorally acquired HIV is found in Chapter 44.

**PROGRESSIVE HIV DISEASE**

**A. Clinical Findings**

1. **Disease staging**—The CDC has developed disease staging criteria for HIV-infected children (Table 41–3; see Tables 41–1). The criteria incorporate clinical symptoms ranging from no symptoms to mild, moderate, and severe symptoms (categories N, A, B, and C, respectively) and immunologic categories 1, 2, or 3 (defined by age-adjusted CD4 T-lymphocyte counts) corresponding to no, moderate, or severe immune suppression, respectively. Each child’s disease stage is classified both by clinical and CD4 T-lymphocyte category. The WHO has established a similar clinical staging system that is used widely outside the United States (Table 41–4). Staging criteria characterize the degree of disease progression.
### Table 41-3. Immunologic categories based on age-specific CD4 T-lymphocyte counts and percentages of total lymphocytes.

<table>
<thead>
<tr>
<th>Immunologic Category</th>
<th>Age of Child</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt; 12 mo</td>
</tr>
<tr>
<td></td>
<td>Cells/µL</td>
</tr>
<tr>
<td>1. No evidence of suppression</td>
<td>≥ 1500</td>
</tr>
<tr>
<td>3. Evidence of severe suppression</td>
<td>&lt; 750</td>
</tr>
</tbody>
</table>

Adapted from MMWR Recomm Rep 1994;43(RR-12).4.

### Table 41-4. World Health Organization clinical staging of HIV for infants and children with established HIV infection.

<table>
<thead>
<tr>
<th>Clinical stage 1: Asymptomatic</th>
<th>Clinical stage 4: Severe symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic</td>
<td>Unexplained severe wasting, stunting, or severe malnutrition not</td>
</tr>
<tr>
<td>Persistent generalized lymphadenopathy</td>
<td>responding to standard therapy</td>
</tr>
<tr>
<td></td>
<td>Pneumocystis pneumonia</td>
</tr>
<tr>
<td></td>
<td>Recurrent severe bacterial infections (such as empyema, pyomyositis,</td>
</tr>
<tr>
<td></td>
<td>bone or joint infection, or meningitis but excluding pneumonia)</td>
</tr>
<tr>
<td></td>
<td>Chronic herpes simplex infection</td>
</tr>
<tr>
<td></td>
<td>Esophageal candidiasis (or candidiasis of trachea, bronchi, or lungs)</td>
</tr>
<tr>
<td></td>
<td>Extrapulmonary tuberculosis</td>
</tr>
<tr>
<td></td>
<td>Kaposi sarcoma</td>
</tr>
<tr>
<td></td>
<td>Cytomegalovirus infection: retinitis or cytomegalovirus infection</td>
</tr>
<tr>
<td></td>
<td>affecting another organ, with onset at age older than 1 mo</td>
</tr>
<tr>
<td></td>
<td>Central nervous system toxoplasmosis (after 1 mo of life)</td>
</tr>
<tr>
<td></td>
<td>Extrapulmonary cryptococcosis</td>
</tr>
<tr>
<td></td>
<td>HIV encephalopathy</td>
</tr>
<tr>
<td></td>
<td>Disseminated endemic mycosis (coccidiomycosis or histoplasmosis)</td>
</tr>
<tr>
<td></td>
<td>Disseminated nontuberculous mycobacterial infection</td>
</tr>
<tr>
<td></td>
<td>Chronic cryptosporidiosis (with diarrhea)</td>
</tr>
<tr>
<td></td>
<td>Chronic isosporias</td>
</tr>
<tr>
<td></td>
<td>Cerebral or B-cell non-Hodgkin lymphoma</td>
</tr>
<tr>
<td></td>
<td>Progressive multifocal leukoencephalopathy</td>
</tr>
<tr>
<td></td>
<td>Symptomatic HIV-associated nephropathy or HIV-associated cardiomyopathy</td>
</tr>
</tbody>
</table>

and are predictive of mortality risk for children older than 2 years who are not receiving ARV therapy. Disease stage is used in determining when to initiate ARV therapy.

2. Infections related to immunodeficiency—Progressive immune dysfunction of both humoral and cell-mediated responses results in susceptibility to infections. Bacteremia, especially due to *Streptococcus pneumoniae*, occurs at rates of 3 per 100 child-years without HAART and decreases to 0.36 per 100 child-years with HAART, but this remains at least three times higher than in HIV-uninfected children. Infections with *Mycobacterium tuberculosis* are a major cause of morbidity in countries with high rates of endemic tuberculosis (TB). Given the frequency of coinfection, diagnosis of *M. tuberculosis* in a child is an indication for HIV testing. Likewise, children with HIV infection and their family members should have regular evaluation for *M. tuberculosis* exposure and testing if appropriate. Herpes zoster (shingles) occurs 10 times more frequently among untreated HIV-infected children compared with age-matched healthy children.

Late-stage immunodeficiency is accompanied by susceptibility to a variety of opportunistic pathogens. Pneumonia caused by *P. jiroveci* is a common AIDS-defining diagnosis in children with unrecognized HIV infection who, therefore, are not receiving PCP prophylaxis. The incidence is highest between ages 2 and 6 months and is often fatal during this period. Symptoms are difficult to distinguish from those of viral or atypical pneumonia (see Chapter 43). Persistent candidal mucocutaneous infections (oral, cutaneous, and vaginal) are common. Candidal esophagitis occurs with more advanced disease. Cytomegalovirus (CMV) infections may result in disseminated disease, hepatitis, gastroenteritis, retinitis, and encephalitis. Disseminated infection with *Mycobacterium avium* complex (MAC), presenting with fever, night sweats, weight loss, diarrhea, fatigue, lymphadenopathy, hepatomegaly, anemia, and granulocytopenia, occurs in infected children who have CD4 T-lymphocyte counts below 50–100/μL. A variety of diarrheal pathogens that cause mild, self-limited symptoms in healthy persons may result in severe, chronic diarrhea in HIV-infected persons. These include *Cryptosporidium parvum*, *Microsporidia*, *Cyclospora*, *Isospora belli*, *Giardia lamblia*, and bacterial pathogens. Chronic parovirus infection manifested by anemia can occur.

3. Organ system disease—HIV infection may directly affect a variety of organ systems and produce disease manifestations that include encephalopathy, pneumonitis, hepatitis, diarrhea, hematologic suppression, nephropathy, and cardiomyopathy. On average, HIV-infected children have lower than normal neuropsychological functioning. In many children, neuropsychological deficits do not normalize when ARV therapy is started, despite suppression of viremia. Findings include acquired microcephaly, progressive motor deficit, ataxia, pseudobulbar palsy, and failure to attain (or loss of) developmental milestones.

Lymphoid interstitial pneumonitis, which is common in untreated children with HIV infection, is characterized by a diffuse peribronchial and interstitial infiltrate composed of lymphocytes and plasma cells. It may be asymptomatic or associated with dry cough, hypoxemia, dyspnea or wheezing on exertion, and clubbing of the digits. Children with this disorder frequently have enlargement of the parotid glands and generalized lymphadenopathy.

4. Malignancy—Children with HIV are at increased risk of malignancy. The most commonly occurring tumors are non-Hodgkin lymphomas which may occur at unusual extranodal sites (central nervous system, bone, gastrointestinal tract, liver, or lungs). Human papillomavirus infection of the cervix is more likely to progress to neoplasia, and the rate of progression is not altered by HAART. Carcinoma due to anal human papillomavirus is also a concern. Kaposi sarcoma, a skin/mucous membrane malignancy, common in HIV-infected gay males with advanced disease, is also observed among HIV-infected African children, but it is rare in children in the United States.

B. Laboratory Findings

Established HIV infection in children older than 18 months may be diagnosed by detecting HIV antibody by immunoadsay) or by rapid antibody tests. A confirmatory test, usually a Western blot, immune fluorescent antibody, or a second rapid test from a different manufacturer using a different antigen or test principle, must be performed because rare individuals have cross-reacting antibodies which result in a false-positive ELISA or rapid tests.

The hallmark of HIV disease progression is decline in the absolute number and percentage of CD4 T lymphocytes and an increasing percentage of CD8 T lymphocytes. The CD4 T-lymphocyte values are predictive of the child’s risk of opportunistic infections. Healthy infants and children have CD4 T-lymphocyte numbers that are much higher than in adults; these gradually decline to adult levels by age 5–6 years. Hence, age-adjusted values must be used when assessing a child’s absolute CD4 T-lymphocyte count (see Table 41–3). CD4 T-lymphocyte percentage, which does not vary significantly with age, is also a useful parameter.

Hypergammaglobulinemia of IgG, IgA, and IgM is characteristic. Late in the disease, some individuals may become hypogammaglobulinemic. Hematologic abnormalities (anemia, neutropenia, and thrombocytopenia) may occur due to effects of HIV disease. The cerebrospinal fluid (CSF) may either be normal or may be associated with elevated protein and a mononuclear pleocytosis; HIV nucleic acid testing may be positive in CSF.

C. Differential Diagnosis

HIV infection should be in the differential diagnosis for children being evaluated for immunodeficiency. Depending on the degree of immunosuppression, the presentation in
HIV infection may be similar to that of B-cell (eg, hypogammaglobulinemia), T-cell, or combined immunodeficiencies (eg, severe combined immunodeficiency) (see Chapter 33). HIV infection should also be considered in the evaluation of children with failure to thrive, developmental delay, chronic lung disease, and *M tuberculosis* infection. Chronic HIV infection presenting with generalized lymphadenopathy or hepatosplenomegaly may resemble infections with viruses such as EBV or CMV in children or adolescents. Because blood tests are definitive for the diagnosis of HIV infection, the diagnosis can be readily established or excluded. In rare cases, HIV-infected children with hypogammaglobulinemia have falsely negative antibody tests but may be diagnosed with a nucleic acid–based test. Absence of maternal risk factors or history of negative test results during pregnancy should not dissuade from testing for HIV if the patient has signs consistent with HIV-associated disease since maternal acquisition of HIV late in pregnancy can result in transmission to the infant and may be missed by maternal prenatal HIV testing.

Centers for Disease Control and Prevention: 1994 revised classification system for human immunodeficiency virus infection in children less than 13 years of age. MMWR Recomm Rep 1994;43(RR-12):1 [PMID: 7908403].


---

**Treatment**

HIV infection calls for specific ARV treatment to prevent progressive deterioration of the immune system as well as prophylactic measures at late stages of HIV infection to prevent opportunistic infections. Guidelines for the treatment of HIV and prevention of opportunistic infections developed by US national working groups of pediatric HIV specialists are published by the U.S. Public Health System at: http://www.aidsinfo.nih.gov. The treatment paradigm changes frequently; therefore, prior to initiating treatment, expert consultation should be obtained.

### A. Specific Measures

1. **Principles of HIV treatment**—Treatment of HIV is aimed at suppressing viral replication, thereby increasing/maintaining immune function. ARV treatment that reduces HIV replication is associated with an increase in CD4 T-lymphocyte count and reconstitution of immune function. HIV has a high spontaneous mutation rate that leads to emergence of drug resistance if viral suppression is incomplete. Prevention of resistance mutations requires that virus is not replicating and has no opportunity to generate new mutations. Thus regimens that fully suppress viral replication are key to long-term treatment success.

The current standard regimens are combinations of three drugs, including at least two drugs with different mechanisms of action. Optimally, children on ARV treatment will have laboratory monitoring every 3–4 months to confirm viral suppression and maintenance of CD4 T lymphocytes. If plasma virus becomes consistently detectable (> 400 copies/mL), the underlying cause must be determined, and, if necessary, a change in the medication combination is made. Regular viral load testing is cost-prohibitive in many resource-limited settings, so monitoring the response to ARV treatment must rely on clinical assessment, preferably supplemented with periodic CD4 T-lymphocyte testing. This approach has the risk of continuing a regimen that is not fully suppressive, which may result in accumulating drug resistance mutations. Despite this risk, ARV treatment has resulted in markedly reduced mortality in resource-limited-settings, as it has in settings with viral load monitoring.

Within 3–6 months of successful ARV treatment, circulating HIV declines to below the limit of detection and CD4 T-lymphocyte counts improve and may normalize. However, HIV persists in long-lived resting cells, and cessation of ARV treatment results in resumption of viremia and decline in CD4 T lymphocytes. Therefore, treatment for HIV with currently available modalities must be lifelong.

Strict adherence to the prescribed treatment is critical. A wide range of issues will impact adherence, including convenience and tolerability as well as psychosocial factors such as developmental stage, mental health of child and caregiver, HIV knowledge, and beliefs about treatment. Programs and services that enhance adherence are essential adjuncts of any HIV treatment regimen.

2. **Criteria for initiation of antiretroviral medications**—Many individuals with HIV will have slow disease progression and are asymptomatic for several years. This has led to debate about the optimal timing for initiation of ARV treatment. The current paradigm has shifted toward earlier initiation. Early treatment has advantages of more complete immune reconstitution and reduced risk of HIV disease...
complications but presents potential risks of increased medication toxicity and development of viral resistance. Country-specific treatment guidelines are published and updated when new evidence is available. The criteria for initiation may differ among countries, particularly for resource-rich versus resource-limited settings. WHO recommendations are found at http://www.who.int/hiv/topics/paediatric/en/index.html.

The United States guidelines recommend clinicians consider treatment for all HIV-infected children even at early stages of the disease. Infants diagnosed early have a 30%-50% risk of progression to AIDS or death by age 12–24 months, and there are no tests that reliably identify these rapid progressions. A randomized trial that compared early versus deferred treatment for infants demonstrated a survival benefit for early treatment. Therefore, infants younger than 12 months per US guidelines and 24 months per WHO guidelines, irrespective of clinical or immunologic progression, should begin treatment as soon as possible after diagnosis. For children who have survived longer prior to diagnosis, the risk of rapid progression is less. However, those with evidence of clinical progression (CDC Classification B or C and WHO Stages 3 and 4) or with low CD4 T-lymphocyte counts (category 2 or 3) are at risk of progression within 12 months and should start treatment promptly. High plasma viral load (> 100,000 copies/mL) is also associated with near-term disease progression. For children lacking evidence of disease progression and with low viral loads, deferred treatment may be considered, but most clinicians recommend treatment to reduce the effects of HIV on growth, development, and organ systems.

3. Antiretroviral medications—The U.S. Food and Drug Administration (FDA) has approved 25 drugs categorized into five different drug classes for the treatment of HIV. Many of the drugs have pediatric indications for older children, but pharmacokinetic data and administration forms appropriate for infants and toddlers are not available for many. The mechanism of action of each class is described briefly as follows. Specific drugs in each class are listed in Table 41–5.

A. NUCLEOSIDE AND NUCLEOTIDE REVERSE TRANSCRIPTASE INHIBITORS (NRTIs)—The NRTIs act as nucleotide analogues, which are incorporated into HIV DNA during transcription by the HIV reverse transcriptase. The result is chain termination and failure to complete provirus, preventing integration of HIV genome into cellular DNA.

B. NON-NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS (NNRTIs)—NNRTIs also inhibit HIV DNA synthesis but act at a different site on the viral reverse transcriptase enzyme so that cross-resistance with NRTIs does not occur.

### Table 41–5. U.S. Food and Drug Administration–approved antiretroviral drug class (mechanism of action) and specific drugs in class.

<table>
<thead>
<tr>
<th>Nucleoside/ Nucleotide Reverse Transcriptase Inhibitors (NRTIs)</th>
<th>Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs)</th>
<th>Protease Inhibitors (PIs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Chain termination of HIV DNA)</td>
<td>(Synthesis of HIV DNA inhibited)</td>
<td>(Production of noninfectious virions)</td>
</tr>
<tr>
<td>Abacavir (ABC; Ziagen)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Delavirdine (DLV, Rescriptor)</td>
<td>Atazanavir (ATV, Reyataz)&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Didanosine (ddI; Videx)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Efavirenz (EFV, Sustiva)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Darunavir (DRV, Prezista)&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Emtricitabine (FTC; Emtriva)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Etravirine (ETR, Intelence)</td>
<td>Fosamprenavir (FPV, Lexiva)</td>
</tr>
<tr>
<td>Lamivudine (3TC; Epivir)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Nevirapine (NVP, Viramune)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Indinavir (IDV, Crizivax)</td>
</tr>
<tr>
<td>Stavudine (d4T; Zerit)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Rilpivirine (RPV, Edurant)</td>
<td>Lopinavir/ritonavir (LPV/r, Kaletra)&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Tenofovir (TDF; Viread)&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
<td>Nelfinavir (NFV, Viracept)&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Zidovudine (ZDV, AZT; Retrovir)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Ritonavir (RTV, Norvir)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Saquinavir (SQV, Invirase)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tipranavir (TPV, Aptivus)&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Integrase Inhibitor</td>
<td>Entry Inhibitors</td>
<td></td>
</tr>
<tr>
<td>(Integration of viral nucleic acid in host genome prevented)</td>
<td>(Viral entry prevented by inhibition of virus-cell membrane fusion or blocking co-receptor.)</td>
<td></td>
</tr>
<tr>
<td>Dolutegravir (DTG, Tivicay)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Enfuiviride (T-20, Fuzeon)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Maraviroc (MVC, Selzentry)</td>
</tr>
<tr>
<td>Elvitegravir (Evg, Striibild)&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raltegravir (RAL, Isentress)&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup>FDA-approved drug for use in pediatric populations.
<sup>b</sup>Available only in combination drug pill with tenofovir, emtricitabine, and cobicistat.

C. PROTEASE INHIBITORS (PIs)—PIs bind the HIV protease and interfere with assembly of infectious virions. Most are given in combination (“boosted”) with a low dose of ritonavir, a second protease inhibitor, which inhibits their metabolism and thereby increases plasma levels.
D. INTEGRASE INHIBITOR (INSTIs)—These drugs inhibit the viral integrase enzyme and prevent integration of HIV-1 nucleic acid into the host genome.

E. ENTRY INHIBITORS—There are two approved entry inhibitors. Enfuvirtide binds to the viral envelope protein and interferes with HIV fusion with the host cell plasma membrane, thereby preventing entry of the virus into the cell. Enfuvirtide must be administered parenterally, which limits tolerability. Maraviroc is a chemokine receptor antagonist that binds one of the HIV coreceptor proteins (CCR5) on the host CD4 T lymphocyte. This blocks viral binding and prevents cell entry for virus that uses that receptor.

4. Complications of antiretroviral medications—ARV treatment may result in a range of adverse effects. Each medication has specific toxicities which are described in detail at http://aidsinfo.nih.gov/contentfiles/lvguidelines/113/appendix-a–pediatric-antiretroviral-drug-information. Common adverse events are gastrointestinal distress, hematologic toxicity (anemia, neutropenia), elevated liver enzymes, dyslipidemia (elevated LDL-cholesterol and triglycerides), glucose intolerance, and abnormal fat distribution (lipodystrophy). Reduced bone mineral content and renal dysfunction may result from drug effects as well as from direct effects of HIV. Several drugs (eg, nevirapine, abacavir) have been associated with severe hepatitis, sometimes associated with a systemic hypersensitivity reaction which may be life threatening if not identified early or upon rechallenge with the same medication. The nucleoside and nucleotide analogues have low-level affinity for the human mitochondrial DNA polymerase. Therefore, these analogues may be incorporated into mitochondrial DNA, which is one mechanism that may lead to adverse effects. Mitochondrial toxicity can result in lactic acidosis, a rare, but potentially fatal, complication. During the initial weeks of treatment, immune restoration may lead to worsening or unmasking of symptoms due to underlining infection with other organisms such as M tuberculosis, an event termed immune reconstitution inflammatory syndrome (IRIS).

B. General Measures

1. Immunizations—Although vaccines are immunogenic in HIV-infected children, the magnitude and durability of the antibody responses to vaccines are often diminished even when administered to a child on effective ARV treatment. Additional doses to boost responses are recommended for some vaccines. More vigorous vaccine responses are found in children with suppressed plasma virus and restored CD4 T-lymphocyte counts. Therefore, for children who were immunized prior to establishment of effective ART, reimmunization should be considered and is recommended for some vaccines (eg, measles-mumps-rubella vaccine).

All inactivated vaccines are safe to administer to HIV-infected children. Annual immunization with inactive influenza vaccine after age 6 months is recommended for HIV-infected children and their close contacts. For live attenuated viral vaccines, the immune status of the child...
must be considered. Varicella and mumps-measles-rubella vaccines (but not the combined measles-mumps-rubella-varicella vaccine) are recommended for HIV-infected children, provided they are only mildly symptomatic (CDC Class N or A; see Table 41–1) and have CD4 T-lymphocyte parameters consistent with CDC category 1 or 2 (see Table 41–3). Current studies are investigating rotavirus vaccine in HIV-exposed and HIV-infected infants. The majority of infants born to HIV-infected women in the United States will be HIV-uninfected, so rotavirus is recommended even though it will be initiated before HIV infection is definitively excluded by early testing. Live attenuated influenza vaccine (LAIV) is not recommended for HIV-infected individuals, although initial studies have not identified safety concerns; close contacts may receive LAIV. Yellow fever vaccine is contraindicated in symptomatic HIV infection or with low CD4 T-lymphocyte count (< 200 cells/μL or CD4 < 15% if age < 6 years), but the benefits may outweigh the risk for asymptomatic individuals with higher CD4 T-lymphocyte counts. Bacille Calmette-Guérin (BCG), oral polio, smallpox, and live typhoid vaccines should not be given to HIV-infected people.

For some vaccines, additional doses or changes to the routine schedule are recommended. Children who have not received Haemophilus influenzae type b (Hib) vaccine and pneumococcal conjugate vaccine (PCV13) series as infants (e.g., immigrants) may benefit from Hib vaccine (two doses between 12 and 59 months of age; one dose after 59 months of age) and two doses of PCV13 (separated by 8 weeks) which may be given after the usual cutoff age of 60 months. The 23-valent pneumococcal polysaccharide vaccine (PPSV) should also be given after age 2 years (and after a PCV13 series), with a second dose given at 3–5 years later. Although HIV infection is not an absolute indication for early administration of meningococcal conjugate vaccine (MCV), because antibody responses to the vaccine may be suboptimal, HIV-infected children who are vaccinated should receive a two-dose primary series. The response to hepatitis B vaccine is particularly unreliable in people with HIV infection. Therefore, a test for hepatitis B surface antibody should be obtained after the three-dose series. If the titer is less than 10 mIU/mL, a second series of three vaccinations is recommended.

2. Prophylaxis for infections—Children with suppressed CD4 T-lymphocyte numbers benefit from primary and secondary prophylactic treatment to prevent opportunistic infections. Children who have had their CD4 T-lymphocyte counts restored with ARV therapy to category 1 or 2 for over 3 months can be taken off prophylactic treatments.

Antibiotic prophylaxis for *P jiroveci* pneumonia has been extremely effective. HIV-infected infants should receive *Pneumocystis* prophylaxis until age 12 months, after which prophylaxis is based on assessment of symptoms and age-adjusted CD4 T-lymphocyte counts every 3 months. Children with low CD4 T-lymphocyte parameters (CDC category 3; see Table 41–3) should continue/begin PCP prophylaxis. Published guidelines from the CDC for *P jiroveci* pneumonia prophylaxis are summarized in Table 41–6.

3. Psychosocial support and mental health—Evaluation and support for psychosocial needs of HIV-affected families is imperative. As with other chronic illnesses, HIV infection affects all family members and also carries additional social stigma. Emotional concerns and financial needs, which are more prominent than medical needs at many stages of the disease process, influence the family’s ability to comply with a medical treatment regimen. HIV-infected children often have comorbid mental health conditions. Rates of attention-deficit/hyperactivity disorder range from 20% to 50% in various studies. Hospital admissions for mental health disorders are more frequent among HIV-infected children. In one study, dual diagnosis of HIV and a mental health disorder occurred in 85% of adolescents who acquired HIV infection through high-risk behaviors. Ideally, care should be coordinated by a team of caregivers that is familiar with HIV disease and its comorbidities, newest therapies, and community resources.

<table>
<thead>
<tr>
<th>Table 41–6. Drug regimens for <em>Pneumocystis jiroveci</em> prophylaxis for children older than 4 wk.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Recommended regimen</strong></td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole, 150 mg TMP/m²/d plus 750 mg SMX/m²/d, administered orally, divided into two doses per d/3 d a week on consecutive days</td>
</tr>
<tr>
<td>Alternative (same total daily dosages): Single-daily dose 3 d a week on consecutive days Divided twice-daily doses 7 d a week</td>
</tr>
<tr>
<td><strong>Alternative if trimethoprim-sulfamethoxazole is not tolerated</strong></td>
</tr>
<tr>
<td>Dapsone, 2 mg/kg/d (not to exceed 100 mg) orally once daily or 4 mg/kg (not to exceed 200 mg) orally once weekly</td>
</tr>
<tr>
<td>Atovaquone, age 1–3 mo and &gt; 24 mo, 30 mg/kg orally once daily, age 4–24 mo, 45 mg/kg orally once daily</td>
</tr>
<tr>
<td>Aerosolized pentamidine (children &gt; age 5 y), 300 mg via inhaler monthly</td>
</tr>
</tbody>
</table>

PREVENTION

**Prevention of Mother-to-Child Transmission (PMTCT)**

A number of ARV regimens given to the mother antenatally and during labor and to the infant in the first weeks after birth reduce MTCT rates to 1%–2% without breast-feeding and 3%–5% with breast-feeding. The United States Public Health Services publishes detailed guidelines that are updated frequently (http://aidsinfo.nih.gov/content-files/PerinatalGL.pdf). In the United States, all identified HIV-infected pregnant women are prescribed HAART during pregnancy and labor, infant zidovudine for 6 weeks, and avoidance of breast-feeding. Infants receive combination ARV medications if they are born to women with a higher risk of transmission (no or late maternal ARV treatment and/or lacking viral suppression). Elective C-section prior to labor will also reduce transmission risk for women who have plasma virus 1000 copies/mL or greater. The same interventions are effective in resource-limited settings, but in these countries, breast-feeding has a demonstrated survival value and is therefore recommended. Extended maternal HAART or infant ARV prophylaxis throughout the period of breast-feeding reduces breast milk transmission. A non-HAART maternal regimen is also effective in reducing MTCT and is used in some countries that lack resources for starting HAART in pregnant women who have not had disease progression that qualifies for initiating HAART per country-specific guidelines.

Key to prevention of mother-to-child transmission (PMTCT) is identification of pregnant women with HIV infection. The CDC and the American College of Obstetrics and Gynecology recommend routine HIV testing, with an option to refuse, early in gestation for all pregnant women. Women with ongoing risk factors for HIV acquisition (multiple partners, sexually transmitted diseases [STDs], substance use) should be tested again in late gestation. A woman presenting in labor without previously documented HIV testing should have HIV testing using rapid test assays that yield results within 60 minutes or less. ARV medications, even if implemented as late as 48 hours postpartum, may reduce transmission by as much as 50%.

**Prevention of Sexual Transmission**

Latex condoms used consistently and correctly are highly effective in preventing sexual transmission. Behavioral interventions to increase use of condoms and other safer sex practices are a cornerstone of prevention efforts. However, the success rate with behavioral interventions has been inadequate in most populations. Several biomedical prevention interventions, added to condom use, have demonstrated efficacy in randomized clinical trials. These include (1) male circumcision—approximately 50% reduction in female-to-male transmission; (2) preexposure prophylaxis (PrEP) for HIV-uninfected partners using daily tenofovir—44%–70% reduction for MSM and 60%–70% reduction for discordant heterosexual couples (summaries at http://www.cdc.gov/hiv/prep/); and (3) ARV treatment of HIV-infected individuals—96% reduction in the risk of transmission to HIV-uninfected partners. Finally, postexposure prophylaxis (PEP) using combination ARV drugs initiated within 72 hours after a known HIV exposure was associated with reduced transmission in case-cohort studies. The CDC supports a consult service for questions regarding postexposure prophylaxis (PEP line, 888-488-4911).

**Prevention Through Universal Precautions**

Horizontal transmission (in the absence of sexual contact or injecting drug use) of HIV is exceedingly rare and is associated with exposure of broken skin or mucous membranes to HIV-infected blood or bloody secretions. Several cases have resulted from HIV-infected caregivers feeding children premasticated food; hence, families should be advised against this practice. Saliva, tears, urine, and stool are not contagious if they do not contain gross blood. A barrier protection (eg, latex or rubber gloves or thick pads of fabric or paper) should be used when possible contact with blood or bloody body fluids occurs. Objects that might be contaminated with blood, such as razors or toothbrushes, should not be shared. No special care is required for dishes, towels, toys, or bedsheets. Blood-soiled clothing may be washed routinely with hot water and detergent. Contaminated surfaces may be disinfected easily with a variety of agents, including household bleach (1:10 dilution), some commercial disinfectants (eg, Lysol), or 70% isopropyl alcohol.

The infant or child who is well enough to attend day care or school should not be treated differently from other children. The exception may be a toddler with uncontrollable biting behavior or bleeding lesions that cannot be covered adequately; in these situations, the child may be withheld from group day care. Families may choose to make the school health care provider and/or teacher aware of the diagnosis, but there is no legal requirement that any individual at the school or day...
care center be informed. The parents and child may prefer to keep the diagnosis confidential, because the stigma associated with HIV infection remains difficult to overcome. Because undiagnosed HIV-infected infants and children might be enrolled, all schools and day care centers should have policies with simple guidelines for using universal precautions to prevent transmission of HIV infection in these settings.


Infections: Bacterial & Spirochetal

John W. Ogle, MD
Marsha S. Anderson, MD

BACTERIAL INFECTIONS

GROUP A STREPTOCOCCAL INFECTIONS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Streptococcal pharyngitis:
  - Clinical diagnosis based entirely on symptoms; signs and physical examination unreliable.
  - Throat culture or rapid antigen detection test positive for group A streptococci.
- Impetigo:
  - Rapidly spreading, highly infectious skin rash.
  - Erythematous denuded areas and honey-colored crusts.
  - Group A streptococci are grown in culture from most (not all) cases.

General Considerations

Group A streptococci (GAS) are common gram-positive bacteria producing a wide variety of clinical illnesses, including acute pharyngitis, impetigo, cellulitis, and scarlet fever, the generalized illness caused by strains that elaborate erythrogenic toxin. GAS can also cause pneumonia, septic arthritis, osteomyelitis, meningitis, and other less common infections. GAS infections may also produce nonsuppurative sequelae (rheumatic fever and acute glomerulonephritis).

The cell walls of streptococci contain both carbohydrate and protein antigens. The C-carbohydrate antigen determines the group, and the M- or T-protein antigens determine the specific type. In most strains, the M protein appears to confer virulence, and antibodies developed against the M protein are protective against reinfection with that type.

Almost all GAS are β-hemolytic. These organisms may be carried without symptoms on the skin and in the pharynx, rectum, and vagina. All GAS are sensitive to penicillin. Resistance to erythromycin is common in some countries and has increased in the United States.

Prevention

GAS pharyngitis usually occurs after contact with respiratory secretions of a person infected with GAS. Crowding facilitates spread of GAS and outbreaks of pharyngitis and impetigo can be seen. Prompt recognition and institution of antibiotics may decrease spread. Treatment with antibiotics prevents acute rheumatic fever.

Clinical Findings

A. Symptoms and Signs

1. Respiratory infections

A. Infancy and early childhood (age < 3 years)—The onset is insidious, with mild symptoms (low-grade fever, serous nasal discharge, and pallor). Otitis media is common. Exudative pharyngitis and cervical adenitis are uncommon in this age group.

B. Childhood type—Onset is sudden, with fever and marked malaise and often with repeated vomiting. The pharynx is sore and edematous, and generally there is tonsillar exudate. Anterior cervical lymph nodes are tender and enlarged. Small petechiae are frequently seen on the soft palate. In scarlet fever, the skin is diffusely erythematous and appears sunburned and roughened (sandpaper rash). The rash is most intense in the axillae, groin, and on the abdomen and trunk. It blanches except in the skin folds, which do not blanch and are pigmented (Pastia sign). The rash
usually appears 24 hours after the onset of fever and rapidly spreads over the next 1–2 days. Desquamation begins on the face at the end of the first week and becomes generalized by the third week. Early in the course of infection, there is circumferential pallor and the surface of the tongue is coated white, with the papillae enlarged and bright red (white strawberry tongue). Subsequently desquamation occurs, and the tongue appears beefy red (strawberry tongue). Petechiae may be seen on all mucosal surfaces.

C. Adult type—The adult type of GAS is characterized by exudative or nonexudative tonsillitis with fewer systemic symptoms, lower fever, and no vomiting. Scarlet fever is uncommon in adults.

2. Impetigo—Streptococcal impetigo begins as a papule that vesiculates and then breaks, leaving a denuded area covered by a honey-colored crust. Both *Staphylococcus aureus* and GAS are isolated in some cases. The lesions spread readily and diffusely. Local lymph nodes may become swollen and inflamed. Although the child often lacks systemic symptoms, a high fever and toxicity may be present. If flaccid bullae are noted, the disease is called bullous impetigo and is caused by an epidermolytic toxin-producing strain of *S. aureus.*

3. Cellulitis—The portal of entry is often an insect bite or superficial abrasion. A diffuse, rapidly spreading cellulitis occurs that involves the subcutaneous tissues and extends along the lymphatic pathways with only minimal local suppuration. Local acute lymphadenitis occurs. The child is usually acutely ill, with fever and malaise. In classic erysipelas, the involved area is bright red, swollen, warm, and very tender. The infection may extend rapidly from the lymphatics to the bloodstream.

Streptococcal perianal cellulitis is an entity peculiar to young children. Pain with defecation often leads to constipation, which may be the presenting complaint. The child is afebrile and otherwise well. Perianal erythema, tenderness, and painful rectal examination are the only abnormal physical findings. Scant rectal bleeding with defecation may occur. A perianal swab culture usually yields heavy growth of GAS. A variant of this syndrome is streptococcal vaginitis in prepubertal girls. Symptoms are dysuria and pain; marked erythema and tenderness of the introitus and blood-tinted discharge are seen.

4. Necrotizing fasciitis—This dangerous disease is reported sporadically and may occur as a complication of varicella infection. About 20%–40% of cases are due to GAS; 30%–40% are due to *S. aureus*; and the rest are a result of mixed bacterial infections. The disease is characterized by extensive necrosis of superficial fasciae, undermining of surrounding tissue, and usually systemic toxicity. Initially the skin overlying the infection is tender and pale red without distinct borders, resembling cellulitis. Blisters or bullae may appear. The color deepens to a distinct purple or in some cases becomes pale. Tenderness out of proportion to the clinical appearance, skin anesthesia (due to infarction of superficial nerves), or “woody” induration suggest necrotizing fasciitis. Involved areas may develop mild to massive edema. Early recognition and aggressive debridement of necrotic tissue are essential.

5. Group A streptococcal infections in newborn nurseries—GAS epidemics occur occasionally in nurseries. The organism may be introduced into the nursery from the vaginal tract of a mother or from the throat or nose of a mother or a staff member. The organism then spreads from infant to infant. The umbilical stump is colonized while the infant is in the nursery. Like staphylococcal infections, there may be no or few clinical manifestations while the infant is still in the nursery. Most often, a colonized infant develops a chronic oozing omphalitis days later. The organism may spread from the infant to other family members. Serious and even fatal infections may develop, including sepsis, meningitis, empyema, septic arthritis, and peritonsillitis.

6. Streptococcal sepsis—Serious illness from GAS sepsis is now more common both in children and in adults. Rash and scarlet fever may be present. Prostration and shock result in high mortality rates. Pharyngitis is uncommon as an antecedent illness. Underlying disease is a predisposing factor.

7. Streptococcal toxic shock syndrome (STSS)—Toxic shock syndrome caused by GAS has been defined. Like *S. aureus*–associated toxic shock, multiorgan system involvement is a prominent part of the illness. The diagnostic criteria include (1) isolation of GAS from a normally sterile site, (2) hypotension or shock, and (3) at least two of the following: renal impairment (creatinine > two times the upper limit of normal for age), thrombocytopenia (< 100,000/mm³), or coagulopathy, liver involvement (transaminases > two times normal), acute respiratory distress syndrome, generalized erythematous macular rash or soft tissue necrosis (myositis, necrotizing fasciitis, gangrene). In cases that otherwise meet clinical criteria, isolation of GAS from a nonsterile site (throat, wound, or vagina) is indicative of a probable cause.

B. Laboratory Findings

Leukocytosis with a marked shift to the left is seen early. Eosinophilia regularly appears during convalescence. β-Hemolytic streptococci are cultured from the throat or site of infection. For suspected GAS pharyngitis, the throat should be swabbed and the specimen sent for GAS testing (rapid antigen detection tests and/or culture for GAS) because the clinical features of some viral infections may overlap with the clinical features of GAS. In children and adolescents, negative rapid antigen tests should be backed up by a culture. Patients with positive rapid strep antigen tests do not need a confirmation by throat culture, since the specificities of antigen tests are high. The organism may be
cultured from the skin and by needle aspiration from subcutaneous tissues and other involved sites such as infected nodes. Occasionally blood cultures are positive.

Antistreptolysin O (ASO) titers rise about 150 units within 2 weeks after acute infection. Elevated ASO and anti-DNase B titers are useful in documenting prior throat infections in cases of acute rheumatic fever. The streptozyme test detects antibodies to streptolysin O, hyaluronidase, streptokinase, DNase B, and NADase. It is somewhat more sensitive than the measurement of ASO titers.

Proteinuria, cylindruria, and minimal hematuria may be seen early in children with streptococcal infection. True poststreptococcal glomerulonephritis is seen 1–4 weeks after the respiratory or skin infection.

**Differential Diagnosis**

Streptococcal infection in early childhood must be differentiated from adenovirus and other respiratory virus infections. The pharyngitis in herpangina (coxsackievirus A) is vesicular or ulcerative. Herpes simplex also causes ulcerative lesions, which most commonly involve the anterior pharynx, tongue, and gums. In infectious mononucleosis, the pharyngitis is also exudative, but splenomegaly and generalized adenopathy are typical, and laboratory findings are often diagnostic (atypical lymphocytes, elevated liver enzymes, and a positive heterophile or other serologic test for mononucleosis). Uncomplicated streptococcal pharyngitis improves within 24–48 hours if penicillin is given and by 72–96 hours without antimicrobials.

Group G and group C streptococci are uncommon causes of pharyngitis but have been implicated in epidemics of sore throat in college students. Acute rheumatic fever does not occur following group G or group C infection, although acute glomerulonephritis (AGN) is a complication. *Arcanobacterium hemolyticum* may cause pharyngitis with scarlatina-like or maculopapular truncal rash. In diphtheria, systemic symptoms, vomiting, and fever are less marked; pharyngeal pseudomembrane is confluent and adherent; the throat is less red; and cervical adenopathy is prominent.

Pharyngeal tularaemia causes white rather than yellow exudate. There is little erythema, and cultures for β-hemolytic streptococci are negative. A history of exposure to rabbits and a failure to respond to antimicrobials may suggest the diagnosis. Leukemia and agranulocytosis may be present with pharyngitis and are diagnosed by bone marrow examination.

Scarlet fever must be differentiated from chronic skin infections, such as that complicating childhood eczema. Both acute rheumatic fever and AGN are nonsuppurative complications of GAS infections.

**A. Acute Rheumatic Fever (See Chapter 20)**

**B. Acute Glomerulonephritis**

AGN can follow streptococcal infections of either the pharynx or the skin—in contrast to rheumatic fever, which follows pharyngeal infection only. AGN may occur at any age, even infancy. In most reports of AGN, males predominate by a ratio of 2:1. Rheumatic fever occurs with equal frequency in both sexes. Certain M types are associated strongly with poststreptococcal glomerulonephritis (nephritogenic types). The serotypes producing disease on the skin often differ from those found in the pharynx.

The incidence of AGN after streptococcal infection is variable and has ranged from 0% to 28%. Several outbreaks of AGN in families have involved 50%–75% of siblings of affected patients in 1- to 7-week periods. Second attacks of glomerulonephritis are rare. The median period between infection and the development of glomerulonephritis is 10 days. In contrast, acute rheumatic fever occurs after a median of 18 days.

**C. Poststreptococcal Reactive Arthritis**

Following an episode of group A streptococcal pharyngitis, a reactive arthritis develops in some patients. This reactive arthritis is believed to be due to immune complex deposition and is seen about 1–2 weeks following the acute infection. Patients with poststreptococcal reactive arthritis do not have the full constellation of clinical and laboratory criteria needed to fulfill the Jones criteria for a diagnosis of acute rheumatic fever.

**Treatment**

**A. Specific Measures**

Treatment is directed toward both eradication of acute infection and prevention of rheumatic fever. In patients with pharyngitis, antibiotics should be started early to relieve symptoms and should be continued for 10 days to prevent rheumatic fever. Although early therapy has not been shown to prevent AGN, it seems advisable to treat impetigo promptly in sibling contacts of patients with poststreptococcal nephritis. Neither sulfonamides nor trimethoprim-sulfamethoxazole (TMP-SMX) is effective in the treatment of streptococcal infections. Although topical therapy for impetigo with antimicrobial ointments (especially mupirocin) is as
For infections requiring intravenous therapy, aqueous penicillin G (250,000 U/kg in six divided doses) given intravenously is usually the drug of choice. Cefazolin (100 mg/kg/d intravenously or intramuscularly in three divided doses); clindamycin (30–40 mg/kg/d intravenously in four divided doses); and vancomycin (40 mg/kg/d intravenously in four divided doses) are alternatives in penicillin-allergic patients. Clindamycin should not be used alone empirically for severe, suspected GAS infections because a small percentage of isolates in the United States are resistant to it. Some physicians use both penicillin and clindamycin in patients with necrotizing fasciitis or STSS.

3. Serious GAS disease—Serious GAS infections, such as pneumonia, osteomyelitis, septic arthritis, sepsis, endocarditis, meningitis, and STSS, require parenteral antimicrobial therapy. Penicillin G is the drug of choice for these invasive infections. Clindamycin, in addition to penicillin G, is advocated by many experts for STSS or necrotizing fasciitis. Necrotizing fasciitis requires prompt surgical debridement. In STSS, volume status and blood pressure should be monitored and patients evaluated for a focus of infection, if not readily apparent. Intravenous immune globulin (in addition to antibiotics) has been used in severe cases.

4. Treatment failure—Even when compliance is perfect, organisms will be found in cultures in 5%–35% of children after cessation of therapy. Reculture is indicated only in patients with relapse or recrudescence of pharyngitis or those with a personal or family history of rheumatic fever. Repeat treatment at least once with an oral cephalosporin or clindamycin is indicated in patients with recurrent culture-positive pharyngitis.

5. Prevention of recurrences in rheumatic individuals—The preferred prophylaxis for rheumatic individuals is benzathine penicillin G, 1.2 million units (600,000 units for patients weighing less than 27 kg) intramuscularly every 4 weeks. If the risk of streptococcal exposure is high, every 3-week dosing is preferred. One of the following alternative oral prophylactic regimens may be used: penicillin V, 250 mg twice daily; or sulfadiazine, 0.5 g once a day (if < 27 kg) or 1 g once a day (if > 27 kg). In patients allergic to both penicillin and sulfonamide drugs, erythromycin 250 mg twice daily orally can be used. If carditis is absent, continued prophylaxis is recommended for at least 5 years after the last episode of acute rheumatic fever or until 21 years of age (whichever is longer). Prophylaxis should be continued longer if the risk of contact with persons with GAS is high (eg, parents of school-aged children, pediatric nurses, and teachers). In the presence of carditis without residual heart or valvular disease, a minimum of 10 years after the last episode of acute rheumatic fever or until 21 years of age (whichever is longer) is the minimum duration. If the patient has residual valvular heart disease, many
recommend lifelong prophylaxis. These patients should be at least 10 years from their last episode of rheumatic disease and at least 40 years of age before considering discontinuation of prophylaxis. Those with severe valvular heart disease or with risk of ongoing exposure to GAS may benefit from lifelong prophylaxis. A similar approach to the prevention of recurrences of glomerulonephritis may be used during childhood when there is a suspicion that repeated streptococcal infections coincide with flare-ups of glomerulonephritis.

6. Poststreptococcal reactive arthritis—In contrast to rheumatic fever, nonsteroidal agents may not dramatically improve joint symptoms. However, like patients with rheumatic fever, some patients with poststreptococcal reactive arthritis have developed carditis several weeks to months after their arthritis symptoms began. Patients should be monitored for development of carditis for the next 1–2 years. Some experts recommend antibiotic prophylaxis of these patients (same prophylaxis regimen as in prevention of recurrences of acute rheumatic fever) for 1–2 years and monitoring for signs of carditis (see recommendations for prevention of recurrences of rheumatic fever, above). If carditis does not develop, prophylaxis could then be discontinued. If carditis develops, the patient should be considered to have acute rheumatic fever and prophylaxis continued as described above.

B. General Measures

Acetaminophen is useful for pain or fever. Local treatment of impetigo may promote earlier healing. Crusts should first be soaked off. Areas beneath the crusts should then be washed with soap daily.

C. Treatment of Complications

Rheumatic fever is best prevented by early and adequate penicillin treatment of the streptococcal infection.

D. Treatment of Carriers

Identification and treatment of GAS carriers is difficult. There are no established clinical or serologic criteria for differentiating carriers from the truly infected. Between 10% and 15% of school-aged children in some studies are asymptomatic pharyngeal carriers of GAS. Streptococcal carriers are individuals who do not mount an immune response to the organism and are therefore believed to be at low risk for nonsuppurative sequelae.

Some children receive multiple courses of antimicrobials, with persistence of GAS in the throat, leading to a “streptococcal neurosis” on the part of families.

In certain circumstances, eradication of carriage may be desirable: (1) when a family member has a history of rheumatic fever; (2) when an episode of STSS or necrotizing fasciitis has occurred in a household contact; (3) multiple, recurring, documented episodes of GAS in family members despite adequate therapy; and (4) during an outbreak of rheumatic fever or GAS-associated glomerulonephritis. Clindamycin (20–30 mg/kg/d, given orally in three divided doses; maximum dose 300 mg) or a combination of rifampin (20 mg/kg/d, given orally for 4 days) and penicillin in standard dosage given orally has been used to attempt eradication of carriage.

Prognosis

Death is rare except in infants or young children with sepsis or pneumonia. The febrile course is shortened and complications eliminated by early and adequate treatment with penicillin.


GROUP B STREPTOCOCCAL INFECTIONS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Early-onset neonatal infection:
  - Newborn younger than age 7 days, with rapidly progressing overwhelming sepsis, with or without meningitis.
  - Pneumonia with respiratory failure is frequent; chest radiograph resembles that seen in hyaline membrane disease.
  - Leukopenia with a shift to the left.
  - Blood or cerebrospinal fluid (CSF) cultures growing group B streptococci (GBS).

- Late-onset Infection:
  - Meningitis, sepsis, or other focal infection in a child aged 1–16 weeks with blood or CSF cultures growing GBS.

Prevention

Many women of childbearing age possess type-specific circulating antibody to the polysaccharide antigens for group B Streptococcus (GBS). These antibodies are transferred to the newborn via the placental circulation. GBS carriers delivering
healthy infants have significant serum levels of IgG antibody to this antigen. In contrast, women delivering infants who develop either early- or late-onset GBS disease rarely have detectable antibody in their sera.

Monovalent and bivalent vaccines with type II or III polysaccharide antigens have been studied in pregnant women, with 80%–90% of vaccine recipients developing fourfold or greater increases in GBS capsular polysaccharide type-specific IgG. These reports suggest that a multivalent vaccine could be developed and given to pregnant women to prevent many cases of early-onset GBS disease.

The decline in early-onset GBS disease in young infants is attributed to widespread maternal screening for GBS and intrapartum prophylaxis. The Centers for Disease Control and Prevention (CDC) has issued culture-based maternal guidelines for the prevention of early-onset GBS disease, as well as recommendations for intrapartum prophylaxis and management of babies whose mothers received IAP for prevention of GBS or for chorioamnionitis.

### CDC Recommendations for Prevention of Perinatal GBS Disease

1. All pregnant women should be screened at 35–37 weeks’ gestation with a vaginal and rectal culture for GBS. **Exceptions:** Women with known GBS bacteriuria during the current pregnancy or women who have delivered a previous infant with GBS disease do not need screening—all these women need intrapartum prophylaxis—see Table 42–1.
2. Indications and nonindications for intrapartum antibiotic prophylaxis (IAP) to prevent early-onset group B streptococcal (GBS) disease—see Table 42–1.
3. Algorithm for screening for GBS colonization and use of intrapartum prophylaxis for women with preterm labor (PTL)—see Figure 42–1.
4. Algorithm for screening for GBS colonization and use of intrapartum prophylaxis for women with preterm premature rupture of membranes (pPROM)—see Figure 42–2.

### Table 42–1. Indications and nonindications for intrapartum antibiotic prophylaxis to prevent early-onset group B streptococcal (GBS) disease.

<table>
<thead>
<tr>
<th>Intrapartum GBS Prophylaxis Indicated</th>
<th>Intrapartum GBS Prophylaxis Not Indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Previous infant with invasive GBS disease</td>
<td>• Colonization with GBS during a previous pregnancy (unless an indication for GBS prophylaxis is present for current pregnancy)</td>
</tr>
<tr>
<td>• GBS bacteriuria during any trimester of the current pregnancy&lt;sup&gt;a&lt;/sup&gt;</td>
<td>• GBS bacteriuria during previous pregnancy (unless an indication for GBS prophylaxis is present for current pregnancy)</td>
</tr>
<tr>
<td>• Positive GBS vaginal-rectal screening culture in late gestation&lt;sup&gt;b&lt;/sup&gt; during current pregnancy&lt;sup&gt;a&lt;/sup&gt;</td>
<td>• Negative vaginal and rectal GBS screening culture in late gestation&lt;sup&gt;b&lt;/sup&gt; during the current pregnancy, regardless of intrapartum risk factors</td>
</tr>
<tr>
<td>• Unknown GBS status at the onset of labor (culture not done, incomplete, or results unknown) and any of the following:</td>
<td>• Cesarean delivery performed before onset of labor on a woman with intact amniotic membranes, regardless of GBS colonization status or gestational age</td>
</tr>
<tr>
<td>• Delivery at &lt;37 wk&lt;sup&gt;c&lt;/sup&gt; gestation&lt;sup&gt;c&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>• Amniotic membrane rupture ≥ 18 h</td>
<td></td>
</tr>
<tr>
<td>• Intrapartum temperature ≥ 100.4°F (≥ 38.0°C)&lt;sup&gt;d&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>• Intrapartum NAAT&lt;sup&gt;e&lt;/sup&gt; positive for GBS</td>
<td></td>
</tr>
</tbody>
</table>

NAAT, nucleic acid amplification tests.

<sup>a</sup>Intrapartum antibiotic prophylaxis is not indicated in this circumstance if a cesarean delivery is performed before onset of labor on a woman with intact amniotic membranes.

<sup>b</sup>Optimal timing for prenatal GBS screening is at 35–37 weeks’ gestation.

<sup>c</sup>Recommendations for the use of intrapartum antibiotics for prevention of early-onset GBS disease in the setting of threatened preterm delivery are presented in Figure 42–1 and 42–2.

<sup>d</sup>If amnionitis is suspected, broad-spectrum antibiotic therapy that includes an agent known to be active against GBS should replace GBS prophylaxis.

<sup>e</sup>NAAT testing for GBS is optional and might not be available in all settings. If intrapartum NAAT is negative for GBS but any other intrapartum risk factor (delivery at <37 weeks’ gestation, amniotic membrane rupture at ≥ 18 hours, or temperature ≥ 100.4°F [≥ 38.0°C]) is present, then intrapartum antibiotic prophylaxis is indicated.

5. Recommended regimens for intrapartum antibiotic prophylaxis for prevention of early-onset GBS disease—see Figure 42–3.

6. Algorithm for secondary prevention of early-onset group B streptococcal (GBS) disease among newborns (management of a newborn whose mother received IAP for prevention of GBS or suspected chorioamnionitis)—see Figure 42–4.

Clinical Findings

The incidence of perinatal GBS disease has declined dramatically since screening of pregnant mothers and provision of intrapartum chemoprophylaxis began. Although most patients with GBS disease are infants younger than age 3 months, cases are seen in infants aged 4–5 months. Serious infection also occurs in women with puerperal sepsis, immunocompromised patients, patients with cirrhosis and spontaneous peritonitis, and diabetic patients with cellulitis. Two distinct clinical syndromes distinguished by differing perinatal events, age at onset, and serotype of the infecting strain occur in infants.

Risk factors for early-onset group B GBS disease include maternal GBS colonization, gestational age less than 37 weeks, rupture of membranes > 18 hours prior to presentation, young maternal age, history of a previous infant with invasive GBS disease, African-American or Hispanic ethnic origin, and low or absent maternal GBS anticapsular antibodies.
A. Early-Onset Infection

“Early-onset” illness is observed in newborns younger than 7 days old. The onset of symptoms in the majority of these infants occurs in the first 48 hours of life, and most are ill within 6 hours. Apnea is often the first sign. Sepsis, shock, meningitis, apnea, and pneumonia are the most common clinical presentations. There is a high incidence of associated maternal obstetric complications, especially premature labor and prolonged rupture of the membranes. Newborns with early-onset disease are severely ill at the time of diagnosis, and more than 50% die. Although most infants with early-onset infections are full-term, premature infants are at increased risk for the disease. Newborns with early-onset infection acquire GBS in utero as an ascending infection or during passage through the birth canal. When early-onset infection is complicated by meningitis, more than 80% of the bacterial isolates belong to serotype III. Postmortem examination of infants with early-onset disease usually reveals pulmonary inflammatory infiltrates and hyaline membranes containing large numbers of GBS.

INFECTIONS: BACTERIAL & SPIROCHETAL

B. Late-Onset Infection

“Late-onset” infection occurs in infants between ages 7 days and 4 months (median age at onset, about 4 weeks). Maternal obstetric complications are not usually associated with late-onset infection. These infants are usually not as ill at the time of diagnosis as those with early-onset disease, and the mortality rate is lower. In recent series, about 37% of patients have meningitis and 46% have sepsis.

Septic arthritis and osteomyelitis, meningitis, occult bactere mia, otitis media, ethmoiditis, conjunctivitis, cellulitis (part icularly of the face or submandibular area), lymphadenitis, breast abscess, empyema, and impetigo have been described. Strains of GBS possessing the capsular type III polysaccharide antigen are isolated from more than 95% of infants with late-onset disease, regardless of clinical manifestations. The exact mode of transmission of the organisms is not well defined.

---


---

* IV, intravenously.
* Broader spectrum agents, including an agent active against GBS, might be necessary for treatment of chorioamnionitis.
† Doses ranging from 2.5 to 3.0 million units are acceptable for the doses administered every 4 hours following the initial dose. The choice of dose within that range should be guided by which formulations of penicillin G are readily available to reduce the need for pharmacies to specially prepare doses.
§ Penicillin-allergic patients with a history of anaphylaxis, angioedema, respiratory distress, or urticaria following administration of penicillin or a cephalosporin are considered to be at high risk for anaphylaxis and should not receive penicillin, ampicillin, or cefazolin for GBS intrapartum prophylaxis. For penicillin-allergic patients who do not have a history of those reactions, cefazolin is the preferred agent because pharmacologic data suggest it achieves effective intraamniotic concentrations. Vancomycin and clindamycin should be reserved for penicillin-allergic women at high risk for anaphylaxis.
¶ If laboratory facilities are adequate, clindamycin and erythromycin susceptibility testing (Box 3) should be performed on prenatal GBS isolates from penicillin-allergic women at high risk for anaphylaxis. If no susceptibility testing is performed, or the results are not available at the time of labor, vancomycin is the preferred agent for GBS intrapartum prophylaxis for penicillin-allergic women at high risk for anaphylaxis.
** Resistance to erythromycin is often but not always associated with clindamycin resistance. If an isolate is resistant to erythromycin, it might have inducible resistance to clindamycin, even if it appears susceptible to clindamycin. If a GBS isolate is susceptible to clindamycin, resistant to erythromycin, and testing for inducible clindamycin resistance has been performed and is negative (no inducible resistance), then clindamycin can be used for GBS intrapartum prophylaxis instead of vancomycin.
C. Laboratory Findings

Culture of GBS from a normally sterile site such as blood, pleural fluid, or CSF provides proof of diagnosis. Frequent false-positive results limit the usefulness of testing for GBS antigen in urine and CSF.

Treatment

Intravenous ampicillin and an aminoglycoside is the initial regimen of choice for newborns with presumptive invasive GBS disease. For neonates 7 days of age or younger with meningitis, the recommended ampicillin dosage is
200–300 mg/kg/d, given intravenously in three divided doses. For infants older than 7 days of age, the recommended ampicillin dosage is 300 mg/kg/d, given intravenously in four divided doses.

Penicillin G can be used alone once GBS is identified and clinical and microbiologic responses have occurred. GBS are less susceptible than other streptococci to penicillin, and high doses are recommended, especially for meningitis. In infants with meningitis, the recommended dosage of penicillin G varies with age: for infants age 7 days or younger, 250,000–450,000 U/kg/d, given intravenously in three divided doses; for infants older than age 7 days, 450,000–500,000 U/kg/d, given intravenously in four divided doses.

A second lumbar puncture after 24–48 hours of therapy is recommended by some experts to assess efficacy. Duration of therapy is 2 weeks for uncomplicated meningitis; at least 4 weeks for osteomyelitis, cerebritis, ventriculitis, or endocarditis; and 10 days for bacteremia. Therapy does not eradicate carriage of the organism.

Although streptococci have been universally susceptible to penicillins, increasing minimum inhibitory concentrations (MICs) have been observed in some isolates. Resistance of isolates to clindamycin and erythromycin has increased significantly worldwide in the past few years.


STREPTOCOCCAL INFECTIONS WITH ORGANISMS OTHER THAN GROUP A OR B

Genera Considerations

Streptococci of groups other than A and B are part of the normal flora of humans and can occasionally cause disease. Group C or group G organisms occasionally produce pharyngitis (with an ASO rise), but without risk of subsequent rheumatic fever. AGN may occasionally occur. Group D streptococci and Enterococcus species are normal inhabitants of the gastrointestinal tract and may produce urinary tract infections, meningitis, and sepsis in the newborn, as well as endocarditis. Nosocomial infections caused by Enterococcus are frequent in neonatal and oncology units and in patients with central venous catheters. Nonhemolytic aerobic streptococci and β-hemolytic streptococci are normal flora of the mouth. They are involved in the production of dental plaque and probably dental caries and are the most common cause of subacute infective endocarditis. Finally, there are numerous anaerobic and microaerophilic streptococci, normal flora of the mouth, skin, and gastrointestinal tract, which alone or in combination with other bacteria may cause sinusitis, dental abscesses, brain abscesses, and intra-abdominal or lung abscesses.

Prevention

Streptococci (other than group A or B) are common normal flora in humans. Some disease caused by these organisms can be prevented by maintaining good oral hygiene. Spread of vancomycin resistant enterococcal strains can be limited by good infection control practices in healthcare environments. Development of resistant strains can also be limited by antimicrobial stewardship. There are no vaccines that prevent infections with these organisms.

Treatment

A. Enterococcal Infections

Enterococcus faecalis and Enterococcus faecium are the two most common and most important strains causing human infections. In general, E. faecalis is more susceptible to antibiotics than E. faecium, but antibiotic resistance is more commonly seen with both species. Invasive enterococcal infections should be treated with ampicillin if the isolate is susceptible or vancomycin in combination with gentamicin. Gentamicin should be discontinued if susceptibility testing demonstrates high-level resistance to gentamicin. Isolates that are resistant to both ampicillin and vancomycin necessitate other therapeutic options.

1. Infections with ampicillin-susceptible enterococci—

Lower tract urinary infections can be treated with oral amoxicillin. Pyelonephritis should be treated intravenously with ampicillin and gentamicin (gentamicin dosing may need to be adjusted for altered renal function). Sepsis or meningitis in the newborn should be treated intravenously with a combination of ampicillin and gentamicin. Peak serum gentamicin levels of 3–5 mcg/mL are adequate as gentamicin is used as a synergistic agent. Endocarditis requires 6 weeks of intravenous treatment. Ampicillin or penicillin in combination with gentamicin is used in susceptible strains. Consult the American Heart Association guidelines for infective endocarditis for treatment recommendations for endocarditis.

2. Infections with ampicillin-resistant or vancomycin-resistant enterococci—

Ampicillin-resistant enterococci are often susceptible to vancomycin (40–60 mg/kg/d in four divided doses). Vancomycin-resistant enterococci are usually also resistant to ampicillin. Linezolid is approved for use in children only for vancomycin-resistant E. faecium infections. Two other agents are approved in adults against certain vancomycin-resistant enterococci. Daptomycin is approved for adults with vancomycin-resistant E. faecalis infections. Quinupristin-dalfopristin is approved for adults...
with vancomycin-resistant *E. faecium* (not effective against *E. faecalis*) infections. Isolates resistant to these newer agents (linezolid, daptomycin, quinupristin-dalfopristin) have been reported. Infectious disease consultation is recommended when use of these drugs is entertained or when vancomycin-resistant enterococcal infections are identified.

**B. Viridans Streptococci Infections (Subacute Infective Endocarditis)**

It is important to determine the penicillin sensitivity of the infecting strain as early as possible in the treatment of viridans streptococcal endocarditis. Resistant organisms are most commonly seen in patients receiving penicillin prophylaxis for rheumatic heart disease. Treatment of endocarditis varies depending on whether the patient has native valves or prosthetic valves/material and whether the organism is penicillin susceptible. Refer to the American Heart Guidelines on Infective Endocarditis for a complete discussion and recommendations.

**C. Other Viridans Streptococci–Related Infections**

Viridans streptococci are normal flora of the gastrointestinal tract, respiratory tract, and the mouth. In many cases, isolation of viridans streptococci from a blood culture is considered to be a “contaminant” in the absence of signs or symptoms of endocarditis or other invasive disease. However, in children who are immunocompromised, have congenital or acquired valvular heart disease, or those who have indwelling lines, these viridans streptococci may be a cause of serious morbidity. About one-third of bacteremias in patients with malignancies may be due to bacteria from the *Streptococcus viridans* group. Mucositis and gastrointestinal toxicity from chemotherapy are among the risk factors for developing disease. Even in children with normal immune systems, viridans streptococci sometimes cause serious infections. For example, viridans streptococci isolated from an abdominal abscess after sustained rupture of the appendix represents a true pathogen. *Streptococcus anginosus*, a member of the *Streptococcus viridans* group, is seen as a cause of intracranial abscess (often as a complication of sinusitis) and abdominal abscesses. In patients with risk factors or signs/symptoms for subacute endocarditis, isolation of one of the members of the *Streptococcus viridans* group should prompt consideration and evaluation for possible endocarditis (see previous section).

Increasing prevalence of antibiotic resistance has been seen over the last 10 years in isolates of the streptococci viridans group. Penicillin resistance varies with geographic region, institution, and the populations tested, but has ranged from 30% to 70% in oncology patients. Cephalosporin resistance is also relatively common. Therefore, it is important to obtain antibiotic susceptibilities to the organism to select effective therapy. Vancomycin, linezolid, and quinupristin-dalfopristin are still effective against most isolates.

**PNEUMOCOCCAL INFECTIONS**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- **Bacteremia:**
  - High fever (> 39.4°C).
  - Leukocytosis (> 15,000/μL).
  - Age 6–24 months.

- **Pneumonia:**
  - Fever, leukocytosis, and tachypnea.
  - Localized chest pain.
  - Localized or diffuse rales. Chest radiograph may show lobar infiltrate (with effusion).

- **Meningitis:**
  - Fever, leukocytosis.
  - Bulging fontanelle, neck stiffness.
  - Irritability and lethargy.

- **All types:**
  - Diagnosis confirmed by cultures of blood, CSF, pleural fluid, or other body fluid.

**General Considerations**

Sepsis, sinusitis, otitis media, pneumonitis, meningitis, osteomyelitis, cellulitis, arthritis, vaginitis, and peritonitis are all part of a spectrum of pneumococcal infection. Clinical findings that correlate with occult bacteremia in ambulatory patients include age (6–24 months), degree of temperature elevation (> 39.4°C), and leukocytosis (> 15,000/μL). Although each of these findings is in itself nonspecific, a combination of them should arouse suspicion. This constellation of findings in a child who has no focus of infection may be an indication for blood cultures and antibiotic therapy. The cause of most of such bacteremic episodes is pneumococci.

*Streptococcus pneumoniae* is a common cause of acute purulent otitis media and is the organism responsible for most cases of acute bacterial pneumonia in children. The disease is indistinguishable on clinical grounds from other bacterial pneumonias. Effusions are common, although frank empyema is less common. Abscesses also occasionally occur.
The incidence rate of pneumococcal meningitis has decreased since incorporation of the pneumococcal conjugate vaccine into the infant vaccine schedule. However, pneumococcal meningitis is still more common than Haemophilus influenzae type b meningitis. Pneumococcal meningitis, sometimes recurrent, may complicate serious head trauma, particularly if there is persistent leakage of CSF. This has led some physicians to recommend the prophylactic administration of penicillin or other antimicrobials in such cases.

Children with sickle cell disease, other hemoglobinopathies, congenital or acquired asplenia, and some immunoglobulin and complement deficiencies are unusually susceptible to pneumococcal sepsis and meningitis. They often have a catastrophic illness with shock and disseminated intravascular coagulation (DIC). Even with excellent supportive care, the mortality rate is 20%–50%. The spleen is important in the control of pneumococcal infection by clearing organisms from the blood and producing an opsonin that enhances phagocytosis. Autosplenectomy may explain why children with sickle cell disease are at increased risk of developing serious pneumococcal infections. Children with cochlear implants are at higher risk for pneumococcal meningitis.

S. pneumoniae rarely causes serious disease in the neonate. Although S. pneumoniae does not normally colonize the vagina, transient colonization does occur. Serious neonatal disease—including pneumonia, sepsis, and meningitis—may occur and clinically is similar to GBS infection.

Historically, penicillin was the agent of choice for pneumococcal infections, and some strains are still highly susceptible to penicillin. However, pneumococci with moderately increased resistance to penicillin are found in most communities. The prevalence of these relatively penicillin-resistant strains in North America varies geographically. Pneumococci with high-level resistance to penicillin and multiple other drugs are increasingly encountered throughout the United States. Pneumococci from normally sterile body fluids should be routinely tested for susceptibility to penicillin as well as other drugs.

Pneumococci have been classified into more than 90 serotypes based on capsular polysaccharide antigens. The frequency distribution of serotypes varies at different times, in different geographic areas, and with different sites of infection.

### Prevention

Two pneumococcal vaccines are licensed for use in children in the United States: 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine. The 13-valent pneumococcal conjugate vaccine was licensed in 2010 (replacing the 7-valent pneumococcal vaccine). This vaccine contains antigens from 13 pneumococcal serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 10F, and 23F), and is the vaccine currently recommended for routine use in the infant and childhood immunization schedule. Use of the 13-valent conjugate vaccine is important in the prevention of pneumococcal disease because young children (age < 2 years), who are most at risk for the disease, are unable to immunologically mount a predictable response to the 23-valent polysaccharide vaccine. The 13-valent vaccine is currently recommended for (1) infant primary series and childhood booster dosing (replaces the 7-valent vaccine), (2) as a single supplemental dose in healthy children 14–59 months of age who were fully immunized with the 7-valent pneumococcal conjugate vaccine, and (3) use in children aged less than 18 years who have certain underlying medical conditions that put them at high risk for pneumococcal disease. This vaccine and indications for use is discussed in detail in Chapter 10. For children > 2 years of age who are at high risk for invasive pneumococcal disease (sickle cell anemia, anatomic or functional asplenia, HIV-infected children, and persons with certain chronic illnesses), the 23-valent pneumococcal vaccine is recommended 8 weeks following completion of the pneumococcal conjugate vaccine series (see Chapter 10). A second dose of the 23-valent pneumococcal vaccine should be given 5 years after the first dose in children with HIV infection, sickle cell disease, functional or anatomic asplenia, or other immunocompromising conditions.

When a cochlear implant, splenectomy, or immune-compromising therapy is anticipated, the child should complete immunization with the 13-valent pneumococcal conjugate vaccine at least 2 weeks prior to surgery or institution of immune-compromising therapy if possible. If this is not possible due to the urgency of the procedure or therapy, the child should receive immunization as soon as possible thereafter. In children greater than 2 years of age, the 23-valent pneumococcal polysaccharide vaccine can be given at least 8 weeks after completion of the 13-valent pneumococcal conjugate vaccine (see Chapter 10).

### Clinical Findings

#### A. Symptoms and Signs

In pneumococcal sepsis, fever usually appears abruptly, often accompanied by chills. There may be no respiratory symptoms. In pneumococcal sinusitis, mucopurulent nasal discharge may occur. In infants and young children with pneumonia, fever, and tachypnea without auscultatory changes are the usual presenting signs. Respiratory distress is manifested by nasal flaring, chest retractions, and tachypnea. Abdominal pain is common. In older children, the adult form of pneumococcal pneumonia with signs of lobar consolidation may occur, but sputum is rarely bloody. Thoracic pain (from pleural involvement) is sometimes present, but
is less common in children. With involvement of the right hemidiaphragm, pain may be referred to the right lower quadrant, suggesting appendicitis. Vomiting is common at onset but seldom persists. Convulsions are relatively common at onset in infants.

Meningitis is characterized by fever, irritability, convulsions, and neck stiffness. The most important sign in very young infants is a tense, bulging anterior fontanelle. In older children, fever, chills, headache, and vomiting are common symptoms. Classic signs are nuchal rigidity associated with positive Brudzinski and Kernig signs. With progression of untreated disease, the child may develop opisthotonos, stupor, and coma.

**B. Laboratory Findings**

Leukocytosis is often pronounced (20,000–45,000/µL), with 80%–90% polymorphonuclear neutrophils. Neutropenia may be seen early in very serious infections. The presence of pneumococci in the nasopharynx is not a helpful finding, because up to 40% of normal children carry pneumococci in the upper respiratory tract. Large numbers of organisms are seen on Gram-stained smears of endotracheal aspirates from patients with pneumonia. In meningitis, CSF usually shows an elevated white blood cell (WBC) count of several thousand, chiefly polymorphonuclear neutrophils, with decreased glucose and elevated protein levels. Gram-positive diplococci may be seen on some (but not all) stained smears of CSF sediment. Antigen detection tests are not useful. Isolation of *S. pneumoniae* from a normally sterile site (eg, blood, cerebrospinal joint fluid, middle ear fluid) or from a suppurative focus confirms the diagnosis.

**Differential Diagnosis**

There are many causes of high fever and leukocytosis in young infants; 90% of children presenting with these features have a disease other than pneumococcal bacteremia, such as human herpesvirus 6, enterovirus, or other viral infection; urinary tract infection; unrecognized focal infection elsewhere in the body; or early acute shigellosis.

Infants with upper respiratory tract infection who subsequently develop signs of lower respiratory disease are most likely to be infected with a respiratory virus. Hoarseness or wheezing is often present. A radiograph of the chest typically shows perihilar infiltrates and increased bronchovascular markings. Viral respiratory infection often precedes pneumococcal pneumonia; therefore, the clinical picture may be mixed.

Staphylococcal pneumonia may be indistinguishable early in its course from pneumococcal pneumonia. Later, pulmonary cavitation and empyema occur.

In primary pulmonary tuberculosis, children do not have a toxic appearance, and radiographs show a primary focus associated with hilar adenopathy and often with pleural involvement. Miliary tuberculosis presents a classic radiographic appearance.

Pneumonia caused by *Mycoplasma pneumoniae* is most common in children aged 5 years and older. Onset is insidious, with infrequent chills, low-grade fever, prominent headache and malaise, cough, and, often, striking radiographic changes. Marked leukocytosis (>18,000/µL) is unusual.

Pneumococcal meningitis is diagnosed by lumbar puncture. Without a Gram-stained smear and culture of CSF, it is not distinguishable from other types of acute bacterial meningitis.

**Complications**

Complications of sepsis include meningitis and osteomyelitis; complications of pneumonia include empyema, parapneumonic effusion, and, rarely, lung abscess. Mastoiditis, subdural empyema, and brain abscess may follow untreated pneumococcal otitis media. Both pneumococcal meningitis and peritonitis are more likely to occur independently without coexisting pneumonia. Shock, DIC, and Waterhouse-Friderichsen syndrome resembling meningococcemia are occasionally seen in pneumococcal sepsis, particularly in asplenic patients. Hemolytic-uremic syndrome may occur as a complication of pneumococcal pneumonia or sepsis.

**Treatment**

**A. Specific Measures**

All *S. pneumoniae* isolated from normally sterile sites should be tested for antimicrobial susceptibility. The term “nonsusceptible” is used to describe both intermediate and resistant isolates. Strains that are nonsusceptible to penicillin, ceftriaxone (or cefotaxime), and other antimicrobials are increasingly common globally. Antimicrobial susceptibility breakpoints for *S. pneumoniae* to penicillin and ceftriaxone/cefotaxime are based on whether the patient has meningitis and the drug route (oral vs intravenous), see Table 42–2. Therapy of meningitis, empyema, osteomyelitis, and endocarditis due to nonsusceptible *S. pneumoniae* is challenging, because penetration of antimicrobials to these sites is limited. Infectious disease consultation is recommended for advice regarding these problems. For empiric therapy of serious or life-threatening infections pending susceptibility test results, vancomycin and ceftriaxone (or cefotaxime) are recommended.

1. **Bacteremia**—In studies done prior to immunization of young children with conjugated pneumococcal vaccine, 3%–5% of blood cultures in patients younger than 2 years of age yielded *S. pneumoniae*. These percentages decreased with the addition of conjugated pneumococcal vaccine to the vaccine schedule. The current 13-valent pneumococcal vaccine contains antigens to the pneumococcal serotypes that cause about 65% of invasive pneumococcal disease. Many experts
treat suspected bacteremia in children that are not seriously ill with ceftriaxone (50 mg/kg, given intramuscularly or intravenously). Compared with oral amoxicillin (80–90 mg/kg/d), ceftriaxone may reduce fever and the need for hospitalization. However, meningitis occurs with the same frequency despite presumptive therapy. All children with blood cultures that grow pneumococci should be reexamined as soon as possible. The child who has a focal infection, such as meningitis, or who appears septic should be admitted to the hospital to receive parenteral antimicrobials. If the child is afebrile and appears well or mildly ill, outpatient management is appropriate. Severely ill or immunocompromised children, in whom invasive infection with *S pneumoniae* is suspected, should be treated with vancomycin (in addition to other appropriate antibiotics to cover other suspected pathogens). If meningitis is also suspected, use ceftriaxone or cefotaxime in addition to vancomycin until the susceptibilities of the organism are known.

2. **Pneumonia**—For infants (1 month of age or older) with susceptible organisms appropriate regimens include ampicillin (150–200 mg/kg/d intravenously in four divided doses) aqueous penicillin G (250,000–400,000 U/kg/d, given intravenously in four to six divided doses), cefotaxime (50 mg/kg intravenously every 8 hours), or ceftriaxone (50 mg/kg intravenously every 12–24 hours). If susceptibilities are not known and the patient is severely ill or immunocompromised, vancomycin should be used as part of the regimen to provide coverage for penicillin- or cephalosporin-resistant pneumococcus. Once results of susceptibility testing are available, the regimen can be tailored. Mild pneumonia may be treated with amoxicillin (80–90 mg/kg/d) for 7–10 days. Alternative regimens include oral macrolides (resistance may be high) and cephalosporins.

3. **Otitis media**—Most experts recommend oral amoxicillin (80–90 mg/kg/d, divided in two doses) as first-line therapy. The standard course of therapy is 10 days; however, many physicians treat uncomplicated, mild cases in children 6 years of age or older for 5–7 days. Treatment failures may be treated with amoxicillin-clavulanate (80–90 mg/kg/d of the amoxicillin component in the 14:1 formulation), intramuscular ceftriaxone, cefuroxime axetil, or cefdinir. Azithromycin can also be used in patients with type I hypersensitivity reactions to penicillin or cephalosporin, but resistance to macrolides may be high.

4. **Meningitis**—Until bacteriologic confirmation and susceptibility testing are completed, patients should receive vancomycin (60 mg/kg/d, given intravenously in four divided doses) and cefotaxime (225–300 mg/kg/d intravenously in four divided doses), OR vancomycin (see previous dosage) and ceftriaxone (100 mg/kg/d, given intravenously in two divided doses). Patients with serious hypersensitivity to beta-lactam antibiotics allergy (eg, penicillins, cephalosporins) can be treated with a combination of vancomycin (see previous dosage) and rifampin (20 mg/kg/day in two divided doses). Use of vancomycin alone or use of rifampin alone is not recommended. Vancomycin and meropenem is an alternative for penicillin or cephalosporin allergic patients and this regimen provides additional gram-negative coverage until culture and susceptibility results are obtained. Corticosteroids (dexamethasone, 0.6 mg/kg/d, in four divided doses for 4 days) are controversial but are recommended by many experts as adjunctive therapy for pneumococcal meningitis. A repeat lumbar puncture at 24–48 hours should be considered to ensure sterility of the CSF if dexamethasone is given, if resistant pneumococci are isolated, or if the patient is not demonstrating expected improvement after 24–48 hours on therapy.

If the isolate is determined to be penicillin-susceptible, aqueous penicillin G can be administered (300,000–400,000 U/kg/d, given intravenously in four to six divided doses for 10–14 days). Alternatively, use of ceftriaxone or cefotaxime is an acceptable alternative therapy for penicillin- and cephalosporin-susceptible isolates. Consult an infectious disease specialist or the Red Book (American Academy of Pediatrics, 2012) for a complete discussion of pneumococcal meningitis and for therapeutic options for isolates that are nonsusceptible to penicillin or cephalosporins.

---

**Table 42-2. Penicillin breakpoints (minimum inhibitory concentrations [MIC]) for *Streptococcus pneumoniae* by susceptibility category—Clinical and Laboratory Standards Institute, 2008.**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Clinical Syndrome and Drug Route</th>
<th>Susceptibility Category MIC (mg/mL)</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>Meningitis, intravenous penicillin</td>
<td>≤ 0.06</td>
<td>≤ 0.12</td>
</tr>
<tr>
<td></td>
<td>Nonmeningitis, intravenous penicillin</td>
<td>≤ 2</td>
<td>≥ 8</td>
</tr>
<tr>
<td></td>
<td>Nonmeningitis, oral penicillin</td>
<td>≤ 0.06</td>
<td>≥ 2</td>
</tr>
<tr>
<td>Cefotaxime or ceftriaxone</td>
<td>Meningitis, intravenous cefotaxime or ceftriaxone</td>
<td>≤ 0.5</td>
<td>≥ 2</td>
</tr>
<tr>
<td></td>
<td>Nonmeningitis, intravenous cefotaxime or ceftriaxone</td>
<td>≤ 1</td>
<td>≥ 4</td>
</tr>
</tbody>
</table>

*There is no intermediate category for meningitis.*
STAPHYLOCOCCAL INFECTIONS

General Considerations

Staphylococcal infections are common in childhood and range from local mild infections to overwhelming systemic infections. Examples of disease caused by staphylococci include, but are not limited to, furuncles, carbuncles, scalded skin syndrome, osteomyelitis, pyomyositis, septic arthritis, pneumonia, bacteremia, endocarditis, meningitis, and toxic shock syndrome. Staphylococci are the major cause of osteomyelitis and of septic arthritis and are an uncommon but important cause of bacterial pneumonia. A toxin produced by certain strains causes staphylococcal food poisoning. Staphylococci are responsible for many infections of artificial heart valves. Finally, they are found in infections at all ages and in multiple sites, particularly when infection is introduced from the skin or upper respiratory tract or when closed compartments become infected (pericarditis, sinusitis, cervical adenitis, surgical wounds, abscesses in the liver or brain, and abscesses elsewhere in the body).

Staphylococci that do not produce the enzyme coagulase are termed coagulase-negative and are seldom speciated in the clinical microbiology laboratory. Most S aureus strains produce coagulase. S aureus and coagulase-negative staphylococci are normal flora of the skin and respiratory tract. The latter rarely cause disease except in compromised hosts, the newborn, or patients with indwelling lines.

Most strains of S aureus elaborate β-lactamase that confers penicillin resistance. This can be overcome in clinical practice by the use of a cephalosporin or a penicillinase-resistant penicillin, such as oxacillin, nafcillin, cloxacillin, or dicloxacillin. Methicillin-resistant S aureus (MRSA) are resistant in vivo to all of these penicillinase-resistant penicillins and cephalosporins. MRSA has dramatically increased in prevalence globally as both a healthcare-associated and a community-associated pathogen. Healthcare-associated infections are likely to be multidrug resistant. Community-associated MRSA may be susceptible to clindamycin and/or TMP-SMX, but resistance rates to these agents vary widely geographically. MRSA strains with intermediate susceptibility to vancomycin are occurring more frequently and occasionally vancomycin-resistant strains are isolated. The existence of such strains is of concern because of the inherent virulence of most strains of S aureus and because of the limited choices for therapy.

S aureus produces a variety of exotoxins, most of which are of uncertain importance. Two toxins are recognized as playing a central role in specific diseases: exfoliatin and staphylococcal enterotoxin. The former is largely responsible for the various clinical presentations of scalded skin syndrome. Enterotoxin causes staphylococcal food poisoning. The exoprotein toxin most commonly associated with TSS has been termed TSST-1. Panton-Valentine leukocidin (PVL) is an exotoxin produced by some clinical isolates of methicillin-susceptible S aureus (MSSA) and MRSA strains. PVL is a virulence factor that causes leukocyte destruction and tissue necrosis. PVL-producing S aureus strains are often community-acquired, and have most commonly produced boils and abscesses. However, they also have been associated with severe cellulitis, osteomyelitis, and deaths from necrotizing pneumonia in otherwise healthy children and young adults.

Prognosis

In children, case fatality rates of less than 1% should be achieved except for meningitis, where rates of 5%–20% still prevail. The presence of large numbers of organisms without a prominent CSF inflammatory response or meningitis due to a penicillin-resistant strain indicates a poor prognosis. Serious neurologic sequelae, particularly hearing loss, are frequent following pneumococcal meningitis.

Community-associated MRSA and MSSA frequently cause skin and soft tissue infections. Currently MRSA furuncles and abscesses are extraordinarily common in clinical practice. Parents initially may think the child has a spider bite. Skin lesions can be seen anywhere on the body but are commonly seen on the buttocks in infants and young children. Factors that facilitate transmission of MRSA or MSSA include crowding, compromised skin (e.g., eczema), participation on contact sports teams, day care attendance, bare skin contact with surfaces used by others (exercise mats, sauna benches), and sharing towels or other personal items.

*S. aureus* are often found along with streptococci in impetigo. If the strains produce exfoliatin, localized lesions become bullous (bullous impetigo).

Scalded skin syndrome is a toxin-mediated illness caused by exfoliative toxins A and B produced by certain strains of *S. aureus*. The initial infection may begin at any site but is in the respiratory tract in most cases. There is a prodromal phase of erythema, often beginning around the mouth, accompanied by fever and irritability. The involved skin becomes tender, and a sick infant will cry when picked up or touched. A day or so later, exfoliation begins, usually around the mouth. The inside of the mouth is red, and a peeling rash is present around the lips, often in a radial pattern. Generalized, painful peeling may follow, involving the limbs and trunk but often sparing the feet. More commonly, peeling is confined to areas around body orifices. If erythematous but unpeeled skin is rubbed sideways, superficial epidermal layers separate from deeper ones and slough (Nikolsky sign). Generally, if secondary infection does not occur, there is healing without scarring. In the newborn, the disease is termed Ritter disease and may be fulminant.

2. **Osteomyelitis and septic arthritis**—(See Chapter 26.) MRSA invasive disease, including osteomyelitis and septic arthritis is being seen increasingly.

3. **Staphylococcal pneumonia**—Staphylococcal pneumonia in infancy is characterized by abdominal distention, high fever, respiratory distress, and toxemia. It may occur without predisposing factors or after minor skin infections. The organism is necrotizing, producing bronchoalveolar destruction. Pneumatoceles, pyopneumothorax, and empyema are frequently encountered. Rapid progression of disease is characteristic. Frequent chest radiographs to monitor the progress of disease are indicated. Presenting symptoms may be typical of paralytic ileus, suggestive of an abdominal catastrophe.

Invasive MRSA infections are on the rise and increasing numbers of MRSA pneumonias have been reported in all age groups. Many of these reports are in patients who develop MRSA pneumonia as a complication of influenza. MRSA or MSSA pneumonias are rapidly progressive, severe, and often devastating. Complicated pneumonias are frequent including necrotizing pneumonia, pneumatoceles, and/or empyemas. Purulent pericarditis occurs by direct extension in about 10% of cases, with or without empyema.

4. **Staphylococcal food poisoning**—Staphylococcal food poisoning is a result of ingestion of enterotoxin produced by staphylococci growing in uncooked and poorly refrigerated food. The disease is characterized by vomiting, prostration, and diarrhea occurring 2–6 hours after ingestion of contaminated foods.

5. **Staphylococcal endocarditis**—*S. aureus* may produce infection of normal heart valves, of valves or endocardium in children with congenital or rheumatic heart disease, or of artificial valves. About 25% of all cases of endocarditis are due to *S. aureus*. The great majority of artificial heart valve infections involve either *S. aureus* or coagulase-negative staphylococci. Infection usually begins in an extracardiac focus, often the skin. Involvement of the endocardium should be considered when blood cultures grow *S. aureus*, particularly when cultures are persistently positive. Suspicion must be highest in the presence of congenital heart disease, particularly ventricular septal defects with aortic insufficiency but also simple ventricular septal defect, patent ductus arteriosus, and tetralogy of Fallot.

The presenting symptoms in staphylococcal endocarditis are fever, weight loss, weakness, muscle pain or diffuse skeletal pain, poor feeding, pallor, and cardiac decompensation. Signs include splenomegaly, cardiomegaly, petechiae, hematuria, and a new or changing murmur. The course of *S. aureus* endocarditis is rapid, although subacute disease occurs occasionally. Peripheral septic embolization and uncontrollable cardiac failure are common, even when optimal antibiotic therapy is administered, and may be indications for surgical intervention (see later in the section “Staphylococcal Endocarditis”).

6. **Toxic shock syndrome**—TSS is characterized by fever, blanching erythema, diarrhea, vomiting, myalgia, prostration, hypotension, and multiorgan dysfunction. It is due to *S. aureus* focal infection, usually without bacteremia. Large numbers of cases have been described in menstruating adolescents and young women using vaginal tampons. TSS has also been reported in boys and girls with focal staphylococcal infections and in individuals with wound infections due to *S. aureus*. Additional clinical features include sudden onset; conjunctival suffusion; mucosal hyperemia; desquamation of skin on the palms, soles, fingers, and toes during convalescence; DIC in severe cases; renal and hepatic functional abnormalities; and myolysis. The mortality rate with early treatment is now about 2%. Recurrences are seen during subsequent menstrual periods in as many as 60% of untreated women who continue to use tampons.
Recurrences occur in up to 15% of women given antistaphylococcal antibiotics who stop using tampons. The disease is caused by strains of \textit{S. aureus} that produce TSST-1 or one of the related enterotoxins.

7. Coagulase-negative staphylococcal infections—
Local and systemic coagulase-negative staphylococcal infections occur primarily in immunocompromised patients, high-risk newborns, and patients with plastic prostheses or catheters. Coagulase-negative staphylococci are the most common nosocomial pathogen in hospitalized low-birth-weight neonates in the United States. Intravenous administration of lipid emulsions and indwelling central venous catheters are risk factors contributing to coagulase-negative staphylococcal bacteremia in newborn infants. In patients with an artificial heart valve, a Dacron patch, a ventriculoperitoneal shunt, or a central venous catheter, coagulase-negative staphylococci are a common cause of sepsis or catheter infection, often necessitating removal of the foreign material and protracted antibiotic therapy. Because blood cultures are frequently contaminated by this organism, diagnosis of genuine localized or systemic infection is often difficult.

B. Laboratory Findings
Moderate leukocytosis (15,000–20,000/μL) with a shift to the left is occasionally found, although normal counts are common, particularly in infants. The sedimentation rate is elevated. Blood cultures are frequently positive in systemic staphylococcal disease and should always be obtained when it is suspected. Similarly, pus from sites of infection should always be aspirated or obtained surgically, examined with Gram stain, and cultured both aerobically and anaerobically. There are no useful serologic tests for staphylococcal disease.

\(\text{\textbf{Differential Diagnosis}}\)
Staphylococcal skin disease takes many forms; therefore, the differential list is long. Staphylococcal skin abscesses, furuncles, and carbuncles are often confused initially with a spider bite. Bullous impetigo must be differentiated from chemical or thermal burns, from drug reactions, and, in the very young, from the various congenital epidermolytic syndromes or even herpes simplex infections. Staphylococcal scalded skin syndrome may resemble scarlet fever, Kawasaki disease, Stevens-Johnson syndrome, erythema multiforme, and other drug reactions. A skin biopsy may be critical in establishing the diagnosis. Varicella lesions may become superinfected with exfoliatin-producing staphylococci and produce a combination of the two diseases (bullous varicella).

Severe, rapidly progressing pneumonia with formation of abscesses, pneumatoceles, and empyemas is typical of \textit{S. aureus} infection and GAS but may occasionally be produced by pneumococci, \textit{H. influenzae}, and GAS.

Staphylococcal food poisoning is often epidemic. It is differentiated from other common-source gastroenteritis syndromes (\textit{Salmonella}, \textit{Clostridium perfringens}, and \textit{Vibrio parahaemolyticus}) by the short incubation period (2–6 hours), the prominence of vomiting (as opposed to diarrhea), and the absence of fever.

Endocarditis is suspected with \textit{S. aureus} bacteremia, particularly when a significant heart murmur or preexisting cardiac disease is present (see Chapter 20).

Newborn infections with \textit{S. aureus} can resemble infections with streptococci and a variety of gram-negative organisms. Umbilical and respiratory tract colonization occurs with many pathogenic organisms (GBS, \textit{Escherichia coli}, and \textit{Klebsiella}), and both skin and systemic infections occur with virtually all of these organisms.

TSS must be differentiated from Rocky Mountain spotted fever, leptospirosis, Kawasaki disease, drug reactions, adenovirus, and measles (see also Table 42–3).
# Treatment

## A. Specific Measures

Community-acquired MRSA infections are on the rise. The incidence of community-acquired MRSA isolates varies greatly geographically, but in many communities in the United States MRSA is the most common pathogen isolated from patients with skin and soft tissue infections. For empiric coverage of potentially life-threatening infections with suspected *S. aureus* (in which susceptibilities are not known) initial therapy should include vancomycin in combination with either nafcillin or oxacillin (in addition to appropriate antibiotic therapy for other suspected pathogens). Antibiotic therapy can then be adjusted based on identification of the organism and susceptibility results.

Currently, most community-acquired MRSA strains are susceptible to TMP-SMX and some are susceptible to clindamycin. Less serious infections in nontoxic patients may be initially treated using one of these agents while awaiting cultures and susceptibility data. Knowledge of the community MRSA susceptibility patterns is useful in guiding empiric therapy while awaiting susceptibility test results.

For MSSA strains, a β-lactamase-resistant penicillin is the drug of choice (oxacillin or nafcillin). In serious systemic disease, in osteomyelitis, and in the treatment of large abscesses, intravenous therapy is indicated initially (oxacillin or nafcillin, 100–150 mg/kg/d in four divided doses). In serious or life-threatening illness, consultation with an infectious disease physician is recommended.

Cephalosporins may be considered for MSSA infections in patients with a history of penicillin sensitivity unless there is a history of type 1 hypersensitivity reaction (ie, anaphylaxis, wheezing, edema, and hives). Cefazolin, 100–150 mg/kg/d, given intravenously in three divided doses, or cephalexin, 50–100 mg/kg/d, given orally in four divided doses, can be used once a child is able to take oral antibiotics. The third-generation cephalosporins should not generally be used for staphylococcal infections.

For serious *S. aureus* infections, initial therapy with vancomycin (15 mg/kg/dose intravenously every 6 hours) plus nafcillin or oxacillin is recommended until susceptibilities are available. For nosocomially acquired MRSA infections, vancomycin should be used until results of susceptibility testing are available to guide therapy (isolates are frequently clindamycin and TMP-SMX–resistant). Infections due to MRSA do not respond to cephalosporins despite in vitro testing that suggests susceptibility. For treatment of meningitis, vancomycin must be given in higher doses (60 mg/kg/d divided into four doses). The addition of rifampin is advocated by some (rifampin should not be used alone to treat this condition).

### 1. Skin infections—Treatment of skin and soft tissue infections depends, in part, on the extent of the lesion, immunocompetence of the host, and the toxicity of the patient. Afebrile, well-appearing patients with small abscesses may do well with incision and drainage (with or without the addition of oral antimicrobials). More serious infections or infections in immunocompromised patients should be treated more aggressively. Hospitalization and intravenous antibiotics may be required. Culture and susceptibility testing help guide therapy regardless of whether the patient initially is started on antibiotics. Results of these tests facilitate therapeutic decisions in cases in which patients do not respond to initial management or empiric intravenous antibiotic therapy was initiated.

For patients who are not sick enough to require hospitalization or intravenous therapy, selection of the best empiric antimicrobial depends on local rates of MRSA and local susceptibilities. β-Lactam antibiotics, such as penicillins and cephalosporins, can no longer be depended on as single agents for the majority of cases in communities with high MRSA rates. TMP-SMX and clindamycin (depending on local susceptibility patterns) may be used for empiric staphylococcal coverage. However, GAS are generally resistant to TMP-SMX and in a small number of cases may also be resistant to clindamycin. Many clinicians empirically use a combination of TMP-SMX and cefazolin for initial treatment until susceptibilities are known. Linezolid is another option, although the cost of this drug is high.

### 2. Osteomyelitis and septic arthritis—Treatment should be begun intravenously, with antibiotics selected to cover the most likely organisms (staphylococci in hematogenous osteomyelitis; meningoccci, pneumococci, staphylococci in children younger than age 3 years with septic arthritis; staphylococci and gonococci in older children with septic arthritis). Knowledge of local MRSA rates will help guide empiric therapy. Antibiotic levels should be kept high at all times.

Clinical studies support the use of intravenous treatment for osteomyelitis until fever and local symptoms and signs have subsided—usually at least 3–5 days—followed by oral therapy. For both osteomyelitis and joint infections, good compliance with oral therapy is important for successful cure.

For methicillin-susceptible *S. aureus* strains, nafcillin, oxacillin, or cefazolin can be used for intravenous therapy. Clindamycin is an alternative agent if the organism is susceptible and the patient does not have a severe or life-threatening infection or ongoing bacteremia. Dicloxacillin, 100–150 mg/kg/d in four divided doses or cephalexin, 100–150 mg/kg/d in four divided doses) can be used when the patient is ready for oral therapy.

For MRSA osteomyelitis, vancomycin can be used initially while awaiting final susceptibilities. Antibiotic regimens for MRSA osteomyelitis should be based on susceptibility results; isolates may be susceptible to clindamycin or linezolid, but susceptibility patterns vary geographically.
In arthritis, where drug diffusion into synovial fluid is good, intravenous therapy need be given only for a few days, followed by adequate oral therapy for at least 3 weeks.

The C-reactive protein (in the first or second week after therapy is started) and the erythrocyte sedimentation rate (usually measured weekly) are good indicators of response to therapy. Surgical drainage of osteomyelitis or septic arthritis is often required (see Chapter 26).

3. Staphylococcal pneumonia—In the few areas of the country where MRSA is not prevalent, or if the isolate is known to be MSSA, nafcillin and oxacillin are the usual drugs of choice. Vancomycin can be used empirically until results of cultures and susceptibility tests are obtained if MRSA rates are high. In sicker patients, vancomycin plus nafcillin or vancomycin plus oxacillin can be used (in addition to coverage of other pathogens) until the etiologic agent and susceptibilities are established. Linezolid has been reported to be as efficacious as vancomycin for the treatment of resistant gram-positive pneumonia and soft tissue infections.

Empyema and pyopneumothorax require drainage. The choice of chest tube versus thoracoscopic drainage depends on the practitioner’s experience and skill. If staphylococcal pneumonia is treated promptly and empyema drained, resolution in children often is complete.

4. Staphylococcal food poisoning—Therapy is supportive and usually not required except in severe cases or for small infants with marked dehydration.

5. Staphylococcal endocarditis—The treatment of staphylococcal endocarditis depends on whether the patient has a prosthetic valve or material in the heart and on the susceptibilities of the organism. Please see the American Heart Association’s Guidelines on Infective Endocarditis: Diagnosis and Management and consult an infectious disease physician for this serious and sometimes complicated problem. High-dose, prolonged parenteral treatment is indicated. Methicillin-susceptible isolates, in the absence of prosthetic material, are often treated with oxacillin or nafcillin. Some experts also recommend addition of gentamicin for the first 3–5 days. In penicillin-allergic patients (type 1 hypersensitivity or anaphylaxis) or patients with MRSA isolates, vancomycin should be used.

For patients (without penicillin allergy) with prosthetic material in the heart and who have methicillin susceptible isolates, nafcillin (or oxacillin) plus rifampin is used; gentamicin is added during the first 2 weeks. For patients with MRSA endocarditis with prosthetic material present, vancomycin plus rifampin is recommended; gentamicin is added for the first 2 weeks. Therapy lasts in all instances for at least 6 weeks.

Occasionally, medical treatment fails. Signs of treatment failure are (1) recurrent fever without apparent treatable other cause (eg, thrombophlebitis, respiratory or urinary tract infection, drug fever), (2) persistently positive blood cultures, (3) intractable and progressive congestive heart failure, and (4) recurrent (septic) embolization. In such circumstances—particularly (2), (3), and (4)—evaluation for valve replacement becomes necessary. Antibiotics are continued for at least another 4 weeks. Persistent or recurrent infection may require a second surgical procedure.

6. Toxic shock syndrome—Treatment is aimed at expanding blood volume, maintaining perfusion pressure with inotropic agents, ensuring prompt drainage of a focus of infection (or removal of tampons or foreign bodies), and giving intravenous antibiotics.

Vancomycin, in addition to a β-lactam antibiotic (oxacillin or nafcillin), can be used for empiric therapy. Many experts also add clindamycin, since clindamycin is a protein synthesis inhibitor and may turn off toxin production. Clindamycin should not be used empirically as a single agent until susceptibilities (when an isolate grows) are known; some strains of *S aureus* are clindamycin-resistant.

Intravenous immune globulin has been used as adjunctive therapy. Some experts believe that corticosteroid therapy may be effective if given to patients with severe illness early in the course of their disease.

7. Vancomycin-resistant *S aureus* infections (VRSA)—Reports of VRSA isolates are rare but are likely to increase in frequency in the future. Such isolates are sometimes susceptible to clindamycin or TMP-SMX. If not, therapeutic options are limited and include use of quinupristin-dalfopristin, linezolid, or daptomycin, assuming the strain is susceptible to these agents. Quinupristin-dalfopristin is not FDA approved for children less than 16 years of age; daptomycin is not FDA approved for children less than 18 years of age. Consultation with an infectious disease specialist is recommended.

8. Coagulase-negative staphylococcal infections—Bacteremia and other serious coagulase-negative staphylococcal infections are treated initially with vancomycin, with susceptibility results guiding subsequent therapy. Coagulase-negative staphylococci are uncommonly resistant to vancomycin (see Chapter 39 for dosing).


Meningococcal Infections

General Considerations

Meningococci (Neisseria meningitidis) may be carried asymptptomatically for many months in the upper respiratory tract. Less than 1% of carriers develop disease. Meningitis and sepsis are the two most common forms of illness, but septic arthritis, pericarditis, pneumonia, chronic meningococcemia, otitis media, conjunctivitis, and vaginitis also occur. The incidence of invasive diseases in the United States is about 1.2 cases per 100,000 people. An estimated 2400–3000 cases occur in the United States annually. The highest attack rate for meningococcal meningitis is in the first year of life. There also is an elevated attack rate during the teen years. The development of irreversible shock with multiorgan failure is a significant factor in the fatal outcome of acute meningococcal infections.

Meningococci are gram-negative organisms containing endotoxin in their cell walls. Endotoxins cause capillary vascular injury and leak as well as DIC. Meningococci are classified serologically into groups: A, B, C, Y, and W-135 are the groups most commonly implicated in systemic disease. The serologic groups serve as markers for studying outbreaks and transmission of disease. Currently in the United States, serogroups B accounts for 20% of cases, serogroup C accounts for 30% of cases and, serogroup Y account for about 48% of cases. Serogroup A causes periodic epidemics in developing countries, but only occasionally is associated with cases of meningococcal disease in the United States. Sulfonamide resistance is common in non–serotype-A strains. N meningitidis with increased MICs to penicillin G are reported from South Africa and Spain. A small number of these isolates are reported in the United States. The resistance in these strains is low-level and not due to β-lactamase. Resistant isolates are susceptible to third-generation cephalosporins. Few isolates are resistant to rifampin.

Children develop immunity from asymptomatic carriage of meningococci (usually nontypeable, nonpathogenic strains) or other cross-reacting bacteria. Patients deficient in one of the late components of complement (C6, C7, C8, or C9) are uniquely susceptible to meningococcal infection, particularly group A meningococci. Deficiencies of early and alternate pathway complement components also are associated with increased susceptibility.

Prevention

A. Chemoprophylaxis

Household contacts, day care center contacts, and hospital personnel directly exposed to the respiratory secretions of patients are at increased risk for developing meningococcal infection and should be given chemoprophylaxis with rifampin. The secondary attack rate among household members is about 1000 times the attack rate in the general population. Children between the ages of 3 months and 2 years are at greatest risk, presumably because they lack protective antibodies. Secondary cases may occur in day care centers and in classrooms. Hospital personnel are not at increased risk unless they have had contact with a patient’s oral secretions, for example, during mouth-to-mouth resuscitation, intubation, or suctioning procedures. Approximately 50% of secondary cases in households have their onset within 24 hours of identification of the index case. Exposed contacts should be notified promptly. If they are febrile, they should be fully evaluated and given high doses of penicillin or another effective antimicrobial pending the results of blood cultures.

All high-risk contacts should receive chemoprophylaxis for meningococcal disease as soon as an index case is identified. High-risk contacts are defined as:

- All household contacts (especially children < 2 years of age)
- Persons with child care or preschool contact with the index patient at any time in the 7 days prior to illness onset
- Persons with direct exposure to index patients secretions (sharing of drinks, straws, cigarettes, toothbrushes, eating utensils, kissing, etc) at any time in the 7 days prior to illness onset
- Persons who have performed mouth-to-mouth resuscitation or performed unprotected endotracheal intubation of the index patient at any time in the 7 days prior to illness onset
- Persons who have slept in the same dwelling as the index patient within 7 days of illness onset
- Passengers who were seated directly next to the index patient on a flight of more than 8 hours duration

The most commonly used agent for meningococcal chemoprophylaxis is rifampin, given orally in the following dosages twice daily for 2 days: 600 mg for adults; 10 mg/kg for children older than 1 month (maximum dosage 600 mg); and 5 mg/kg for infants younger than 1 month. Rifampin may stain a patient’s tears (and contact lenses), sweat, and urine orange; it may also affect the reliability of oral contraceptives,
and alternative contraceptive measures should therefore be employed when rifampin is administered. Rifampin should not be given to pregnant women. Instead, intramuscular ceftriaxone is the preferred agent: 125 mg given as a single dose if the patient is younger than 15 years; 250 mg given as a single dose if older than 15 years. Penicillin and most other antibiotics (even with parenteral administration) are not effective chemoprophylactic agents, because they do not eradicate upper respiratory tract carriage of meningococci. Ciprofloxacin (20 mg/kg as a single dose, maximum dose 500 mg) effectively eradicates nasopharyngeal carriage in adults and children but is not approved for use in children or in pregnant women. Throat cultures to identify carriers are not useful.

B. Vaccine

Two types of vaccines are currently licensed in the United States. A quadrivalent polysaccharide vaccine (MSPV-4) prepared from purified meningococcal polysaccharides (A, C, Y, and W-135) is available in the United States for children and adults 2 years older of age. Quadrivalent meningococcal conjugate vaccines (see Chapter 10) are licensed for use in children and adults between the ages of 2 months and 55 years, and meningococcal conjugate vaccine is preferred over the polysaccharide vaccine. In general, conjugate vaccines provide longer-lasting immunity and a more robust immune response than polysaccharide vaccines. See Chapter 10 for a discussion on meningococcal vaccines.

Clinical Findings

A. Symptoms and Signs

Many children with clinical meningococcemia also have meningitis, and some have other foci of infection. All children with suspected meningococcemia should have a lumbar puncture.

1. Meningococcemia—A prodrome of upper respiratory infection is followed by high fever, headache, nausea, marked toxicity, and hypotension. Purpura, petechiae, and occasionally bright pink, tender macules or papules over the extremities and trunk are seen. The rash usually progresses rapidly. Occasional cases lack rash. Fulminant meningococcemia (Waterhouse-Friderichsen syndrome) progresses rapidly and is characterized by DIC, massive skin and mucosal hemorrhages, and shock. This syndrome also may be caused by *H. influenzae*, *S. pneumoniae*, or other bacteria. Chronic meningococcemia is characterized by periodic bouts of fever, arthralgia or arthritis, and recurrent petechiae. Splenomegaly often is present. Patients may be free of symptoms between bouts. Chronic meningococcemia occurs primarily in adults and mimics Henoch-Schönlein purpura.

2. Meningitis—In many children, meningococcemia is followed within a few hours to several days by symptoms and signs of acute purulent meningitis, with severe headache, stiff neck, nausea, vomiting, and stupor. Children with meningitis generally fare better than children with meningococcemia alone, probably because they have survived long enough to develop clinical signs of meningitis.

B. Laboratory Findings

The peripheral WBC count may be either low or elevated. Thrombocytopenia may be present with or without DIC (see Chapter 30). If petechial or hemorrhagic lesions are present, meningococci can sometimes be seen microscopically in tissue fluid expressed from a punctured lesion. CSF is generally cloudy and contains more than 1000 WBCs/μL, with many polymorphonuclear neutrophils and gram-negative intracellular diplococci. A total hemolytic complement assay may reveal absence of late components as an underlying cause.

Differential Diagnosis

The skin lesions of *H. influenzae* or pneumococci, enterovirus infection, endocarditis, leptospirosis, Rocky Mountain spotted fever, other rickettsial diseases, Henoch-Schönlein purpura, and blood dyscrasias may be similar to meningococcemia. Severe *S. aureus* sepsis has been reported in some patients to present with purpura. Other causes of sepsis and meningitis are distinguished by appropriate Gram stain and cultures.

Complications

Meningitis may lead to permanent central nervous system (CNS) damage, with deafness, convulsions, paralysis, or impaired intellectual function. Hydrocephalus may develop and requires ventriculoperitoneal shunt. Subdural collections of fluid are common but usually resolve spontaneously. Extensive skin necrosis, loss of digits or extremities, intestinal hemorrhage, and late adrenal insufficiency may complicate fulminant meningococcemia.

Treatment

Blood cultures should be obtained for all children with fever and purpura or other signs of meningococcemia, and antibiotics should be administered immediately as an emergency procedure. There is a good correlation between survival rates and prompt initiation of antibiotic therapy. Purpura and fever should be considered a medical emergency.

Children with meningococcemia or meningococcal meningitis should be treated as though shock were imminent even if their vital signs are stable when they are first seen. If hypotension already is present, supportive measures should be aggressive, because the prognosis is grave in such situations. Treatment should be started emergently and in an intensive care setting but should not be delayed for the sake...
of transporting the patient. Shock may worsen following antimicrobial therapy due to endotoxin release. To minimize the risk of nosocomial transmission, patients should be placed in respiratory isolation for the first 24 hours of antibiotic treatment.

A. Specific Measures

Antibiotics should be initiated promptly. Because other bacteria, such as S pneumoniae, S aureus, or other gram-negative organisms, can cause identical syndromes, initial therapy should be broad. Vancomycin and cefotaxime (or ceftriaxone) are preferred initial coverage. Once N meningitidis has been isolated, penicillin G, cefotaxime, or ceftriaxone intravenously for 7 days are the drugs of choice. Relative penicillin resistance is uncommon but has been reported in the United States.

B. General Measures

Most cases of invasive meningococcal disease are treated with intravenous antibiotics for 7 days.

1. Cardiovascular—(See Chapter 14 for management of septic shock.) Corticosteroids are not beneficial. Sympathetic blockade and topically applied nitroglycerin have been used locally to improve perfusion.

2. Hematologic—Adjunctive therapy with heparin is controversial. Because hypercoagulability is frequently present in patients with meningococemia, some experts believe heparin should be considered for those with DIC. Recombinant tissue plasminogen activator, concentrated antithrombin III, and recombinant protein-C infusions have been tried experimentally to reverse coagulopathy (see Chapter 30 for the management of DIC).

Prognosis

Unfavorable prognostic features include shock, DIC, and extensive skin lesions. The case fatality rate in fulminant meningococcemia is over 30%. In uncomplicated meningococcal meningitis, the fatality rate is much lower (10%–20%).

Centers for Disease Control and Prevention: Updated recommendations for use of meningococcal conjugate vaccines—Advisory Committee on Immunization Practices (ACIP), 2010. MMWR 2011;60:72–76.


GONOCOCCAL INFECTIONS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Purulent urethral discharge with intracellular gram negative diplococci on smear in male patients (usually adolescents).
- Purulent, edematous, sometimes hemorrhagic conjunctivitis with intracellular gram-negative diplococci in 2- to 4-day-old infants.
- Fever, arthritis (often polyarticular) or tenosynovitis, and maculopapular peripheral rash that may be vesiculopustular or hemorrhagic.
- Positive culture of blood, pharyngeal, or genital secretions.

General Considerations

Neisseria gonorrhoeae is a gram-negative diplococcus. Although morphologically similar to other neisseriae, it differs in its ability to grow on selective media and to ferment carbohydrates. The cell wall of N gonorrhoeae contains endotoxin, which is liberated when the organism dies and is responsible for the production of a cellular exudate. The incubation period is short, usually 2–5 days.

Nearly 310,000 cases of gonorrhea were reported in the United States in 2010. Gonococcal disease in children may be transmitted sexually or nonsexually. Prepubertal gonococcal infection outside the neonatal period should be considered presumptive evidence of sexual contact or child abuse. Prepubertal girls usually manifest gonococcal vulvovaginitis because of the neutral to alkaline pH of the vagina and thin vaginal mucosa.

In the adolescent or adult, the workup of every case of gonorrhea should include a careful and accurate inquiry into the patient’s sexual practices, because pharyngeal infection resulting from oral sex must be detected if present and may be difficult to eradicate. Efforts should be made to identify and provide treatment to all sexual contacts. When prepubertal children are infected, epidemiologic investigation should be thorough.

Antimicrobial-resistant gonococci are a serious problem. N gonorrhoeae infections resistant to tetracyclines, penicillins, and fluoroquinolones are common. Fluoroquinolone antimicrobials are no longer recommended for therapy in the United States. In some cases, clinicians will have very limited choices for therapy. Many clinical laboratories do not routinely perform antimicrobial susceptibility tests on N gonorrhoeae, and many infections are documented by nonculture methods.
Clinical Findings

A. Symptoms and Signs

1. Asymptomatic gonorrhea—The ratio of asymptomatic to symptomatic gonorrhea infections in adolescents and adults is probably 3–4:1 in women and 0.5–1:1 in men. Asymptomatic infections are as infectious as symptomatic ones.

2. Uncomplicated genital gonorrhea

A. Male with urethritis—Urethral discharge is sometimes painful and bloody and may be white, yellow, or green. There may be associated dysuria. The patient usually is afebrile.

B. Prepubertal female with vaginitis—The only clinical findings initially may be dysuria and polymorphonuclear neutrophils in the urine. Vulvitis characterized by erythema, edema, and excoriation accompanied by a purulent discharge may follow.

C. Postpubertal female with cervicitis—Symptomatic disease is characterized by a purulent, foul-smelling vaginal discharge, dysuria, and occasionally dyspareunia. Fever and abdominal pain are absent. The cervix is frequently hyperemic and tender when touched. This tenderness is not worsened by moving the cervix, nor are the adnexa tender to palpation.

D. Rectal gonorrhea—Rectal gonorrhea often is asymptomatic. There may be purulent discharge, edema, and pain during evacuation.

3. Pharyngeal gonorrhea—Pharyngeal infection usually is asymptomatic. There may be some sore throat and, rarely, acute exudative tonsillitis with bilateral cervical lymphadenopathy and fever.

4. Conjunctivitis and iridocyclitis—Copious, usually purulent exudate is characteristic of gonococcal conjunctivitis. Newborns are symptomatic on days 2–4 of life. In the adolescent or adult, infection probably is spread from infected genital secretions by the fingers.

5. Pelvic inflammatory disease (salpingitis)—The interval between initiation of genital infection and its ascent to the uterine tubes is variable and may range from days to months. Menses frequently are the initiating factor. With the onset of a menstrual period, gonococci invade the endometrium, causing transient endometritis. Subsequently salpingitis may occur, resulting in pyosalpinx or hydrosalpinx. Rarely infection progresses to peritonitis or perihepatitis. Gonococcal salpingitis occurs in an acute, a subacute, or a chronic form. All three forms have in common tenderness on gentle movement of the cervix and bilateral tubal tenderness during pelvic examination.

Gonococci or Chlamydia trachomatis are the cause of about 50% of cases of pelvic inflammatory disease. A mixed infection caused by enteric bacilli, Bacteroides fragilis, or other anaerobes occur in the other 50%.

6. Gonococcal perihepatitis (Fitz-Hugh and Curtis syndrome)—In the typical clinical pattern, the patient presents with right upper quadrant tenderness in association with signs of acute or subacute salpingitis. Pain may be pleuritic and referred to the shoulder. Hepatic friction rub is a valuable but inconstant sign.

7. Disseminated gonorrhea—Dissemination follows asymptomatic more often than symptomatic genital infection and often results from gonococcal pharyngitis or anorectal gonorrhea. The most common form of disseminated gonorrhea is polyarthritis or polytenosynovitis, with or without dermatitis. Monoarticular arthritis is less common, and gonococcal endocarditis and meningitis are fortunately rare.

A. Polyarthritis—Disease usually begins with the simultaneous onset of low-grade fever, polyarthralgia, and malaise. After a day or so, joint symptoms become acute. Swelling, redness, and tenderness occur, frequently over the wrists, ankles, and knees but also in the fingers, feet, and other peripheral joints. Skin lesions may be noted at the same time. Discrete, tender, maculopapular lesions 5–8 mm in diameter appear that may become vesicular, pustular, and then hemorrhagic. They are few in number and noted on the fingers, palms, feet, and other distal surfaces and may be single or multiple. In patients with this form of the disease, blood cultures are often positive, but joint fluid rarely yields organisms. Skin lesions often are positive by Gram stain but rarely by culture. Genital, rectal, and pharyngeal cultures must be performed.

B. Monoarticular arthritis—In this somewhat less common form of disseminated gonorrhea, fever is often absent. Arthritis evolves in a single joint. Dermatitis usually does not occur. Systemic symptoms are minimal. Blood cultures are negative, but joint aspirates may yield gonococci on smear and culture. Genital, rectal, and pharyngeal cultures must be performed.

B. Laboratory Findings

Demonstration of gram-negative, kidney-shaped diplococci in smears of urethral exudate in males is presumptive evidence of gonorrhea. Positive culture confirms the diagnosis. Negative smears do not rule out gonorrhea. Gram-stained smears of cervical or vaginal discharge in girls are more difficult to interpret because of normal gram-negative flora, but they may be useful when technical personnel are experienced. In girls with suspected gonorrhea, both the cervical os and the anus should be cultured. Gonococcal pharyngitis requires culture for diagnosis.
Cultures for *N gonorrhoeae* are plated on a selective chocolate agar containing antibiotics (eg, Thayer-Martin agar) to suppress normal flora. If bacteriologic diagnosis is critical, suspected material should be cultured on chocolate agar as well. Because gonococci are labile, agar plates should be inoculated immediately and placed without delay in an atmosphere containing CO₂ (candle jar). When transport of specimens is necessary, material should be inoculated directly into Transgrow medium prior to shipment to an appropriate laboratory. In cases of possible sexual molestation, notify the laboratory that definite speciation is needed, because nongonococcal *Neisseria* species can grow on the selective media.

Nucleic acid amplification tests on urine or genital specimens now enable detection of *N gonorrhoeae* and *C trachomatis*. These tests have excellent sensitivity and are replacing culture in many laboratories. All children or adolescents with a suspected or established diagnosis of gonorrhea should have serologic tests for syphilis and HIV.

**Differential Diagnosis**

Urethritis in the male may be gonococcal or nongonococcal (NGU). NGU is a syndrome characterized by discharge (rarely painful), mild dysuria, and a subacute course. The discharge is usually scant or moderate in amount but may be profuse. *C trachomatis* is the only proven cause of NGU. Doxycycline (100 mg orally twice a day for 7 days) is efficacious. Single-dose azithromycin, 1 g orally, may achieve better compliance. *C trachomatis* has been shown to cause epididymitis in males and salpingitis in females.

Vulvovaginitis in a prepubertal female may be due to infection caused by miscellaneous bacteria, including *Shigella* and GAS, *Candida*, and herpes simplex. Discharges may be caused by trichomonads, *Enterobius vermicularis* (pin-worm), or foreign bodies. Symptom-free discharge (leukorrhea) normally accompanies rising estrogen levels.

Cervicitis in a postpubertal female, alone or in association with urethritis and involvement of Skene and Bartholin glands, may be due to infection caused by *Candida*, herpes simplex, *Trichomonas*, or discharge resulting from inflammation caused by foreign bodies (usually some form of contraceptive device). Leukorrhea may be associated with birth control pills.

Salpingitis may be due to infection with other organisms. The symptoms must be differentiated from those of appendicitis, urinary tract infection, ectopic pregnancy, endometriosis, or ovarian cysts or torsion.

Disseminated gonorrhea presents a differential diagnosis that includes meningococcemia, acute rheumatic fever, Henoch-Schönlein purpura, juvenile rheumatoid arthritis, lupus erythematosus, leptospirosis, secondary syphilis, certain viral infections (particularly rubella, but also enteroviruses and parvovirus), serum sickness, type B hepatitis (in the prodromal phase), infective endocarditis, and even acute leukemia and other types of cancer. The fully evolved skin lesions of disseminated gonorrhea are remarkably specific, and genital, rectal, or pharyngeal cultures, plus cultures of blood and joint fluid, usually yield gonococci from at least one source.

**Prevention**

Prevention of gonorrhea is principally a matter of sex education, condom use, and identification and treatment of contacts.

**Treatment**

**A. Uncomplicated Urethral, Endocervical, or Rectal Gonococcal Infections in Adolescents**

Ceftriaxone (250 mg intramuscularly in a single dose), and doxycycline (100 mg orally twice a day for 7 days), or azithromycin (1 g orally in a single dose) is recommended. Cefixime, cefotaxime, and cefotetan parenterally are alternative single-dose therapies. Fluoroquinolones are no longer recommended for therapy due to increasing rates of resistance. If ceftriaxone cannot be used, cefixime (400 mg orally in a single dose) and doxycycline (100 mg orally twice daily for 7 days) is recommended. Azithromycin (2 g orally once) can be used in the case of severe cephalosporin allergy. A repeated culture 7 days after therapy should be done if either oral regimen has been used.

Tetracyclines should be avoided in pregnancy, and repeated doses may stain the teeth of young children. Erythromycin or amoxicillin is recommended for therapy of *C trachomatis* in pregnant women; azithromycin is an alternative regimen. Repeat testing 3 weeks after completion of therapy is recommended in pregnant women.

Spectinomycin (2 g intramuscularly in a single dose) is used for penicillin- and cephalosporin-allergic patients, but is not currently available in the United States. A repeat culture after completion of therapy is not necessary in asymptomatic adolescents after the ceftriaxone–doxycycline regimen. A repeat culture after completion of therapy should be obtained from infants and children.

**B. Pharyngeal Gonococcal Infection**

Ceftriaxone (250 mg intramuscularly in a single dose) and azithromycin 1 g is a single dose or doxycycline 100 mg twice daily for 7 days should be used; neither spectinomycin nor amoxicillin is recommended.

**C. Disseminated Gonorrhea**

Recommended regimens include ceftriaxone (1 g intramuscularly or intravenously once daily) or cefotaxime (1 g intravenously every 8 hours or cefixime (1 g intravenously
every 8 hours). Oral therapy may follow parenteral therapy 24–48 hours after improvement. Recommended regimens include cefixime (400 mg) twice daily to complete 7 days of therapy. Fluoroquinolones are not recommended. If concurrent infection with Chlamydia is present or has not been excluded, a course of doxycycline, azithromycin, or erythromycin should also be prescribed.

D. Pelvic Inflammatory Disease

Doxycycline (100 mg twice a day orally) and either cefoxitin (2 g intramuscularly or intravenously every 6 hours) or cefotetan (2 g intramuscularly or intravenously every 12 hours) are given until the patient is clinically improved, then doxycycline is administered by mouth to complete 14 days of therapy. Clindamycin and gentamicin given intravenously until the patient improves clinically may be used rather than cefoxitin. Many other regimens have been used for therapy of pelvic inflammatory disease, although comparative efficacy data are limited.

E. Prepubertal Gonococcal Infections

1. Uncomplicated genitourinary, rectal, or pharyngeal infections—These infections may be treated with ceftriaxone (50 mg/kg/d to a maximum of 125 mg intramuscularly in a single dose). Children older than age 8 years should also receive doxycycline (100 mg orally twice daily for 7 days). The physician should evaluate all children for evidence of sexual abuse and coinfection with syphilis, Chlamydia, and HIV.

2. Disseminated gonorrhea—This should be treated with ceftriaxone (50 mg/kg once daily parenterally for 7 days).


BOTULISM

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Dry mucous membranes.
- Nausea and vomiting.
- Diplopia; dilated, unreactive pupils.
- Descending paralysis.

- Difficulty in swallowing and speech occurring within 12–36 hours after ingestion of toxin-contaminated food.
- Multiple cases in a family or group.
- Hypotonia and constipation in infants.
- Diagnosis by clinical findings and identification of toxin in blood, stool, or implicated food.

General Considerations

Botulism is a paralytic disease caused by Clostridium botulinum, an anaerobic, gram-positive, spore-forming bacillus normally found in soil. The organism produces an extremely potent neurotoxin. Of the seven types of toxin (A–G), types A, B, and E cause most human diseases. The toxin, a polypeptide, is so potent that 0.1 mg is lethal for humans.

Food-borne botulism usually results from ingestion of toxin-containing food. Preformed toxin is absorbed from the gut and produces paralysis by preventing acetylcholine release from cholinergic fibers at myoneural junctions. In the United States, home-canned vegetables are usually the cause. Commercially canned foods rarely are responsible. Virtually any food will support the growth of C botulinum spores into vegetative toxin-producing bacilli if an anaerobic, nonacid environment is provided. The food may not appear or taste spoiled. The toxin is heat-labile, but the spores are heat-resistant. Inadequate heating during processing (temperature < 115°C) allows the spores to survive and later resume toxin production. Boiling of foods for 10 minutes or heating at 80°C for 30 minutes before eating will destroy the toxin.

Infant botulism occurs in infants less than 12 months of age. The toxin appears to be produced by C botulinum organisms residing in the gastrointestinal tract. In some instances, honey has been the source of spores.

Annually, 10–15 cases of wound botulism are reported. Most cases occur in drug abusers with infection in intravenous or intramuscular injection sites.

Botulism, as a result of aerosolization of botulinum toxin, also could occur as the result of a bioterrorism event. Only three such cases of botulism have been reported; the incubation period was not well-defined, but was about 72 hours in the reported cases.

Prevention

Infant botulism is acquired by ingestion of botulism spores which then sporulate into C botulinum organisms that can form botulinum toxin. Honey can contain botulism spores so it is recommended that honey not be consumed by infants less than 12 months of age. Corn syrups that have not been pasteurized may pose a theoretical risk and some organizations (American Academy of Pediatrics) recommend that
Infants less than 12 months should not consume unpasteurized corn syrup.

Food-borne botulism is acquired by ingesting preformed botulism toxin in food. In the United States, food-borne botulism is most commonly seen with ingestion of home canned foods of low acidity (ie, corn, asparagus, green beans). However, baked potatoes wrapped in aluminum foil that have not been kept hot and home-fermented fish have also been associated with cases of botulism. Persons who eat home-canned foods should consider boiling foods for at least 10 minutes (can destroy potential toxin). Safe food handling practices include keeping foods either refrigerated (< 45°F) or hot (> 185°F), and disposing of any cracked jars or bulging/dented cans.

**Clinical Findings**

**A. Symptoms and Signs**

The incubation period for food-borne botulism is 8–36 hours. The initial symptoms are lethargy and headache. These are followed by double vision, dilated pupils, ptosis, and, within a few hours, difficulty with swallowing and speech. Pharyngeal paralysis occurs in some cases, and food may be regurgitated. The mucous membranes often are very dry. Descending skeletal muscle paralysis may be seen. Death usually results from respiratory failure.

Botulism patients present with a “classic triad”: (1) afebrile; (2) symmetrical, flaccid, descending paralysis with prominent bulbar palsies; and (3) clear sensorium. Recognition of this triad is important in making the clinical diagnosis. Botulism is caused by a toxin, thus there is no fever unless secondary infection (eg, aspiration pneumonia) occurs. Common bulbar palsies seen include dysphonia, dysphagia, dysarthria, and diplopia (four “Ds”).

Infant botulism is seen in infants younger than age 12 months (peak onset 2–8 months). Infants younger than age 2 weeks rarely develop botulism. The initial symptoms are usually constipation and progressive, often severe, hypotonia. Loss of facial expression, weak cry, and drooling are often noted. Clinical findings include constipation, weak suck and cry, pooled oral secretions, cranial nerve deficits, generalized weakness, and, on occasion, apnea. The characteristic electromyographic pattern of brief, small, abundant motor-unit action potentials (BSAPs) may help confirm the diagnosis.

**B. Laboratory Findings**

The diagnosis is made by demonstration of *C botulinum* toxin in stool, gastric aspirate or vomitus, or serum. Serum and stool samples can be sent for toxin confirmation (done by toxin neutralization mouse bioassay at CDC or state health departments). In infant botulism, serum assays for *C botulinum* toxin may be negative. These tests take time and therapy should not be withheld awaiting testing results. Foods that are suspected to be contaminated should be kept refrigerated and given to public health personnel for testing. Laboratory findings, including CSF examination, are usually normal. Electromyography suggests the diagnosis if the characteristic brief, small abundant motor-unit action potentials (BSAP) abnormalities are seen. A nondiagnostic electromyogram does not exclude the diagnosis.

**Differential Diagnosis**

Guillain-Barré syndrome is characterized by ascending paralysis, sensory deficits, and elevated CSF protein without pleocytosis.

Other illnesses that should be considered include poliomyelitis, post diphtheritic polyneuritis, certain chemical intoxications, tick paralysis, and myasthenia gravis. The history and elevated CSF protein characterize postdiphtheritic polyneuritis. Tick paralysis presents with a flaccid ascending motor paralysis. An attached tick should be sought. Myasthenia gravis usually occurs in adolescent girls. It is characterized by ocular and bulbar symptoms, normal pupils, fluctuating weakness, absence of other neurologic signs, and clinical response to cholinesterase inhibitors.

**Complications**

Difficulty in swallowing leads to aspiration pneumonia. Serious respiratory paralysis may be fatal despite assisted ventilation and intensive supportive measures.

**Treatment**

**A. Specific Measures**

Patients with suspected botulism should be hospitalized and monitored closely for signs of impending respiratory failure and inability to manage secretions. Early treatment of botulism with antitoxin (food-borne or wound botulism) or passive human botulism immune globulin (infant botulism) is beneficial. Treatment should begin as soon as the clinical diagnosis is made (prior to microbiologic or toxin confirmation). Contact your State Health Department’s emergency 24-hour telephone number immediately when a case of botulism is suspected to assist in therapeutic decisions and to help obtain treatment product.

For suspected wound or food-borne botulism (noninfant botulism), patients should be treated with the heptavalent botulinum antitoxin (HBAT), which is only available from the CDC under an investigational new drug protocol. HBAT is an equine derived antitoxin and contains antibodies to all seven known botulinum toxin types (A through G). The treatment protocol (available from the CDC) includes detailed instructions for intravenous administration.
of antitoxin. State Health Departments can assist practitioners in obtaining the antitoxin; if State Health Department officials are unavailable, the CDC (770-488-7100) can be contacted for help in obtaining the product and for consultation. In addition, epidemic assistance, and laboratory testing services are available from the CDC through state health departments.

For treatment of infant botulism, intravenous human botulism immune globulin (Baby-BIG) is approved by the U.S. Food and Drug Administration (FDA) for use. Baby-BIG is a product containing high titers of neutralizing antibodies against type A and B toxin and is made from pooled plasma of adults who were immunized with a botulism toxoid vaccine. Results of a placebo-controlled clinical trial of use in infant botulism showed reduction in the mean hospital stay (2.5 weeks in treated patients vs 5.5 weeks in the placebo group) and decrease in mechanical ventilation time in the Baby-BIG–treated group. Although the cost of the preparation is very high, it still is cost-saving since there is a substantial reduction in hospital days, intensive care unit stay, and ventilator time in treated infants. Baby-BIG is not indicated for use in any form of botulism (wound, food-borne) other than infant botulism. To obtain Baby-BIG (in any state), contact the Infant Botulism Treatment and Prevention Program at: (510) 231-7600.

B. General Measures

General and supportive therapy consists of bed rest, ventilatory support (if necessary), fluid therapy, and enteral or parenteral nutrition. Aminoglycoside antimicrobials and clindamycin may exacerbate neuromuscular blockage and should be avoided.

Prognosis

The mortality rate has declined substantially in recent years and currently is at 6%. In nonfatal cases, symptoms subside over 2–3 months and recovery is usually complete.


Centers for Disease Control and Prevention (CDC): Investigational heptavalent botulinum antitoxin (HBAT) to replace licensed botulinum antitoxin AB and investigational botulinum antitoxin E. MMWR 2010;59(10):299 [PMID: 20300057].


TETANUS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Nonimmunized or partially immunized patient.
- History of skin wound.
- Spasms of jaw muscles (trismus).
- Stiffness of neck, back, and abdominal muscles, with hyperirritability and hyperreflexia.
- Episodic, generalized muscle contractions.
- Diagnosis is based on clinical findings and the immunization history.

General Considerations

Tetanus is caused by Clostridium tetani, an anaerobic, gram-positive bacillus that produces a potent neurotoxin. In unimmunized or incompletely immunized individuals, infection follows contamination of a wound by soil containing Clostridial spores from animal manure. The toxin reaches the CNS by retrograde axon transport, is bound to cerebral gangliosides, and appears to increase reflex excitability in neurons of the spinal cord by blocking function of inhibitory synapses. Intense muscle spasms result. Two-thirds of cases in the United States follow minor puncture wounds of the hands or feet. In many cases, no history of a wound can be obtained. Injecting substances and drug abuse may be risk factors (in individuals who are not tetanus-immune). In the newborn, usually in underdeveloped countries, infection generally results from contamination of the umbilical cord. The incubation period typically is 4–14 days but may be longer. In the United States, cases in young children are due to failure to immunize. Eighty-five percent of cases occur in adults older than 25 years.

Prevention

A. Tetanus Toxoid

Active immunization with tetanus toxoid prevents tetanus. Immunity is almost always achieved after the third dose of vaccine. Tetanus immune globulin (TIG) is an additional agent used to prevent tetanus in persons who have received less than three doses of tetanus toxoid or in immunocompromised patients who do not make sufficient antibody (ie, HIV infection; see Chapter 10). A tetanus toxoid booster at the time of injury is needed if none has been given in the past 10 years—or within 5 years for heavily contaminated wounds. Nearly all cases of tetanus (99%) in the United States are in nonimmunized or incompletely immunized individuals.
individuals. Many adolescents and adults lack protective antibody.

**B. Wound Care and Prophylaxis for Tetanus-Prone Wounds**

Wounds that are contaminated with soil, debris, feces, or saliva are at increased risk for tetanus. Puncture wounds or wounds that contain devitalized tissue are at increased risk of infection with *C. tetani*. This includes wounds that result from crush injury, frostbite, burns, or avulsion. All wounds should be adequately cleaned, foreign material removed, and debrided if necrotic or devitalized tissue is present or if residual foreign matter is present. The decision to use tetanus toxoid-containing vaccine or human TIG depends on the type of injury and the tetanus immunization status of the patient (see Chapter 10; Table 10–5). TIG should be used in children with fewer than three previous tetanus toxoid immunizations (DPT, DPaT, DT, Td, Tdap) who have tetanus-prone wounds, and should be administered to HIV-infected children with tetanus-prone wounds, regardless of their immunization history. When TIG is indicated for wound, prophylaxis 250 units are given intramuscularly regardless of age. If tetanus immunization is incomplete, a dose of age-appropriate vaccine should be given. When both are indicated, tetanus toxoid and TIG should be administered concurrently at different sites using different syringes (see Chapter 10).

Prophylactic antimicrobials are useful if the child is unimmunized and TIG is not available.

**Clinical Findings**

**A. Symptoms and Signs**

The first symptom often is mild pain at the site of the wound, followed by hypertonicity and spasm of the regional muscles. Characteristically, difficulty in opening the mouth (trismus) is evident within 48 hours. In newborns, the first signs are irritability and inability to nurse. The infant may then develop stiffness of the jaw and neck, increasing dysphagia, and generalized hyperreflexia with rigidity and spasms of all muscles of the abdomen and back (opisthotonos). The facial distortion resembles a grimace (risus sardonicus). Difficulty in swallowing and convulsions triggered by minimal stimuli such as sound, light, or movement may occur. Individual spasms may last seconds or minutes. Recurrent spasms are seen several times each hour, or they may be almost continuous. In most cases, the temperature is normal or only mildly elevated. A high or subnormal temperature is a bad prognostic sign. Patients are fully conscious and lucid. A profound circulatory disturbance associated with sympathetic overactivity may occur on the second to fourth day, which may contribute to the mortality rate. This is characterized by elevated blood pressure, increased cardiac output, tachycardia (> 20 beats/min), and arrhythmia.

**B. Laboratory Findings**

The diagnosis is made on clinical grounds. There may be a mild polymorphonuclear leukocytosis. The CSF is normal with the exception of mild elevation of opening pressure. Serum muscle enzymes may be elevated. Transient electrocardiographic and electroencephalographic abnormalities may occur. Anaerobic culture and microscopic examination of pus from the wound can be helpful, but *C. tetani* is difficult to grow, and the drumstick-shaped gram-positive bacilli often cannot be found.

**Differential Diagnosis**

Poliomyelitis is characterized by asymmetrical paralysis in an incompletely immunized child. The history of an animal bite and the absence of trismus may suggest rabies. Local infections of the throat and jaw should be easily recognized. Bacterial meningitis, phenothiazine reactions, decerebrate posturing, narcotic withdrawal, spondylitis, and hypocalcemic tetany may be confused with tetanus.

**Complications**

Complications include sepsis, malnutrition, pneumonia, atelectasis, asphyxial spasms, decubitus ulcers, and fractures of the spine due to intense contractions. They can be prevented in part by skilled supportive care.

**Treatment**

**A. Specific Measures**

Human TIG in a single dose of 3000–6000 units, intramuscularly, is given to children and adults. Doses of 500 units have been used in infants. Infiltration of part of the TIG dose around the wound is recommended. If TIG is indicated, but not available, intravenous immune globulin in a dose of 200–400 mg/kg intravenously can be used (although it is not licensed for this indication). In countries where TIG or immune globulin are not available, equine tetanus antitoxin may be available. Surgical debridement of wounds is indicated, but more extensive surgery or amputation to eliminate the site of infection is not necessary. Antibiotics are given to attempt to decrease the number of vegetative forms of the bacteria to decrease toxin production: oral or intravenous metronidazole (30 mg/kg/d in four divided doses; maximum 4 g/d) for 10–14 days is the preferred agent.

**B. General Measures**

The patient is kept in a quiet room with minimal stimulation. Control of spasms and prevention of hypoxic episodes are crucial. Benzodiazepines can be used to help control spasms and provide some sedation. Mechanical ventilation and muscle paralysis are necessary in severe cases. Nasogastric
or intravenous feedings should be used to limit stimulation of feedings and prevent aspiration.

**Prognosis**

The fatality rate in newborns and heroin-addicted individuals is high. The overall mortality rate in the United States is 11%. The fatality rate depends on the quality of supportive care, the patient’s age, and the patient’s vaccination history. Many deaths are due to pneumonia or respiratory failure. If the patient survives 1 week, recovery is likely.


**GAS GANGRENE**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Contamination of a wound with soil or feces.
- Massive edema, skin discoloration, bleb formation, and pain in an area of trauma.
- Serosanguineous exudate from wound.
- Crepitation of subcutaneous tissue.
- Rapid progression of signs and symptoms.
- Clostridia cultured or seen on stained smears.

**General Considerations**

Gas gangrene (Clostridial myonecrosis) is a necrotizing infection that follows trauma or surgery and is caused by several anaerobic, gram-positive, spore-forming bacilli of the genus Clostridium. Occasionally the source is the gastrointestinal tract and muscles are hematogenously seeded. The spores are found in soil, feces, and vaginal secretions. In devitalized tissue, the spores germinate into vegetative bacilli that proliferate and produce toxins, causing thrombosis, hemolysis, and tissue necrosis. C. perfringens, the species causing approximately 80% of cases of gas gangrene, produces at least eight such toxins. The areas involved most often are the extremities, abdomen, and uterus. Clostridium septicum may also cause myonecrosis and causes septicemia in patients with neutropenia. Nonclostridial infections with gas formation can mimic clostridial infections and are more common. Neutropenia is a risk factor for this severe infection.

**Prevention**

Gas gangrene can be prevented by the adequate cleansing and debridement of all wounds. It is essential that foreign bodies and dead tissue be removed. A clean wound does not provide a suitable anaerobic environment for the growth of Clostridial species.

**Clinical Findings**

**A. Symptoms and Signs**

The onset of gas gangrene usually is sudden, often 1 day after trauma or surgery (mean, 3–4 days), but can be delayed up to 20 days. The skin around the wound becomes discolored (pale, red, or purple), with hemorrhagic bullae, serosanguineous exudate, and crepitus may be observed the subcutaneous tissues. The absence of crepitus does not rule out the diagnosis. Pain and swelling usually are intense. Systemic illness appears early and progresses rapidly to intravascular hemolysis, jaundice, shock, toxic delirium, and renal failure.

**B. Laboratory Findings**

Isolation of the organism requires anaerobic culture. Gram-stained smears may demonstrate many gram-positive rods and few inflammatory cells.

**C. Imaging**

Radiographs may demonstrate gas in tissues, but this is a late finding and is also seen in infections with other gas-forming organisms or may be due to air introduced into tissues during trauma or surgery.

**D. Operative Findings**

Direct visualization of the muscle at surgery may be necessary to diagnose gas gangrene. Early, the muscle is pale and edematous and does not contract normally; later, the muscle may be frankly gangrenous.

**Differential Diagnosis**

Gangrene and cellulitis caused by other organisms and Clostridial cellulitis (not myonecrosis) must be distinguished. Necrotizing fasciitis may resemble gas gangrene.

**Treatment**

**A. Specific Measures**

Penicillin G (300,000–400,000 U/kg/d intravenously in six divided doses) should be given, combined with clindamycin or metronidazole. Clindamycin, metronidazole, meropenem,
and imipenem/cilastatin are alternatives for penicillin-allergic patients. Some experts recommend a combination of penicillin and clindamycin. Clindamycin is a protein synthesis inhibitor and may inhibit toxin production.

**B. Surgical Measures**

Surgery should be prompt and extensive, with removal of all necrotic tissue. Compartment syndromes can occur even if there are few cutaneous findings. Checking compartment pressures in patients with severe pain and any signs of compartment syndrome is prudent.

**C. Hyperbaric Oxygen**

Hyperbaric oxygen therapy is controversial but good outcomes have been reported in nonrandomized studies using hyperbaric oxygen in combination with surgery and antibiotics.

**Prognosis**

Clostridial myonecrosis is fatal if untreated. With early diagnosis, antibiotics, and surgery, the mortality rate is 20%–60%. Involvement of the abdominal wall, leukopenia, intravascular hemolysis, renal failure, and shock are ominous prognostic signs.


**DIPHTHERIA**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Gray, adherent pseudomembrane, most often in the pharynx but also in the nasopharynx or trachea.
- Sore throat, serosanguinous nasal discharge, hoarseness, and fever in a nonimmunized child.
- Peripheral neuritis or myocarditis.
- Positive culture.
- Treatment should not be withheld pending culture results.

**Clinical Findings**

**A. Symptoms and Signs**

1. **Pharyngeal diphtheria**—Early manifestations of diphtheritic pharyngitis are mild sore throat, moderate fever, and malaise, followed fairly rapidly by prostration and circulatory collapse. The pulse is more rapid than the fever would seem to justify. A pharyngeal membrane forms and may spread into the nasopharynx or the trachea, producing respiratory obstruction. The membrane is tenacious and gray and is surrounded by a narrow zone of erythema and a broader zone of edema. The cervical lymph nodes become swollen, and swelling is associated with brawny edema of the neck (so-called bull neck). Laryngeal diphtheria presents with stridor, which can progress to obstruction of the airway.

2. **Other forms**—Cutaneous, vaginal, and wound diphtheria account for up to one-third of cases and are characterized by ulcerative lesions with membrane formation.
B. Laboratory Findings

Diagnosis is clinical. Direct smears are unreliable. Material is obtained from the nose, throat, or skin lesions, if present, for culture, but specialized culture media are required. Between 16 and 48 hours is required before identification of the organism. A toxigenicity test is then performed. Cultures may be negative in individuals who have received antibiotics. The WBC count usually is normal, but hemolytic anemia and thrombocytopenia are frequent.

Differential Diagnosis

Pharyngeal diphtheria resembles pharyngitis secondary to β-hemolytic streptococcus, Epstein-Barr virus, or other viral respiratory pathogens. A nasal foreign body or purulent sinusitis may mimic nasal diphtheria. Other causes of laryngeal obstruction include epiglottitis and viral croup. Guillain-Barré syndrome, poliomyelitis, or acute poisoning may mimic the neuropathy of diphtheria.

Complications

A. Myocarditis

Diphtheritic myocarditis is characterized by a rapid, thready pulse; indistinct heart sounds, ST-T wave changes, conduction abnormalities, dysrhythmias, or cardiac failure; hepatomegaly; and fluid retention. Myocardial dysfunction may occur from 2 to 40 days after the onset of pharyngitis.

B. Polyneuritis

Neuritis of the palatal and pharyngeal nerves occurs during the first or second week. Nasal speech and regurgitation of food through the nose are seen. Diplopia and strabismus occur during the third week or later. Neuritis may also involve peripheral nerves supplying the intercostal muscles, diaphragm, and other muscle groups. Generalized paresis usually occurs after the fourth week.

C. Bronchopneumonia

Secondary pneumonia is common in fatal cases.

Prevention

A. Immunization

Immunization with diphtheria toxoid combined with pertussis and tetanus toxoids (DTaP) should be used routinely for infants and children (see Chapter 10).

B. Care of Exposed Susceptibles

Children exposed to diphtheria should be examined, and nose and throat cultures obtained. If signs and symptoms of early diphtheria are found, antibiotic treatment should be instituted. Immunized asymptomatic individuals should receive diphtheria toxoid if a booster has not been received within 5 years. Unimmunized close contacts should receive either erythromycin orally (40 mg/kg/d in four divided doses) for 7 days or benzathine penicillin G intramuscularly (25,000 U/kg), active immunization with diphtheria toxoid, and observation daily.

Treatment

A. Specific Measures

1. Antitoxin—To be effective, diphtheria antitoxin should be administered within 48 hours (see Chapter 9).

2. Antibiotics—Penicillin G (150,000 U/kg/d intravenously or intramuscularly) should be given for 14 days. For penicillin-allergic patients, erythromycin (40 mg/kg/d) is given orally for 14 days.

B. General Measures

Bed rest in the hospital for 10–14 days is usually required. All patients must be strictly isolated for 1–7 days until respiratory secretions are noncontagious. Isolation may be discontinued when two successive nose and throat cultures at 24-hour intervals are negative. These cultures should not be taken until at least 24 hours have elapsed since the cessation of antibiotic treatment.

C. Treatment of Carriers

All carriers should receive treatment. Erythromycin (40 mg/kg/d orally in three or four divided doses), penicillin V potassium (50 mg/kg/d) for 10 days, or benzathine penicillin G (600,000–1,200,000 units intramuscularly) should be given. All carriers must be quarantined. Before they can be released, carriers must have two negative cultures of both the nose and the throat taken 24 hours apart and obtained at least 24 hours after the cessation of antibiotic therapy.

Prognosis

Mortality varies from 3% to 25% and is particularly high in the presence of early myocarditis. Neuritis is reversible; it is fatal only if an intact airway and adequate respiration cannot be maintained. Permanent heart damage from myocarditis occurs rarely.


Centers for Disease Control and Prevention (CDC): Diphtheria. Available at: http://www.cdc.gov/ncidod/dbmd/diseaseinfo/diphtheria_t.htm
INFECTIONS DUE TO ENTEROBACTERIACEAE

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Diarrhea by several different mechanisms due to *E coli*.
- Hemorrhagic colitis and hemolytic-uremic syndrome.
- Neonatal sepsis or meningitis.
- Urinary tract infection.
- Opportunistic infections.
- Diagnosis confirmed by culture.

**General Considerations**

Enterobacteriaceae are a family of gram-negative bacilli that are normal flora in the gastrointestinal tract and are also found in water and soil. They cause gastroenteritis, urinary tract infections, neonatal sepsis and meningitis, and opportunistic infections. *E coli* is the organism in this family that most commonly causes infection in children, but *Klebsiella, Morganella, Enterobacter, Serratia, Proteus*, and other genera are also important, particularly in the compromised host. *Shigella* and *Salmonella* are discussed in separate sections.

*E coli* strains capable of causing diarrhea were originally termed enteropathogenic *E coli* (EPEC) and were recognized by serotype. It is now known that *E coli* may cause diarrhea by several distinct mechanisms. Classic EPEC strains cause a characteristic histologic injury in the small bowel termed adherence and effacement. Enterotoxigenic *E coli* (ETEC) causes a secretory, watery diarrhea. ETEC adheres to enterocytes and secretes one or more plasmid-encoded enterotoxins. One of these, heat-labile toxin, resembles cholera toxin in structure, function, and mechanism of action. Enteroinvasive *E coli* (EIEC) are very similar to *Shigella* in their pathogenetic mechanisms. Shigella-toxin producing *E coli* (STEC) cause hemorrhagic colitis and the hemolytic-uremic syndrome. The most common STEC serotype is O157:H7, although several other serotypes cause the same syndrome. These strains elaborate one of several cytotoxins, closely related to Shiga toxin produced by *Shigella dysenteriae*. Outbreaks of hemolytic-uremic syndrome associated with STEC have followed consumption of inadequately cooked ground beef. Thorough heating to 68–71°C is necessary. Unpasteurized fruit juice, various uncooked vegetables, and contaminated water also have caused infections and epidemics. The common source for STEC in all of these foods and water is the feces of cattle. Person-to-person spread including spread in day care centers by the fecal-oral route has been reported. Over 5400 cases of STEC were reported in the United States in 2010.

*E coli* that aggregate on the surface of hep cells in tissue culture are termed enteroaggregative *E coli* (EAggEC). EAggEC causes diarrhea by a distinct but unknown mechanism.

Eighty percent of *E coli* strains causing neonatal meningitis possess specific capsular polysaccharide (K1 antigen), which, alone or in association with specific somatic antigens, confers virulence. Approximately 90% of urinary tract infections in children are caused by *E coli*. *E coli* binds to the uroepithelium by P-fimbriae, which are present in more than 90% of *E coli* that cause pyelonephritis. Other bacterial cell surface structures, such as O and K antigens, and host factors are also important in the pathogenesis of urinary tract infections.

*Klebsiella, Enterobacter, Serratia*, and *Morganella* are normally found in the gastrointestinal tract and in soil and water. *Klebsiella* may cause a bronchopneumonia with cavity formation. *Klebsiella, Enterobacter*, and *Serratia* are often hospital-acquired opportunists associated with antibiotic usage, debilitated states, and chronic respiratory conditions. They frequently cause urinary tract infection or sepsis. Many of these infections are difficult to treat because of antibiotic resistance. Antibiotic susceptibility tests are necessary. Parenteral third-generation cephalosporins are usually more active than ampicillin, but resistance due to high-level production of chromosomal cephalosporinase may occur. *Enterobacter* and *Serratia* strains broadly resistant to cephalosporins also cause infections in hospitalized newborns and children. Aminoglycoside antibiotics are usually effective but require monitoring of serum levels to ensure therapeutic and nontoxic levels. Carbapenem-resistant Enterobacteriaceae are a serious concern due to limited options for therapy.

**Clinical Findings**

**A. Symptoms and Signs**

1. *E coli* gastroenteritis—*E coli* may cause diarrhea of varying types and severity. ETEC usually produce mild, self-limiting illness without significant fever or systemic toxicity, often known as traveler’s diarrhea. However, diarrhea may be severe in newborns and infants, and occasionally an older child or adult will have a cholera-like syndrome. EIEC strains cause a shigellosis-like illness, characterized by fever, systemic symptoms, blood and mucus in the stool, and leukocytosis, but currently are uncommon in the United States. STEC strains cause hemorrhagic colitis. Diarrhea initially is watery and fever usually is absent. Abdominal pain and cramping occur; diarrhea progresses to blood streaking or grossly bloody stools. Hemolytic-uremic syndrome occurs within a few days of diarrhea in 2%–5% of children and is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure (see Chapter 24).
2. Neonatal sepsis—Findings include jaundice, hepatosplenomegaly, fever, temperature lability, apneic spells, irritability, and poor feeding. Respiratory distress develops when pneumonia occurs; it may appear indistinguishable from respiratory distress syndrome in preterm infants. Meningitis is associated with sepsis in 25%–40% of cases. Other metastatic foci of infection may be present, including pneumonia and pyelonephritis. Sepsis may lead to severe metabolic acidosis, shock, DIC, and death.

3. Neonatal meningitis—Findings include high fever, full fontanelles, vomiting, coma, convulsions, paralyses, poor or absent Moro reflex, opisthotonos, and occasionally hypertonia or hypotonia. Sepsis coexists or precedes meningitis in most cases. Thus, signs of sepsis often accompany those of meningitis. CSF usually shows a cell count of over 1000/μL, mostly polymorphonuclear neutrophils, and bacteria on Gram stain. CSF glucose concentration is low (usually less than half that of blood), and the protein is elevated above the levels normally seen in newborns and premature infants (> 150 mg/dL).

4. Acute urinary tract infection—Symptoms include dysuria, increased urinary frequency, and fever in the older child. Nonspecific symptoms such as anorexia, vomiting, irritability, failure to thrive, and unexplained fever are seen in children younger than age 2 years. Young infants may present with jaundice. As many as 1% of school-aged girls and 0.05% of boys have asymptomatic bacteriuria. Screening for and treatment of asymptomatic bacteriuria is not recommended.

B. Laboratory Findings

Because E coli are normal flora in the stool, a positive stool culture alone does not prove that the E coli in the stool are causing disease. Serotyping, tests for enterotoxin production or invasiveness, and tests for P-fimbriae are performed in research laboratories. MacConkey agar with sorbitol substituted for lactose (SMAC agar) is useful to screen stool for STEC. Serotyping and testing for enterotoxin are available at many state health departments and increasingly from commercial and hospital laboratories. Blood cultures are positive in neonatal sepsis. Cultures of CSF and urine should also be obtained. The diagnosis of urinary tract infections is discussed in Chapter 24.

Differential Diagnosis

The clinical picture of EPEC infection may resemble that of salmonellosis, shigellosis, or viral gastroenteritis. Neonatal sepsis and meningitis caused by E coli can be differentiated from other causes of neonatal infection only by blood and CSF culture.

Treatment

A. Specific Measures

1. E coli gastroenteritis—Gastroenteritis due to EPEC seldom requires antimicrobial treatment. Fluid and electrolyte therapy, preferably given orally, may be required to avoid dehydration. Bismuth subsalicylate reduces stool volume by about one-third in infants with watery diarrhea, probably including ETEC. In nursery outbreaks, E coli gastroenteritis has been treated with neomycin (100 mg/kg/d orally in three divided doses for 5 days). Clinical efficacy is not established. Traveler’s diarrhea may be treated with azithromycin in children and with fluoroquinolones in adults, although resistance to these drugs is increasing. The risk of hemolytic-uremic syndrome is not proven to be increased by antimicrobial therapy of EHEC cases, but most experts recommend no treatment of suspected cases.

2. E coli sepsis and pneumonia—The drugs of choice are ampicillin (150–200 mg/kg/d, given intravenously or intramuscularly in divided doses every 4–6 hours), cefotaxime (150–200 mg/kg/d, given intravenously or intramuscularly in divided doses every 6–8 hours), ceftriaxone (50–100 mg/kg/d, given intramuscularly as single dose or in two divided doses), and gentamicin (5.0–7.5 mg/kg/d, given intramuscularly or intravenously in divided doses every 8 hours). Initial therapy often includes at least two drugs until microbial etiology is established and susceptibility testing is completed. Treatment is continued for 10–14 days. Amikacin or tobramycin may be used instead of gentamicin if the strain is susceptible. Third-generation cephalosporins are often an attractive alternative as single-drug therapy and do not require monitoring for toxicity.

3. E coli meningitis—Third-generation cephalosporins such as cefotaxime (200 mg/kg/d intravenously in four divided doses) are given for a minimum of 3 weeks. Ampicillin (200–300 mg/kg/d intravenously in four to six divided doses) and gentamicin (5.0–7.5 mg/kg/d intramuscularly or intravenously in three divided doses) also are effective for susceptible strains. Treatment with intrathecal and intraventricular aminoglycosides does not improve outcome. Serum levels need to be monitored.

4. Acute urinary tract infection—(See Chapter 24.)

Prognosis

Death due to gastroenteritis leading to dehydration can be prevented by early fluid and electrolyte therapy. Neonatal sepsis with meningitis is still associated with a mortality rate of over 50%. Most children with recurrent urinary tract infections do well if they have no underlying anatomic defects. The mortality rate in opportunistic infections usually depends on the severity of infection and the underlying condition.
PSEUDOMONAS INFECTIONS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Opportunistic infection.
- Confirmed by cultures.

General Considerations

Pseudomonas aeruginosa is an aerobic gram-negative rod with versatile metabolic requirements. The organism may grow in distilled water and in commonly used disinfectants, complicating infection control in medical facilities. P aeruginosa is both invasive and destructive to tissue as well as toxigenic due to secreted exotoxins, all factors that contribute to virulence. Other genera previously classified as Pseudomonas frequently cause nosocomial infections and infections in immunocompromised children. Stenotrophomonas maltophilia (previously Pseudomonas maltophilia) and Burkholderia cepacia (previously Pseudomonas cepacia) are the most frequent.

P aeruginosa is an important cause of infection in children with cystic fibrosis, neoplastic disease, neutropenia, or extensive burns and in those receiving antibiotic therapy. Infections of the urinary and respiratory tracts, ears, mastoids, paranasal sinuses, eyes, skin, meninges, and bones are seen.

Pseudomonas pneumonia is a common nosocomial infection in patients receiving assisted ventilation.

P aeruginosa sepsis may be accompanied by characteristic peripheral lesions called ecthyma gangrenosum. Ecthyma gangrenosum also may occur by direct invasion through intact skin in the groin, axilla, or other skinfolds. P aeruginosa is an infrequent cause of sepsis in previously healthy infants and may be the initial sign of underlying medical problems. P aeruginosa osteomyelitis often complicates puncture wounds of the feet. P aeruginosa is a frequent cause of malignant external otitis media and of chronic suppurative otitis media. Outbreaks of vesiculopustular skin rash have been associated with exposure to contaminated water in whirlpool baths and hot tubs.

P aeruginosa infects the tracheobronchial tree of nearly all patients with cystic fibrosis. Mucoid exopolysaccharide, an exuberant capsule, is characteristically overproduced by isolates from patients with cystic fibrosis. Although bacteremia seldom occurs, patients with cystic fibrosis ultimately succumb to chronic lung infection with P aeruginosa. Infection due to B cepacia has caused a rapidly progressive pulmonary disease in some colonized patients and may be spread by close contact.

Osteomyelitis of the calcaneus or other foot bones occurs after punctures such as stepping on a nail and is commonly due to P aeruginosa.

Clinical Findings

The clinical findings depend on the site of infection and the patient’s underlying disease. Sepsis with these organisms resembles gram-negative sepsis with other organisms, although the presence of ecthyma gangrenosum suggests the diagnosis. The diagnosis is made by culture. Pseudomonas infection should be suspected in neonates and neutropenic patients with clinical sepsis. A severe necrotizing pneumonia occurs in patients on ventilators.

Patients with cystic fibrosis have a persistent bronchitis that progresses to bronchiectasis and ultimately to respiratory failure. During exacerbations of illness, cough and sputum production increase with low-grade fever, malaise, and diminished energy.

The purulent aural drainage without fever in patients with chronic suppurative otitis media is not distinguishable from that due to other causes.

Prevention

A. Infections in Debilitated Patients

Colonization of extensive second- and third-degree burns by P aeruginosa can lead to fatal septicemia. Aggressive debridement and topical treatment with 0.5% silver nitrate solution, 10% mafenide cream, or silver sulfadiazine will greatly inhibit P aeruginosa contamination of burns.
(See Chapter 12 for a discussion of burn wound infections and prevention.)

B. Nosocomial Infections

Faucet aerators, communal soap dispensers, disinfectants, improperly cleaned inhalation therapy equipment, infant incubators, and many other sources that usually are associated with wet or humid conditions all have been associated with Pseudomonas epidemics. Infant-to-infant transmission by nursery personnel carrying Pseudomonas on the hands is frequent in neonatal units. Careful maintenance of equipment and enforcement of infection control procedures are essential to minimize nosocomial transmission.

C. Patients with Cystic Fibrosis

Chronic infection of the lower respiratory tract occurs in nearly all patients with cystic fibrosis. The infecting organism is seldom cleared from the respiratory tract, even with intensive antimicrobial therapy, and the resultant injury to the lung eventually leads to pulmonary insufficiency. Treatment is aimed at controlling signs and symptoms of the infection.

Treatment

Pseudomonas aeruginosa is inherently resistant to many antimicrobials and may develop resistance during therapy. Mortality rates in hospitalized patients exceed 50%, owing both to the severity of underlying illnesses in patients predisposed to Pseudomonas infection and to the limitations of therapy. Antibiotics effective against Pseudomonas include the aminoglycosides, ureidopenicillins (ticarcillin and piperacillin), β-lactamase inhibitor with a ureidopenicillin (ticarcillin-clavulanate and piperacillin-tazobactam), expanded-spectrum cephalosporins (cefazidime and cefepime), imipenem, meropenem, and ciprofloxacin. Colistin has been used in some children with multidrug resistance. Antimicrobial susceptibility patterns vary from area to area, and resistance tends to appear as new drugs become popular. Treatment of infections is best guided by clinical response and susceptibility tests.

Gentamicin or tobramycin (5.0–7.5 mg/kg/d, given intramuscularly or intravenously in three divided doses) or amikacin (15–22 mg/kg/d, given in two or three divided doses) in combination with ticarcillin (200–300 mg/kg/d, given intravenously in four to six divided doses) or with another antipseudomonal β-lactam antibiotic is recommended for treatment of serious Pseudomonas infections. Cefazidime (150–200 mg/kg/d, given in four divided doses) or cefepime (150 mg/kg/d, given in three divided doses) has excellent activity against Pseudomonas aeruginosa. Treatment should be continued for 10–14 days. Treatment with two active drugs is recommended for all serious infections.

Pseudomonas osteomyelitis due to punctures requires thorough surgical debridement and antimicrobial therapy for 2 weeks. Pseudomonas folliculitis does not require antibiotic therapy.

Oral or intravenous ciprofloxacin is also effective against susceptible Pseudomonas aeruginosa, but is not approved by the FDA for use in children except in the case of urinary tract infection. Nonetheless, in some circumstances of antimicrobial resistance, or when the benefits clearly outweigh the small risks, ciprofloxacin may be used.

Chronic suppurative otitis media responds to intravenous ceftazidime (150–200 mg/kg/d in three or four divided doses) given until the drainage has ceased for 3 days. Twice-daily ceftazidime with aural debridement and cleaning given on an outpatient basis has also been successful. Swimmer’s ear may be caused by Pseudomonas aeruginosa and responds well to topical drying agents (alcohol–vinegar mix) and cleansing.

Prognosis

Because debilitated patients are most frequently affected, the mortality rate is high. These infections may have a protracted course, and eradication of the organisms may be difficult.


SALMONELLA GASTROENTERITIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

Nausea, vomiting, headache, meningoismus.

Fever, diarrhea, abdominal pain.

Culture or organism from stool, blood, or other specimens.

General Considerations

Salmonellae are gram-negative rods that frequently cause food-borne gastroenteritis and occasionally bacteremic infection of bone, meninges, and other foci. Approximately
2400 serotypes of \textit{Salmonella enterica} are recognized. \textit{Salmonella typhimurium} is the most frequently isolated serotype in most parts of the world. Although 54,000 cases were reported in 2010, it is estimated that 100 or more occur for each one reported. This yields an estimate or more than 5 million cases yearly in the United States.

Salmonellae are able to penetrate the mucin layer of the small bowel and attach to epithelial cells. Organisms penetrate the epithelial cells and multiply in the submucosa. Infection results in fever, vomiting, and watery diarrhea; the diarrhea occasionally includes mucus and polymorphonuclear neutrophils in the stool. Although the small intestine is generally regarded as the principal site of infection, colitis also occurs. \textit{S. typhimurium} frequently involves the large bowel.

\textit{Salmonella} infections in childhood occur in two major forms: (1) gastroenteritis (including food poisoning), which may be complicated by sepsis and focal supplicative complications; and (2) enteric fever (typhoid fever and paratyphoid fever) (see section on Typhoid Fever and Paratyphoid Fever). Although the incidence of typhoid fever has decreased in the United States, the incidence of \textit{Salmonella} gastroenteritis has greatly increased in the past 15–20 years. The highest attack rates occur in children younger than age 6 years, with a peak in the age group from 6 months to 2 years.

Salmonellae are widespread in nature, infecting domestic and wild animals. Fowl and reptiles have a particularly high carriage rate. Transmission results primarily from ingestion of contaminated food. Transmission from human to human occurs by the fecal-oral route via contaminated food, water, and fomites. Numerous foods, including meats, milk, cheese, ice cream, chocolate, contaminated egg powder, and frozen whole egg preparations used to make ice cream, custards, and mayonnaise are associated with outbreaks. Eggs with contaminated shells that are consumed raw or undercooked have been incriminated in outbreaks and sporadic cases. Animal contact also can be a source for \textit{Salmonella}.

Because salmonellae are susceptible to gastric acidity, the elderly, infants, and patients taking antacids or \textit{H}_2-blocking drugs are at increased risk for infection. Most cases of \textit{Salmonella} meningitis (80%) and bacteremia occur in infancy. Newborns may acquire the infection from their mothers during delivery and may precipitate outbreaks in nurseries. Newborns are at special risk for developing meningitis.

\section*{Clinical Findings}

\subsection*{A. Symptoms and Signs}

There is a very wide range of severity of infection. Infants usually develop fever, vomiting, and diarrhea. The older child also may complain of headache, nausea, and abdominal pain. Stools are often watery or may contain mucus and, in some instances, blood, suggesting shigellosis. Drowsiness and disorientation may be associated with meningismus. Convulsions occur less frequently than with shigellosis. Splenomegaly occasionally occurs. In the usual case, diarrhea is moderate and subsides after 4–5 days, but it may be protracted.

\subsection*{B. Laboratory Findings}

Diagnosis is made by isolation of the organism from stool, blood, or, in some cases, from urine, CSF, or pus from a suppurative lesion. The WBC count usually shows a polymorphonuclear leukocytosis but may show leukopenia. \textit{Salmonella} isolates should be reported to public health authorities for epidemiologic purposes.

\section*{Differential Diagnosis}

In staphylococcal food poisoning, the incubation period is shorter (2–4 hours) than in \textit{Salmonella} food poisoning (12–24 hours). Fever is absent, and vomiting rather than diarrhea is the main symptom. In shigellosis, many polymorphonuclear leukocytes usually are seen on a stained smear of stool, and the peripheral WBC count is more likely to slow a marked left shift, although some cases of salmonellosis are indistinguishable from shigellosis. \textit{Campylobacter} gastroenteritis commonly resembles salmonellosis clinically. Culture of the stools is necessary to distinguish the causes of bacterial gastroenteritis.

\section*{Complications}

Unlike most types of infectious diarrhea, salmonellosis is frequently accompanied by bacteremia, especially in newborns and infants. Septicemia with extraintestinal infection is seen, most commonly with \textit{Salmonella choleraesuis} but also with \textit{Salmonella enterica}, typhimurium, and paratyphi serotypes. The organism may spread to any tissue and may cause arthritis, osteomyelitis, cholecystitis, endocarditis, meningitis, pericarditis, pneumonia, or pyelonephritis. Patients with sickle cell anemia or other hemoglobinopathies have a predilection for the development of osteomyelitis. Severe dehydration and shock are more likely to occur with shigellosis but may occur with \textit{Salmonella} gastroenteritis.

\section*{Prevention}

Measures for the prevention of \textit{Salmonella} infections include thorough cooking of foodstuffs derived from contaminated sources, adequate refrigeration, control of infection among domestic animals, and meticulous meat and poultry inspections. Raw and undercooked fresh eggs should be avoided. Food handlers and child care workers with salmonellosis should have three negative stool cultures before resuming work. Asymptomatic children, who have recovered from \textit{Salmonella} infection, do not need exclusion.
TYPHOID FEVER & PARATYPHOID FEVER

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Insidious or acute onset of headache, anorexia, vomiting, constipation or diarrhea, ileus, and high fever.
- Meningismus, splenomegaly, and rose spots.
- Leukopenia; positive blood, stool, bone marrow, and urine cultures.

General Considerations

Typhoid fever is caused by the gram-negative bacillus *Salmonella typhi*. Paratyphoid fevers, which are usually milder but may be clinically indistinguishable, are caused by *S paratyphi A*, *Salmonella schottmulleri*, or *Salmonella hirschfeldii* (formerly *S paratyphi A*, B, and C). Children have a shorter incubation period than do adults (usually 5–8 days instead of 8–14 days). The organism enters the body through the walls of the intestinal tract and, following a transient bacteremia, multiplies in the reticuloendothelial cells of the liver and spleen. Persistent bacteremia and symptoms then follow. Reinfection of the intestine occurs as organisms are excreted in the bile. Bacterial emboli produce
the characteristic skin lesions (rose spots). Typhoid fever is transmitted by the fecal-oral route and by contamination of food or water. Unlike other Salmonella species, there are no animal reservoirs of S typhi; each case is the result of direct or indirect contact with the organism or with an individual who is actively infected or a chronic carrier.

About 460 cases per year were reported in the United States in 2010, 80% of which are acquired during foreign travel.

► Clinical Findings

A. Symptoms and Signs

In children, the onset of typhoid fever usually is sudden rather than insidious, with malaise, headache, crampy abdominal pains and distention, and sometimes constipation followed within 48 hours by diarrhea, high fever, and toxemia. An encephalopathy may be seen with irritability, confusion, delirium, and stupor. Vomiting and meningeal symptoms may be prominent in infants and young children. The classic lengthy three-stage disease seen in adult patients often is shorted in children. The prodrome may last only 2–4 days, the toxic stage only 2–3 days, and the defervescence stage 1–2 weeks.

During the prodromal stage, physical findings may be absent, but abdominal distention and tenderness, meningeal signs, mild hepatomegaly, and minimal splenomegaly may be present. The typical typhoidal rash (rose spots) is present in 10%–15% of children. It appears during the second week of the disease and may erupt in crops for the succeeding 10–14 days. Rose spots are erythematous maculopapular lesions 2–3 mm in diameter that blanch on pressure. They are found principally on the trunk and chest and they generally disappear within 3–4 days. The lesions usually number fewer than 20.

B. Laboratory Findings

Typhoid bacilli can be isolated from many sites, including blood, stool, urine, and bone marrow. Blood cultures are positive in 50%–80% of cases during the first week and less often later in the illness. Stool cultures are positive in about 50% of cases after the first week. Urine and bone marrow cultures also are valuable. Most patients will have negative cultures (including stool) by the end of a 6-week period. Serologic tests (Widal reaction) are not as useful as cultures because both false-positive and false-negative results occur. Leukopenia is common in the second week of the disease, but in the first week, leukocytosis may be seen. Proteinuria, mild elevation of liver enzymes, thrombocytopenia, and DIC are common.

► Differential Diagnosis

Typhoid and paratyphoid fevers must be distinguished from other serious prolonged fevers. These include typhus, brucellosis, malaria, tularemia, tuberculosis, psittacosis, vasculitis, lymphoma, mononucleosis, and Kawasaki disease. The diagnosis of typhoid fever often is made clinically in developing countries, but the accuracy of clinical diagnosis is variable. In developed countries, where typhoid fever is uncommon and physicians are unfamiliar with the clinical picture, the diagnosis often is not suspected until late in the course. Positive cultures confirm the diagnosis.

► Complications

The most serious complications of typhoid fever are gastrointestinal hemorrhage (2%–10%) and perforation (1%–3%). They occur toward the end of the second week or during the third week of the disease.

Intestinal perforation is one of the principal causes of death. The site of perforation generally is the terminal ileum or cecum. The clinical manifestations are indistinguishable from those of acute appendicitis, with pain, tenderness, and rigidity in the right lower quadrant.

Bacterial pneumonia, meningitis, septic arthritis, abscesses, and osteomyelitis are uncommon complications, particularly if specific treatment is given promptly. Shock and electrolyte disturbances may lead to death.

About 1%–3% of patients become chronic carriers of S typhi. Chronic carriage is defined as excretion of typhoid bacilli for more than a year, but carriage is often lifelong. Adults with underlying biliary or urinary tract disease are much more likely than children to become chronic carriers.

► Prevention

Routine typhoid vaccine is not recommended in the United States but should be considered for foreign travel to endemic areas. An attenuated oral typhoid vaccine produced from strain Ty21a has better efficacy and causes minimal side effects but is not approved for children younger than age 6 years. The vaccine is repeated after 5 years. A capsular polysaccharide vaccine (ViCPS) requires one intramuscular injection and may be given to children age 2 years and older. (See Chapter 10.)

► Treatment

A. Specific Measures

Third-generation cephalosporins such as cefotaxime (150 mg/kg divided in three doses), azithromycin (10 mg/kg on day 1, followed by 5 mg/kg for 7 days), or a fluoroquinolone are used for presumptive therapy. Antimicrobial susceptibility testing and local experience are used to direct subsequent therapy. Equally effective regimens for susceptible strains include the following: TMP-SMX (10 mg/kg trimethoprim and 50 mg/kg
sulfamethoxazole per day orally in two or three divided doses), amoxicillin (100 mg/kg/d orally in four divided doses), and ampicillin (100–200 mg/kg/d intravenously in four divided doses). Aminoglycosides and first- and second-generation cephalosporins are clinically ineffective regardless of in vitro susceptibility results. Ciprofloxacin or other fluoroquinolones are efficacious but not approved in children, but may be used for multiply resistant strains. Treatment duration is 14–21 days. Patients may remain febrile for 3–5 days even with appropriate therapy.

**B. General Measures**

General support of the patient is exceedingly important and includes rest, good nutrition and hydration, and careful observation, with particular regard to evidence of intestinal bleeding or perforation. Blood transfusions may be needed even in the absence of frank hemorrhage.

**Prognosis**

A prolonged convalescent carrier stage may occur in children. Three negative cultures after all antibiotics have been stopped are required before contact precautions are stopped. With early antibiotic therapy, the prognosis is excellent, and the mortality rate is less than 1%. Relapse occurs 1–3 weeks after appropriate therapy.

**General Considerations**

Shigellae are nonmotile gram-negative rods of the family Enterobacteriaceae and are closely related to *E. coli*. The genus *Shigella* is divided into four species: *S. dysenteriae*, *Shigella flexneri*, *Shigella boydii*, and *Shigella sonnei*. Approximately 15,000 to 20,000 cases of shigellosis are reported each year in the United States. *S. sonnei* followed by *S. flexneri* are the most common isolates.

*S. dysenteriae*, which causes the most severe diarrhea of all species and the greatest number of extraintestinal complications, accounts for less than 1% of all *Shigella* infections in the United States.

Shigellosis may be a serious disease, particularly in young children, and without supportive treatment an appreciable mortality rate results. In older children and adults, the disease tends to be self-limited and milder. *Shigella* is usually transmitted by the fecal-oral route. Food- and water-borne outbreaks are increasing in occurrence, but are less important overall than person-to-person transmission. The disease is very communicable—as few as 200 bacteria can produce illness in an adult. The secondary attack rate in families is high, and shigellosis is a serious problem in day care centers and custodial institutions. *Shigella* organisms produce disease by invading the colonic mucosa, causing mucosal ulcerations and microabscesses. A plasmid-encoded gene is required for enterotoxin production, chromosomal genes are required for invasiveness, and smooth lipopolysaccharides are required for virulence. An experimental vaccine is under development and is safe and immunogenic in young children.

**Clinical Findings**

**A. Symptoms and Signs**

The incubation period of shigellosis is usually 2–4 days. Onset is abrupt, with abdominal cramps, urgency, tenesmus, chills, fever, malaise, and diarrhea. Hallucinations and seizures sometimes accompany high fever. In severe forms, blood and mucus are seen in small stools (dysentery), and meningismus and convulsions may occur. In older children, the disease may be mild and may be characterized by watery diarrhea without blood. In young children, a fever of 39.4–40°C is common. Rarely there is rectal prolapse. Symptoms generally last 3–7 days.

**B. Laboratory Findings**

The total WBC count varies, but often there is a marked shift to the left. The stool may contain gross blood and mucus, and many neutrophils are seen if mucus from the stool is examined microscopically. Stool cultures are usually positive; however, they may be negative because the organism is somewhat fragile and present in small numbers late in the disease, and because laboratory techniques are suboptimal for the recovery of shigellae.
Differential Diagnosis

Diarrhea due to rotavirus infection is a winter rather than a summer disease. Usually children with viral gastroenteritis are not as febrile or toxic as those with shigellosis, and the stool does not contain gross blood or neutrophils. Intestinal infections caused by Salmonella or Campylobacter are differentiated by culture. Grossly bloody stools in a patient without fever or stool leukocytes suggest E. coli O157:H7 infection. Amoebic dysentery is diagnosed by microscopic examination of fresh stools or sigmoidoscopy specimens. Intussusception is characterized by an abdominal mass (so-called currant jelly stools) without leukocytes, and by absence of initial fever. Mild shigellosis is not distinguishable clinically from other forms of infectious diarrhea.

Complications

Dehydration, acidosis, shock, and renal failure are the major complications. In some cases, a chronic form of dysentery occurs, characterized by mucoid stools and poor nutrition. Bacteremia and metastatic infections are rare but serious complications. Febrile seizures are common. Fulminating fatal dysentery and hemolytic-uremic syndrome occur rarely. Reiter syndrome may follow S. flexneri infection.

Treatment

A. Specific Measures

Resistance to TMP-SMX (10 mg/kg/d trimethoprim and 50 mg/kg/d sulfamethoxazole, given in two divided doses orally for 5 days) and ampicillin (100 mg/kg/d divided in four doses) is common and limits the use of these drugs to cases where results of susceptibility testing are known. Amoxicillin is not effective. Parenteral ceftriaxone is effective. Azithromycin (12 mg/kg/d on day 1, then 6 mg/kg/d for 2 days) is effective, but laboratories do not routinely perform susceptibility testing for azithromycin. Ciprofloxacin (500 mg, given twice daily for 5 days) is efficacious in adults but is not approved for use in children. However, it may be used in children who remain symptomatic and in need of therapy, and when multiply resistant strains limit other preferred choices. Successful treatment reduces the duration of fever, cramping, and diarrhea and terminates fecal excretion of Shigella. Presumptive therapy should be limited to children with classic shigellosis or known outbreaks. Afebrile children with bloody diarrhea are more commonly infected with EHEC. Antimicrobial therapy of EHEC may increase the likelihood of hemolytic-uremic syndrome, and is not recommended.

B. General Measures

In severe cases, immediate rehydration is critical. A mild form of chronic malabsorption syndrome may supervene and require prolonged dietary control.

Prognosis

The prognosis is excellent if vascular collapse is treated promptly by adequate fluid therapy. The mortality rate is high in very young, malfnourished infants who do not receive fluid and electrolyte therapy. Convalescent fecal excretion of Shigella lasts 1–4 weeks in patients not receiving antimicrobial therapy. Long-term carriers are rare.

Cholera

General Considerations

Cholera is an acute diarrheal disease caused by the gram-negative organism Vibrio cholerae. It is transmitted by contaminated water or food, especially contaminated shellfish. Epidemics are common in impoverished areas where hygiene and safe water supply are limited. Typical disease is generally so dramatic that in endemic areas the diagnosis is obvious. Individuals with mild illness and young children may play an important role in transmission of the infection.

Asymptomatic infection is far more common than clinical disease. In endemic areas, rising titers of vibriocidal antibody are seen with increasing age. Infection occurs in individuals with low titers. The age-specific attack rate is highest in children younger than age 5 years and declines with age. Cholera is unusual in infancy.

Cholera toxin is a protein enterotoxin that is primarily responsible for symptoms. Cholera toxin binds to a regulatory subunit of adenyl cyclase in enterocytes, causing increased cyclic adenosine monophosphate and an outpouring of NaCl and water into the lumen of the small bowel.
Nutritional status is an important factor determining the severity of the diarrhea. Duration of diarrhea is prolonged in adults and children with severe malnutrition.

Cholera is endemic in India and southern and Southeast Asia and in parts of Africa. The most recent pandemic, caused by the El Tor biotype of *V. cholerae* 01, began in 1961 in Indonesia. Epidemic cholera spread in Central and South America, with a total of 1 million cases and 9500 deaths reported through 1994. A severe cholera outbreak is ongoing in Haiti since October 2010. More than 500,000 cases and 6000 deaths are estimated. *V. cholerae* serogroups 0139 has been recognized in Asia as a cause of cholera illness. Cases in the United States occurred in the course of foreign travel or as a result of consumption of contaminated imported food. Cholera is increasingly associated with consumption of shellfish. Interstate shipment of oysters has resulted in cholera in several inland states. Cholera is now rare in the United States with 10 to 15 cases per year reported.

*V. cholerae* is a natural inhabitant of shellfish and copepods in estuarine environments. Seasonal multiplication of *V. cholerae* may provide a source of outbreaks in endemic areas. Chronic cholera carriers are rare. The incubation period is short, usually 1–3 days.

### Clinical Findings

#### A. Symptoms and Signs

Many patients infected with *V. cholerae* have mild disease, with 1%–2% developing severe diarrhea. During severe cholera, there is a sudden onset of massive, frequent, watery stools, generally light gray in color (so-called rice-water stools) and containing some mucus but no pus. Vomiting may be projectile and is not accompanied by nausea. Within 2–3 hours, the tremendous loss of fluids results in life-threatening dehydration, hypochloremia, and hypokalemia, with marked weakness and collapse. Renal failure with uremia and irreversible peripheral vascular collapse will occur if fluid therapy is not administered. The illness lasts 1–7 days and is shortened by appropriate antibiotic therapy.

#### B. Laboratory Findings

Markedly elevated hemoglobin (20 g/dL) and marked acidosis, hypochloremia, and hyponatremia are seen. Stool sodium concentration may range from 80 to 120 mEq/L. Culture confirmation requires specific media and takes 16–18 hours for a presumptive diagnosis and 36–48 hours for a definitive bacteriologic diagnosis.

### Prevention

Cholera vaccine is available outside of the United States and provides 50%–75% efficacy. Protection lasts 3–6 months. Cholera vaccine is not generally recommended for travelers.

Tourists visiting endemic areas are at little risk if they exercise caution in what they eat and drink and maintain good personal hygiene. In endemic areas, all water and milk must be boiled, food protected from flies, and sanitary precautions observed. Simple filtration of water is highly effective in reducing cases. Thorough cooking of shellfish prevents transmission. All patients with cholera should be isolated.

Chemoprophylaxis is indicated for household and other close contacts of cholera patients. It should be initiated as soon as possible after the onset of the disease in the index patient. Tetracycline (500 mg/d for 5 days) is effective in preventing infection. TMP-SMX may be substituted in children.

### Treatment

Physiologic saline or lactated Ringer solution should be administered intravenously in large amounts to restore blood volume and urine output and prevent irreversible shock. Potassium supplements are required. Sodium bicarbonate, given intravenously, also may be needed initially to overcome profound metabolic acidosis from bicarbonate loss in the stool. Moderate dehydration and acidosis can be corrected in 3–6 hours by oral therapy alone, because the active glucose transport system of the small bowel is normally functional. The optimal composition of the oral solution (in milliequivalents per liter [mEq/L]) is as follows: Na+, 90; Cl−, 80; and K+, 20 (with glucose, 110 mmol/L).

Treatment with tetracycline (50 mg/kg/d orally in four divided doses for 2–5 days) or azithromycin (10 mg/kg/d in one dose for 1–5 days) shortens the duration of the disease in children and prevents clinical relapse but is not as important as fluid and electrolyte therapy. Tetracycline resistance occurs in some regions, and ciprofloxacin may be used depending on local resistance patterns. TMP-SMX or azithromycin should be used in children younger than age 9 years.

### Prognosis

With early and rapid replacement of fluids and electrolytes, the case fatality rate is 1%–2% in children. If significant symptoms appear and no treatment is given, the mortality rate is over 50%.
**CAMPYLOBACTER INFECTION**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Fever, vomiting, abdominal pain, diarrhea.
- Presumptive diagnosis by darkfield or phase contrast microscopy of stool wet mount or modified Gram stain.
- Definitive diagnosis by stool culture.

**General Considerations**

*Campylobacter* species are small gram-negative, curved or spiral bacilli that are commensals or pathogens in many animals. *Campylobacter jejuni* frequently causes acute enteritis in humans. In the 1990s, *C. jejuni* was responsible for 3%–11% of cases of acute gastroenteritis in North America and Europe. In many areas, enteritis due to *C. jejuni* is more common than that due to *Salmonella* or *Shigella*. *Campylobacter fetus* causes bacteremia and meningitis in immunocompromised patients. *C. fetus* may cause maternal fever, abortion, stillbirth, and severe neonatal infection. *Helicobacter pylori* (previously called *Campylobacter pylori*) causes gastritis and peptic ulcer disease in both adults and children (see Chapter 21).

*Campylobacter* colonizes domestic and wild animals, especially poultry. Numerous cases have been associated with sick puppies or other animal contacts. Contaminated food and water, improperly cooked poultry, and person-to-person spread by the fecal-oral route are common routes of transmission. Outbreaks associated with day care centers, contaminated water supplies, and raw milk have been reported. Newborns may acquire the organism from their mothers at delivery.

**Clinical Findings**

**A. Symptoms and Signs**

*C. jejuni* enteritis can be mild or severe. In tropical countries, asymptomatic stool carriage is common. The incubation period is usually 1–7 days. The disease usually begins with sudden onset of high fever, malaise, headache, abdominal cramps, nausea, and vomiting. Diarrhea follows and may be watery or bile-stained, mucoid, and bloody. The illness is self-limiting, lasting 2–7 days, but relapses may occur. Without antimicrobial treatment, the organism remains in the stool for 1–6 weeks.

**B. Laboratory Findings**

The peripheral WBC count generally is elevated, with many band forms. Microscopic examination of stool reveals erythrocytes and pus cells.

Isolation of *C. jejuni* from stool is not difficult but requires selective agar, incubation at 42°C rather than 35°C, and incubation in an atmosphere of about 5% oxygen and 5% CO₂ (candle jar is satisfactory).

**Differential Diagnosis**

*Campylobacter* enteritis may resemble viral gastroenteritis, salmonellosis, shigellosis, amebiasis, or other infectious diarrheas. Because it also mimics ulcerative colitis, Crohn disease, intussusception, and appendicitis, mistaken diagnosis can lead to unnecessary diagnostic testing or surgery.

**Complications**

The most common complication is dehydration. Other uncommon complications include erythema nodosum, convulsions, reactive arthritis, bacteremia, urinary tract infection, and cholecystitis. Guillain-Barré syndrome may follow *C. jejuni* infection by 1–3 weeks.

**Prevention**

No vaccine is available. Hand washing and adherence to basic food sanitation practices help prevent disease. Hand washing and cleaning of kitchen utensils after contact with raw poultry are important.

**Treatment**

Treatment of fluid and electrolyte disturbances is important. Antimicrobial treatment with erythromycin in children (30–50 mg/kg/d orally in four divided doses for 5 days), azithromycin (10 mg/kg/d orally once daily) for 3 days, or ciprofloxacin terminates fecal excretion. Fluoroquinolone-resistant *C. jejuni* are now common worldwide. Therapy given early in the course of the illness will shorten the duration of symptoms but is unnecessary if given later. Antimicrobials used for shigellosis, such as TMP-SMX and ampicillin, are inactive against *Campylobacter*. Supportive therapy is sufficient in most cases.

**Prognosis**

The outlook is excellent if dehydration is corrected and misdiagnosis does not lead to inappropriate diagnostic or surgical procedures.


TULAREMIA

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- A cutaneous or mucous membrane lesion at the site of inoculation and regional lymph node enlargement.
- Sudden onset of fever, chills, and prostration.
- History of contact with infected animals, principally wild rabbits, or history of tick exposure.
- Positive culture or immunofluorescence from mucocutaneous ulcer or regional lymph nodes.
- High serum antibody titer.

General Considerations

Tularemia is caused by Francisella tularensis, a gram-negative organism usually acquired directly from infected animals (principally wild rabbits) or by the bite of an infected tick. Occasionally infection is acquired from infected domestic dogs or cats; by contamination of the skin or mucous membranes with infected blood or tissues; by inhalation of infected material; by bites of fleas or deer flies that have been in contact with infected animals; or by ingestion of contaminated meat or water. The incubation period is short, usually 3–7 days, but may vary from 2 to 25 days.

Ticks are the most important vector of tularemia and rabbits are the classic vector. It is important to seek a history of rabbit hunting, skinning, or food preparation in any patient who has a febrile illness with tender lymphadenopathy, often in the region of a draining skin ulcer.

Prevention

Children should be protected from insect bites, especially those of ticks, fleas, and deer flies, by the use of proper clothing and repellents. Because rabbits are the source of most human infections, the dressing and handling of such game should be performed with great care. Rubber gloves should be worn by hunters or food handlers when handling carcasses of wild rabbits. If contact occurs, thorough washing with soap and water is indicated. For postexposure prophylaxis from an intentional release of F. tularensis (bioterrorism), a 14-day course of doxycycline or ciprofloxacin is recommended (children less than 8 years should not receive doxycycline unless benefits outweigh risks; in children less than 18 years ciprofloxacin is not approved for this indication—weigh benefits and risk).

Clinical Findings

A. Symptoms and Signs

Several clinical types of tularemia occur in children. Sixty percent of infections are of the ulceroglandular form and start as a reddened papule that may be pruritic, quickly ulcerates, and is not very painful. Soon, the regional lymph nodes become large and tender. Fluactuation quickly follows. There may be marked systemic symptoms, including high fever, chills, weakness, and vomiting. Pneumonitis occasionally accompanies the ulceroglandular form or may be seen as the sole manifestation of infection (pneumonic form). A detectable skin lesion may be absent, and localized lymphoid enlargement may exist alone (glandular form). Oculoglandular and oropharyngeal forms also occur. The latter is characterized by tonsillitis, often with membrane formation, cervical adenopathy, and high fever. In the absence of a primary ulcer or localized lymphadenitis, a prolonged febrile disease reminiscent of typhoid fever can occur (typhoidal form). Splenomegaly is common in all forms.

B. Laboratory Findings

F. tularensis can be recovered from ulcers, regional lymph nodes, and sputum of patients with the pneumatic form. However, the organism grows only on an enriched medium (blood-cystine-glucose agar), and laboratory handling is dangerous owing to the risk of airborne transmission to laboratory personnel. Immunofluorescent staining of biopsy material or aspirates of involved lymph nodes is diagnostic, although it is not widely available.

The WBC count is not remarkable. Agglutinins are present after the second week of illness, and in the absence of a positive culture their development confirms the diagnosis. A tube agglutination antibody titer of 1:160 or greater or a microagglutination titer of 1:128 or higher is considered presumptively positive for the diagnosis of tularemia. Confirmation of disease is established by demonstration of a fourfold antibody titer rise between acute and convalescent serum samples. PCR of blood, lymph node aspirate, or tissue may be available through State Health Departments.

Differential Diagnosis

The typhoidal form of tularemia may mimic typhoid, brucellosis, miliary tuberculosis, Rocky Mountain spotted fever, and mononucleosis. Pneumonic tularemia resembles atypical or mycotic pneumonia. The ulceroglandular type of tularemia resembles pyoderma caused by staphylococci or streptococci, plague, anthrax, and cat-scratch fever. The oropharyngeal type must be distinguished from streptococcal or diphtheritic pharyngitis, mononucleosis, herpangina, or other viral pharyngitides.
INFECTIONS: BACTERIAL & SPIROCHETAL

Treatment

A. Specific Measures

Historically, streptomycin was the drug of choice. However, gentamicin is efficacious, more available, and familiar to clinicians. A 10-day course is usually sufficient, although more severe infections may need longer therapy. Doxycycline is effective, but relapse rates are higher. Doxycycline is not usually recommended for children younger than 8 years of age unless benefits of use outweigh the risk of dental staining. Doxycycline is a static (as opposed to cidal) agent and should be given for at least 14 days. Ciprofloxacin also can be used in patients with less severe disease. Ciprofloxacin is not approved for children younger than 18 years, and is not usually recommended in children unless benefits outweigh risks.

B. General Measures

Antipyretics and analgesics may be given as necessary. Skin lesions are best left open. Glandular lesions occasionally require incision and drainage.

Prognosis

The prognosis is excellent in most cases of tularemia that are recognized early and treated appropriately.

Prevention

Proper disposal of household and commercial wastes and chemical control of rats are basic elements of plague prevention. Flea control is instituted and maintained with liberal use of insecticides. Children vacationing in remote camping areas should be warned not to handle dead or dying animals. Domestic cats that roam freely in suburban areas may contact infected wild animals and acquire infected fleas. There is no commercially available vaccine for plague.

All persons who have been exposed to plague in the previous 6 days (via personal contact with an infected person, contact with plague infected fleas, or exposure to infected tissues) should be given antimicrobial prophylaxis or be instructed to closely monitor themselves for fever or other symptoms and report any illness or any fever to their physician. Persons who have close personal contact (< 2 m) with a person with pneumonic plague should receive antimicrobial prophylaxis for 7 days from the last exposure. Doxycycline or ciprofloxacin are the recommended agents for prophylaxis. For children younger than 8 years, TMP-SMX is an alternative agent but the efficacy is unknown. Chloramphenicol is also an alternative agent. For persons who have had a known or suspected exposure to plague-infected fleas in the previous week, the same antimicrobial regimen can be used for prophylaxis. Patients on prophylaxis should still seek prompt medical care for onset of fever or other illness.

PLAQUE

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Sudden onset of fever, chills, and prostration.
- Regional lymphadenitis with suppuration of nodes (bubonic form).
- Hemorrhage into skin and mucous membranes and shock (septicemia).
- Cough, dyspnea, cyanosis, and hemoptysis (pneumonia).
- History of exposure to infected animals.

General Considerations

Plague is an extremely serious acute infection caused by a gram-negative bacillus, Yersinia pestis. It is a disease of rodents that is transmitted to humans by flea bites. Plague bacilli have been isolated from ground squirrels, prairie dogs, and other wild rodents in many of the western and southwestern states in the United States. Most cases have come from New Mexico, Arizona, Colorado, and California. Direct contact with rodents, rabbits, or domestic cats may transmit fleas infected with plague bacilli. Most cases occur from June through September. Human plague in the United States appears to occur in cycles that reflect cycles in wild animal reservoirs.

Clinical Findings

A. Symptoms and Signs

Plague assumes several clinical forms; the two most common are bubonic and septicemic. Pneumonic plague, the form that occurs when organisms enter the body through the respiratory tract, is uncommon.

1. Bubonic plague—Bubonic plague begins after an incubation period of 2–8 days with a sudden onset of high fever, chills, headache, vomiting, and marked delirium or clouding of consciousness. A less severe form also exists, with a less precipitous onset, but with progression over several days
to severe symptoms. Although the flea bite is rarely seen, the regional lymph node, usually inguinal and unilateral, is/are painful and tender, 1–5 cm in diameter. The node usually suppurates and drains spontaneously after 1 week. The plague bacillus produces endotoxin that causes vascular necrosis. Bacilli may overwhelm regional lymph nodes and enter the circulation to produce septicemia. Severe vascular necrosis results in widely disseminated hemorrhage in skin, mucous membranes, liver, and spleen. Myocarditis and circulatory collapse may result from damage by the endotoxin. Plague meningitis or pneumonia may occur following bacteremic spread from an infected lymph node.

2. Septicemic plague—Plague may initially present as septicemia without evidence of lymphadenopathy. In some series, 25% of cases are initially septicemic. Septicemic plague carries a worse prognosis than bubonic plague, largely because it is not recognized and treated early. Patients may present initially with a nonspecific febrile illness characterized by fever, myalgia, chills, and anorexia. Plague is frequently complicated by secondary seeding of the lung causing plague pneumonia.

3. Primary pneumonic plague—Inhalation of Y pestis bacilli causes primary plague pneumonia. This form of plague has been transmitted to humans from cats with pneumonic plague and would be the form of plague most likely seen after aerosolized release of Y pestis in a bioterrorist incident. After an incubation of 1–6 days, the patient develops fever, cough, shortness of breath, and the production of bloody, watery, or purulent sputum. Gastrointestinal symptoms are sometimes prominent. Because the initial focus of infection is the lung, buboes are usually absent; occasionally cervical buboes may be seen.

B. Laboratory Findings

Aspirate from a bubo contains bipolar-staining gram-negative bacilli. Pus, sputum, and blood all yield the organism. Rapid diagnosis can be made with fluorescent antibody detection or polymerase chain reaction (PCR) on clinical specimens. Confirmation is made by culture or serologic testing. Laboratory infections are common enough to make bacterial isolation dangerous. Cultures are usually positive within 48 hours. Paired acute and convalescent sera may be tested for a fourfold antibody rise in those cases with negative cultures.

Differential Diagnosis

The septic phase of the disease may be confused with illnesses such as meningococcemia, sepsis caused by other bacteria, and rickettsioses. The bubonic form resembles tularemia, anthrax, cat-scratch fever, streptococcal adenitis, and cellulitis. Primary gastroenteritis and appendicitis may have to be distinguished.

Treatment

A. Specific Measures

Streptomycin or gentamicin for 7–10 days (or until several days after defervescence) is effective. For patients not requiring parenteral therapy, doxycycline, ciprofloxacin or chloramphenicol may be given. Doxycycline is not usually recommended for children younger than 8 years of age and ciprofloxacin is not usually recommended for children less than 18 years of age unless benefits of use outweigh the risk. However, plague is a potentially life-threatening condition and benefits of use of these agents outweigh potential risks. Plague bacilli that are multiply resistant to antimicrobials are uncommon but of serious concern.

Mortality is extremely high in septicemic and pneumonic plague if specific antibiotic treatment is not started in the first 24 hours of the disease.

Every effort should be made to effect resolution of buboes without surgery. Pus from draining lymph nodes is infectious.

B. General Measures

State health officials should be notified immediately about suspected cases of plague. Pneumonic plague is highly infectious, and droplet isolation is required until the patient has been on effective antimicrobial therapy for 48 hours. All contacts of patients with pneumonic plague should receive antibiotic prophylaxis for 7 days after the last exposure. Contacts should see a physician immediately for any illness or fever.

Prognosis

The mortality rate in untreated bubonic plague is about 50%. The mortality rate for treated pneumonic plague is 50%–60%. Recent mortality rates in New Mexico were 3% for bubonic plague and 71% for the septicemic form.

Centers for Disease Control and Prevention (CDC): Plague. Available at: http://www.cdc.gov/ncidod/dvbid/plague

HAEMOPHILUS INFLUENZAE TYPE B INFECTIONS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

Purulent meningitis in children younger than age 4 years with direct smears of CSF showing gram-negative pleomorphic rods.
► Acute epiglottitis: high fever, drooling, dysphagia, aphony, and stridor.
► Septic arthritis: fever, local redness, swelling, heat, and pain with active or passive motion of the involved joint in a child 4 months to 4 years of age.
► Cellulitis: sudden onset of fever and distinctive cellulitis in an infant, often involving the cheek or periorbital area.
► In all cases, a positive culture from the blood, CSF, or aspirated pus confirms the diagnosis.

► General Considerations

*H* influenzae* type b* (Hib) has become uncommon because of widespread immunization in early infancy. The 99% reduction in incidence seen in many parts of the United States is due to high rates of vaccine coverage and reduced nasopharyngeal carriage after vaccination. Forty percent of cases occur in children younger than 6 months who are too young to have completed a primary immunization series. Hib may cause meningitis, bacteremia, epiglottitis (supraglottic group), septic arthritis, periorbital and facial cellulitis, pneumonia, and pericarditis.

Disease due to *H* influenzae* types a, c, d, e, f, or unencapsulated strains is rare, but it now accounts for a larger proportion of positive culture results. Third-generation cephalosporins are preferred for initial therapy of Hib infections. Ampicillin is adequate for culture-proved Hib susceptible strains.

Unencapsulated, nontypeable *H* influenzae frequently colonize the mucous membranes and cause otitis media, sinusitis, bronchitis, and pneumonia in children and adults. Bacteremia is uncommon. Neonatal sepsis similar to early-onset GBS is recognized. Obstetric complications of chorioamnionitis and bacteremia are usually the source of neonatal cases.

Ampicillin resistance occurs in 25%–40% of nontypeable *H* influenzae. Beta-lactamase-negative, ampicillin-resistant (BLNAR) *H* influenzae has emerged as a clinically important pathogen in Europe, Japan, and Canada. In the United States, the prevalence of BLNAR strains currently remains low at around 3%.

► Prevention

Several carbohydrate protein conjugate Hib vaccines are currently available (see Chapter 10).

The risk of invasive Hib disease is highest in unimmunized, or partially immunized, household contacts who are younger than 4 years of age. The following situations require rifampin chemoprophylaxis of all household contacts (except pregnant women) to eradicate potential nasopharyngeal colonization with Hib and limit risk of invasive disease: (1) families where at least one household contact is younger than age 4 years and either unimmunized or incompletely immunized against Hib; (2) an immunocompromised child (of any age or immunization status) resides in the household; or (3) a child younger than age 12 months resides in the home and has not received the primary series of the Hib vaccine. Preschool and day care center contacts may need prophylaxis if more than one case has occurred in the center in the previous 60 days (discuss with state health officials). The index case also needs chemoprophylaxis in these situations to eradicate nasopharyngeal colonization unless treated with ceftriaxone or cefotaxime (both are effective in eradication of Hib from the nasopharynx). Household contacts and index cases older than 1 month of age who need chemoprophylaxis should be given rifampin, 20 mg/kg per dose (maximum adult dose, 600 mg) orally, once daily for 4 successive days. Infants who are younger than 1 month should be given oral rifampin (10 mg/kg per dose once daily for 4 days). Rifampin should not be used in pregnant females.

► Clinical Findings

A. Symptoms and Signs

1. Meningitis—Infants usually present with fever, irritability, lethargy, poor feeding with or without vomiting, and a high-pitched cry.
2. Acute epiglottitis—The most useful clinical finding in the early diagnosis of Hib epiglottitis is evidence of dysphagia, characterized by a refusal to eat or swallow saliva and by drooling. This finding, plus the presence of a high fever in a toxic child—even in the absence of a cherry-red epiglottis on direct examination—should strongly suggest the diagnosis and lead to prompt intubation. Stridor is a late sign (see Chapter 19).
3. Septic arthritis—Hib is a common cause of septic arthritis in unimmunized children younger than age 4 years in the United States. The child is febrile and refuses to move the involved joint and limb because of pain. Examination reveals swelling, warmth, redness, tenderness on palpation, and severe pain on attempted movement of the joint.
4. Cellulitis—Cellulitis due to Hib occurs almost exclusively in children between the ages of 3 months and 4 years but is now uncommon as a result of immunization. Fever is usually noted at the same time as the cellulitis, and many infants appear toxic. The cheek or periorbital (preseptal) area is usually involved.

B. Laboratory Findings

The WBC count in Hib infections may be high or normal with a shift to the left. Blood culture is frequently positive. Positive culture of aspirated pus or fluid from the involved site proves the diagnosis. In untreated meningitis, CSF
smear may show the characteristic pleomorphic gram-negative rods.

C. Imaging
A lateral view of the neck may suggest the diagnosis in suspected acute epiglottitis, but misinterpretation is common. Intubation should not be delayed to obtain radiographs. Haziness of maxillary and ethmoid sinuses occurs with orbital cellulitis.

Differential Diagnosis
A. Meningitis
Meningitis must be differentiated from head injury, brain abscess, tumor, lead encephalopathy, and other forms of meningoencephalitis, including mycobacterial, viral, fungal, and bacterial agents.

B. Acute Epiglottitis
In croup caused by viral agents (parainfluenza 1, 2, and 3, respiratory syncytial virus, influenza A, adenovirus), the child has more definite upper respiratory symptoms, cough, hoarseness, slower progression of obstructive signs, and lower fever. Spasmodic croup usually occurs at night in a child with a history of previous attacks. Sudden onset of choking and paroxysmal coughing suggests foreign body aspiration. Retropharyngeal abscess may have to be differentiated from epiglottitis.

C. Septic Arthritis
Differential diagnosis includes acute osteomyelitis, prepatellar bursitis, cellulitis, rheumatic fever, and fractures and sprains.

D. Cellulitis
Erysipelas, streptococcal cellulitis, insect bites, and trauma (including Popsicle panniculitis or other types of freezing injury) may mimic Hib cellulitis. Periorbital cellulitis must be differentiated from paranasal sinus disease without cellulitis, allergic inflammatory disease of the lids, conjunctivitis, and herpes zoster infection.

Complications
A. Meningitis (See Chapter 25)
B. Acute Epiglottitis
The disease may rapidly progress to complete airway obstruction with complications owing to hypoxia. Mediastinal emphysema and pneumothorax may occur.

C. Septic Arthritis
Septic arthritis may result in rapid destruction of cartilage and ankylosis if diagnosis and treatment are delayed. Even with early treatment, the incidence of residual damage and disability after septic arthritis in weight-bearing joints may be as high as 25%.

D. Cellulitis
Bacteremia may lead to meningitis or pyarthrosis.

Treatment
All patients with bacteremic or potentially bacteremic Hib diseases require hospitalization for treatment. The drugs of choice in hospitalized patients are a third-generation cephalosporin (cefotaxime or ceftriaxone) until the sensitivity of the organism is known. Meropenem is an alternative choice.

Persons with invasive Hib disease should be in droplet isolation for 24 hours after initiation of parenteral antibiotic therapy.

A. Meningitis
Therapy is begun as soon as bacterial meningitis has been identified and CSF, blood, and other appropriate cultures have been obtained. Empiric intravenous therapy recommended for meningitis (until organism identified) is vancomycin in combination with either cefotaxime or ceftriaxone. Once the organism has been identified as Haemophilus influenza and the susceptibilities are known, the antibiotic regimen can be tailored accordingly. Most isolates will be susceptible to ceftriaxone or cefotaxime. Meropenem is an alternative agent. Therapy should preferably be given intravenously for the entire course. Ceftriaxone may be given intramuscularly if venous access becomes difficult.

Duration of therapy is 10 days for uncomplicated meningitis. Longer treatment is reserved for children who respond slowly or in whom complications have occurred.

Dexamethasone given immediately after diagnosis and continued for 4 days may reduce the incidence of hearing loss in children with Hib meningitis. The use of dexamethasone is controversial, but when it is used the dosage is 0.6 mg/kg/d in four divided doses for 4 days. Starting dexamethasone more than 6 hours after antibiotics have been initiated is unlikely to provide benefits.

Repeated lumbar punctures are usually not necessary in Hib meningitis. They should be obtained in the following circumstances: unsatisfactory or questionable clinical response, seizure occurring after several days of therapy, and prolonged (7 days) or recurrent fever if the neurologic examination is abnormal or difficult to evaluate.
B. Acute Epiglottitis (See Chapter 19)

C. Septic Arthritis

Initial therapy should include an effective antistaphylococcal antibiotic and cefotaxime or ceftriaxone (dosage as for meningitis) until identification of the organism is made. Cefotaxime or ceftriaxone are the usual agents used once the isolate is known to be Haemophilus and susceptibilities are known. Ampicillin resistance is now common in the United States. Occasionally isolates are resistant to third generation cephalosporins. Meropenem, if the isolate is susceptible, can be used as an alternative. If a child is improved following initial intravenous therapy, transition to oral therapy based on susceptibilities can occur. Possible oral agents should be chosen based on susceptibilities but might include amoxicillin/clavulanate (90–100 mg/kg/d of amoxicillin component in four divided doses every 6 hours). Antibiotics should be administered under supervision to complete a 4-week course (longer if complications or signs and symptoms are unresolved). Alternative agents include second- or third-generation cephalosporins. Drainage of infected joint fluid is an essential part of treatment. In joints other than the hip, this can often be accomplished by one or more needle aspirations. In hip infections—and in arthritis of other joints when treatment is delayed or clinical response is slow—surgical drainage is advised. The joint should be immobilized.

D. Cellulitis, Including Orbital Cellulitis

Initial therapy for orbital cellulitis should be broad spectrum antibiotic therapy. The most likely pathogens may include Streptococcus pneumonia, Streptococcus anginosus, Group A Streptococcus, Staphylococcus aureus, Haemophilus influenzae, and anaerobes. Once the organism is known to be H influenzae orbital and susceptibilities are known, cefotaxime, ceftriaxone, or Meropenem can be used depending on susceptibilities for H influenzae coverage. Mixed infections require additional agents. Therapy is given parenterally for at least 3–7 days (some clinicians treat up to 2 weeks intravenously) followed by oral treatment. There is usually marked improvement after 72 hours of treatment. The total antibiotic course will vary with the severity of the infection, response to therapy, whether or not an abscess was present, and whether or not drainage was performed. A minimum course of 21 days is reasonable in uncomplicated cases without abscess and good therapeutic response, assuming all signs of orbital cellulitis have completely resolved. In cases with severe ethmoid sinusitis and evidence of bony destruction at least a 4-week treatment course is advisable. Complicated cases may require longer treatment courses.

Prognosis

The case fatality rate for Hib meningitis is less than 5%. Young infants have the highest mortality rate. One of the most common neurologic sequelae, developing in 5%–10% of patients with Hib meningitis, is sensorineural hearing loss. Patients with Hib meningitis should have their hearing checked during the course of the illness or shortly after recovery. Children in whom invasive Hib infection develops despite appropriate immunization should have tests to investigate immune function and to rule out HIV. The case fatality rate in acute epiglottitis is 2%–5%. Deaths are associated with bacteremia and the rapid development of airway obstruction. The prognosis for the other diseases requiring hospitalization is good with the institution of early and adequate antibiotic therapy.


PERTUSSIS (WHOOPING COUGH)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Prodromal catarrhal stage (1–3 weeks) characterized by mild cough and coryza, but without fever.
- Persistent staccato, paroxysmal cough ending with a high-pitched inspiratory “whoop.”
- Leukocytosis with absolute lymphocytosis.
- Diagnosis confirmed by PCR or culture of nasopharyngeal secretions.

General Considerations

Pertussis is an acute, highly communicable infection of the respiratory tract caused by Bordetella pertussis and characterized by severe bronchitis. Children usually acquire the disease from symptomatic family contacts. Adults and adolescents who have mild respiratory illness, not recognized as pertussis, frequently are the source of infection. Asymptomatic carriage of B pertussis is not recognized. Infectivity is greatest during the catarrhal and early paroxysmal cough stage (for about 4 weeks after onset).

Pertussis cases have increased in the United States since 2000. In 2007, about 10,000 cases were reported; increased to more than 16,000 cases in 2009, and 27,000 cases in 2010. The morbidity and mortality of pertussis is greatest in young children. Fifty percent of children younger than age 1 year...
with a diagnosis of pertussis are hospitalized. Deaths occur primarily in children less than one year and are increasing in frequency.

The duration of active immunity following natural pertussis is not known. Reinfections are usually milder. Immunity following vaccination wanes in 5–10 years. The majority of young adults in the United States are susceptible to pertussis infection, and disease is probably common but unrecognized. Decreased efficacy of acellular vaccines compared to whole cell vaccines and low rates of immunization in some communities has led to increasing numbers of cases.

*Bordetella parapertussis* and *Bordetella holmesii* cause a similar but milder syndrome.

*B. pertussis* organisms attach to the ciliated respiratory epithelium and multiply there; deeper invasion does not occur. Disease is due to several bacterial toxins, the most potent of which is pertussis toxin, which is responsible for the typical lymphocytosis.

### Clinical Findings

#### A. Symptoms and Signs

The onset of pertussis is insidious, with catarrhal upper respiratory tract symptoms (rhinitis, sneezing, and an irritating cough). Slight fever may be present; temperature greater than 38.3°C suggests bacterial superinfection or another cause of respiratory tract infection. After about 2 weeks, cough becomes paroxysmal, characterized by 10–30 forceful coughs ending with a loud inspiration (the whoop). Infants and adults with otherwise typical severe pertussis often lack characteristic whooping. Vomiting commonly follows a paroxysm. Coughing is accompanied by cyanosis, sweating, prostration, and exhaustion. This stage lasts for 2–4 weeks, with gradual improvement. Paroxysmal coughing may continue for some months and may worsen with intercurrent viral respiratory infection. In adults, older children, and partially immunized individuals, symptoms may consist only of irritating cough lasting 1–2 weeks. Clinical pertussis is milder in immunized children.

#### B. Laboratory Findings

WBC counts of 20,000–30,000/μL with 70%–80% lymphocytes typically appear near the end of the catarrhal stage; and the degree of lymphocytosis correlates with the severity of disease. Severe pulmonary hypertension and hyperleukocytosis (> 70,000/μL) are associated with severe disease and death in young children with pertussis. Many older children and adults with mild infections never demonstrate lymphocytosis. The blood picture may resemble lymphocytic leukemia or leukemoid reactions. Identification of *B. pertussis* by culture or PCR from nasopharyngeal swabs or nasal wash specimens proves the diagnosis. The organism may be found in the respiratory tract in diminishing numbers beginning in the catarrhal stage and ending about 2 weeks after the beginning of the paroxysmal stage. After 4–5 weeks of symptoms, cultures are almost always negative. Culture requires specialized media and careful attention to specimen collection and transport. PCR detection has replaced culture in most pediatric centers because of improved sensitivity, decreased time to diagnosis, and cost. Enzyme-linked immunosorbent assays (ELISAs) for detection of antibody to pertussis toxin or filamentous hemagglutinin may be useful for diagnosis but interpretation of antibody titers may be difficult in previously immunized patients. The chest radiograph reveals thickened bronchi and sometimes shows a “shaggy” heart border.

### Differential Diagnosis

The differential diagnosis of pertussis includes bacterial, tuberculous, chlamydial, and viral pneumonia. The absence of fever in pertussis differentiates this disease from most bacterial infections. Cystic fibrosis and foreign body aspiration may be considerations. Adenoviruses and respiratory syncytial virus may cause paroxysmal coughing with an associated elevation of lymphocytes in the peripheral blood, mimicking pertussis.

### Complications

Bronchopneumonia due to superinfection is the most common serious complication. It is characterized by abrupt clinical deterioration during the paroxysmal stage, accompanied by high fever and sometimes a striking leukemoid reaction with a shift to predominantly polymorphonuclear neutrophils. Atelectasis is a second common pulmonary complication. Atelectasis may be patchy or extensive and may shift rapidly to involve different areas of lung. Intercurrent viral respiratory infection is also a common complication and may provoke worsening or recurrence of paroxysmal coughing. Otitis media is common. Residual chronic bronchietasis is infrequent despite the severity of the illness. Apnea and sudden death may occur during a particularly severe paroxysm. Seizures complicate 1.5% of cases, and encephalopathy occurs in 0.1%. The encephalopathy frequently is fatal. Anoxic brain damage, cerebral hemorrhage, or pertussis neurotoxins are hypothesized, but anoxia is most likely the cause. Epistaxis and subconjunctival hemorrhages are common.

### Prevention

Active immunization (see Chapter 10) with DTaP vaccine should be given in early infancy. The occurrence and increased recognition of disease in adolescents and adults contributes to the increasing number of cases. A booster dose of vaccine in adolescents between the ages of 11 and 18 years is recommended. Subsequent booster doses of Tdap...
are recommended for adults aged 18–60 years to replace Td boosters. Immunization of pregnant women, new mothers, care givers of infants less than 6 months, and healthcare workers of young children is also recommended.

Chemoprophylaxis with azithromycin should be given to exposed family, household and hospital contacts, particularly those younger than age 2 years, although data to support the efficacy of such preventive therapy are not strong. Hospitalized children with pertussis should be isolated because of the great risk of transmission to patients and staff. Several large hospital outbreaks have been reported.

Treatment

A. Specific Measures

Antibiotics may ameliorate early infections but have no effect on clinical symptoms in the paroxysmal stage. Azithromycin is the drug of choice because it promptly terminates respiratory tract carriage of B pertussis. Resistance to macrolides has been rarely reported. Clarithromycin may also be used. Erythromycin given 4 times daily for 14 days is acceptable but not preferred. Ampicillin (100 mg/kg/d in four divided doses) may also be used for erythromycin-intolerant patients. Azithromycin is often preferred due to ease of compliance and decreased gastrointestinal side effects. Erythromycin has been associated with pyloric stenosis in infants less than 1 month of age. Azithromycin is recommended for therapy or prophylaxis in infants less than 1 month.

Corticosteroids reduce the severity of disease but may mask signs of bacterial superinfection. Albuterol (0.3–0.5 mg/kg/d in four doses) has reduced the severity of illness, but tachycardia is common when the drug is given orally, and aerosol administration may precipitate paroxysms.

B. General Measures

Nutritional support during the paroxysmal phase is important. Frequent small feedings, tube feeding, or parenteral fluid supplementation may be needed. Minimizing stimuli that trigger paroxysms is probably the best way of controlling cough. In general, cough suppressants are of little benefit.

C. Treatment of Complications

Respiratory insufficiency due to pneumonia or other pulmonary complications should be treated with oxygen and assisted ventilation if necessary. Convulsions are treated with oxygen and anticonvulsants. Bacterial pneumonia or otitis media requires additional antibiotics.

Prognosis

The prognosis for patients with pertussis has improved in recent years because of excellent nursing care, treatment of complications, attention to nutrition, and modern intensive care. However, the disease is still very serious in infants younger than age 1 year; most deaths occur in this age group. Children with encephalopathy have a poor prognosis.


McIntyre PB, Sintchenko V: The “how” of polymerase chain reaction testing for Bordetella pertussis depends on the “why.” Clin Infect Dis 2013;56(3):332 [PMID: 23087394].


Listeriosis

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

Early-onset neonatal disease:
- Signs of sepsis a few hours after birth in an infant born with fetal distress and hepatosplenomegaly; maternal fever.

Late-onset neonatal disease:
- Meningitis, sometimes with monocytosis in the CSF and peripheral blood.
- Onset at age 9–30 days.

General Considerations

Listeria monocytogenes is a gram-positive, non–spore-forming aerobic rod distributed widely in the animal kingdom.
and in food, dust, and soil. It causes systemic infections in newborn infants and immunosuppressed older children. In pregnant women, infection is relatively mild, with fever, aches, and chills, but is accompanied by bacteremia and sometimes results in intrauterine or perinatal infection with grave consequences for the fetus or newborn. One-fourth of cases occur in pregnant women, and 20% of their pregnancies end in stillbirth or neonatal death. Listeria is present in the stool of approximately 10% of the healthy population. Persons in contact with animals are at greater risk. Outbreaks of listeriosis have been traced to contaminated cabbage in coleslaw, soft cheese, hot dogs, luncheon meats, and milk. Listeria infections have decreased since the adoption of strict regulations for ready-to-eat foods; 821 cases were reported in 2010. A large multistate outbreak due to contaminated cantaloupe has caused more than 20 deaths in elderly and immunocompromised patients in 2011, and demonstrates the potential of this organism to cause serious illness.

Like GBS infections, Listeria infections in the newborn can be divided into early and late forms. Early infections are more common, leading to a severe congenital form of infection. Later infections are often characterized by meningitis.

Clinical Findings

A. Symptoms and Signs

In the early neonatal form, symptoms of listeriosis usually appear on the first day of life and always by the third day. Fetal distress is common, and infants frequently have signs of severe disease at birth. Respiratory distress, diarrhea, and fever occur. On examination, hepatosplenomegaly and a papular rash are found. A history of maternal fever is common. Meningitis may accompany the septic course. The late neonatal form usually occurs after age 9 days and can occur as late as 5 weeks. Meningitis is common, characterized by irritability, fever, and poor feeding.

Listeria infections are rare in older children and usually are associated with immunodeficiency. Several recent cases were associated with tumor necrosis factor-α neutralizing agents. Signs and symptoms are those of meningitis, usually with insidious onset.

B. Laboratory Findings

In all infants except those receiving white cell depressant drugs, the WBC count is elevated, with 10%–20% monocytes. When meningitis is found, the characteristic CSF cell count is high (> 500/μL) with a predominance of polymorphonuclear neutrophils in 70% of cases. Monocytes may predominate in up to 30% of cases. Gram-stained smears of CSF are usually negative, but short gram-positive rods may be seen. The chief pathologic feature in severe neonatal sepsis is miliary granulomatosis with microabscesses in liver, spleen, CNS, lung, and bowel.

Culture results are frequently positive from multiple sites, including blood from the infant and the mother.

Differential Diagnosis

Early-onset neonatal disease resembles hemolytic disease of the newborn, GBS sepsis or severe cytomegalovirus infection, rubella, or toxoplasmosis. Late-onset disease must be differentiated from meningitis due to echovirus and coxsackievirus, GBS, and gram-negative enteric bacteria.

Prevention

Immunosuppressed, pregnant, and elderly patients can decrease the risk of Listeria infection by avoiding soft cheeses, by thoroughly reheating or avoiding delicatessen and ready-to-eat foods, by avoiding raw meat and milk, and by thoroughly washing fresh vegetables.

Treatment

Ampicillin (150–300 mg/kg/d every 6 hours intravenously) is the drug of choice in most cases of listeriosis. Gentamicin (2.5 mg/kg every 8 hours intravenously) has a synergistic effect with ampicillin and should be given in serious infections and to patients with immune deficits. Vancomycin may be substituted for ampicillin when empirically treating meningitis. If ampicillin cannot be used, TMP-SMX also is effective. Cephalosporins are not effective. Treatment of severe disease should continue for at least 2 weeks; meningitis is treated 2–3 weeks.

Prognosis

In a recent outbreak of early-onset neonatal disease, the mortality rate was 27% despite aggressive and appropriate management. Meningitis in older infants has a good prognosis. In immunosuppressed children, prognosis depends to a great extent on that of the underlying illness.


TUBERCULOSIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- All types: positive tuberculin test in patient or members of household, suggestive chest radiograph, history of contact, and demonstration of organism by stain and culture.
- Pulmonary: fatigue, irritability, and undernutrition, with or without fever and cough.
- Glandular: chronic cervical adenitis.
- Miliary: classic snowstorm appearance of chest radiograph.
- Meningitis: fever and manifestations of meningeal irritation and increased intracranial pressure. Characteristic CSF.

General Considerations

Tuberculosis is a granulomatous disease caused by Mycobacterium tuberculosis. It is a leading cause of death throughout the world. Children younger than age 3 years are most susceptible. Lymphohematogenous dissemination through the lungs to extrapulmonary sites, including the brain and meninges, eyes, bones and joints, lymph nodes, kidneys, intestines, larynx, and skin, is more likely to occur in infants. Increased susceptibility occurs again in adolescence, particularly in girls within 2 years of menarche. Following substantial increases in disease during the 1980s, tuberculosis incidence has decreased since 1992 due to increased control measures. More than 10,465 new cases were reported in 2011; only 577 of these were in children less than 14 years old. High-risk groups include ethnic minorities, foreign-born persons, prisoners, residents of nursing homes, indigents, migrant workers, and healthcare providers. However, 50% of cases occurred in U.S.-born persons. HIV infection is an important risk factor for both development and spread of disease. Pediatric tuberculosis incidence mirrors the trends seen in adults.

Exposure to an infected adult is the most common risk factor in children. The primary complex in infancy and childhood consists of a small parenchymal lesion in any area of the lung with caseation of regional nodes and calcification. Postprimary tuberculosis in adolescents and adults commonly occurs in the apices of the lungs and is likely to cause chronic progressive cavitary pulmonary disease with less tendency for hematogenous dissemination. Mycobacterium bovis infection is clinically identical to M. tuberculosis. M. bovis may be acquired from unpasteurized dairy products obtained outside the United States.

Clinical Findings

A. Symptoms and Signs

1. Pulmonary—(See Chapter 19.)

2. Miliary—Diagnosis is usually based on the classic “snowstorm” or “millet seed” appearance of lung fields on radiograph, although early in the course of disseminated tuberculosis the chest radiograph may show no or only subtle abnormalities. Choroidal tubercles are sometimes seen on funduscopic examination. Other lesions may be present and produce osteomyelitis, arthritis, meningitis, tuberculomas of the brain, enteritis, or infection of the kidneys and liver.

3. Meningitis—Symptoms include fever, vomiting, headache, lethargy, and irritability, with signs of meningeal irritation and increased intracranial pressure, cranial nerve palsies, convulsions, and coma.

4. Lymphatic—The primary complex may be associated with a skin lesion drained by regional nodes or chronic cervical node enlargement or infection of the tonsils. Involved nodes may become fixed to the overlying skin, suppurate, and drain.

B. Laboratory Findings

The tuberculin skin test (TST; 0.1 mL of intermediate-strength purified protein derivative inoculated intradermally) is positive at 48–72 hours if there is significant induration (Table 42–3). Parental reporting of skin test results is often inaccurate. All tests should be read by professionals trained to interpret TST. False-negative results occur in malnourished patients, in those with overwhelming disease, and in 10% of children with isolated pulmonary disease. Temporary suppression of tuberculin reactivity may be seen with viral infections (eg, measles, influenza, varicella, and mumps), after live virus immunization, and during corticosteroid or other immunosuppressive drug therapy. For these reasons, a negative TST test does not exclude the diagnosis of tuberculosis. When tuberculosis is suspected in a child, household members and adult contacts (eg, teachers and caregivers) also should be tested immediately. Multiple puncture tests (tine tests) should not be used because they are associated with false-negative and false-positive reactions, and because standards for interpretation of positive results do not exist. Interferon gamma release assays (IGRAs) are approved to replace TST tests in adults and older children. These assays have much higher specificity due to less common false-positive results from nontuberculosis mycobacteria and BCG. They are done on blood obtained by venipuncture and are further advantageous in requiring only a single visit. These tests are preferred in BCG-immunized children older than 4 years.
IGRA are reported as positive, negative or indeterminate. The ESR and CRP is usually elevated in symptomatic children. Cultures of pooled early morning gastric aspirates from three successive days will yield M tuberculosis in about 40% of cases. Biopsy may be necessary to establish the diagnosis. Therapy should not be delayed in suspected cases. The CSF in tuberculous meningitis shows slight to moderate pleocytosis (50–300 WBCs/μL, predominantly lymphocytes), decreased glucose, and increased protein.

The direct detection of mycobacteria in body fluids or discharges is best done by staining specimens with auramine-rhodamine and examining them with fluorescence microscopy; this method is superior to the Ziehl-Neelsen method.

C. Imaging

Chest radiograph should be obtained in all children with suspicion of tuberculosis at any site or with a positive skin test. Segmental consolidation with some volume loss and hilar adenopathy are common findings in children. Paratracheal adenopathy is a classic presentation. Pleural effusion also occurs with primary infection. Cavities and apical disease are unusual in children but are common in adolescents and adults.

Differential Diagnosis

Pulmonary tuberculosis must be differentiated from fungal, parasitic, mycoplasmal, and bacterial pneumonias; lung abscess; foreign body aspiration; lipoid pneumonia; sarcoidosis; and mediastinal cancer. Cervical lymphadenitis is most likely due to streptococcal or staphylococcal infections. Cat-scratch fever and infection with atypical mycobacteria may need to be distinguished from tuberculous lymphadenitis. Viral meningoencephalitis, head trauma (child abuse), lead poisoning, brain abscess, acute bacterial meningitis, brain tumor, and disseminated fungal infections must be excluded in tuberculous meningitis. A positive TST or IGRA in the patient or family contacts is frequently valuable in suggesting the diagnosis of tuberculosis. A negative TST or IGRA does not exclude tuberculosis.

Prevention

A. BCG Vaccine

Bacille Calmette–Guérin (BCG) vaccines are live-attenuated strains of M bovis. Although neonatal and childhood administration of BCG is carried out in countries with a high prevalence of tuberculosis, protective efficacy varies greatly with vaccine potency and method of delivery. BCG given to infants decreases disseminated tuberculosis but does not protect against pulmonary tuberculosis later in childhood or adolescence. Because the great majority of children who have received BCG still have negative TST tests, the past history of BCG vaccination should be ignored in interpreting the skin test. In the United States, BCG vaccination is not recommended. IGRA gives negative results in patients with false-positive PPDs due to BCG.

B. Isoniazid Chemoprophylaxis

Daily administration of isoniazid (10 mg/kg/d orally; maximum 300 mg) is advised for children who are exposed by prolonged close or household contact with adolescents or adults with active disease. Isoniazid is given until 8–10 weeks after last contact. At the end of this time, a TST or IGRA test should be done, and therapy should be continued for an additional 7 months if the test is positive.

C. Other Measures

Tuberculosis in infants and young children is evidence of recent exposure to active infection in an adult, usually a family member or household contact. The source contact (index case) should be identified, isolated, and given treatment to prevent other secondary cases. Reporting cases to local health departments is essential for contact tracing. Exposed tuberculin-negative children should usually receive isoniazid chemoprophylaxis. If a repeated skin test is negative 8–10 weeks following the last exposure, isoniazid may be stopped. Routine tuberculin skin testing is not recommended for children without risk factors who reside in communities with a low incidence of tuberculosis. Children with no personal risk for tuberculosis but who reside in communities with a high incidence of tuberculosis should be given a skin test at school entry and then again at age 11–16 years. Children with a risk factor for acquiring tuberculosis should be tested every 2–3 years. Incarcerated adolescents and children living in a household with HIV-infected persons should have annual skin tests.

Children who immigrate into the United States from a country with a high incidence of infection should receive TST or IGRA on entry to the United States or upon presentation to healthcare providers. A past history of BCG vaccine should not delay testing.

Treatment

A. Specific Measures

Most children with suspected active tuberculosis in the United States are hospitalized initially. If the infecting organism has not been isolated from the presumed source, reasonable attempts should be made to obtain it from the child using morning gastric aspirates, sputum, bronchoscopy, thoracentesis, or biopsy when appropriate. Unfortunately, cultures are frequently negative in children,
and the risk of these procedures must be weighed against the yield.

Therapy is given daily for 14 days and then reduced to two to three times per week for the duration of the course. Directly observed administration of all doses of antituberculosis therapy by a trained healthcare professional is essential to ensure compliance with therapy.

Children with positive skin tests (see Table 42–3) without symptoms and a normal chest radiograph have latent tuberculosis and should receive 9 months of isoniazid (10 mg/kg/d orally; maximum 300 mg) therapy. Rifampin (10–15 mg/kg/d orally; maximum 600 mg) for 4 months is efficacious and compliance is easier with the shorter duration of therapy. A combination of isoniazid and rifapentine given once per week for 12 weeks is effective in adolescents older than 12 years and adults. In children with active pulmonary disease, therapy for 6 months using isoniazid (10 mg/kg/d), rifampin (15 mg/kg/d), and pyrazinamide (25–30 mg/kg/d) in a single daily oral dose for 2 months, followed by isoniazid plus rifampin (either in a daily or twice-weekly regimen) for 4 months appears effective for eliminating isoniazid-susceptible organisms. For more severe disease, such as miliary or CNS infection, duration is increased to 12 months or more, and a fourth drug (streptomycin or ethambutol) is added for the first 2 months. In communities with resistance rates greater than 4%, initial therapy should usually include four drugs.

1. Isoniazid—The hepatotoxicity from isoniazid seen in adults and some adolescents is rare in children. Transient elevation of aminotransferases (up to three times normal) may be seen at 6–12 weeks, but therapy is continued unless clinical illness occurs. Routine monitoring of liver function tests is unnecessary unless prior hepatic disease is known or the child is severely ill. Peripheral neuropathy associated with pyridoxine deficiency is rare in children, and it is not necessary to add pyridoxine unless significant malnutrition coexists or if the child is strictly breastfed.

2. Rifampin—Although it is an excellent bactericidal agent, rifampin is never used alone to treat active disease, owing to rapid development of resistance. Hepatotoxicity may occur but rarely with recommended doses. Rifampin causes an orange color of urine and secretions which is benign but may stain contact lenses or clothes. Rifampin interacts with many medications including anticonvulsants, some seizure medications, birth control pills, and Coumadin.

3. Pyrazinamide—This excellent sterilizing agent is most effective during the first 2 months of therapy. With the recommended duration and dosing, it is well tolerated. Although pyrazinamide elevates the uric acid level, it rarely causes symptoms of hyperuricemia in children. Use of this drug is now common for tuberculous disease in children, and resistance is uncommon. Oral acceptance and CNS penetration are good.

4. Ethambutol—Because optic neuritis is the major side effect in adults, ethambutol has usually been given only to children whose vision can be reliably tested for loss of color differentiation. Optic neuritis is rare and usually occurs in adults receiving more than the recommended dosage of 25 mg/kg/d. Documentation of optic toxicity in children is lacking despite considerable worldwide experience. Therefore, many four-drug regimens for children now include ethambutol.

5. Streptomycin—Streptomycin (20–30 mg/kg/d, given intramuscularly in one or two doses) should be given for 1 or 2 months in severe disease. The child’s hearing should be tested periodically during use as ototoxicity is common.

B. Chemotherapy for Drug-Resistant Tuberculosis

The incidence of drug resistance is increasing and reaches 10%–20% in some areas of the United States. Transmission of multiple drug-resistant and extensively drug-resistant strains to contacts has occurred in some epidemics. Consultation with local experts in treating tuberculosis is important in these difficult cases. Therapy should continue for 18 months or longer. Often, four to six first- and second-line medications are needed.

C. General Measures

Corticosteroids may be used for suppressing inflammatory reactions in meningeal, pleural, and pericardial tuberculosis and for the relief of bronchial obstruction due to hilar adenopathy. Prednisone is given orally, 1 mg/kg/d for 2 weeks, with gradual withdrawal over the next 4–6 weeks. The use of corticosteroids may mask progression of disease. Accordingly, the clinician needs to be sure that an effective regimen is being used.

Prognosis

If bacteria are sensitive and treatment is completed, most children are cured with minimal sequelae. Repeat treatment is more difficult and less successful. With antituberculosis chemotherapy (especially isoniazid), there should now be nearly 100% recovery in miliary tuberculosis. Without treatment, the mortality rate in both miliary tuberculosis and tuberculous meningitis is almost 100%. In the latter form, about two-thirds of patients receiving treatment survive. There may be a high incidence of neurologic abnormalities among survivors if treatment is started late.
Chronic unilateral cervical lymphadenitis.

Granulomas of the skin.

Chronic bone lesion with draining sinus (chronic osteomyelitis).

Reaction to PPD-S (standard) of 5–8 mm, negative chest radiograph, and negative history of contact with tuberculosis.

Diagnosis by positive acid-fast stain or culture.

Disseminated infection in patients with AIDS.

General Considerations

Many species of acid-fast mycobacteria other than *M. tuberculosis* may cause subclinical infections and occasionally clinical disease resembling tuberculosis. Strains of nontuberculous mycobacteria are common in soil, food, and water. Organisms enter the host by small abrasions in skin, oral mucosa, or gastrointestinal mucosa. Strain cross-reactivity with *M. tuberculosis* can be demonstrated by simultaneous skin testing (Mantoux) with PPD-S (standard) and PPD prepared from one of the atypical antigens. Unfortunately, reagents prepared for routine nontuberculosis skin testing are not available to clinicians.

*Mycobacterium avium* complex (MAC), *Mycobacterium kansasii*, *Mycobacterium fortuitum*, *Mycobacterium abscessus*, *Mycobacterium marinum*, and *Mycobacterium chelonae* are most commonly encountered. *M. fortuitum*, *M. abscessus*, and *M. chelonae* are “rapid growers” requiring 3–7 days for recovery, whereas other mycobacteria require several weeks. After inoculation they form colonies closely resembling *M. tuberculosis* morphologically.

Clinical Findings

A. Symptoms and Signs

1. Lymphadenitis—In children, the most common form of infection due to mycobacteria other than *M. tuberculosis* is cervical lymphadenitis. MAC is the most common organism. A submandibular or cervical node swells slowly and is firm and initially somewhat tender. Low-grade fever may occur. Over time, the node suppurates and may drain chronically. Nodes in other areas of the head and neck elsewhere are sometimes involved.

2. Pulmonary disease—In the western United States, pulmonary disease is usually due to *M. kansasii*. In the eastern United States, it may be due to MAC. In other countries, disease is usually caused by MAC. In adults, there is usually underlying chronic pulmonary disease. Immunologic deficiency may be present. Presentation is clinically indistinguishable from that of tuberculosis. Adolescents with cystic fibrosis may be infected with nontuberculous mycobacteria.

3. Swimming pool granuloma—This is due to *M. marinum*. A solitary chronic granulomatous lesion with satellite lesions develops after minor trauma in infected swimming pools or other aquatic sources. Minor trauma in home aquariums or other aquatic environments may also lead to infection.

4. Chronic osteomyelitis—Osteomyelitis is caused by *M. kansasii*, *M. fortuitum*, or other rapid growers. Findings include swelling and pain over a distal extremity, radiolucent defects in bone, fever, and clinical and radiographic evidence of bronchopneumonia. Such cases are rare.

5. Meningitis—Disease is due to *M. kansasii* and may be indistinguishable from tuberculous meningitis.

6. Disseminated infection—Rarely, apparently immunologically normal children develop disseminated infection due to nontuberculous mycobacteria. Children are ill, with fever and hepatosplenomegaly, and organisms are demonstrated in bone lesions, lymph nodes, or liver. Chest radiographs are
INFECTIONS: BACTERIAL & SPIROCHETAL

usually normal. Between 60% and 80% of patients with AIDS will acquire MAC infection, characterized by fever, night sweats, weight loss, and diarrhea. Infection usually indicates severe immune dysfunction and is associated with CD4 lymphocyte counts less than 50/μL.

B. Laboratory Findings

In most cases, there is a small reaction (< 10 mm) when Mantoux testing is done. Larger reactions may be seen particularly with *M. marinum* infection. The chest radiograph is negative, and there is no history of contact with a case of tuberculosis. Needle aspiration of the node excludes bacterial infection and may yield acid-fast bacilli on stain or culture. Fistulization should not be a problem because total excision is usually recommended for infection due to atypical mycobacteria. Cultures of any normally sterile body site may yield MAC in immunocompromised patients with disseminated disease. Blood cultures are positive, with a large density of bacteria.

Differential Diagnosis

See section on differential diagnosis in the previous discussion of tuberculosis and in Chapter 19.

Treatment

A. Specific Measures

The usual treatment of lymphadenitis is complete surgical excision. Occasionally excision is impossible because of proximity to branches of the facial or other nerves or the salivary glands. Chemotherapy may then be necessary. Response of extensive adenopathy or other forms of infection varies according to the infecting species and susceptibility. Usually, combinations of two to four medications administered for months are required. Isoniazid, rifampin, and ethambutol (depending on sensitivity to isoniazid) will result in a favorable response in almost all patients with *M. kansasii* infection. Chemotherapeutic treatment of MAC is much less satisfactory because resistance to isoniazid, rifampin, and pyrazinamide is common. Susceptibility testing is necessary to optimize therapy. Most clinicians favor surgical excision of involved tissue if possible and treatment with at least three drugs to which the organism has been shown to be sensitive. Disseminated disease in patients with AIDS calls for a combination of three or more active drugs. Clarithromycin or azithromycin and ethambutol is started, in addition to one or more of the following drugs: ethionamide, capreomycin, amikacin, rifabutin, rifampin or ciprofloxacin. *M. fortuitum* and *M. chelonae* are usually susceptible to amikacin plus cefoxitin or meropenem followed by clarithromycin, azithromycin, or doxycycline, and may be successfully treated with such combinations. Swimming pool granuloma due to *M. marinum* is usually treated with doxycycline (in children older than 9 years) or rifampin, plus ethambutol, clarithromycin, or TMP-SMX for a minimum of 3 months. Surgery may also be beneficial.

B. Chemoprophylaxis

Children with HIV are given chemoprophylaxis with azithromycin or clarithromycin to prevent disseminated MAC infection. Chemoprophylaxis is given when CD4+ T-lymphocyte counts fall below age specific levels.

C. General Measures

Isolation of the patient is usually not necessary. General supportive care is indicated for the child with disseminated disease.

Prognosis

The prognosis is good for patients with localized disease, although fatalities occur in immunocompromised patients with disseminated disease.


Centers for Disease Control and Prevention (CDC): *Mycobacterium avium* complex. Available at: www.cdc.gov/ncidod/dbmd/diseaseinfo/mycobacteriumavium_t.htm


LEGIONELLA INFECTION

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Severe progressive pneumonia in a child with compromised immunity.
- Diarrhea and neurologic signs are common.
- Positive culture requires buffered charcoal yeast extract media and proves infection.
- Direct fluorescent antibody staining of respiratory secretions and urinary antigen tests are highly specific but do not identify all infections.
General Considerations

*Legionella pneumophila* is a ubiquitous gram-negative bacillus that causes two distinct clinical syndromes: Legionnaires disease and Pontiac fever. Over 40 species of Legionella have been discovered, but not all cause disease in humans. *L. pneumophila* causes most infections. Legionella is present in many natural water sources as well as domestic water supplies (faucets and showers), and fountains. Contaminated cooling towers and heat exchangers have been implicated in several large institutional outbreaks. Person-to-person transmission has not been documented.

Few cases of Legionnaires disease have been reported in children. Most were in children with compromised cellular immunity. In adults, risk factors include smoking, underlying cardiopulmonary or renal disease, alcoholism, and diabetes.

*L. pneumophila* is thought to be acquired by inhalation of a contaminated aerosol. The bacteria are phagocytosed but proliferate within macrophages. Cell-mediated immunity is necessary to activate macrophages to kill intracellular bacteria.

Prevention

No vaccine is available. Legionella is naturally found in water, so ensuring proper disinfectant and water temperature maintenance of water supplies will help prevent cases. Good cleaning, attention to pH, and proper disinfectants in hot tubs is important. Chlorine or monochloramine treatment of municipal water supplies has been shown to reduce the number of organisms and the risk of infection.

Clinical Findings

A. Symptoms and Signs

In Legionnaires disease there is an abrupt onset of fever, chills, anorexia, and headache. Pulmonary symptoms appear within 2–3 days and progress rapidly. The cough is non-productive early. Purulent sputum occurs late. Hemoptysis, diarrhea, and neurologic signs (including lethargy, irritability, tremors, and delirium) are seen.

B. Laboratory Findings

The WBC count is usually elevated in Legionnaires disease. Chest radiographs show rapidly progressive patchy consolidation. Cavitation and large pleural effusions are uncommon. Cultures from sputum, tracheal aspirates, or bronchoscopic specimens, when grown on specialized media are positive in 70%–80% of patients at 3–5 days. Direct fluorescent antibody staining of sputum or tracheal secretions does not rule out disease due to Legionella. PCR detection of respiratory secretions for Legionella is available at some centers. Urine antigen tests for Legionella antigen are highly specific. These tests only detect *L. pneumophila* serotype 1, but most community-acquired *L. pneumophila* infections are caused by this serotype. Performance of both culture and urine antigen testing should facilitate diagnosis. Serologic tests are available, but a maximum rise in titer may require 6–8 weeks.

Differential Diagnosis

Legionnaires disease is usually a rapidly progressive pneumonia in a patient who appears very ill with unremitting fevers. Other bacterial pneumonias, viral pneumonias, *Mycoplasma* pneumonia, and fungal disease are all possibilities and may be difficult to differentiate clinically in an immunocompromised patient.

Complications

In sporadic untreated cases, mortality rates are 5%–25%. The mortality rate is < 5% in normal hosts with early, appropriate therapy. In immunocompromised patients with untreated disease, mortality approaches 80%. Hematogenous dissemination may result in extrapulmonary foci of infection, including pericardium, myocardium, and kidneys. Legionella may be the cause of culture-negative endocarditis.

Treatment

Intravenous azithromycin, 10 mg/kg/d given as a once-daily dose (maximum dose 500 mg), is the drug of choice in most children. In immunocompromised patients, levofloxacin is recommended (not approved for this indication in children < 18 years of age) because fluoroquinolones are cidal agents. Fluoroquinolones are not approved for use, doxycycline (not recommended for children < 8 years of age unless benefit exceeds risk) and TMP-SMX are alternative agents. Duration of therapy is 5–10 days if azithromycin is used; for other antibiotics a 14- to 21-day course is recommended. Oral therapy may be substituted for intravenous therapy as the patient’s condition improves.

Prognosis

Mortality rate is high if treatment is delayed. Malaise, problems with memory, and fatigue are common after recovery.

Centers for Disease Control and Prevention: Legionella. Available at: http://www.cdc.gov/legionella/
**CHLAMYDOPHILA INFECTIONS (PSITTACOSIS [ORNITHOSIS], C PNEUMONIAE & C TRACHOMATIS)**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- **Psittacosis:**
  - Fever, cough, malaise, chills, headache.
  - Diffuse rales; no consolidation.
  - Long-lasting radiographic findings of bronchopneumonia.
  - Isolation of the organism or rising titer of complement fixing antibodies.
  - Exposure to infected birds (ornithosis).
- **Neonatal Chlamydia (Chlamydia) conjunctivitis:**
  - Watery, mucopurulent, to blood tinged discharge and conjunctival injection presenting from a few days of life until 16 weeks of age.
  - May be associated with neonatal Chlamydia pneumonia.
  - Identification of Chlamydia conjunctivitis or pneumonia in a neonate should prompt evaluation and treatment of the mother and her sexual partner.

**General Considerations**

Psittacosis is caused by Chlamyphila psittaci. When the agent is transmitted to humans from psittacine birds (parrots, parakeets, cockatoos, and budgerigars), the disease is called psittacosis or parrot fever. However, other avian genera (eg, pigeons and turkeys) are common sources of infection in the United States, and the general term ornithosis is used. The agent is an obligate intracellular parasite. Human-to-human spread rarely occurs. The incubation period is 5–14 days. The bird from which the disease was transmitted may not be clinically ill.

Chlamydia pneumoniae (formerly Chlamydia pneumoniae) may cause atypical pneumonia similar to that due to M pneumoniae. Transmission is by respiratory spread. Infection appears to be most prevalent during the second decade; half of surveyed adults are seropositive. Only a small percentage of infections result in clinical pneumonia. Lower respiratory tract infection due to C pneumoniae is uncommon in infants and young children. C pneumoniae has been associated with acute chest syndrome in children with sickle cell disease.

Chlamydia pneumoniae causes urogenital infections in adults including asymptomatic infections, lymphogranuloma venereum, nongonococcal urethritis, epididymitis, cervicitis, and pelvic inflammatory disease. Serovars D–K (and L1, L2, L3 in lymphogranuloma venereum) are responsible for most of these infections. In infants born to infected mothers, C trachomatis infection can be acquired through exposure in the birth canal, causing neonatal conjunctivitis and/or pneumonia. The risk of acquisition for a baby born vaginally to an infected mother is about 50%.

The disease called “trachoma” is unusual in the United States. Trachoma is caused by certain C trachomatis serovars (A–C). This chronic keratoconjunctivitis can cause inflammation and neovascularization of the cornea, leading to corneal scarring and blindness. It is the most common cause of acquired blindness worldwide. The peak incidence is seen at age 4–6, with scarring and blindness occurring in adulthood. Infections occur from direct contact with infected secretions (eye, nose, throat) or by direct contact with contaminated objects (secretions on towels, washcloths, handkerchiefs).

Sexually transmitted urogenital infections caused by Chlamydia are discussed in Chapter 44.

**Prevention**

Persons cleaning bird cages should use caution when cleaning cages or disposing of bird droppings to avoid aerosolization of C psittaci. C psittaci is susceptible to 1% Lysol or a 1:100 dilution of household bleach and one of these can be used to disinfect cages. Sick birds should be evaluated by a veterinarian and can be treated with antimicrobials. C pneumoniae is transmitted person to person by infected respiratory tract secretions. Prevention involves avoidance of known infected persons, using good hand hygiene (both infected persons and noninfected persons), and encouraging good respiratory hygiene (covering mouth with coughing, disposing of tissues contaminated with respiratory secretions).

The diagnosis and appropriate treatment of genital Chlamydia (chlamydial) infections in pregnant women and their sexual partners is the most effective way to prevent neonatal conjunctivitis and pneumonia (see Chapter 44).

**Clinical Findings**

**A. Symptoms and Signs**

1. **C psittaci pneumonia**—The disease is extremely variable but tends to be mild in children. The onset is rapid or insidious, with fever, chills, headache, backache, malaise, myalgia, and dry cough. Signs include pneumonitis, altered percussion notes and breath sounds, and rales. Pulmonary findings may be absent early. Dypsnea and cyanosis may occur later. Splenomegaly, epistaxis, prostration, and meningismus are occasionally seen. Delirium, constipation or diarrhea, and abdominal distress may occur.
2. *C. pneumoniae* pneumonia—Clinically, *C. pneumoniae* infection is similar to *M. pneumoniae* infection. Most patients have mild upper respiratory infections. Lower respiratory tract infection is characterized by fever, sore throat (perhaps more severe with *C. pneumoniae*), cough, and bilateral pulmonary findings and infiltrates.

3. *C. trachomatis* neonatal conjunctivitis and pneumonia—Neonatal conjunctivitis caused by *C. trachomatis* can occur from a few days until 12–16 weeks after birth. There may be mild to moderate swelling of the lids and watery or mucopurulent discharge. The conjunctivae may be friable and there may be some bloody discharge. Pneumonia may occur in babies with or without neonatal conjunctivitis. Pneumonia is most commonly seen between 2 and 12 weeks of age. Most babies are afebrile and have tachypnea and a staccato cough.

4. *C. trachomatis* trachoma—Trachoma is unusual in the United States. It is seen in developing countries in Africa, Asia, Latin America, the Middle East, and some Pacific and East Pacific islands. This chronic keratoconjunctivitis can cause inflammation and neovascularization of the cornea, leading to corneal scarring and blindness. It is the most common cause of acquired blindness worldwide. The peak incidence is seen at 4–6 years of age, with scarring and blindness occurring in adulthood. Infections occur from direct contact with infected secretions (eye, nose, throat) or by direct contact with contaminated objects (secretions on towels, washcloths, handkerchiefs). Trachoma is caused by certain *C. trachomatis* serovars (A–C).

B. Laboratory Findings

1. *C. psittaci*—In psittacosis, the WBC count is normal or decreased, often with a shift to the left. Proteinuria is common. *C. psittaci* is present in the blood and sputum during the first 2 weeks of illness but culture is avoided since it can represent a hazard to laboratory workers. A diagnosis can be made if, a culture (blood or respiratory tract specimen) is positive for the organism, or there is a fourfold rise in complement fixation titers in specimens obtained at least 2 weeks apart. Evidence of a probable case includes those where there is a single serum *C. psittaci* IgM antibody titer above 1:32 (microimmunofluorescent or complement fixation assay). The titer rise may be blunted or delayed by therapy. Infection with *C. pneumoniae* may lead to diagnostic confusion because cross-reactive antibody may cause false-positive *C. psittaci* titers.

2. *C. pneumoniae*—Eosinophilia is sometimes present. A fourfold rise in *C. pneumoniae* IgG titer (microimmunofluorescence antibody test). IgG antibody peaks 6–8 weeks after infection. *C. pneumoniae* can be isolated from nasal wash or throat swab specimens after inoculation into cell culture. A PCR is currently not commercially available.

3. *C. trachomatis*—In infants with neonatal pneumonia or conjunctivitis, nucleic acid amplification tests (such as PCR) have not been FDA approved for testing conjunctival samples or respiratory samples (nasopharyngeal, tracheal aspirate) in infants. Culture or nonamplified direct detection methods are usually utilized.

C. Imaging

The radiographic findings in psittacosis are those of central pneumonia that later becomes widespread or migratory. Psittacosis is indistinguishable from viral pneumonias by radiograph. Signs of pneumonitis may appear on radiograph in the absence of clinical suspicion of pulmonary involvement.

In neonatal pneumonia from *C. trachomatis*, infiltrates, and often hyperinflation, are seen on chest radiographs.

**Differential Diagnosis**

Psittacosis can be differentiated from viral or mycoplasmal pneumonias only by the history of contact with potentially infected birds. In severe or prolonged cases with extrapulmonary involvement the differential diagnosis is broad, including typhoid fever, brucellosis, and rheumatic fever.

*C. pneumoniae* pneumonia is not distinguishable clinically from *Mycoplasma* or viral pneumonia. *C. trachomatis* conjunctivitis must be differentiated from gonococcal conjunctivitis, chemical conjunctivitis, or viral conjunctivitis. Gonococcal conjunctivitis is often severe, with purulent discharge. A culture of the conjunctival discharge (plated on Thayer-Martin media) can aid in the diagnosis of gonococcal conjunctivitis.

**Complications**

Complications of psittacosis include myocarditis, endocarditis, hepatitis, pancreatitis, and secondary bacterial pneumonia. *C. pneumoniae* infection may be prolonged or may recur.

**Treatment**

Psittacosis—Doxycycline should be given for 10–14 days after defervescence to patients older than 8 years with psittacosis. Alternatively, erythromycin or azithromycin may be used in younger children. Supportive oxygen may be needed.

*Chlamydia pneumoniae*—Most suspected infections are treated empirically. *C. pneumoniae* responds to macrolides (azithromycin, erythromycin). Doxycycline is an alternative in those patients 8 years and older. A 10- to 14-day course is recommended for erythromycin or doxycycline; when using azithromycin the treatment length is 5 days.

Neonatal conjunctivitis or pneumonia—The American Academy of Pediatrics recommends a 10-day course of erythromycin base or ethylsuccinate (50 mg/kg/d given in four divided doses). Infants should have a follow-up visit
because some infants have recrudescence of symptoms after the antibiotic course finishes or failure of symptoms to fully resolve. These infants can be retreated with a second course of erythromycin. Data on the use of azithromycin for these conditions in neonates is very limited, but azithromycin 20 mg/kg, given as an oral single dose once daily for 3 days, may be efficacious. An association with receipt of erythromycin and development of pyloric stenosis in infants less than 6 weeks of age has been reported. Parents should be informed of this potential risk and the symptoms of pyloric stenosis. There are case reports of pyloric stenosis occurring in infants who previously received azithromycin. The diagnosis of an infant with chlamydial conjunctivitis and/or pneumonia should prompt evaluation and treatment of the mother and her sexual partner for Chlamydia and other sexually transmitted diseases (see Chapter 44).


Centers for Disease Control and Prevention: Chlamydia pneumoniae. Available at: http://www.cdc.gov/ncidod/dbmd/diseaseinfo/chlamydiapneumonia_t.htm


## CAT-SCRATCH DISEASE

### ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- History of a cat scratch or cat contact.
- Primary lesion (papule, pustule, or conjunctivitis) at site of inoculation.
- Acute or subacute regional lymphadenopathy.
- Aspiration of sterile pus from a node.
- Laboratory studies excluding other causes.
- Biopsy of node or papule showing histopathologic findings consistent with cat-scratch disease and occasionally characteristic bacilli on Warthin-Starry stain.
- Positive cat-scratch serology (antibody to *Bartonella henselae*).

### General Considerations

The causative agent of cat-scratch disease is *B henselae*, a gram-negative bacillus that also causes bacillary angiomatosis. Cat-scratch disease is usually a benign, self-limited form of lymphadenitis. Patients often report a cat scratch (67%), bite (less common), or contact with a cat or kitten (90%). The cat almost invariably is healthy. Cats become infected via an infected flea; the flea becomes infected when feeding on a cat that is bacteremic with *B henselae*. Occasionally dogs can be infected and transmit disease. The clinical picture is that of a regional lymphadenitis associated with an erythematous papular skin lesion without intervening lymphangitis. The disease occurs worldwide and is more common in the fall and winter. It is estimated that more than 20,000 cases per year occur in the United States. The most common systemic complication is encephalitis.

### Prevention

Cat-scratch disease can be largely prevented by avoiding contact with cats, especially kittens. Flea control of animals will reduce cat-to-cat transmission.

### Clinical Findings

#### A. Symptoms and Signs

About 50% of patients with cat-scratch disease develop a primary lesion at the site of the wound. The lesion usually is a papule or pustule that appears 7–10 days after injury and is located most often on the arm or hand (50%), head or leg (30%), or trunk or neck (10%). The lesion may be conjunctival (10%). Regional lymphadenopathy appears 10–50 days later and may be accompanied by mild malaise, lassitude, headache, and fever. Multiple sites are seen in about 10% of cases. Involved nodes may be hard or soft and 1–6 cm in diameter. They are usually tender, warm, and erythematous and 10%–20% of them suppurate. Lymphadenopathy usually resolves in about 2 months but may persist for up to 8 months.

Unusual manifestations include erythema nodosum, thrombocytopenic purpura, conjunctivitis (Parinaud ocu-loglandular fever), parotid swelling, pneumonia, osteolytic lesions, mesenteric and mediastinal adenitis, neuroretinitis, peripheral neuritis, hepatitis, granulomata of the liver and spleen, and encephalopathy.

Immunocompetent patients may develop an atypical systemic form of cat-scratch disease. These patients have prolonged fever, fatigue, and malaise. Lymphadenopathy may be present. Hepatosplenomegaly or low-density hepatic or splenic lesions visualized by ultrasound or computed tomography scan are seen in some patients.

Infection in immunocompromised individuals may take the form of bacillary angiomatosis, presenting as vascular tumors of the skin and subcutaneous tissues. Immunocompromised patients may also have bacteremia or infection of the liver (peliosis hepatis).
B. Laboratory Findings

Serologic evidence of Bartonella infection by indirect immunofluorescent antibody with IgG titer of > 1:256 is strongly suggestive of recent infection. A positive IgM antibody is sometimes positive, the diagnosis. PCR assays are available. Cat-scratch skin test antigens are not recommended.

Histopathologic examination of involved tissue may show pyogenic granulomas or bacillary forms demonstrated by Warthin-Starry silver stain (but bacillary forms on stain are not specific for cat scratch disease). Later in the course necrotizing granulomas may be seen. There usually is some elevation in the ESR. In patients with CNS involvement, the CSF is usually normal but may show a slight pleocytosis and modest elevation of protein.

Differential Diagnosis

Cat-scratch disease must be distinguished from pyogenic adenitis, tuberculosis (typical and atypical), tularemia, plague, brucellosis, lymphoma, primary toxoplasmosis, infectious mononucleosis, lymphogranuloma venereum, and fungal infections.

Treatment

Treatment of cat-scratch disease adenopathy is controversial because the disease usually resolves without therapy and the patient is typically not exceedingly ill. Treatment of typical cat-scratch disease with a 5-day course of azithromycin has been shown to speed resolution of lymphadenopathy in some patients. The best therapy is reassurance that the adenopathy is benign and will subside spontaneously with time (mean duration of illness is 14 weeks). In cases of nodal suppuration, needle aspiration under local anesthesia relieves the pain. Excision of the involved node is indicated in cases of chronic adenitis. In some reports, azithromycin, ciprofloxacin, rifampin, or TMP-SMX have been useful. Azithromycin is used by many experts if treatment of adenopathy is desired because it is given once a day, is reasonably priced, and was studied in one randomized placebo-controlled trial. In that trial, lymph node volume decreased faster than placebo by 1 month; there was no difference in long-term resolution in the azithromycin and placebo groups.

Immunocompromised patients with evidence of infection should be treated with antibiotics: long-term therapy (months) in these patients with azithromycin or doxycycline often is needed to prevent relapses. Immunocompetent patients with more severe disease or evidence of systemic infection (eg, hepatic or splenic lesions) should also be treated with antibiotics.

Prognosis

The prognosis is good if complications do not occur.


SYPHILIS

Essentials of Diagnosis & Typical Features

Congenital:  
- All types: history of untreated maternal syphilis, a positive serologic test, and a positive darkfield examination.  
- Newborn: hepatosplenomegaly, characteristic radiographic bone changes, anemia, increased nucleated red cells, thrombocytopenia, abnormal spinal fluid, jaundice, edema.  
- Young infant (3–12 weeks): snuffles, maculopapular skin rash, mucocutaneous lesions, pseudoparalysis (in addition to radiographic bone changes).  
- Children: stigmata of early congenital syphilis, interstitial keratitis, saber shins, gummas of nose and palate.

Acquired:  
- Chancre of genitals, lip, or anus in child or adolescent.  
- History of sexual contact.

General Considerations

Syphilis is a chronic, generalized infectious disease caused by a spirochete, Treponema pallidum. In the acquired form, the disease is transmitted by sexual contact. Primary syphilis is characterized by the presence of an indurated painless chancre, which heals in 7–10 days. A secondary eruption involving the skin and mucous membranes appears in 4–6 weeks. After a long latency period, late lesions of tertiary syphilis involve the eyes, skin, bones, viscera, CNS, and cardiovascular system.

Congenital syphilis results from transplacental infection. Infection may result in stillbirth or produce illness in the newborn, in early infancy, or later in childhood. Syphilis occurring in the newborn and young infant is comparable to secondary disease in the adult but is more severe and life-threatening. Late congenital syphilis (developing in childhood) is comparable to tertiary disease.
The incidence of primary and secondary syphilis is increasing in the United States particularly among men. Nearly, 14,000 new cases of primary and secondary syphilis, 377 cases of congenital syphilis and nearly 45,000 total cases were reported in 2010.

## Prevention

A serologic test for syphilis should be performed at the initiation of prenatal care and repeated at delivery in women at increased risk for syphilis. Serologic tests may be negative on both the mother and infant at the time of birth if the mother acquires syphilis near term. Adequate treatment of mothers with secondary syphilis before the last month of pregnancy reduces the incidence of congenital syphilis from 90% to less than 2%. Examination and serologic testing of sexual partners and siblings should also be done.

## Clinical Findings

### A. Symptoms and Signs

#### 1. Congenital Syphilis

**A. Newborns**—Most newborns with congenital syphilis are asymptomatic. If infection is not detected and treated, symptoms develop within weeks to months. When clinical signs are present, they usually consist of jaundice, anemia with or without thrombocytopenia, increase in nucleated red blood cells, hepatosplenomegaly, and edema. Overt signs of meningitis (bulging fontanelle or opisthotonos) may be present, but subclinical infection with CSF abnormalities is more common.

**B. Young infants (3–12 weeks)**—The infant may appear normal for the first few weeks of life only to develop mucocutaneous lesions and pseudoparalysis of the arms or legs. Shotty lymphadenopathy may be felt. Hepatomegaly is universal, with splenomegaly in 50% of patients. Other signs of disease similar to those seen in the newborn may be present. Anemia has been reported as the only presenting manifestation of congenital syphilis in this age group. “Snuffles” (syphilitic rhinitis), characterized by a profuse runny nose, and a high forehead (secondary to mild hydrocephalus associated with low-grade meningitis and frontal periostitis). The permanent upper central incisors may be peg-shaped with a central notch (Hutchinson teeth), and the cusps of the sixth-year molars may have a lobulated mulberry appearance.

#### C. Children—Bilateral interstitial keratitis (at age 6–12 years) is characterized by photophobia, increased lacrimation, and vascularization of the cornea associated with exudation. Chorioretinitis and optic atrophy may also be seen. Meningovascular syphilis (at age 2–10 years) is usually slowly progressive, with mental retardation, spasticity, abnormal pupillary response, speech defects, and abnormal CSF. Deafness sometimes occurs. Thickening of the periosteum of the anterior tibias produces saber shins. A bilateral effusion in the knee joints may occur but is not associated with sequelae. Soft inflammatory growths called gummas may develop in the nasal septum, palate, long bones, and subcutaneous tissues.

#### 2. Acquired syphilis—The primary chancre of the genitals, mouth, or anus may occur from genital, anal, or oral sexual contact. If the chancre is missed, signs of secondary syphilis, such as rash, fever, headache, and malaise, may be the first manifestations.

### B. Laboratory Findings

#### 1. Darkfield microscopy—Treponemes can be seen in scrapings from a chancre and from moist lesions.

#### 2. Serologic tests for syphilis—There are two general types of serologic tests for syphilis: treponemal and nontreponemal. There are two types of nontreponemal tests: Venereal Disease Research Laboratory (VDRL) and the rapid plasma reagin (RPR). The VDRL and RPR are inexpensive, rapid tests that are useful for screening and following disease activity or adequacy of therapy. These tests provide quantitative results if the test is positive. False-positive nontreponemal tests can occur in patient with measles, hepatitis, mononucleosis, lymphoma, tuberculosis, endocarditis, pregnancy, and intravenous drug abuse. When evaluating a newborn infant for potential syphilis, umbilical cord blood specimens should not be used for nontreponemal tests: a false-positive test may result from Wharton jelly contamination of the sample. Conversely, a false-negative test may be seen in the setting where maternal infection occurred late in pregnancy.

Positive nontreponemal tests should be confirmed with a more specific treponemal test such as the fluorescent treponemal antibody absorbed (FTA-ABS) test or the T pallidum particle agglutination (TP-PA) test. False-positive FTA-ABS tests are uncommon except with other spirochetal diseases such as leptospirosis, rat bite fever, and Lyme disease.

One or two weeks after the onset of primary syphilis (chancre), the FTA-ABS test becomes positive. The VDRL or a similar nontreponemal test usually turns positive a few days later. By the time the secondary stage has been reached, virtually all patients show both positive FTA-ABS and positive nontreponemal tests. During latent and tertiary syphilis,
the VDRL may become negative, but the FTA-ABS test usually remains positive. The quantitative VDRL or a similar nontreponemal test should be used to follow-up treated cases (see following discussion).

EIA tests specific for *T pallidum* are available in many laboratories and are replacing FTA-ABS, TP-PA tests. As these are rapid, inexpensive tests with greater specificity, a different screening strategy is now often used. The initial screen is done with EIA test followed by the RPR or VDRL, if positive.

In infants, positive serologic tests in cord sera may represent passively transferred antibody rather than congenital infection and therefore must be supplemented by a combination of clinical and laboratory data. Elevated total cord IgM is a helpful but nonspecific finding. A specific IgM–FTA-ABS is available, but negative results are not conclusive and should not be relied on. Demonstration of characteristic treponemes by darkfield examination of material from a moist lesion (skin; nasal or other mucous membranes) is definitive. Mouth lesions would be best examined by direct fluorescent antibody to distinguish *T pallidum* from nonpathogenic treponemes commonly found in the mouth. Serial measurement of quantitative RPR or VDRL is also very useful, because passively transferred antibody in the absence of active infection should decay with a normal half-life of about 18 days (see discussion of evaluation of infants for congenital syphilis section on Initial Evaluation and Treatment).

For evaluation of possible neurosyphilis, the CSF should be examined for cell count, glucose, protein, and a CSF VDRL. A negative CSF VDRL does not rule out neurosyphilis.

C. Imaging

Radiographic abnormalities are present in 90% of infants with symptoms of congenital syphilis and in 20% of asymptomatic infants. Metaphyseal lucent bands, periostitis, and a widened zone of provisional calcification may be present. Bilateral symmetrical osteomyelitis with pathologic fractures of the medial tibial metaphyses (Wimberger sign) is almost pathognomonic.

**Differential Diagnosis**

**A. Congenital Syphilis**

1. **Newborns**—Sepsis, congestive heart failure, congenital rubella, toxoplasmosis, disseminated herpes simplex, cytomegalovirus infection, and hemolytic disease of the newborn have to be differentiated. A positive Coombs test and blood group incompatibility distinguish hemolytic disease.

2. **Young infants**—Injury to the brachial plexus, polio- myelitis, acute osteomyelitis, and septic arthritis must be differentiated from pseudoparalysis. Coryza due to viral infection often responds to symptomatic treatment. Rash (ammoniacal diaper rash) and scabies may be confused with a syphilitic eruption.

3. **Children**—Interstitial keratitis and bone lesions of tuberculosis are distinguished by positive tuberculin reaction and chest radiograph. Arthritis associated with syphilis is unaccompanied by systemic signs, and joints are nontender. Mental retardation, spasticity, and hyperactivity are shown to be of syphilitic origin by strongly positive serologic tests.

**B. Acquired Syphilis**

Herpes genitalis, traumatic lesions, and other venereal diseases must be differentiated from primary chancers.

**Treatment**

**A. Specific Measures**

Penicillin is the drug of choice for *T pallidum* infection. If the patient is allergic to penicillin, azithromycin, ceftriaxone or one of the tetracyclines may be used, but are of unknown efficacy.

**1. Congenital syphilis**

**A. Initial evaluation and treatment**—Newborns should not be discharged from the hospital until the mother’s serologic status for syphilis has been determined. Infants born to seropositive mothers require careful examination and quantitative nontreponemal (VDRL, RPR) syphilis testing. The same quantitative antitreponemal test used in evaluating the mother should be used in the infant so the titers can be compared. Maternal records regarding any prior diagnosis of syphilis, treatment, and follow-up titers should be reviewed. Infants should be further evaluated for congenital syphilis in any of the following circumstances:

- The maternal titer has increased fourfold.
- The infant’s titer is at least fourfold greater than the maternal titer.
- Signs of syphilis are found on examination.
- Maternal syphilis was not treated or was inadequately treated during pregnancy.
- Maternal syphilis was treated with a nonpenicillin regimen, or the regimen or dose of medication is undocumented.
- Maternal syphilis was treated during pregnancy, but therapy was completed less than 4 weeks prior to delivery.
- Maternal syphilis was treated appropriately during pregnancy, but without the appropriate decrease in maternal nontreponemal titers after treatment.

The complete evaluation of an infant for possible congenital syphilis includes complete blood count, liver function
tests, long bone radiographs, CSF examination (cell counts, glucose, and protein), CSF VDRL, and quantitative serologic tests. In addition, the placenta and umbilical cord should be examined pathologically using fluorescent antitreponemal antibody, if available. An ophthalmologic examination may also be done.

Treatment for congenital syphilis is indicated for infants with physical signs; umbilical cord or placenta positive for DFA-TP staining or darkfield examination; abnormal radiographs; elevated CSF protein or cell counts; reactive CSF VDRL; or serum quantitative nontreponemal titer that is more than fourfold higher than the maternal titer (using same test). Newborns with proved or suspected congenital syphilis should receive either (1) aqueous crystalline penicillin G, 50,000 U/kg per dose intravenously every 12 hours (if <1 week old) or (2) every 8 hours (if 1–4 weeks old) for 10 days. Procaine penicillin G, 50,000 U/kg in a single daily dose for 10 days is an alternative if compliance is assured. All infants diagnosed after age 4 weeks should receive 50,000 U/kg per dose aqueous crystalline penicillin intravenously every 4–6 hours for 10 days.

Additionally, treatment should be given to infants whose mothers have inadequately treated syphilis, to those whose mothers received treatment less than 1 month before delivery, to those whose mothers have undocumented or inadequate serologic response to therapy, and to those whose mothers were given nonpenicillin drugs to treat syphilis. In these instances, if the infant is asymptomatic, has a normal physical examination, normal CSF parameters, nonreactive CSF VDRL, normal bone films, quantitative nontreponemal titer less than fourfold of the mother's titer, and good follow-up is certain, some experts would give a single dose of penicillin G benzathine, 50,000 U/kg intramuscularly. If there is any abnormality in the preceding evaluation or if the CSF testing is not interpretable, the full 10 days of intravenous penicillin should be given. Close clinical and serologic monthly follow-up is necessary.

Asymptomatic, seropositive infants with normal physical examinations born to mothers who received adequate syphilis treatment (completed >4 weeks prior to delivery) and whose mothers have an appropriate serologic response (fourfold or greater decrease in titer) to treatment may be at lower risk for congenital syphilis. Some experts believe complete laboratory and radiographic evaluation in these infants (CSF and long bone films) is not necessary. Infants who meet the preceding criteria, who have nontreponemal titers less than fourfold higher than maternal titers, and for whom follow-ups are certain can be given benzathine penicillin G, 50,000 U/kg, administered intramuscularly in a single dose. Infants should be followed with quantitative serologic tests and physical examinations until the nontreponemal serologic test is negative (see discussion of follow-up, next). Rising titers or clinical signs usually occur within 4 months in infected infants, requiring a full evaluation (including CSF studies and long bone radiographs) and institution of intravenous penicillin therapy.

B. Follow-up for congenital syphilis—Children treated for congenital syphilis need physical examinations every 2–3 months after completion of therapy, and both physical examinations and quantitative VDRL or RPR tests should be performed until the tests become nonreactive. Repeat CSF examination, including a CSF VDRL test, every 6 months until normal is indicated for infants with a positive CSF VDRL reaction or with abnormal cell counts or protein in the CSF. A reactive CSF VDRL test at the 6-month interval is an indication for retreatment. Titers decline with treatment and are usually negative by 6 months. Repeat treatment is indicated for children with rising titers or stable titers that do not decline.

2. Acquired syphilis of less than 1 year’s duration—Benzathine penicillin G (50,000 U/kg, given intramuscularly, to a maximum of 2.4 million units) is given to adolescents with primary, secondary, or latent disease of less than 1 year’s duration. All children should have a CSF examination (with CSF VDRL) prior to commencing therapy, to exclude neurosyphilis. Adolescents and adults need a CSF examination if clinical signs or symptoms suggest neurologic involvement or if they are HIV-infected.

3. Syphilis of more than 1 year’s duration (late latent disease)—Syphilis of more than 1 year’s duration (without evidence of neurosyphilis) requires weekly intramuscular benzathine penicillin G therapy for 3 weeks. CSF examination and VDRL test should be done on all children and patients with coexisting HIV infection or neurologic symptoms. In addition, patients who have failed treatment or who were previously treated with an agent other than penicillin need a CSF examination and CSF VDRL.

4. Neurosyphilis—Aqueous crystalline penicillin G is recommended, 200,000–300,000 U/kg/d in four to six divided doses, given intravenously for 10–14 days. The maximum adult dose is 4 million units per dose. Some experts recommend following this regimen with an intramuscular course of benzathine G penicillin, 50,000 U/kg given once a week for 3 consecutive weeks, to a maximum dose of 2.4 million units.

B. General Measures

Penicillin treatment of early congenital or secondary syphilis may result in a dramatic systemic febrile illness termed the Jarisch–Herxheimer reaction. Treatment is symptomatic, with careful follow-up. Transfusion may be necessary in infants with severe hemolytic anemia.

**Prognosis**

Severe disease, if undiagnosed, may be fatal in the newborn. Complete cure can be expected if the young infant is given
penicillin. Serologic reversal usually occurs within 1 year. Treatment of primary syphilis with penicillin is curative. Permanent neurologic sequelae may occur in meningovascular syphilis.

Centers for Disease Control and Prevention (CDC) et al: Sexually transmitted diseases treatment guidelines, 2010. MMWR Recomm Rep 2010;59(RR-12) [PMID: 21160459].

RELAPSING FEVER

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

► Episodes of fever, chills, malaise.
► Occasional rash, arthritis, cough, hepatosplenomegaly, conjunctivitis.
► Diagnosis suggested by direct microscopic identification of spirochetes in smears of peripheral blood. Diagnosis confirmed with serologic testing.

Prevention

Measures that decrease exposures to soft ticks and body lice will prevent most cases. Soft-bodied ticks often are found in rodent burrows or nests, so decreasing rodent access to homes and eliminating rodents in the home is helpful. Body-louse infestation can be treated with hygiene and pediculicides.

General Considerations

Relapsing fever is a vector-borne disease caused by spirochetes of the genus Borrelia. Epidemic relapsing fever is transmitted to humans by body lice (Pediculus humanus) and endemic relapsing fever by soft-bodied ticks (genus Ornithodoros). Tick-borne relapsing fever is endemic in the western United States. Although several hundred cases are reported per year, substantial underdiagnosis occurs. Transmission usually takes place during the warm months, when ticks are active and recreation or work brings people into contact with Ornithodoros ticks. B hermsii causes most tick-borne infection in the United States. Infection is often acquired in mountain camping areas and cabins. The ticks are nocturnal feeders and remain attached for only 5–20 minutes. Consequently, the patient seldom remembers a tick bite. Rarely, neonatal relapsing fever results from transplacental transmission of Borrelia. Both louse-borne and tick-borne relapsing fever may be acquired during foreign travel.

Clinical Findings

A. Symptoms and Signs

The incubation period is 2–18 days. The attack is sudden, with high fever, chills, sweats, tachycardia, nausea and vomiting, headache, myalgia, and arthralgia. After 3–10 days, the fever falls. The disease is characterized by relapses at intervals of 1–2 weeks and lasting 3–5 days. The relapses duplicate the initial attack but become progressively less severe. In louse-borne relapsing fever, there is usually a single relapse. In tick-borne infection, two to six relapses occur.

Hepatomegaly, splenomegaly, pneumonia, meningitis, and myocarditis may appear later in the course of the disease. An erythematous rash may be seen over the trunk and extremities, and petechiae may be present. Jaundice, iritis, conjunctivitis, cranial nerve palsies, and hemorrhage occur more commonly during relapses.

B. Laboratory Findings

During febrile episodes, the patient’s urine contains protein, casts, and occasionally erythrocytes; a marked polymorphonuclear leukocytosis is present; and about 25% of patients have a false-positive serologic test for syphilis. Spirochetes can be found in the peripheral blood by direct microscopy in approximately 70% of cases by darkfield examination or by Wright, Giemsa, or acridine orange staining of thick and thin smears. Spirochetes are not found during afebrile periods. Immunofluorescent antibody (or ELISA confirmed by Western blot) can help establish the diagnosis serologically. However, high titers of Borrelia hermsii can cross-react with Borrelia burgdorferi (the agent in Lyme disease) or Leptospira in immunofluorescent antibody assay, ELISA, and Western blots. Serologic specimens can be sent to the Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80522.

Differential Diagnosis

Relapsing fever may be confused with malaria, leptosprirosis, dengue, typhus, rat-bite fever, Colorado tick fever, Rocky Mountain spotted fever, collagen-vascular disease, or any fever of unknown origin.

Complications

Complications include facial paralysis, iridocyclitis, optic atrophy, hypochromic anemia, pneumonia, nephritis, myocarditis, endocarditis, and seizures. CNS involvement occurs in 10%–30% of patients.
INFECTIONS: BACTERIAL & SPIROCHETAL

Treatment

For children younger than age 8 years who have tick-borne relapsing fever, penicillin or erythromycin should be given for 10 days. Older children may be given doxycycline. Chloramphenicol is also efficacious and was often used in the past.

Severely ill patients should be hospitalized. Patients may experience a Jarisch-Herxheimer reaction (usually noted in the first few hours after commencing antibiotics). Isolation precautions are not necessary for relapsing fever. Contact precautions are recommended for patients with louse infestations.

Prognosis

The mortality rate in treated cases of relapsing fever is very low, except in debilitated or very young children. With treatment, the initial attack is shortened and relapses prevented. The response to antimicrobial therapy is dramatic.

Centers for Disease Control: Relapsing fever. Available at: http://www.cdc.gov/ncidod/dvbid/relapsingfever/

LEPTOSPIROSIS

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Biphasic course lasting 2–3 weeks.
- Initial phase: high fever, headache, myalgia, and conjunctivitis.
- Apparent recovery for 2–3 days.
- Return of fever associated with meningitis.
- Jaundice, hemorrhages, and renal insufficiency (severe cases).
- Culture of organism from blood and CSF (early) and from urine (later), or direct microscopy of urine or CSF.
- Positive leptosporal agglutination test.

General Considerations

Leptospirosis is a zoonosis caused by many antigenically distinct but morphologically similar spirochetes. The organism enters through the skin or respiratory tract. Classically the severe form (Weil disease), with jaundice and a high mortality rate, was associated with infection with *Leptospira icterohaemorrhagiae* after immersion in water contaminated with rat urine. It is now known that a variety of animals (eg, dogs, rats, and cattle) may serve as reservoirs for pathogenic *Leptospira*, that a given serogroup may have multiple animal species as hosts, and that severe disease may be caused by many different serogroups.

In the United States, leptospirosis usually occurs after contact with dogs. Cattle, swine, or rodents may transmit the organism. Sewer workers, farmers, slaughterhouse workers, animal handlers, and soldiers are at risk for occupational exposure. Outbreaks have resulted from swimming in contaminated streams and harvesting field crops. In the United States, about 100 cases are reported yearly, about one-third of them in children.

Prevention

Preventive measures include avoidance of contaminated water and soil, rodent control, immunization of dogs and other domestic animals, and good sanitation. Gloves, boots, and other protective clothing can be worn when contact is unavoidable. Antimicrobial prophylaxis with doxycycline may be of value to certain high-risk occupational groups with short-term exposures. Doxycycline is not approved for use in children less than 8 years of age unless benefits exceed risk.

Clinical Findings

A. Symptoms and Signs

1. Initial phase—The incubation period is 4–19 days (mean, 10 days). Chills, fever, headache, myalgia (especially lumbar area and calves), conjunctivitis without exudate, photophobia, cervical lymphadenopathy, and pharyngitis commonly occur. The initial leptospiremic phase lasts for 3–7 days.

2. Phase of apparent recovery—Symptoms typically (but not always) subside for 2–3 days.

3. Systemic phase—Fever reappears and is associated with headache, muscular pain, and tenderness in the abdomen and back, and nausea and vomiting. Conjunctivitis and uveitis are common. Lung, heart, and joint involvement occasionally occur. These manifestations are due to extensive vasculitis.

   A. CNS involvement—The CNS is involved in 50%–90% of cases. Severe headache and mild nuchal rigidity are usual, but delirium, coma, and focal neurologic signs may be seen.

   B. Renal and hepatic involvement—In about 50% of cases, the kidney or liver is affected. Gross hematuria and oliguria or anuria is sometimes seen. Jaundice may be associated with an enlarged and tender liver.

   C. Gallbladder involvement—Leptospirosis may cause acalculous cholecystitis in children, demonstrable by abdominal ultrasound as a dilated, nonfunctioning gallbladder. Pancreatitis is unusual.
D. Hemorrhage—Petechiae, ecchymoses, and gastrointestinal bleeding may be severe.

E. Rash—A rash is seen in 10%–30% of cases. It may be maculopapular and generalized or may be petechial or purpuric. Occasionally erythema nodosum is seen. Peripheral desquamation of the rash may occur. Gangrenous areas are sometimes noted over the distal extremities. In such cases, skin biopsy demonstrates the presence of severe vasculitis involving both the arterial and the venous circulations.

B. Laboratory Findings

Leptospires are present in the blood and CSF only during the first 10 days of illness. They appear in the urine during the second week, where they may persist for 30 days or longer. Culture is difficult and requires specialized media and conditions. The WBC count often is elevated, especially when there is liver involvement. Serum bilirubin levels usually remain below 20 mg/dL. Other liver function tests may be abnormal, although the aspartate transaminase usually is elevated only slightly. An elevated serum creatine kinase is frequently found. CSF shows moderate pleocytosis (< 500/μL)—predominantly mononuclear cells—increased protein (50–100 mg/dL), and normal glucose. Urine often shows microscopic pyuria, hematuria, and, less often, moderate proteinuria (++, for greater). The ESR is elevated markedly. Chest radiograph may show pneumonitis.

Serologic antibodies measured by enzyme immunoassay may be demonstrated during or after the second week of illness. The confirmatory test of choice is a microscopic agglutination test, performed at the CDC. Leptospiral agglutinins generally reach peak levels by the third to fourth week. Fourfold or greater titer rise in acute and convalescent specimens is diagnostic. A PCR assay may be available at specialized research centers or through the CDC.

**Differential Diagnosis**

Fever and myalgia associated with the characteristic conjunctival injection should suggest leptospirosis. During the prodrome, malaria, typhoid, rheumatoid arthritis, brucellosis, and influenza may be suspected. Later, depending on the organ systems involved, a variety of other diseases need to be distinguished, including encephalitis, viral or tuberculous meningitis, viral hepatitis, glomerulonephritis, viral or bacterial pneumonia, rheumatic fever, subacute infective endocarditis, acute surgical abdomen, and Kawasaki disease (see Table 40–3).

**Treatment**

A. Specific Measures

Aqueous penicillin G (150,000 U/kg/d, given in four to six divided doses intravenously for 7–10 days) should be given when the diagnosis is suspected. Alternative agents include parenteral cefotaxime, ceftriaxone, or doxycycline. A Jarisch-Herxheimer reaction may occur. Oral doxycycline may be used for mildly ill patients. Doxycycline should not be used in children less than 8 years or pregnant women.

**B. General Measures**

Symptomatic and supportive care is indicated, particularly for renal and hepatic failure and hemorrhage. Contact isolation is recommended, due to potential transmission from contact with urine.

**Prognosis**

Leptospirosis is usually self-limiting and not characterized by jaundice. The disease usually lasts 1–3 weeks but may be more prolonged. Relapse may occur. There are usually no permanent sequelae associated with CNS infection, although headache may persist. The mortality rate in the United States is 5%, usually from renal failure. The mortality rate may reach 20% or more in elderly patients who have severe kidney and hepatic involvement.

Centers for Disease Control and Prevention: Leptospirosis. Available at: http://www.cdc.gov/leptospirosis/

**LYME DISEASE**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Characteristic skin lesion (erythema migrans) 3–30 days after tick bite.
- Arthritis, usually pauciarticular, occurring about 4 weeks after appearance of skin lesion. Headache, chills, and fever.
- Residence or travel in an endemic area during the late spring to early fall.

**General Considerations**

Lyme disease is a subacute or chronic spirochetal infection caused by *B. burgdorferi* and transmitted by the bite of an
infected deer tick (*Ixodes* species). The disease was known in Europe for many years as tick-borne encephalomyelitis, often associated with a characteristic rash (erythema migrans). Discovery of the agent and vector followed investigation of an outbreak of pauciarticular arthritis in Lyme, Connecticut, in 1977.

Although cases are reported from many countries, the most prominent endemic areas in the United States include the Northeast, upper Midwest, and West Coast. The northern European countries also have high rates of infection. Nearly 30,000 confirmed or probable cases were reported in the United States in 2010. Knowledge of the local epidemiology is important as Lyme disease is common in some areas of northeastern United States, but rare in the mountain states. The disease is spreading as a result of increased infection in and distribution of the tick vector. Most cases with rash are recognized in spring and summer, when most tick bites occur; however, because the incubation period for joint and neurologic disease may be months, cases may present at any time. *Ixodes* ticks are very small, and their bite is often unrecognized.

**Clinical Findings**

**A. Symptoms and Signs**

Erythema chronicum migrans, the most characteristic feature of Lyme disease, is recognized in 60%–80% of patients. Between 3 and 30 days after the bite, a ring of erythema develops at the site and spreads over days. It may attain a diameter of 20 cm. The center of the lesion may clear (resembling tinea corporis), remain red, or become raised (suggesting a chemical or infectious cellulitis). Mild tenderness may occur. Many patients are otherwise asymptomatic. Some have fever (usually low-grade), headache, and myalgias. Multiple satellite skin lesions, urticaria, or diffuse erythema may occur. Untreated, the rash lasts days to 3 weeks.

In up to 50% of patients, arthritis develops several weeks to months after the bite. Recurrent attacks of migratory, monoarticular, or pauciarticular arthritis involving the knees and other large joints occur. Each attack lasts for days to a few weeks. Fever is common and may be high. Complete resolution between attacks is typical. Chronic arthritis develops in less than 10% of patients, more often in those with the DR4 haplotype.

Neurologic manifestations develop in up to 20% of patients and usually consist of Bell palsy, aseptic meningitis (which may be indistinguishable from viral meningitis), or polyradiculitis. Peripheral neuritis, Guillain-Barré syndrome, encephalitis, ataxia, chorea, and other cranial neuropathies are less common. Seizures suggest another diagnosis. Untreated, the neurologic symptoms are usually self-limited but may be chronic or permanent. Although fatigue and nonspecific neurologic symptoms may be prolonged in a few patients, Lyme disease is not a cause of chronic fatigue syndrome. Self-limited heart block or myocardial dysfunction occurs in about 5% of patients.

**B. Laboratory Findings**

Most patients with only rash have normal laboratory tests. Children with arthritis may have moderately elevated ESRs and WBC counts; the antinuclear antibodies and rheumatoid factor tests are negative or nonspecific; streptococcal antibodies are not elevated. Circulating IgM cryoglobulins may be present. Joint fluid may show up to 100,000 cells with a polymorphonuclear predominance, normal glucose, and elevated protein and immune complexes; Gram stain and culture are negative. In patients with CNS involvement, the CSF may show lymphocytic pleocytosis and elevated protein; the glucose and all cultures and stains are normal or negative. Abnormal nerve conduction may be present with peripheral neuropathy.

**C. Diagnosis**

Lyme disease is a clinical diagnosis. Local epidemiology, history of travel to endemic areas, physical examination, and laboratory features are important to consider. The causative organism is difficult to culture. Serologic testing may support the clinical diagnosis. Antibody testing should be performed in experienced laboratories. Serologic diagnosis of Lyme disease is based on a two-test approach: an ELISA and an immunoblot to confirm a positive or indeterminate ELISA. Antibodies may not be detectable until several weeks after infection has occurred; therefore, serologic testing in children with a typical rash is not recommended. Therapy early in disease may blunt antibody titers. Recent studies have shown considerable intralaboratory and interlaboratory variability in titers reported. Serologic testing of patients with nonspecific complaints from low prevalence areas results in falsely positive tests. Overdiagnosis of Lyme disease based on atypical symptoms and positive serology appears to be common. Sera from patients with syphilis, HIV, and leptospirosis may give false-positive results. Patients who receive appropriate treatment for Lyme disease may remain seropositive for years. Diagnosis of CNS disease requires objective abnormalities of the neurologic examination, laboratory or radiographic studies, and consistent positive serology.

**Differential Diagnosis**

Aside from the disorders already mentioned, the rash may resemble pityriasis, erythema multiforme, a drug eruption, or erythema nodosum. Erythema chronicum migrans is nonscaly, minimally tender or nontender, and persists longer in the same place than many of the more common childhood erythematous rashes. The arthritis may resemble juvenile rheumatoid arthritis, reactive arthritis, septic
arthriti, reactive effusion from a contiguous osteomyelitis, rheumatic fever, leukemic arthritis, systemic lupus erythematosus, and Henoch-Schönlein purpura. Spontaneous resolution in a few days to weeks helps differentiate Lyme disease from juvenile rheumatoid arthritis, in which arthritis lasting a minimum of 6 weeks is required for diagnosis. The neurologic signs may suggest idiopathic Bell palsy, viral or parainfectious meningitis or meningoencephalitis, lead poisoning, psychosomatic illness, and many other conditions.

**Prevention**

Prevention consists of avoidance of endemic areas, wearing long sleeves and pants, frequent checks for ticks, and application of tick repellents. Ticks usually are attached for 24–48 hours before transmission of Lyme disease occurs. Ticks should be removed with a tweezer by pulling gently without twisting or excessive squeezing of the tick. Permethrin sprayed on clothing decreases tick attachment. Repellents containing high concentrations of N,N-Diethyl-meta-toluamide (DEET) may be neurotoxic and should be used cautiously in young children and infants and washed off when tick exposure ends. Prophylactic antibiotics for tick bites in asymptomatic individuals is not usually recommended.

**Treatment**

Antimicrobial therapy is beneficial in most cases of Lyme disease. It is most effective if started early. Prolonged treatment is important for all forms. Relapses occur in some patients on all regimens.

**A. Rash, Early Infections**

Amoxicillin, 50 mg/kg/d orally in two divided doses (to a maximum of 2 g/d) for 14–21 days can be used for children of all ages. Doxycycline (100 mg orally twice a day) for 14–21 days may be used for children older than age 8 years. Erythromycin (30 mg/kg/d) or cefuroxime is used in penicillin-allergic children, although erythromycin may be less effective than amoxicillin.

**B. Arthritis**

The amoxicillin or doxycycline regimen (same dosage as for the rash) should be used, but treatment should continue for 4 weeks. Parenteral ceftriaxone (50–75 mg/kg/d) or penicillin G (300,000 U/kg/d, given intravenously in four divided doses for 2–4 weeks) is used for persistent arthritis.

**C. Bell Palsy**

The same oral drug regimens may be used for 3–4 weeks.

**D. Other Neurologic Disease or Cardiac Disease**

Parenteral therapy for 2–4 weeks is recommended with either ceftriaxone (50–75 kg/d in one daily dose) or penicillin G (300,000 U/kg/d intravenously in four divided doses).

---

Centers for Disease Control and Prevention (CDC): Lyme disease. Available at: http://www.cdc.gov/lyme/  
Infections: Parasitic & Mycotic

Kevin Messacar, MD
Samuel R. Dominguez, MD, PhD
Myron J. Levin, MD

**PARASITIC INFECTIONS**

Parasitic diseases are common and may present clinically in a variety of ways (Table 43–1). Although travel to endemic areas suggests particular infections, many parasites are transmitted through fomites or acquired from contact with human carriers and can occur anywhere. Some of the less common parasitic infections and those seen primarily in the developing world are presented in abbreviated form in Table 43–2.

**Selection of Patients for Evaluation**

The incidence of parasitic infections varies greatly with geographic area. Children who have traveled or lived in areas where parasitic infections are endemic are at risk for infection with a variety of intestinal and tissue parasites. Children who have resided only in developed countries are usually free of tissue parasites (except *Toxoplasma*). Searching for intestinal parasites is expensive for the patient and time-consuming for the laboratory. More than 90% of ova and parasite examinations performed in most hospital laboratories in the United States are negative; many have been ordered inappropriately on patients without exposure to endemic areas. An approach to determining which children with diarrhea need such examinations is presented in Figure 43–1. It can be more cost-effective to empirically treat symptomatic US immigrants with albendazole for common intestinal parasites and to investigate only those whose symptoms persist.

Immunodeficient children are very susceptible to protozoal intestinal infections. Multiple opportunists are frequently identified, and the threshold for ordering tests should be low for these children.

**Specimen Processing**

For tissue parasites, contact the laboratory for proper collection procedures. For intestinal parasites, diarrheal stools may contain trophozoites that die rapidly during transport. The specimen should be either examined immediately or placed in a stool fixative such as polyvinyl alcohol. Fixative vials for home collection of stool are commercially available. They may contain toxic compounds, so they should be stored safely. Fixed specimens are stable at room temperature. Formed stools usually contain cysts that are more stable. It is also best to fix these after collection, although they may be reliably examined after transport at room temperature. The US Centers for Disease Control and Prevention (CDC) have created a website (http://dpd.cdc.gov/dpdx) to assist in the laboratory diagnosis of common parasitic diseases, including specimen collection and processing.

**Eosinophilia & Parasitic Infections**

Although certain parasites commonly cause eosinophilia, in developed countries other causes are much more common. These include allergies, drugs, and other infections. Heavy intestinal nematode infection causing eosinophilia is easily detected on a single ova and parasite examination. Light nematode infections and common protozoal infections—giardiasis, cryptosporidiosis, and amebiasis—rarely cause eosinophilia. Eosinophilia is also unusual or minimal in more serious infections such as amebic liver abscess and malaria.

The most common parasitic infection in the United States that causes significant eosinophilia with negative stool examination is toxocarasis. In a young child with unexplained eosinophilia and a negative stool examination for parasites, a serologic test for *Toxocara* may be the next appropriate test. Trichinosis, which is a rare parasitic infection in the United States, causes marked eosinophilia. Strongyloidiasis is a cause of eosinophilia that may be difficult to diagnose with stool examinations.

Table 43–1. Signs and symptoms of parasitic infection.

<table>
<thead>
<tr>
<th>Sign/Symptom</th>
<th>Agent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain</td>
<td>Anisakis</td>
<td>Shortly after raw fish ingestion.</td>
</tr>
<tr>
<td></td>
<td>Ascaris</td>
<td>Heavy infection may obstruct bowel, biliary tract.</td>
</tr>
<tr>
<td></td>
<td>Clonorchis</td>
<td>Heavy, early infection. Hepatomegaly later.</td>
</tr>
<tr>
<td></td>
<td>Entamoeba histolytica</td>
<td>Hematochezia, variable fever, diarrhea.</td>
</tr>
<tr>
<td></td>
<td>Fasciola hepatica</td>
<td>Diarrhea, vomiting.</td>
</tr>
<tr>
<td></td>
<td>Hookworm</td>
<td>Iron deficiency anemia with heavy infection.</td>
</tr>
<tr>
<td></td>
<td>Strongyloides</td>
<td>Eosinophilia, pruritus. May resemble peptic disease.</td>
</tr>
<tr>
<td></td>
<td>Trichinella</td>
<td>Myalgia, peri orbital edema, eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>Trichurus</td>
<td>Diarrhea, dysentery with heavy infection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td>Ascaris</td>
<td>Wheezing, eosinophilia during migration phase.</td>
</tr>
<tr>
<td></td>
<td>Paragonimus westermani</td>
<td>Hemoptysis; chronic. May mimic tuberculosis.</td>
</tr>
<tr>
<td></td>
<td>Strongyloides</td>
<td>Wheezing, pruritus, eosinophilia during migration or dissemination.</td>
</tr>
<tr>
<td></td>
<td>Toxocara</td>
<td>Affects ages 1–5 y; hepatosplenomegaly; eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>Tropical eosinophilia</td>
<td>Pulmonary infiltrates, eosinophilia.</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>Blastocystis</td>
<td>Possibly with heavy infection in immunosuppressed or immunocompetent individuals.</td>
</tr>
<tr>
<td></td>
<td>Cyclospora</td>
<td>Watery; severe in immunosuppressed individuals.</td>
</tr>
<tr>
<td></td>
<td>Cryptosporidum</td>
<td>Watery; chronic in immunosuppressed individuals.</td>
</tr>
<tr>
<td></td>
<td>Dientamoeba fragilis</td>
<td>Only with heavy infection.</td>
</tr>
<tr>
<td></td>
<td>E histolytica</td>
<td>Hematochezia, variable fever; no eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>Giardia</td>
<td>Afebrile, chronic; anorexia.</td>
</tr>
<tr>
<td></td>
<td>Schistosoma</td>
<td>Chronic; hepatosplenomegaly (some types).</td>
</tr>
<tr>
<td></td>
<td>Strongyloides</td>
<td>Abdominal pain; eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>Trichinella</td>
<td>Myalgia, peri orbital edema, eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>Trichurus</td>
<td>With heavy infection.</td>
</tr>
<tr>
<td>Dysentery</td>
<td>Balantidium coli</td>
<td>Swine contact.</td>
</tr>
<tr>
<td></td>
<td>E histolytica</td>
<td>Few to no leukocytes in stool; fever; hematochezia.</td>
</tr>
<tr>
<td></td>
<td>Schistosoma</td>
<td>During acute infection.</td>
</tr>
<tr>
<td></td>
<td>Trichinella</td>
<td>With heavy infection.</td>
</tr>
<tr>
<td>Dysuria</td>
<td>Enterobius</td>
<td>Usually girls with worms in urethra, bladder; nocturnal, perianal pruritus.</td>
</tr>
<tr>
<td></td>
<td>Schistosoma (S haematobium)</td>
<td>Hematuria. Exclude bacteriuria, stones (some types).</td>
</tr>
<tr>
<td>Headache (and other cerebral symptoms)</td>
<td>Angiostrongylus</td>
<td>Eosinophilic meningitis.</td>
</tr>
<tr>
<td></td>
<td>Baylisascaris procyonis</td>
<td>Eosinophilic meningitis</td>
</tr>
<tr>
<td></td>
<td>Gnathostoma</td>
<td>Eosinophilic meningitis</td>
</tr>
<tr>
<td></td>
<td>Naegleria</td>
<td>Freshwater swimming; rapidly progressive meningoencephalitis.</td>
</tr>
<tr>
<td></td>
<td>Plasmodium</td>
<td>Fever, chills, jaundice, splenomegaly. Cerebral ischemia (with P falciparum).</td>
</tr>
<tr>
<td></td>
<td>Taenia solium</td>
<td>Cysticercosis. Focal seizures, deficits; hydrocephalus, aseptic meningitis.</td>
</tr>
<tr>
<td></td>
<td>Toxoplasma</td>
<td>Meningoencephalitis (especially in infants and the immunosuppressed); focal lesions in immunosuppressed; hydrocephalus in infants.</td>
</tr>
<tr>
<td></td>
<td>Trypanosoma</td>
<td>African forms. Chronic lethargy (sleeping sickness).</td>
</tr>
<tr>
<td>Pruritus</td>
<td>Ancylostoma braziliense</td>
<td>Creeping eruption; dermal serpiginous burrow.</td>
</tr>
<tr>
<td></td>
<td>Enterobius</td>
<td>Perianal, nocturnal.</td>
</tr>
<tr>
<td></td>
<td>Filaria</td>
<td>Variable; seen in many filarial diseases; eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>Hookworm</td>
<td>Local at penetration site in heavy exposure.</td>
</tr>
<tr>
<td></td>
<td>Strongyloides</td>
<td>Diffuse with migration; may be recurrent.</td>
</tr>
<tr>
<td></td>
<td>Trypanosoma</td>
<td>African forms; one of many nonspecific symptoms.</td>
</tr>
</tbody>
</table>

(Continued)
### Table 43–1. Signs and symptoms of parasitic infection. (Continued)

<table>
<thead>
<tr>
<th>Sign/Symptom</th>
<th>Agent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>Hookworm</td>
<td>Pruritic, papulovesicular rash at site of penetration.</td>
</tr>
<tr>
<td></td>
<td>Schistosoma</td>
<td>Maculopapular rash at site of penetration.</td>
</tr>
<tr>
<td></td>
<td>Strongyloides</td>
<td>Pruritic rash at site of penetration.</td>
</tr>
<tr>
<td></td>
<td>Toxoplasma</td>
<td>Maculopapular rash seen with congenital and sometimes acquired infection.</td>
</tr>
<tr>
<td></td>
<td>Toxoplasma</td>
<td>With acute dysentery or liver abscess.</td>
</tr>
<tr>
<td></td>
<td>Schistosoma</td>
<td>Hepatosplenomegaly, anemia, leukopenia.</td>
</tr>
<tr>
<td></td>
<td>Strongyloides</td>
<td>Chills, headache, jaundice; periodic.</td>
</tr>
<tr>
<td></td>
<td>Toxoplasma</td>
<td>Cough, hepatosplenomegaly, eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>Schistosoma</td>
<td>Generalized adenopathy; splenomegaly.</td>
</tr>
<tr>
<td></td>
<td>Strongyloides</td>
<td>Myalgia, periorbital edema, eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>Toxoplasma</td>
<td>Early stage, African forms; lymphadenopathy.</td>
</tr>
<tr>
<td>Fever</td>
<td>E histolytica</td>
<td>With acute dysentery or liver abscess.</td>
</tr>
<tr>
<td></td>
<td>Leishmania donovani</td>
<td>Hepatosplenomegaly, anemia, leukopenia.</td>
</tr>
<tr>
<td></td>
<td>Plasmodium</td>
<td>Chills, headache, jaundice; periodic.</td>
</tr>
<tr>
<td></td>
<td>Toxocara</td>
<td>Cough, hepatosplenomegaly, eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>Toxoplasma</td>
<td>Generalized adenopathy; splenomegaly.</td>
</tr>
<tr>
<td></td>
<td>Trichinelia</td>
<td>Myalgia, periorbital edema, eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>Trypanosoma</td>
<td>Early stage, African forms; lymphadenopathy.</td>
</tr>
<tr>
<td>Anemia</td>
<td>Diphyllobothrium</td>
<td>Megaloblastic due to vitamin B₁₂ deficiency; rare.</td>
</tr>
<tr>
<td></td>
<td>Hookworm</td>
<td>Iron deficiency.</td>
</tr>
<tr>
<td></td>
<td>L donovani</td>
<td>Fever, hepatosplenomegaly, leukopenia (kala-azar).</td>
</tr>
<tr>
<td></td>
<td>Plasmodium</td>
<td>Hemolysis.</td>
</tr>
<tr>
<td></td>
<td>Trichinelia</td>
<td>Heavy infection; due to iron loss.</td>
</tr>
<tr>
<td>Eosinophilia</td>
<td>Angiostrongylus</td>
<td>Eosinophilic meningitis.</td>
</tr>
<tr>
<td></td>
<td>Baylisascaris procyonis</td>
<td>Eosinophilic meningitis.</td>
</tr>
<tr>
<td></td>
<td>Fasciola</td>
<td>Abdominal pain.</td>
</tr>
<tr>
<td></td>
<td>Gnathostoma</td>
<td>Eosinophilic meningitis.</td>
</tr>
<tr>
<td></td>
<td>Filaria</td>
<td>Abdominal pain.</td>
</tr>
<tr>
<td></td>
<td>Onchocerca</td>
<td>Eosinophilic meningitis.</td>
</tr>
<tr>
<td></td>
<td>Schistosoma</td>
<td>Microfilariae in blood; lymphadenopathy.</td>
</tr>
<tr>
<td></td>
<td>Strongyloides</td>
<td>Skin nodules, keratitis.</td>
</tr>
<tr>
<td></td>
<td>Toxocara</td>
<td>Chronic; intestinal or genitourinary symptoms.</td>
</tr>
<tr>
<td></td>
<td>Toxoplasma</td>
<td>Abdominal pain, diarrhea.</td>
</tr>
<tr>
<td></td>
<td>Trichinelia</td>
<td>Hepatosplenomegaly, cough; affects ages 1-5 y.</td>
</tr>
<tr>
<td></td>
<td>Tropical pulmonary eosinophilia</td>
<td>Myalgia, periorbital edema.</td>
</tr>
<tr>
<td></td>
<td>T solium (cysticercosis)</td>
<td>Cough; pulmonary infiltrates.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eosinophils in CSF.</td>
</tr>
<tr>
<td>Hemoptyasis</td>
<td>P westermani</td>
<td>Lung fluke. Variable chest pain; chronic.</td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td>Clonorchis</td>
<td>Heavy infection. Tenderness early; cirrhosis late.</td>
</tr>
<tr>
<td></td>
<td>Echinococcus</td>
<td>Chronic; cysts.</td>
</tr>
<tr>
<td></td>
<td>E histolytica</td>
<td>Toxic hepatitis or abscess. No eosinophilia.</td>
</tr>
<tr>
<td></td>
<td>L donovani</td>
<td>Splenomegaly, fever, pancytopenia.</td>
</tr>
<tr>
<td></td>
<td>Schistosoma (not haematobium)</td>
<td>Chronic; hepatic fibrosis, splenomegaly (some types).</td>
</tr>
<tr>
<td></td>
<td>Toxocara</td>
<td>Splenomegaly, eosinophilia, cough; no adenopathy.</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>L donovani</td>
<td>Hepatomegaly, fever, anemia.</td>
</tr>
<tr>
<td></td>
<td>Plasmodium</td>
<td>Fever, chills, jaundice, headache.</td>
</tr>
<tr>
<td></td>
<td>Schistosoma (not haematobium)</td>
<td>Hepatomegaly.</td>
</tr>
<tr>
<td></td>
<td>Toxocara</td>
<td>Eosinophilia, hepatomegaly.</td>
</tr>
<tr>
<td></td>
<td>Toxoplasma</td>
<td>Lymphadenopathy, other symptoms.</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>Filaria</td>
<td>Inguinal typical; chronic.</td>
</tr>
<tr>
<td></td>
<td>L donovani</td>
<td>Hepatosplenomegaly, pancytopenia, fever.</td>
</tr>
<tr>
<td></td>
<td>Schistosoma</td>
<td>Acute infection; fever, rash, arthralgia, hepatosplenomegaly.</td>
</tr>
<tr>
<td></td>
<td>Toxoplasma</td>
<td>Cervical common; may involve single group of nodes; splenomegaly.</td>
</tr>
<tr>
<td></td>
<td>Trypanosoma</td>
<td>Localized near bite or generalized; hepatosplenomegaly (Chagas disease);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>generalized (especially posterior cervical) in African forms.</td>
</tr>
</tbody>
</table>

*Symbols usually related to degree of infestation. Infestation with small numbers of organisms is often asymptomatic.*
<table>
<thead>
<tr>
<th>Agent (Disease)</th>
<th>Geographic Region</th>
<th>Vector</th>
<th>Symptoms and Signs</th>
<th>Laboratory Findings</th>
<th>Diagnosis</th>
<th>Therapy and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Angiostrongylus cantonensis</em> (eosinophilic meningitis)</td>
<td>Hawaii, Asia, Pacific Islands</td>
<td>Snails, slugs</td>
<td>Ingestion (usually inadvertent) followed in 1–4 wk by meningitis of variable severity. Paresthesias.</td>
<td>Eosinophils in CSF and blood</td>
<td>Positive serology. Larvae may be present in CSF.</td>
<td>Fever absent or low. No focal lesions on CNS imaging. No specific therapy. Steroids may be beneficial. Mebendazole may help.</td>
</tr>
<tr>
<td><em>Gnathostoma spinigerum</em> (eosinophilic meningitis)</td>
<td>Southeast Asia, Mexico, Central and South America</td>
<td>Raw or undercooked fish, frogs, pigs, snakes, fowl, eels</td>
<td>Painful, recurrent, pruritic, erythematosus rashes. Can invade eye causing pain, uveitis, and blindness. Recurrent meningitis with radicular pain and paresthesias.</td>
<td>Peripheral and CNS eosinophilia</td>
<td>Identification of organism in host tissue. ELISA and Western blot.</td>
<td>Albenzolone, ivermectin. Symptoms can recur for 10–12 y.</td>
</tr>
<tr>
<td><em>Leishmania braziliensis</em>, <em>L mexicana</em> (chiclero ulcer)</td>
<td>South America</td>
<td>Sandfly</td>
<td>Painful mucocutaneous ulcers or granulomas. Nasolabial lesions common.</td>
<td>—</td>
<td>Skin biopsy. Positive skin test, serology.</td>
<td>Sodium stibogluconate, meglumine antimonate, pentamidine, amphotericin; ketoconazole.</td>
</tr>
<tr>
<td><em>Leishmania donovani</em> (kala-azar)</td>
<td>Mideast, India, Mediterranean, South and Central America</td>
<td>Sandfly</td>
<td>Fever, generalized adenopathy, hepatosplenomegaly weeks to months after infection.</td>
<td>Pancytopenia, hypergamma-globulinemia</td>
<td>Organisms in skin biopsy. Positive skin test, serology.</td>
<td>Sodium stibogluconate, meglumine antimonate, pentamidine, amphotericin B.</td>
</tr>
<tr>
<td><em>Leishmania tropica</em> (Oriental sore)</td>
<td>Asia, India, North Africa</td>
<td>Sandfly</td>
<td>Papule at bite site (usually on face, limbs) develops after weeks to months, then ulcerates and scars.</td>
<td>—</td>
<td>Organisms in skin biopsy. Positive skin test, serology.</td>
<td>Sodium stibogluconate, meglumine antimonate, pentamidine, amphotericin.</td>
</tr>
<tr>
<td><em>Paragonimus westermani</em> (lung fluke infection)</td>
<td>Asia, South America, Africa</td>
<td>Raw crabs, crustaceans</td>
<td>Cough, hemoptysis. Rarely seizures, other CNS signs if migration to brain occurs.</td>
<td>—</td>
<td>Large ova in concentrated fecal specimens. Cystic nodular lesions on chest radiograph or CNS imaging.</td>
<td>Resembles pulmonary tuberculosis. Praziquantel very effective.</td>
</tr>
<tr>
<td><em>Trypanosoma cruzi</em> (Chagas disease)</td>
<td>South and Central America, Mexico</td>
<td>Reduviid bug</td>
<td>Acute: painful red nodule at bite site, conjunctivitis, peri orbital edema (Romana sign), fever, local ± generalized adenitis. Late: myocarditis, megasaphagus, megacolon.</td>
<td>Mononuclear leukocytosis</td>
<td>Organisms in peripheral blood. Positive serology.</td>
<td>Nifurtimox or benznidazole may help early. No therapy for late disease. May be transmitted by blood transfusion or congenitally.</td>
</tr>
</tbody>
</table>
The differential diagnosis of eosinophilia is broad for patients who have been in developing countries (see Table 43–1).

▲ Figure 43–1. Parasitologic evaluation of acute diarrhea.

- Can progress to coma, seizures.
- Malaria parasites in peripheral blood smear.

General Considerations

Malaria causes approximately 1 million deaths each year, over 80% of which occur in children younger than 5 years of age in sub-Saharan Africa. Over the past 5 years, global efforts towards malaria prevention and treatment have led to declining mortality and morbidity. Approximately 1500 imported cases are diagnosed in the United States each year; local transmission may occasionally take place from imported cases. Human malaria is caused by five Plasmodium species—Plasmodium vivax (most common), Plasmodium falciparum (most virulent), Plasmodium ovale (similar to P vivax), Plasmodium malariae, and Plasmodium knowlesi (a primate parasite recently recognized as a cause of malaria in humans).

The female Anopheles mosquito transmits the parasites. An infected mosquito inoculates sporozoites into the
bloodstream of a susceptible host, resulting in infection of hepatocytes. In the hepatic phase, the parasites mature into schizonts, which rupture and release merozoites into the circulation. The parasites infect and rupture red blood cells in the erythroclytic phase, as they mature from trophozoites to schizonts and release additional merozoites. In early stages of infection, asynchronous erythrocytic cycles of hemolysis commonly cause daily fevers. Eventually, synchronous erythrocytic cycles begin as parasites rupture the infected cells at more regular 48- or 72-hour intervals. Survival is associated with a progressive decrease in intensity of cycles. Relapses years later may occur from persistent hepatic infection, which occurs in \textit{P. vivax} and \textit{P. ovale} infections.

Susceptibility varies genetically; certain red cell phenotypes are partially resistant to \textit{P. falciparum} infection (hemoglobin S, hemoglobin F, thalassemia, and possibly glucose-6-phosphate dehydrogenase [G6PD] deficiency). The worldwide distribution of malaria species is determined to some extent by host genetic factors that have evolved in response to selective pressure from malaria. The absence of \textit{P. vivax} from Africa reflects the lack of specific Duffy blood group substances among most native Africans. Recurrent infections result in acquired species-specific immunity, which does not prevent infection, but decreases parasitemia and symptoms. Normal splenic function is an important factor because of the immunologic and filtration functions of the spleen. Asplenic persons develop rapidly progressive malaria with many circulating infected erythrocytes (including mature forms of \textit{P. falciparum}). Maternal immunity protects the neonate.

\section*{Clinical Findings}

\subsection*{A. Symptoms and Signs}

Clinical manifestations vary according to species, strain, and host immunity. Fever and vomiting are the most common presenting symptoms in children. Infants commonly present with recurrent bouts of fever, irritability, poor feeding, vomiting, jaundice, and splenomegaly. Rash is usually absent, which helps distinguish malaria from some viral infections in patients presenting with similar symptoms. In older children, the classic symptoms of fever with chills, rigors, headache, backache, myalgia, and fatigue are more easily elicited. Fever may be cyclic (every 48 hours for all but \textit{P. malariae} infection, in which it occurs every 72 hours) or irregular (most commonly observed with \textit{P. falciparum}). Between attacks, patients may look quite well. If the disease is untreated, relapses cease within a year in \textit{P. falciparum} and within several years in \textit{P. vivax} infections, but may recur decades later with \textit{P. malariae} infection. Infection during pregnancy often causes intraterine growth restriction or premature delivery but rarely true fetal infection.

Physical examination in patients with uncomplicated cases may show only mild splenomegaly and anemia.

\subsection*{B. Laboratory Findings}

The diagnosis of malaria relies on detection of one or more of the five human plasmodia in thick and thin blood smears. Three separate sets of thick and thin smears separated by 12–24 hours in a 72-hour period are recommended to rule out malaria infection. Thick smears are most sensitive for detection of small numbers of malaria parasites; thin smears allow identification of species and semiquantitative determination of percentage of parasitemia.

Most acute infections are caused by \textit{P. vivax}, \textit{P. ovale}, or \textit{P. falciparum}, although 5%–7% are due to multiple species. Identification of the \textit{Plasmodium} species relies on morphologic criteria and requires an experienced observer (Table 43–3). Bench aids to assist in the identification of \textit{Plasmodium} species can be found at http://www.dpd.cdc.gov/dpdx/HTML/Malaria.htm. A new US Food and Drug Administration (FDA)-approved antigen detection test is available and approved for rapid diagnostic testing of malaria. This test should be used in conjunction with microscopic examination to confirm diagnosis, look for mixed infection, and quantitate degree of parasitemia. The rapid antigen test has poor sensitivity for low levels of parasitemia. Up-to-date information on rapid diagnostic testing for malaria can be found at www.cdc.gov/malaria/diagnosis_treatment/index.html. Alternative techniques of similar or higher diagnostic accuracy for \textit{P. falciparum} include DNA hybridization and polymerase chain reaction (PCR), which are only available in research and reference laboratories as well as at CDC and some health departments.

The degree of parasitemia determined from thin smears is particularly useful in the management of infections caused by \textit{P. falciparum} and \textit{P. knowlesi}, in which high parasitemia (> 5% infected erythrocytes) is associated with high morbidity and mortality and requires hospitalization. Treatment response of \textit{P. falciparum} and chloroquine-resistant \textit{P. vivax} infections is best monitored by daily parasitemia assays.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
 & \textit{Plasmodium falciparum} & \textit{P. vivax, P. ovale} \\
\hline
Multiply-infected erythrocytes & Common & Rare \\
Mature trophozoites or schizonts & Absent* & Common \\
Schüffner dots & Absent & Common \\
Enlarged erythrocytes & Absent & Common \\
Banana-shaped gametocytes & Common & Absent \\
\hline
\end{tabular}
\caption{Differentiation of malaria parasites on blood smears.}
\end{table}

*Usually sequestered in the microcirculation. Rare cases with circulating forms have extremely high parasitemia and a poor prognosis.
Constant or increased number of infected erythrocytes after 48 hours of treatment or after the second hemolytic crisis suggests an inadequate therapeutic response.

Hemolytic anemia and thrombocytopenia are common; the incidence of leukocytosis is variable.

**Differential Diagnosis**

Relapsing fever may be associated with borreliosis, brucellosis, sequential common infections, Hodgkin disease, juvenile rheumatoid arthritis, or rat-bite fever. Other common causes of high fever and headache include influenza, *Mycoplasma pneumoniae* or enteroviral infection, sinusitis, meningitis, enteric fever, tuberculosis, occult pneumonia, or bacteremia. In patients returning from tropical areas with fever, headache, and jaundice, leptospirosis and yellow fever should be included in the differential diagnosis. Clinical features may not reliably distinguish severe malaria from other severe infections in children, so a high index of suspicion in patients with exposure in endemic areas is necessary. Malaria may also coexist with other diseases.

**Complications & Sequelae**

Severe complications, which are limited to *P. falciparum* and *P. knowlesi* infection, result from hemolysis, microvascular obstruction, and tissue ischemia. The most common complications of malaria in children are cerebral malaria, respiratory distress, severe anemia, and/or hypoglycemia. Cerebral malaria is the most serious and life-threatening complication of malaria in children and may progress to seizures, coma, and death. Approximately 20% of children with cerebral malaria die and 10% have long-term neurologic sequelae. Signs of severe malaria in children include altered mental status, seizures, respiratory distress, hypoglycemia, acidosis, and parasitemia greater than 5%.

**Prevention**

Malaria chemoprophylaxis should be instituted 2 weeks (weekly regimens) to 2 days (daily regimens) before traveling to an area of endemic infection to permit alternatives if the drug is not tolerated. Because the antimalarial drugs recommended for prophylaxis do not kill sporozoites, therapy should be continued for 1 week (atovaquone-proguanil) or 4 weeks (all other regimens) after returning from an endemic area to cover infection acquired at departure.

No drug regimen guarantees protection against malaria. If fever develops within 1 year (particularly within 2 months) after travel to an endemic area, the possibility of malaria should be considered. Insect repellents, insecticide-impregnated bed nets, and proper clothing are important adjuncts for malaria prophylaxis.

For a full discussion regarding currently recommended medications for malaria prophylaxis, please see the corresponding section in Chapter 45.

**Treatment**

Treatment for malaria includes a variety of supportive strategies in addition to the antimalarial drugs. It is advisable to hospitalize nonimmune patients infected with *P. falciparum* and *P. knowlesi* until a decrease in parasitemia is demonstrated, indicating that treatment is effective and severe complications are unlikely to occur. Patients with signs of severe malaria (parasitemia > 5%, cerebral malaria, acidosis, hypoglycemia, shock) require intensive care and parenteral treatment. Malaria due to *P. knowlesi* should be treated like *P. falciparum* malaria as it might progress rapidly into severe disease.

Partially immune patients with uncomplicated *P. falciparum* and *P. knowlesi* infection and nonimmune persons infected with *P. vivax*, *P. ovale*, or *P. malariae* can receive treatment as outpatients if follow-up is reliable. For children, hydration and treatment of hypoglycemia are of utmost importance. Anemia, seizures, pulmonary edema, and renal failure require conventional management. Corticosteroids are contraindicated for cerebral malaria because of increased mortality. In severe malaria, exchange transfusion can be lifesaving, particularly in nonimmune persons with parasitemia greater than 10%.

Choice of antimalarial treatment depends on the immune status of the person, *plasmodium* species, degree of parasitemia, and resistance patterns in the geographical region of acquisition. An algorithm for the treatment of malaria is shown in Figure 43–2 and a description of the recommended antimalarial drugs available in the United States is provided in Table 43–4. Updated treatment guidelines are available at the Centers for Disease Control and Prevention (http://www.cdc.gov/malaria/diagnosis_treatment/treatment.html). Artemisinin derivatives clear parasites very rapidly and are widely used as key components, often as first-line therapy, in malaria treatment worldwide. These are available in the United States for the treatment of severe malaria only by contacting the CDC (http://www.cdc.gov/malaria/diagnosis_treatment/artesunate.html) or the Malaria Hotline at 770-488-7788.

http://www.cdc.gov/malaria/.
http://www.dpd.cdc.gov/dpdx/HTML/Malaria.htm/.
http://www.who.int/malaria/diagnosis_treatment/.
Taylor SM et al: Does this patient have malaria? JAMA 2010;304:2048–2056 [PMID: 21057136].
History of travel to malaria-endemic area or clinical suspicion of malaria

Perform thick and thin blood films and read in < 12 h

Blood film positive?

Repeat blood films every 12–24 h for 48–72 h

No

Yes

Blood film positive?

Calculate parasite density

Consider alternative diagnosis

Evaluate clinical status and disease severity

Uncomplicated malaria

Determine infecting species using blood film

Plasmodium falciparum or species not yet identified

Non-falciparum species

Acquired in chloroquine-resistant area

Acquired in chloroquine-sensitive area

Plasmodium malariae

Plasmodium ovale or Plasmodium vivax acquired outside Papua, New Guinea, or Indonesia

P. vivax acquired in Papua, New Guinea, or Indonesia

Oral quinine plus tetracycline, doxycycline, or clindamycin or atovaquone-proguanil or mefloquine if above not available

Intravenous quinidine plus tetracycline, doxycycline, or clindamycin

Admit to intensive care unit

Monitor cardiac function continuously and monitor blood pressure frequently

Monitor parasitemia, glucose, hemoglobin, and electrolytes periodically

Prevent and treat complications

Consider exchange transfusion if parasite density >10% or if patient has altered mental status, nonvolume overload pulmonary edema, or renal complications

Switch to oral antimalarial medication when possible

Repeat blood films if symptoms recur

Primary if not G6PD deficient if G6PD deficient, counsel about possibility of recurrence

Admit to hospital

Monitor symptoms daily

Repeat blood films daily until negative or if discharged prior to a negative film, at day 7

Repeat blood films every 12–24 h for 48–72 h

Yes

No

Yes

No

Figure 43–2. Malaria treatment algorithm. (Adapted from Centers for Disease Control and Prevention. Malaria. http://www.cdc.gov/malaria/resources/pdf/algorithm.pdf.)
Table 43–4. Antimalarial drugs available in the United States recommended for use in the treatment of malaria.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Adult Dosage</th>
<th>Pediatric Dosage&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Potential Adverse Effects</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atovaquone–proguanil (oral)</td>
<td><em>Plasmodium falciparum</em> from chloroquine-resistant areas</td>
<td>Adult tablet = 250 mg atovaquone/100 mg proguanil</td>
<td>Pediatric tablet = 62.5 mg atovaquone/25 mg proguanil</td>
<td>Abdominal pain, nausea, vomiting, diarrhea, headache, rash, mild reversible elevations</td>
<td>Not indicated for use in pregnant women due to limited data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 adult tablets orally per day × 3 d</td>
<td>5–8 kg: 2 pediatric tablets orally per day × 3 d</td>
<td>in liver amino-transferase levels</td>
<td>Contraindicated if hypersensitivity to atovaquone or proguanil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 8–10 kg: 3 pediatric tablets orally per day × 3 d</td>
<td>&gt; 10–20 kg: 1 adult tablet orally per day × 3 d</td>
<td></td>
<td>severe renal impairment (creatinine clearance &lt; 30 mL/min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 20–30 kg: 2 adult tablets orally per day × 3 d</td>
<td>&gt; 30–40 kg: 3 adult tablets orally per day × 3 d</td>
<td></td>
<td>Should be taken with food to increase absorption of atovaquone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 40 kg: 4 adult tablets orally per day × 3 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroquine phosphate</td>
<td><em>P falciparum</em> from chloroquine-sensitive areas</td>
<td>600-mg base (= 1000 mg salt) orally immediately, followed by 300-mg base (= 500 mg salt) orally at 5, 24, and 48 h</td>
<td>10-mg base/kg orally immediately, followed by 6-mg base/kg orally at 6, 24, and 48 h</td>
<td>Nausea, vomiting, rash, headache, dizziness, urticaria, abdominal pain, pruritus</td>
<td>Safe in children and pregnant women</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total dose: 1500-mg base (= 2500 mg salt)</td>
<td>Total dose: 25-mg base/kg</td>
<td></td>
<td>Give for chemoprophylaxis (500 mg salt orally every week) in pregnant women with chloroquine-sensitive <em>P vivax</em></td>
</tr>
<tr>
<td></td>
<td><em>P vivax</em> from chloroquine-sensitive areas</td>
<td></td>
<td></td>
<td></td>
<td>Contraindicated if retinal or visual field change; hypersensitivity to 4-aminoquinolines</td>
</tr>
<tr>
<td></td>
<td>All <em>P ovale</em>; all <em>P malariae</em></td>
<td></td>
<td></td>
<td></td>
<td>Use with caution in those with impaired liver function since the drug is concentrated in the liver</td>
</tr>
</tbody>
</table>

(Continued)
Table 43–4. Antimalarial drugs available in the United States recommended for use in the treatment of malaria. (Continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Adult Dosage</th>
<th>Pediatric Dosage&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Potential Adverse Effects</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clindamycin (oral or IV)</td>
<td><em>P. falciparum</em> from chloroquine-resistant areas</td>
<td>Oral: 20-mg base/kg/d orally divided 3 times daily ¥ 7 d</td>
<td>Oral: 20-mg base/kg/d orally divided 3 times daily ¥ 7 d</td>
<td>Diarrhea, nausea, rash</td>
<td>Always use in combination with quinine or quinidine</td>
</tr>
<tr>
<td></td>
<td><em>P. vivax</em> from chloroquine-resistant areas (in combination with quinine or quinidine)</td>
<td>IV: 10-mg base/kg loading dose IV followed by 5-mg base/kg IV every 8 h; switch to oral clindamycin (oral dose as above) as soon as patient can take oral medication; treatment course = 7 d</td>
<td>IV: 10-mg base/kg loading dose IV followed by 5-mg base/kg IV every 8 h; switch to oral clindamycin (oral dose as above) as soon as patient can take oral medication; treatment course = 7 d</td>
<td></td>
<td>Safe in children and pregnant women</td>
</tr>
<tr>
<td>Doxycycline (oral or IV)</td>
<td><em>P. falciparum</em> from chloroquine-resistant areas</td>
<td>Oral: 100 mg orally twice daily ¥ 7 d</td>
<td>Oral: 2.2 mg/kg orally every 12 h ¥ 7 d</td>
<td>Nausea, vomiting, diarrhea, abdominal pain, dizziness, photosensitivity, headache, esophagitis, odynophagia</td>
<td>Always use in combination with quinine or quinidine</td>
</tr>
<tr>
<td></td>
<td><em>P. vivax</em> from chloroquine-resistant areas (in combination with quinine or quinidine)</td>
<td>IV: 100 mg IV every 12 h and then switch to oral doxycycline (as above) as soon as patient can take oral medication; treatment course = 7 d</td>
<td>IV: IV only if patient is not able to take oral medication; for children &lt; 45 kg, give 2.2 mg/kg IV every 12 h and then switch to oral doxycycline (dose as above) as soon as patient can take oral medication; for children ≥ 45 kg, use same dosing as for adults; treatment course = 7 d</td>
<td>Rarely, hepatotoxicity, pancreatitis, and benign intracranial hypertension seen with tetracycline class of drugs</td>
<td>Contraindicated in children ≤ 8 y, pregnant women, and persons with hypersensitivity to tetracyclines. While food, milk, and divalent and trivalent cations decrease the absorption of tetracycline, doxycycline can be taken with food, including milk products, which helps to decrease gastrointestinal disturbances. To prevent esophagitis, the tetracyclines should be taken with large amounts of fluids, and patients should not lie down for 1 h after taking the drugs. Concurrent treatment with barbiturates, carbamazepine, or phenytoin may cause a reduction in serum concentrations of doxycycline.</td>
</tr>
<tr>
<td>Hydroxychloroquine (oral)</td>
<td>Second-line alternative for treatment of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>P falciparum</em> from chloroquine-sensitive areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>P vivax</em> from chloroquine-sensitive areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>All P ovale; all P malariae</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total dose: 620-mg base (= 800 mg salt) orally immediately, followed by 310-mg base (= 400 mg salt) orally at 6, 24, and 48 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total dose: 10-mg base/kg orally immediately, followed by 5-mg base/kg orally at 6, 24, and 48 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nausea, vomiting, rash, headache, dizziness, urticaria, abdominal pain, pruritusb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safe in children and pregnant women. Give for chemoprophylaxis (310-mg base orally every week) in pregnant women with chloroquine-sensitive <em>P vivax</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contraindicated if retinal or visual field change; hypersensitivity to 4-aminoquinolines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use with caution in those with impaired liver function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mefloquinec	*P falciparum* from chloroquine-resistant areas, except Thailand-Burmese and Thailand-Cambodian border regions
	*P vivax* from chloroquine-resistant areas
	Total dose: 684-mg base (= 750 mg salt) orally as initial dose, followed by 456-mg base (= 500 mg salt) orally given 6-12 h after initial dose
	Total dose: 13.7-mg base/kg (= 15 mg salt/kg) orally as initial dose, followed by 9.1-mg base/kg (= 10 mg salt/kg) orally given 6-12 h after initial dose
	Gastrointestinal complaints (nausea, vomiting, diarrhea, abdominal pain), mild neuropsychiatric complaints (dizziness, headache, somnolence, sleep disorders), myalgia, mild skin rash, and fatigue; moderate to severe neuropsychiatric reactions, electrocardiographic changes, including sinus arrhythmia, sinus bradycardia, first degree atrioventricular block, prolongation of QTc interval, and abnormal T waves
	Contraindicated if hypersensitive to the drug or to related compounds; cardiac conduction abnormalities; psychiatric disorders; seizure disorders
	Do not administer if patient has received related drugs (chloroquine, quinine, quinidine) ≤ 12 h earlier May be used for chemoprophylaxis (250 mg salt orally every week) in pregnant women with chloroquine-resistant *P vivax*

<table>
<thead>
<tr>
<th>Primaquine phosphate</th>
<th>Radical cure of <em>P vivax</em> and <em>P ovale</em> (to eliminate hypnozoites)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total dose = 30-mg base orally per day × 14 d</td>
</tr>
<tr>
<td></td>
<td>Total dose = 0.5-mg base/kg orally per day × 14 d</td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal disturbances, methemoglobinemia (self-limited), hemolysis in persons with G6PD deficiency</td>
</tr>
<tr>
<td></td>
<td>Must screen for G6PD deficiency prior to use</td>
</tr>
</tbody>
</table>

(Continued)
Table 43–4. Antimalarial drugs available in the United States recommended for use in the treatment of malaria. (Continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Adult Dosage</th>
<th>Pediatric Dosagea</th>
<th>Potential Adverse Effects</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinine sulfate (oral)</td>
<td><em>P falciparum</em> from chloroquine-resistant areas</td>
<td>542-mg base (= 650 mg salt) orally 3 times daily × 3 d (infections acquired outside Southeast Asia) to 7 d (infections acquired in Southeast Asia)</td>
<td>8.3-mg base/kg (= 10 mg salt/kg) orally 3 times daily × 3 d (infections acquired outside Southeast Asia) to 7 d (infections acquired in Southeast Asia)</td>
<td>Cinchonism, sinus arrhythmia, junctional rhythms, atrioventricular block, prolonged QT interval ventricular tachycardia, ventricular fibrillation (these are rare and more commonly seen with quinidine), hypoglycemia</td>
<td>Contraindicated in persons with G6PD deficiency; pregnant women Should take with food to minimize gastrointestinal adverse effects Combine with tetracycline, doxycycline, or clindamycin, except for <em>P vivax</em> infections in children ≤ 8 y or pregnant women Contraindicated in hypersensitivity including history of blackwater fever, thrombocytopenic purpura, or thrombocytopenia associated with quinine or quinidine use; many cardiac conduction defects and arrhythmias; myasthenia gravis; optic neuritis</td>
</tr>
<tr>
<td></td>
<td><em>P vivax</em> from chloroquine-resistant areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinidine gluconate (IV)</td>
<td>Severe malaria (all species, independently of chloroquine resistance)</td>
<td>6.25-mg base/kg (= 10 mg salt/kg) loading dose IV over 1–2 h, then 0.0125-mg base/kg/min (= 0.02 mg salt/kg/min) continuous infusion for at least 24 h</td>
<td>Same as adult</td>
<td>Cinchonism, tachycardia, prolongation QRS and QTc intervals, flattening of T wave (effects are often transient)</td>
<td>Combine with tetracycline, doxycycline, or clindamycin</td>
</tr>
<tr>
<td></td>
<td>Patient unable to take oral medication</td>
<td>Alternative regimen: 15-mg base/kg (= 24 mg salt/kg) loading dose IV infused over 4 h, followed by 7.5 mg base/kg (= 12 mg salt/kg) infused over 4 h every 8 h, starting 8 h after the loading dose (see package insert); once parasite density &lt; 1% and patient can take oral medication, complete treatment with oral quinine, dose as above</td>
<td></td>
<td>Ventricular arrhythmias, hypotension, hypoglycemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parasitemia &gt; 10%</td>
<td>Quinidine or quinine course = 7 d in Southeast Asia (3 d in Africa or South America)</td>
<td></td>
<td></td>
<td>Contraindicated in hypersensitivity; thrombocytopenic purpura or thrombocytopenia associated with quinine or quinidine use; many cardiac conduction defects and arrhythmias; myasthenia gravis; optic neuritis</td>
</tr>
</tbody>
</table>
Tetracycline (oral or IV) | *P. falciparum* from chloroquine-resistant areas | Oral: 250 mg orally 4 times daily × 7 d | 25 mg/kg/d orally divided 4 times daily × 7 d | See doxycycline | See doxycycline

| *P. vivax* from chloroquine-resistant areas (in combination with quinine-quinidine) | IV: dosage same as for oral | IV: dosage same as for oral |  |

G6PD, glucose-6-phosphate dehydrogenase; IV, intravenous.

*Pediatric dosage should never exceed adult dosage.

*Extrapolated from chloroquine literature.

*Mefloquine should not be used to treat* *P. falciparum* infections acquired in the following areas: borders of Thailand with Burma (Myanmar) and Cambodia, western provinces of Cambodia, eastern states of Burma (Myanmar), border between Burma and China, Laos along borders of Laos and Burma (and adjacent parts of Thailand-Cambodia border), and southern Vietnam due to resistant strains.

*Quinine sulfate capsule manufactured in the United States is in a 324-mg dose; therefore, two capsules should be sufficient for adult dosing.

*Nausea, vomiting, headache, tinnitus, deafness, dizziness, and visual disturbances.


*Refer to quinidine gluconate, package insert (Eli Lilly Co, Indianapolis, Ind, February 2002).

2. Babesiosis

*Babesia microti* is a malaria-like protozoan that infects humans bitten by infected *Ixodes scapularis* (deer tick), one of its intermediate hosts and vectors. After inoculation, the protozoan penetrates erythrocytes and starts an asynchronous cycle that causes hemolysis. In the United States, the majority of cases occur in the Northeast and upper Midwest from May to October. Babesia infection is also a transfusion-transmissible disease.

**Clinical Findings**

**A. Symptoms and Signs**

The incubation period is 1–4 weeks after tick bite, or 1–9 weeks after blood transfusion. Many times the tick bite is unnoticed. Approximately half of infected children are asymptomatic. Symptoms are nonspecific and most commonly include sustained or cyclic fever up to 40.9°C, shaking chills, and sweats. Other associated nonspecific symptoms include malaise, fatigue, anorexia, arthralgias, myalgias, and headache. Physical examination findings are usually minimal, but may include hepatosplenomegaly, jaundice, or dark urine. The disease is usually self-limited, causing symptoms for 1–2 weeks that may persist for months. Severe cases have been described in asplenic patients and immunocompromised hosts. Because *Babesia*, *Borrelia burgdorferi*, and *Anaplasma phagocytophilum* share a common vector, physicians should consider the possibility of coinfection in patients diagnosed with any of these pathogens.

**B. Laboratory Findings**

The diagnosis is made by identifying babesial parasites in blood by microscopic evaluation of thin or thick blood smears or by PCR amplification of babesial DNA. Babesia parasites are intraerythrocytic organisms that resemble *P. falciparum* ring forms. The tetrad form (Maltese cross), if visualized, is pathognomonic. Specific serologic tests are also available through the CDC. Hemolytic anemia, as well as thrombocytopenia, is common.

**Treatment**

Azithromycin (10 mg/kg up to 500 mg on the first day, followed by 5 mg/kg up to 250 mg/day) in combination with atovaquone (20 mg/kg, up to 750 mg, twice a day) for 7–10 days is the treatment of choice for mild to moderate disease. It has been found to be efficacious and causes fewer adverse side effects than other regimens. For severely ill patients, clindamycin (10 mg/kg, up to 600 mg, every 8 hours) in combination with quinine (8 mg/kg, up to 650 mg, every 8 hours) is standard of care. Longer courses of treatment may be needed in immunocompromised patients. Partial or complete RBC exchange transfusion is indicated for persons with severe babesiosis, as indicated by high-grade parasitemia (≥ 10%); significant hemolysis; or renal, hepatic, or pulmonary compromise.

---

3. Toxoplasmosis

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Congenital toxoplasmosis: chorioretinitis, microphthalmia, strabismus, microcephaly, hydrocephaly, convulsions, psychomotor retardation, intracranial calcifications, jaundice, hepatosplenomegaly, abnormal blood cell counts.
- Acquired toxoplasmosis in an immunocompetent host: lymphadenopathy, hepatosplenomegaly, rash.
- Acquired or reactivated toxoplasmosis in an immunocompromised host: encephalitis, chorioretinitis, myocarditis, and pneumonitis.
- Ocular toxoplasmosis: chorioretinitis.
- Serologic evidence of infection with *Toxoplasma gondii* or demonstration of the agent in tissue or body fluids.

**General Considerations**

*Toxoplasma gondii* is a worldwide parasite of animals and birds. Felines, the definitive hosts, excrete oocysts in their feces. Ingested mature oocysts or tissue cysts lead to tachyzoite invasion of intestinal cells. Intracellular replication of the tachyzoites causes cell lysis and spread of the infection to adjacent cells or to other tissues via the bloodstream. In chronic infection, *T. gondii* appears in bradyzoite-containing tissue cysts that do not trigger an inflammatory reaction. In immunocompromised hosts, tachyzoites are released from cysts and begin a new cycle of infection.

The two major routes of *Toxoplasma* transmission to humans are oral and congenital. Oral infection occurs after ingestion of cysts from food, water, or soil contaminated with cat feces or from ingestion of undercooked meat or other food products that contain cysts. Oocysts survive for up to 18 months in moist soil. Oocyst survival is limited in
dry, very cold, or very hot conditions, and at high altitude, which probably accounts for the lower incidence of toxoplasmosis in these climatic regions. In the United States, less than 1% of cattle and 25% of sheep and pigs are infected with toxoplasmosis. In humans, depending on geographic area, seropositivity increases with age from 0 to 10% in children younger than age 10 years to 3%–70% in adults.

Congenital transmission occurs during acute infection of pregnant women. Rarely, fetal infection has been documented in immunocompromised mothers who have chronic toxoplasmosis. Treatment during pregnancy decreases transmission by 60%.

**Clinical Findings**

Clinical toxoplasmosis can be divided into four groups: (1) congenital infection, (2) acquired in the immunocompetent host, (3) acquired or reactivated in the immunocompromised host, and (4) ocular disease.

**A. Congenital Toxoplasmosis**

Congenital toxoplasmosis is the result of acute infection during pregnancy and occurs in 1 in 3000 to 1 in 10,000 live births in the United States. The rate of transmission and disease severity in the baby vary according to when in pregnancy the infection is acquired. First-trimester infections lead to congenital infections about 10%–20% of the time, but the clinical disease is severe with microcephaly or hydrocephaly, severe chorioretinitis, hearing loss, convulsions, abnormal cerebrospinal fluid (CSF) (xanthochromia and mononuclear pleocytosis), cerebral calcifications, and mental retardation. Other findings include strabismus, eye palsy, maculopapular rash, pneumonitis, myocarditis, hepatosplenomegaly, jaundice, thrombocytopenia, lymphocytosis and monocytosis, and an erythroblastosis-like syndrome. Infection of a mother in the third trimester results in 70%–90% rate of congenital infection, but the majority of these children are asymptomatic at birth. Many of these children, however, will go on to develop ocular disease later and some will have subtle neurologic deficits.

**B. Acquired Toxoplasma Infection in the Immunocompetent Host**

Typically, acquired infection in the immunocompetent host is asymptomatic. About 10%–20% of patients develop lymphadenopathy and/or a flu-like illness. The nodes are discrete, variably tender, and do not suppurate. Cervical lymph nodes are most frequently involved, but any nodes may be enlarged. Less common findings include fever, malaise, myalgias, fatigue, hepatosplenomegaly, low lymphocyte counts (usually < 10%), and liver enzyme elevations. Unilateral chorioretinitis may occur. The disease is self-limited, although lymph node enlargement may persist or may wax and wane for a few months to 1 or more years.

Toxoplasmic lymphadenitis must be distinguished from other causes of infectious mononucleosis-like syndromes (< 1% are caused by *Toxoplasma*). Recovery typically occurs without any specific antiparasitic treatment.

**C. Acute Toxoplasmosis in the Immunodeficient Host**

Patients infected with human immunodeficiency virus (HIV), and those with lymphoma, leukemia, or transplantation, are at high risk for developing severe disease (most commonly central nervous system [CNS] disease, but also chorioretinitis, myocarditis, or pneumonitis) following acute infection or reactivation. Toxoplasmic encephalitis is one of the most common causes of mass lesions in the brains of persons with HIV/AIDS.

**D. Ocular Toxoplasmosis**

Ocular toxoplasmosis is an important cause of chorioretinitis in the United States. It can result from reactivation of congenital infection or acquired infection. Congenitally infected individuals are usually asymptomatic until the second or third decade of life when symptomatic eye disease occurs due to the rupture of tissue cysts and the release of bradyzoites and tachyzoites into the retina. Typically, ocular toxoplasmosis presents as a focal necrotizing retinochoroiditis often associated with a preexistent chorioretinal scar, and variable involvement of the vitreous, retinal blood vessels, optic nerve, and anterior segment of the eye. The appearance of the ocular lesion is not specific and mimics other granulomatous ocular diseases.

**E. Diagnostic Findings**

Serologic tests are the primary means of diagnosis, but results must be interpreted carefully. Reference laboratories with special expertise in toxoplasma serologic assays and their interpretation are essential for establishing a diagnosis and are preferred. Active infection can also be diagnosed by PCR of blood or body fluids; by visualization of tachyzoites in histologic sections or cytology preparations, cysts in placenta or fetal tissues; or by characteristic lymph node histology. IgG antibodies become detectable 1–2 weeks after infection, peak at 1–2 months, and thereafter persist for life. IgM antibodies, measured by ELISA (enzyme-linked immunosorbert assay) or particle agglutination, appear earlier and decline faster than IgG antibodies, but can last for 12–18 months after acute infection. Absence of both serum IgG and IgM virtually rules out the diagnosis of toxoplasmosis. Acute toxoplasmosis in an immunocompetent host is best documented by analyzing IgG and IgM in paired blood samples drawn...
3 weeks apart. Because high antibody titers (IgM or IgG) can persist for several months after acute infection, a single high-titer determination is nondiagnostic; seroconversion or a fourfold increase in titer confirms the diagnosis. In the immunocompromised host, serologic tests are not sensitive, and active infection is documented by PCR or finding tachyzoites by histologic examination.

The diagnosis of toxoplasmosis in the older child with visual complaints is usually made by finding *T. gondii* IgG or IgM antibodies in the serum combined with the presence of a typical eye lesion. The diagnosis can be confirmed by detecting *T. gondii* DNA by PCR in the aqueous humor.

Diagnosis of congenital infection, which can be difficult, is made by a combination of serologic testing, parasite isolation, and clinical findings. Prenatally, diagnosis can be made by PCR of amniotic fluid. Postnatally, evaluation of the baby should include *Toxoplasma*-specific IgG, IgM, IgA, and IgE of the newborn and mother. IgM antibodies indicate an immune response by the infant. Persistence of the other antibodies also indicates infection of the infant. Blood, CSF, and amniotic fluid specimens should be assayed by PCR for the presence of *T. gondii* in a reference laboratory. In addition, the child should have thorough ophthalmologic, auditory, and neurologic evaluation; a lumbar puncture; and computed tomographic (CT) scan of the head (to detect CNS calcifications). A congenital infection is confirmed serologically by detecting persistent or increasing IgG antibody levels compared to the mother, persistently positive IgG antibodies beyond the first year of life, and/or a positive *T. gondii*-specific IgM or IgA antibody test.

**Differential Diagnosis**

Congenital toxoplasmosis must be differentiated from infection with cytomegalovirus, rubella, herpes simplex, syphilis, listeriosis, erythroblastosis, and the encephalopathies that accompany degenerative diseases. Acquired infection can mimic viral, bacterial, or lymphoproliferative disorders. Ocular toxoplasmosis can mimic other infectious, noninfectious, and neoplastic ocular conditions.

**Prevention**

Primary prevention of toxoplasmosis in pregnant women (and immunocompromised patients) is an essential public health goal and guidelines have been published by the CDC. These include (1) cook meat until well-done 150°F–170°F (no longer pink in center); (2) peel and/or wash fruits and vegetables thoroughly before eating; (3) wash hands, cutting boards, kitchen surfaces, and utensils after contact with raw meat; (4) avoid drinking untreated water from unsanitary sources; (5) wear gloves when gardening or coming in contact with soil or sand, as cat feces may contaminate them; and (6) if possible, pregnant women should avoid changing cat litter. If they cannot avoid changing cat litter, they should change it daily as oocysts require 48–72 hours to sporulate and become infectious. Serologic screening of pregnant women remains a controversial tool in the prevention of congenital toxoplasmosis.

**Treatment**

Treatment of acute toxoplasmosis in the immunocompetent host does not require specific therapy, unless the infection occurs during pregnancy. Toxoplasmic chorioretinitis presenting beyond infancy is treated the same way regardless of whether it is due to reactivation or primary infection. Treatment consists of oral pyrimethamine (2 mg/kg maximum 200 mg loading dose followed by 1 mg/kg daily, maximum 75 mg) plus sulfadiazine (100 mg/kg daily, maximum 1500 mg), given with leucovorin (10–20 mg three times a week). In addition, corticosteroids (prednisone 1 mg/kg daily) are given when lesions threaten vision. Treatment is given for 1–2 weeks after the resolution of symptoms. The duration of additional therapy should be guided by frequent ophthalmologic examinations. Pyrimethamine can cause gastrointestinal upset, leukopenia, thrombocytopenia, and rarely, agranulocytosis; weekly complete blood counts should be checked while on therapy.

A year of treatment is recommended for all congenitally infected infants. Children treated with pyrimethamine (loading dose 2 mg/kg daily for 2 days followed by 1 mg/kg daily for 6 months followed by 1 mg/kg every Monday, Wednesday, and Friday for 6 months) plus sulfadiazine (100 mg/kg divided twice daily for 12 months) plus leucovorin (10 mg 3 times a week) have better neurodevelopmental and visual outcomes than historical controls. While on therapy, infants should be monitored for bone marrow toxicity.

In primary maternal infection during the first 18 weeks of pregnancy, spiramycin is recommended to attempt to prevent fetal infection. Spiramycin does not cross the placenta, so does not treat fetal infection. If fetal infection has been documented or if primary maternal infection occurs after the first 18 weeks of pregnancy, pyrimethamine, sulfadiazine, and leucovorin are recommended. Pyrimethamine is teratogenic and should not be used before 18 weeks of gestation.

http://www.cdc.gov/parasites/toxoplasmosis/.
1. Amebiasis

Amebiasis is defined as an infection with *Entamoeba histolytica* regardless of symptoms. This parasite is found worldwide, but has a particularly high prevalence in areas with poor sanitation and socioeconomic conditions. In the United States, infections are seen in travelers to and emigrants from endemic areas. Transmission is usually fecal-oral. Infections with two other *Entamoeba* species, *E dispar* and *E moshkovskii*, are morphologically indistinguishable from *E histolytica*. Infections with these species are approximately 10 times more common than infection with *E histolytica*, but are not thought to cause human disease.

**Clinical Findings**

**A. Symptoms and Signs**

Patients with intestinal amebiasis can have asymptomatic cyst passage, or be symptomatic with acute amebic proctocolitis, chronic nondysenteric colitis, or ameboma. Because all *E dispar* and *E moshkovskii* infections and up to 90% of *E histolytica* infections are asymptomatic, carriage is the most common manifestation of amebiasis. Patients with acute amebic colitis typically have a 1- to 2-week history of loose stools containing blood and mucus, abdominal pain, and tenesmus. A minority of patients are febrile or dehydrated. Abdominal examination may reveal pain over the lower abdomen.

Fulminant colitis is an unusual complication of amebic dysentery that is associated with a grave prognosis (>50% mortality), and is characterized by severe bloody diarrhea, fever, and diffuse abdominal pain. Children younger than age 2 years are at increased risk for this condition. Chronic amebic colitis causes recurrent episodes of bloody diarrhea over a period of years and is clinically indistinguishable from idiopathic inflammatory bowel disease. An ameboma is a localized amebic infection, usually in the cecum or ascending colon, which presents as a painful abdominal mass.

The most common complications of intestinal amebiasis are intestinal perforation, toxic megacolon, and peritonitis. Perianal ulcers, a less common complication, are painful, punched-out lesions that usually respond to medical therapy. Infrequently, colonic strictures may develop following colitis.

Extraintestinal amebiasis can result in liver, lung, and cerebral abscesses, and rarely genitourinary disease. Patients with amebic liver abscess, the most common form of extraintestinal amebiasis, typically present with acute fever and right upper quadrant tenderness. The pain may be dull, pleuritic, or referred to the right shoulder. Physical examination reveals liver enlargement in less than 50% of affected patients. Some patients have a subacute presentation lasting 2 weeks to 6 months. In these patients, hepatomegaly, anemia, and weight loss are common findings, and fever is less common. Jaundice and diarrhea are rarely associated with an amebic liver abscess. In children with fever of unknown origin who live in, or travel to, endemic areas, amebic liver abscess should be considered in the differential diagnosis.

The most common complication of amebic liver abscess is pleuropulmonary amebiasis due to rupture of a right liver lobe abscess. Lung abscesses may occur from hematogenous spread. Cough, dyspnea, and pleuritic pain can be caused by the serous pleural effusions and atelectasis that frequently accompany amebic liver abscesses. Rupture of hepatic abscesses can lead to peritonitis and more rarely to pericarditis. Amebic brain abscess is an infrequent manifestation.

**B. Diagnostic Findings**

The differential diagnosis of acute amebic colitis includes bacterial (eg, *Salmonella* spp, *Shigella* spp, *E coli* spp, *Campylobacter* spp), parasitic (eg, *Schistosoma mansoni, Balantidium coli*), and noninfectious (eg, inflammatory bowel disease, diverticulitis, ischemic colitis) causes of dysentery. Chronic amebic colitis has to be distinguished from inflammatory bowel disease and *Cyclospora*. Occult blood is present in virtually all cases of amebic colitis and can be used as an inexpensive screening test. Fecal leukocytes are uncommon.

Intestinal amebiasis can be presumptively diagnosed by detecting the parasite on stool examination or mucosal biopsy. However, *E histolytica* is morphologically identical
to nonpathogenic *E dispar* and *E moshkovskii* and cannot be easily differentiated by microscopy. The presence of trophozoites with ingested red blood cells in feces is more suggestive of pathogenic *E histolytica* infection. Ideally, a wet mount preparation of the stool should be examined within 20 minutes after collection to detect motile trophozoites. Otherwise, specimens should be fixed with polyvinyl alcohol or refrigerated to avoid disintegration of the trophozoites. The antigen detection test for stool is very sensitive and more specific, because it detects *E histolytica*-specific antigens that do not cross-react with *E dispar*. Colonoscopy and biopsy are most helpful in diagnosing amebic colitis when stool samples lack ova or parasites. Barium studies are contraindicated for patients with suspected acute amebic colitis because of the risk of perforation.

The presence of antibodies against *E histolytica* can differentiate *E histolytica* from *E dispar* infections. Specific antibody is induced by both intestinal and extraintestinal invasive amebiasis. ELISA assays are positive in approximately 95% of patients with extraintestinal amebiasis, 70% with intestinal *E histolytica* disease, and 10% of asymptomatic patients shedding *E histolytica* cysts. However, these antibodies persist for years, and a positive result does not distinguish between acute and past infection, but are useful in a traveler from a nonendemic area who is returning from a trip to an endemic area. Ultrasonographic examination and CT are sensitive techniques to detect hepatic abscesses and can be used to guide fine-needle aspiration to obtain specimens for definitive diagnosis. Because an amebic abscess may take up to 2 years to completely resolve on CT scans, imaging techniques are not recommended for therapeutic evaluation. PCR-based testing has the highest sensitivity and specificity for the diagnosis of *E histolytica*, but is only available in certain research and reference laboratories.

### Prevention & Treatment

Travelers to endemic areas need to follow the precautions for preventing enteric infections—drink bottled or boiled water and eat cooked or peeled vegetables and fruits.

Treatment of amebic infection is complex because different agents are required for eradicating the parasite from the bowel or tissue (Table 43–5). Whether treatment of asymptomatic cyst passers is indicated is a controversial issue. The prevalent opinion is that asymptomatic infection with *E histolytica*, as evidenced by amebic cysts in the stool and a positive serologic test, should be treated in nonendemic areas. If serologic tests are negative, the cysts are more likely to represent infection with the nonpathogenic *E dispar*, which does not require treatment.

Asymptomatic *E histolytica* cyst excreters may be treated with paromomycin, a nonabsorbable intraluminal amebicide. Diloxanide and iodoquinol are alternative intraluminal agents. Metronidazole is not effective against cysts.

**Table 43-5. Treatment of amebiasis.**

<table>
<thead>
<tr>
<th>Type of Infection</th>
<th>Drug of Choice</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic</td>
<td>Paromomycin</td>
<td>25–35 mg/kg/d in three doses for 7 d</td>
</tr>
<tr>
<td></td>
<td>Iodoquinol</td>
<td>30–40 mg/kg/d (maximum, 2 g) in three doses for 20 d</td>
</tr>
<tr>
<td></td>
<td>Diloxanide furoate*</td>
<td>20 mg/kg/d up to 1.5 g/d in three doses for 10 d</td>
</tr>
<tr>
<td>Intestinal disease and hepatic abscess*</td>
<td>Metronidazole or Tinidazole*</td>
<td>35–50 mg/kg/d up to 2.25 g/d in three doses for 10 d</td>
</tr>
</tbody>
</table>

*Diloxanide furoate is available from the CDC Drug Service: (404) 639–3670.*

*Treatment should be followed by iodoquinol or paromomycin.*

*Not marketed in the United States; higher dosage.*

Patients with symptomatic intestinal amebiasis or extraintestinal disease require treatment with an absorbable agent, such as metronidazole or tinidazole, followed by an intraluminal agent. Metronidazole has a disulfiram-like effect and should be avoided in patients receiving ethanol-containing medications. Tinidazole, a more potent nitroimidazole against amebic infection, can be used for shorter treatment courses and is well tolerated in children. Treatment of invasive amebiasis should always be followed with an intraluminal cysticidal agent, even if the stool examination is negative. Metronidazole and paromomycin should not be given concurrently, because the diarrhea that is a common side effect of paromomycin may make it difficult to assess response to therapy. In most patients with amebic liver abscess, aspiration is unnecessary and does not speed recovery. Patients with large, thin-walled hepatic abscesses may need therapeutic aspiration to avoid abscess rupture. Drainage may also be considered when response to medical therapy is inadequate.


2. Giardiasis

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Chronic relapsing diarrhea, flatulence, bloating, anorexia, poor weight gain.
- No fever or hematochezia.
- Detection of trophozoites, cysts, or Giardia antigens in stool.

General Considerations

Giardiasis, caused by Giardia intestinalis (formerly Giardia lamblia), is the most common intestinal protozoal infection in children in the United States and in most of the world. The infection is classically associated with drinking contaminated water, either in rural areas or in areas with faulty purification systems. Even ostensibly clean urban water supplies can be contaminated intermittently, and infection has been acquired in swimming pools. Fecal-oral contamination allows person-to-person spread. Day care centers are a major source of infection, with an incidence of up to 50% reported in some centers. No symptoms occur in 25% of infected persons, facilitating spread to household contacts. Food-borne outbreaks also occur. Although infection is rare in neonates, giardiasis may occur at any age.

Clinical Findings

A. Symptoms and Signs

Giardia infection is followed by either asymptomatic cyst passage, acute self-limited diarrhea, or a chronic syndrome of diarrhea, malabsorption, and weight loss. Acute diarrhea occurs 1–2 weeks after infection and is characterized by abrupt onset of diarrhea with greasy, malodorous stools; malaise; flatulence; bloating; and nausea. Fever and vomiting are unusual. The disease has a protracted course (>1 week) and frequently leads to weight loss. Giardiasis can be a self-limited infection in some patients, and in others cause chronic symptoms. Patients who develop chronic diarrhea complain of profound malaise, lassitude, headache, and diffuse abdominal pain in association with bouts of diarrhea—most typically foul-smelling, greasy stools—intercalated with periods of constipation or normal bowel habits. This syndrome can persist for months until specific therapy is administered or until it subsides spontaneously. Chronic diarrhea frequently leads to malabsorption, steatorrhea, vitamins A and B₁₂ deficiencies, and disaccharidase depletion. Lactose intolerance, which develops in 20%–40% of patients can persist for several weeks after treatment, and needs to be differentiated from relapsing giardiasis or reinfection.

B. Laboratory Findings

Giardia antigen detection by means of ELISAs, nonenzymatic immunoassays, and direct fluorescence antibody tests are the standard diagnostic tests in the United States. They have a more rapid return of results, and are more sensitive and specific than stool ova and parasite examination. In resource-poor areas without access to antigen tests, the diagnosis of giardiasis can be made by finding the parasite in stool. For ova and parasite examination, a fresh stool provides the best results. Liquid stools have the highest yield of trophozoites, which are more readily found on wet mounts. With semiformed stools, the examiner should look for cysts in fresh or fixed specimens, preferably using a concentration technique. When these techniques are applied carefully, one examination has a sensitivity of 50%–70%; three examinations increase the sensitivity to 90%. With a careful stool ova and parasite examination or with the use of a new antigen test, direct sampling of duodenal aspirates or biopsy, which was utilized in the past, is now restricted to particularly difficult cases.

Prevention

The prevention of giardiasis requires proper treatment of water supplies and interruption of person-to-person transmission. Where water might be contaminated, travelers, campers, and hikers should use methods to make water safe for drinking. Boiling is the most reliable method; the necessary time of boiling (1 minute at sea level) will depend on the altitude. Chemical disinfection with iodine or chlorine and filtration are alternative methods of water treatment.

Interrupting fecal-oral transmission requires strict hand washing. However, outbreaks of diarrhea in day care centers might be particularly difficult to eradicate. Reinforcing hand washing and treating the disease in both symptomatic and asymptomatic carriers may be necessary.

Treatment

Metronidazole, tinidazole, and nitazoxanide are the drugs of choice for treatment of giardiasis. When given at 5 mg/kg (up to 250 mg) three times a day for 5–7 days, metronidazole has 80%–95% efficacy. The drug is well tolerated in children. Tinidazole has an efficacy approaching 90% when given as a single dose of 50 mg/kg (up to 2 g). Nitazoxanide is available in liquid formulation and requires only 3 days of treatment. Recommended doses are 100 mg (5 mL) every 12 hours for children 12–47 months of age, 200 mg (10 mL) every 12 hours for 4- to 11-year-olds, and 500 mg every 12 hours for children 12 years or older. Furazolidone is sometimes used in children because it is available in suspension.
Administered at 1.5 mg/kg (up to 100 mg) four times daily for 7–10 days, it has only 80% efficacy. Furazolidone may cause gastrointestinal side effects, turn urine red, and cause mild hemolysis in patients with G6PD deficiency. For patients who do not respond to therapy, or are re-infected, a second course with the same drug or switching to another drug is equally effective. In cases of repeated treatment failure, albendazole (400 mg/d for 5–10 days), although not specifically recommended in the United States for the treatment of giardiasis, is an effective option.

3. Cryptosporidiosis

Cryptosporidia are intracellular protozoa that gained importance because they cause severe and devastating diarrhea in patients with acquired immunodeficiency syndrome (AIDS) and in other immunodeficient persons. This ubiquitous parasite infects and reproduces in the epithelial cell lining of the digestive and respiratory tracts of humans and most other vertebrate animals. Humans acquire the infection from contaminated drinking water, recreation water sources (including swimming pools, fountains, and lake water), or from close contact with infected humans or animals. Cryptosporidia are the leading cause of recreational water-associated outbreaks in the United States. Petting zoos and day care centers have been other sources of Cryptosporidia outbreaks. Most human infections are caused by *C parvum* or *C hominis*, although other species have been reported to cause human disease.

Clinical Findings

A. Symptoms and Signs

Immunocompetent persons infected with *Cryptosporidium* spp usually develop self-limited diarrhea (2–26 days) with or without abdominal cramps. Diarrhea can be mild and intermittent or continuous, watery, and voluminous. Low-grade fever, nausea, vomiting, loss of appetite, and malaise may accompany the diarrhea. Children younger than age 2 years are more susceptible to infection than older children. Immunocompromised patients (either cellular or humoral deficiency) tend to develop a severe, prolonged, chronic diarrhea which can often result in severe malnutrition, and subsides only after the immunodeficiency is corrected. Other clinical manifestations associated with cryptosporidiosis in immunocompromised hosts include cholecystitis, pancreatitis, hepatitis, biliary tree involvement, and respiratory symptoms.

B. Laboratory Findings

Visualization of *Cryptosporidium* oocysts in the stool is diagnostic. Direct immunofluorescent antibody (DFA) of stool is the test of choice for visualizing oocysts. Oocysts can also be visualized with a modified Kinyoun acid-fast stain on concentrated stool. ELISA and point-of-care rapid tests are commercially available, but should be confirmed by microscopy.

Prevention & Treatment

Prevention of *Cryptosporidium* infection is limited by oocyst resistance to some of the standard water purification procedures and to common disinfectants. Enteric precautions are recommended for infected persons. Boiled or bottled drinking water may be considered for those at high risk for developing chronic infection (eg, inadequately treated patients with AIDS).

Immunocompetent patients and those with temporary immunodeficiencies respond to treatment with nitazoxanide, antidiarrheal agents, and hydration. Immunocompromised patients usually require more intense supportive care with parenteral nutrition in addition to hydration and nonspecific antidiarrheal agents. Octreotide acetate, a synthetic analogue of somatostatin that inhibits secretory diarrhea, has been associated with symptomatic improvement but not with parasitologic cure. Nitazoxanide for 3 days is the treatment of choice; recommended doses are 100 mg (5 mL) every 12 hours for children 12–47 months of age, 200 mg (10 mL) every 12 hours for 4- to 11-year-olds, and 500 mg every 12 hours for children 12 years or older. For patients with advanced AIDS, antiparasitic therapy alone has not proven efficacious. Institution of effective anti-retroviral therapy results in elimination of symptomatic cryptosporidiosis.

4. Cyclosporiasis

*Cyclospora* spp are ubiquitous coccidian parasites that infect both humans and a variety of animals worldwide. *Cyclospora cayetanensis* is the only species known to infect humans. Cyclosporiasis is seen in three main epidemiologic settings: sporadic cases in endemic areas (particularly Haiti, Guatemala, Peru, and Nepal), travelers to endemic areas, and in food- or water-borne outbreaks in nonendemic areas.
particularly in relation to importation of fresh produce. The incubation period is approximately 7 days (range 2–14 days). Infection may be asymptomatic, cause mild to moderate self-limiting diarrhea, or cause protracted or severe diarrhea. In the immunocompetent host, diarrhea usually lasts 10–25 days but may be followed by a relapsing pattern that can last several months. Diarrhea (5–15 movements per day) is usually watery, sometimes explosive, and often accompanied by nausea, vomiting, abdominal cramping, and bloating. Profound fatigue, anorexia, and myalgias have been reported. The infection can be unusually severe in immunocompromised patients, especially those with HIV/AIDS. Although the illness is self-limited, it may last for several weeks. Diagnosis is based on finding oocysts 8–10 mm in diameter on examination of stool specimens stained with acid-fast stain. PCR of stool is available at the CDC and some reference laboratories. The treatment of choice is trimethoprim-sulfamethoxazole for 7 days.


5. Free-Living Amoebas

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

▶ Acute meningoencephalitis: fever, headache, meningismus, acute mental deterioration.
▶ Swimming in warm, freshwater in an endemic area.
▶ Chronic granulomatous encephalitis: insidious onset of focal neurologic deficits.
▶ Keratitis: pain, photophobia, conjunctivitis, blurred vision.

General Considerations

Infections with free-living amoebas are uncommon. Naegleria species, Acanthamoeba species, and Balamuthia amoebas have been associated with human disease, primarily infections of the central nervous system. Acute meningoencephalitis, caused by Naegleria fowleri, occurs mostly in children and young adults. Patients present with abrupt fever, headache, nausea and vomiting, disturbances in smell and taste, meningismus, and decreased mental status a few days to 2 weeks after exposure. N fowleri is found in warm freshwater and moist soil. Infection is often associated with swimming in warm freshwater lakes and using contaminated tap water for sinus irrigation. CNS invasion occurs after nasal inoculation of N fowleri which travel along the olfactory nerves via the cribiform plate to the brain. The disease is rapidly progressive and nearly universally fatal within a week of symptom onset.

Chronic granulomatous encephalitis, caused by Acanthamoeba or Balamuthia, can occur in immunocompetent patients, but occurs more commonly in immunocompromised patients. There is no association with freshwater swimming. This disease has an insidious onset of focal neurologic deficits, and approximately 50% of patients present with headache. Skin, sinus, or lung infections with Acanthamoeba precede many of the CNS infections and may still be present at the onset of neurologic disease. The granulomatous encephalitis progresses to fatal outcome over a period of weeks to months (average 6 weeks).

Acanthamoeba keratitis is a corneal infection associated with minor trauma or use of soft contact lenses in otherwise healthy persons. Clinical findings of Acanthamoeba keratitis include radial keratoneuritis and stromal ring infiltrate. Amebic keratitis usually follows an indolent course and initially may resemble herpes simplex or bacterial keratitis; delay in diagnosis is associated with worse outcomes.

Clinical Findings & Differential Diagnosis

Amebic encephalitis should be included in the differential diagnosis of acute meningoencephalitis in children with a history of recent freshwater swimming. The CSF is usually hemorrhagic, with leukocyte counts that may be normal early in the disease but later range from 400 to 2600/mL with neutrophil predominance, low to normal glucose, and elevated protein. The etiologic diagnosis relies on finding trophozoites on a wet mount of the CSF. Immunofluorescent and PCR-based diagnostic assays are available through the CDC.

Granulomatous encephalitis is diagnosed by brain biopsy of CT-identified nonenhancing lucent areas. The CSF of these patients is usually nondiagnostic with a lymphocytic pleocytosis, mild to severe elevation of protein (> 1000 mg/dL), and normal or low glucose. Acanthamoeba and Balamuthia amoebas have only rarely been found in the CSF; however, they can be visualized in brain biopsies or grown from brain or other infected tissues. Immunofluorescent and PCR-based diagnostic assays are available through the CDC.

Acanthamoeba keratitis is diagnosed by finding the trophozoites in corneal scrapings or by isolating the parasite from corneal specimens or contact lens cultures.

Prevention

Because primary amebic meningitis occurs infrequently, active surveillance of lakes for N fowleri is not warranted. However, in the presence of a documented case, it is advisable to close the implicated lake to swimming. Sterile or boiled water should be used for sinus irrigation. Acanthamoeba
keratitis can be prevented by heat disinfection of contact lenses, by storage of lenses in sterile solutions, and by not wearing lenses when swimming in freshwater or showering.

**Treatment**

Treatment of acute amebic meningoencephalitis caused by *N. fowleri* should be attempted with high-dose intravenous amphotericin B with the possible addition of miconazole and rifampin. Azithromycin has in vitro and in vivo activity against *Naegleria* and may be tried as an adjuvant. Successful treatment of *Balamuthia* encephalitis has been reported using a combination of flucytosine, pentamidine, fluconazole, sulfadiazine, and a macrolide. *Acanthamoeba* encephalitis should be treated with a combination of pentamidine, an azole compound, flucytosine, and sulfadiazine.

*Acanthamoeba* keratitis responds well to surgical debridement followed by 3–4 weeks of topical 1% miconazole; 0.1% propamidine isethionate; and polymyxin B sulfate, neomycin, and bacitracin (Neosporin).

http://www.cdc.gov/parasites/naegleria/
http://www.cdc.gov/parasites/balamuthia/
http://www.cdc.gov/parasites/acantamoeba/

**TRICHOMONIASIS**

*Trichomonas vaginalis* infection is discussed in Chapter 44.

**METAZOAL INFECTIONS**

**NEMATODE INFECTIONS**

1. **Enterobiasis (Pinworms)**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Anal pruritus.
- Worms in the stool or eggs on perianal skin.

**General Considerations**

This worldwide infection is caused by *Enterobius vermicularis*. The adult worms are about 5–10 mm long and live in the colon; females deposit eggs on the perianal area, primarily at night, which cause intense pruritus. Scratching contaminates the fingers and allows transmission back to the host (autoinfection) or to contacts through fecal-oral spread.

**Clinical Findings**

A. **Symptoms and Signs**

Although blamed for many types of symptoms, pinworms have only definitely been associated with localized pruritus. Adult worms may migrate within the colon or up the urethra or vagina in girls. They can be found within the bowel wall, in the lumen of the appendix (usually an incidental finding by the pathologist), in the bladder, and even in the peritoneal cavity of girls. The granulomatous reaction that may be present around these ectopic worms is usually asymptomatic. Worm eradication may correspond with the cure of recurrent urinary tract infections in some young girls.

B. **Laboratory Findings**

The usual diagnostic test consists of pressing a piece of transparent tape on the child’s anus in the morning prior to bathing, then placing it on a drop of xylene on a slide. Microscopic examination under low power usually demonstrates the ova. Occasionally, eggs or adult worms are seen in fecal specimens. Parents may also visualize adult worms in the perianal region, often at nighttime while the child is asleep.

**Differential Diagnosis**

Nonspecific irritation or vaginitis, streptococcal perianal cellulitis (usually painful with marked erythema), and vaginal or urinary bacterial infections may at times resemble pinworm infection, although the symptoms of pinworms are often so suggestive that a therapeutic trial is justified without a confirmed diagnosis.

**Treatment**

A. **Specific Measures**

Treat all household members at the same time to prevent reinfections. Because the drugs are not active against the eggs, therapy should be repeated after 2 weeks to kill the recently hatched adults.

Pyrantel pamoate, available without a prescription, is given as a single dose (11 mg/kg; maximum 1 g); it is safe and very effective. Albendazole (400 mg or 200 mg in children 1–2 years of age) or mebendazole (100 mg) in a single dose is also highly effective for all ages (though not approved by the US FDA).
B. General Measures

Personal hygiene must be emphasized. Nails should be kept short and clean. Children should wear undergarments in bed to diminish contamination of fingers; bedclothes should be laundered frequently; infected persons should bathe in the morning, thereby removing a large proportion of eggs. Although eggs may be widely dispersed in the house and multiple family members infected, the disease is mild and treatable.

http://www.cdc.gov/parasites/pinworm/.

2. Ascariasis

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Abdominal cramps and discomfort.
- Large, white or reddish, round worms, or ova in the feces.

**General Considerations**

Together with the whipworm and hookworms (see below), *Ascaris* comprises the group of “soil-transmitted helminths.” These parasites cause human infection through contact with eggs or larvae that thrive in the moist soil of the tropics and subtropics. Worldwide, more than a billion people are infected with at least one of these parasites, and, especially in less developed countries, it is not uncommon for children to be chronically infected with all three worms. These parasites are strongly associated with acute poverty and lack of clean water and sanitation. Children infected with these worms are at increased risk for malnutrition, stunted growth, intellectual retardation, and cognitive and education deficits. Together, the soil-transmitted helminths are one of the world’s most important causes of physical and intellectual growth retardation.

*Ascaris lumbricoides* is a worldwide human parasite. Ova passed by carriers may remain viable for months under the proper soil conditions. The ova contaminate food or fingers and are subsequently ingested by a new host. The larvae hatch, penetrate the intestinal wall, enter the venous system, reach the alveoli, are coughed up, and return to the small intestine, where they mature. The female lays thousands of eggs daily.

**Clinical Findings**

**A. Symptoms and Signs**

The majority of infections with *A lumbricoides* are asymptomatic, although moderate to heavy infections are associated with abdominal pain, weight loss, anorexia, diarrhea, and vomiting, and may lead to malnutrition. During the larval migratory phase, an acute transient eosinophilic pneumonitis (Löffler syndrome) may occur. Acute intestinal obstruction has been associated with heavy infections, which is more common in children due to their smaller intestinal diameter and their higher worm burden. Rarely, worm migration can cause peritonitis or appendicitis, secondary to intestinal wall perforation, and common bile duct obstruction, resulting in biliary colic, cholangitis, or pancreatitis.

**B. Laboratory Findings**

The diagnosis is made by observing the large roundworms (1.5–4 cm) in the stool or by microscopic detection of the ova.

**Treatment**

Because the adult worms live less than a year, asymptomatic infection need not be treated. Mebendazole (100 mg twice a day for 3 days or 500 mg once), pyrantel pamoate (a single dose of 11 mg/kg; maximum 1 g), and albendazole (400 mg in a single dose, or 200 mg in children 1–2 years of age) are highly and equally effective. In cases of intestinal or biliary obstruction, piperazine (150 mg/kg initially, followed by six doses of 65 mg/kg every 12 hours by nasogastric tube) is recommended because it paralyzes the worms and helps relieve obstruction. However, surgical removal is occasionally required.

http://www.who.int/intestinal_worms/.
http://www.cdc.gov/parasites/sth/.

3. Trichuriasis (Whipworm)

*Trichuris trichiura* is a widespread human and animal parasite common in children living in warm, humid areas conducive to survival of the ova. Ingested infective eggs hatch in the upper small intestine. The adult worms live in the cecum and colon; the ova are passed and become infectious after several weeks in the soil. Unlike *Ascaris*, *Trichuris* does not have a migratory tissue phase. Symptoms are not present unless the infection is severe, in which case pain, diarrhea, iron deficient anemia, and mild abdominal distention are present. Massive infections may also cause rectal prolapse and dysentery. Detection of the characteristic barrel-shaped ova in the feces confirms the diagnosis. Adult worms may be seen in the prolapsed rectum or at
proctoscopy; their thin heads are buried in the mucosa, and the thicker posterior portions protrude. Mild to moderate eosinophilia may be present.

Treatment of trichuriasis with currently available anthelminthic agents is unsatisfactory. Nevertheless, mebendazole (100 mg orally twice a day for 3 days) or albendazole (400 mg in a single dose for 3 days, or 200 mg in children 1–2 years of age) tends to improve gastrointestinal symptoms.

http://www.who.int/intestinal_worms/.
http://www.cdc.gov/parasites/sth/.


4. Hookworm

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

▸ Iron-deficiency anemia.
▸ Abdominal discomfort, weight loss.
▸ Ova in the feces.

▸ General Considerations

The common human hookworms are Ancylostoma duodenumale and Necator americanus. Both are widespread in the tropics and subtropics, with an estimated 600–700 million people infected worldwide. The larger A duodenumale is more pathogenic because it consumes more blood, up to 0.5 mL per worm per day.

The adults live in the jejunum. Eggs are passed in the feces and develop and hatch into infective larvae in warm, damp soil within 2 weeks. The larvae penetrate human skin on contact, enter the blood, reach the alveoli, are coughed up and swallowed, and develop into adults in the intestine. The adult worms attach with their mouth parts to the mucosa, from which they suck blood. Blood loss is the major sequela of infection. Infection rates reach 90% in areas without sanitation.

Ancylostoma braziliense and Ancylostoma caninum (the dog and cat hookworm) cause creeping eruption (cutaneous larva migrans). Larvae produce pruritic, reddish papules at the site of skin entry and an intensely pruritic, serpiginous tracks or bullae are formed as they migrate through the skin. Larval can move up to a few centimeters a day and activity can continue for several weeks, but eventually the rash is self-limiting. An advancing, intensely pruritic, serpiginous tunnel in the skin is pathognomonic. Cutaneous larva migrans is a disease of children and others who come in contact with soil contaminated with cat and dog feces. In the United States, the disease is most prevalent in the Southeast. Most cases in the United States are imported by travelers returning from tropical and subtropical areas.

▸ Clinical Findings

A. Symptoms and Signs

Patients with hookworm infection usually are asymptomatic or have complaints of diarrhea. Chronic hookworm infection leads to blood loss and iron deficiency anemia. Heavy infection can cause hypoproteinemia with edema. Chronic hookworm infection in children may lead to growth delay, deficits in cognition, and developmental delay. The larvae usually penetrate the skin of the feet and cause a stinging or burning sensation, followed by an intense local itching (ground itch) and a papulovesicular rash that may persist for 1–2 weeks. Pneumonitis associated with migrating larvae is uncommon and usually mild, except during heavy infections. Colicky abdominal pain, nausea, and/or diarrhea and marked eosinophilia may be observed.

B. Laboratory Findings

The large ova of both species of hookworm are found in feces and are indistinguishable. Microcytic anemia, hypoalbuminemia, eosinophilia, and hematochezia occur in severe cases.

▸ Prevention

Fecal contamination of soil and skin contact with potentially contaminated soil should be avoided.

▸ Treatment

A. Specific Measures

Albendazole (400 mg orally in a single dose, or 200 mg in children 1–2 years of age) is significantly more efficacious than mebendazole or pyrantel pamoate, and is considered the drug of choice for treatment of hookworm infections. Mebendazole (100 mg orally twice a day for 3 days) and pyrantel pamoate (11 mg/kg, to a maximum of 1 g, daily for 3 days) are second-line options.

B. General Measures

Iron therapy may be as important as worm eradication.

▸ Prognosis

The outcome after therapy is excellent, but reinfection is common in endemic areas.
5. Strongyloidiasis

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Abdominal pain, diarrhea.
- Eosinophilia.
- Larvae in stools and duodenal aspirates.
- Serum antibodies.

**General Considerations**

*Strongyloides stercoralis* is unique in having both parasitic and free-living forms; the latter can survive in the soil for several generations. The parasite is found in most tropical and subtropical regions of the world. The adults live in the submucosal tissue of the duodenum and occasionally elsewhere in the intestines. Eggs deposited in the mucosa hatch rapidly; the first-stage (rhabditiform) larvae, therefore, are the predominant form found in duodenal aspirates and feces. The larvae mature rapidly to the tissue-penetrating filariform stage and initiate internal autoinfection. The filariform larvae also persist in soil and can penetrate the skin of another host, subsequently migrating into veins and pulmonary alveoli, reaching the intestine when coughed up and swallowed.

Older children and adults are infected more often than are young children. Even low worm burden can result in significant clinical symptoms. Immunosuppressed patients may develop fatal disseminated strongyloidiasis, known as the hyperinfection syndrome. Autoinfection can result in persistent infection for decades.

**Clinical Findings**

**A. Symptoms and Signs**

Chronic *S. stercoralis* infections can be asymptomatic or cause cutaneous, gastrointestinal, and/or pulmonary symptoms. At the site of skin penetration, a pruritic rash may occur. Large numbers of migrating larvae can cause wheezing, cough, shortness of breath, and hemoptysis. Although one-third of intestinal infections are asymptomatic, the most prominent features of strongyloidiasis include abdominal pain, distention, diarrhea, vomiting, and occasionally malabsorption.

Patients with cellular immunodeficiencies and those on corticosteroids or chemotherapy may develop disseminated infection, involving the intestine, the lungs, and the meninges. Gram-negative sepsis may complicate disseminated strongyloidiasis.

**B. Laboratory Findings**

There is no gold standard for diagnosis, which can be difficult because of low parasite load and irregular larval output. Finding larvae in the feces, duodenal aspirates, or sputum is diagnostic. IgG antibodies measured by ELISA or immunoblot are relatively sensitive (83%–93%). The presence of specific antibody, however, does not distinguish between past and present infection and *Strongyloides* antibody assays can cross-react with other helminth infections. Marked eosinophilia is common. Because the rate of detection of *Strongyloides* larvae in a single fecal sample is low (~25%), all patients who have visited an endemic area and present with GI symptoms should be evaluated with three serial stool samples (for ova and parasites), and serology (ELISA) for *S. stercoralis* should be performed. Patients with pulmonary symptoms with suspected strongyloides infection should have sputum samples evaluated for the detection of *S. stercoralis*.

**Differential Diagnosis**

Strongyloidiasis should be differentiated from peptic disease, celiac disease, regional or tuberculous enteritis, and hookworm infections. The pulmonary phase may mimic asthma or bronchopneumonia. Patients with severe infection can present with an acute abdomen.

**Prevention & Treatment**

Ivermectin (two doses of 0.2 mg/kg given 1–14 days apart) is the drug of choice. Tiabendazole at a dose of 25 mg/kg orally twice orally twice a day for three days is an alternative therapy. Albendazole has a much lower efficacy. Relapses are common. In the hyperinfection syndrome, 1–3 weeks of therapy with ivermectin may be necessary and multiple follow-up stool studies for 2 weeks after therapy are indicated to ensure clearance of larvae. Patients from endemic areas should be tested for specific antibodies and receive treatment before undergoing immunosuppression.
ChAPTER 43

http://www.cdc.gov/parasites/strongyloides/

6. Visceral Larva Migrans (Toxocariasis)

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Visceral involvement, including hepatomegaly, marked eosinophilia, and anemia.
- Posterior or peripheral ocular inflammatory mass.
- Elevated antibody titers in serum or aqueous fluid; demonstration of Toxocara larvae in biopsy specimen.

General Considerations

Visceral larva migrans is a worldwide disease. The agent is the cosmopolitan intestinal ascarid of dogs and cats, Toxocara canis or Toxocara cati. The eggs passed by infected animals contaminate parks and other areas that young children frequent. Children with pica are at increased risk. In the United States, seropositivity ranges from 2.8% in unselected populations to 23% in southern states to 54% in rural areas. Ingested eggs hatch and penetrate the intestinal wall, then migrate to the liver. Most of the larvae are retained in the liver, but some may pass through the organ reaching the lungs, eyes, muscles, and/or the CNS, where they die and incite a granulomatous inflammatory reaction.

Clinical Findings

A. Visceral Larva Migrans

Toxocariasis is usually asymptomatic, but young children (aged 1–5 years) sometimes present with anorexia, fever, fatigue, pallor, abdominal pain and distention, nausea, vomiting, and cough. Hepatomegaly is common, splenomegaly is unusual, and adenopathy is absent. Lung involvement, usually asymptomatic, can be demonstrated readily by radiologic examination. Seizures are common, but more severe neurologic abnormalities are infrequent. Eosinophilia with leukocytosis, anemia, and elevated liver function tests are typical. ELISA is sensitive, specific, and useful in confirming the clinical diagnosis. Most patients recover spontaneously, but disease may last up to 6 months.

B. Ocular Larva Migrans

This condition occurs in older children and adults who present with a unilateral posterior or peripheral inflammatory eye mass. History of visceral larva migrans and eosinophilia are typically absent. Anti-Toxocara antibody titers are low in the serum and high in vitreous and aqueous fluids.

C. Diagnostic Findings

Hypergammaglobulinemia and elevated isohemagglutinins sometimes result from cross-reactivity between Toxocara antigens and human group A and B blood antigens. The diagnosis is confirmed by finding larvae in granulomatous lesions. High ELISA serology and the exclusion of other causes of hypereosinophilia provide a presumptive diagnosis in typical cases.

Differential Diagnosis

Diseases associated with hypereosinophilia must be considered. These include trichinosis (enlarged liver not common; muscle tenderness common), eosinophilic leukemia (rare in children; eosinophils are abnormal in appearance), collagen-vascular disease (those associated with eosinophilia are rare in young children), strongyloidiasis (no organomegaly; enteric symptoms are common), early ascariasis, tropical eosinophilia (occurring mainly in India), allergies, and hypersensitivity syndromes.

Prevention & Treatment

A. Specific Measures

The clinical benefit of specific anthelmintic therapy is not defined. Treatment with albendazole (400 mg twice a day for 5 days) or mebendazole (100–200 mg twice a day for 5 days) is indicated for severe complications involving the brain, lung, or heart.

B. General Measures

Treating any cause of pica, such as iron deficiency, is important. Corticosteroids are used to treat marked inflammation of lungs, eyes, or other organs. Pets should be dewormed routinely. Other children in the household may be infected. Mild eosinophilia and positive serologic tests may be the only clue to their infection. Therapy is not necessary for these individuals.

7. Trichinosis

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Vomiting, diarrhea, and abdominal pain within 1 week of eating infected meat.
- Fever, periorbital edema, myalgia, and marked eosinophilia.

**General Considerations**

*Trichinella* are small roundworms that infest hogs and several other meat-eating animals. Currently, there are eight recognized *Trichinella* species, with *Trichinella spiralis* being the most commonly recognized and most adapted to domestic and wild swine. The most important source of human infection worldwide is the domestic pig, but in Europe meat from wild boars and horses caused several prominent outbreaks. The human cycle begins with ingestion of viable larvae in undercooked meat. In the intestine, the larvae develop into adult worms that mate and produce hundreds of larvae. The larvae enter the bloodstream and migrate to the striated muscle where they continue to grow and eventually encyst. Symptoms are caused by the inflammatory response in the intestines or muscle.

**Clinical Findings**

**A. Symptoms and Signs**

Most infections are asymptomatic. The severity of clinical disease is strongly correlated with the number of ingested larvae. Infection can be divided into two phases: an intestinal phase and a muscular (or systemic) phase. The initial bowel penetration may cause fever, headache, chills, and gastrointestinal complaints within 1 week after ingestion of contaminated meat. This may progress to the classic myopathic form, which consists of fever, eyelid or facial edema, myalgia, and weakness. Complications, including myocarditis, thromboembolic disease, and encephalitis, occasionally occur. The leading pathologic process of trichinellosis is vasculitis, which can be manifest as a maculopapular exanthem, subungual bleeding, conjunctivitis and subconjunctival hemorrhages, headaches, dry cough, and painful movement of the eye muscles. Severe cerebral involvement or myocarditis can be fatal. Symptoms usually peak after 2–3 weeks but may last for months. Children typically have milder clinical and laboratory findings than adults.

**B. Diagnosis**

The diagnosis of trichinosis should be based on three main criteria: (1) clinical findings (fever; myalgias; eyelid and/or facial edema; gastrointestinal symptoms; and subconjunctival, subungual, and retinal hemorrhages); (2) laboratory findings (nonspecific eosinophilia and increased levels of muscle enzymes, antibody detection, and/or detection of larvae in a muscle biopsy); and (3) epidemiologic investigation.

**Differential Diagnosis**

The classic symptoms are pathognomonic if one is aware of this disease. It has to be distinguished from gastrointestinal pathogens, serum sickness, dermatomyositis, typhoid fever, sinotitis (facial swelling is unilateral), influenza with myopathy, toxocariasis, and invasive schistosomiasis.

**Prevention**

Because a microscopic examination must be performed, meat in the United States is not inspected for trichinosis. Although all states require the cooking of hog swill, hog-to-hog or hog-to-rat cycles may continue. All pork and sylvatic meat (eg, bear or walrus) should be cooked at least >160°F. Freezing meat to at least 5°F for 3 weeks may also prevent transmission. Animals used for food should not be fed or allowed access to raw meat.

**Treatment**

Albendazole (400 mg twice daily for 8–14 days) is the drug of choice for treatment of trichinosis. Mebendazole is an acceptable alternative and can be given at a dose of 200–400 mg three times a day for 3 days followed by 400–500 mg three times a day for 10 days. Concurrent corticosteroids (prednisone 30–60 mg/d for 10–15 days) are used for treatment of severe symptoms. Administration of analgesics is sometimes required.

**Prognosis**

Prognosis for severe cases with cardiac and cerebral complications is poor, with a mortality rate around 5%. In milder cases, prognosis is good, and most patients’ symptoms disappear within 2–6 months.


http://www.cdc.gov/parasites/trichinellosis/.

8. Raccoon Roundworm Infections

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Eosinophilic meningoencephalitis or encephalopathy.
- Ocular larva migrans.
- Contact with raccoons or raccoon feces.

**General Considerations**

Human infections with *Baylisascaris procyonis*, the raccoon roundworm, are increasingly recognized, particularly in children. The definitive host of this ascarid is the raccoon. Humans who ingest the eggs excreted in raccoon feces become intermediate hosts when the larvae penetrate the gut and disseminate via the bloodstream to the brain, eyes, viscera, and muscles. Young age, pica, and exposure to raccoon feces represent the main risk factors for this infection. Most of the infections are asymptomatic, but cases of severe encephalitis (neural larva migrans) and endophthalmitis (ocular larva migrans) occur. Symptoms typically begin 2–4 weeks after inoculation. CNS infections characteristically present as acute, rapidly progressive encephalitis with eosinophilic pleocytosis of the CSF (varies from 4% to 68% eosinophils in mild pleocytosis). Both CNS and ocular infections resemble other larva migrans infections such as toxocariasis; therefore *B procyonis* should be considered in the differential diagnosis of these infections when *Toxocara* serology is negative. The diagnosis of *B procyonis* is established by observing the larvae on examination of tissue biopsies or by serology (of serum or CSF), and should be considered in the differential diagnosis in anyone with CSF eosinophilia. Antihelmintic drugs have not been shown to have any beneficial effect for the treatment of baylisascariasis, since they lack larvicidal effects in human tissues. Nevertheless, albendazole (20–40 mg/kg/d for 1–4 weeks) has been used to treat most cases, together with anti-inflammatory drugs. Complete resolution of symptoms has not been achieved thus far. Immediate prophylactic treatment with albendazole (25 mg/kg daily for 20 days) should be considered for those with known ingestion of raccoon feces.

http://www.cdc.gov/parasites/baylisascaris/.

---

**CESTODE INFECTIONS (FLUKES)**

1. Taeniasis & Cysticercosis

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Mild abdominal pain; passage of worm segments (taeniasis).
- Focal seizures, headaches (neurocysticercosis).
- Cysticerci present in biopsy specimens, on plain films (as calcified masses), or on CT scan or magnetic resonance imaging (MRI).
- Proglottids and eggs in feces; specific antibodies in serum or CSF.

**General Considerations**

Pigs are the usual intermediate host of the tapeworm *Taenia solium*. Human cysticercosis occurs when the eggs, which are excreted in the feces of a person infected with the parasite, are ingested. Importantly, cysticercosis cannot be acquired by eating pork. Ingestion of infected pork results in adult tapeworm infection (taeniasis) because infected pork contains the larval cysts that develop into the adult tapeworm but does not contain the eggs which cause cysticercosis.

Larvae released from ingested eggs enter the circulation to encyst in a variety of tissues, especially muscle and brain. Full larval maturation occurs in 2 months, but the cysts cause little inflammation until the larvae die months to years later. Inflammatory edema ensues with calcification or disappearance of the cyst. A slowly expanding mass of sterile cysts at the base of the brain may cause obstructive hydrocephalus (racemose cysticercosis).

*T solium* and the beef tapeworm (*Taenia saginata*), which can cause taeniasis but not cysticercosis, are distributed worldwide. Contamination of foods by eggs in human feces allows person-to-person spread without exposure to meat or travel to endemic areas. Asymptomatic cases are common, but *T solium* is the most common helminth infection of the CNS and a leading cause of acquired epilepsy in the world.

**Clinical Findings**

A. Symptoms and Signs

1. Taeniasis—In most tapeworm infections, the only clinical manifestation is the passage of fecal proglottids, which are white, motile segments of tapeworm 1–2 cm in size. They occasionally crawl out onto the skin and down the leg,
especially the larger *T. saginata*. Children may harbor the adult worm for years and complain of abdominal pain, anorexia, and diarrhea.

2. Cysticercosis—In the parenchymatous form, the parasite lodges in the brain as a single or multiple cysts. Pericystic inflammation results in granuloma formation, which is the cause of seizures in most patients. The initial stage of the cyst is viable, where the scolex exists within the cyst and there is minimal or no enhancement due to a limited host immune response. As the scolex dies, either due to the host immune response or cysticidal treatment there is a strong immune response, characterized by strong enhancement on CT or MRI. As the cyst further degenerates, it calcifies, which is recognized as punctuate calcification on CT scan. Brain cysts may remain silent or cause seizures, headache, hydrocephalus, and basilar meningitis. Rarely, the spinal cord is involved. Neurocysticercosis manifests an average of 5 years after exposure, but may cause symptoms in the first year of life. In the eyes, cysts cause bleeding, retinal detachment, and uveitis. Definitive diagnosis requires histologic demonstration of larval or cyst membrane. Presumptive diagnosis is often made by the characteristics of the cysts seen on CT scan or MRI. The presence of *T. solium* eggs in feces, which is uncommon with cysticercosis (see above), supports the diagnosis.

B. Laboratory Findings

Neuroimaging is the mainstay of diagnosis of neurocysticercosis. The diagnosis should be suspected in any patient who has lived in an endemic area and presents with a compatible clinical picture and suggestive lesions on CT scans.

Eggs or proglottids may be found in feces or on the perianal skin (using the tape method employed for pinworms). Eggs of both *Taenia* species are identical. The species are identified by examination of proglottids.

Peripheral eosinophilia is minimal or absent. CSF eosinophilia is seen in 10%–75% of cases of neurocysticercosis; its presence supports an otherwise presumptive diagnosis.

ELISA antibody titers are eventually positive in up to 98% of serum specimens and over 75% of CSF specimens from patients with neurocysticercosis. Solitary cysts are associated with seropositivity less often than are multiple cysts. High titers tend to correlate with more severe disease. CSF titers are higher if cysts are near the meninges.

The differential diagnosis of neurocysticercosis includes tuberculoc granuloma, microabscesses, focal meningoencephalitis, arachnoid cyst, neoplasms, and vascular lesions.

### Treatment

**A. Taeniasis**

Praziquantel (5–10 mg/kg once) and albendazole are equally effective. Feces free of segments or ova for 3 months suggest cure.

**B. Cysticercosis**

The treatment modalities for neurocysticercosis include cysticidal agents (to kill larvae), corticosteroids (to decrease or prevent the inflammatory reaction), antiepileptic drugs (if seizures are present), and surgery (to remove cysts or for placement of a shunt for hydrocephalus). Most experts would recommend treatment with a cysticidal agent in most cases of neurocysticercosis, except in patients with inactive, calcified lesions. In patients with viable parenchymal cysts, cysticidal therapy decreases the burden of parasites and the number of seizures. Similarly, cysticidal therapy is associated with more complete and faster resolution on imaging and fewer seizures in patients with a single, small enhancing lesion. Ophthalmic examination should be conducted prior to cysticidal therapy to rule out intraocular cysts.

Albendazole, 15 mg/kg/d (maximum, 800 mg) divided in two doses daily for 8–15 days, is the treatment of choice. Larval death may result in clinical worsening because of inflammatory edema. A concurrent course of dexamethasone (0.1 mg/kg/day to a max of 6 mg/day) is recommended to decrease these symptoms. Corticosteroids are mandatory treatment for large intraventricular cysts and encephalitis (dexamethasone 0.1 mg/kg/day or prednisolone 1 mg/kg/day for as long as needed). Giant subarachnoidal cysts may require more than one cycle of therapy or surgery (or both). Minimally invasive neurosurgery (neuroendoscopic extraction) is the currently recommended management of intraventricular cysts. Follow-up scans every several months help assess the response to therapy.

#### Prevention

Prevention requires proper cooking of meat, careful washing of raw vegetables and fruits, treating intestinal carriers, avoiding the use of human excrement for fertilizer, and providing proper sanitary facilities.

#### Prognosis

The prognosis is good in intestinal taeniasis. Symptoms associated with a few cerebral cysts may disappear in a few months; heavy brain infections may cause death or chronic neurologic impairment. Seizures may persist even in those patients with only calcified lesions and anticonvulsants may be needed indefinitely.


http://www.cdc.gov/parasites/cysticercosis/.

2. Hymenolepiasis

_Hymenolepis nana_, the cosmopolitan human tapeworm, is a common parasite of children; _Hymenolepis diminuta_, the rat tapeworm, is rare. The former is capable of causing autoinfection. Larvae hatched from ingested eggs penetrate the intestinal wall and then reenter the lumen to mature into adults. Their eggs are immediately infectious for the same or a new host. The adult is only a few centimeters long. Finding the characteristic eggs in feces is diagnostic.

_H diminuta_ has an intermediate stage in rat fleas and other insects; children are infected when they ingest these insects.

Light infections with either tapeworm are usually asymptomatic; heavy infection can cause diarrhea and abdominal pain. Therapy is with praziquantel (25 mg/kg once).

http://www.cdc.gov/parasites/hymenolepis/.

3. Echinococcosis

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Cystic tumors of liver, lungs, kidneys, bones, brain, and other organs.
- Eosinophilia.
- Urticaria and pruritus if cysts rupture.
- Protoscoleces or daughter cysts in the primary cyst.
- Positive serology.
- Epidemiologic evidence of exposure.

**Clinical Findings**

### A. Symptoms and Signs

The clinical manifestations of echinococcosis are variable and depend primarily on the site, size, and condition of the cysts. The rates of growth of cysts are variable, and range between 1 and 5 cm in diameter per year. A slowly growing cyst often goes unnoticed until it causes dysfunction due to its size. Liver cysts can cause hepatomegaly, right upper quadrant pain, nausea, and vomiting. If a cyst ruptures, the sudden release of its contents can result in a severe allergic reaction. Cysts may cause biliary obstruction. Most hepatic cysts are in the right lobe.

Rupture of a pulmonary cyst causes coughing, dyspnea, wheezing, urticaria, chest pain, and hemoptysis; cyst and worm remnants are found in sputum. Brain cysts may cause focal neurologic signs and convulsions; renal cysts cause pain and hematuria; bone cysts cause pain.

**B. Laboratory Findings**

Antibody assays are useful to confirm a presumptive diagnosis, but some patients with echinococcosis do not have a detectable immune response (related to the integrity of the cyst and sequestration of echinococcal antigens inside the cyst). ELISA is the method most widely used for antibody testing.

Confirmation may be obtained by ultrasonography-guided fine-needle aspiration coupled with parasitologic examination for protoscoleces, rostellar hooks, antigens, or DNA. Eosinophilia is present in only about 25% of patients. Serologic tests are useful for diagnosis and follow-up of therapy.

**C. Imaging**

The presence of a cyst-like mass in a person with appropriate epidemiologic exposure supports the diagnosis. Visualization of daughter cysts is highly suggestive of echinococcosis. CT, MRI, and ultrasonography are useful for the diagnosis of deep-seated lesions. Abdominal ultrasonography is the most widely used diagnostic tool. Pulmonary or bone cysts may be visible on plain films.

**Differential Diagnosis**

Tumors, bacterial or amebic abscess, cavitary tuberculosis (pulmonary), mycoses, and benign cysts must be considered.

**Complications**

Sudden cyst rupture with anaphylaxis and death is the worst complication. If the patient survives, secondary infections
from seeding of daughter cysts may occur. Segmental lung collapse, secondary bacterial infections, effects of increased intracranial pressure, and severe renal damage due to renal cysts are other potential complications.

**Treatment**

There is no “best” treatment option for cystic echinococcus and no clinical trial has compared all the different treatment modalities. Treatment indications are complex and based on cyst characteristics, available medical/surgical expertise and equipment, and adherence of patients to long-term monitoring. Because treatment involves a variety of options and expertise, patients should be referred to recognized reference and national/regional treatment centers, whenever available. Definitive therapy of *E* multilocularis requires meticulous surgical removal of the cysts. A surgeon familiar with this disease should be consulted. Albendazole chemotherapy should be initiated for several days prior to surgery. Chemotherapy alone has been shown to cure about one-third of patients. Albendazole (15 mg/kg/d divided in 2 doses for 3 months, max 400 mg twice daily), sometimes with the addition of praziquantel, is the regimen of choice. A third treatment option is a four-step procedure (PAIR; puncture, aspiration, injection, and reaspiration). This procedure consists of (1) percutaneous puncture using ultrasound guidance, (2) aspiration of liquid contents, (3) injection of a protoscolicidal agent (95% ethanol or hypertonic saline for at least 15 minutes), and (4) reaspiration. PAIR is indicated for uncomplicated cases. If the cyst leaks or ruptures, the allergic symptoms must be managed immediately. For alveolar echinococcus, radical surgery for complete resection of the cyst is the goal. In some patients (particularly in those in whom complete resection is not possible), lifetime chemotherapy may be required.

**Prognosis**

Patients with large liver cysts may be asymptomatic for years. Surgery is often curative for lung and liver cysts, but not always for cysts in other locations.

**Schistosomiasis**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Transient pruritic rash after exposure to freshwater.
- Fever, urticaria, arthralgias, cough, lymphadenitis, and eosinophilia.
- Weight loss, anorexia, hepatosplenomegaly, or hematuria.
- Eggs in stool, urine, or rectal biopsy specimens.

**General Considerations**

One of the most common serious parasitic diseases, schistosomiasis, is caused by several species of *Schistosoma* flukes. *Schistosoma japonicum*, *Schistosoma mekongi*, and *S mansoni* involve the intestines and *Schistosoma haematobium*, the urinary tract. The first two species are found in eastern and southeastern Asia; *S mansoni* in tropical Africa, the Caribbean, and parts of South America; and *S haematobium* in Africa. Important transmission sites include Lake Malawi and Lake Victoria in Africa, Poyang and Dongting Lakes in China, and along the Mekong River in Laos.

Infection is caused by free-swimming larvae (cercariae), which emerge from the intermediate hosts, certain species of freshwater snails. The cercariae penetrate human skin, migrate to the liver, and mature into adults, which then migrate through the portal vein to lodge in the bladder veins (*S haematobium*), superior mesenteric veins (*S mekongi* and *S japonicum*), or inferior mesenteric veins (*S mansoni*). Clinical disease results primarily from inflammation caused by the many eggs that are laid in the perivascular tissues or that embolize to the liver. Escape of ova into bowel or bladder lumen allows microscopic visualization and diagnosis from stool or urine specimens, as well as contamination of freshwater and infection of the snail hosts that ingest them.

**Clinical Findings**

Much of the population in endemic areas is infected but asymptomatic. Only heavy infections produce symptoms.

**A. Symptoms and Signs**

Schistosomiasis progresses in three distinct phases: acute, chronic, and advanced disease. The cercarial penetration
may cause a maculopapular, pruritic rash, comprising discrete, erythematous, raised lesions that vary in size from 1 to 3 cm. The symptoms of acute schistosomiasis (Katayama syndrome) can last from days to weeks, and can include fever, malaise, cough, diarrhea, hematuria, and right upper quadrant pain. The chronic stages of disease are characterized by hepatic fibrosis, portal hypertension, splenomegaly, ascites, and bleeding from esophageal varices. The chronic inflammation in the urinary tract associated with \( S. h. \) infections may result in obstructive uropathy, stones, infection, bladder cancer, fistulas, and anemia due to chronic hematuria. Terminal hematuria in children from an endemic region is a red flag for urinary schistosomiasis. Spinal cord granulomas and paraplegia due to egg embolization into the Batson plexus have been reported.

B. Laboratory Findings

The diagnosis is made by finding the species-specific eggs in feces (\( S. j. \), \( S. m. \), \( S. m. \), and occasionally \( S. h. \)) or urine (\( S. h. \) and occasionally \( S. m. \)). If no eggs are found, concentration methods should be used. Because the shedding of eggs can vary, three specimens should be obtained. Urine specimens should be collected between 10 AM and 2 PM to coincide with the timing of maximal egg secretion. Testing should wait until 2 months after the last known freshwater contact as this is the time required for worms to start producing eggs following infection. A rectal biopsy may reveal \( S. m. \) and should be done if other specimens are negative. Serological tests are also available and may be helpful in making the diagnosis in patients who are not excreting eggs. Peripheral eosinophilia is common, and eosinophils may be seen in urine.

Prevention

The best prevention is to avoid contact with contaminated freshwater in endemic areas. Efforts to destroy the snail hosts have been successful in areas of accelerated economic development.

Treatment

A. Specific Measures

Praziquantel is the treatment of choice for schistosomiasis. A dosage of 40 mg/kg/d in two divided doses (\( S. m. \) or \( S. h. \)) over 1 day or 20 mg/kg three times a day (\( S. j. \) or \( S. m. \)) over 1 day is very effective and nontoxic. Praziquantel has no effect on eggs and immature worms and therefore a repeat dose 4–6 weeks later is sometimes needed.

B. General Measures

Therapy of nutritional deficiency or secondary bacterial infections may be needed. The patient’s urinary tract should be evaluated carefully in \( S. h. \) infection; reconstructive surgery may be needed. Hepatic fibrosis requires careful evaluation of the portal venous system and surgical management of portal hypertension when appropriate.

Prognosis

Therapy decreases the worm burden and liver size, despite continued exposure in endemic areas. Early disease responds well to therapy, but once significant scarring or severe inflammation has occurred, eradication of the parasites is of little benefit.

Mycotic Infections

Fungi can be classified as yeasts, which are unicellular and reproduce by budding; as molds, which are multicellular and consist of tubular structures (hyphae) and grow by elongation and branching; or as dimorphic fungi, which can exist either as yeasts or molds depending on environmental conditions. Categorization according to anatomic and epidemiologic features is shown in Table 43–6. Fungal cells are taxonomically distinct from plant and animal cells. These differences, especially cell wall and cell membrane components, are utilized for diagnosis and are the basis of specific therapy.

In the United States, systemic disease in normal hosts is commonly caused by three organisms—\( Coccidioides \), \( Histoplasma \), and \( Blastomyces \)—which are restricted to certain geographic areas. Prior residence in or travel to these areas, even for a brief time, is a prerequisite for inclusion in a differential diagnosis. Of these three, \( Histoplasma \) most often relapses years later in patients who are immunosuppressed.

Immunosuppression (especially depressed T-cell–mediated immunity), foreign bodies (eg, urinary and central catheters), ulceration of gastrointestinal and respiratory mucosa, severe burns, broad-spectrum antimicrobial therapy, malnutrition, HIV infection, and neutropenia or neutrophil defects are major risk factors for opportunistic fungal disease.

Laboratory diagnosis may be difficult because of the small number of fungi present in some lesions, slow growth of some organisms, and difficulty in distinguishing...
Table 43–6. Pediatric fungal infections.

<table>
<thead>
<tr>
<th>Type</th>
<th>Agents</th>
<th>Incidence</th>
<th>Diagnosis</th>
<th>Diagnostic Tests</th>
<th>Therapy</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial</td>
<td>Candida&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Very common</td>
<td>Simple</td>
<td>KOH prep</td>
<td>Topical</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Dermatophytes Malassezia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcutaneous</td>
<td>Sporothrix&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Uncommon</td>
<td>Simple&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Culture</td>
<td>Oral</td>
<td>Good</td>
</tr>
<tr>
<td>Systemic: normal host (endemic)</td>
<td>Coccidioides Histoplasma Blastomyces</td>
<td>Common: regional</td>
<td>Often presumptive</td>
<td>Chest radiograph; serology, antigen detection; histology; culture of body fluids or tissue</td>
<td>None&lt;sup&gt;e&lt;/sup&gt; or systemic</td>
<td>Good</td>
</tr>
<tr>
<td>Systemic: opportunistic infection</td>
<td>Candida&lt;sup&gt;a&lt;/sup&gt; Pneumocystis&lt;sup&gt;d&lt;/sup&gt; Aspergillus Mucorales Malassezia Pseudallescheria Cryptococcus</td>
<td>Uncommon</td>
<td>Difficult&lt;sup&gt;e&lt;/sup&gt;</td>
<td>Tissue biopsy, culture, antigen/fungal product detection (cryptococcosis, candida, filamentous fungi, pneumocystis)</td>
<td>Systemic, prolonged</td>
<td>Poor if therapy is delayed and in severely immune compromised hosts</td>
</tr>
</tbody>
</table>

<sup>a</sup>Candida and Sporothrix in immunocompromised patients may cause severe, rapidly progressive disease and require systemic therapy.

<sup>b</sup>Sporotrichosis may require biopsy for diagnosis.

<sup>c</sup>Can be self-limited in normal host.

<sup>d</sup>Asymptomatically infects many normal hosts.

<sup>e</sup>Except Cryptococcus, which is often diagnosed by antigen detection.

KOH, potassium hydroxide.

Normal colonization of mucosal surfaces, by some fungi, from infection. A tissue biopsy with fungal stains and culture is the best method for diagnosing systemic disease with some fungi. Repeat blood cultures may be negative even in the presence of intravascular infections. Serologic tests are useful for diagnosing coccidioidomycosis and histoplasmosis, and antigen detection in urine and blood is useful for diagnosing blastomycosis, histoplasmosis, cryptococcosis, and aspergillosis.

The common superficial fungal infections of the hair and skin are discussed in Chapter 15.

Blastomycosis

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Residence in, or travel to, an endemic area.
- In immunocompetent patients, most often a self-limited flu-like illness; acute pneumonia occurs in a minority of cases.
- Complications include progressive pneumonia and disseminated disease (CNS, skin, bone and joints, genitourinary tract).
- Diagnosis by culture of specimens from bronchoscopy, skin, or other tissue.

**General Considerations**

The causative fungus, *Blastomyces dermatitidis*, is found in soil primarily in the Mississippi and Ohio River valleys, additional southeastern and south central states, and the states bordering the Great Lakes. Transmission is by inhalation of
spores. Subclinical disease is common. Severe disease is much more common in adults and males. In children, infection rates are similar in both sexes.

**Clinical Findings**

**A. Symptoms and Signs**

Primary infection is often unrecognized or produces pneumonia. Acute symptoms include cough with purulent sputum, chest pain, headache, weight loss, night sweats, and fever. These occur several weeks to months after inoculation. Acute infection is often seen in conjunction with heavy point source exposure (such as around excavations). Infection is most often self-limited in immunocompetent patients, but in some patients an indolent progressive pulmonary disease occurs after an incubation period of 20–100 (median 45) days. Cutaneous lesions usually represent disseminated disease; local primary inoculation is rare. Skin lesions are slowly progressive and ulcerative with a sharp, heaped-up border or verrucous appearance. Bone disease resembles other forms of chronic osteomyelitis. Lytic skull lesions in children are typical, but long bones, vertebrae, and the pelvis may be involved. Extrapulmonary disease occurs in 25%–40% of patients with progressive disease. A total body radiographic examination is advisable when blastomycosis is diagnosed in the skin or another nonpulmonary site. Lymph nodes and brain may be involved, but the genitourinary tract involvement characteristic of dissemination in adults is rare in prepubertal children.

**B. Laboratory Findings**

An initial suppurative response is followed by an increase in the number of mononuclear cells, and subsequent formation of noncaseating granulomas. Diagnosis requires isolation or visualization of the fungus. Pulmonary specimens (sputum, tracheal aspirates, or lung biopsy) may be positive using conventional stains or fungal cell wall stains. The budding yeasts are thick-walled, have refractile walls, and are very large and distinctive (figure-of-eight appearance). The fungus can be grown readily in most laboratories, but a week is often required. Sputum specimens are positive in more than 80% of cases and in almost all bronchial washings, and skin lesions are positive in 80%–100%. Antibody tests are generally not helpful for diagnosis, but an ELISA antigen detection method, similar to that used for histoplasmosis, readily detects Blastomyces antigen in serum, urine, and lung lavage fluids. In this assay, there is cross-reactivity with histoplasmosis and tuberculosis. Miliary patterns also occur with acute infection. Chronic disease can develop in the upper lobes, with cavities and fibronodular infiltrations similar to those seen in tuberculosis. However, unlike tuberculosis or histoplasmosis, these lesions rarely caseate or calcify.

**Differential Diagnosis**

Primary pulmonary infection resembles acute viral, bacterial, or mycoplasmal infections, and is generally confused with atypical community-acquired pneumonia. Blastomycosis should be considered when a significant pulmonary infection in an endemic area fails to respond to antibiotic therapy. Subacute infection mimics tuberculosis, histoplasmosis, and coccidioidomycosis. Chronic pulmonary or disseminated disease must be differentiated from cancer, tuberculosis, or other fungal infections.

**Treatment**

If the patient is symptomatic at the time of diagnosis, and has moderately severe or life-threatening blastomycosis (especially if immunocompromised patient), or has CNS infections, therapy should be initiated with the lipid formulation of amphotericin B (3–5 mg/kg intravenously) for 1–2 weeks or until improved. This is followed by oral itraconazole (5–10 mg/kg/d; divided into two doses) for 6 months. Itraconazole drug levels are valuable for monitoring therapy in severely ill patients. Mild to moderate blastomycosis is often treated with oral itraconazole alone for 6–12 months. Bone disease may require a full year of itraconazole therapy. Surgical debridement is required for devitalized bone, drainage of large abscesses, and pulmonary lesions not responding to medical therapy.

---

**Candidiasis**

In normal or immunosuppressed individuals: superficial infections (oral thrush or ulcerations, vulvovaginitis, erythematous intertriginous rash with satellite lesions); fungemia related to intravascular devices.
In immunosuppressed individuals: systemic infections (candidemia with renal, hepatic, splenic, pulmonary, or cerebral abscesses); chorioretinitis; cutaneous nodules.

In either patient population: budding yeast and pseudohyphae are seen in biopsy specimens, body fluids, or scrapings of lesions; positive culture.

General Considerations

Disease due to Candida is caused by Candida albicans in 60%-80% of cases; severe systemic infection may also be caused by Candida tropicalis, Candida parapsilosis, Candida glabrata, and a few other Candida species. Speciation is important because of differences in pathogenicity and response to antifungal therapy. In tissue, pseudohyphae or budding yeast (or both) are seen. Candida grows on routine media more slowly than many bacteria; growth is usually evident on agar after 2-3 days and in blood culture in 2-7 days.

Candida albicans is ubiquitous, usually in small numbers, on skin, mucous membranes, or in the intestinal tract. Normal bacterial flora, intact epithelial barriers, neutrophils, and macrophages in conjunction with antibody and complement and normal lymphocyte function are factors in preventing invasion. Disseminated infection is almost always preceded by prolonged broad-spectrum antibiotic therapy, instrumentation (including intravascular catheters), and/or immunosuppression. Patients with diabetes mellitus are especially prone to superficial Candida infection; thrush and vaginitis are most common. Candida is the fourth most common blood isolate in hospitals in the United States and is a common cause of catheter-related urinary tract infection.

Clinical Findings

A. Symptoms and Signs

1. Oral candidiasis (thrush)—Adherent creamy white plaques on the buccal, gingival, or lingual mucosa are seen. These may be painful. Lesions may be few and asymptomatic, or they may be extensive, extending into the esophagus. Thrush is very common in otherwise normal infants in the first weeks of life; it may last weeks despite topical therapy. Spontaneous thrush in older children is unusual unless they have recently received antimicrobials. Corticosteroid inhalation for asthma predisposes patients to thrush. HIV infection should be considered if there is no other reason for oral thrush, or if it is persistent or recurrent. Angular cheilitis is the name given to painful erythematous fissures caused by Candida at the corners of the mouth, often in association with a vitamin or iron deficiency.

2. Vaginal infection—Vulvovaginitis occurs in sexually active girls, in diabetic patients, and in girls receiving antibiotics. Thick, odorless, cheesy discharge with intense pruritus is typical. The vagina and labia are usually erythematous and swollen. Outbreaks are more frequent before menses.

3. Skin infection

A. Dermatitis—Diaper dermatitis is often due entirely or partly to Candida. Pronounced erythema with a sharply defined margin and satellite lesions is typical. Pustules, vesicles, papules, or scales may be seen. Weeping, eroded lesions with a scalloped border are common. Any moist area, such as axillae, under breasts, and inguinal or neck folds, may be involved.

B. Congenital skin lesions—These lesions may be seen in infants born to women with Candida amniotic. A red maculopapular or pustular rash is seen. Dissemination may occur in premature infants or in term infants after prolonged rupture of membranes.

C. Scattered red papules or nodules—Such findings in immunocompromised patients may represent cutaneous dissemination.

D. Paronychia and onychomycosis—These conditions occur in immunocompetent children, but are often associated with immunosuppression, hypoparathyroidism, or adrenal insufficiency (Candida endocrinopathy syndrome). The selective absence of specific innate and T-cell responses to Candida can lead to marked, chronic skin and nail infections called chronic mucocutaneous candidiasis.

E. Chronic draining otitis media—This problem may occur in patients who have received multiple courses of antibiotics and are superinfected with Candida.

4. Enteric infection—Esophageal involvement in immunocompromised patients is the most common enteric manifestation, resulting in substernal pain, dysphagia, painful swallowing, and anorexia. Nausea and vomiting are common in young children. Most patients do not have thrush. Stomach or intestinal ulcers also occur.

5. Pulmonary infection—Because the organism frequently colonizes the upper respiratory tract, it is commonly isolated from respiratory secretions. Thus, demonstration of tissue invasion is needed to diagnose Candida pneumonia or tracheitis. It is rare, seen mainly in immunosuppressed patients and patients intubated for long periods, usually while taking antibiotics. The infection may cause fever, cough, abscesses, nodular infiltrates, and effusion.

6. Renal infection—Candiduria may be the only manifestation of disseminated disease. More often, candiduria is associated with instrumentation, an indwelling catheter, or anatomic abnormality of the urinary tract. Symptoms
of cystitis may be present. Masses of *Candida* may obstruct ureters and cause obstructive nephropathy. *Candida* casts in the urine suggest renal tissue infection.

7. *Other infections*—Myocarditis, meningitis, and osteomyelitis usually occur only in immunocompromised patients or neonates, generally in those with high-grade candidemia. Endocarditis may occur on an artificial or abnormal heart valve, especially when an intravascular line is present.

8. *Disseminated candidiasis*—Skin and mucosal colonization precedes, but does not predict dissemination. Too often, dissemination is confused with bacterial sepsis. This occurs in neonates—especially premature infants—in an intensive care unit setting, and is recognized when the infant fails to respond to antibiotics or when candidemia is documented. Invasive disease can occur in >50% of very low-birth-weight infants. These infants often have unexplained feeding intolerance, cardiovascular instability, apnea, or new or worsening respiratory failure, glucose intolerance, thrombocytopenia, or hyperbilirubinemia. A careful search in immunocompromised patients should be carried out for lesions suggestive of disseminated *Candida* (retinal cotton-wool spots or chorioretinitis; nodular dermal abscesses). If these findings are absent, diagnosis is often based presumptively on the presence of a compatible illness in an immunocompromised patient; a burn patient; or a patient with prolonged postsurgical or intensive care unit course who has no other cause for the symptoms; and who fails to respond to antimicrobials. Such patients usually have *Candida* colonization of mucosal surfaces. Treatment for presumptive infection is often undertaken because candidemia is not identified antemortem in many such patients.

Hepatosplenic and renal candidiasis occurs in immunosuppressed patients. The typical case consists of a severely neutropenic patient who develops chronic fever, variable abdominal pain, and abnormal liver function tests. No causative bacterial pathogen is isolated, and there is no response to antimicrobials. Symptoms persist even when neutrophils return. Ultrasound or CT scan of the liver, spleen, and kidney demonstrates multiple round lesions. Biopsy is needed to confirm the diagnosis.

B. *Laboratory Findings*

Budding yeast cells are easily seen in scrapings or other samples. A wet mount preparation of vaginal secretions is 40%–50% sensitive; this is increased to 50%–70% with the addition of 10% potassium hydroxide to the sample. The use of a Gram-stained smear is 70%–100% sensitive. The presence of pseudohyphae suggests tissue invasion. Positive cultures from nonsterile sites may reflect colonization and need to be carefully evaluated, but *Candida* should never be considered a contaminant in cultures from normally sterile sites. Ninety-five percent of positive blood cultures will be detected within 3 days, but cultures may remain negative (10%–40%) even with disseminated disease or endocarditis. *Candida* in any number in appropriately collected urine suggests true infection. Antigen tests are not sensitive or specific enough for clinical use. The ability of yeast to form germ tubes when incubated in human serum gives a presumptive speciation for *C. albicans*.

Differential Diagnosis

Thrush may resemble formula (which can be easily wiped away with a tongue blade or swab, revealing normal mucosa without underlying erythema or erosion), other types of ulcers (including herpes), burns, or oral changes induced by chemotherapy. Skin lesions may resemble contact, allergic, chemical, or bacterial dermatitis; miliaria; folliculitis; or eczema. Vulvovaginitis needs to be distinguished from other causes of vaginal discharge and discomfort. Candidemia and systemic infection should be considered in any seriously ill patient with the risk factors previously mentioned.

Complications

Failure to recognize disseminated disease early is the greatest complication. Arthritis and meningitis occur more often in neonates than in older children. Blindness from retinitis, massive emboli from large vegetations of endocarditis, and abscesses in any organ are other complications. The greater the length or extent of immunosuppression, and the longer the delay before therapy, the more likely that complications will occur.

Treatment

A. Oral Candidiasis

In infants, oral nystatin suspension (100,000 units four to six times a day in the buccal fold after feeding until resolution) usually suffices. Nystatin must come in contact with the lesions because it is not absorbed systemically. Older children may use it as a mouthwash (200,000–500,000 units five times a day), although it is poorly tolerated because of its taste. Clotrimazole troches (10 mg) four times a day are an alternative in older children. Prolonged therapy with either agent or more frequent dosing may be needed. Painting the lesions with a cotton swab dipped in gentian violet (0.5%–1%) is visually dramatic and messy, but may help refractory cases. Eradication of *Candida* from pacifiers, bottle nipples, toys, or the mother’s breasts (if the infant is breast-feeding and there is candidal infection of the nipples) may be helpful.

Oral azoles, such as fluconazole (6 mg/kg/d), are effective in older children with candidal infection refractory to nystatin. Discontinuation of antibiotics or corticosteroids is advised when possible.
B. Skin Infection

Cutaneous infection usually responds to a cream or lotion containing nystatin, amphotericin B, or an imidazole (miconazole, clotrimazole, and others). Associated inflammation such as severe diaper dermatitis is helped by concurrent use of a topical mild corticosteroid cream, such as 1% hydrocortisone. One approach is to keep the involved area dry; a heat lamp and nystatin powder may be used. Suppression of intestinal Candida with nystatin and eradicating thrush may speed recovery and prevent recurrence of the diaper dermatitis.

C. Vaginal Infections

Vulvovaginal candidiasis (see Chapter 44) is treated with clotrimazole, miconazole, triazoles, or nystatin (cheapest if generic is used) suppositories or creams, usually applied once nightly for 3–7 days. A high-dose topical clotrimazole formulation need be given for only a single night. Oral azole therapy is equally effective. A single 150-mg oral dose of fluconazole is effective for vaginitis. It is more expensive but very convenient. Candida balanitis in sexual partners should be treated, but no controlled study has shown that treating colonization of male sexual partners prevents recurrence in females. Frequent recurrent infections may require elimination of risk factors, the use of oral therapy, or some prophylactic antifungal therapy, such as a single dose of fluconazole weekly for 6 months.

D. Renal Infection

Candiduria in an immunocompetent host with a urinary catheter may respond to its removal. Candiduria is treated in all high-risk patients, usually with a 7- to 14-day course of fluconazole (3–6 mg/kg/d), which is concentrated in the urine. Amphotericin B may be required in patients with fluconazole-resistant organisms. Renal abscesses or ureteral fungus balls require intravenous antifungal therapy, and surgical debridement may be required. Removal of an indwelling catheter is imperative.

E. Systemic Infection

1. Disseminated Candida infection—Systemic infection is dangerous and resistant to therapy. Surgical drainage of abscesses and removal of all infected tissue (eg, a heart valve) are required for cure. Hepatosplenic candidiasis should be treated until all lesions have disappeared or are calcified on imaging studies. Treatment of systemic infection has traditionally utilized amphotericin B, but lipid forms of amphotericin B retain the antifungal potency of the free drug and are much better tolerated. Although they are much more expensive than amphotericin B, they are indicated for patients who are intolerant of conventional therapy and for those whose infection is refractory to treatment or who have a high likelihood of developing renal toxicity from such therapy.

Flucytosine (50–75 mg/kg/d orally in four doses; keep serum levels < 75 mcg/mL) may be additive or synergistic to amphotericin B. Unlike amphotericin B, flucytosine penetrates tissues well. It should not be used as a single agent in serious infections because resistance develops rapidly.

Fluconazole and itraconazole (best absorbed from the liquid solution) and newer azole drugs, such as voriconazole and posaconazole, and a new class of drugs, echinocandins, are used interchangeably or in conjunction with amphotericin. They are often preferred because in general they are less toxic. They are acceptable alternatives for serious Candida infections in nonneutropenic patients and are often effective as first-line therapy in immunocompromised patients. Fluconazole is well absorbed (oral and intravenous therapy are equivalent), reasonably nontoxic, and effective for a variety of Candida infections.

Fluconazole dosage is 8–12 mg/kg/d in a single daily dose for initial therapy of severely ill children. Selected patients with prolonged immunosuppression (eg, after bone marrow transplantation) should receive prophylactic azole, echinocandin, or intermittent amphotericin B prophylaxis. The decision to use systemic azole therapy should include consideration of the local experience with azole-resistant Candida and if the patient had recent prophylaxis or treatment with azoles. Susceptibility testing for Candida species is now available to guide this decision. Candida glabrata and C krusei are common isolates that may be resistant to fluconazole; these are often susceptible to the newer azoles and echinocandins. Candida lusitaniae is usually resistant to amphotericin.

Correction of predisposing factors is important (eg, discontinuing antibiotics and immunosuppressives, improving control of diabetes, and removing infected devices and lines).

2. Candidemia—Infected central venous lines must be removed immediately; this alone often is curative. If the infection is considered limited to the line and environs, a 14-day course (after the last positive culture) of a systemic antifungal agent following line removal is recommended for nonneutropenic patients. This is because of the late occurrence of focal Candida infection, especially retinal infection, in some cases. Persistent fever and candidemia suggest infected thrombus, endocarditis, or tissue infection.

Prognosis

Superficial disease in normal hosts has a good prognosis; in abnormal hosts, it may be refractory to therapy. Early therapy of systemic disease is often curative if the underlying
immune response is adequate. The outcome is poor when therapy is delayed or when host response is inadequate.


Coccidioidomycosis

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Residence in, or travel to, an endemic area.
- Primary pulmonary form: fever, chest pain, cough, anorexia, weight loss, and often a macular rash, erythema nodosum, or erythema multiforme.
- Primary cutaneous form: skin trauma followed in 1–3 weeks by an ulcer and regional adenopathy.
- Spherules seen in pus, sputum, CSF, joint fluid; positive culture.
- Appearance of precipitating (early) and complement-fixing antibodies (late).

General Considerations

Coccidioidomycosis is caused by the dimorphic fungus Coccidioides (immitis or posadasii), which are endemic in the Sonoran Desert areas of western Texas, southern New Mexico and Arizona, southern California, northern Mexico, and South America. Infection results from inhalation or inoculation of arthrospores (highly contagious and readily airborne in the dry climate). Even brief travel in or through an endemic area, especially during windy seasons, may result in infection. Human-to-human transmission does not occur. More than half of all infections are asymptomatic, and less than 5% are associated with significant pulmonary disease. Chronic pulmonary disease or dissemination occurs in less than 1% of cases.

Clinical Findings

A. Symptoms and Signs

1. Primary disease—The incubation period is 10–16 days (range, 7–28 days). Symptoms vary from those of a mild fever and arthralgia to severe influenza-like illness with high fever, nonproductive cough, pleurisy, myalgias, arthralgias, headache, and night sweats. Upper respiratory tract signs are uncommon. Severe pleuritic chest pain suggests this diagnosis. Signs vary from none to rash, rales, pleural rubs, and signs of pulmonary consolidation. Weight loss may occur.

2. Skin disease—Up to 10% of children develop erythema nodosum or erythema multiforme. These manifestations imply a favorable host response to the organism. Less specific maculopapular eruptions occur in a larger number of children. Skin lesions can occur following fungemia. Primary skin inoculation sites develop indurated ulcers with local adenopathy. Contiguous involvement of skin from deep infection in nodes or bone also occurs. The presence of chronic skin lesions should lead to a search for other areas of infection (eg, lungs).

3. Chronic pulmonary disease—This is uncommon in children. Chronic disease is manifested by chronic cough (occasionally with hemoptysis), weight loss, pulmonary consolidation, effusion, cavitation, or pneumothorax.

4. Disseminated disease—This is less common in children than adults, and is more common in infants, neonates, pregnant women (especially during the third trimester), black people, Filipinos, American Indians, and patients with HIV or other types of immunosuppression. More than one organ may be involved. The most common extra-pulmonary sites involved are bone or joint (usually a single bone or joint; subacute or chronic swelling, pain, redness), nodes, meninges (slowly progressive meningeal signs, ataxia, vomiting, headache, and cranial neuropathies), and kidneys (dysuria and urinary frequency). As with most fungal diseases, the evolution of the illness is usually slow.

B. Laboratory Findings

Direct examination of respiratory secretions, pus, CSF, or tissue may reveal large spherules (30–60 μm) containing endospores. These are the product of coccidioidal spores germinating in tissue. The organism is detected by using periodic acid–Schiff reagent, methenamine silver, and calcofluor stains. Fluffy, gray-white colonies grow within 2–5 days on routine fungal and many other media. CSF cultures are often falsely negative.

The sedimentation rate is usually elevated. Eosinophilia may occur, particularly prior to dissemination, and is more
common in coccidioidomycosis than in many other conditions with similar symptoms. Meningitis causes a mononuclear pleocytosis (70% contain eosinophils) with elevated protein and mild hypoglycorrhachia.

Antibodies consist of precipitins (usually measurable by 2–3 weeks in 90% of cases and gone by 12 weeks) and complement-fixing antibodies (delayed for several weeks; appear as the precipitins are falling and should disappear by 8 months). Thus, serum precipitins usually indicate acute infection. The extent of the complement-fixing antibody response reflects the severity of infection. Persistent high levels suggest dissemination. Excellent ELISA assays, which detect IgM and IgG antibodies against coccidoidal antigens, become positive in some patients as early as 1–3 weeks after onset of symptoms. The presence of antibody in CSF indicates CNS infection; CSF and serum antibody titers correlate with disease progression and response to therapy.

Galactomannan antigen from *Coccidioides* is detected in urine and serum of patients. This occurs more frequently in severe disease compared to moderate disease. Testing both types of specimens should provide a diagnosis overall in more than 75% of patients.

**C. Imaging**

Approximately half of symptomatic infections are associated with abnormal chest radiographs—usually infiltrates with hilar adenopathy. Pulmonary consolidation, effusion, and thin-walled cavities may be seen. About 5% of infected patients have asymptomatic nodules or cysts after recovery. Unlike tuberculosis reactivation, apical disease is not prominent. Bone infection causes osteolysis that enhances with technetium. Cerebral imaging may show hydrocephalus and meningitis; intracranial abscesses and calcifications are unusual. Radiographic evolution of all lesions is slow.

**Differential Diagnosis**

Primary pulmonary infection resembles acute viral, bacterial, or mycoplasmal infections; subacute presentation mimics tuberculosis, histoplasmosis, and blastomycosis. Chronic pulmonary or disseminated disease must be differentiated from cancer, tuberculosis, or other fungal infections.

**Complications**

Dissemination of primary pulmonary disease is associated with permissive ethnic background, prolonged fever (> 1 month), a negative skin test, high complement-fixation antibody titer, and marked hilar adenopathy. Local pulmonary complications include effusion, empyema, and pneumothorax. Cerebral infection can cause noncommunicating hydrocephalus due to basilar meningitis.

**Treatment**

**A. Specific Measures**

Mild pulmonary infections in most normal patients require no therapy. These patients should be assessed for 1–2 years to document resolution and to identify any complications. Antifungal therapy is used for prolonged fever, weight loss (> 10%), prolonged duration of night sweats, severe pneumonitis (especially if persisting for 4–6 weeks), or any form of disseminated disease. Neonates, pregnant women, high-risk racial background, and patients with high antibody titers also receive treatment.

Lipid formulation of amphotericin B is used to treat extensive pulmonary or disseminated disease or disease in immunosuppressed patients (2–5 mg/kg/d). In general, the more rapidly progressive the infection, the more compelling the case for amphotericin B therapy. For less severe disease and for meningeval disease, fluconazole or itraconazole are preferred (duration of therapy is 3–6 months or is lifelong for meningeval disease). Measurement of serum levels is suggested to monitor therapy. Chronic fibrocavitary pneumonia is treated for at least 12 months. Itraconazole may be superior to fluconazole. Refractory meningitis may require prolonged intrathecal or intraventricular amphotericin B therapy. Pregnant patients should not receive azoles.

**B. General Measures**

Most pulmonary infections require only symptomatic therapy, self-limited activity, and good nutrition. Patients are not contagious.

**C. Surgical Measures**

Excision of chronic pulmonary cavities or abscesses may be needed. Infected nodes, sinus tracts, and bone are other operable lesions. Azole therapy should be given prior to surgery to prevent dissemination and should be continued for 4 weeks arbitrarily or until other criteria for cure are met.

**Prognosis**

Most patients recover. Even with amphotericin B, however, disseminated disease may be fatal, especially in those racially predisposed to severe disease. Reversion of the skin test to negative or a rising complement-fixing antibody titer is an ominous sign. Individuals who later in life undergo immunosuppressive therapy or develop HIV may experience reactivation of dormant disease. Thus, some transplant and oncology programs determine prior infection by serology and either provide prophylaxis or observe patients closely during periods of intense immune suppression.
Cryptococcosis

ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES

- Acute pneumonitis in immunocompetent individuals.
- Immunosuppressed patients especially vulnerable to CNS infection (headache, vomiting, cranial nerve palsies, meningeal signs; mononuclear cell pleocytosis).
- Cryptococcal antigen detected in CSF; also in serum and urine in some patients.
- Readily isolated on routine media.

General Considerations

_Cryptococcus neoformans_ is a ubiquitous soil yeast. It appears to survive better in soil contaminated with bird excrement, especially that of pigeons. However, most infections in humans are not associated with a history of significant contact with birds. Inhalation is the presumed route of inoculation. Infections in children are rare, even in heavily immunocompromised patients such as those with HIV infection. Immunocompetent individuals can also be infected, especially by _Cryptococcus gattii_, which is an emerging pathogen in Canada and the Pacific Northwest. Asymptomatic carriage does not occur.

Clinical Findings

A. Symptoms and Signs

1. Pulmonary disease—Pulmonary infection precedes dissemination to other organs. It is frequently asymptomatic (ie, many older children and adults have serologic evidence of prior infection) and less often clinically apparent than cryptococcal meningitis. Pneumonia is the primary manifestation in one-third of patients; CNS disease is the primary manifestation in 50% of patients. Cryptococcal pneumonia may coexist with CNS involvement. Symptoms are nonspecific and subacute—cough, weight loss, and fatigue.

2. Meningitis—The most common clinical disease is meningitis, which follows hematogenous spread from a pulmonary focus. This is much more likely to occur in an immunosuppressed patient (especially HIV). Symptoms of headache, vomiting, and fever occur over days to months. Meningeal signs and papilledema are common. Cranial nerve dysfunction and seizures may occur.

3. Other forms—Cutaneous forms are usually secondary to dissemination. Papules, pustules, and ulcerating nodules are typical. Bones (rarely joints) may be infected; osteolytic areas are seen, and the process may resemble osteosarcoma. Many other organs, especially the eyes, can be involved with dissemination.

B. Laboratory Findings

The CSF usually has a lymphocytic pleocytosis; it may be completely normal in immunosuppressed patients with meningeal infection. Direct microscopy may reveal organisms in sputum, CSF, or other specimens. The capsular antigen can be detected by latex agglutination or ELISA, which are both sensitive (> 90%) and specific. False-negative CSF tests occur rarely. Serum, CSF, and urine should be tested if this infection is suspected. The serum may be negative if the only organ infected is the lung. The organism grows well after several days on many routine media; for optimal culture, collecting and concentrating a large amount of CSF (10 mL) is recommended, because the number of organisms may be low.

C. Imaging

Radiographic findings are usually lower lobe infiltrates or nodular densities; less often effusions; and rarely cavitation, hilar adenopathy, or calcification. Single or multiple focal mass lesions (cryptococcoma) may be detected in the CNS on CT or MRI scan.

Differential Diagnosis

Cryptococcal meningitis may mimic tuberculosis, viral meningoencephalitis, meningitis due to other fungi, or a space-occupying CNS lesion. Lung infection is difficult to differentiate from many causes of pneumonia.

Complications

Hydrocephalus may be caused by chronic basilar meningitis. Symptomatic and recalcitrant intracranial hypertension is common. Significant pulmonary or osseous disease may accompany the primary infection or dissemination.

Treatment

Patients with symptomatic pulmonary disease should receive fluconazole for 3–6 months. All immunocompromised patients with cryptococcal pulmonary disease should have a lumbar puncture to rule out CNS infection; this should also be done...
for immunocompetent patients with cryptococcal antigen in the serum. Severely ill patients should receive amphotericin B (0.7 mg/kg/d). Meningitis is treated with amphotericin B (increase dose to 1 mg/kg/d) and flucytosine (100 mg/kg/d). This combination is synergistic and allows lower doses of amphotericin B to be used. Induction therapy is usually 2 weeks for CNS infections. Fluconazole can be substituted for flucytosine. After this, fluconazole alone (10 mg/kg/d) is maintained for 8 weeks and then continued at a reduced dose (determined by moderate serum levels) for an additional 6–12 months. Fluconazole is the preferred maintenance therapy to prevent relapses in high-risk (eg, HIV) patients. CSF antigen levels should be checked after 2 weeks of therapy. Intracranial hypertension is treated by frequent spinal taps or a lumbar drain.

**Prognosis**

Treatment failure, including death, is common in immunosuppressed patients, especially those with AIDS. Lifelong maintenance therapy may be required in these patients. Poor prognostic signs are the presence of extrameningeal disease, fewer than 20 cells/μL of initial CSF, and initial CSF antigen titer greater than 1:32.

**Histoplasmosis**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Residence in or travel to an endemic area.
- Pneumonia with flu-like illness.
- Hepatosplenomegaly, anemia, leukopenia if disseminated.
- Histoplasmal antigen in urine, blood, bronchoalveolar lavage fluid or CSF.
- Detection by staining the organism in smears or tissue, or by culture.

**General Considerations**

The dimorphic fungus *Histoplasma capsulatum* is found in the central and eastern United States (Ohio and Mississippi River valleys), Mexico, and most of South America. Soil contamination is enhanced by the presence of bat or bird feces. Infection is acquired by inhaling spores that transform into the pathogenic yeast form seen in infected tissues, especially within macrophages. Infections in endemic areas are very common at all ages and are usually asymptomatic. Over two-thirds of children are infected in these areas. Reactivation is rare in children, but occurs after treatment with immune suppressive agents, such as biological response modifiers and chemotherapy. Reactivation may occur years after primary infection. Reinfection also occurs. The extent of symptoms with primary infection or reinfection is influenced by the size of the infecting inoculum.

**Clinical Findings**

Because human-to-human transmission does not occur, infection requires exposure in the endemic area—usually within prior weeks or months. Congenital infection does not occur.

**A. Symptoms and Signs**

1. **Asymptomatic infection (90% of infections)**—Asymptomatic histoplasmosis is usually diagnosed by the presence of scattered calcifications in lungs or spleen and a positive skin test or serology. The calcification may resemble that caused by tuberculosis, but may be more extensive than the usual Ghon complex.

2. **Pneumonia**—Approximately 5% of patients have mild to moderate disease. The cause of this illness is usually not recognized as being histoplasma. Acute pulmonary disease may resemble influenza with fever, malaise, myalgia, arthralgia, and cough occurring 1–3 weeks after a heavy exposure (may be longer with less intense exposure). The subacute form resembles infections such as tuberculosis with cough, weight loss, night sweats, and pleurisy. Chronic disease is unusual in children. Physical examination may be normal, or rales may be heard. A small number of patients may have immune-mediated signs such as arthritis, pericarditis, and erythema nodosum. The usual duration of the disease is less than 2 weeks, followed by complete resolution, but symptoms may last several months before resolving without antifungal therapy.

3. **Disseminated infection (5% of infections)**—Fungemia during primary infection probably occurs in the first 2 weeks of all infections, including those with minimal symptoms. Transient hepatosplenomegaly may occur, but resolution is the rule in immunocompetent individuals. Heavy exposure, severe underlying pulmonary disease, and immunosuppression are risk factors for progressive reticuloendothelial cell infection with anemia, fever, weight loss, organomegaly, bone marrow involvement, and death. Dissemination may occur in otherwise
immunocompetent children; usually they are younger than age 2 years.

4. Other forms—Ocular involvement consists of multifocal choroiditis. This usually occurs in immunocompetent adults who exhibit other evidence of disseminated disease. Brain, pericardium, intestine, and skin (oral ulcers and nodules) are other sites that can be involved. Adrenal gland involvement is common with systemic disease.

B. Laboratory Findings

Routine tests are normal or nonspecific in the benign forms. Pancytopenia is present in many patients with disseminated disease. The diagnosis can be made by demonstrating the organism by histology or culture. Tissue yeast forms are small and may be mistaken for artifact. They are usually found in macrophages, occasionally in peripheral blood leukocytes in severe disease, but infrequently in sputum, urine, or CSF. Cultures of infected fluids or tissues may yield the organism after 1–4 weeks of incubation on fungal media, but even cultures of bronchoalveolar lavage or transbronchial biopsy specimens in immunocompromised patients are often negative (15%). Thus, bone marrow and tissue specimens are needed. Detection of histoplasmal antigen in blood, urine, CSF, and bronchoalveolar lavage fluid is the most sensitive diagnostic test (90% positive in the urine with disseminated disease, 75% positive with acute pneumonia), but false-negative results may occur. Both urine and serum should be tested for optimal results. The level of antigen correlates with the extent of the infection, and antigen levels can be used to follow the response to therapy and to indicate low-grade infection persisting after completion of therapy (eg, in a child with HIV infection).

Antibodies may be detected by immunodiffusion and complement fixation; the latter rises in the first 2–6 weeks of illness and falls thereafter unless dissemination occurs. Cross-reactions occur with some other endemic fungi. A single high titer or rising titer indicates a high likelihood of disease, but antigen detection has replaced serology as a rapid diagnostic test.

C. Imaging

Scattered pulmonary calcifications in a well child are typical of past infection. Bronchopneumonia (focal mid-lung infiltrates) occurs with acute disease, often with hilar and mediastinal adenopathy, occasionally with nodules, but seldom with effusion. Localized or patchy infiltrates occur in subacute disease. Apical cavitation occurs with chronic infection, often on the background of preexisting pulmonary infection.

Differential Diagnosis

Pulmonary disease resembles viral infection, other causes of community acquired pneumonia, tuberculosis, coccidiodomycosis, and blastomycosis. Systemic disease resembles disseminated fungal or mycobacterial infection, leukemia, histiocytosis, or cancer.

Treatment

Most patients with acute pulmonary disease will benefit from oral itraconazole. Those with subacute disease are generally better when the diagnosis is established, but if still symptomatic should receive oral therapy. Treatment with lipid formulation of amphotericin B (2–5 mg/kg/d) is indicated for severe pulmonary disease (diffuse radiographic involvement); disseminated disease; or when endovascular, CNS, or chronic pulmonary disease is present; and for children younger than age 1 year. Disseminated disease in infants may respond to as few as 10 days of amphotericin B, although 4–6 weeks is usually recommended. Patients with severe disease (especially pulmonary) may benefit from a short course of corticosteroid therapy. Surgical excision of chronic pulmonary lesions is rarely required. Itraconazole (3–5 mg/kg/d for 6–12 weeks; achieve peak serum level of > 1.0 mcg/mL) appears to be equivalent to amphotericin B therapy for mild disease and can be substituted in severe disease after a favorable initial (2 weeks) response to amphotericin B. With chronic pulmonary, CNS, or disseminated disease, prolonged therapy for at least a year should be considered.

Quantitation of fungal antigen is useful for directing therapy, and should be monitored for 1 year after successful treatment of severe disease. Relapse may occur in up to 15% of patients with treated chronic disease. Histoplasmosis can reactivate in previously infected individuals who subsequently become immunosuppressed. Chronically immunosuppressed patients (eg, those with HIV) may require lifelong maintenance therapy with itraconazole.

Prognosis

Patients with mild and moderately severe infections have a good prognosis. With early diagnosis and treatment, infants with disseminated disease usually recover; the prognosis worsens if the immune response is poor.


**Sporotrichosis**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Subacute cutaneous ulcers.
- New lesions appearing proximal to existing lesions along a draining lymphatic.
- Absence of systemic symptoms.
- Isolation of *Sporothrix schenckii* from wound drainage or biopsy.

**General Considerations**

Sporotrichosis is caused by *Sporothrix schenckii*, a dimorphic fungus present as a mold in soil, plants, and plant products from most areas of North and South America. Spores of the fungus can cause infection when they breach the skin at areas of minor trauma. Sporotrichosis has been transmitted from cutaneous lesions of pets.

**Clinical Findings**

Cutaneous disease is by far the most common manifestation. Typically at the site of inapparent skin injury, an initial papular lesion will slowly become nodular and ulcerate. Subsequent new lesions develop in a similar fashion proximally along lymphatics draining the primary lesion. This sequence of developing painless, chronic ulcers in a linear pattern is strongly suggestive of the diagnosis. Solitary lesions may exist and some lesions may develop a verrucous character. Systemic symptoms are absent and laboratory evaluations are normal, except for acute-phase reactants. The fungus rarely disseminates in immunocompetent hosts, but bone and joint infections have been described. Cavitary pneumonia is an uncommon manifestation when patients inhale the spores. Immunocompromised patients, especially those with HIV infection, may develop disseminated skin lesions and multiorgan disease with extensive pneumonia.

**Differential Diagnosis**

The differential diagnosis of nodular lymphangitis (sporotrichoid infection) includes other endemic fungi and some bacteria, especially atypical mycobacteria, pyoderma gangrenosum, nocardiosis, and syphilis. Diagnosis is made by culture. Biopsy of skin lesions will demonstrate a supplicative response with granulomas and provides the best source for laboratory isolation. Occasionally, the characteristic yeast will be seen in the biopsy.

**Treatment & Prognosis**

Treatment is with itraconazole (200 mg/d or 5 mg/kg/d) for 2–4 weeks after lesions heal, usually 3–6 months. Prognosis is excellent with lymphocutaneous disease in immunocompetent children. Pulmonary or osteoarticular disease, especially in immunocompromised individuals, requires longer therapy. Amphotericin B may be required for disseminated disease, CNS disease, and severe pulmonary disease. Surgical debridement may be required.


---

**PNEUMOCYSTIS AND OTHER OPPORTUNISTIC FUNGAL INFECTIONS**

The name of this category indicates that fungi that are normally not pathogenic, or do not cause severe disease, may do so when given the opportunity by changes in host defenses. They occur most commonly when patients are treated with corticosteroids, antineoplastic drugs, or radiation, thereby reducing the number or function of neutrophils and T cells. Inborn errors in immune function (combined immunodeficiency or chronic granulomatous disease) may also be complicated by these fungal infections. Opportunistic infections are facilitated by altering the normal flora with antibiotics and by disruption of mucous membranes or skin with antineoplastic therapy or indwelling lines and tubes.

Table 43–7 indicates that filamentous fungi are prominent causes of severe systemic fungal disease in immunocompromised patients. *Aspergillus* species (usually *fumigatus*) and Zygomycetes (usually Mucorales) cause subacute pneumonia and sinusitis and should be considered when these conditions do not respond to antibiotics in immunocompromised patients. *Aspergillus* species also commonly cause invasive disease in patients with chronic granulomatous disease. Mucormycosis is especially likely to produce severe sinusitis in patients with chronic acidosis, usually when the diabetes is poorly controlled. This fungus may invade orbit and cause brain infection. Mucormycosis also occurs in patients receiving iron chelation therapy. These fungal infections may disseminate widely. Imaging procedures may suggest the etiology, but they are best diagnosed by aspiration or biopsy of infected tissues. A characteristic CT finding is the “halo sign,” which is a...
Table 43–7. Unusual fungal infections in children.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Predisposing Factors</th>
<th>Route of Infection</th>
<th>Clinical Disease</th>
<th>Diagnostic Tests</th>
<th>Therapy and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Aspergillus</em></td>
<td>None</td>
<td>Inhalation of spores</td>
<td>Allergic bronchopulmonary aspergillosis; wheezing, cough, migratory infiltrates, eosinophilia.</td>
<td>Organisms in sputum; positive skin test; specific IgE antibody; elevated IgE levels.</td>
<td>Demonstrating fungus in tissues by stain or culture; antigen/fungal component detection may be useful. Use steroids. Antifungals may not be needed. Amphotericin B, voriconazole, and oral caspofungin are equally effective; these can be used in combination.</td>
</tr>
<tr>
<td><em>Malassezia</em></td>
<td>None</td>
<td>Inhalation of spores</td>
<td>Progressive pulmonary disease: consolidation, nodules, abscesses. Sinusitis Disseminated disease: usually lung, brain; occasionally intestine, kidney, heart, bone. Invades blood vessels.</td>
<td>Culture of catheter or blood on lipid-enriched media (for <em>M furfur</em>, <em>M pachydermatis</em> does not need lipid). Fungus may be seen in buffy coat.</td>
<td>Discontinuation of lipid may be sufficient. Remove catheter. Short-term amphotericin B may be added. Organism ubiquitous on normal skin; requires long-chain fatty acids for growth.</td>
</tr>
<tr>
<td><em>Mucorales</em></td>
<td>Immunosuppression, diabetic acidosis, iron overload</td>
<td>Line infection from skin colonization</td>
<td>Rhinocerebral: sinus, nose, necrotizing vasculitis; central nervous system spread. Pulmonary. Disseminated: any organ.</td>
<td>Culture of sputum or blood on lipid-enriched media (for <em>M furfur</em>, <em>M pachydermatis</em> does not need lipid). Fungus may be seen in buffy coat.</td>
<td>Amphotericin B, surgical debridement; voriconazole and posaconazole may also be effective or can be used as a second agent for combined therapy. Poor prognosis.</td>
</tr>
<tr>
<td><em>Scedosporium</em></td>
<td>Immunosuppression</td>
<td>Inhalation</td>
<td>Disseminated abscesses (lung, brain, liver, spleen, other). Mycetoma (most common).</td>
<td>Culture of pus or tissue.</td>
<td>Surgical drainage; voriconazole or caspofungin. Aggressive surgery. Amputation may be needed.</td>
</tr>
<tr>
<td><em>Minor trauma</em></td>
<td></td>
<td>Cutaneous</td>
<td>Yellow-white granules in pus. Culture.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ground-glass opacity surrounding a pulmonary nodule or mass. The “reversed halo sign” is a focal rounded ground-glass opacity surrounded by a crescent or complete ring of consolidation. Detection of mannose in blood and alveolar fluid is sometimes useful for the diagnosis of aspergillosis and detection of β-D-glucan in blood and alveolar fluid should be available for the diagnosis of other opportunistic pathogens.

Although *Cryptococcus* can cause disease in the immune competent hosts, it is more likely to be clinically apparent and severe in immunocompromised patients. This yeast causes pneumonia and is a prominent cause of fungal meningitis. *Candida* species in these patients cause fungemia and multiorgan disease, with lungs, esophagus, liver, and spleen frequently affected (see the section Disseminated *Candida* Infection earlier).
Opportunistic fungal infections should always be included in the differential diagnosis of unexplained fever or pulmonary infiltrates in immunocompromised patients. These pathogens should be aggressively pursued with imaging studies and with tissue sampling when clues are available. Cryptococcus and Aspergillus may be demonstrated with specific antigen tests. Opportunistic infections are difficult to treat because of the deficiencies in host immune response. Treatment should be undertaken with consultants who are expert in managing these infections. Voriconazole is the drug of choice for many mold infections, but both echinocandins and amphotericin B are good alternatives. Combinations of current antifungal drugs are being tested to improve the outcome. Many children who will have depressed phagocytic and T-cell–mediated immune function for long periods (eg, after hematopoietic stem cell transplants) should receive antifungal prophylaxis during the period of severe immune suppression, most often fluconazole or itraconazole. Very-low-birth-weight infants, who are at high risk for systemic Candida infection, often receive similar prophylaxis for prolonged periods.

Malassezia furfur is a yeast that normally causes the superficial skin infection known as tinea versicolor (see Chapter 15). This organism is considered an opportunist when it is associated with prolonged intravenous therapy, especially when central lines used for hyperalimentation. The yeast, which requires skin lipids for its growth, can infect lines when lipids are present in the infusate. Some species will grow in the absence of lipids. Unexplained fever and thrombocytopenia are common. Pulmonary infiltrates may be present. The diagnosis is facilitated by alerting the bacteriology laboratory to add olive oil to culture media. The infection will respond to removal of the line or the lipid supplement. Amphotericin B may hasten resolution.

**PNEUMOCYSTIS JIROVECI INFECTION**

**ESSENTIALS OF DIAGNOSIS & TYPICAL FEATURES**

- Significant immunosuppression.
- Fever, tachypnea, cough, dyspnea.
- Hypoxemia; diffuse interstitial infiltrates.
- Detection of the organism in specimens of pulmonary origin.

**General Considerations**

Although classified as a fungus on the basis of structural and nucleic acid characteristics, Pneumocystis responds readily to antiprotozoal drugs and antifols. It is a ubiquitous pathogen. Initial infection is presumed to occur asymptptomatically via inhalation, usually in early childhood, and to become a clinical problem upon reactivation during immune suppression. There is evidence that person-to-person transmission may contribute to symptomatic disease in immune compromised individuals. In the normal host clinical disease rarely occurs. A syndrome of afebrile pneumonia similar to that caused by *Chlamydia trachomatis* in normal infants has been described, but its etiology is rarely appreciated. Whether by reactivation or new exposure, severe signs and symptoms occur chiefly in patients with abnormal T-cell function, such as hematologic malignancies and organ transplantation. *Pneumocystis* also causes severe pneumonia in patients with γ-globulin deficiency and is an AIDS-defining illness for children with advanced HIV infection. Prophylaxis usually prevents this infection (see Chapter 41).

Prolonged, high-dose corticosteroid therapy for any condition is a risk factor; onset of illness as steroids are tapered is a typical presentation. Severely malnourished infants with no underlying illness may also develop this infection, as can those with congenital immunodeficiency. The incubation period is usually at least 1 month after onset of immunosuppressive therapy.

Infection is generally limited to the lower respiratory tract. In advanced disease, spread to other organs occurs.

**Clinical Findings**

**A. Symptoms and Signs**

In most patients, a gradual onset of fever, tachypnea, dyspnea, and mild, nonproductive cough occurs over 1–4 weeks. Initially the chest is clear, although retractions and nasal flaring are present. At this stage the illness is nonspecific. Hypoxemia out of proportion to the clinical and
radiographic signs is an early finding; however, even minimally decreased arterial oxygen pressure values should suggest this diagnosis in immunosuppressed children. Tachypnea, nonproductive cough, and dyspnea progress. Respiratory failure and death occur without treatment. In some children with AIDS or severe immunosuppression from chemotherapy or organ transplantation, the onset may be abrupt and progression more rapid. Acute dyspnea with pleuritic pain may indicate the related complication of pneumothorax.

The general examination is unremarkable except for tachypnea and tachycardia; rales may be absent. There are no upper respiratory signs, conjunctivitis, organomegaly, enanthem, or rash.

B. Laboratory Findings

Laboratory findings reflect the individual child’s underlying illness and are not specific. Serum lactate dehydrogenase levels may be elevated markedly as a result of pulmonary damage. In moderately severe cases, the arterial oxygen pressure is less than 70 mm Hg or the alveolar-arterial gradient is less than 35 mm Hg.

C. Imaging

Early chest radiographs are normal. The classic pattern in later films is that of bilateral, interstitial, lower lobe alveolar disease starting in the perihilar regions, without effusion, consolidation, or hilar adenopathy. High-resolution CT scanning may reveal extensive ground-glass attenuation or cystic lesions. Older HIV-infected patients present with other patterns, including nodular infiltrates, lobar pneumonia, cavities, and upper lobe infiltrates.

D. Diagnostic Findings

Diagnosis requires finding characteristic round (6–8 mm) cysts in a lung biopsy specimen, bronchial brushings, alveolar washings, induced sputum, or tracheal aspirates. Tracheal aspirates are less sensitive, but are more rapidly and easily obtained. They are more often negative in children with leukemia compared with those with HIV infection; presumably, greater immunosuppression permits replication of a larger numbers of organisms. Because pneumonia in immunosuppressed patients may have many causes, negative results from tracheal secretions should prompt more aggressive diagnostic attempts. Bronchial washing using fiberoptic bronchoscopy is usually well tolerated and rapidly performed.

Several rapid stains—as well as the standard methenamine silver stain—are useful. The indirect fluorescent antibody method is most sensitive. These methods require competent laboratory evaluation, because few organisms may be present and many artifacts may be found.

Differential Diagnosis

In immunocompetent infants, C trachomatis pneumonia is the most common cause of the afebrile pneumonia syndrome described for Pneumocystis. In older immunocompromised children, the differential diagnosis includes influenza, respiratory syncytial virus, cytomegalovirus, adenovirus, and other viral infections; bacterial and fungal pneumonia; pulmonary emboli or hemorrhage; congestive heart failure; and Chlamydia pneumonieae and M pneumonieae infections. Lymphoid interstitial pneumonitis, which occurs in older infants with untreated HIV infection, is more indolent and the patient’s lactate dehydrogenase level is normal (see Chapter 41). Pneumocystis pneumonia is rare in children who are complying with prophylactic regimens.

Prevention

Children at high risk for developing Pneumocystis infection should receive prophylactic therapy. Children at risk include those with hematologic malignancies, children who for other reasons are receiving intensive chemotherapy or high-dose corticosteroids, and children with organ transplants or advanced HIV infection. All children born to HIV-infected mothers should receive prophylaxis against Pneumocystis starting at age 6 weeks until HIV infection has been ruled out or, if the infant is infected for the first year of life, when the patient’s immunologic status will determine additional prophylaxis (see Chapter 41). The prophylaxis of choice is trimethoprim-sulfamethoxazole (150 mg/m²/d of trimethoprim and 750 mg/m²/d of sulfamethoxazole) for 3 consecutive days of each week. Alternatives to this prophylaxis regimen are described in Chapter 41.

Treatment

A. General Measures

Supplemental oxygen and nutritional support may be needed. The patient should be in respiratory isolation.

B. Specific Measures

Trimethoprim-sulfamethoxazole (20 mg/kg/d of trimethoprim and 100 mg/kg/d of sulfamethoxazole in four divided doses intravenously or orally if well tolerated) is the treatment of choice. Improvement may not be seen for 3–5 days. Duration of treatment is 3 weeks in HIV-infected children. Methylprednisolone (2–4 mg/kg/d in four divided doses intravenously) should also be given to HIV-infected patients with moderate to severe infection (partial oxygen
pressure < 70 mm Hg or alveolar-arterial gradient > 35) for the first 5 days of treatment. The dosage is reduced by 50% for the next 5 days and further by 50% until antibiotic treatment is completed. If trimethoprim-sulfamethoxazole is not tolerated or there is no clinical response in 5 days, pentamidine isethionate (4 mg/kg once daily by slow intravenous infusion) should be given. Clinical efficacy is similar with pentamidine, but adverse reactions are more common. These reactions include dysglycemia, pancreatitis, nephrotoxicity, and leukopenia. Other effective alternatives utilized in adults include atovaquone, trimethoprim plus dapsone, and primaquine plus clindamycin.

**Prognosis**

The mortality rate is high in immunosuppressed patients who receive treatment late in the illness.


The rate of sexually transmitted infections (STIs) acquired during adolescence remains high despite widespread educational programs and increased access to health care. By senior year in high school, nearly half of youth will have had sexual intercourse. The highest age-specific rates for gonorrhea, chlamydia, and human papillomavirus (HPV) infection occur in adolescents and young adults (15–24 years of age). While this age group accounts for only 25% of the sexually active population, these youth account for almost half of the incident STI infections. Adolescents contract STIs at a higher rate than adults because of sexual risk taking, age-related biologic factors, and barriers to healthcare access. In every state and the District of Columbia, adolescents can provide consent for the diagnosis and treatment of STIs without parental consent. Only one state requires the notification of a parent in the event of a positive test; 17 others allow for the disclosure to a parent. In many states, adolescents can also provide consent for human immunodeficiency virus (HIV) counseling and testing. Since individual state laws vary, healthcare providers should be knowledgeable about the legal definitions regarding age of consent and confidentiality requirements in their respective state.

Providers should screen sexually experienced adolescents for STIs and use this opportunity to discuss risk reduction. Since not all adolescents receive regular preventive care, providers should consider using acute care visits to offer screening and education. Health education counseling should be nonjudgmental and appropriate for the developmental level, yet sufficiently thorough to identify risk behaviors because many adolescents may not readily acknowledge engaging in these behaviors.

ADOLESCENT SEXUALITY

The spectrum of sexual behavior includes holding hands and kissing, touching, mutual masturbation, oral-genital contact, and vaginal and anal intercourse. Each has its associated risks. A small, but statistically significant, trend has occurred in the epidemiology of sexual risk taking toward less sexual involvement and later onset of vaginal intercourse. The most recent Youth Risk Behavior Survey (2011) reports that 47% of high school students have had vaginal intercourse; 6% percent of teenagers initiated sex by age 13. Racial and gender differences exist; non-Hispanic black adolescents report a higher prevalence of sexual activity and an earlier age of initiation. Thirty-four percent of students had sex in the 3 months prior to the survey—48% of twelfth-graders and 21% of ninth-graders. Over 15% of students reported having had four or more lifetime sexual intercourse partners. Among those youth currently sexually active, 60% reported that either they or their partner had used a condom during their last sexual intercourse. Paradoxically, condom use decreases with age—63% of tenth-graders report condom use at their last intercourse compared with 56% of twelfth-graders. Substance use contributes to an increase in risky sexual activity and 22% of sexually active youth report that they used alcohol or drugs prior to their last intercourse.

Although there may be variations among groups of teens, oral sex is relatively common in adolescents with 55% and 54% of males and females, respectively, reporting oral sexual activity. Anal intercourse occurs in both heterosexual and homosexual populations. Adolescent development is a time of exploration, including one’s sexual orientation. Frequently, teenagers may not identify themselves as gay, lesbian, or bisexual; thus, sensitive, nonjudgmental history taking is necessary to elicit a history of same-sex partners. Adolescents struggling with their emerging sexual orientation and associated stigma may engage in sexual activity with partners of both sexes or use substances to cope, thereby impairing their decision-making abilities.

Centers for Disease Control and Prevention: Youth risk behavior surveillance—United States 2011. MMWR Surveill Summ 2012;61(SS–4) [PMID: 22673000].
RISK FACTORS

Certain behaviors and experiences put the adolescent at higher risk for developing STIs. These include early age at sexual debut, lack of condom use, multiple partners, prior STI, history of STI in a partner, and sex with a partner who is 3 or more years older. The type of sex affects risk as well, with intercourse being riskier than oral sex. Other risk-taking behaviors associated with STIs in adolescents are smoking, alcohol use, drug use, dropping out of school, pregnancy, and depression.

The adolescent female is especially predisposed to chlamydia, gonorrhea, and HPV infection because the cervix during adolescence has an exposed squamocolumnar junction. The rapidly dividing cells in this area are especially susceptible to microorganism attachment and infection. During early to midpuberty, this junction slowly invaginates as the uterus and cervix mature, and by the late teens to early 20s the squamocolumnar junction is inside the cervix.

PREVENTION OF SEXUALLY TRANSMITTED INFECTIONS

Efforts to reduce STI risk behavior should begin before the onset of sexual experimentation; first by helping youth personalize their risk for STIs and encouraging positive behaviors that minimize these risks, and then by enhancing communication skills with sexual partners about STI prevention, abstinence, and condom use.

Primary prevention focuses largely on education and risk-reduction techniques. It is essential to recognize that a key task of adolescence is developing a sexual identity. Teenagers are sexual beings that will decide if, when, and how they are going to initiate sexual involvement. Healthcare providers should routinely address sexuality as part of well-adolescent checkups. Being open and frank about the risks and benefits of each specific type of sexual activity will help youth think about their decision and the consequences. Although more than 90% of students have been taught about HIV infection and other STIs in school, adolescents still have a difficult time personalizing risk. Discussing prevalence, symptoms, and sequelae of STIs can raise awareness and help teenagers make informed decisions about initiating sexual activity and the use of safer sex techniques. Abstinence is theoretically an effective method of preventing sexually transmitted infections. However, many studies have failed to show sustainable protection. Making condoms available reiterates the message that safer sex is vital to health. Discussing condoms, dental dams, and the proper use of lubrication also facilitates safer sex practices. Condoms may prevent infections with HIV, HPV, gonorrhea, Chlamydia, and herpes simplex virus (HSV). They are probably effective in preventing other STIs as well.

Secondary prevention requires identifying and treating STIs (see the next section on Screening for Sexually Transmitted Infections) before infected individuals transmit infection to others. Access to confidential medical care is critical to this objective. Identifying and treating STIs in partners is essential in limiting the spread of these infections. Cooperation with the state or county health department is valuable, because these agencies assume the responsibility for locating the contacts of infected persons and ensuring appropriate treatment.

Tertiary prevention is directed toward complications of a specific illness. Examples of tertiary prevention would be treating pelvic inflammatory disease (PID) before infertility develops, following the serologic response to syphilis to prevent late-stage syphilis, treating cervicitis to prevent PID, or treating a chlamydial infection before epididymitis ensues.

Finally, preexposure vaccination against hepatitis B, hepatitis A, and HPV reduces the risk for these preventable STIs. All adolescents should have prior or current immunization against hepatitis B (see Chapter 10). However, because hepatitis B infection is frequently sexually transmitted, this vaccine is especially critical for all unvaccinated patients being evaluated for an STI. Hepatitis A vaccination is recommended for all individuals. Preexposure vaccination for HPV will decrease the risk for cervical dysplasia and cervical cancer in females, and decreases the risk for genital warts and both anal and oropharyngeal cancer in males and females, which can occur decades later (see Chapter 10).
The ability of the healthcare provider to obtain an accurate sexual history is crucial in prevention and control efforts. Teenagers should be asked open-ended questions about their sexual experiences to assess their risk for STIs. Questions must be clear to the youth, so choose language that the adolescent will understand. If the adolescent has ever engaged in sexual activity, the provider needs to determine what kind of sexual activity (mutual masturbation or oral, anal, or vaginal sex); whether it has been opposite-sex, same-sex, or both; whether birth control and condoms were used; and whether it has been consensual or forced. During the interview, the clinician should take the opportunity to discuss risk-reduction techniques regardless of the history obtained from the youth.

A routine laboratory screening process is warranted if the patient has engaged in intercourse, presents with STI symptoms, or reports a partner with an STI. The availability of nucleic acid amplification tests (NAATs), primarily for *Chlamydia* and *Neisseria gonorrhoeae*, has changed the nature of STI screening and intervention. These amplification tests are more than 95% sensitive and more than 99% specific, using either urine or cervical/urethral or vaginal swabs. Annual screening of all sexually active females aged 25 years or younger is recommended for *Chlamydia trachomatis* and *Neisseria gonorrhoeae*. Routine chlamydial testing should be considered for all adolescent males, especially for males who have sex with men, have new or multiple sex partners, or are in correctional facilities. For men who have sex with men, consideration should be given to testing oropharyngeal and rectal sites, as asymptomatic infections are common. Use of NAAT is recommended for samples from these sites, but such tests are not currently FDA-approved and providers must locate a laboratory that has performed the necessary validation studies.

Initial screening for urethritis in males begins with a physical examination. A first-catch urine sample (the first 10–40 mL of voided urine collected after not voiding for 2 hours) should be sent for *Chlamydia* and *N gonorrhoeae* testing if there are no signs (urethral discharge or lesions) or symptoms. With signs or symptoms of urethritis, a urethral swab should be sent to test for both *N gonorrhoeae* and *Chlamydia*. A wet mount preparation should then be done on a spun urine sample or from urethral discharge, evaluating for the presence of *Trichomonas vaginalis*. Newer technologies, such as enzyme-linked immunoassays (ELA) and NAAT testing, have become available that allow greater sensitivity and specificity in making the diagnosis of *T vaginalis* in males and females.

Screening asymptomatic females is more complicated because a variety of approaches are available. Generally, either a first-void urine specimen, a cervical swab, or a vaginal swab is used to screen for *Chlamydia* and *N gonorrhoeae* by NAAT. Any vaginal discharge symptoms should include evaluation of wet mount of vaginal secretions to check for bacterial vaginosis and trichomoniasis, and a potassium hydroxide (KOH) preparation to screen for yeast infections. The Papanicolaou (Pap) smear serves to evaluate the cervix for the presence of dysplasia. The first Pap smear should be performed at age 21 years and then every 3 years. HPV typing is not recommended.

In urban areas with a relatively high rate of syphilis and in males who have sex with men, a screening test should be drawn yearly or more frequently if higher risk encounters are more frequent. RPR and HIV antibody tests should be done in all individuals in whom a concomitant STI is present.

The most common symptoms in males are dysuria and penile discharge resulting from urethral inflammation. However, providers should be aware that many urethral infections are asymptomatic. Less common symptoms are scrotal pain, hematuria, proctitis, and pruritus in the pubic region. Signs include epididymitis, orchitis, and urethral discharge. Rarely do males develop systemic symptoms. However, especially for MSM, but for any sexually active adolescent at risk for HIV infection who presents with nonspecific viral symptoms, acute HIV seroconversion illness should be considered in the differential diagnoses. For females, the most common symptoms are vaginal discharge and dysuria. Again, infection may be asymptomatic. Vaginal itching and irregular menses or spotting are also common. Abdominal pain, fever, and vomiting, although less common and specific, are signs of PID. Pain in the genital region and dyspareunia may be present.
Signs that can be found in both males and females with an STI include genital ulcerations, adenopathy, and genital warts.

THE MOST COMMON ANTIBIOTIC-RESPONSIVE SEXUALLY TRANSMITTED INFECTIONS

C. trachomatis and N. gonorrhoeae are STIs that are epidemic in the United States and are readily treated when appropriate antibiotics are administered in a timely fashion.

CHLAMYDIA TRACHOMATIS INFECTION

General Considerations

C. trachomatis is the most common bacterial cause of STIs in the United States. In 2011, over 1.4 million cases in adolescents and young adults were reported to the CDC. C. trachomatis is an obligate intracellular bacterium that replicates within the cytoplasm of host cells. Destruction of Chlamydia-infected cells is mediated by host immune responses.

Clinical Findings

A. Symptoms and Signs

Clinical infection in females manifests as dysuria, urethritis, vaginal discharge, cervicitis, irregular vaginal bleeding, or PID. The presence of mucopus at the cervical os (mucopurulent cervicitis) is a sign of chlamydial infection or gonorrhea. Chlamydial infection is asymptomatic in 75% of females.

Chlamydial infection may be asymptomatic in 70% of males or manifest as dysuria, urethritis, or epididymitis. Some patients complain of urethral discharge. On clinical examination, a clear white discharge may be found after milking the penis. Proctitis or proctocolitis from Chlamydia may occur in adolescents practicing receptive anal intercourse.

B. Laboratory Findings

NAAT is the most sensitive (92%-99%) way to detect Chlamydia. Enzyme-linked immunosorbent assay (ELISA) or direct fluorescent antibody (DFA) tests are less sensitive, but may be the only testing option in some centers.

A cervical or vaginal swab, using the manufacturer’s swab provided with the specific test, or first-void urine specimen, should be obtained. For urine screening, yields of testing are maximized when collecting between 10 and 20 mL of urine and ensuring that patient has not voided for 2 hours. Often a single swab can be used to collect both the Chlamydia and N. gonorrhoeae specimen. To optimize detection of Chlamydia from the cervix, columnar cells need to be collected by inserting the swab in the os and rotating it 360 degrees. NAAT is not licensed for rectal samples but some laboratories have validated testing on rectal specimens for C. trachomatis. Thus, when a rectal specimen is obtained, this must often be evaluated by less sensitive culture methods unless there is access to a laboratory that has validated Chlamydia NAAT for nongenital sites.

The first-void urine test for leukocyte esterase was previously used for screening asymptomatic, sexually active males. Because of the high false-positive rate, this screening technique is not commonly used. In symptomatic males, examination of the urine sediment for white blood cells (WBCs) provides a screen for urethritis, although it is often impractical to perform in a clinical setting.

In general, a first-void urine sample, or urethral swab for NAAT, should be obtained at least annually. Some studies suggest that more frequent screenings—every 6 months—in higher-prevalence populations can decrease the rate of chlamydial infection. For both males and females, testing urine allows for more frequent screening and simplifies screening in large group settings, such as schools and correctional facilities.

Complications

Epididymitis is a complication in males. Reiter syndrome occurs in association with chlamydial urethritis. This should be suspected in male patients who are sexually active and present with low back pain (sacroilitis), arthritis (polyarticular), characteristic mucocutaneous lesions, and conjunctivitis. PID is an important complication in females.

Treatment

Infected patients and their contacts, regardless of the extent of signs or symptoms, need to receive treatment (Table 44–1). Reinfection caused by failure of contacts to receive treatment or the initiation of sexual activity with a new infected partner puts the adolescent at high risk of acquiring a repeat chlamydial infection within several months of the first infection. Because of this increased risk, all infected females and males should be retested approximately 3 months after treatment.


Table 44–1. Treatment regimens for sexually transmitted infections.

<table>
<thead>
<tr>
<th>Pelvic inflammatory disease (PID)</th>
<th>Recommended Regimens</th>
<th>Pregnancya [Category]</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Parenteral therapy regimen A</strong></td>
<td>Cefotetan, 2 g IV every 12 h or Cefoxitin, 2 g IV every 6 h plus Doxycycline, 100 mg IV or orally every 12 h</td>
<td>Safe [B]</td>
</tr>
<tr>
<td>Note: Therapy should be continued for 24–48 h after patient has improved; therapy can then be switched to either oral regimen to complete a 14-d course</td>
<td></td>
<td>Safe [B]</td>
</tr>
<tr>
<td><strong>Parenteral therapy regimen B</strong></td>
<td>Clindamycin, 900 mg IV every 8 h plus Gentamicin, 2 mg/kg IV/IM loading dose, then 1.5 mg/kg IV every 8 h</td>
<td>Safe [B]</td>
</tr>
<tr>
<td>Note: Once clinically improved for 48 h, patients can continue clindamycin, 100 mg PO bid for 14 d total. ( ^{c} )</td>
<td></td>
<td>Safe [B]</td>
</tr>
<tr>
<td><strong>Alternative parenteral regimens</strong></td>
<td>Ampicillin/sulbactam, 3 g IV every 6 h plus Doxycycline, 100 mg IV or orally every 12 h</td>
<td>Safe [A]</td>
</tr>
<tr>
<td><strong>Recommended outpatient regimen</strong></td>
<td>Ceftriaxone, 250 mg IM once plus Doxycycline, 100 mg orally twice a day for 14 d with or without Metronidazole, 500 mg orally twice a day for 14 d</td>
<td>Safe [B]</td>
</tr>
<tr>
<td>Note: Pregnant patients with PID and women with tubo-ovarian abscesses should be hospitalized and given parenteral antibiotics. ( ^{c} )</td>
<td></td>
<td>Contraindicated [D]</td>
</tr>
<tr>
<td><strong>Chlamydia</strong></td>
<td>Azithromycin, 1 g orally as single dose or Doxycycline, 100 mg orally twice a day for 7 d</td>
<td>Safe [B]</td>
</tr>
<tr>
<td><strong>Gonorrhea, uncomplicated</strong></td>
<td>Ceftriaxone, 250 mg IM as single dose or, if not an option plus Azithromycin, 1 g orally as single dose or Doxycycline, 100 mg orally twice a day for 7 d</td>
<td>Safe [B]</td>
</tr>
<tr>
<td>Note: Empiric combination treatment with azithromycin or doxycycline is recommended due improving treatment efficacy and potentially delaying the emergence and spread of resistance to cephalosporins.</td>
<td></td>
<td>Contraindicated [D]</td>
</tr>
<tr>
<td><strong>Cervicitis, urethritis, rectal, pharyngitis</strong></td>
<td>Ceftriaxone, 250 mg IM as single dose or, if not an option plus Azithromycin, 1 g orally as single dose or Doxycycline, 100 mg orally twice a day for 7 d</td>
<td>Safe [B]</td>
</tr>
<tr>
<td>Note: Empiric combination treatment with azithromycin or doxycycline is recommended due improving treatment efficacy and potentially delaying the emergence and spread of resistance to cephalosporins.</td>
<td></td>
<td>Safe [B]</td>
</tr>
<tr>
<td><strong>Gonorrhea, disseminated</strong></td>
<td>Ceftriaxone, 1 g IV or IM every 24 h</td>
<td>Safe [B]</td>
</tr>
<tr>
<td>Note: Treat IV until clinically improved (usually 48 h; then switch to PO); complete at least a 7-d course.</td>
<td></td>
<td>Safe [B]</td>
</tr>
<tr>
<td><strong>Alternative regimens</strong></td>
<td>Cefotaxime, 1 g IV every 8 h or Cefixime, 1 g IV every 8 h</td>
<td>Safe [B]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safe [B]</td>
</tr>
</tbody>
</table>

(Continued)
Table 44–1. Treatment regimens for sexually transmitted infections. (Continued)

<table>
<thead>
<tr>
<th>Oral regimen</th>
<th>Recommended Regimens</th>
<th>Pregnancya [Category]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefixime is no longer a recommended but may be considered as an alternative therapy: if used a test of cure should be done in 7-10 days.</td>
<td>Cefixime, 400 mg orally twice a day or Cefixime suspension, 400 mg by suspension (200 mg/5 mL) orally twice a day</td>
<td>Safe [B] or Safe [B]</td>
</tr>
</tbody>
</table>

| Nongonococcal, nonchlamydial urethritis | Azithromycin, 1 g orally as single dose or Doxycycline, 100 mg orally twice a day for 7 d | Safe [B] or Contraindicated [D] |

| Alternative regimens | Erythromycin base, 500 mg orally four times a day for 7 d or Erythromycin ethylsuccinate, 800 mg orally four times a day for 7 d or Levofloxacin, 500 mg orally once daily for 7 d or Ofloxacin, 300 mg orally twice a day for 7 d | Safe [B] or Safe [B] or Contraindicated [C] or Contraindicated [C] |

| Recurrent or persistent urethritis | Metronidazole, 2 g orally as single dose or Tinidazole, 2 g orally as single dose plus Azithromycin, 1 g orally as single dose (if not used for initial episode) | Safe [B] or Contraindicated [C] or Safe [B] |

| Proctitis, proctocolitis, and enteritis | Ceftriaxone, 250 mg IM plus Doxycycline, 100 mg orally twice a day for 7 d | Safe [B] or Contraindicated [D] |

| Trichomonas vaginalis vaginitis or urethritis | Metronidazole, 2 g orally as single dose or Tinidazole, 2 g orally as single dose | Safe [B] or Contraindicated [C] |

| Alternative regimen | Metronidazole, 500 mg orally twice a day for 7 d | Safe [B] |

| Bacterial vaginosis | Metronidazole, 500 mg orally twice a day for 7 d or Metronidazole, 0.75% gel, 5 g intravaginally once daily for 5 d or Clindamycin cream, 2%, one applicator intravaginally at bedtime for 7 d | Safe [B] or Safe [B] or Safe [B] |

| Alternative regimen | Clindamycin, 300 mg orally twice a day for 7 d or Clindamycin ovule, 100 mg intravaginally once at bedtime for 3 d or Tinidazole, 2 g orally once daily for 2 d or Tinidazole, 1 g orally once daily for 5 d | Safe [B] or Safe [B] or Contraindicated [C] or Contraindicated [C] |

(Continued)
### Table 44–1. Treatment regimens for sexually transmitted infections. (Continued)

<table>
<thead>
<tr>
<th>Vulvovaginal candidiasis</th>
<th><strong>Recommended Regimens</strong></th>
<th><strong>Pregnancy&lt;sup&gt;a&lt;/sup&gt; [Category]</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Butoconazole, clotrimazole, miconazole, terconazole or tioconazole,</strong> intravaginally for 1, 3, or 7 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>or</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Butoconazole sustained-release, 5 g once intravaginally</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>or</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Fluconazole, 150 mg oral tablet, in single dose</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Safe [B]</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Safe [B]</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Contraindicated [C]</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syphilis</th>
<th><strong>Early (primary, secondary, or latent &lt; 1 y)</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Benzathine penicillin G, 2.4 million units IM (for patients &gt; 40 kg)</strong></td>
</tr>
<tr>
<td></td>
<td><strong>or</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Benzathine penicillin G, 50,000 U/kg IM (for patients &lt; 40 kg); up to 2.4 million units in one dose</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Safe [B]</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Safe [B]</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th><strong>Late (&gt; 1-y duration or of unknown duration)</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Benzathine penicillin G, 7.2 million units total, administered as three doses of 2.4 million units IM each at 1-wk intervals</strong></td>
</tr>
<tr>
<td></td>
<td><strong>or</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Benzathine penicillin G, 50,000 U/kg IM (for patients &lt; 40 kg) once a week for 3 consecutive wk; up to 2.4 million units in one dose</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Safe [B]</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Safe [B]</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neurosyphilis</th>
<th><strong>Aqueous crystalline penicillin G, 18–24 million U/d, administered as 3-4 million units IV every 4 h or continuous infusion for 10-14 d</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>or</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Safe [B]</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative regimen (if compliance can be assured)</th>
<th><strong>Procaine penicillin, 2.4 million units IM once daily plus Probenecid 500 mg orally four times a day for 10-14 d</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Safe [B]</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Safe [B]</strong></td>
</tr>
</tbody>
</table>

Epididymitis	**Most likely caused by gonococcal or chlamydial infection**
	**Ceftriaxone, 250 mg IM as single dose**
	**plus**
	**Doxycycline, 100 mg orally twice a day for 10 d**
Most likely caused by enteric organisms; patient > 35 y or allergies to cephalosporins or tetracyclines (or both)	**Levofoxacin, 500 mg orally once daily for 10 d**
	**or**
	**Ofloxacin, 300 mg orally twice a day for 10 d**

C trachomatis infection	**Cervicitis or urethritis**
	**Azithromycin, 1 g orally as single dose**
	**or**
	**Doxycycline, 100 mg orally twice a day for 7 d**
	**Safe [B]**
	**Contraindicated [D]**

Alternative regimen<sup>b</sup>	**Erythromycin, 500 mg orally four times a day for 7 d**
	**or**
	**Erythromycin ethylsuccinate, 800 mg orally four times a day for 7 d**
	**or**
	**Levofoxacin 500 mg orally once daily for 7 d**
	**or**
	**Ofloxacin, 300 mg orally twice a day for 7 d**
	**Safe [B]**
	**Safe [B]**
	**Contraindicated [C]**
	**Contraindicated [C]**

(Continued)
### Table 44–1. Treatment regimens for sexually transmitted infections. (Continued)

<table>
<thead>
<tr>
<th>Granuloma inguinale</th>
<th>Recommended Regimens</th>
<th>Pregnancy\a [Category]</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Doxycycline, 100 mg orally twice a day for 3 wk or and until all lesions have completely healed</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ciprofloxacin, 750 mg orally twice a day for at least 3 wk and until all lesions have completely healed</strong> or</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Erythromycin base, 500 mg orally four times a day for at least 3 wk and until all lesions have completely healed</strong> or</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Azithromycin, 1 g orally once a week for at least 3 wk and until all lesions have completely healed</strong> or</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Trimethoprim–sulfamethoxazole, one double-strength tablet orally twice a day for at least 3 wk and until all lesions have completely healed</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Contraindicated [D]</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Contraindicated [C]</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Safe [B]</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Safe [B]</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Contraindicated [C]</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lymphogranuloma venereum</th>
<th>Recommended Regimens</th>
<th>Pregnancy\a [Category]</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Doxycycline, 100 mg orally twice a day for 21 d</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Erythromycin, 500 mg orally four times a day for 21 d</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Contraindicated [C]</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Safe [B]</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herpes simplex infection</th>
<th>Recommended Regimens</th>
<th>Pregnancy\a [Category]</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>First episode, genital</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Acyclovir, 400 mg orally three times a day for 7–10 d</strong> or</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Acyclovir, 200 mg orally five times a day for 7–10 d</strong> or</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Famiciclovir, 250 mg orally three times a day for 7–10 d</strong> or</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Valacyclovir, 1 g orally twice a day for 7–10 d</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Safe [B]</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Episodic therapy for recurrent genital herpes** |
| **Acyclovir, 400 mg orally three times a day for 5 d** or |
| **Acyclovir, 800 mg orally twice a day for 5 d** or |
| **Acyclovir, 800 mg orally three times a day for 2 d** or |
| **Famiciclovir, 125 mg orally twice a day for 5 d** or |
| **Famiciclovir, 1000 mg orally twice a day for 1 d** or |
| **Famiciclovir, 500 mg once orally, followed by 250 mg orally twice a day for 2 d** or |
| **Valacyclovir, 500 mg orally twice a day for 3 d** or |
| **Valacyclovir, 1 g orally once daily for 5 d** |
| **Safe [B]** |
| **Safe [B]** |
| **Safe [B]** |
| **Safe [B]** |

| **Suppressive therapy for recurrent genital herpes** |
| **Acyclovir, 400 mg orally twice a day** or |
| **Famiciclovir, 250 mg orally twice a day** or |
| **Valacyclovir, 500 mg orally daily (if < 10 recurrences per year; if ≥ 10 recurrences, use 1 g daily)** |
| **Safe [B]** |

\a Pregnancy [Category]:
- **[A]**: Safe during any trimester
- **[B]**: Safe during first trimester
- **[C]**: Not recommended in pregnancy
- **[D]**: Contraindicated

(Continued)
Table 44–1. Treatment regimens for sexually transmitted infections. (Continued)

<table>
<thead>
<tr>
<th>Chancroid</th>
<th>Recommended Regimens</th>
<th>Pregnancya [Category]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chancroid</td>
<td>Azithromycin, 1 g orally as single dose or Ceftriaxone, 250 mg IM once or Ciprofloxacin, 500 mg orally twice a day for 3 d or Erythromycin base, 500 mg orally three times a day for 7 d</td>
<td>Safe [B] Safe [B] Contraindicated [D] Safe [B]</td>
</tr>
</tbody>
</table>

**Human papillomavirus infection**

**External lesions (Patient-applied)**
*Note: Topical therapies usually require weekly treatments for 4 consecutive weeks*

| Podofilox, 0.5% solution; apply twice a day for 3 d; used by patient at home; practitioner needs to demonstrate how compound is applied (to be used only on external lesions) or Imiquimod 5% cream, applied 3 times a week overnight (maximum of 16 wk) or Sinecatechins 15% ointment, applied 3 times daily (maximum of 16 wk) or Podophyllin, 25% in benzoin tincture applied directly to warts; wash off in 1–4 h; weekly [contraindicated for urethral or intravaginal lesions] | Contraindicated [C] Contraindicated [C] Unknown safety Contraindicated [X] |

**External lesions (Provider-applied)**

| Trichloroacetic acid (85%) or bichloracetic acid; apply directly to warts; wash off in 6–8 h; weekly or Cryotherapy: liquid nitrogen, cryoprobe safe laser surgery | Safe Safe |

**Ectoparasitic infections**

| Pubic lice | Permethrin 1% creme rinse: wash off after 10 min or Pyrethrins with piperonyl butoxide: apply, wash off after 10 min | Safe [B] Safe [B] |

**Alternative regimen**

| Malathion 0.5% lotion: wash off after 8–12 h or Ivermectin, 250 mcg/kg repeated in 2 wk | Safe [B] Contraindicated [C] |

| Scabies | Permethrin cream 5%; apply to entire body from the neck down, wash off after 8–14 h or Ivermectin, 200 mcg/kg orally, repeat in 2 wk | Safe [B] Contraindicated [C] |

| Alternative regimen | Lindane (1%): apply to entire body from neck down, wash off after 8 h | Contraindicated [C] |

**IM, intramuscular; IV, intravenous; NAAT, nucleic acid amplification test.**

*FDA use in pregnancy ratings: [A] Controlled studies show no risk. Adequate, well-controlled studies in pregnant women have failed to demonstrate a risk to the fetus in any trimester of pregnancy. [B] No evidence of risk in humans. Adequate, well-controlled studies in pregnant women have not shown increased risk of fetal abnormalities despite adverse findings in animals, in the absence of adequate human studies, animal studies show no fetal risk. The chance of fetal harm is remote but remains a possibility. [C] Risk cannot be ruled out. Adequate, well-controlled human studies are lacking, and animal studies have shown a risk to the fetus or are lacking as well. There is a chance of fetal harm if the drug is administered during pregnancy, but the potential benefits outweigh the potential risk. [D] Positive evidence of risk. Studies in humans, or investigational or postmarketing data, have demonstrated fetal risk. Nevertheless, potential benefits from the use of the drug may outweigh the potential risk. For example, the drug may be acceptable if needed in a life-threatening situation or serious disease for which safer drugs cannot be used or are ineffective. [X] Contraindicated in pregnancy. Studies in animals or humans, or despite adverse findings in animals, or investigational or postmarketing reports have demonstrated positive evidence of fetal abnormalities or risk that clearly outweighs any possible benefit to the patient. Single daily dose (3–5 mg/kg) IV can be substituted.*

*Doxycycline is contraindicated in pregnancy. Alternative therapies during pregnancy which include erythromycin, azithromycin, and amoxicillin are not as effective, but are clinically useful if the recommended regimens cannot be used due to allergy or pregnancy.*

*Bedding and clothing need to be decontaminated by washing in hot water or by dry cleaning. Regimen may be repeated in 1 week if complete response is not achieved.*
NEISSERIA GONORRHOEAE INFECTION

General Considerations

Gonorrhea is the second most prevalent bacterial STI in the United States, where an estimated 700,000 new N gonorrhoeae infections occur each year. While the overall rates have decreased, gonorrhea rates continue to be highest among adolescents and young adults. Among females in 2011, 15- to 19-year-olds and 20- to 24-year-olds had the highest rates of gonorrhea; among males, 20- to 24-year-olds had the highest rate.

Sites of infection include the cervix, urethra, rectum, and pharynx. In addition, gonorrhea is a cause of PID. Humans are the natural reservoir. Gonococci are present in the exudate and secretions of infected mucous membranes.

Clinical Findings

A. Symptoms and Signs

In uncomplicated gonococcal cervicitis, females are symptomatic 23%–57% of the time, presenting with vaginal discharge and dysuria. Urethritis and pyuria may also be present. Mucopurulent cervicitis with a yellowish discharge may be found, and the cervix may be edematous and friable. Other symptoms include abnormal menstrual periods and dyspareunia. Approximately 15% of females with endocervical gonorrhea have signs of involvement of the upper genital tract. Compared with chlamydial infection, pelvic inflammation with gonorrhea has a shorter duration, but an increased intensity of symptoms, and is more often associated with fever. Symptomatic males usually have a yellowish-green urethral discharge and burning on urination, but most males (55%–67%) with N gonorrhoeae are asymptomatic. Both males and females can develop gonococcal proctitis and pharyngitis after appropriate exposure.

B. Laboratory Findings

A first void urine sample or cervical or vaginal swab from females should be sent for NAAT. Culture or NAAT for N gonorrhoeae in males can be achieved with a swab of the urethra or first-void urine. Urethral culture is less sensitive (85%) compared with the 95%–99% sensitivity using NAAT methods on either urethral or urine specimens. Gram stain of urethral discharge showing gram-negative intracellular diplococci indicates gonorrhea in a male.

If proctitis is present, appropriate cultures should be obtained and treatment for both gonorrhea and chlamydial infection given. If oral exposure to gonorrhea is suspected, cultures should be taken and the patient given empiric treatment. If there is access to a laboratory that has validated NAAT for oropharyngeal or rectal specimens, this will substantially increase detection over culture methods.

Differential Diagnosis

Gonococcal pharyngitis needs to be differentiated from pharyngitis caused by streptococcal infection, herpes simplex, adenovirus, and infectious mononucleosis. Chlamydial infection needs to be differentiated from gonococcal infection.

Complications

Disseminated gonococcal infection occurs in a minority (0.5%–3%) of patients with untreated gonorrhea. Hematogenous spread most commonly causes arthritis and dermatitis. The joints most frequently involved are the wrist, metacarpophalangeal joints, knee, and ankle. Skin lesions are typically tender, with hemorrhagic or necrotic pustules or bullae on an erythematous base occurring on the distal extremities. Disseminated disease occurs more frequently in females than in males. Risk factors include pregnancy and gonococcal pharyngitis. Gonorrhea is complicated occasionally by perihepatitis.

Treatment (see Table 44–1)

In 2010, the CDC made two significant changes to gonorrhea treatment recommendations: dual treatment and treatment with ceftriaxone 250 mg IM regardless of anatomic site involved. These changes reflect increasing resistance to cephalosporins; the frequency of coinfection with Chlamydia; and the need to increase consistency of treatment regimens.

CDC guidelines also state that N gonorrhoeae and C trachomatis do not require tests of cure when they are treated with first-line medications, unless the patient remains symptomatic. If retesting is indicated, it should be delayed for 1 month after completion of therapy if NAATs are used. Retesting might also be considered for sexually active adolescents likely to be reinfected. Due to increasing resistance of N gonorrhoeae to cephalosporins, providers considering treatment failure should also obtain a gonorrhea culture to assess for antibiotic resistance. Patients should be advised to abstain from sexual intercourse until both they and their partners have completed a course of treatment. Treatment for disseminated disease may require hospitalization. Quinolones should no longer be used to treat gonorrhea due to high levels of quinolone resistance in all populations in the United States. Failure of initial treatment should prompt reevaluation of the patient and consideration of retreatment with ceftriaxone.


The patient presenting with an STI usually has one or more of the signs or symptoms described in this section. Management considerations for STIs include assessing the patient’s adherence to therapy and ensuring follow-up, treating STIs in partners, and determining pregnancy risk. Treatment of each STI is detailed in Table 44–1.

## CERVICITIS

### General Considerations

In most cases of cervicitis no organism is isolated. The most common causes include *C trachomatis* or *N gonorrhoeae*. HSV, *T vaginalis*, and *Mycoplasma genitalium* are less common causes. Bacterial vaginosis is now recognized as a cause of cervicitis. Cervicitis can also be present without an STI.

### Clinical Findings

#### A. Symptoms and Signs

Two major diagnostic signs characterize cervicitis: (1) purulent or mucopurulent endocervical exudate visible in the endocervical canal or on an endocervical swab and (2) easily induced bleeding with the passage of a cotton swab through the cervical os. Cervicitis is often asymptomatic, but many patients with cervicitis have an abnormal vaginal discharge or postcoital bleeding.

#### B. Laboratory Findings

Although endocervical Gram stain may show an increased number of polymorphonuclear leukocytes, this finding has a low positive predictive value and is not recommended for diagnosis. Patients with cervicitis should be tested for *C trachomatis*, *N gonorrhoeae*, and trichomoniasis by using the most sensitive and specific tests available at the site.

### Complications

Persistent cervicitis is difficult to manage and requires reassessment of the initial diagnosis and reevaluation for possible re-exposure to an STI. Cervicitis can persist despite repeated courses of antimicrobial therapy. Presence of a large ectropion can contribute to persistent cervicitis.

### Treatment

Empiric treatment for both gonorrhea and chlamydial infection is recommended because coinfection is common. If the patient is asymptomatic except for cervicitis, then treatment may wait until diagnostic test results are available (see Table 44–1). Follow-up is recommended if symptoms persist.

Patients should be instructed to abstain from sexual intercourse until they and their sex partners are cured and treatment is completed.


## PELVIC INFLAMMATORY DISEASE

### General Considerations

Pelvic inflammatory disease (PID) is defined as inflammation of the upper female genital tract and may include endometritis, salpingitis, tubo-ovarian abscess, and pelvic peritonitis. It is the most common gynecologic disorder necessitating hospitalization for female patients of reproductive age in the United States. Over 1 million females develop PID annually, 60,000 are hospitalized, and over 150,000 are evaluated in outpatient settings. The incidence is highest in the teen population. Teenage girls who are sexually active have a high risk (1 in 8) of developing PID, whereas women in their 20s have one-tenth the risk. Predisposing risk factors include multiple sexual partners, younger age of initiating sexual intercourse, prior history of PID, and lack of condom use. Lack of protective antibody from previous exposure to sexually transmitted organisms and cervical ectopy contribute to the development of PID. Many adolescents with subacute or asymptomatic infection are never identified.

PID is a polymicrobial infection. Causative agents include *N gonorrhoeae*, *Chlamydia*, anaerobic bacteria that reside in the vagina, and genital mycoplasmas. Vaginal douching and other mechanical factors such as older intrauterine devices or prior gynecologic surgery increase the risk of PID by providing access of lower genital tract organisms to pelvic organs. Recent menses and bacterial vaginosis have been associated with the development of PID.

### Clinical Findings

#### A. Symptoms and Signs

PID may be challenging to diagnose because of the wide variation in the symptoms and signs. No single historical, clinical, or laboratory finding has both high sensitivity and specificity for the diagnosis. Diagnosis of PID is usually made clinically (Table 44–2). Typical patients have lower abdominal pain, pelvic pain, or dysuria. However, the patient may be febrile or have additional systemic symptoms such as nausea or vomiting. Vaginal discharge is variable. Cervical motion tenderness, uterine or adnexal tenderness, or signs of peritonitis are often present. Mucopurulent cervicitis is present in 50% of patients. Tubo-ovarian abscesses can often be detected by careful physical examination (feeling a mass or fullness in the adnexa).
should be screened for HIV infection.

N gonorrhoeae and should be tested for and abdominal ultrasound. All women who have acute PID with PID. Transvaginal ultrasound is more sensitive than ovarian abscesses, which are found in almost 20% of teens Pelvic ultrasonography also is helpful in detecting tubo-

The clinical diagnosis of PID has a positive predictive value of salpingitis as some women may only have endometritis. Undergoing laparoscopy who do not have visual evidence torsion. Endometrial biopsy should be performed in women PID from an ectopic pregnancy, ovarian cysts, or adnexal

C. Diagnostic Studies

Laparoscopy is the gold standard for detecting salpingitis. It is used if the diagnosis is in question or to help differentiate PID from an ectopic pregnancy, ovarian cysts, or adnexal torsion. Endometrial biopsy should be performed in women undergoing laparoscopy who do not have visual evidence of salpingitis as some women may only have endometritis. The clinical diagnosis of PID has a positive predictive value for salpingitis of 65%–90% in comparison with laparoscopy. Pelvic ultrasonography also is helpful in detecting tubo-ovarian abscesses, which are found in almost 20% of teens with PID. Transvaginal ultrasound is more sensitive than abdominal ultrasound. All women who have acute PID should be tested for N gonorrhoeae and C trachomatis and should be screened for HIV infection.

### Table 44–2. Diagnostic criteria for pelvic inflammatory disease.

<table>
<thead>
<tr>
<th>Minimum criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empiric treatment of PID should be initiated in sexually active young women and others at risk for sexually transmitted infections if one or more of the following minimum criteria are present:</td>
</tr>
<tr>
<td>• They are experiencing pelvic or lower abdominal pain and no other cause(s) for the illness can be identified</td>
</tr>
<tr>
<td>• Cervical motion tenderness or uterine tenderness or adnexal tenderness</td>
</tr>
</tbody>
</table>

Additional supportive criteria

- Oral temperature > 38.3°C (101°F)
- Abnormal cervical or vaginal mucopurulent discharge
- Presence of abundant white blood cells on microscopic evaluation of vaginal secretions diluted in saline
- Elevated erythrocyte sedimentation rate or elevated C-reactive protein
- Laboratory documentation of infection with *Neisseria gonorrhoeae* or *Chlamydia trachomatis*

Definitive criteria (selected cases)

- Histopathologic evidence of endometritis on endometrial biopsy
- Tubo-ovarian abscess on sonography or other radiologic tests
- Laparoscopic abnormalities consistent with PID

Adapted, with permission, from Centers for Disease Control and Prevention: Sexually transmitted diseases treatment guidelines 2010. MMWR Recomm Rep 2010;59(RR-12).

### Differential Diagnosis

Differential diagnosis includes other gynecologic illnesses (ectopic pregnancy, threatened or septic abortion, adnexal torsion, ruptured and hemorrhagic ovarian cysts, dysmenorrhea, endometriosis, or mittelschmerz), gastrointestinal illnesses (appendicitis, cholecystitis, hepatitis, gastroenteritis, or inflammatory bowel disease), and geniturinary illnesses (cystitis, pyelonephritis, or urinary calculi).

### Complications

Scarring of the fallopian tubes is one of the major sequelae of PID. After one episode of PID, 17% of patients become infertile, 17% develop chronic pelvic pain, and 10% will have an ectopic pregnancy. Infertility rates increase with each episode of PID; three episodes of PID result in a 73% infertility rate. Duration of symptoms appears to be the largest determinant of infertility. Hematogenous or lymphatic spread of organisms from the fallopian tubes rarely causes inflammation of the liver capsule (perihepatitis) resulting in symptoms of pleuritic right upper quadrant pain and elevation of liver function tests.

### Treatment

The objectives of treatment are both to achieve a clinical cure and to prevent long-term sequelae. There are no differences in short- and long-term clinical and microbiologic response rates between parenteral and oral therapy. PID is frequently managed at the outpatient level, although some clinicians argue that all adolescents with PID should be hospitalized because of the rate of complications. Severe systemic symptoms and toxicity, signs of peritonitis, inability to take fluids, pregnancy, nonresponse or intolerance of oral antimicrobial therapy, and tubo-ovarian abscess favor hospitalization. In addition, if the healthcare provider believes that the patient will not adhere to treatment, hospitalization is warranted. Pregnant women with PID should be admitted to hospital and treated with parenteral antibiotics to reduce the increased risk of morbidity. Surgical drainage may be required for adequate treatment of tubo-ovarian abscesses.

The antibiotic regimens described in Table 44–1 are broad spectrum to cover the numerous microorganisms associated with PID. All treatment regimens should be effective against *N gonorrhoeae* and *C trachomatis* because negative endocervical screening tests do not rule out upper reproductive tract infection with these organisms. Outpatient treatment should be reserved for compliant patients who have classic signs of PID without systemic symptoms. Patients with PID who receive outpatient treatment should be reexamined within 24–48 hours, with phone contact in the interim, to detect persistent disease or treatment failure. Patients should have substantial improvement within 48–72 hours. An adolescent
should be reexamined 7–10 days after the completion of therapy to ensure the resolution of symptoms.


URETHRITIS

General Considerations

The most common bacterial causes of urethritis in males are N gonorrhoeae and C trachomatis. Additionally, T vaginalis, HSV, Ureaplasma urealyticum, and M genitalium cause urethritis. Approximately 15%–25% of nongonococcal, nonchlamydial urethritis can be attributed to either M genitalium or U urealyticum. Coliforms may cause urethritis in males practicing insertive anal intercourse. Mechanical manipulation or contact with irritants can also cause transient urethritis. It is important to recognize that urethritis in both males and females is frequently asymptomatic.

Females often present with symptoms of a urinary tract infection and "sterile pyuria" (no enteric bacterial pathogens isolated), which reflects urethritis caused by the organisms described above.

Clinical Findings

A. Symptoms and Signs

If symptomatic, males present most commonly with a clear or purulent discharge from the urethra, dysuria, or urethral pruritus. Hematuria and inguinal adenopathy can occur. Most infections caused by C trachomatis and T vaginalis are asymptomatic, while 70% of males with M genitalium and 23%–90% with gonococcal urethritis are symptomatic.

B. Laboratory Findings

In a symptomatic male a positive leukocyte esterase test on first-void urine, or microscopic examination of first-void urine demonstrating more than 10 WBCs per high-power field, is suggestive of urethritis. Gram stain of urethral secretions demonstrating more than 5 WBCs per high-power field is also suggestive. Gonococcal urethritis is established by documenting the presence of WBCs containing intracellular gram-negative diplococci. Urethral swab or first-void urine for NAAT should be sent to the laboratory to detect N gonorrhoeae and C trachomatis. Evaluation for T vaginalis should be considered as newer technologies increase the sensitivity and specificity of detecting T vaginalis over wet mount. Microscopic examination of urethral discharge is not a sensitive test. Specific NAAT testing of urine is available for Mycoplasma and Ureaplasma, though it is not often clinically utilized.

Complications

Complications include recurrent or persistent urethritis, epididymitis, prostatitis, or Reiter syndrome.

Treatment (See Table 44–1)

Patients with objective evidence of urethritis should receive empiric treatment for gonorrhea and chlamydial infection, ideally directly observed in the office. Some data suggest better outcomes for treatment of Mycoplasma genitalium with azithromycin. If the infection is unresponsive to initial treatment and the infection is NAAT-negative, trichomoniasis should be ruled out and nongonococcal, nonchlamydial urethritis should be suspected and treated appropriately. Patients should be instructed to return for evaluation if symptoms persist or recur after completion of initial empiric therapy. Symptoms alone, without documentation of signs or laboratory evidence of urethral inflammation, are not a sufficient basis for retreatment. Sexual partners should either be evaluated or treated for gonorrhea and chlamydial infection.

EPIDIDYMITIS

General Considerations

Epididymitis in a male who is sexually active is most often caused by C trachomatis or N gonorrhoeae. Epididymitis caused by Escherichia coli occurs among males who are the insertive partners during anal intercourse and in males who have urinary tract abnormalities.

Clinical Findings

A. Symptoms and Signs

Epididymitis presents as a constellation of pain, swelling, and inflammation of the epididymis. In many cases, the testis is also involved.
Sexually Transmitted Infections

B. Laboratory and Diagnostic Studies
Diagnosis is generally made clinically. Color Doppler ultrasound can help make the diagnosis. Although often not available, radionuclide scanning of the scrotum is the most accurate method of diagnosis. Laboratory evaluation is identical to evaluation for suspected urethritis.

Differential Diagnosis
Acute epididymitis must be distinguished from orchitis due to infarct, testicular torsion, viral infection, testicular cancer, tuberculosis, or fungal infection.

Complications
Infertility is rare, and chronic local pain is uncommon.

Treatment
Empiric therapy (see Table 44–1) is indicated before culture results are available. As an adjunct to therapy, bed rest, scrotal elevation, and analgesics are recommended until fever and local inflammation subside. Lack of improvement of swelling and tenderness within 3 days requires reevaluation of both the diagnosis and therapy. Sex partners should be evaluated and treated for gonorrhea and chlamydial infections.


PROCTITIS, PROCTOCOLITIS, & ENTERITIS

General Considerations
Proctitis occurs predominantly among persons who participate in anal intercourse. Enteritis occurs among those whose sexual practices include oral-fecal contact. Proctocolitis can be acquired by either route depending on the pathogen. Common sexually transmitted pathogens causing proctitis or proctocolitis include C trachomatis (including lymphogranuloma venereum [LGV] serovars), Treponema pallidum, HSV, N gonorrhoeae, Giardia lamblia, and enteric organisms. As many as 85% of rectal infections with N gonorrhoeae and C trachomatis are asymptomatic. The presence of symptomatic or asymptomatic proctitis may facilitate the transmission of HIV infection.

Clinical Findings
A. Symptoms and Signs
Proctitis, defined as inflammation limited to the distal 10–12 cm of the rectum, is associated with anorectal pain, tenesmus, and rectal discharge. Acute proctitis among persons who have recently practiced receptive anal intercourse is most often sexually transmitted. The symptoms of proctocolitis combine those of proctitis, plus diarrhea or abdominal cramps (or both), because of inflamed colonic mucosa more than 12 cm from the anus. Enteritis usually results in diarrhea and abdominal cramping without signs of proctitis or proctocolitis.

VAGINAL DISCHARGE
Adolescent girls may have a normal physiologic leukorrhea, secondary to turnover of vaginal epithelium. Infectious causes of discharge include T vaginalis, C trachomatis, N gonorrhoeae, and bacterial vaginosis pathogens. Candidiasis is a yeast infection that produces vaginal discharge, but is not usually sexually transmitted. Vaginitis is characterized by vaginal discharge, vulvar itching, and irritation, and sometimes with vaginal odor. Discharge may be white, gray, or yellow. Physiologic leukorrhea is usually white, homogeneous, and not associated with itching, irritation, or foul odor. Mechanical, chemical, allergic, or other noninfectious irritants of the vagina may cause vaginal discharge.

1. Bacterial Vaginosis
General Considerations
Bacterial vaginosis is a polymicrobial infection of the vagina caused by an imbalance of the normal bacterial vaginal flora. The altered flora has a paucity of hydrogen peroxide–producing lactobacilli and increased concentrations of anaerobic bacteria (Mobiluncus sp), and Gardnerella vaginalis, Ureaplasma, and Mycoplasma. It is unclear whether bacterial vaginosis is sexually transmitted, but it is associated...
with having multiple sex partners and women with bacterial vaginosis are at increased risk for other STIs.

## Clinical Findings
### A. Symptoms and Signs
The most common symptom is a copious, malodorous, homogeneous thin gray-white vaginal discharge. Patients may report vaginal itching or dysuria. A fishy odor may be most noticeable after intercourse or during menses, when the high pH of blood or semen volatilizes the amines.

## B. Laboratory Findings
Bacterial vaginosis is most often diagnosed by the use of clinical criteria, which include (1) presence of thin, white discharge that smoothly coats the vaginal walls, (2) fishy (amine) odor before or after the addition of 10% KOH (whiff test), (3) pH of vaginal fluid greater than 4.5 determined with narrow-range pH paper, and (4) presence of “clue cells” on microscopic examination. Clue cells are squamous epithelial cells that have multiple bacteria adhering to them, making their borders irregular and giving them a speckled appearance. Diagnosis requires three out of four criteria, although many female patients who fulfill these criteria have no discharge or other symptoms.

## Complications
Bacterial vaginosis during pregnancy is associated with adverse outcomes such as premature labor, preterm delivery, intraamniotic infection, and postpartum endometritis. In the nonpregnant individual, it may be associated with PID and urinary tract infections.

## Treatment
All female patients who have symptomatic disease should receive treatment to relieve vaginal symptoms and signs of infection (see Table 44–1). Pregnant patients should receive treatment to prevent adverse outcomes of pregnancy. Treatment for patients who do not complain of vaginal discharge or itching, but who demonstrate bacterial vaginosis on routine pelvic examination, is unclear. Because some studies associate bacterial vaginosis and PID, the recommendation is to have a low threshold for treating asymptomatic bacterial vaginosis. Follow-up visits are unnecessary if symptoms resolve. Recurrence of bacterial vaginosis is not unusual. Follow-up examination 1 month after treatment for high-risk pregnant patients is recommended.

Males do not develop infection equivalent to bacterial vaginosis and are often asymptomatic. Treatment of male partners has no effect on the course of infection in females although treatment is recommended for female partners.

---

**2. Trichomoniasis**

### General Considerations
Trichomoniasis is caused by *T. vaginalis*, a flagellated protozoan that infects 5–7 million people annually in the United States.

## Clinical Findings
### A. Symptoms and Signs
Fifty percent of females with trichomoniasis develop a symptomatic vaginitis with vaginal itching, a green-gray malodorous frothy discharge, and dysuria. Occasionally postcoital bleeding and dyspareunia may be present. The vulva may be erythematous and the cervix friable.

## B. Laboratory Findings
Mixing the discharge with normal saline facilitates detection of the flagellated protozoan on microscopic examination (wet preparation). This has a sensitivity of only 60%–70% even with immediate evaluation of the slide to achieve optimal results. Culture and NAAT testing are available when the diagnosis is unclear. NAAT tests are sensitive, but expensive, and not readily available. Two FDA-approved, point-of-care antigen-based detection assays for *T. vaginalis* are available, but false positive results are problematic in low disease prevalence populations. Both antigen assays are performed on vaginal secretions and have a sensitivity greater than 83% and a specificity greater than 97%. Trichomonal urethritis frequently causes a positive urine leukocyte esterase test and WBCs on urethral smear.

## Complications
Male partners of females diagnosed with trichomoniasis have a 22% chance of having trichomoniasis. Half of males with trichomoniasis will have urethritis. *Trichomonas* infection in females has been associated with adverse pregnancy outcomes. Rescreening for *T. vaginalis* at 3 months following initial infection is recommended for women due to the high rate of reinfection.

## Treatment
See Table 44–1 for treatment recommendations.

---


3. Vulvovaginal Candidiasis

**General Considerations**

Vulvovaginal candidiasis is caused by *Candida albicans* in 85%–90% of cases. Most females will have at least one episode of vulvovaginal candidiasis in their lifetime, and almost half will have two or more episodes. The highest incidence is between ages 16 and 30 years. Predisposing factors include recent use of antibiotics, diabetes, pregnancy, and HIV. Risk factors include vaginal intercourse, especially with a new sexual partner, use of oral contraceptives, and use of spermicide. This disease is usually caused by unrestrained growth of *Candida* that normally colonizes the vagina asymptptomatically or is infected secondarily from *Candida* present in the GI tract. Recurrences reflect reactivation of colonization.

**Clinical Findings**

**A. Symptoms and Signs**

Typical symptoms include pruritus and a white, cottage cheese-like vaginal discharge without odor. The itching is more common midcycle and shortly after menses. Other symptoms include vaginal soreness, vulvar burning, vulvar edema and redness, dyspareunia, and dysuria (especially after intercourse).

**B. Laboratory Findings**

The diagnosis is usually made by visualizing yeast or pseudohyphae with 10% KOH (90% sensitive) or Gram stain (77% sensitive) in the vaginal discharge. Fungal culture can be used if symptoms and microscopy are not definitive or if disease is unresponsive or recurrent. However, culture is not very specific as colonization is common in asymptomatic females. Vaginal pH is normal with yeast infections.

**Complications**

The only complication of vulvovaginal candidiasis is recurrent infections. Most females with recurrent infection have no apparent predisposing or underlying conditions.

**Treatment**

Short-course topical formulations effectively treat uncomplicated vaginal yeast infections (see Table 44–1). The topically appliedazole drugs are more effective than nystatin. Treatment with azoles results in relief of symptoms and negative cultures in 80%–90% of patients who complete therapy. Oral fluconazole as a one-time dose is an effective oral treatment. Patients should be instructed to return for follow-up visits only if symptoms persist or recur. Six-month prophylaxis regimens have been effective in many female patients with persistent or recurrent yeast infection. Recurrent disease is usually due to *C albicans* that remains susceptible to azoles, and should be treated for 14 days with oral azoles. Some nonalbicans *Candida* will respond to itraconazole or boric acid gelatin capsules (600 mg daily for 14 days) intravaginally. Treatment of sex partners is not recommended, but may be considered for females who have recurrent infection.

**GENITAL ULCERATIONS**

In the United States, young, sexually active patients who have genital ulcers have genital herpes or syphilis. The relative frequency of each disease differs by geographic area and patient population; however, in most areas, genital herpes is the most prevalent of these diseases. More than one of these diseases could be present in a patient with genital ulcers. All ulcerative diseases are associated with an increased risk for HIV infection. Oral and genital lesions may be presenting symptoms during primary HIV infection (acute retroviral syndrome). Less common causes of genital ulceration include chancroid and donovanosis.

Location of the ulcers is dependent on the specific type of sexual behavior. Ulcers may be vaginal, vulvar, cervical, penile, or rectal. Oral lesions may occur concomitantly with genital ulcerations or as stand-alone lesions in HSV infection and syphilis. Each etiologic agent has specific characteristics that are described in the following sections. Lesion pain, inguinal lymphadenopathy, and urethritis may be found in association with the ulcers.

1. **Herpes Simplex Virus Infection**

*(See Also Chapter 40)*

**General Considerations**

HSV is the most common cause of visible genital ulcers. HSV-1 and HSV-2 are viruses that infect primarily humans. HSV-1 is commonly associated with infections of the face, including the eyes, pharynx, and mouth. HSV-2 is most commonly associated with anogenital infections. However, each serotype is capable of infecting either region. HSV-1 infections are frequently established in children by age 5; lower socioeconomic groups have higher infection rates. Both HSV-1 and HSV-2 are STIs. The prevalence of both infections in the United States increases during teen years. Rates of HSV-2 seroprevalence reach 20%–40% in 40-year-olds. HSV infections are chronic as a result of latent infection of sensory ganglia. Latent infection is life long, although many individuals infected with HSV-2 infections have not been diagnosed or have had mild or unrecognized symptoms. Nevertheless, these individuals can still asymptotically shed virus and thereby unknowingly transmit the infection, and they can reactivate the virus to cause clinical infection in themselves.
Clinical Findings

A. Symptoms and Signs

Symptomatic initial genital HSV infection causes vesicles of the vulva, vagina, cervix, penis, rectum, or urethra, which are quickly followed by shallow, painful ulcerations. Atypical presentation of HSV infection includes vulvar erythema and fissures. Urethritis may occur. Initial infection can be severe, lasting up to 3 weeks, and be associated with fever and malaise, as well as localized tender adenopathy. The pain and dysuria can be extremely uncomfortable, requiring sitz baths, topical anesthetics, and occasionally catheterization for urinary retention.

Symptoms tend to be more severe in females. Recurrence in the genital area with HSV-2 is likely (65%–90%). Approximately 40% of individuals infected with HSV-2 will experience more than or equal to six recurrences per year in the early years after initial infection. Prodromal pain in the genital, buttck, or pelvic region is common prior to recurrences. Recurrent genital herpes is of shorter duration (5–7 days), with fewer lesions and usually no systemic symptoms. Commonly, there is decreased frequency and severity of recurrences over time, although approximately one-third of individuals fail to demonstrate this time-dependent improvement. First-episode genital herpes infection caused by HSV-1 is usually the consequence of oral-genital sex. Primary HSV-1 infection is as severe as HSV-2 infection, and treatment is the same. Recurrence of HSV-1 happens in less than 50% of patients, and the frequency of recurrences is much less than in those patients with prior HSV-2 infection.

B. Laboratory Findings

Diagnosis of genital HSV infection is often made presumptively, but in one large series this diagnosis was incorrect for 20% of cases. Several laboratory tests can aid in confirmation of the diagnosis. Viral culture has been the gold standard and can provide results in as few as 48 hours. Culture must be obtained by unroofing an active vesicle and swabbing the base of the lesion. DFA testing can provide results within hours. DFA can also determine serotype, which is important for prognosis. NAAT of viral DNA is becoming a more common diagnostic method.

Differential Diagnosis

Genital HSV infections must be distinguished from other ulcerative STI lesions, including syphilis, chancroid, and lymphogranuloma venereum. Non-STIs might include herpes zoster, Behçet syndrome, or lichen sclerosis. (See next sections on Syphilis and Chancroid.)

Complications

Complications, almost always with the first episode of genital HSV infection, include viral meningitis, urinary retention, transmission to newborns at birth, and pharyngitis. Infection with genital HSV, whether active or not, greatly increases the likelihood of transmitting or acquiring HIV infection within couples discordant for HIV.

Prevention

All patients with active lesions should be counseled to abstain from sexual contact. Almost all patients have very frequent periodic asymptomatic shedding of HSV, and most cases of genital HSV infection are transmitted by persons who are unaware that they have the infection or are asymptomatic when transmission occurs. Reactivation with asymptomatic shedding occurs even in individuals who were asymptotically infected. Individuals with prior HSV infection should be encouraged to use condoms to protect susceptible partners. Antiviral prophylaxis of infected individuals reduces shedding and significantly reduces the chance of transmission to their sexual partners.

Treatment

Antiviral drugs administered within the first 5 days of primary infection decrease the duration and severity of HSV infection (see Table 44–1). The effect of antivirals on the severity or duration of recurrent disease is limited. For best results, therapy should be started with the prodrome or during the first day of the attack. Patients should have a prescription at home to initiate treatment. If recurrences are frequent and cause significant physical or emotional discomfort, patients may elect to take antiviral prophylaxis on a daily basis to reduce the frequency (70%–80% decrease) and duration of recurrences. Treatment of first or subsequent attacks will not prevent future attacks, but recurrence frequency and severity decrease in many individuals over time.

2. Syphilis

General Considerations

Syphilis is an acute and chronic STI caused by infection with Treponema pallidum. The national rate of syphilis has increased annually since reaching an all time low in 2000. Increases have been observed in both genders, but predominantly in males who have sex with men, who now account for 72% of primary and secondary cases reported to
the CDC. In 2011, the CDC reported over 13,970 new cases of primary and secondary syphilis. Men between the ages of 15–24 years have the highest rates of syphilis; 4 out of 10 people with syphilis are also infected with HIV.

### Clinical Findings

#### A. Symptoms and Signs

Skin and mucous membrane lesions characterize the acute phase of primary and secondary syphilis. Lesions of the bone, viscera, aorta, and central nervous system predominate in the chronic phase (tertiary syphilis) (see Chapter 42). Prevention of syphilis is also important because syphilitic mucosal lesions facilitate transmission of HIV.

Primary syphilis usually presents as a solitary chancre at the point of inoculation. Characteristically, the chancre presents as a painless, indurated, nonpurulent ulcer with a clean base and associated nontender, firm adenopathy. The chancre appears on average 21 days (range: 3–90 days) after exposure and resolves spontaneously 4–8 weeks later. Because it is painless, it may go undetected, especially if the lesion is within the vagina, oropharynx, urethra, or rectum. Chancre may occur on the genitalia, anus, or oropharynx. Secondary syphilis occurs 4–10 weeks after the chancre appears, with generalized malaise, adenopathy, and a nonpruritic maculopapular rash that often includes the palms and soles. Secondary syphilis resolves in 1–3 months, but can recur. Verrucous lesions known as condylomata lata may develop on the genitalia. These must be distinguished from genital warts.

#### B. Laboratory Findings

If a patient has a suspect primary lesion, is at high risk, is a contact, or may have secondary syphilis, a nontreponemal serum screen—either RPR or VDRL—should be performed. If the nontreponemal test is positive, then a specific treponemal test—a fluorescent treponemal antibody-absorbed (FTAABS) or microhemagglutination–T pallidum (MHA-TP) test—is done to confirm the diagnosis. An additional diagnostic tool is darkfield microscopy, which can be used to detect spirochetes in scrapings of the chancre base. Darkfield examinations and DFA tests of lesion exudate or tissue are the definitive methods for diagnosing early syphilis.

If a patient is engaging in high-risk sexual behavior or is living in an area in which syphilis is endemic, RPRs should be drawn yearly to screen for asymptomatic infection. Annual RPR testing among high-risk groups is essential to distinguish between early latent syphilis (1 year or less postinfection), late latent syphilis (> 1 year postinfection), or syphilis of unknown duration, as treatment recommendations vary. Syphilis is reportable to state health departments, and all sexual contacts need to be evaluated. Patients also need to be evaluated for other STIs, especially HIV. HIV-infected patients have increased rates of failure with some treatment regimens and treatment of the HIV infection should occur as soon as indicated after diagnosis.

### Complications

Untreated syphilis can lead to tertiary complications with serious multiorgan involvement, including aortitis and neurosyphilis. Transmission to the fetus can occur from an untreated pregnant individual (see Chapters 2 and 42).

### Treatment

See Table 44–1 for treatment recommendations. Patients should be reexamined and serologically evaluated with nontreponemal tests at 6 and 12 months after treatment. If signs or symptoms persist or recur, or patients do not have a fourfold decrease in their nontreponemal test titer, they should be considered to have failed treatment or be reinfected and need retreatment.


### 3. Chancroid

#### General Considerations

Chancroid is caused by Haemophilus ducreyi. It is relatively rare outside of the tropics and subtropics, but is endemic in some urban areas in the United States, and has been associated with HIV infection, drug use, and prostitution. A detailed history, including travel, may prove to be important in identifying this infection.

#### Clinical Findings

##### A. Symptoms and Signs

The typical lesion begins as a papule that erodes after 24–48 hours into an ulcer. The ulcer is painful and has ragged, sharply demarcated edges and a purulent base (unlike syphilis). The ulcer is typically solitary and somewhat deeper than HSV infection. The lesions may occur anywhere on the genitals and are more common in men than in women. Tender, fluctuant (unlike syphilis and HSV) inguinal adenopathy is present in 50% of patients. A painful ulcer in combination with suppurative inguinal adenopathy is very often chancroid.
B. Laboratory Findings

Gram stain shows gram-positive cocci arranged in a boxcar formation. Culture, which has a sensitivity of less than 80%, can be performed on a special medium that is available in academic centers. NAAT testing may improve laboratory diagnosis in areas where such testing is available.

Differential Diagnosis

Chancroid is distinguished from syphilis by the painful nature of the ulcer and the associated tender suppurative adenopathy. HSV vesicles often produce painful ulcers, but these are multiple, smaller, and shallower than chancroid ulcers. Adenopathy associated with initial HSV infection does not suppurate. A presumptive diagnosis of chancroid should be considered in a patient with typical painful genital ulcers and regional adenopathy when the test results for syphilis and HSV are negative.

Treatment

Symptoms improve within 3 days after therapy (see Table 44–1). Most ulcers resolve in 7 days, although large ulcers may take 2 weeks to heal. All sexual contacts need to be examined and given treatment, even if asymptomatic. Individuals with HIV coinfection may have slower rates of healing or treatment failures.


4. Lymphogranuloma Venereum

General Considerations

Lymphogranuloma venereum (LGV), caused by C trachomatis serovars L1, L2, or L3, is generally rare in the United States. The disease is endemic in Southeast Asia, the Caribbean, Latin America, and areas of Africa. Since 2003, an increased number of cases in the United States, Western Europe, and Canada have occurred primarily among men who have sex with men and have been associated with HIV coinfection.

Clinical Findings

A. Symptoms and Signs

Patients with LGV present with a painless vesicle or ulcer that heals spontaneously, followed by development of tender adenopathy, either unilateral or bilateral. A classic finding is the groove sign—an inguinal crease created by concomitant involvement of inguinal and femoral nodes. These nodes become matted and fluctuant and may rupture. LGV can cause proctocolitis with rectal ulceration, purulent anal discharge, fever, tenesmus, and lower abdominal pain, primarily in men who have sex with men.

B. Laboratory Findings

Diagnosis of LGV can be difficult. It generally requires a clinical suspicion based on physical examination findings. Lesion swabs and lymph node aspirates can be tested for Chlamydia by culture, DFA, or NAAT. NAAT is not FDA cleared for rectal specimens. Additional genotyping is necessary to differentiate LGV from non-LGV serovars of Chlamydia. In the absence of laboratory testing to confirm the diagnosis, one should treat for LGV if clinical suspicion is high.

Differential Diagnosis

Differential diagnosis during the adenopathy phase includes bacterial adenitis, lymphoma, and cat-scratch disease. Differential diagnosis during the ulcerative phase encompasses all causes of genital ulcers.

Treatment

See Table 44–1 for treatment recommendations. Despite effectiveness of azithromycin for non-LGV chlamydial infections, there have been no controlled treatment trials to recommend its use in LGV. HIV-infected individuals are treated the same as non-HIV infected individuals, but should be monitored closely to assess response to treatment.


5. Other Ulcerations

Granuloma inguinale, or donovanosis, is caused by Klebsiella granulomatis, a gram-negative bacillus that is rare in the United States, but is endemic in India, the Caribbean, and southern Africa. An indurated subcutaneous nodule erodes to form a painless, friable ulcer with granulation tissue. Diagnosis is based on clinical suspicion and supported by a Wright or Giemsa stain of the granulation tissue that reveals intracytoplasmic rods (Donovan bodies) in mononuclear cells. See Table 44–1 for treatment recommendations. Relapse may occur 6–18 months after apparently effective treatment with a 3-week course of doxycycline.
GENITAL WARTS & HUMAN PAPILLOMAVIRUS

General Considerations

Condylomata acuminata, or genital warts, are caused by HPV, which can also cause cervical dysplasia and cervical cancer. HPV is transmitted sexually. An estimated 20 million people in the United States are infected annually with HPV, including approximately more than 9 million sexually active adolescents and young adults 15–24 years of age. The majority (74%) of new HPV infections occurs among those 15–24 years of age; in females younger than age 25 years, the prevalence ranges between 28% and 46%. It is estimated that 32%–50% of adolescent females having sexual intercourse in the United States have HPV infections, though only 1% may have visible lesions. Thirty to 60% of males whose partners have HPV have evidence of condylomata on examination. An estimated 1 million new cases of genital warts occur every year in the United States.

Although there are almost 100 serotypes of HPV, types 6 and 11 cause approximately 90% of genital warts, and HPV types 16 and 18 cause more than 70% of cervical dysplasia and cervical cancer. The infection is more common in persons with multiple partners and in those who initiate sexual intercourse at an early age.

Pap smears should be obtained starting at age 21 and then every 3 years. More frequent and earlier evaluations are recommended if there are additional risk factors such as coinfection with HIV.

Clinical Findings

A. Symptoms and Signs

For males, verrucous lesions are found on the shaft or corona of the penis. Lesions also may develop in the urethra or rectum. Lesions do not produce discomfort. They may be single or found in clusters. Females develop verrucous lesions on any genital mucosal surface, either internally or externally, and often develop perianal lesions.

B. Laboratory Findings

External, visible lesions have unique characteristics that make the diagnosis straightforward. Condylomata acuminata can be distinguished from condylomata lata (syphilis), skin tags, and molluscum contagiosum by application of 5% acetic acid solution. Acetowhiteness is used to indicate the skin tags, and molluscum contagiosum by application of 5% acetic acid solution. Acetowhiteness is used to indicate the skin tags, and molluscum contagiosum by application of 5% acetic acid solution. It is recommended for females and males aged 9–26 years. Males are protected against genital warts, and anal cancer, which has a significantly increased incidence in males who practice anal sex. The bivalent HPV vaccine is greater than 93% effective in preventing HPV-16 and 18–related cervical dysplasia, but cervical cells. These changes range from atypical squamous cells of undetermined significance (ASCUS) to low-grade squamous intraepithelial lesions (LSIL) and high-grade squamous intraepithelial lesions (HSIL). LSIL encompasses cellular changes associated with HPV and mild dysplasia. HSIL includes moderate dysplasia, severe dysplasia, and carcinoma in situ.

Follow-up for ASCUS is controversial, as only 25% progress to dysplasia, and the remainder are stable or regress. Updated recommendations prefer repeat cytology in 12 months with no HPV DNA testing. If a test for HPV DNA is performed and is positive, then repeat cytology in 12 months is recommended. If the grade of the atypical squamous cells remains uncertain or if there is HSIL, colposcopy is recommended. If LSIL is detected, colposcopy is not needed, but a repeat Pap smear should be done in 1 year, and if LSIL or HSIL are subsequently detected, the patient should be referred for colposcopy for direct visualization or biopsy of the cervix (or both). If a Pap smear shows signs of inflammation only, and concomitant infection such as vaginitis or cervicitis is present, the smear should be repeated after the inflammation has cleared.

Differential Diagnosis

The differential diagnosis includes normal anatomic structures (pearly penile papules, vestibular papillae, and sebaceous glands), molluscum contagiosum, seborrheic keratosis, and syphilis.

Complications

Because genital warts can proliferate and become friable during pregnancy, many experts advocate their removal during pregnancy. HPV types 6 and 11 can cause laryngeal papillomatosis in infants and children. Complications of appropriate treatment include scarring with changes in skin pigmentation or pain at the treatment site. Pap smears with persistent or high-grade dysplasia require biopsy and/or resection, which may result in cervical abnormalities that complicate pregnancy. Cervical cancer is the most common and important sequelae of HPV.

Prevention

The use of condoms significantly reduces, but does not eliminate, the risk for transmission to uninfected partners. The quadrivalent HPV vaccine is 96%–100% effective in preventing HPV-6 and 11–related genital warts and HPV-16 and 18–related cervical dysplasia. It is recommended for females and males aged 9–26 years. Males are protected against genital warts, and anal cancer, which has a significantly increased incidence in males who practice anal sex. The bivalent HPV vaccine is greater than 93% effective in preventing HPV-16 and 18–related cervical dysplasia, but...
has no effect on genital warts. It is recommended only for girls aged 10–25 years (see Chapter 10).

**Treatment**

Penile and external vaginal or vulvar lesions can be treated topically. Treatment may need to occur weekly for 4–6 weeks. An experienced practitioner should treat internal and cervical lesions (see Table 44–1). Treatment may clear the visible lesions, but not reduce the presence of virus, nor is it clear whether transmission of HPV is reduced by treatment.

Warts may resolve or remain unchanged if left untreated or they may increase in size or number. Treatment can induce wart-free periods in most patients. Most recurrences occur within the 3 months following completion of a treatment regimen. Appropriate follow-up of abnormal Pap smears is essential to detect any progression to malignancy.


**OTHER VIRAL INFECTIONS**

1. **Hepatitis (See Also Chapter 22)**

   **General Considerations**

   In the United States, viral hepatitis is linked primarily to three viruses: hepatitis A (HAV), hepatitis B (HBV), and hepatitis C (HCV). Each virus has the potential to be spread through sexual activity. HAV is spread via fecal-oral transmission and oral-anal contact. Both HBV and HCV are spread through contact with blood or body fluids. Sexual transmission of HBV is believed to be much more efficient than that of HCV although recent data has suggested increased transmission of HCV in MSM.

   Universal immunization recommendations for HAV and HBV have contributed to the decline in prevalence of these diseases. However, individuals born before implementation of routine vaccination, especially those in high-risk groups (multiple sexual partners or men who have sex with men), should receive vaccination.

2. **Human Immunodeficiency Virus (See Also Chapter 41)**

   **General Considerations**

   In 2009, 39% of new HIV infections in the United States occurred in youth and young adults aged 13–29 years. Data suggest that adolescents and young adults are less likely to be aware of their HIV infection than older individuals with HIV. Because of the long latency period between infection with HIV and progression to AIDS, it is felt that many HIV-positive young adults contracted HIV during adolescence. CDC incidence data indicate that young men who have sex with men continue to be the highest-risk group, particularly young men of color. Young women account for approximately one-third of the infections in this age group with black and Hispanic women bearing a disproportionate burden of the disease. Risk factors for contracting HIV include a prior STI, infrequent condom use, practicing insertive or receptive anal sex (both males and females), prior genital HSV infection, practicing survival sex (ie, trading sex for money or drugs), intravenous drug or crack cocaine or crystal methamphetamine use, homelessness, and being the victim of sexual abuse (males).

   HIV infection should be considered in all sexually active youth, whether they have sex with males, females, or both. The CDC recommends that all sexually active individuals older than 13 be offered HIV testing at least once. Individual risk factors should then be used to determine the frequency of repeat testing. Opportunities for HIV screening in adolescents should include STI screening or treatment, pregnancy testing, or routine health evaluations. Most states allow adolescents to consent to HIV testing and treatment, but providers should be aware of their particular State’s laws.

   **Clinical Findings**

   **A. Symptoms and Signs**

   Adolescents may be asymptomatic with recent HIV infection or may present with the acute retroviral syndrome, which is evident 2–6 weeks after exposure. The acute clinical syndrome, which occurs in about 50% of patients, is generally indistinguishable from other viral illnesses with respect to fever, malaise, and upper respiratory symptoms. Distinguishing features include generalized lymphadenopathy, rash, oral and genital ulcerations, aseptic meningitis, and thrush. After the acute illness, signs and symptoms may be absent for many years.
B. Laboratory Findings

If acute HIV infection is suspected, HIV testing should be done by HIV RNA PCR testing or HIV DNA PCR testing. Routine serological testing may not be positive for 6 weeks or longer. Viral load values of less than 10,000 copies/mL by RNA PCR may indicate a false positive in this setting and repeat testing would be indicated.

Routine HIV screening may be conducted either by blood or by oral fluids. The testing relies on ELISA screening; a positive ELISA test must be confirmed by Western Blot testing. These methods have high degrees of sensitivity and specificity, but positive predictive values rely on underlying prevalence in individual communities.

Treatment

The most important aspect of identifying adolescents and young adults with HIV infection is linking them to care. Data support the treatment of youth with HIV infection in care settings that provide comprehensive, multidisciplinary care. These settings will be best equipped to provide emotional support, preventative care, risk reduction for contacts, access to research, and guidance on the appropriate timing of antiretroviral therapies.

3. HIV Postsexual Exposure Prophylaxis

Adolescents may present to healthcare providers seeking postexposure prophylaxis (nPEP) following an assault or a high-risk sexual encounter. The risk of acquiring HIV infection through sexual assault or abuse is low but present. The risk for HIV transmission from a positive contact per episode of receptive penile-anal sexual exposure is estimated at 0.5%–3%; the risk per episode of receptive vaginal exposure is estimated at less than 0.1%–0.2%. HIV transmission also occurs from receptive oral exposure, but the risk is unknown. The risk of HIV transmission may be increased in certain conditions: trauma, including bleeding, with vaginal, anal, or oral penetration; site of exposure to ejaculate; HIV viral load in ejaculate; duration of HIV infection in the assaulter or partner; and presence of an STI, prior genital HSV infection, or genital lesions in either partner. The risk is greatly reduced if the contact is successfully receiving antiretroviral therapy.

Healthcare providers that consider offering PEP should take into account the likelihood that exposure to HIV occurred, the potential benefits and risks of such therapy, and the interval between the exposure and initiation of therapy. It will be helpful to know the HIV status of the sexual contact. The CDC provides an algorithm for consideration of PEP. In general, PEP is not recommended when more than 72 hours have passed since exposure. If the patient decides to take PEP, clinical management should be implemented according to published CDC guidelines. Providers should be aware that structural barriers exist to obtaining PEP, and that adolescent assault victims have a high discontinuation rate due to adverse effects from the medication.

4. HIV Preexposure Prophylaxis (PrEP)

In July 2012, the CDC issued interim guidance on the use of PrEP in adult heterosexual couples; interim guidance on its use in adult MSM was released in 2011. The guidance followed the Food and Drug Administration’s approval of a co-formulated HIV antiretroviral (tenofovir and emtricitabine) for use as preexposure prophylaxis based on data from two large international trials. The approval for use does not include individuals under age 18 years. Further research is being conducted to determine safety and acceptability in younger individuals at high risk for HIV acquisition. Providers considering the use of PrEP in a minor at risk of infection would be advised to consult with an experienced prescriber and know the laws of their particular state with respect to providing preventive HIV medication without parental consent.
ECTOPARASITIC INFECTIONS

1. Pubic Lice

*Pthirus pubis*, the pubic louse, lives in pubic hair. The louse or the nits can be transmitted by close contact from person to person. Patients complain of itching and may report having seen the insect. Examination of the pubic hair may reveal the louse crawling around or attached to the hair. Closer inspection may reveal the nit or sac of eggs, which is a gelatinous material (1–2 mm) stuck to the hair shaft. See Table 44–1 for treatment recommendations.

2. Scabies

*Sarcoptes scabiei*, the causative organism in scabies, is smaller than the louse. It can be identified by the classic burrow, which is created by the organism laying eggs and traveling just below the skin surface. Scabies can be sexually transmitted by close skin-to-skin contact and can be found in the pubic region, groin, lower abdomen, or upper thighs. The rash is intensely pruritic, especially at night, erythematous, and scaly. See Table 44–1 for treatment options. Ivermectin is an oral therapeutic option for scabies that may hold particular promise in the treatment of severe infestations or in epidemic situations. When treating with lotion or shampoo, the entire area needs to be covered for the time specified by the manufacturer. One treatment usually clears the infestation, although a second treatment may be necessary. Bed sheets and clothes must be washed in hot water. Both sexual and close personal or household contacts within the preceding month should be examined and treated.


REFERENCES

INTRODUCTION
Twenty-seven million people from the United States travel internationally per year; one-third of them travel to developing nations. Fifty to 70% of travelers become ill during their travel overseas. The number of children traveling with families continues to increase. Children are usually more susceptible to infectious diseases, trauma, and other health problems, which vary with the destination. Preparation for travel with children and infants includes consideration of the destination-specific risks, underlying medical problems, and administration of both routine and travel-related vaccines. The physician involved in pretravel counseling should focus on the issues listed in Table 45–1.

PREPARING CHILDREN AND INFANTS FOR TRAVEL

Travel Plans
Parents and care providers should be advised that travel with children and infants is much more enjoyable when the number of journeys in a single trip is limited; travel time is kept relatively short; and travel delays are anticipated. Planning for delays and other problems should include bringing new or favorite toys or games for distraction, and carrying extra food and drink, changes of clothing, and fever medications.

Medical Care During Travel
It is useful to obtain the names and addresses of local health care providers at the family’s destination. This is available from travel medicine practitioners or from the membership directory of the International Society of Travel Medicine. The International Association for Medical Assistance to Travelers website (www.iamat.org) is another useful resource with a worldwide directory of providers proficient in English. Travel insurance is highly encouraged. Insurance providers not only cover medical care at the destination, but provide 24-hour help lines with information regarding English-speaking physicians and hospitals, and can arrange and pay for evacuation to a medical facility that provides necessary treatment if not available locally. In emergencies, parents and caretakers should take their children to the largest medical facility in the area, which is more likely to have a pediatric unit and trauma services.

Trauma
Trauma is the most common cause of morbidity and mortality in traveling children. Parents should rent larger, safer vehicles, and use car seats whenever possible. However, in many developing countries, car seats are not available, so caretakers may need to travel with their own. Taxis often do not have seatbelts, so it may be necessary to request taxis with seatbelts by calling in advance.

Air Travel
Healthy term infants can travel by commercial pressurized airplane. Children at higher risk during air travel may include premature infants and those with chronic cardiac or pulmonary disease, so appropriate counseling with their specialist is indicated. Many parents request advice regarding sedation of their child during travel. While this is not recommended, the most widely used agent is diphenhydramine. It is advisable to try a test dose prior to travel as idiosyncratic reactions, and overdosing can lead to an anticholinergic syndrome or a paradoxical stimulating effect.

Ear Pain
Children and infants often have pain during ascent and descent of commercial airplanes due to changes in middle ear pressure causing retraction or protrusion of the tympanic membrane. Methods said to alleviate or minimize ear pain
during these times include chewing, swallowing, nursing, and bottle feeding.

**Motion Sickness**

Almost 60% of children will experience motion sickness during travel. While older children have symptoms similar to those in adults (such as nausea, epigastric discomfort, headache, general discomfort), children younger than 5 years may have gait abnormalities as the predominant symptom. Nonpharmacologic strategies include eating a light meal at least 3 hours before travel; avoiding dairy products and foods high in calories, protein, and sodium before travel; sitting in the middle of the back seat or in the front seat if age-appropriate; focusing on a stable object or the horizon; avoiding reading or other visual stimuli; eye closure; fresh air; and limiting excessive head movement. Pharmacologic intervention has not been well studied in children, but if necessary, antihistamines such as diphenhydramine is recommended for children younger than 12 and scopolamine is acceptable for children older than 12 years. These measures, however, are not evidence-based.

**High Altitude**

Acute mountain sickness is as common in children as in adults, but it may go unrecognized due to its subtle presentation, such as unexplained fussiness or change in appetite and sleep patterns. High-altitude pulmonary edema (HAPE) is seen in children traveling to high altitudes; it also occurs in children who live at high altitude, descend for an extended period, and return to altitude. Mild symptoms of altitude sickness can be treated with rest and hydration, or analgesics such as ibuprofen or acetaminophen. High-altitude sickness is milder and resolves much more quickly in children compared to adults, so prophylaxis is usually not required. Acetazolamide has not been studied in children for acute mountain sickness, but it is safe in this age group and has been used for both prophylaxis and treatment. The pediatric dose is 5 mg/kg/d (125 mg maximum) divided twice daily, starting 1 day before ascent, and continued for 2 days at high altitude.

**Medications/First-Aid Kit**

A small medical kit is useful when traveling. Included in this kit should be medications for illnesses that the child experiences at home, trip-specific items, and the usual first-aid kit items (Table 45–2). Medications should be purchased prior to travel, as those obtained at some destinations may be of poor quality or contain toxic substances.

**Table 45–1. Preparing for travel—issues specific to travel as indicated.**

| Vaccinations (indications, safety, and tolerability) |
| Insect precautions (use of protective clothing, repellants, bed nets, insecticides) |
| Malaria chemoprophylaxis (benefits of a particular regimen vs potential adverse reactions) |
| Food and water precautions and environmental risks from waterborne disease |
| Traveler’s diarrhea and self-treatment |
| Health insurance/evacuation insurance |
| Trauma prevention and car seats |
| Access to medical care during travel |
| Altitude sickness |
| Disease outbreaks in destination |
| Climate |
| Jetlag |
| Animal exposure, trauma from animals |
| General health and routine illness |
| Clothing and footwear |
| Copies of prescriptions, vaccination documentation, physician’s letter, list of medications |
| Travel-specific medications |
| Safe sex counseling |
| First-aid kits |
| Crime and safety |

**Table 45–2. First-aid kit for international travel.**

| Medications |
| Malaria prophylaxis |
| Acetaminophen and ibuprofen |
| Antibiotics |
| Antihistamines |
| Topical formulations |
| Hydrocortisone ointment |
| Antibiotic and antifungal ointment |
| Insect repellants |
| Sunscreen |
| Antibacterial soap/alcohol-based hand sanitizer |
| Antiseptic wipes |
| Other |
| Bed nets |
| Thermometer |
| Medicine spoon and cup |
| Oral rehydration salts in powder form |
| Sterile cotton balls, cotton tip applicators |
| Tweezers, scissors, safety pins |
| Water purification tablets |
| Gauze bandages |
| Tape—hypoallergenic, waterproof |
| Triangular bandage/sling/plint |
| Tongue depressor |
| Adhesive bandages |
| Flashlight |
| First-aid book |
| Copies of prescriptions, list of medications, copy of insurance coverage |

VACCINATIONS—ROUTINE CHILDHOOD VACCINES MODIFIED FOR TRAVEL

Many vaccine-preventable diseases remain prevalent in developing countries, and outbreaks still occur in areas where these diseases are considered rare. The schedule for some vaccines may be accelerated for travel, and some vaccines can be given earlier than the recommended age. Vaccination pertaining to children traveling follows the routine vaccination schedule as outlined in Chapter 10. The recommended intervals balance the high-risk age for disease with infant immunologic responses. The recommended minimum interval between doses is listed in Table 45–3. Barriers to some early immunizations are antibody from the mother interfering with an infant’s ability to mount an antibody response, particularly to live vaccines, and the lack of a T-cell–dependent immune response to certain immunogens in those younger than 2 years. For children traveling to highly endemic areas, however, it is preferable to vaccinate prior to the recommended age despite the possible need for repeat vaccination at a later date. Minor febrile illnesses are not a contraindication to routine or travel vaccines and should not lead to their postponement. Live vaccines should be given together or separated by 30 days or more.

**Diphtheria-Tetanus-Acellular Pertussis Vaccine**

Immunization is recommended prior to travel to developing countries because of the greater risk of disease from diphtheria, tetanus, and pertussis. Tetanus risk is high in several areas of the developing world where fecal contamination of soil is extensive. Infants should receive their first diphtheria-tetanus-acellular pertussis (DTaP) at 6 weeks of age for an adequate immune response, with a 4-week interval between the subsequent two doses. Adequate protection is achieved after the third dose. The fourth dose may be given 6–12 months after the third dose provided that the child is 12 months of age or older. Tdap is licensed for children at least 11 years of age. Adolescents and adult caretakers, who are prominent vectors in the spread of pertussis to young children, should receive a single Tdap booster. If more than 5 years has elapsed since the last dose, a booster should be considered for children and adolescents to minimize tetanus risk. Tdap is preferred to Td in children older than 11 years if they have not received Tdap previously.

---

**Table 45–3. Accelerated vaccinations.**

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Minimum Age for First Dose</th>
<th>Minimum Time to Second Dose (wk)</th>
<th>Minimum Time to Third Dose (wk)</th>
<th>Minimum Time for Fourth Dose (wk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMR</td>
<td>12 mo&lt;sup&gt;a&lt;/sup&gt;</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Birth</td>
<td>4</td>
<td>8&lt;sup&gt;b&lt;/sup&gt;</td>
<td>–</td>
</tr>
<tr>
<td>DTP/DTaP</td>
<td>6 wk</td>
<td>4</td>
<td>4</td>
<td>6 mo&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Hib</td>
<td>6 wk</td>
<td>4</td>
<td>4</td>
<td>8&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>IPV</td>
<td>6 wk&lt;sup&gt;e&lt;/sup&gt;</td>
<td>4</td>
<td>4</td>
<td>6 mo&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>MCV</td>
<td>6 wk&lt;sup&gt;e&lt;/sup&gt;</td>
<td>8&lt;sup&gt;e&lt;/sup&gt;</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MPS4</td>
<td>2 y&lt;sup&gt;e&lt;/sup&gt;</td>
<td>5 y&lt;sup&gt;e&lt;/sup&gt;</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PCV</td>
<td>4 wk</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Varicella</td>
<td>12 mo</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>4 wk&lt;sup&gt;f&lt;/sup&gt;</td>
<td>4</td>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>1 y</td>
<td>6 mo</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

DTaP, diphtheria-tetanus-acellular pertussis; DTP, diphtheria-tetanus-pertussis; Hib, *Haemophilus influenzae* type b; IPV, inactivated polio vaccine; MCV, meningococcal conjugate vaccine; MMR, measles-mumps-rubella; MPS4, meningococcal polysaccharide; PCV, pneumococcal conjugate vaccine.

<sup>a</sup>Children traveling abroad may be vaccinated as early as 6 months of age. Before departure, children aged 6–11 months should receive the first dose of MMR vaccine. This will not count toward their series, and they will still require two doses after 12 months of age.

<sup>b</sup>The third dose should be given at least 4 months after the first dose and at a minimum of 6 months of age.

<sup>c</sup>If third dose is given after 4 years, the fourth dose is not required.

<sup>d</sup>Recommended at 6–18 months of age, minimum age 4 years for final dose.

<sup>e</sup>Minimum 6 weeks for Hib-MenCY, 9 months for Menactra (MCV4-D), 2 years for Menveo (MCV4-CRM). Repeat vaccination depends on host status and ongoing risk factors.

<sup>f</sup>This differs from the package insert but is validated by data held by the manufacturer.
Haemophilus influenzae Type b Vaccine

The indications for vaccination of *Haemophilus influenzae* type b (Hib) in children traveling are the same as for the US residents. If previously unvaccinated, infants younger than 15 months should receive at least two doses prior to travel. An accelerated schedule can start at a minimum of 6 weeks of age, with a 4-week interval between the first, second, and third doses, and at least 8 weeks between third and fourth doses.

Hepatitis A Vaccine

Hepatitis A is one of the most common vaccine-preventable illnesses globally, and vaccination should be provided prior to travel to developing countries. In many developing countries, more than 90% of local children have hepatitis A antibodies by 6 years of age. The disease is much less common in children from the developed world, so they are likely to be susceptible when traveling to high-risk areas. Although two doses of the vaccine are recommended 6–12 months apart, a single dose will provide protection during the trip if given at least 2 weeks prior to departure. The earliest age of administration is 1 year in the United States. Immune globulin for hepatitis A (0.02 mL/kg IM) can be given for protection of children younger than 1 year, or if travel will occur within 2 weeks after vaccination. This interferes with MMR and varicella vaccination, so these vaccines should be given 2 weeks prior to immunoglobulin.

Hepatitis B Vaccine

Areas of high endemicity for hepatitis B include most of Asia, the Middle East, Africa, and the Amazon Basin. Unimmunized children are at risk if they receive blood transfusions that have not been screened for HBV surface antigen (HBsAg) or are exposed to unsterilized medical or dental equipment. Children traveling to developing countries should be vaccinated before departure. An accelerated schedule is possible, with the second dose given with a minimum 4-week interval, and the third dose given at least 8 weeks after the second dose. The third dose should not be given before 24 weeks of age.

Influenza Vaccine

Children are at high risk of respiratory infection during travel. The influenza vaccine is recommended for travel during the influenza season, which is between September and March in the Northern Hemisphere, and between April and August in the Southern Hemisphere, and year round in the tropics. The vaccine available in the United States may not protect against new strains circulating in the Southern Hemisphere. Influenza vaccine is recommended for children at least 6 months of age; those younger than 9 years will need two doses of vaccine administered at least 4 weeks apart if they have never previously received the vaccine containing the 2009 H1N1 antigen contained in all influenza vaccines 2010–2011 and beyond. The current vaccines available are: the trivalent or quadrivalent inactivated vaccine (IIV) given intramuscularly, and the quadrivalent live attenuated vaccine (LAIV) given intranasally. It is preferable to be vaccinated at least 2 weeks prior to departure. The annual seasonal influenza vaccine may not be routinely available in the United States from the late spring to early fall, when it may be needed for travelers but may be available at some travel clinics. Revaccination is not recommended for those who will be traveling during April through September and were vaccinated the preceding fall.

Measles-Mumps-Rubella (MMR) Vaccine

While measles is no longer endemic in the United States, it is still prevalent in many parts of the world, including Europe. Children as young as 6 months of age traveling outside the United States are recommended to receive the vaccine, but any doses given prior to 12 months do not count toward an adequate two-dose series, as maternal antibodies may interfere with the immune response. These infants will still require one dose of measles-mumps-rubella (MMR) at 12–15 months of age and a second dose at 4–6 years of age. The second dose is to protect those individuals (~5%) who did not respond the first time. If an accelerated schedule is required, two doses must be separated by minimum of 4 weeks.

Meningococcal Vaccine

The highest risk for meningococcal disease is for travelers to the meningitis belt of Africa (sub-Saharan region) especially during the dry season, and travelers on the Hajj or Umrah pilgrimage to Mecca. Notably meningococcal disease is decreasing in this region due to vaccination against type A. There are two meningococcal vaccines available. The conjugated quadrivalent (MCV4) vaccine is approved for use in persons aged 9–23 months (two doses 8 weeks apart) and 2–55 years (one dose). This vaccine is recommended for those who live or travel to areas with high rates of meningitis. It must be given at least 10 days before international travel. The quadrivalent meningococcal polysaccharide vaccine (MPSV4) is licensed for persons 2 years or older. Both types of vaccines protect against serotypes A, C, Y, and W-135. The duration of protection is 3 years in children and 5 years in adults, and boosters are indicated for ongoing exposure and at risk hosts. Hib-MenCY-TT is the approved vaccination for the age group 6 weeks to 9 months; as it does not provide protection against serotypes A or Y, a previously vaccinated infant reaching the age of 9 months and travelling to endemic areas should be revaccinated with MCV4. MPSV4 should be used for persons older than 56 years. Vaccination
can be considered in children younger than 9 months with risk factors and/or traveling to an endemic area. Meningococcal vaccination is required by the Saudi Arabian government for pilgrims undertaking the Hajj or Umra pilgrimage to Mecca and Medina, because of the international outbreak of Neisseria meningitidis A in 1987 and W-135 in 2000 and 2001. Further information concerning geographic areas recommended for meningococcal vaccination can be obtained from http://www.cdc.gov/travel.

Recently, a new combined Hib and N meningitidis serogroup C conjugate vaccine has been licensed down to 6 weeks of age, but this should not be used for children travelling to the meningitis belt or the Hajj, as serogroup A is the predominant organism in these regions.

**Pneumococcal Vaccine**

*Streptococcus pneumoniae* infection is prevalent worldwide, and children younger than 2 years have the highest rates of disease. The 13-valent pneumococcal conjugate vaccine (PCV 13) is recommended for routine use in children aged 5 years or younger. In addition, the pneumococcal polysaccharide (PPSV23) is recommended for children and adults aged 2 years or older who have certain underlying medical conditions, and for all adults aged 65 years or older. For children aged 5 years or younger who have completed the PCV 7 series, a single additional dose of PCV 13 is recommended. The minimal interval is 4 weeks between the first three doses, and 8 weeks between the third and fourth dose.

**Polio Vaccine**

Transmission of wild-type polio still occurs in regions of Asia and Africa, and vaccine-derived polio is transmitted in other regions. Adequate immunization with inactivated polio vaccine (IPV) should be administered prior to travel to developing countries. The minimum age of administration is 6 weeks of age for IPV. The recommended interval between the first and second dose is 4 weeks as well as between the second and third dose, and 4 weeks between subsequent doses. One additional lifetime dose (a fifth dose) of the IPV should be given to caretakers who are traveling to areas with recent circulating polio.

**Rotavirus Vaccine**

Rotavirus is the most common cause of severe gastroenteritis in infants and young children worldwide, and vaccination with the complete series is recommended prior to travel if age-appropriate. The minimum and maximum age for the first dose is 4 weeks and 14 weeks, 6 days respectively. There is insufficient data on the safety in older infants. The minimum interval between doses is 4 weeks.

**Japanese Encephalitis Vaccine**

Japanese encephalitis (JE) is caused by a flavivirus transmitted by the night-biting Culex mosquito. The risk of contracting severe JE is low, especially for travelers who will have a brief stay in an endemic area, as the infection rate in Culex mosquitoes is 3% or lower, and only 1 in 200 infections with JE leads to neuroinvasive disease. The symptoms of JE include seizures, paralysis, coma, and mental status changes; residual neurological damage occurs in 50% of those with clinical disease. The case fatality rate is 30% in those with severe disease. Most symptomatic cases occur in children younger than 10 years and in the elderly. The areas at risk include most of Asia, Eastern Russia, some areas of the Western Pacific, and the Torres Strait Islands of Australia. The peak season is between April and October, during and just after the rainy season. The JE vaccine reduces the risk for disease among those who will be in a high-risk setting, as determined by the destination, duration, and season of travel. The JE vaccine licensed and available for use in the United States is Ixiaro, an inactivated Vero cell culture-derived vaccine. It was approved in May 2013 for use in children aged 2 months through 16 years, in addition to travelers older than 16 years of age. Other inactivated and live attenuated JE vaccines are manufactured and used in other countries, but are not licensed for use in the United States.

**Rabies Vaccine**

Rabies is found worldwide and contracted through the bite or saliva-contaminated scratch of infected animals. In parts of Africa, Asia, and Central and South America, canine rabies is highly endemic (Rabanet—www.who.int/rabies/rabnet/en/—provides country-specific animal and human data), where 40% of rabies occurs in children younger than 14 years. This increased risk is because children are attracted to animals, are more likely to be bitten, and may not report minor encounters with animals. Most cases of rabies in travelers occur through the bite of an infected dog, cat, or

---

**References**


monkeys (particularly those that live near temples in parts of Asia). Bats, mongooses, and foxes are other animals that can transmit disease.

The rabies vaccine is recommended for travelers to areas in which rabies is endemic and for those who will have occupational or recreational exposure (such as cavers), especially if access to medical care will be limited when traveling. The risk of a bite from a potentially rabid animal is up to 2% for travelers to the developing world. There are three types of inactivated virus vaccine available, which are administered prior to exposure in three doses at days 0, 7, and 21 or 28. Vaccination prior to exposure may not be completely protective; further doses are required if a high-risk bite occurs. The minimum age of administration is 1 year, and duration of protection is 2 years. Malaria chemoprophylaxis with mefloquine or chloroquine should begin 1 month after completing the rabies vaccine series to avoid interference with the immune response.

The manufacturers are currently unable to supply the rabies vaccine for preexposure prophylaxis and it is currently only available from distributors with existing stocks. There is no limitation in the supply of rabies immunoglobulin or vaccine for postexposure prophylaxis.

It is important to counsel travelers about animal avoidance, thorough cleansing of a bite wound with irrigation for at least 5 minutes, and the need for previously vaccinated individuals to seek additional vaccination on days 0 and 3 if an exposure occurs.

In the event of a bite in a nonvaccinated individual, rabies immunoglobulin and four doses of vaccine at days 0, 3, 7, and 14 are required, ideally within 24–48 hours after contact.

Yellow Fever Vaccine

Yellow fever is a flavivirus transmitted by mosquitoes, found in urban and rural areas in sub-Saharan Africa and equatorial South America. Of those infected with the virus, 15% have moderate to severe infection. The licensed 17D strain live attenuated vaccine is highly effective. It must be administered 10 days before travel to an endemic region to allow for the development of protective antibodies. It is required by many countries for reentry after travel to an endemic area, and receipt of the vaccine should be documented in the International Certificate of Vaccination that became available in December 2007 (wwwnc.cdc.gov/travel/yellowbook provides an updated list of countries in which yellow fever vaccination is recommended). For this reason, it is only administered at certified clinics. The vaccine is given subcutaneously, and a booster is required every 10 years (but immunity may be lifelong after a single dose). The recommended minimum age of administration is 9 months, and vaccine should not be administered to at-risk infants younger than 6 months, because of the increased risk of encephalitis (0.5–4 per 1000 vaccinees). The risk of severe vaccine-related disease is also higher in adult caretakers older than 60 years.

The decision to immunize infants who are 6–8 months of age must balance the infant's risk for exposure with the risk for vaccine-associated encephalitis. The vaccine should not be administered to individuals with egg allergy or immunosuppression (including a history of thymus disorder or thymectomy). A letter of medical exemption may be required for these travelers. In addition to age limitations, precautions to vaccination include asymptomatic HIV infection and CD4 T-lymphocyte count of 200–499 cells/mm$^3$, pregnancy, and breast-feeding. Adverse effects include encephalitis (15 per million doses for those aged > 60 years) and multisystem disease (5 per million doses in older people).

Cholera Vaccine

The cholera vaccine is no longer produced in the United States and is no longer recommended for international travel, as the disease is rare in travelers. There are live and killed vaccines available in other countries, but these confer only slight protection.

Typhoid Vaccine

The risk of typhoid fever in travelers is 1–10:100,000, depending on the destination. Areas at risk include South Asia, West and North Africa, South America, and Latin America. Travelers to the Indian subcontinent are at greatest risk.

The vaccine is recommended for long-term travelers traveling to an endemic area, those traveling off standard tourist routes, immunocompromised travelers, those of south Indian ancestry, and patients with cholecystitis. There are two vaccines available: a capsular polysaccharide (ViCPS) and a live attenuated (Ty21a) vaccine. The ViCPS is given intramuscularly 2 weeks prior to travel. The minimum age of administration for this vaccine is 2 years; efficacy is 75% over 2 years. The Ty21a is an oral vaccine given as four doses every second day, which needs to be completed more than 1 week prior to travel to be effective. It is licensed for children older than 6 years; efficacy is 80% over 5 years. It is contraindicated in immunodeficient populations. Antibiotics interfere with growth of the vaccine strain bacteria. Mefloquine, chloroquine, and prophylactic doses of atovaquone-proguanil can be given concurrently with the typhoid vaccine. Fever, headache, and severe local pain and swelling are reported with the ViCPS more frequently than with other vaccines. A recent recall of some lots of the ViCPS vaccine (because of low antigen content) may lead to some vaccine shortages.

Tuberculosis

Tuberculosis risk is increased for travelers, especially when visiting Africa, Asia, Latin America, and the former Soviet Union. The risk is higher in long-term travelers to countries with a high incidence of tuberculosis and is highest among health care workers. Bacillus Calmette-Guérin (BCG) vaccination is
Traveler’s Diarrhea

Diarrhea is one of the most common illnesses in travelers to the developing world. Children are at highest risk, usually having more severe and prolonged illness than adults. Traveler’s diarrhea is defined in adults as three or more loose stools in a 24-hour period, plus either fever, nausea, vomiting, or abdominal cramping. There is no strict definition in child travelers, as the pattern, consistency, and frequency of stools vary during the course of childhood. A useful definition to use for traveling children is a recent change in normal stool patterns, with an increase in frequency (at least three stools per 24 hours) and a decrease in consistency to an unformed state. Most illnesses usually resolve over a 3- to 5-day period and occur in the first 2 weeks of travel. Enterotoxigenic *Escherichia coli* (ETEC) is the most common cause, accounting for up to one-third of cases. Other pathogens implicated are listed in Table 45-4. Counseling prior to travel includes education and caution with food handling and food and water consumption, and provision for self-treatment in the event of illness.

Prevention

Travelers should be advised to seek restaurants with a good safety reputation; to eat hot, thoroughly cooked food; to eat fruits and vegetables that can be peeled by the traveler; and to avoid tap water. They should also avoid ice cubes, fruit juices, fresh salads, unpasteurized dairy products, cold sauces and toppings, open buffets, undercooked foods, and food or beverages from street vendors. They should check the integrity of caps before buying bottled water to avoid bottles filled with tap water. It is also useful to remind the travelers about hand washing after using the toilet and before eating. Families can consider using alcohol-containing hand sanitizers as an alternative to soap and water when access is limited during travel. Pasteurized or boiled milk is considered safe provided that it is stored at the appropriate temperature. It may be necessary to bring powdered milk to mix it with safe drinking water if the quality of milk is questionable. While these measures seem logical and should be recommended, there is little evidence that they prevent traveler’s diarrhea, either in adults or in children.

Chemoprophylaxis & Treatment

The principles of treatment include adequate hydration and a short course of antibiotics when warranted; medical attention should be sought for severe or prolonged disease.

---

**Table 45-4. Pathogens causing traveler’s diarrhea.**

<table>
<thead>
<tr>
<th>Bacterial</th>
<th>Enterotoxigenic <em>Escherichia coli</em> (ETEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enterotoaggregative <em>E. coli</em></td>
</tr>
<tr>
<td></td>
<td><em>Salmonella</em> spp</td>
</tr>
<tr>
<td></td>
<td><em>Shigella</em> spp</td>
</tr>
<tr>
<td></td>
<td><em>Campylobacter jejuni</em></td>
</tr>
<tr>
<td></td>
<td><em>Aeromonas</em> spp</td>
</tr>
<tr>
<td></td>
<td><em>Plesiomonas</em> spp</td>
</tr>
<tr>
<td></td>
<td><em>Vibrio cholera</em></td>
</tr>
<tr>
<td></td>
<td>Non-cholerae <em>Vibrio</em> spp</td>
</tr>
<tr>
<td></td>
<td><em>Enterotoxigenic Bacteroides fragilis</em></td>
</tr>
<tr>
<td>Viral</td>
<td><em>Rotavirus</em></td>
</tr>
<tr>
<td></td>
<td><em>Norovirus</em></td>
</tr>
<tr>
<td></td>
<td><em>Sapovirus</em></td>
</tr>
<tr>
<td>Parasitic</td>
<td><em>Giardia lamblia</em></td>
</tr>
<tr>
<td></td>
<td><em>Cyclospora cayetanensis</em></td>
</tr>
<tr>
<td></td>
<td><em>Cryptosporidium hominis</em></td>
</tr>
<tr>
<td></td>
<td><em>Entamoeba histolytica</em></td>
</tr>
</tbody>
</table>

---
For mild disease, hydration may be all that is necessary, without any diet restriction. This can be achieved with oral rehydration therapy to supplement a regular diet. Packets of dry rehydration powder to be mixed with water are available from pharmacies, either prior to travel or at the destination. If this is not available, parents can be instructed on how to make oral rehydration solution (Table 45–5) or to use a sports drink such as Gatorade as a suitable alternative in older children and toddlers. The breast-fed infant should continue to breast-feed, in addition to receiving oral rehydration therapy.

The vomiting child is at greater risk of dehydration, so aggressive rehydration is crucial. Parents should be reassured that some fluid will be absorbed even if vomiting is ongoing. This is best achieved with small amounts of fluid, given often to prevent further vomiting. The antimotility agent loperamide, which is often used in adults to minimize symptom duration, is not advised for children because of the risk of adverse events such as toxic megacolon, ileus, extrapyramidal signs, hallucinations, and coma. Bismuth subsalicylate decreases the number of unformed stools in adults. Its routine use is not recommended in pediatrics, as aspirin is contraindicated in children younger than 18 years because of the risk of Reye syndrome, and dosing of bismuth has not been established for children.

For children with signs and symptoms of bacterial gastroenteritis, such as fever or blood in the stool, empiric antibiotic therapy should be considered. The drug of choice in children is azithromycin (10 mg/kg orally once a day for 3 days). It is available in a powdered form that can be reconstituted and stored without refrigeration. It is a good choice because of the growing resistance of many gastroenteritis-causing bacteria to ciprofloxacin. There are no pediatric trials of empiric azithromycin, so the dosing recommendations are based on pharmacokinetic data and studies involving the treatment of diarrhea in Africa and Thailand. Ciprofloxacin is currently not recommended for treatment of traveler’s diarrhea in children, though it is used for treatment in adults.

Trimethoprim-sulfamethoxazole (TMP-SMX) has been used to treat traveler’s diarrhea in children but is no longer recommended because of increasing antibiotic resistance. Rifaximin, a nonabsorbable derivative of rifamycin, is effective in treating ETEC and other noninvasive enteropathogens. Since it is not absorbed, high concentrations are achieved in the intestinal lumen and it has a good safety profile. It is licensed for patients 12 years of age and older at a treatment dose of 200 mg three times a day for 3 days.

The use of prophylactic antibiotics is not recommended because of the risk of adverse events to prevent a disease of limited morbidity, as well as the effect of potential for emergence of antibiotic resistance. Rifaximin, however, is showing promise in adult studies as a chemoprophylactic agent, but it is expensive and requires further study in pediatrics. Probiotics are of unproven benefit for the prevention of traveler’s diarrhea, with contradictory reports of efficacy in adult studies.

### Table 45–5. Recipe for oral rehydration solution.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt</td>
<td>¼ teaspoon (1.25 cc)</td>
</tr>
<tr>
<td>Bicarbonate of soda (if not available)</td>
<td>¼ teaspoon (1.25 cc)</td>
</tr>
<tr>
<td>Sugar</td>
<td>2 tablespoons (30 cc)</td>
</tr>
<tr>
<td>Water</td>
<td>1 L</td>
</tr>
</tbody>
</table>

*If bicarbonate of soda is not available, substitute an additional ¼ teaspoon (1.25 cc) of salt.

---

**MALARIA PROPHYLAXIS & PREVENTION**  
*(SEE ALSO CHAPTER 43)*

Malaria is the most common preventable infectious cause of death among travelers, and a common cause of fever in the returned traveler. Children comprise 20% of imported cases of malaria. It is largely a preventable disease in travelers through personal protective measures and chemoprophylaxis. However, no method is 100% protective. The risk of acquiring malaria varies with the season, climate, altitude, number of mosquito bites, and destination, with the highest risk in Oceania, Africa, the Indian subcontinent, and the Amazon.

---

#### Prevention of Mosquito Bites

Malaria is transmitted via the night-biting *Anopheles* mosquitoes. Mosquito bites are avoided by staying in well-screened and air-conditioned rooms from dusk until dawn, wearing clothing covering arms and legs, and avoiding scented soaps, shampoos, and perfumes. Mosquito nets are highly effective and can be used over beds, cribs, playpens, car seats, and strollers. Repellants containing 25%–50% DEET are also recommended, as this concentration confers 5–8 hours of protection. When used appropriately, DEET is safe for infants and children older than 2 months. It should not be applied to children’s hands, mouth, or near the eyes, and is best washed off upon returning indoors. There have
been case reports of seizures and toxic encephalopathy with use of DEET, but these cases occurred with misapplication. Icaridin (formerly picaridin) is an alternative to DEET available in many countries. A concentration of 20% icaridin is as effective as DEET-containing products. It lacks the corrosiveness and greasy texture of DEET, and has been advised as safe for use in children by the American Academy of Pediatrics. However, because it is relatively new, it lacks the safety profile of DEET, especially for children. PMD is a plant-based repellant derived from lemon eucalyptus, and at a 30% concentration is of equal efficacy to DEET. It may be used on children older than 6 months. It is considered safe if directions are followed and has been advocated for use by the Centers for Disease Control. Clothing and bed nets may be sprayed with insecticides such as permethrin, which confers protection for 2–6 weeks, even with regular washing. Further studies are needed to establish its safety profile in children. The combination of DEET every 8–12 hours and permethrin on clothing is over 99% effective in prevention of mosquito bites.

## Chemoprophylaxis

Prophylactic medications suppress malaria by killing asexual blood stages of the parasite before they cause disease, so protective levels of medication must be present in the blood before developing parasites are released from the liver. Therefore, it is necessary to start prophylaxis before the first possible exposure and to continue it for a sufficient period after return to a safe area.

The choice of antimalarial depends on the age of the child, resistance patterns, restrictions on the agent of choice, the child’s ability to swallow tablets, the frequency of dosing, cost, availability of medication, and access to a compounding pharmacy for adequate dispensing of medication. For most children, once-weekly mefloquine is preferable and is approved for use in children of any age. Atovaquone/proguanil is available in pediatric dosing, although only in tablet formulation. It is currently approved in most countries for children weighing greater than 5 kg. Doxycycline is another alternative but should be used only in children 8 years or older because of the risk of teeth staining. Chloroquine is the drug of choice in areas of chloroquine sensitivity (Mexico, Hispaniola, Central America, west and north of the Panama Canal, and parts of North Africa, the Middle East, and China). Pediatric and adult dosing, side effects, and other information about malaria chemoprophylaxis are in Table 45–6.

Antimalarial medications (with the exception of atovaquone/proguanil) are bitter, so it may be necessary to grind the medication into a very sweet food, such as chocolate syrup or sweetened condensed milk. Infants may need to have their medication prepared by a compounding pharmacy, where the appropriate dose can be placed in a gelatin capsule, which can then be opened by the caregiver and mixed into food or liquid.


## VISITS TO FRIENDS & RELATIVES (VFR) IN HIGH-RISK AREAS

Individuals who return to their home country are at the highest risk of travel-related infectious diseases. Sixty percent of malaria cases and over 75% of typhoid cases occur in these travelers, and VFR children are at highest risk of hepatitis A. The reasons for this include the following:

- Longer stays and increased likelihood of pregnancy or young age in the traveler
- Travel to remote rural areas
- Intimate contact with the local population
- Decreased likelihood of seeking (or following) pretravel advice because of familiarity with their home country
- Assumed immunity to infections
- Sociocultural barriers—for example, language barriers, prohibitive cost of vaccines, and medications if lower socioeconomic status, belief systems of illness
- Eating and sleeping in local households, where hygiene may be suboptimal
- Use of high-risk forms of transportation

Thus, certain issues need to be emphasized when discussing travel for VFRs. Given the risk of waterborne infections, visiting families should boil water and milk if other safe drinking water is expensive; consume only piping hot foods and beverages; and follow proper hand-washing techniques at all times. Vaccination recommendations and malaria prophylaxis are of greater importance in VFRs. Similarly, VFRs provide greater opportunity for contracting vaccine-preventable diseases, such as typhoid, rabies, yellow fever, and meningococcal infection. They are associated with a higher risk of exposure to people with tuberculosis, so for this reason PPD testing is recommended after return from travel.
Table 45–6. Malaria prophylaxis.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Usage</th>
<th>Adult Dose</th>
<th>Pediatric Dose</th>
<th>Directions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atovaquone/proguanil</td>
<td>Prophylaxis in areas with chloroquine-resistant or mefloquine-resistant <em>Plasmodium falciparum.</em></td>
<td>Adult tabs contain 250 mg atovaquone and 100 mg proguanil hydrochloride.</td>
<td>Pediatric tabs contain 62.5 mg atovaquone and 25 mg proguanil hydrochloride.</td>
<td>Begin 1–2 d before travel to malarious areas. Take daily at the same time each day while in the area and for 7 d after leaving such areas.</td>
<td>Contraindicated in persons with severe renal impairment (creatinine clearance &lt; 30 mL/min). Atovaquone/proguanil should be taken with food or a milky drink.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 adult tab orally, daily.</td>
<td></td>
<td></td>
<td>Not recommended for prophylaxis for children &lt; 5 kg, pregnant women, and women breast-feeding infants weighing 5 kg, but consider if drug-resistant area (call CDC).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5–8 kg: 1/2 pediatric tablet daily</td>
<td>&gt; 8–10 kg: 3/4 pediatric tablet daily</td>
<td></td>
<td>Do not take with tetracycline, metoclopramide, rifampin, or rifabutin (all reduce atovaquone concentration).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 10–20 kg: 1 pediatric tablet daily</td>
<td>&gt; 20–30 kg: 2 pediatric tablets daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt; 30–40 kg: 3 pediatric tablets daily</td>
<td>&gt; 40 kg: 1 adult tablet daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroquine phosphate</td>
<td>Prophylaxis only in areas with chloroquine-sensitive <em>P falciparum.</em></td>
<td>150 and 300 mg base tabs (300 and 500 mg salt) orally, once per week (any age or size).</td>
<td>5 mg/kg base (8.3 mg/kg salt) orally, once per week, up to max adult dose. Tabs not scored.</td>
<td>Begin 1–2 wk before travel to malarious areas. Take weekly on the same day of the week while in the area and for 4 wk after leaving such areas.</td>
<td>Contraindicated in persons with prior retinal or visual field changes. May exacerbate psoriasis. Bitter taste. Interferes with rabies vaccine response. Not contraindicated in pregnancy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Prophylaxis in areas with chloroquine-resistant or mefloquine-resistant <em>P falciparum.</em></td>
<td>100 mg orally, daily.</td>
<td>8 y of age: 2 mg/kg up to adult dose of 100 mg/d. Syrup available.</td>
<td>Begin 1–2 d before travel to malarious areas. Take daily at the same time each day while in the area and for 4 wk after leaving such areas.</td>
<td>Contraindicated in children &lt; 8 y of age and pregnant women. May decrease oral contraceptive efficacy. Photosensitivity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxychloroquine sulfate</td>
<td>An alternative to chloroquine in areas with chloroquine-sensitive <em>P falciparum.</em></td>
<td>310 mg base (400 mg salt) orally, once per week.</td>
<td>5 mg/kg base (6.5 mg/kg salt) orally, once per week, up to max adult dose. Tabs not scored.</td>
<td>Begin 1–2 wk before travel to malarious areas. Take weekly on the same day of the week while in the area and for 4 wk after leaving such areas.</td>
<td></td>
</tr>
</tbody>
</table>
### Mefloquine

<table>
<thead>
<tr>
<th>Dosage</th>
<th>Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>228 mg base (250 mg salt) orally, once per week.</td>
<td>Begin 1–2 wk before travel to malarious areas. Take weekly on the same day of the week while in the area and for 4 wk after leaving such areas (start 2 wk prior if want to evaluate for side effects that may necessitate change).</td>
</tr>
<tr>
<td>5–9 kg: 4.6 mg/kg base (5 mg/kg salt) orally, once per week. Tabs scored.</td>
<td></td>
</tr>
<tr>
<td>10–19 kg: ¾ tab once per week</td>
<td></td>
</tr>
<tr>
<td>20–30 kg: ½ tab once per week</td>
<td></td>
</tr>
<tr>
<td>31–45 kg: ¼ tab once per week</td>
<td></td>
</tr>
<tr>
<td>&gt; 46 kg: 1 tab once per week</td>
<td></td>
</tr>
</tbody>
</table>

Contraindicated in persons allergic to mefloquine or related compounds (eg, quinine and quinidine) and in persons with active depression, a recent history of depression, generalized anxiety disorder, psychosis, schizophrenia, other major psychiatric disorders, or seizures. Use with caution in persons with psychiatric disturbances. Not recommended for persons with cardiac conduction abnormalities. Not contraindicated in pregnancy. Bitter taste.

### Primaquine (posttravel prophylaxis for long-term Plasmodium vivax and Plasmodium ovale exposure)

<table>
<thead>
<tr>
<th>Dosage</th>
<th>Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mg base (52.6 mg salt) orally, once per day for 14 d after departure from the malarious area.</td>
<td>Primaquine presumptive anti-relapse therapy is administered for 14 d after the traveler has left a malarious area. When chloroquine, doxycycline, or mefloquine is used for prophylaxis, primaquine is usually taken during the last 2 wk of postexposure prophylaxis, but may be taken immediately after those medications are completed. When atovaquone/proguanil is used for prophylaxis, primaquine may be taken either during the final 7 d of atovaquone/proguanil and then for an additional 7 d, or for 14 d after atovaquone/proguanil is completed.</td>
</tr>
<tr>
<td>0.6 mg/kg base (1.0 mg/kg salt) up to adult dose orally, once per day for 14 d after departure from the malarious area.</td>
<td>Indicated for persons who have had prolonged exposure to P vivax and P ovale or both (eg, missionaries or peace corps volunteers). All persons who take primaquine should have a documented normal G6PD (glucose-6-phosphate dehydrogenase) level prior to starting this medication. Contraindicated in persons with G6PD deficiency. Also contraindicated during pregnancy and lactation unless the breast-fed infant has a documented normal G6PD level. Also an option for prophylaxis in special circumstances.</td>
</tr>
</tbody>
</table>

Primaquine presumptive anti-relapse therapy is administered for 14 d after the traveler has left a malarious area. When chloroquine, doxycycline, or mefloquine is used for prophylaxis, primaquine is usually taken during the last 2 wk of postexposure prophylaxis, but may be taken immediately after those medications are completed. When atovaquone/proguanil is used for prophylaxis, primaquine may be taken either during the final 7 d of atovaquone/proguanil and then for an additional 7 d, or for 14 d after atovaquone/proguanil is completed.

Indicated for persons who have had prolonged exposure to *P. vivax* and *P. ovale* or both (e.g., missionaries or peace corps volunteers). All persons who take primaquine should have a documented normal G6PD (glucose-6-phosphate dehydrogenase) level prior to starting this medication. Contraindicated in persons with G6PD deficiency. Also contraindicated during pregnancy and lactation unless the breast-fed infant has a documented normal G6PD level. Also an option for prophylaxis in special circumstances.
HIV & SEXUALLY TRANSMITTED DISEASES
(SEE ALSO CHAPTER 41)

Adolescent travelers may partake in high-risk activities while traveling, putting them at risk of human immunodeficiency virus (HIV) and other sexually transmitted diseases (STDs). The adolescent traveler should be counseled about the risks of STDs and abstinence or safe sexual practices. Bringing a supply of latex condoms may be appropriate along with instruction on their proper use. They should be advised that HIV and STDs can also be contracted via oral sex and in nonsexual activities such as intravenous drug use. They should avoid tattoos, pedicures, and dental care while traveling. There may be a risk of HIV and other virus transmission through injections and blood transfusion, as many developing countries do not have adequate blood banking and transfusion protocols. In fact, 10%–20% of countries have inadequate screening.

Antiretroviral therapy is recommended if there is exposure to a known HIV-positive contact, and may be considered if the source is unknown. The usual recommended regimens are outlined in Chapter 41.

Further information on HIV can be found in Chapter 41.

FEVER IN THE RETURNED TRAVELER

More than half of travelers to the developing world experience a health-related travel problem during their trip; 8% require medical attention on return. The majority will develop common medical problems, such as upper respiratory tract infections, pneumonia, urinary tract infections, and otitis media, with the remainder developing travel-related infections. The most common of these diseases are malaria (21%), acute traveler’s diarrhea (15%), dengue fever (6%), and typhoid/enteric fever (2%). Children who travel with caretakers visiting friends and relatives are at greatest risk. New pathogens and the changing epidemiology of some infectious diseases pose new risks to travelers—such as avian influenza, multidrug-resistant TB, chikungunya virus, and leishmaniasis.

Symptomatic returning travelers should be urgently and thoroughly evaluated for travel-related illness to prevent serious life-threatening disease and transmission to close contacts. The initial evaluation should include questions directed toward the travel itinerary, with dates of arrival and departure, specific activities, rural versus urban location, and accommodations. Specific information should be obtained regarding fresh water contact (eg., schistosomiasis, leprospirosis in some areas), sexual contacts, animal exposures, activities or hobbies, ill person contacts, and sources of food and water. A complete medication and vaccination history should be sought. It should be noted that despite malaria chemoprophylaxis and protection against mosquitoes, no regimen is 100% protective. A thorough physical examination should include dermatologic examination, eye examination for scleral icterus, conjunctival injection or petechiae, and evaluation for hepatosplenomegaly or lymphadenopathy. Routine laboratory evaluation includes a complete blood count, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), serum chemistry, liver enzyme profile, and urinalysis. The laboratory evaluation should also focus on diseases that are life-threatening, with thick and thin smears for malaria (ideally three that are 12 hours apart), and blood cultures for typhoid fever. Specific testing should be done as directed by findings on history, physical examination, and preliminary laboratory test findings (Table 45–7). It may be necessary to seek the opinion of individuals with experience in international travel medicine, if available.

Fever is the most common complaint in a child who becomes ill after international travel. The most common travel-related infectious causes of fever are outlined as follows.

Malaria

Malaria is a medical emergency, as a child infected with *Plasmodium falciparum* may progress from relatively minor symptoms to death in less than 24 hours. A child with malaria presents with paroxysmal high fevers, sweats, rigors, headaches, and malaise. The presence of nausea, vomiting, and abdominal pain in pediatric malaria may mimic acute gastroenteritis. Patients infected with *P falciparum* usually present within 2 months of exposure, whereas patients with *Plasmodium vivax* and *Plasmodium ovale* can present months to years after infection.

A more detailed description of the symptoms of malaria, diagnosis, and treatment is presented in Chapter 43.

Dengue Fever

Dengue fever is an important tropical disease frequently encountered in travelers. The incubation period is 3–14 days; therefore, dengue should be considered for a febrile illness within the first 2 weeks after return from travel. It is acquired more commonly during urban travel in the
daylight hours because of the biting preference of the vector *Aedes aegypti* mosquito. The classic presentation is high fever, retro-orbital headache, myalgias, arthralgias, diffuse blanching maculopapular, or petechial rash. It is possible for children to present with fever and irritability alone. Further information about dengue fever is presented in Chapter 40.

### Typhoid Fever

Typhoid fever, which is a relatively common cause of fever in children after travel, is caused by *Salmonella typhi*. A common presentation of typhoid fever is with fever, headache, abdominal pain, and initial diarrhea followed by constipation. Enteric fever has a similar presentation and is caused by other serovars of *Salmonella*. A person with typhoid fever usually appears toxic, and on examination may have hepatosplenomegaly and rarely rose spots. Typhoid fever is discussed in Chapter 42.

Information about other diseases sometimes occurring in the returned traveler is provided in Table 45–8 and Chapter 43.

#### Table 45–7. Laboratory evaluations to consider for fever in the returned traveler.

<table>
<thead>
<tr>
<th>Routine</th>
<th>Hematologic</th>
<th>Complete blood count and differential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thick and thin blood smear</td>
<td>(ideally collect three at 12-h intervals)</td>
</tr>
<tr>
<td></td>
<td>Sedimentation rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-reactive protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrolytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liver function tests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blood culture</td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td>Urinalysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Culture</td>
<td></td>
</tr>
<tr>
<td>Specific to presentation</td>
<td>Hematologic</td>
<td>Serologies for specific pathogens</td>
</tr>
<tr>
<td>Stool</td>
<td>Bacterial culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Giardia and Cryptosporidium antigen test</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Clostridium difficile</em> toxin (if antibiotic exposure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ova and parasite examination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special studies (eg, stool for <em>Entamoeba histolytica</em> antigen, special stains)</td>
<td></td>
</tr>
<tr>
<td>Cerebrospinal fluid</td>
<td>Cell count with differential, protein, glucose, culture, freeze extra sample</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antibody and polymerase chain reaction tests as appropriate</td>
<td></td>
</tr>
<tr>
<td>Imaging studies</td>
<td>Chest radiography and abdominal ultrasound imaging as appropriate</td>
<td></td>
</tr>
<tr>
<td>Other specialized tests</td>
<td>Placement of PPD (purified protein derivative)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morning gastric aspirates or sputum for AFB (acid-fast bacilli) stain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bronchoscopy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigmoidoscopy, colonoscopy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skin biopsy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bone marrow aspirate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skin snips (eg, for <em>Onchocerciasis</em>)</td>
<td></td>
</tr>
</tbody>
</table>

#### REFERENCES

**Web Resources**


International Association for Medical Assistance to Travellers: http://www.iamat.org.


London School of Hygiene and Tropical Medicine: http://www.lshtm.ac.uk.

Malaria information specific to country: www.cdc.gov/malaria/risk_map.


United States Department of State: http://www.travel.state.gov.

WHO for maps of vaccine preventable diseases: http://www.who.int/
Table 45–8. Illnesses in the returning traveler.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Etiology</th>
<th>Common Presenting Symptoms and Signs</th>
<th>Usual Incubation Period</th>
<th>Geographic Location</th>
<th>Mode of Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td><em>Plasmodium falciparum</em></td>
<td>Fever</td>
<td>7–30 d</td>
<td>More prevalent in sub-Saharan Africa than in other regions of the world, also South East (SE) Asia, South America, Mexico</td>
<td>Bite from <em>Anopheles</em> mosquito</td>
</tr>
<tr>
<td>Malaria</td>
<td><em>Plasmodium vivax</em></td>
<td>As for <em>P falciparum</em></td>
<td>10–17 d and up to 1 y</td>
<td>SE Asia, sub-Saharan Africa, South America, Central America</td>
<td>As for <em>P falciparum</em></td>
</tr>
<tr>
<td>Malaria</td>
<td><em>Plasmodium ovale</em></td>
<td>As for <em>P falciparum</em></td>
<td>16–18 d</td>
<td>West Africa, the Philippines, eastern Indonesia, and Papua New Guinea. It has been reported from Cambodia, India, Thailand, and Vietnam</td>
<td>As for <em>P falciparum</em></td>
</tr>
<tr>
<td>Malaria</td>
<td><em>Plasmodium malariae</em></td>
<td>As for <em>P falciparum</em></td>
<td>16–59 d</td>
<td>Sub-Saharan Africa, much of southeast Asia, Indonesia, on many of the islands of the western Pacific and in areas of the Amazon Basin of South America</td>
<td>As for <em>P falciparum</em></td>
</tr>
<tr>
<td>Malaria</td>
<td><em>Plasmodium knowlesi</em></td>
<td>As for <em>P falciparum</em></td>
<td>10–12 d</td>
<td>SE Asia</td>
<td></td>
</tr>
<tr>
<td>Dengue</td>
<td>Dengue virus</td>
<td>Fever</td>
<td>2–7 d</td>
<td>Northern Australia, SE Asia, Mexico, Central America, South America, Puerto Rico, Florida Keys</td>
<td>Bite from <em>Aedes aegypti</em> mosquito</td>
</tr>
<tr>
<td>Typhoid fever</td>
<td><em>Salmonella enterica</em> serovar typhi</td>
<td>Fever</td>
<td>10–14 d</td>
<td>South Asia, West and North Africa, South America, and Latin America</td>
<td>Ingestion of contaminated food/water</td>
</tr>
<tr>
<td>Paratyphoid fever</td>
<td><em>S enterica serovar paratyphi</em></td>
<td>Same as for typhoid fever</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td><em>Schistosoma mansoni,</em> <em>Schistosoma hematobium,</em> <em>Schistosoma japonicum</em></td>
<td>Urticarial rash Fever Headache Myalgia Respiratory symptoms</td>
<td>23–70 d (average 1 mo)</td>
<td><em>S mansoni</em>—South America, Caribbean <em>S hematobium</em>—Africa, Middle East <em>S japonicum</em>—Far East</td>
<td>Contaminated water containing freshwater snails</td>
</tr>
<tr>
<td>Disease</td>
<td>Organism</td>
<td>Symptoms</td>
<td>Incubation Period</td>
<td>Geographical Distribution</td>
<td>Transmission/Incubation Pathway</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>-------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>African tick typhus</td>
<td><em>Rickettsia conorii</em></td>
<td>Fever, Headache, Myalgia, Maculopapular rash, Malaise</td>
<td>5-7 d</td>
<td>Africa, Middle East, India, and Mediterranean Basin</td>
<td>Bite from hard ticks</td>
</tr>
<tr>
<td>Scrub typhus</td>
<td><em>Orientia tsutsugamushi</em></td>
<td>Fever, Headache, Myalgia, Possibly a maculopapular rash</td>
<td>10-12 d</td>
<td>“Tsutsugamushi triangle”—from northern Japan and Eastern Russia in the North, to Northern Australia in the South, to Pakistan and Afghanistan in the west</td>
<td>From chigger bites (larval stage of the biculid mites)</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td><em>Leptospira spp</em></td>
<td>Fever, Headache, Chills, Myalgia, Nausea, Diarrhea, Abdominal pain, Uveitis, Adenopathy, Conjunctival suffusion</td>
<td>5-14 d (average 10 d)</td>
<td>Worldwide</td>
<td>Contact with urine from domestic and wild animals contaminating water and soil</td>
</tr>
<tr>
<td>Babesiosis</td>
<td><em>Babesia microti</em>, <em>Babesia divergens</em>, <em>Babesia duncani</em></td>
<td>Fevers, Chills, Symptoms similar to malaria</td>
<td>1-4 wk</td>
<td>Europe, United States, sporadic cases in Asia, Mexico, Africa</td>
<td>Bite of <em>Ixodes</em> ticks</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Yellow fever virus</td>
<td>Fever, Chills, Headache, Jaundice, Backache, Myalgias, Prostration, Nausea, Vomiting</td>
<td>3-6 d</td>
<td>Tropical and sub-Tropical Africa and South America, Caribbean (countries that lie within a band 15 degrees north to 10 degrees south of the Equator)</td>
<td>Bite of mosquitoes (<em>Aedes aegypti</em> and others)</td>
</tr>
<tr>
<td>Chikungunya</td>
<td>CHIK virus</td>
<td>Fever, Joint pain, Maculopapular rash, Headache, Nausea, Vomiting, Myalgias</td>
<td>2-12 d (usually 2-4 d)</td>
<td>Tropical Africa and Asia (SE Asia and India)</td>
<td>Bite from <em>Aedes</em> mosquitoes</td>
</tr>
<tr>
<td>Amebiasis</td>
<td><em>Entamoeba histolytica</em></td>
<td>Fever, Diarrhea, Right upper quadrant pain</td>
<td>7-28 d</td>
<td>Worldwide, but higher incidence in developing countries</td>
<td>Contaminated food and water</td>
</tr>
</tbody>
</table>
General References


Laboratory tests provide valuable information necessary to evaluate a patient’s condition and to monitor recommended treatment. Chemistry and hematology test results are compared with those of healthy individuals or those undergoing similar therapeutic treatment to determine clinical status and progress. In the past, the term *normal ranges* relayed some ambiguity because statistically, the term *normal* also implied a specific (Gaussian or normal) distribution and epidemiologically it implied the state of the majority, which is not necessarily the desirable or targeted population. This is most apparent in cholesterol levels, where values greater than 200 mg/dL are common, but not desirable. Use of the term *reference range* or *reference interval* is therefore recommended by the International Federation of Clinical Chemistry (IFCC) and the Clinical and Laboratory Standards Institute (CLSI, formerly the National Committee for Clinical Laboratory Standards [NCCLS]) to indicate that the values relate to a reference population and clinical condition.

Reference ranges are established for a specific age (eg, alpha-fetoprotein), sex, and sexual maturity (eg, luteinizing hormone and testosterone); they are also defined for a specific pharmacologic status (eg, taking cyclosporine), dietary restrictions (eg, phenylalanine), and stimulation protocol (eg, growth hormone). Similarly, diurnal variation is a factor (eg, cortisol), as is degree of obesity (eg, insulin). Some reference ranges are particularly meaningful when combined with other results (eg, parathyroid hormone and calcium), or when an entire set of analytes is evaluated (eg, lipid profile: triglyceride, cholesterol, high-density lipoprotein, and low-density lipoprotein).

Laboratory tests are becoming more specific and measure much lower concentrations than ever before. Therefore, reference ranges should reflect the analytical procedure as well as reagents and instrumentation used for a specific analysis. As test methodology continues to evolve, reference ranges are modified and updated.

**CHALLENGES IN DETERMINING & INTERPRETING PEDIATRIC REFERENCE INTERVALS**

The pediatric environment is particularly challenging for the determination of reference intervals since growth and developmental stages do not have a distinct and finite boundary by which test results can be tabulated. Reference ranges may overlap and, in many cases, complicate diagnosis and treatment. Collection and allocation of test results by age for the purpose of establishing a reference range is a convenient and manageable way to report them, but caution is needed in their interpretation and clinical correlation.

A particular difficulty lies in establishing reference ranges for analytes whose levels are changed under scheduled stimulation conditions. The common glucose tolerance test is such an example, but more complex endocrinology tests (eg, stimulation by clonidine and cosyntropin) require skill and extensive experience to interpret. Reference ranges for these serial tests are established over a long period of time and are not easily transferable between test methodologies. Changing analytical technologies add a new dimension to the challenges of establishing pediatric reference ranges.

**GUIDELINES FOR USE OF DATA IN A REFERENCE RANGE STUDY**

The College of American Pathologists provides guidelines for the adoption of reference ranges used in hospitals and commercial clinical laboratories. It recognizes the enormous task of establishing a laboratory’s own reference ranges, and
The establishment of reference intervals is based on a statistical distribution of test results obtained from a representative population. The CLSI recommendation for data collection and statistical analysis provides guidelines for managing the data. For clinicians, it is not important that they can reproduce the calculation. It is far more critical to understand the benefits and restrictions provided by the described statistical approaches and to evaluate patient results with these limitations in mind.

In reviewing the statistics, 95% of all results will be inherently included in the reference range. Note that 5% of that population will have “abnormal” results, when in fact they are “healthy” and an integral part of the reference group study. Similarly, an equivalent 5% of the “ill” population will have laboratory results within the reference range. These are inherent features of the statistical computation. Taking that analysis one step further, the probability of a healthy patient having a test result within a calculated reference range is

\[ P = 0.95 \]

When multiple tests or panels of tests are used, the combined probability of all the test results falling in their respective reference ranges drops dramatically. For example, the probability of all results from 10 tests in the complete metabolic panel being in the reference range is

\[ P = (0.95)^{10} = 0.60 \]

Therefore, about one-third of healthy patients will have one test result in the panel that is outside the reference range.

A. Parametric Method of Computation

The parametric method of establishing reference intervals is simple, though not always representative, since it is based on the assumption that the data have a Gaussian distribution. A mean (x) and standard deviation (s) are calculated; test results of 95% of that specific population will fall within the mean ±1.96s, as shown in Figure 46-1.

Where the distribution is not Gaussian, a mathematical manipulation of the values (eg, plotting the log of the value, instead of the value itself) may give a Gaussian distribution. The mean and standard deviation are then converted back to give a usable reference range.

B. Nonparametric Method of Computation

The nonparametric method of establishing reference ranges is currently recommended by CLSI, since it defines outliers as those in the extreme 2.5 percentile of the upper and lower limits of data, respectively. The number of data points

---

**STATISTICAL COMPUTATION OF REFERENCE INTERVALS**

The establishment of reference intervals is based on a statistical distribution of test results obtained from a representative population. The CLSI recommendation for data collection and statistical analysis provides guidelines for managing the data. For clinicians, it is not important that they can reproduce the calculation. It is far more critical to understand the benefits and restrictions provided by the described statistical approaches and to evaluate patient results with these limitations in mind.

In reviewing the statistics, 95% of all results will be inherently included in the reference range. Note that 5% of that population will have “abnormal” results, when in fact they are “healthy” and an integral part of the reference group study. Similarly, an equivalent 5% of the “ill” population will have laboratory results within the reference range. These are inherent features of the statistical computation. Taking that analysis one step further, the probability of a healthy patient having a test result within a calculated reference range is

\[ P = 0.95 \]

When multiple tests or panels of tests are used, the combined probability of all the test results falling in their respective reference ranges drops dramatically. For example, the probability of all results from 10 tests in the complete metabolic panel being in the reference range is

\[ P = (0.95)^{10} = 0.60 \]

Therefore, about one-third of healthy patients will have one test result in the panel that is outside the reference range.

A. Parametric Method of Computation

The parametric method of establishing reference intervals is simple, though not always representative, since it is based on the assumption that the data have a Gaussian distribution. A mean (x) and standard deviation (s) are calculated; test results of 95% of that specific population will fall within the mean ±1.96s, as shown in Figure 46-1.

Where the distribution is not Gaussian, a mathematical manipulation of the values (eg, plotting the log of the value, instead of the value itself) may give a Gaussian distribution. The mean and standard deviation are then converted back to give a usable reference range.

B. Nonparametric Method of Computation

The nonparametric method of establishing reference ranges is currently recommended by CLSI, since it defines outliers as those in the extreme 2.5 percentile of the upper and lower limits of data, respectively. The number of data points

---

**STATISTICAL COMPUTATION OF REFERENCE INTERVALS**

The establishment of reference intervals is based on a statistical distribution of test results obtained from a representative population. The CLSI recommendation for data collection and statistical analysis provides guidelines for managing the data. For clinicians, it is not important that they can reproduce the calculation. It is far more critical to understand the benefits and restrictions provided by the described statistical approaches and to evaluate patient results with these limitations in mind.

In reviewing the statistics, 95% of all results will be inherently included in the reference range. Note that 5% of that population will have “abnormal” results, when in fact they are “healthy” and an integral part of the reference group study. Similarly, an equivalent 5% of the “ill” population will have laboratory results within the reference range. These are inherent features of the statistical computation. Taking that analysis one step further, the probability of a healthy patient having a test result within a calculated reference range is

\[ P = 0.95 \]

When multiple tests or panels of tests are used, the combined probability of all the test results falling in their respective reference ranges drops dramatically. For example, the probability of all results from 10 tests in the complete metabolic panel being in the reference range is

\[ P = (0.95)^{10} = 0.60 \]

Therefore, about one-third of healthy patients will have one test result in the panel that is outside the reference range.

A. Parametric Method of Computation

The parametric method of establishing reference intervals is simple, though not always representative, since it is based on the assumption that the data have a Gaussian distribution. A mean (x) and standard deviation (s) are calculated; test results of 95% of that specific population will fall within the mean ±1.96s, as shown in Figure 46-1.

Where the distribution is not Gaussian, a mathematical manipulation of the values (eg, plotting the log of the value, instead of the value itself) may give a Gaussian distribution. The mean and standard deviation are then converted back to give a usable reference range.

B. Nonparametric Method of Computation

The nonparametric method of establishing reference ranges is currently recommended by CLSI, since it defines outliers as those in the extreme 2.5 percentile of the upper and lower limits of data, respectively. The number of data points
excluded at the limits depends on the skew of the curve, and so the computation accommodates a non-Gaussian distribution. A histogram depicting the non-Gaussian distribution of data from a free thyroxine reference range study conducted at Children’s Hospital in Denver is shown in Figure 46–2.


WHY REFERENCE INTERVALS VARY

Recent modifications to reference ranges are due to the introduction of new and improved analytical procedures, advanced automated instrumentation, and standardization of reagents and reference materials. Reference ranges are also affected by preanalytical variations that can occur during sample collection, processing, and storage.

Preanalytical variations of biological origin can occur when specimens are drawn in the morning versus in the evening, or from hospitalized recumbent patients versus ambulatory outpatients. Variations also may be caused by metabolic and hemodynamic factors. Preanalytical factors may be a product of the socioeconomic environment or ethnic background (eg, genetic or dietary).

Analytical variations are caused by differences in analytical measurements and depend on the analytical tools as well as an inherent variability in obtaining a quantitative value. Furthermore, scientific progress is constantly introducing new reagents, instruments, and improved testing procedures to the clinical laboratory, and each tool adds an element of variability between tests.

1. Antigen-antibody reactions have revolutionized clinical chemistry, but have also added a degree of variability because biologically derived reagents have different specificity and sensitivity. In addition to the targeted analyte, some of its metabolites are also measured, and these may or may not be biologically active.

2. Reference materials continue to be reviewed and evaluated by organizations such as the World Health Organization and the National Institute for Standards and Technology. A new standard was recently established for troponin I, and reference ranges were modified to reflect the new standard.

3. Analytical instrumentation with advanced electronics and robotics has improved accuracy of results and increased throughput. However, they have added an element of variability between instruments from different manufacturers.

4. Analytical detection methods have also made big strides as they have expanded from simple ultraviolet-visible spectrophotometry to fluorescence, nephelometry, radioimmunoassay, and chemiluminescence. For example, the third-generation thyroid-stimulating hormone assays can now measure concentrations as low as 0.001 μIU/mL; the reference range was recently modified to reflect the improved sensitivity of the assay.


SENSITIVITY & SPECIFICITY

Despite its statistical derivation, a reference interval does not necessarily provide a finite and clear-cut guideline as to whether a patient has a disease. There will always be a segment of the population with test values that fall within the reference interval, but clinical manifestations that indicate disease is present. Similarly, a segment of the population will have test values outside the reference interval, but no clinical signs of disease. The ability of a test and corresponding reference interval to detect individuals with disease is defined by the diagnostic sensitivity of the test. Similarly, the ability of a test to detect individuals without disease is described by the diagnostic specificity. These characteristics are governed by the analytical quality of the test as well as the numerical parameters (reference interval) that define the presence of disease. The tolerance level for the desired sensitivity and specificity of a test requires significant input from clinicians.

Generally, specificity increases as sensitivity decreases. A typical reference range frequency distribution, shown in Figure 46–3 (solid line), provides information on the test results of a number of healthy subjects, or individuals without the disease. A second curve (dashed line) shows test results for individuals with the disease. As with most tests, there is an overlap area. A patient with a test result of 1 is likely healthy, and the result indicates a true negative (TN) for the presence of disease. A patient with a test result of 9 is likely to have the disease and the test result is a true positive (TP). There is a small, but significant, population with a test result of 2–5 in whom the test is not 100% conclusive. A statistical analysis may determine the most likely cutoff for healthy individuals, but the clinically acceptable cutoff depends on the test as well as clinical correlation. Where the treatment is aggressive and has serious side effects, a clinician may choose to err on the side of caution and hold treatment for anyone with a test value of less than 6.

If cutoff values for the reference interval are such that a test result indicates that a healthy patient has the disease, the result is a false positive (FP). Conversely, if a test result indicates that a patient is well when in fact he or she has the disease, the result is a false negative (FN). To define the ability of the test and reference interval to identify a disease state, the diagnostic sensitivity and specificity are measured.

\[
\text{Diagnostic sensitivity} = \frac{\text{TP}}{\text{TP} + \text{FN}}
\]

\[
\text{Diagnostic specificity} = \frac{\text{TN}}{\text{TN} + \text{FP}}
\]

In the example shown in Figure 46–3, a reference interval of 0.5–3 will provide more TN results and minimize FP results. Alternatively, a reference interval of 0.5–4 will increase the rate of FN. Thus, an increase in sensitivity leads to a decrease in specificity. A medical condition that requires aggressive treatment may necessitate a test and corresponding reference interval with a high sensitivity, which is a measure of the TP rate. This is accomplished at the expense of lowering specificity.

A reference interval is a statistical representation of test results from a finite population, but it is by no means inclusive of every member of the group. It is merely one component in the measure of a patient’s status to be viewed in relation to the sensitivity and specificity of the test.

Clinical laboratory data are frequently interpreted using a dynamic approach in which each value is compared with another. In this case, time series analysis of relative values may provide more important information than comparison against a strict reference range. Examples include the evaluation of enzyme activity over time and various stimulation studies for endocrine assessment. Drug monitoring also is a dynamic process.

PEDIATRIC REFERENCE INTERVALS

The establishment of reference ranges is a complex process. Assumptions are made in the management of data processes, regardless of whether “healthy” individuals or hospital patients are used for the accumulation of test results. Analytical instrument manufacturers conduct large studies to identify reference intervals for each specific analyte, and pediatric values have always been the most challenging. Some of the manufacturers’ recommended reference intervals are listed in Table 46–1 for general chemistry, Table 46–2 for endocrinology, and Table 46–3 for hematology. The interpretation of chemistry and hematology laboratory results is equally complex and forms a continuous challenge for physicians and the medical community at large.
### Table 46–1 General chemistry.

<table>
<thead>
<tr>
<th>Analyte, Units Specimen Type</th>
<th>Age</th>
<th>Instrument</th>
<th>Male Range</th>
<th>Female Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C Hemoglobin (%) B</td>
<td>0 d–adult</td>
<td>DCA Advantage</td>
<td>4.2–6.3</td>
<td>4.2–6.3</td>
</tr>
<tr>
<td>Albumin (g/dL) S, P</td>
<td>0–7 d</td>
<td>Vitros 5600</td>
<td>2.3–3.8</td>
<td>1.8–3.9</td>
</tr>
<tr>
<td></td>
<td>8–30 d</td>
<td></td>
<td>2.0–4.5</td>
<td>1.8–4.4</td>
</tr>
<tr>
<td></td>
<td>1–2 mo</td>
<td></td>
<td>2.0–4.8</td>
<td>1.9–4.2</td>
</tr>
<tr>
<td></td>
<td>3–5 mo</td>
<td></td>
<td>2.1–4.9</td>
<td>2.2–4.4</td>
</tr>
<tr>
<td></td>
<td>6–12 mo</td>
<td></td>
<td>2.1–4.7</td>
<td>2.2–4.7</td>
</tr>
<tr>
<td></td>
<td>1–3 y</td>
<td></td>
<td>3.4–4.2</td>
<td>3.4–4.2</td>
</tr>
<tr>
<td></td>
<td>4–6 y</td>
<td></td>
<td>3.5–5.2</td>
<td>3.5–5.2</td>
</tr>
<tr>
<td></td>
<td>7–18 y</td>
<td></td>
<td>3.7–5.6</td>
<td>3.7–5.6</td>
</tr>
<tr>
<td></td>
<td>19 y-Adult</td>
<td></td>
<td>3.5–5.0</td>
<td>3.5–5.0</td>
</tr>
<tr>
<td>Allergens (KUA/L)</td>
<td>0 d-Adult</td>
<td>Phadia Immunocap</td>
<td>0–0.34</td>
<td>0–0.34</td>
</tr>
<tr>
<td>ALP (U/L) S, P</td>
<td>0–7 d</td>
<td>Vitros 5600</td>
<td>77–265</td>
<td>65–270</td>
</tr>
<tr>
<td></td>
<td>8–30 d</td>
<td></td>
<td>91–375</td>
<td>65–365</td>
</tr>
<tr>
<td></td>
<td>1–3 mo</td>
<td></td>
<td>60–360</td>
<td>80–425</td>
</tr>
<tr>
<td></td>
<td>4–6 mo</td>
<td></td>
<td>55–325</td>
<td>80–345</td>
</tr>
<tr>
<td></td>
<td>7–12 mo</td>
<td></td>
<td>60–300</td>
<td>30–330</td>
</tr>
<tr>
<td></td>
<td>1–3 y</td>
<td></td>
<td>129–291</td>
<td>129–291</td>
</tr>
<tr>
<td></td>
<td>4–6 y</td>
<td></td>
<td>134–346</td>
<td>134–346</td>
</tr>
<tr>
<td></td>
<td>7–9 y</td>
<td></td>
<td>156–386</td>
<td>156–386</td>
</tr>
<tr>
<td></td>
<td>10–11 y</td>
<td></td>
<td>129–488</td>
<td>116–515</td>
</tr>
<tr>
<td></td>
<td>12–13 y</td>
<td></td>
<td>178–455</td>
<td>93–386</td>
</tr>
<tr>
<td></td>
<td>16–18 y</td>
<td></td>
<td>58–237</td>
<td>45–116</td>
</tr>
<tr>
<td></td>
<td>19 y-Adult</td>
<td></td>
<td>38–126</td>
<td>38–126</td>
</tr>
<tr>
<td>ALT (U/L) S, P</td>
<td>1–7 d</td>
<td>Vitros 5600</td>
<td>6–40</td>
<td>7–40</td>
</tr>
<tr>
<td></td>
<td>8–30 d</td>
<td></td>
<td>10–40</td>
<td>8–32</td>
</tr>
<tr>
<td></td>
<td>1–3 mo</td>
<td></td>
<td>13–39</td>
<td>12–47</td>
</tr>
<tr>
<td></td>
<td>4–6 mo</td>
<td></td>
<td>12–42</td>
<td>12–37</td>
</tr>
<tr>
<td></td>
<td>7–12 mo</td>
<td></td>
<td>13–45</td>
<td>12–41</td>
</tr>
<tr>
<td></td>
<td>1–3 y</td>
<td></td>
<td>5–45</td>
<td>5–45</td>
</tr>
<tr>
<td></td>
<td>4–6 y</td>
<td></td>
<td>10–25</td>
<td>10–25</td>
</tr>
<tr>
<td></td>
<td>7–9 y</td>
<td></td>
<td>10–35</td>
<td>10–35</td>
</tr>
<tr>
<td></td>
<td>10–11 y</td>
<td></td>
<td>10–35</td>
<td>10–35</td>
</tr>
<tr>
<td></td>
<td>12–13 y</td>
<td></td>
<td>10–55</td>
<td>10–55</td>
</tr>
<tr>
<td></td>
<td>14–15 y</td>
<td></td>
<td>10–45</td>
<td>10–45</td>
</tr>
<tr>
<td></td>
<td>16–18 y</td>
<td></td>
<td>10–40</td>
<td>10–40</td>
</tr>
<tr>
<td></td>
<td>19 y-Adult</td>
<td></td>
<td>21–72</td>
<td>21–72</td>
</tr>
<tr>
<td>Ammonia (umol/L) P</td>
<td>0–1 d</td>
<td>Vitros 5600</td>
<td>64–107</td>
<td>64–107</td>
</tr>
<tr>
<td></td>
<td>1–13 y</td>
<td></td>
<td>56–92</td>
<td>56–92</td>
</tr>
<tr>
<td></td>
<td>14 d–17 y</td>
<td></td>
<td>21–50</td>
<td>21–50</td>
</tr>
<tr>
<td></td>
<td>18 y-Adult</td>
<td></td>
<td>9–33</td>
<td>9–33</td>
</tr>
<tr>
<td>Amylase (U/L) S, P</td>
<td>0–2 m</td>
<td>Vitros 5600</td>
<td>0–30</td>
<td>0–30</td>
</tr>
<tr>
<td></td>
<td>3–5 m</td>
<td></td>
<td>0–50</td>
<td>0–50</td>
</tr>
<tr>
<td></td>
<td>6–11 m</td>
<td></td>
<td>0–80</td>
<td>0–80</td>
</tr>
<tr>
<td></td>
<td>1–18 y</td>
<td></td>
<td>30–100</td>
<td>30–100</td>
</tr>
<tr>
<td></td>
<td>19 y-Adult</td>
<td></td>
<td>30–110</td>
<td>30–110</td>
</tr>
<tr>
<td>Anticardiolipin IGA (APL) S, P</td>
<td>0 d-Adult</td>
<td>Inova DSX</td>
<td>&lt; 12.0</td>
<td>&lt; 12.0</td>
</tr>
</tbody>
</table>

(Continued)
### Table 46–1 General chemistry. (Continued)

<table>
<thead>
<tr>
<th>Analyte, Units Specimen Type</th>
<th>Age</th>
<th>Instrument</th>
<th>Male Range</th>
<th>Female Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticardiolipin IGG (GPL) S, P</td>
<td>0 d–Adult</td>
<td>Inova DSX</td>
<td>&lt; 15.0</td>
<td>&lt; 15.0</td>
</tr>
<tr>
<td>Anticardiolipin IGM (MPL) S, P</td>
<td>0 d–Adult</td>
<td>Inova DSX</td>
<td>&lt; 12.5</td>
<td>&lt; 12.5</td>
</tr>
</tbody>
</table>
| Anti-
*Saccharomyces cerevisiae* antibodies (ASCA) IGA (Units) S, P | 0 d–Adult | Inova DSX | Negative (0–20) Equivocal (20.1–24.9) Positive (> 24.9) | Negative (0–20) Equivocal (20.1–24.9) Positive (> 24.9) |
| Anti-
*Saccharomyces cerevisiae* antibodies (ASCA) IGG (Units) S, P | 0 d–Adult | Inova DSX | Negative (0–20) Equivocal (20.1–24.9) Positive (> 24.9) | Negative (0–20) Equivocal (20.1–24.9) Positive (> 24.9) |
| Bilirubin direct (mg/dL) S, P | 0–30 d | Vitros 5600 | 0–0.6 | 0–0.6 |
| Bilirubin conjugated (mg/dL) S, P | 0–30 d | Vitro 5600 | 0–0.6 | 0–0.6 |
| Bilirubin total (mg/dL) S, P | 0–30 d | Vitros 5600 | 0–0.1–5.8 0.1–8.5 0.1–11.5 0.2–1.2 | 0–0.1–5.8 0.1–8.5 0.1–11.5 0.2–1.2 |
| BNP (ng/L) S | 0 d–Adult | I–STAT | 0–90 | 0–90 |
| Pro-BNP, (pg/mL) S, P | 0 d–Adult | Vitro 5600 | 0–125 | 0–125 |

(Continued)
<table>
<thead>
<tr>
<th>Analyte, Units Specimen Type</th>
<th>Age</th>
<th>Instrument</th>
<th>Male Range</th>
<th>Female Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3 (mg/dL) S, P</td>
<td></td>
<td>Vitros 5600</td>
<td>55–129</td>
<td>55–129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61–155</td>
<td>61–155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67–136</td>
<td>67–136</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64–182</td>
<td>64–182</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67–174</td>
<td>67–174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77–178</td>
<td>77–178</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78–173</td>
<td>78–173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>76–187</td>
<td>76–187</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>87–181</td>
<td>87–181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>84–177</td>
<td>84–177</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80–178</td>
<td>80–178</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>89–173</td>
<td>89–173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>92–161</td>
<td>92–161</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>93–203</td>
<td>93–203</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>86–184</td>
<td>86–184</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>88–165</td>
<td>88–165</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55–129</td>
<td>55–129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61–155</td>
<td>61–155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67–136</td>
<td>67–136</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64–182</td>
<td>64–182</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67–174</td>
<td>67–174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77–178</td>
<td>77–178</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78–173</td>
<td>78–173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>76–187</td>
<td>76–187</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>87–181</td>
<td>87–181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>84–177</td>
<td>84–177</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80–178</td>
<td>80–178</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>89–173</td>
<td>89–173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>92–161</td>
<td>92–161</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>93–203</td>
<td>93–203</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>86–184</td>
<td>86–184</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>88–165</td>
<td>88–165</td>
</tr>
<tr>
<td>C4 (mg/dL) S, P</td>
<td></td>
<td>Vitros 5600</td>
<td>9.2–33</td>
<td>9.2–33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.7–37</td>
<td>9.7–37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11–35</td>
<td>11–35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11–50</td>
<td>11–50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.3–47</td>
<td>9.3–47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11–55</td>
<td>11–55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12–48</td>
<td>12–48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16–51</td>
<td>16–51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16–52</td>
<td>16–52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12–45</td>
<td>12–45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13–47</td>
<td>13–47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17–42</td>
<td>17–42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16–42</td>
<td>16–42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13–52</td>
<td>13–52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10–40</td>
<td>10–40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14–44</td>
<td>14–44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1–1.4</td>
<td>1.1–1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1–1.5</td>
<td>1.1–1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.5</td>
<td>1.2–1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3–1.6</td>
<td>1.3–1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.4</td>
<td>1.2–1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.3</td>
<td>1.2–1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1–1.4</td>
<td>1.1–1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1–1.5</td>
<td>1.1–1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.5</td>
<td>1.2–1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3–1.6</td>
<td>1.3–1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.4</td>
<td>1.2–1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.3</td>
<td>1.2–1.3</td>
</tr>
<tr>
<td>Ca (mg/dL) S, P</td>
<td></td>
<td>Vitros 5600</td>
<td>7.3–11.4</td>
<td>7.5–11.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.6–11.7</td>
<td>8.4–11.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.5–11.3</td>
<td>8.0–11.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.3–11.4</td>
<td>7.7–11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.7–11.0</td>
<td>7.8–11.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.7–9.8</td>
<td>8.7–9.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8–10.1</td>
<td>8.8–10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.9–10.1</td>
<td>8.9–10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8–10.6</td>
<td>8.8–10.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.2–10.7</td>
<td>9.2–10.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.9–10.7</td>
<td>8.9–10.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.4–10.2</td>
<td>8.4–10.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1–1.4</td>
<td>1.1–1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1–1.5</td>
<td>1.1–1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.5</td>
<td>1.2–1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3–1.6</td>
<td>1.3–1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.4</td>
<td>1.2–1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.3</td>
<td>1.2–1.3</td>
</tr>
<tr>
<td>iCa (ionized calcium) (mmol/L) B</td>
<td></td>
<td>RapidLab 1265 or Nova 8</td>
<td>1.1–1.4</td>
<td>1.1–1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1–1.5</td>
<td>1.1–1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.5</td>
<td>1.2–1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3–1.6</td>
<td>1.3–1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.4</td>
<td>1.2–1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2–1.3</td>
<td>1.2–1.3</td>
</tr>
<tr>
<td>Analyte, Units Specimen Type</td>
<td>Age</td>
<td>Instrument</td>
<td>Male Range</td>
<td>Female Range</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>iCa/iMg ratio B</td>
<td>0 d-Adult</td>
<td>Nova 8</td>
<td>1.90-2.28</td>
<td>1.90-2.28</td>
</tr>
<tr>
<td>Chloride (mmol/L) S, P</td>
<td>0-8 d</td>
<td>Vitros 5600</td>
<td>96-111</td>
<td>96-111</td>
</tr>
<tr>
<td></td>
<td>8 d-6 mo</td>
<td></td>
<td>96-110</td>
<td>96-110</td>
</tr>
<tr>
<td></td>
<td>6-12 mo</td>
<td></td>
<td>96-108</td>
<td>96-108</td>
</tr>
<tr>
<td></td>
<td>1-19 y</td>
<td></td>
<td>96-109</td>
<td>96-109</td>
</tr>
<tr>
<td></td>
<td>&gt; 19 y</td>
<td></td>
<td>98-107</td>
<td>98-107</td>
</tr>
<tr>
<td></td>
<td>8 d–6 mo</td>
<td>Vitros 5600</td>
<td>96-110</td>
<td>96-110</td>
</tr>
<tr>
<td></td>
<td>6–12 mo</td>
<td></td>
<td>96-108</td>
<td>96-108</td>
</tr>
<tr>
<td></td>
<td>1-19 y</td>
<td></td>
<td>96-109</td>
<td>96-109</td>
</tr>
<tr>
<td></td>
<td>&gt; 19 y</td>
<td></td>
<td>98-107</td>
<td>98-107</td>
</tr>
<tr>
<td>Cholesterol (mg/dL) S, P</td>
<td>0 d-2 mo</td>
<td>Vitros 5600</td>
<td>45-177</td>
<td>63-198</td>
</tr>
<tr>
<td></td>
<td>2-7 mo</td>
<td></td>
<td>60-197</td>
<td>66-218</td>
</tr>
<tr>
<td></td>
<td>7-12 mo</td>
<td></td>
<td>89-208</td>
<td>74-218</td>
</tr>
<tr>
<td></td>
<td>&gt; 1 y</td>
<td></td>
<td>44-181</td>
<td>44-181</td>
</tr>
<tr>
<td>Creatine kinase (U/L) S, P</td>
<td>0-3 mo</td>
<td>Vitros 5600</td>
<td>28-300</td>
<td>48-470</td>
</tr>
<tr>
<td></td>
<td>3-12 mo</td>
<td></td>
<td>24-170</td>
<td>26-240</td>
</tr>
<tr>
<td></td>
<td>1-2 y</td>
<td></td>
<td>27-160</td>
<td>24-175</td>
</tr>
<tr>
<td></td>
<td>2-11 y</td>
<td></td>
<td>30-150</td>
<td>24-175</td>
</tr>
<tr>
<td></td>
<td>11-15 y</td>
<td></td>
<td>30-150</td>
<td>30-170</td>
</tr>
<tr>
<td></td>
<td>15-19 y</td>
<td></td>
<td>33-145</td>
<td>27-140</td>
</tr>
<tr>
<td></td>
<td>&gt; 19 y</td>
<td></td>
<td>55-170</td>
<td>30-135</td>
</tr>
<tr>
<td>Creatinine (mg/dL) S, P</td>
<td>0-3 d</td>
<td>Vitros 5600</td>
<td>0.33-1.08</td>
<td>0.33-1.08</td>
</tr>
<tr>
<td></td>
<td>3-10 d</td>
<td></td>
<td>0.14-0.90</td>
<td>0.14-0.90</td>
</tr>
<tr>
<td></td>
<td>10-17 d</td>
<td></td>
<td>0.14-0.61</td>
<td>0.14-0.61</td>
</tr>
<tr>
<td></td>
<td>17 d-1 y</td>
<td></td>
<td>0.14-0.52</td>
<td>0.14-0.52</td>
</tr>
<tr>
<td></td>
<td>1-11 y</td>
<td></td>
<td>0.23-0.61</td>
<td>0.23-0.61</td>
</tr>
<tr>
<td></td>
<td>11-18 y</td>
<td></td>
<td>0.42-0.90</td>
<td>0.42-0.90</td>
</tr>
<tr>
<td></td>
<td>&gt; 18 y</td>
<td></td>
<td>0.71-1.18</td>
<td>0.52-0.99</td>
</tr>
<tr>
<td>GGT (U/L) S, P</td>
<td>0-8 d</td>
<td>Vitros 5600</td>
<td>25-148</td>
<td>19-131</td>
</tr>
<tr>
<td></td>
<td>8-30 d</td>
<td></td>
<td>23-153</td>
<td>17-124</td>
</tr>
<tr>
<td></td>
<td>1-4 mo</td>
<td></td>
<td>17-130</td>
<td>17-124</td>
</tr>
<tr>
<td></td>
<td>4-7 mo</td>
<td></td>
<td>8-83</td>
<td>15-109</td>
</tr>
<tr>
<td></td>
<td>7-12 mo</td>
<td></td>
<td>10-35</td>
<td>10-54</td>
</tr>
<tr>
<td></td>
<td>1-4 y</td>
<td></td>
<td>5-16</td>
<td>5-16</td>
</tr>
<tr>
<td></td>
<td>4-7 y</td>
<td></td>
<td>8-18</td>
<td>8-18</td>
</tr>
<tr>
<td></td>
<td>7-10 y</td>
<td></td>
<td>11-21</td>
<td>11-21</td>
</tr>
<tr>
<td></td>
<td>10-12 y</td>
<td></td>
<td>14-25</td>
<td>14-23</td>
</tr>
<tr>
<td></td>
<td>12-14 y</td>
<td></td>
<td>14-37</td>
<td>14-23</td>
</tr>
<tr>
<td></td>
<td>14-16 y</td>
<td></td>
<td>10-28</td>
<td>12-21</td>
</tr>
<tr>
<td></td>
<td>16-19 y</td>
<td></td>
<td>9-29</td>
<td>12-22</td>
</tr>
<tr>
<td></td>
<td>&gt; 19 y</td>
<td></td>
<td>15-73</td>
<td>12-43</td>
</tr>
<tr>
<td>Glucose (mg/dL) S, P</td>
<td>0-30 d</td>
<td>Vitros 5600</td>
<td>40-80</td>
<td>19-131</td>
</tr>
<tr>
<td></td>
<td>&gt; 1 mo</td>
<td></td>
<td>60-105</td>
<td>17-124</td>
</tr>
<tr>
<td>Glucose (2-h tolerance test) (mg/dL) S, P</td>
<td>0 d-Adult</td>
<td>Vitros 5600</td>
<td>&lt; 200</td>
<td>&lt; 200</td>
</tr>
<tr>
<td>Glucose – CSF (mg/dL) CSF</td>
<td>0 d-Adult</td>
<td>Vitros 5600</td>
<td>40-75</td>
<td>40-75</td>
</tr>
<tr>
<td>HDL (mg/dL) S, P</td>
<td>0 d-Adult</td>
<td>Vitros 5600</td>
<td>8-61</td>
<td>8-61</td>
</tr>
</tbody>
</table>

(Continued)
### Table 46-1 General chemistry.  *(Continued)*

<table>
<thead>
<tr>
<th>Analyte, Units Specimen Type</th>
<th>Age</th>
<th>Instrument</th>
<th>Male Range</th>
<th>Female Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-2 Glycoprotein 1 Antibody, IgA (SAU)</td>
<td>0 d–Adult</td>
<td>Inova DSX</td>
<td>0–20</td>
<td>0–20</td>
</tr>
<tr>
<td>Beta-2 Glycoprotein 1 Antibody, IgG (SGU)</td>
<td>0 d–Adult</td>
<td>Inova DSX</td>
<td>0–20</td>
<td>0–20</td>
</tr>
<tr>
<td>Beta-2 Glycoprotein 1 Antibody, IgG (SMU)</td>
<td>0 d–Adult</td>
<td>Inova DSX</td>
<td>0–20</td>
<td>0–20</td>
</tr>
<tr>
<td>IGE (kU/L) S</td>
<td>0–12 mo 1–2 y 2–3 y 3–10 y 10 y–Adult</td>
<td>Phadia ImmunoCap</td>
<td>0–29 0–49 0–45 0–52 0–87</td>
<td>0–29 0–49 0–45 0–52 0–87</td>
</tr>
<tr>
<td>Iron (μg/dL) S, P</td>
<td>0–7 d 7 d–1 y 1–10 y &gt; 10 y</td>
<td>Vitros 5600</td>
<td>100–250 40–100 50–120 49–181</td>
<td>100–250 40–100 50–120 37–170</td>
</tr>
<tr>
<td>Iron-binding capacity (mcg/dL) S, P</td>
<td>0 d–Adult</td>
<td>Vitros 5600</td>
<td>261–462</td>
<td>265–497</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Analyte, Units Specimen Type</th>
<th>Age</th>
<th>Instrument</th>
<th>Male Range</th>
<th>Female Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH (U/L) S, P</td>
<td>0-1 mo</td>
<td>Vitros 5600</td>
<td>550-2100</td>
<td>580-2000</td>
</tr>
<tr>
<td></td>
<td>1-4 mo</td>
<td></td>
<td>480-1220</td>
<td>460-1150</td>
</tr>
<tr>
<td></td>
<td>4-7 mo</td>
<td></td>
<td>400-1230</td>
<td>460-1150</td>
</tr>
<tr>
<td></td>
<td>7-12 mo</td>
<td></td>
<td>380-1200</td>
<td>460-1060</td>
</tr>
<tr>
<td></td>
<td>1-4 y</td>
<td></td>
<td>500-920</td>
<td>500-920</td>
</tr>
<tr>
<td></td>
<td>4-7 y</td>
<td></td>
<td>470-900</td>
<td>470-900</td>
</tr>
<tr>
<td></td>
<td>7-10 y</td>
<td></td>
<td>420-750</td>
<td>420-750</td>
</tr>
<tr>
<td></td>
<td>10-12 y</td>
<td></td>
<td>432-700</td>
<td>380-700</td>
</tr>
<tr>
<td></td>
<td>12-14 y</td>
<td></td>
<td>470-750</td>
<td>380-640</td>
</tr>
<tr>
<td></td>
<td>14-16 y</td>
<td></td>
<td>360-730</td>
<td>390-580</td>
</tr>
<tr>
<td></td>
<td>16-18 y</td>
<td></td>
<td>340-670</td>
<td>340-670</td>
</tr>
<tr>
<td></td>
<td>&gt; 18 y</td>
<td></td>
<td>313-618</td>
<td>313-618</td>
</tr>
<tr>
<td>LDL measured (mg/dL) S, P</td>
<td>0 d–Adult</td>
<td>Vitros 5600</td>
<td>&lt; 100</td>
<td>&lt; 100</td>
</tr>
<tr>
<td>Magnesium (mg/dl) S, P</td>
<td>0-7 d</td>
<td>Vitros 5600</td>
<td>1.2–1.6</td>
<td>1.2–1.6</td>
</tr>
<tr>
<td></td>
<td>7–30 d</td>
<td></td>
<td>1.6–2.4</td>
<td>1.6–2.4</td>
</tr>
<tr>
<td></td>
<td>1 mo–2 y</td>
<td></td>
<td>1.6–2.6</td>
<td>1.6–2.6</td>
</tr>
<tr>
<td></td>
<td>2-6 y</td>
<td></td>
<td>1.5–2.4</td>
<td>1.5–2.4</td>
</tr>
<tr>
<td></td>
<td>6-10 y</td>
<td></td>
<td>1.6–2.3</td>
<td>1.6–2.3</td>
</tr>
<tr>
<td></td>
<td>10-14 y</td>
<td></td>
<td>1.6–2.2</td>
<td>1.6–2.2</td>
</tr>
<tr>
<td></td>
<td>&gt; 18 y</td>
<td></td>
<td>1.5–2.3</td>
<td>1.5–2.3</td>
</tr>
<tr>
<td>iMg (ionized magnesium) (mmol/L) B</td>
<td>0 d–Adult</td>
<td>Nova 8</td>
<td>0.45-0.60</td>
<td>0.45-0.60</td>
</tr>
<tr>
<td>Non-HDL cholesterol (mg/dl) S, P</td>
<td>0 d–Adult</td>
<td>Vitros 5600</td>
<td>&lt; 120</td>
<td>&lt; 120</td>
</tr>
<tr>
<td>NT Pro–BNP (pg/mL) S, P</td>
<td>0–45 y</td>
<td>Mayo Medical Labs</td>
<td>10–51</td>
<td>10–140</td>
</tr>
<tr>
<td>Potassium (mmol/L) S, P</td>
<td>0–7 d</td>
<td>Vitros 5600</td>
<td>3.7–5.9</td>
<td>3.7–5.9</td>
</tr>
<tr>
<td></td>
<td>7 d–3 mo</td>
<td></td>
<td>4.1–5.3</td>
<td>4.1–5.3</td>
</tr>
<tr>
<td></td>
<td>3 mo–18 y</td>
<td></td>
<td>3.4–4.7</td>
<td>3.4–4.7</td>
</tr>
<tr>
<td></td>
<td>&gt; 18 y</td>
<td></td>
<td>3.5–5.0</td>
<td>3.5–5.0</td>
</tr>
<tr>
<td>Prealbumin (mg/dl) S, P</td>
<td>0–1 mo</td>
<td>Vitros 5600</td>
<td>7–22</td>
<td>7–22</td>
</tr>
<tr>
<td></td>
<td>1–6 mo</td>
<td></td>
<td>8–34</td>
<td>8–34</td>
</tr>
<tr>
<td></td>
<td>6 mo–4 y</td>
<td></td>
<td>7–32</td>
<td>7–32</td>
</tr>
<tr>
<td></td>
<td>4–6 y</td>
<td></td>
<td>12–30</td>
<td>12–30</td>
</tr>
<tr>
<td></td>
<td>6–14 y</td>
<td></td>
<td>12–42</td>
<td>12–42</td>
</tr>
<tr>
<td></td>
<td>14–19 y</td>
<td></td>
<td>22–45</td>
<td>22–45</td>
</tr>
<tr>
<td></td>
<td>&gt; 19 y</td>
<td></td>
<td>17–42</td>
<td>17–42</td>
</tr>
<tr>
<td>Phosphorus (mg/dl) S, P</td>
<td>0–1 mo</td>
<td>Vitros 5600</td>
<td>2.7–7.2</td>
<td>3.0–8.0</td>
</tr>
<tr>
<td></td>
<td>1–3 mo</td>
<td></td>
<td>3.0–6.8</td>
<td>3.0–7.5</td>
</tr>
<tr>
<td></td>
<td>3–12 mo</td>
<td></td>
<td>3.0–6.9</td>
<td>2.5–7.0</td>
</tr>
<tr>
<td></td>
<td>1–2 y</td>
<td></td>
<td>2.5–6.4</td>
<td>3.0–6.5</td>
</tr>
<tr>
<td></td>
<td>2–13 y</td>
<td></td>
<td>3.0–6.0</td>
<td>2.5–6.0</td>
</tr>
<tr>
<td></td>
<td>13–16 y</td>
<td></td>
<td>3.0–5.4</td>
<td>3.0–5.6</td>
</tr>
<tr>
<td></td>
<td>16–18 y</td>
<td></td>
<td>3.0–5.2</td>
<td>3.0–4.8</td>
</tr>
<tr>
<td></td>
<td>&gt; 18 y</td>
<td></td>
<td>2.5–4.5</td>
<td>2.5–4.5</td>
</tr>
</tbody>
</table>
### Table 46-1 General chemistry. (Continued)

<table>
<thead>
<tr>
<th>Analyte, Units Specimen Type</th>
<th>Age</th>
<th>Instrument</th>
<th>Male Range</th>
<th>Female Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procalcitonin (ng/mL) P</td>
<td>0 d–Adult</td>
<td>Brahms Kryptor</td>
<td>0–0.5</td>
<td>0–0.5</td>
</tr>
<tr>
<td>Sodium (mmol/L) S, P</td>
<td>0–8 d 8–30 d 1–6 mo 6–12 mo 1–19 y &gt; 19 y</td>
<td>Vitros 5600</td>
<td>133–146 134–144 134–142 134–143 137–145</td>
<td>133–146 134–144 134–142 134–143 137–145</td>
</tr>
<tr>
<td>Troponin I (ng/mL) S, P</td>
<td>0 d–Adult</td>
<td>Vitros 5600</td>
<td>&lt; 0.12</td>
<td>&lt; 0.12</td>
</tr>
<tr>
<td>T4 (μg/dL) S, P</td>
<td>0–3 d 3–30 d 30 d–1 y 1–6 y 6–19 y &gt; 19 y</td>
<td>Vitros 5600</td>
<td>8–20 5–15 6–14 4.5–11 4.5–10</td>
<td>4.5–10 5–15 6–14 4.5–11 5.5–11</td>
</tr>
<tr>
<td>Total protein (g/dL) S, P</td>
<td>0–2 mo 2–6 mo 6–12 mo 1–4 y 4–7 y 7–10 y 10–20 y &gt; 20 y</td>
<td>Vitros 5600</td>
<td>3.9–7.6 4.1–7.9 3.9–7.9 5.9–7.0 5.9–7.8 6.2–8.1 6.3–8.6 6.2–8.2</td>
<td>3.4–7.0 3.9–7.6 4.5–7.8 5.9–7.0 5.9–7.8 6.2–8.1 6.3–8.6 6.2–8.2</td>
</tr>
<tr>
<td>Triglycerides (mg/dL) S, P</td>
<td>0–9 y 10–18 y Adult</td>
<td>Vitros 5600</td>
<td>&lt; 75 &lt; 90 &lt; 115</td>
<td>&lt; 75 &lt; 90 &lt; 115</td>
</tr>
<tr>
<td>Uric acid (mg/dL) S, P</td>
<td>0–30 d 1–12 mo 1–10 y 10–12 y 12–14 y 14–16 y 16–18 y &gt; 18 y</td>
<td>Vitros 5600</td>
<td>2.0–5.2 2.5–9.0 1.8–5.0 2.3–5.4 2.7–6.7 2.4–7.8 4.0–8.6 3.5–8.5</td>
<td>2.0–5.2 2.5–9.0 1.8–5.0 3.0–4.7 3.0–5.9 3.0–5.9 2.5–7.5</td>
</tr>
<tr>
<td>Vitamin B₁₂ (pg/mL) S, P</td>
<td>0 d–Adult</td>
<td>Vitro 5600</td>
<td>163–949</td>
<td>163–949</td>
</tr>
</tbody>
</table>

ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate aminotransferase; B, whole blood; BNP, brain natriuretic peptide; BUN, blood urea nitrogen; Ca, calcium; CSF, spinal fluid; GGT, gammaglutamyl transpeptidase; LDH, lactic dehydrogenase; P, plasma; RBC, red blood cells; S, serum; T4, thyroxine; U, urine.

Source: Children's Hospital, Colorado, Chemistry Laboratory Procedures Manual.
Table 46–2  Endocrine chemistry.

<table>
<thead>
<tr>
<th>Analyte, Units, Specimen Type, Source</th>
<th>Age</th>
<th>Methodology</th>
<th>Male Range</th>
<th>Female Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisol (μg/dL)</td>
<td></td>
<td>Vitros 5600</td>
<td>4.5–22.7</td>
<td>4.5–22.7</td>
</tr>
<tr>
<td>S, P</td>
<td>0 d–Adult (AM values)</td>
<td>1.7–14.1</td>
<td>1.7–14.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(PM values)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estradiol (ng/mL)</td>
<td>Prepuberty</td>
<td>Esoterix</td>
<td>&lt; 1.5</td>
<td>&lt; 1.5</td>
</tr>
<tr>
<td>S</td>
<td>Tanner 1</td>
<td></td>
<td>0.5–1.1</td>
<td>0.5–2.0</td>
</tr>
<tr>
<td></td>
<td>Tanner 2</td>
<td></td>
<td>0.5–1.6</td>
<td>1.0–2.4</td>
</tr>
<tr>
<td></td>
<td>Tanner 3</td>
<td></td>
<td>0.5–2.5</td>
<td>0.7–6.0</td>
</tr>
<tr>
<td></td>
<td>Tanner 4</td>
<td></td>
<td>1.0–3.6</td>
<td>2.1–8.5</td>
</tr>
<tr>
<td></td>
<td>Tanner 5</td>
<td></td>
<td>1.0–3.6</td>
<td>3.4–17</td>
</tr>
<tr>
<td>FSH (mIU/mL)</td>
<td>1–11 mo</td>
<td>DPC Immulite</td>
<td>0.16–4.1</td>
<td>0.24–14.2</td>
</tr>
<tr>
<td>S, P</td>
<td>1–8 y</td>
<td></td>
<td>0.26–3.0</td>
<td>1.0–4.2</td>
</tr>
<tr>
<td></td>
<td>Tanner 1</td>
<td></td>
<td>0.26–3.0</td>
<td>1.0–4.2</td>
</tr>
<tr>
<td></td>
<td>Tanner 2</td>
<td></td>
<td>1.8–3.2</td>
<td>1.0–10.8</td>
</tr>
<tr>
<td></td>
<td>Tanner 3</td>
<td></td>
<td>1.2–5.8</td>
<td>1.5–12.8</td>
</tr>
<tr>
<td></td>
<td>Tanner 4</td>
<td></td>
<td>2.0–9.2</td>
<td>1.5–11.7</td>
</tr>
<tr>
<td></td>
<td>Tanner 5</td>
<td></td>
<td>2.6–11.0</td>
<td>1.0–9.2</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td>2.0–9.2</td>
<td>1.8–11.2</td>
</tr>
<tr>
<td></td>
<td>Follicular</td>
<td></td>
<td></td>
<td>6–35</td>
</tr>
<tr>
<td></td>
<td>Midcycle</td>
<td></td>
<td></td>
<td>1.8–11.2</td>
</tr>
<tr>
<td></td>
<td>Luteal phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth hormone (ng/mL)</td>
<td>0 d–Adult</td>
<td>DPC Immulite</td>
<td>0–8</td>
<td>0–3</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-BP3 (μg/mL)</td>
<td>0–7 d</td>
<td>DPC Immulite</td>
<td>0.1–0.7</td>
<td>0.1–0.7</td>
</tr>
<tr>
<td>S, P</td>
<td>8–15 d</td>
<td></td>
<td>0.5–1.4</td>
<td>0.5–1.4</td>
</tr>
<tr>
<td></td>
<td>16 d–1 y</td>
<td></td>
<td>0.7–3.6</td>
<td>0.7–3.6</td>
</tr>
<tr>
<td></td>
<td>2 y</td>
<td></td>
<td>0.8–3.9</td>
<td>0.8–3.9</td>
</tr>
<tr>
<td></td>
<td>3 y</td>
<td></td>
<td>0.9–4.3</td>
<td>0.9–4.3</td>
</tr>
<tr>
<td></td>
<td>4 y</td>
<td></td>
<td>1.0–4.7</td>
<td>1.0–4.7</td>
</tr>
<tr>
<td></td>
<td>5 y</td>
<td></td>
<td>1.1–5.2</td>
<td>1.1–5.2</td>
</tr>
<tr>
<td></td>
<td>6 y</td>
<td></td>
<td>1.3–5.6</td>
<td>1.3–5.6</td>
</tr>
<tr>
<td></td>
<td>7 y</td>
<td></td>
<td>1.4–6.1</td>
<td>1.4–6.1</td>
</tr>
<tr>
<td></td>
<td>8 y</td>
<td></td>
<td>1.6–6.5</td>
<td>1.6–6.5</td>
</tr>
<tr>
<td></td>
<td>9 y</td>
<td></td>
<td>1.8–7.1</td>
<td>1.8–7.1</td>
</tr>
<tr>
<td></td>
<td>10 y</td>
<td></td>
<td>2.1–7.7</td>
<td>2.1–7.7</td>
</tr>
<tr>
<td></td>
<td>11 y</td>
<td></td>
<td>2.4–8.4</td>
<td>2.4–8.4</td>
</tr>
<tr>
<td></td>
<td>12 y</td>
<td></td>
<td>2.7–8.9</td>
<td>2.7–8.9</td>
</tr>
<tr>
<td></td>
<td>13 y</td>
<td></td>
<td>3.1–9.5</td>
<td>3.1–9.5</td>
</tr>
<tr>
<td></td>
<td>14 y</td>
<td></td>
<td>3.3–10.0</td>
<td>3.3–10.0</td>
</tr>
<tr>
<td></td>
<td>15 y</td>
<td></td>
<td>3.5–10.0</td>
<td>3.5–10.0</td>
</tr>
<tr>
<td></td>
<td>16 y</td>
<td></td>
<td>3.8–9.5</td>
<td>3.4–9.5</td>
</tr>
<tr>
<td></td>
<td>17 y</td>
<td></td>
<td>3.2–8.7</td>
<td>3.2–8.7</td>
</tr>
<tr>
<td></td>
<td>18 y</td>
<td></td>
<td>3.1–7.9</td>
<td>3.1–7.9</td>
</tr>
<tr>
<td></td>
<td>19 y</td>
<td></td>
<td>2.9–7.3</td>
<td>2.9–7.3</td>
</tr>
<tr>
<td></td>
<td>20 y</td>
<td></td>
<td>2.9–7.2</td>
<td>2.9–7.2</td>
</tr>
</tbody>
</table>

(Continued)
Table 46-2  Endocrine chemistry. (Continued)

<table>
<thead>
<tr>
<th>Analyte, Units, Specimen Type, Source</th>
<th>Age</th>
<th>Methodology</th>
<th>Male Range</th>
<th>Female Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF-1 (ng/mL) S, P</td>
<td></td>
<td>Dynex DSX</td>
<td>21-93</td>
<td>21-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15-109</td>
<td>15-109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15-109</td>
<td>15-109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-124</td>
<td>7-124</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-93</td>
<td>7-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15-101</td>
<td>15-101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30-122</td>
<td>55-144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20-141</td>
<td>26-162</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25-157</td>
<td>32-179</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30-174</td>
<td>39-198</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37-192</td>
<td>47-217</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44-211</td>
<td>55-238</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52-231</td>
<td>64-259</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39-264</td>
<td>89-369</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61-252</td>
<td>74-282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52-304</td>
<td>96-399</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71-275</td>
<td>192-568</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67-347</td>
<td>192-568</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82-299</td>
<td>97-332</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>86-393</td>
<td>112-466</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>277-673</td>
<td>192-568</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>93-324</td>
<td>131-545</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>106-443</td>
<td>192-568</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>265-652</td>
<td>248-612</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>106-350</td>
<td>104-431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>130-497</td>
<td>121-504</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>241-612</td>
<td>192-568</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120-377</td>
<td>229-579</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>156-554</td>
<td>136-566</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>220-574</td>
<td>192-568</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>127-391</td>
<td>211-547</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>185-616</td>
<td>192-568</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>199-537</td>
<td>192-568</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>201-648</td>
<td>194-516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>180-501</td>
<td>177-487</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>161-467</td>
<td>162-458</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144-434</td>
<td>147-430</td>
</tr>
<tr>
<td>Analyte, Units, Specimen Type, Source</td>
<td>Age</td>
<td>Methodology</td>
<td>Male Range</td>
<td>Female Range</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>LH (miU/ml)</strong> S, P</td>
<td></td>
<td>DPC Immulite</td>
<td>0.02-7.0</td>
<td>0.02-7.0</td>
</tr>
<tr>
<td></td>
<td>14 d-11 mo</td>
<td></td>
<td>0.02-0.3</td>
<td>0.02-0.3</td>
</tr>
<tr>
<td></td>
<td>1-8 y</td>
<td></td>
<td>0.2-4.9</td>
<td>0.2-4.9</td>
</tr>
<tr>
<td></td>
<td>Tanner 1</td>
<td></td>
<td>0.2-5.0</td>
<td>0.2-5.0</td>
</tr>
<tr>
<td></td>
<td>Tanner 2</td>
<td></td>
<td>0.4-7.0</td>
<td>0.4-7.0</td>
</tr>
<tr>
<td></td>
<td>Tanner 3</td>
<td></td>
<td>1.5-9.0</td>
<td>2.0-9.0</td>
</tr>
<tr>
<td></td>
<td>Tanner 4</td>
<td></td>
<td></td>
<td>18.0-49.0</td>
</tr>
<tr>
<td></td>
<td>Tanner 5</td>
<td></td>
<td></td>
<td>2.0-11.0</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follicular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Midcycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leuteal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>T4 free (ng/dL)</strong> S, P</td>
<td></td>
<td>Vitros 5600</td>
<td>2.0-5.0</td>
<td>2.0-5.0</td>
</tr>
<tr>
<td></td>
<td>0-2 d</td>
<td></td>
<td>0.9-2.2</td>
<td>0.9-2.2</td>
</tr>
<tr>
<td></td>
<td>3-30 d</td>
<td></td>
<td>0.8-2.0</td>
<td>0.8-2.0</td>
</tr>
<tr>
<td></td>
<td>1 mo-19 y</td>
<td></td>
<td>0.78-2.19</td>
<td>0.78-2.19</td>
</tr>
<tr>
<td></td>
<td>&gt; 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TSH (μIU/ml)</strong> S, P</td>
<td></td>
<td>Vitros 5600</td>
<td>1.0-20.0</td>
<td>1.0-20.0</td>
</tr>
<tr>
<td></td>
<td>0-3 d</td>
<td></td>
<td>0.5-8.0</td>
<td>0.5-8.0</td>
</tr>
<tr>
<td></td>
<td>3-30 d</td>
<td></td>
<td>0.5-6.0</td>
<td>0.5-6.0</td>
</tr>
<tr>
<td></td>
<td>1-6 mo</td>
<td></td>
<td>0.5-6.0</td>
<td>0.5-6.0</td>
</tr>
<tr>
<td></td>
<td>6 mo-5 y</td>
<td></td>
<td>0.5-5.5</td>
<td>0.5-5.5</td>
</tr>
<tr>
<td></td>
<td>5-13 y</td>
<td></td>
<td>0.5-5.0</td>
<td>0.5-5.0</td>
</tr>
<tr>
<td></td>
<td>&gt; 13 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Testosterone, total (ng/dL)</strong> S, P</td>
<td></td>
<td>Vitros 5600</td>
<td>37-198</td>
<td>5-22</td>
</tr>
<tr>
<td></td>
<td>Premature</td>
<td></td>
<td>75-400</td>
<td>20-64</td>
</tr>
<tr>
<td></td>
<td>Newborn</td>
<td></td>
<td>1-10</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>Prepubertal</td>
<td></td>
<td>1-10</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>Tanner 1</td>
<td></td>
<td>18-150</td>
<td>7-28</td>
</tr>
<tr>
<td></td>
<td>Tanner 2</td>
<td></td>
<td>100-320</td>
<td>15-35</td>
</tr>
<tr>
<td></td>
<td>Tanner 3</td>
<td></td>
<td>200-620</td>
<td>13-32</td>
</tr>
<tr>
<td></td>
<td>Tanner 4</td>
<td></td>
<td>350-970</td>
<td>20-38</td>
</tr>
<tr>
<td></td>
<td>Tanner 5</td>
<td></td>
<td>132-813</td>
<td>5-77</td>
</tr>
<tr>
<td></td>
<td>Adult (20-49)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FSH, follicle-stimulating hormone; IGF-1, insulin–like growth factor 1; IGF-BP3, insulin-like growth factor–binding protein 3; LH, luteinizing hormone; TSH, thyroid–stimulating hormone.

Source: Children’s Hospital, Colorado, Chemistry Laboratory Procedures Manual.
Table 46–3  Hematology.

<table>
<thead>
<tr>
<th>Analyte, Units, Specimen Type, Source</th>
<th>Age</th>
<th>Methodology</th>
<th>Male Range</th>
<th>Female Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (x10³/µL) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>9.0–32.0</td>
<td>9.0–32.0</td>
</tr>
<tr>
<td></td>
<td>1–24 mo</td>
<td></td>
<td>5.0–13.0</td>
<td>5.0–13.0</td>
</tr>
<tr>
<td></td>
<td>2–10 y</td>
<td></td>
<td>4.0–12.0</td>
<td>4.0–12.0</td>
</tr>
<tr>
<td></td>
<td>10–17 y</td>
<td></td>
<td>4.0–10.5</td>
<td>4.0–10.5</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td>4.0–10.5</td>
<td>4.0–10.5</td>
</tr>
<tr>
<td>RBC (x10⁶/µL) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>4.0–6.7</td>
<td>4.0–6.7</td>
</tr>
<tr>
<td></td>
<td>1–24 mo</td>
<td></td>
<td>3.0–5.4</td>
<td>3.0–5.4</td>
</tr>
<tr>
<td></td>
<td>2–10 y</td>
<td></td>
<td>4.0–5.3</td>
<td>4.0–5.3</td>
</tr>
<tr>
<td></td>
<td>10–17 y</td>
<td></td>
<td>4.2–5.6</td>
<td>4.2–5.6</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td>4.7–6.0</td>
<td>4.7–6.0</td>
</tr>
<tr>
<td>Hemoglobin (g/dL) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>13.0–22.0</td>
<td>13.0–22.0</td>
</tr>
<tr>
<td></td>
<td>1–24 mo</td>
<td></td>
<td>9.5–14.0</td>
<td>9.5–14.0</td>
</tr>
<tr>
<td></td>
<td>2–10 y</td>
<td></td>
<td>11.5–14.5</td>
<td>11.5–14.5</td>
</tr>
<tr>
<td></td>
<td>10–17 y</td>
<td></td>
<td>11.5–14.5</td>
<td>11.5–14.5</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td>13.5–18.0</td>
<td>13.5–18.0</td>
</tr>
<tr>
<td>HCT (%) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>42–70</td>
<td>42–70</td>
</tr>
<tr>
<td></td>
<td>1–24 mo</td>
<td></td>
<td>30–41</td>
<td>30–41</td>
</tr>
<tr>
<td></td>
<td>2–10 y</td>
<td></td>
<td>33–43</td>
<td>33–43</td>
</tr>
<tr>
<td></td>
<td>10–17 y</td>
<td></td>
<td>36–47</td>
<td>36–47</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td>42–52</td>
<td>42–52</td>
</tr>
<tr>
<td>MCV (fl) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>90–115</td>
<td>90–115</td>
</tr>
<tr>
<td></td>
<td>1–24 mo</td>
<td></td>
<td>70–90</td>
<td>70–90</td>
</tr>
<tr>
<td></td>
<td>2–10 y</td>
<td></td>
<td>76–90</td>
<td>76–90</td>
</tr>
<tr>
<td></td>
<td>10–17 y</td>
<td></td>
<td>78–95</td>
<td>78–95</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td>78–100</td>
<td>78–100</td>
</tr>
<tr>
<td>Polys (x10³/µL) (absolute) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>6–23.5</td>
<td>6–23.5</td>
</tr>
<tr>
<td></td>
<td>1–24 mo</td>
<td></td>
<td>1.1–6.6</td>
<td>1.1–6.6</td>
</tr>
<tr>
<td></td>
<td>2–10 y</td>
<td></td>
<td>1.4–6.6</td>
<td>1.4–6.6</td>
</tr>
<tr>
<td></td>
<td>10–17 y</td>
<td></td>
<td>1.5–6.6</td>
<td>1.5–6.6</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td>1.5–6.1</td>
<td>1.5–6.1</td>
</tr>
<tr>
<td>Bands# (x10³/µL) (absolute) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>&lt; 3.5</td>
<td>&lt; 3.5</td>
</tr>
<tr>
<td></td>
<td>1–24 mo</td>
<td></td>
<td>&lt; 1.0</td>
<td>&lt; 1.0</td>
</tr>
<tr>
<td></td>
<td>2–10 y</td>
<td></td>
<td>&lt; 1.0</td>
<td>&lt; 1.0</td>
</tr>
<tr>
<td></td>
<td>10–17 y–Adult</td>
<td></td>
<td>&lt; 1.0</td>
<td>&lt; 1.0</td>
</tr>
<tr>
<td>Lymphs# (x10³/µL) (absolute) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>2.5–10.5</td>
<td>2.5–10.5</td>
</tr>
<tr>
<td></td>
<td>1–24 mo</td>
<td></td>
<td>1.8–9.0</td>
<td>1.8–9.0</td>
</tr>
<tr>
<td></td>
<td>2–10 y</td>
<td></td>
<td>1.0–5.5</td>
<td>1.0–5.5</td>
</tr>
<tr>
<td></td>
<td>10–17 y–Adult</td>
<td></td>
<td>1.0–3.5</td>
<td>1.0–3.5</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td>1.5–3.5</td>
<td>1.5–3.5</td>
</tr>
<tr>
<td>Monos# (x10³/µL) (absolute) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>&lt; 2.0</td>
<td>&lt; 2.0</td>
</tr>
<tr>
<td></td>
<td>1 mo–Adult</td>
<td></td>
<td>&lt; 1.0</td>
<td>&lt; 1.0</td>
</tr>
<tr>
<td>EOS# (x10³/µL) (absolute) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>&lt; 2.0</td>
<td>&lt; 2.0</td>
</tr>
<tr>
<td></td>
<td>1 mo–Adult</td>
<td></td>
<td>&lt; 0.7</td>
<td>&lt; 0.7</td>
</tr>
<tr>
<td>Basos# (x10³/µL) (absolute) EDTA whole blood</td>
<td>0–1 mo</td>
<td>Beckman LH780</td>
<td>&lt; 0.4</td>
<td>&lt; 0.4</td>
</tr>
<tr>
<td></td>
<td>1 mo–Adult</td>
<td></td>
<td>&lt; 0.7</td>
<td>&lt; 0.7</td>
</tr>
<tr>
<td>Platelet (x10³/µL) EDTA whole blood</td>
<td>0 d–Adult</td>
<td>Beckman LH780</td>
<td>150–500</td>
<td>150–500</td>
</tr>
<tr>
<td>MCH (pg) EDTA whole blood</td>
<td>0 d–Adult</td>
<td>Beckman LH780</td>
<td>27–31</td>
<td>27–31</td>
</tr>
<tr>
<td>MCH (g/dL) EDTA whole blood</td>
<td>0 d–Adult</td>
<td>Beckman LH780</td>
<td>32–36</td>
<td>32–36</td>
</tr>
</tbody>
</table>

Source: Children’s Hospital, Colorado, Hematology Laboratory Procedures Manual.
This page intentionally left blank
Acute appendicitis, 668
Acute ataxia, 824–827. See also Ataxia
clinical findings, 824–825
pathogenesis, 824
Acute bacterial rhinosinusitis (ABRS), 518–519, 517f
Acute bilirubin encephalopathy, 23, 23t
Acute bursitis, 871
Acute care visits, 263–264
Acute cerebral ataxia, 828
Acute cervical adenitis, 527–528
Acute demyelinating encephalomyelitis, 825
Acute diarrhea, 678–679
parasitologic evaluation, 1357f
Acute epiglottitis, 503
Acute flaccid paralysis, syndromes
Acute febrile illness, 1239
Acute glomerulonephritis (AGN), group A streptococcal infections and, 1285
Acute hemolytic transfusion reaction, 988t
Acute hypertensive emergencies, treatment, 844
Acute glomerulonephritis (AGN), group A streptococcal infections and, 1285
Acute hemolytic transfusion reaction, 988t
Acute interstitial nephritis, 760
Acute intracranial hypertension, head injury and, 349
Acute kidney injury (AKI)
clinical findings, 415
defined, 414
in ICU, 414–415
pathophysiology, 414–415
treatment, 415
Acute liver failure (ALF), 714–716, 715t
clinical findings, 715
complications, 715
defined, 714
differential diagnosis, 715
general considerations, 714, 715t
prognosis, 716
treatment, 715–716
Acute lung injury (ALI). See also Acute respiratory distress syndrome
transfusion-related, 988t
Acute lymphoblastic leukemia (ALL), 990–993
clinical findings, 991
differential diagnosis, 991–992
general considerations, 990–991
hematopoietic stem cell transplantation (HSCT) for, 992
imaging studies, 991
laboratory findings, 991
prognosis, 993
symptoms and signs, 991
treatment, 992–993
Acute lymphonodular pharyngitis, 1240
Acute myeloid leukemia (AML), 993–996, 994t
clinical findings, 994–995
FAB subtypes, 994, 994t
general considerations, 993–994, 994t
prognosis, 995–996
treatment, 995
Acute otitis media (AOM), 503–509
Acute pancreatitis, 734–735
Acute pain, 1022–1024, 1024t
Acute respiratory failure, 387–391
Anatomic factors, 387
Acute respiratory distress syndrome (ARDS), 395–399
described, 395
diagnostic criteria, 395–396
mortality data, 395
outcomes, 399
pathophysiology, 396–397, 396t
phases, 396, 396t
presentation, 396–397
risk factors, 396t
treatment, 397–399
underlying disorders, 396
Acute respiratory failure, 387–391
Anatomic factors, 387
clinical findings, 388, 388t
defined, 387
noninvasive monitoring and blood gas analysis, 388–389
pathogenesis, 387–388, 388f
respiratory support, modes of, 389–391, 391f
types, 388, 388f
Acute stomatitis, 522–523
Acute thyroiditis, 1068
Acute traumatic anterior shoulder instability, sports-related, 905
Acute viral rhinitis, 515–518
clinical findings, 516f
described, 515
incidence, 515
treatment, 516f, 519
Acute illness
approach to, 340–342, 342t
assessment, 340–341
equipment sizes and estimated weight by age, 340, 342t
preparation, 340, 342t
reception, 340–341
assessment, 334–340
ABCs of resuscitation, 334–338
emergency drugs, 340, 340t–341t
overview, 334
shock, 338–339, 338f
management, 334–340
ABCs of resuscitation, 334–338
emergency drugs, 340, 340t–341t
overview, 334
shock, 338–339, 338f
Acyanotic congenital heart disease, 601–616. See also specific disorders
atrioventricular septal defect (AVSD), 604–605
aortic diseases, 614–615
atrial septal defect, 601–602
left-sided lesions, 610–614
aortic stenosis, 611–612
correction of aorta, 610–611
genital aortic regurgitation, 614
genital mitral regurgitation, 614
genital mitral stenosis, 613
cor triatriatum, 614
mitral valve prolapse, 612–613
Turner syndrome, 615
in newborns, 52–53
patent ductus arteriosus (PDA), 605–607
right-sided obstructive lesions, 607–609
absence of pulmonary artery, 609
Ebstein malformation of tricuspid valve, 609
peripheral (branch) pulmonary artery stenosis, 608–609
pulmonary valve stenosis, 607–608
subvalvular pulmonary stenosis, 608
supravalvular pulmonary stenosis, 608
Adolescence, 117–157. See also Adolescent age of, 117 behavior during, 129–135. See also Adolescent, behaviors contraception, 149–155. See also Contraception/contraceptives demography, 117 described, 117 early, psychosocial development, 128 gynecologic disorders, 139–148. See also specific disorders late, psychosocial development, 128 middle, psychosocial development, 128 morbidity data, 117–118, 118f mortality data, 117 population of, 117 pregnancy in, 156–157, 157f. See also Pregnancy, in adolescents sexual orientation, 128 substance abuse during, 158–171. See also Substance abuse, adolescent Adolescent, 129–135, 169. See also Adolescence anal intercourse among, 1440 behaviors high-risk, interrelation of, 118, 118f overweight/obesity, 132–133. See also Obesity; Overweight, 133f school avoidance, 134–135 school failure, 135 breast disorders, 135–139, 136t–139t. See also specific types and Breast disorders concept of death, 1029, 1030t contraception, 149–155. See also Contraception/contraceptives depression in, indicators, 118 developmental problems, assessment, interviewing in, 191 diphtheria-tetanus-acellular pertussis (DTaP) vaccination for, 298 eating disorders, 172–184. See also specific disorders and Eating disorders growth and development, 125–128 physical growth, 126–127 psychosocial development, 127–128 pubertal, 125–126 sexual maturation, 125f, 126f, 127 gynecologic disorders, 139–148. See also specific disorders health services delivery to, 119 health supervision visits, screening during, 259–260 immunizations in, 273, 274t–276t schedule, 273, 274t–276t catch up, 276t immunoglobulins in, normal values, 1037f oral sex and, 1440 preventive services, guidelines, 119–125, 121f confidentiality, 120 interview, 120, 121f–124f medical history questionnaire, 120, 121f–124f physical examination, 120, 125, 125f, 126f relating to patient, 119 setting, 119–120 structure of visit, 120 psychological health, 129–135 conversion reactions, 129–130 depression, 130–131. See also Depression in adolescents psychophysiolgic symptoms, 129–130 suicide, 131–132 sexual maturation and growth, 125f, 127 female, 126f, 127 male, 125f, 127 sexuality in, 1440 skin disorders in, 432–446. See also specific disorders suicide in, 131–132, 226–228. See also Suicide Adrenal cortex, 1086–1096 described, 1086–1087 disorders, 1086–1096 adrenal medulla pheochromocytoma, 1095–1096 adrenocortical hyperfunction, 1091–1093 congenital adrenal hyperplasias, 1089–1091, 1090f primary hyperaldosteronism, 1093 treatment, glucocorticoids, 1093–1095 Adrenal crisis, 1087–1089 symptoms and signs, 1087 treatment, 1088–1089 Adrenal hyperplasias, congenital, 1089–1091, 1090f. See also Congenital adrenal hyperplasia Adrenal medulla pheochromocytoma, 1095–1096 Adrenarche, benign premature, 1083 β-Adrenergic blocking agents, in hyperhidrosis management, 1069 Adrenocortical hyperfunction, 1091–1093 clinical findings, 1092 differential diagnosis, 1092 general considerations, 1092 imaging studies, 1092 laboratory findings, 1092 prognosis, 1093 symptoms and signs, 1092 treatment, 1093 Adrenocortical insufficiency, 1087–1089 clinical findings, 1087–1088 course, 1089 differential diagnosis, 1088 laboratory findings, 1087–1088 prognosis, 1089 treatment, 1088–1089 Adrenocorticosteroid, potency equivalents, 1093, 1094f Adrenocorticotropic hormone. See ACTH Adrenoleukodystrophy, 822t Adult, diphtheria-tetanus-acellular pertussis (DTap) vaccination for, 298 Advacne care planning, in end-of-life care, 1031 Advanced life support, ABCs of resuscitation, 335f–336f Advocacy pediatrics, 267 AEDs. See Antiepileptic drugs Aflibringenemia, 972 Afluria, 289 African tick typhus, in returned traveler, 1437f After-hours telephone answering service, 266 Afterload, 403 Afterload reduction, in heart failure management, 599 Agammaglobulinemia congenital, autosomal recessive, 1039f, 1040 X-linked, 1038, 1039f, 1040
INDEX

Aganglionic megacolon, congenital, 669–670
Age
development by, 75–93. See also Development, normal
as factor in body water compartments, 742, 743
as factor in immunoglobulin values, 1017
as factor in rheumatic fever, 626
as factor in seizures, 787t–789t
as factor in visual acuity, 256, 256t
gestational, of newborns, assessment, 9–12, 10t, 11f, 12t
weight gain by, 270t
Agency of Health care Research and Quality (AHRQ), 2–3
Agenesis
of corpus callosum, 811
Ages and Stages Questionnaires, 776
socio-emotional, in mental health
testing in office setting, 189
Aggression,
229–232
Agitation, palliative care for, 1028
Alcohol-related neurodevelopmental
treatment, 334–336, 336t
Alcohol abuse, during pregnancy, effects
Alcohol, systemic effects, 159–160
Albuterol, in asthma management, 1182
Aldehydes
Alzheimer disease, 823t
Alf. See Acute liver failure
Alf. See Acute lung injury
Allergic rhinoconjunctivitis, 1186–1190
Allergic reactions
drug-related, red rash in, 1231t
latex allergy, 1201–1202
prevalence, 1171
radiocontrast media-related, 1202
vaccines, 1202
Allergic reactions
causes, 1196t
treatment, 988t
Allergic rhinitis, 520–521, 530, 530f
Allergic rhinoconjunctivitis, 1186–1190
classification, 1186
clinical findings, 1186–1187
complications, 1187
differential diagnosis, 1187
general considerations, 1186
laboratory findings, 1187
pathologic changes, 1186
prevalence, 1186
prognosis, 1190
symptoms and signs, 1186–1187
treatment, 1187–1190
anti-histamines, 1188
corticosteroids, 1189
dehcongestants, 1189
general measures, 1187
immunotherapy, 1189–1190
ketorolac, 1189
mast cell stabilizers, 1188–1189
montelukast, 1189
pharmacologic, 1187–1188
surgical, 1189
vasoconstrictor agents, 1189
Allergy
See also Allergic reactions; specific types and Allergic disorders
Allergic reactions
See also Allergic rhinoconjunctivitis; specific disorders, eg, Asthma related, red rash in, 1231t
latex allergy, 1201–1202
vaccinations and, 278
Allergy testing, in acute otitis media
(AOM) prevention, 508
Allantoic antibody, platelet, thrombocytopenia
associated with, 966–967
Allogeneic transplantation, 1017
Alloimmune thrombocytopenia, neonatal, 966–967
Alopecia, 444–445, 444t
Alopecia areata, 444
Alpers disease, 820t
Alpha toga viruses, insects spreading, 1256t
Alpha toto virus, 1256t
Alport syndrome, 758
Alprazolam, 758t
Amblyopia, 485–486

anatomic considerations in, 335–336, 335f
in trauma survey, 343, 343f
Akathisia, antipsychotics and, 236
Alagille syndrome, neonatal cholestasis due
to, 700t
Albers-Schönberg disease, 866–867
Albinism, 470
Albumin, effects on exchange transfusion for indirect hyperbilirubinemia, 25–26, 26t
Albuterol, in asthma management, 1182
Alcohol, systemic effects, 159, 160t
Alcohol abuse, during pregnancy, effects
on infants, 33, 33f
Alcohol-related birth defects, 115–116
Alcohol-related neurodevelopmental disorder, 115
Aldosterone, 744
Alert, verbal, painful, unresponsive
Alkaline diuresis, in poisoning treatment,
Alkali, poisoning, treatment, 370
Alkali diuresis, in poisoning treatment,
Alkalization, urinary, in poisoning treatment,
Alkaloid, belladonna, poisoning, treatment,
Alkalosis
hypokalemic, congenital, 771
metabolic, 751
respiratory, 751
All.
All.
All.
All.
Allylamine, 757
Aluminum, 757
Alveolar-arterial oxygen difference, 405t

Airway
adjunct, in airway management, 335–336, 336f
as factor in management of the acutely ill patient, 334–336, 335f–336f
evaluation, in bronchopulmonary dysplasia management, 560
extrathoracic. See Extrathoracic airway
intrathoracic. See Intrathoracic airways
laryngeal mask, in airway management, 343
malacia of, 548–549
nasopharyngeal, in airway management, 335–336, 336f
oropharyngeal, in airway management, 335–336, 336f
Airway management
airway clearance therapy, in respiratory tract disorders management, 542

AMA (American Medical Association), 165
INDEX

Ambulatory and office pediatrics (ambulatory outpatient services), 248–270
acute-care visits, 263–264
advocacy issues, 267
anticipatory guidance, injury prevention, 260–262
chronic disease management, 264–265
common general issues, 267–270. See also specific issues, eg, Fever
community pediatrics, 267
consultations, 266
fever, 267–269
growth deficiency, 269–270, 270t
health supervision visits, 251–265.
See also specific components and Health supervision visits, 252f–253f, 256t, 258t
hearing loss evaluation, 514
importance of, 248
integrated mental and behavioral health, 265–266
internet use, 267
medical home, 265
mental and behavioral health, 265–267
patient history, 248–249, 249f, 250t
physical examination, 249–251
prenatal visits, 264
sports physicals, 264
telephone use, 266–267
amoebas, free-living, 1373–1374
Amoebiasis, 1369–1370, 1370t
clinical findings, 1369–1370
diagnostic findings, 1369–1370
general considerations, 1369
prevention, 1370
in returned traveler, 1437t
symptoms and signs, 1369
treatment, 1370, 1370t
Amoebic liver abscess, 730–732
clinical findings, 731
complications, 731
differential diagnosis, 731
general considerations, 730–731
prognosis, 732
treatment, 732
American Academy of Pediatrics (AAP), 202, 586, 587t
"Back-to-Sleep" campaign of, 586, 587t
on sudden infant death syndrome (SIDS), 586, 587t
Bright Futures: Guidelines for Health Supervision of Infants, Children, and Adolescents of, 119
guidelines on well-child surveillance and screening, 103
immunizations guidelines, 272–273
Policy Statement on Community Pediatrics of, 186–187
on use of performance-enhancing substances, 162
American Academy of Physical Medicine and Rehabilitation (AAPM&R), 926
American Board of Pediatrics (ABP), 3
American College of Obstetrician and Gynecologists, Pap screening guidelines of, 140
American Medical Association (AMA), Guidelines for Adolescent Preventive Services (GAPS) of, 165
Amine hormones, 1054
Amniotic fluid, meconium-stained,
due to, 1083–1084, 1083f
Ampicillin, 1211
Ampicillin-susceptible enterococci
Ampicillin-resistant enterococci, infections
Aminoglycoside, 1212
Aminopenicillins, 1219
Aminosalicylate, in inflammatory bowel disease (IBD) management, 693
AML. See Acute myeloid leukemia
Amiodipine, for renal hypertension, 769t
Androgen receptor defect, delayed puberty due to, 1083–1084, 1083t
Anemia, 938–956. See also specific types, eg, Congenital hemolytic anemias
 aplastic acquired, 937–938
 constitutional, 936–937
 approach to child with, 938–940, 939f, 940f
causes, 68
chronic disorders and, 944–945
chronic renal failure and, 945
Diamond-Blackfan, 941
evaluation, 939, 939f
Fanconi, 936–937
phenotype, 1140
hemolytic acquired, 955–957, 956t
nonimmune, 957
autoimmune, 955–957, 956t. See also
Autoimmune hemolytic anemia congenital, 945–946. See also
Congenital hemolytic anemias
Anal intercourse, among adolescents, 1440
Anal stenosis, 672
Analgesia/analgesics in ICU, 419f
nonopioid for acute pain, doses, 1022, 1024t
in ICU, 421
opioid, in ICU, 419t
patient-controlled, for acute pain, 1024, 1025f
procedural, for emergencies and injuries, 355–356
in ventilated patient, 393
Analytical detection methods, 1441
Analytical instrumentation, 1441
Analytical variations, 1441
Anaplastic large cell lymphoma, 1004t
Androgen, in adrenal cortex, 1087
Androgen action, disorders, 1080–1081
Androgen receptor defect, delayed puberty due to, 1083–1084, 1083t
Anaphylaxis, 1196–1199, 1196t
causes, 1196t
clinical findings, 1197
complications, 1197
differential diagnosis, 1197
general considerations, 1196
laboratory findings, 1197
prevention, 1197–1198
prognosis, 1198–1199
symptoms and signs, 1197
treatment, 1198–1199
antihistamines, 1198
bronchodilators, 1198
corticosteroids, 1198
epinephrine, 1198
fluids, 1198
general measures, 1198
vasopressors, 1198
Anaplastic large cell lymphoma, 1004t
Androgen, in adrenal cortex, 1087
Androgen action, disorders, 1080–1081
Androgen receptor defect, delayed puberty due to, 1083–1084, 1083t
Anemia, 938–956. See also specific types, eg, Congenital hemolytic anemias
 aplastic acquired, 937–938
 constitutional, 936–937
 approach to child with, 938–940, 939f, 940f
causes, 68
chronic disorders and, 944–945
chronic renal failure and, 945
Diamond-Blackfan, 941
evaluation, 939, 939f
Fanconi, 936–937
phenotype, 1140
hemolytic acquired, 955–957, 956t
nonimmune, 957
autoimmune, 955–957, 956t. See also
Autoimmune hemolytic anemia congenital, 945–946. See also
Congenital hemolytic anemias
INDEX

Anemia (Cont.):
hereditary elliptocytosis, 946
hereditary spherocytosis, 945–946
hypoplastic, congenital, 941
hypothyroidism and, 945
initial evaluation, 68
iron-deficiency, 942–943
megaloblastic, 943–944
in newborns, 68–69
nutritional, 942–943
parasitic infections and, 1355
in preterm infants, 46–47
general considerations, 46
treatment, 47
pure red cell aplasia, 940–942
transient erythroblastopenia of childhood, 941–942
Anencephaly, empiric risks, 1147
Anesthesia/anesthetics
in ICU, 418–422, 419
local
adverse reactions, 1202
poisoning, treatment, 366–367, 366
Anerysmal bone cyst, 882
ANF (atrial natriuretic factor), 744
Ansizinergic converting enzyme (ACE)
Angiostrongylus cantonensis, parasitic
Angiomatosis encephalofacia, 817
Angiography
Angioedema, 1194–1196
complications, 1195
described, 1194
differential diagnosis, 1195
general considerations, 1194
hereditary, C1 esterase inhibitor deficiency and, 1049–1050
laboratory findings, 1195
prevalence, 1194
prognosis, 1196
symptoms and signs, 1195
treatment, 1195–1196
antihistamines, 1195–1196
corticosteroids, 1196
doxepin, 1196
general measures, 1195
leukotriene-receptor antagonists, 1196
thyroid hormone, 1196
Angiography
cerebral, in neurologic assessment, 782
magnetic resonance, in neurologic assessment, 781
Angiomatosis encephalofacia, 817
Angiostrographus cantonisens, parasitic
infections due to, 1356
Angiotensin-converting enzyme (ACE) inhibitors, in heart failure management, 600
Anilide, poisoning, treatment, 354–355
Aniridia, 469–470, 469
Ankle injuries, sports-related, 915–916.
See also Foot and ankle injuries, sports-related
Ankle sprains, 871–872, 915–916
Ankyloglossia, 496f
Antihistamine
Antigen-antibody reactions, 1441
Antidiuretic hormone (ADH), 742–743
Antidepressant.
Anticoagulant, intrinsic, deficiencies, 978
Anticonvulsant, maternal use, genetic effects, 1168–1169
Antidepressant. See also specific types, eg,
Selective serotonin reuptake inhibitors
“black box warning” on, 131
in children and adolescents, 217–220, 217f, 219f
cyclic, poisoning, treatment, 372
guidelines, 202
poisoning, treatment, 372, 381
for post-traumatic stress disorder (PTSD), 210
tricyclic for attention-deficit hyperactivity disorder (ADHD), 107
for obsessive-compulsive disorder (OCD), 208
Antidiuretic hormone (ADH), 742–743
physiology, 1063–1064
Antiepileptic drugs (AEDs), in seizure management, 794, 795f–796f
discontinuation, 794
drug selection, 795f
long-term management, 794
side effects, 795f
strategy, 794
Antigen-antibody reactions, 1441
Antihistamine
INDEX

in allergic rhinoconjunctivitis
management, 1188
in anaphylaxis management, 1198
in angioedema management, 1195–1196
poisoning, treatment, 367
in urticaria management, 1195–1196
Antihypertensive drugs, 769t
Anti-IGE, in asthma management, 1183
Anti-infective therapy, in atopic dermatitis management, 1193
Anti-inflammatory drugs, nonsteroidal adverse reactions, 1202–1203
in ICU, 421
in juvenile idiopathic arthritis (JIA) management, 929
Antimicrobial agents, 1211t–1212t. See also specific agents and Antimicrobial therapy
in acute otitis media (AOM) management, 505–508
adverse reactions, 1199–1201
clinical findings, 1199–1200
laboratory findings, 1199–1200
prognosis, 1201
symptoms and signs, 1199–1200
treatment, 1200–1201
aminoglycosides, 1224–1225
antibacterial agents
oral, guidelines for use, 1214t
parenteral, guidelines for use, 1213t
azalides, 1223
aztreonam, 1222
carbapenems, 1222
cephalosporins, 1222
chronic diarrhea due to, 679
clindamycin, 1223
daptomycin, 1225–1226
in dentistry, 505
in diphtheria management, 1314
empiric, initial choices, indications, 1217–1219
fluoroquinolones, 1225
glycopeptide agents, 1221
guidelines for use, 1213t–1215t
in inflammatory bowel disease (IBD) management, 693
macrolides, 1223
metronidazole, 1225
microorganisms susceptibility to, 1208, 1209–1210, 1212
new, uses, 1215–1216
for newborns, 1215t
oxazolidinones, 1221
penicillins, 1219–1221
prophylactic, 775, 1216, 1216t, 1217, 1220t
quinupristin-dalfopristin, 1221
for recurrent rhinosinusitis, 519, 520
for sepsis, 407
sulfonamides, 1223–1224
systemic, for acne, 434, 434t
tetracyclines, 1224
topical, for acne, 433–434, 434t
in urinary tract infection (UTI) management, 774–775
Antimicrobial therapy, 1207–1226. See also specific agents and Antimicrobial therapy
in acute otitis media (AOM) management, 505–508
adverse reactions, 1199–1201
clinical findings, 1199–1200
laboratory findings, 1199–1200
prognosis, 1201
symptoms and signs, 1199–1200
treatment, 1200–1201
aminoglycosides, 1224–1225
antibacterial agents
oral, guidelines for use, 1214t
parenteral, guidelines for use, 1213t
azalides, 1223
aztreonam, 1222
carbapenems, 1222
cephalosporins, 1222
chronic diarrhea due to, 679
clindamycin, 1223
daptomycin, 1225–1226
in dentistry, 505
in diphtheria management, 1314
empiric, initial choices, indications, 1217–1219
fluoroquinolones, 1225
glycopeptide agents, 1221
guidelines for use, 1213t–1215t
in inflammatory bowel disease (IBD) management, 693
macrolides, 1223
metronidazole, 1225
microorganisms susceptibility to, 1208, 1209–1210, 1212
new, uses, 1215–1216
for newborns, 1215t
oxazolidinones, 1221
penicillins, 1219–1221
prophylactic, 775, 1216, 1216t, 1217, 1220t
quinupristin-dalfopristin, 1221
for recurrent rhinosinusitis, 519, 520
for sepsis, 407
sulfonamides, 1223–1224
systemic, for acne, 434, 434t
tetracyclines, 1224
topical, for acne, 433–434, 434t
in urinary tract infection (UTI) management, 774–775
Antimicrobial therapy, 1207–1226. See also specific agents and Antimicrobial therapy
agent selection, decision-making process in, 1207, 1208t
blood level measurement, 1212, 1213t, 1214t, 1215
dose alteration, 1212, 1213t, 1214t, 1215
principles, 1207–1208, 1208t
Antiphospholipid antibodies, 978
Antipruritic agents, in atopic dermatitis management, 1193
Antipseudomonas penicillins, 1219–1221
Antipsychotic adverse effects, 236–237
typical guidelines, 202t
drug interactions, 237
initial medical screening, 236
medical follow-up, 237
typical guidelines, 202t
Antipsychotics, poisoning, treatment, 380–381
Antitretoviral drugs complications of, 1279
FDA-approved, 1278t
for HIV infection, criteria, 1277–1278
Anti-Rh(D) immunoglobulin, in idiopathic thrombocytopenic purpura (ITP) management, 966
Antithrombin deficiency, 977–978
Antithyroid agents, in hyperthyroidism management, 1069
Antitoxin, in diarrhea management, 1314
α1-Antitrypsin deficiency
clinical findings, 719
complications, 719
differential diagnosis, 719
general considerations, 719
liver disease due to, 719–720
neonatal cholestasis due to, 700t
prognosis, 720
treatment, 719–720
Antiviral agents, topical, for herpes simplex virus (HSV) infections, 1245
Antral lavage, for recurrent rhinosinusitis, 520
Anus
anterior displacement, 672
imperforate, 672–673
of newborns, examination, 15
Anxiety disorders, 202–210, 203t. See also specific disorders
adolescent substance abuse and, 166t
anxiety-based school refusal, 202, 204, 207t
differential diagnosis, 205t
generalized anxiety disorder, 204–205
OCDD, 208–209
panic disorder, 204t
post-traumatic stress disorder (PTSD), 204t, 209–210
selective mutism, 210
separation anxiety disorder, 204t
social, 205–208
social phobia, 204t
specific phobia, 204t, 208
symptoms and signs, 204t
treatment, 206f, 207t
Anxiety-based school refusal, 202–204, 203t
clinical findings, 202–203
complications, 203
described, 202
differential diagnosis, 203, 203t
general considerations, 202
prognosis, 203–204
treatment, 203
Acute otitis media. See also Acute otitis media
Aorta
coarctation of, 610–611
diseases, 614–615
Aortic regurgitation, congenital, 614
Aortic stenosis, 611–612
clinical findings, 611–612
course, 612
general considerations, 611
prognosis, 612
subvalvular, 611
supravalvular, 611–612
treatment, 612
valvular, 611
Aortic valve, bicuspid, 614
Apgar score, 12, 13t
Apheresis products and procedures, 985t, 989
Aplastic anemia
acquired, 937–938
costitutional, 936–937
Apnea
defined, 42
in preterm infants, 42–43, 43t
causes, 43t
clinical findings, 43
general considerations, 42, 43t
prognosis, 43
treatment, 43
sleep
central, 582–583
obstructive, 582–583
Apophysitis
of inferior pole of patella, sports-related, 913
pelvic, sports-related, 911
Apparent life-threatening events (ALTEs), 583–587, 584t
Appendicitis, acute, 668
APS (autoimmune polyglandular syndrome), 1073t
ARDS. See Acute respiratory distress syndrome
ARFID (Avoidant/restrictive food intake disorder), 183–184, 183t
**Index**

Arginine, supplementation of, for critically ill patients, 418
Arginine vasopressin physiology, 1063–1064
Aripiprazole, 218t, 224t, 231t, 237
Arnold-Chiari malformations, 810–811
Arthrogryposis multiplex congenita, 865
Arthrogryposis multiplex, 1165–1166
Arthrygryposis, neonatal cholestasis due to, 762
Arthritis
causes, viral, 1228t
degenerative, 871
juvenile idiopathic, 927–930. See also Juvenile idiopathic arthritis, 928t
Lyme disease and, treatment, 1352
monoaortcular, gonorrheal, 1306
pyogenic, 876–877
reactive, poststreptococcal, 1285
pyogenic, 876–877
monoarticular, gonorrheal, 1306
Lyme disease and, treatment, 1352
Juvenile idiopathic, 927–930.
causes, viral, 1228
Astrocytoma, 999, 999t
Asplenia, 981
Aspirin
adverse reactions, 1202–1203
in ICU, 421
Aspergillus
Aspergillus spp., fungal infections due to, 1395, 1396f
Asperger disorder, 108
Aspergillosis multiplex, 865
Ascaniasis, 1375
Ascites, chylous, 675
Ascorbic acid, deficiency, clinical features, 318t
Aseptic meningoencephalitis, cerebrospinal fluid (CSF) in, 779t
Asperger syndrome, 108
Atopic dermatitis, 439–440, 1190–1194
clinical findings, 1190–1191
complications, 1191
described, 1190
differential diagnosis, 1191
general considerations, 1190
laboratory findings, 1190–1191
prognosis, 1194
symptoms and signs, 1190
treatment, 1191–1194
anti-infective therapy, 1193
antipruritic agents, 1193

Aspiration syndromes, respiratory distress in newborns due to, 29
Aspiration pneumonia, 568–569, 569t
Asphyxia
birth, 35–36, 35f
long-term outcome of, 39
signs and symptoms, 39t
Ataxia, 824–829
cute, 824–827
acute cerebellar, 825
acute demyelinating encephalomyelitis, 825
apoptosis dominant hereditary, 828
autosomal recessive hereditary, 828
basilar migraine, 826
of childhood, 824
chronic, 827
episodic, 827–828
Friedreich, 828, 1162
functional, 827
intermittent, 827–828
mass lesions, 826–827
paraneoplastic syndromes, 825–826
posterior circulation stroke, 825
sensory, 826
toxic cerebellar syndrome, 825
X-linked cerebellar, 829
Ataxia-telangiectasia, 829, 1046
phenotype, 1140t
Atazarin, 1278t
Atherosclerosis, prevention, 636
Athlete. See also Sports injuries; Sports medicine
community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in, 900
At-home management, asthma-related, 1184
Atlantoaxial instability, sports-related, 901
Atropine, 214t, 218t
Atomoxetine hydrochloride, for treatment, 400–402
measures to assess improvement in, 5
prognosis, 402
measures to assess improvement in, 5
prognosis, 1185–1186
severity of assessment, 1176t–1177t
conditions increasing, 1174–1175
symptoms and signs, 1172
treatment, 1175–1186, 1176f–1181t.
See also acute; chronic; life-threatening
Astigmatism, 449
Astrocytoma, 999, 999t
Asymmetrical growth restriction, 12
Atopic dermatitis, 439–440, 1190–1194
clinical findings, 1190–1191
prognosis, 1194

Asthma, 1171–1186
acute, treatment, 1184–1185
at-home management, 1184
general measures, 1184
hospital management, 1185
official emergency department management, 1184–1185
patient discharge, 1185
chronic, treatment, 1175–1184, 1176f
adjustments to, 1175, 1177f–1178f
β-agonists, 1182
albuterol, 1182
anti-IgE, 1183
corticosteroids, 1179, 1181f
inhaled, 1179, 1181f
formoterol, 1182
general measures, 1175–1179, 1176f
immunotherapy, 1183
 swallowed, 1183
levalbuterol, 1183
long-acting bronchodilators (LABAs), 1182
long-term controller medications, 1179
monitoring in, 1183
montelukast, 1182
nedocromil, 1182
omalizumab, 1183
pharmacologic, 1179–1184.
stepwise approach to, 1179, 1180
 severity assessment in, 1175, 1176f
specific agents, 1180t–1181t
quick-relief medications, 1183
referral in, 1183–1184
salmeterol, 1182
safety of assessment, 1175, 1176f
stepwise approach to, 1179, 1180t
theophylline, 1182
zafirlukast, 1182
Atmospheric, 1184
Atlantic, 1278t
Atlantic, instability, sports-related, 901
Atomoxetine, 214t, 218t
Atopic dermatitis, 439–440, 1190–1194
clinical findings, 1190–1191
complications, 1191
described, 1190
differential diagnosis, 1191
general considerations, 1190
laboratory findings, 1190–1191
prognosis, 1194
symptoms and signs, 1190
treatment, 1191–1194
anti-infective therapy, 1193
antipruritic agents, 1193
corticosteroids, 1192–1193
experimental and unproved therapies, 1194
general measures, 1191–1192
hydration, 1192
moisturizers, 1192
occlusive, 1192
for recalcitrant disease, 1193–1194
tar preparations, 1193
topical calcineurin inhibitors, 1193
wet dressings, 1193
Atovaquone-proguanil
for malaria, 1361t
management, 106–107
inattentive type, 210
hyperactive type, 210
genetics and, 105
treatment, 210–211
medications, 211–213
initial medical screening, 213
nonstimulants, 214t
stimulants, 213f
Atypical hemolytic uremic syndrome (aHUS), 1050
Atypical pneumonias, 563–574
Auricular hematoma, 512
Auscultation, in cardiovascular examination, 588–590, 589t–590t
Autism
complementary and alternative management (CAM) for, 111
described, 107–108, 1168
evaluation, 109–111, 110f
clinical, 1168
Autism spectrum disorders, 107–111, 108t, 110f
diagnosis, criteria, 107–108, 108f
evaluation, 109–111, 110f
National Research Council on, 109
prevalence, 108
Autocrine, defined, 1054
Autoimmune hemolytic anemia (AIHA), 955–957, 956f
classification, 955, 956f
clinical findings, 955
complications, 956
differential diagnosis, 955
general considerations, 955
laboratory findings, 955, 956f
prognosis, 957
treatment, 956–957
Autoimmune hepatitis, 716–717
classical findings, 716–717
complications, 717
differential diagnosis, 717
prognosis, 717
treatment, 717
Autoimmune lymphoproliferative syndrome (ALPS), 1051
Autoimmune parathyroid destruction, 107f
Autoimmune polyglandular syndrome (APS), hypocalcemia associated with, 1073f
Autoimmune thrombocytopenia, neonatal, 967
Autoimmune thyroiditis, chronic, 1067–1068
Autologous transplantation, 1017
Autonomic crisis, 844
Autonomic dysfunction, 650
Autonomic hyperreflexia/dysreflexia, spinal cord injury (SCI) and, 922
Autopsy, perinatal, 1151
Autoregulation, 410
Autosomal dominant disorders, 1159–1159. See also specific disorders
Achondroplasia, 1157
CHARGE syndrome, 1158
Cornelia de Lange syndrome, 1158
craniostenoses syndromes, 1158
Marfan syndrome, 1156–1157
neurofibromatosis, 1156
Noonan syndrome, 1158–1159
osteogenesis imperfecta, 1157–1158
Autosomal dominant hereditary ataxia, 828–829
Autosomal dominant hypocalcemia, 1071
Autosomal dominant inheritance, 1143–1144, 1143f
Autosomal recessive congenital agammaglobulinemia, 1039t, 1040
Autosomal recessive disorders, 1159–1160, 1159f
Autosomal recessive inheritance, 1144, 1144f
congenital agammaglobulinemia, 1039t, 1040
cystic fibrosis, 1159
sensorineural hearing loss, 1159–1160
Smith-Lemli-Opitz syndrome, 1159, 1159f
spinal muscular atrophy (SMA), 1160
Autosomal recessive hereditary ataxia, 828–829
Autosomal recessive inheritance, 1144, 1144f
AV nodal reentrant tachycardia, 642
Avascular necrosis, of proximal femur, 878–879, 878f
Avoidant/restrictive food intake disorder (ARFID), 183–184, 183f
AVSD (atrioventricular septal defect), 604–605
Avulsion, extensor tendon, sports-related, 908
Avulsion fracture, hip, sports-related, 908
Axis, in ECG evaluation, 591–592, 592f
Bacterial colonization, acute otitis media (AOM) related to, 504t
Bacterial meningitis, 448
Bacterial pneumonia, 448
Bacterial sepsis, 448
Bacterial meningitis, 448
Bacteremia, pneumococcal infections and, 1167
"Back-to-Sleep" campaign, of American Academy of Pediatrics (AAP), 586, 587f
Back sprains, 872
"Back-to-Sleep" campaign, of American Academy of Pediatrics (AAP), 586, 587f
Baclofen, 926
Bacteremia, pneumococcal infections and, 1163t
treatment, 1296–1297
Bacterial colonization, acute otitis media (AOM) related to, 504t
INDEX

Bacterial conjunctivitis, 466
Bacterial contamination, transfusion related, 988f
Bacterial infections, 1283–1344. See also specific types, eg, Pneumococcal infections
botulism, 1308–1310
Campylobacter infection, 1325
cat-scratch disease, 1343–1344
Chlamydia pneumoniae infections, 1341–1343
cholera, 1323–1324
diphtheria, 1313–1314
enterobacteriaceae-related, 1315–1316
in full-term infant, evaluation guidelines, 59
gas gangrene, 1312–1313
gonococcal infections, 1305–1308
Haemophilus influenzae type B infections, 1328–1331
Legionella infection, 1339–1340
listeriosis, 1333–1334
meningococcal infections, 1303–1305
in newborns, 58–61, 59f, 60f
bacterial sepsis, 58–59, 59f, 60f
conjunctivitis, 61
meningitis, 59
nontuberculous mycobacteria-related infections, 1338–1339
ophthalmitis, 61
ornithosis, 1341–1343
pertussis, 1331–1333
plague, 1327–1328
pneumonia, 60–61
psittacosis, 1341–1343
TB, 1300f, 1335–1338
tularemia, 1326–1327
urinary tract infections (UTIs), 61
paratyphoid fever, 1320–1322
pertussis, 282–284
pneumococcal infections, 1294–1298, 1297f
Pseudomonas infections, 1317–1318
Salmonella gastroenteritis, 1318–1320
shigellosis, 1322–1323
of skin, 435–436
staphylococcal infections, 1298–1302
streptococcal infections
A, 1283–1287. See also Group A streptococcal infections
B, 1287–1293, 1288f, 1298f
with organisms other than group A or B, 1293–1294
tetanus, 1310–1312
typhoid fever, 1320–1322
Bacterial meningitis, 836–837, 836f
cerebrospinal fluid (CSF) in, 779f
Bacterial pneumonia, 561–562
antimicrobial agents for, 1218
clinical findings, 561–562
community acquired, 561–562
complications, 562
differential diagnosis, 562
imaging studies, 561
laboratory findings, 561
prognosis, 562
symptoms and signs, 561
treatment, 562
Bacterial sepsis, in newborns, 58–59, 59f, 60f
clinical findings, 58
general considerations, 58
incidence, 58
treatment, 58–59
Bacterial tracheitis, 547
Bacterial vaginitis, 1413–1414
treatment, 1405f
Bag-valve-mask ventilation, for breathing support, 337, 337f
Baker cyst, 883
Ballard score, in fetal maturation assessment, 251, 254
dangerous, 232
development, 87–90
developmental, variations in, 93–94
perspectives, 89t.
violet, 229–232
Behavioral deficits, brain injury and, 919
Behavioral health mental health and, in primary care setting, 265–267
Behavioral health providers, 200–201
Behavioral health services, pediatric primary care, 200–202
Bell palsy, 856
Lyme disease and, treatment, 1352
Belladonna alkaloids, poisoning, treatment, 368–369
Benign acute childhood myositis, 853
Benign epilepsy of childhood, with centrotemporal spikes (BECTS), 789f, 790t
with occipital paroxysms, 790t
Benign familial neonatal convulsions (BFNC), 790t
Benign idiopathic neonatal convulsions (BINC), 790t
Benign migratory glossitis, 531–532
Benign neonatal sleep myoclonus (BNSM), 801
Benign nocturnal myoclonus, 792f
Benign paroxysmal vertigo, 792t
Benign premature adrenarche, 1083
Benign premature thelarche, 1082–1083
Benzodiazepine
in ICU, 419–420, 419f
systemic effects, 159f, 161t
Benzodiazepines
poisoning, treatment, 368
Bereavement, 424
BFNC (benign familial neonatal convulsions). See Benign familial neonatal convulsions (BFNC)
Bicarbonate, for emergencies, 341t
Bicuspid aortic valve, 614
Bicycle injuries, prevention, anticipatory guidance, 261
Bieri Faces Pain Scale, 1023f
Bile acid metabolism, abnormalities, neonatal cholestasis due to, 700f
Bile ducts
cystic dilation of, classification, 730, 731f
interlobular, intrahepatic cholestasis due to, 702–703
Bilevel positive airway pressure (BPAP), in acute respiratory failure, 389–390
Biliary atresia, 704–705
clinical findings, 704
differential diagnosis, 804
general considerations, 704
laboratory findings and imaging, 804
prognosis, 705
symptoms and signs, 704
removal, 704–705
Biliary dyskinesia, 728–729t
Biliary tract disease, 726–730, 728f–729t, 731f
cholelithiasis, 726–727, 728f–729t
primary sclerosing cholangitis, 727–730
Bilirubin
increased production, 20–21, 21t
neonatal jaundice related to, 19, 20f
INDEX

Carditis, rheumatic fever and, 626–627
Caries management by risk assessment (CAMBRA), 491
Carries-risk assessment, 491, 491t
Carnitine deficiency, 1124–1125
cause, 317
clinical features, 318t
described, 1124
dietary sources, 317t
CD3-chain deficiency, 1044
CD40 ligand (CD154) deficiency, 1039t
CD40 deficiency, 1039t
Cavus foot, 870
Caustic poisoning, treatment, 369–370
Cauda equina syndrome, 922
Cat-scratch disease, 527, 1343–1344
Catheterization, cardiac, in cardiovascular system evaluation, 845
Cartilage-hair hypoplasia, 1053
Cat bites, 355
Cataracts, 476, 476
Catecholamine-resistant septic shock, 408
Catharsis, in poisoning treatment, 362
Catheter arterial, in shock, 405
in parenteral nutrition, 328
pulmonary artery, in shock, 405
urinary, in trauma management, 345
Catheterization, cardiac, in cardiovascular system evaluation, 596–597. See also specific indications, 596f
cardiac catheterization data, 596–597
interventional cardiac catheterization, 597
Cat-scratch disease, 527, 1343–1344
Cauda equina syndrome, 922
Caustic burns, esophageal, 655–656
Caustic poisoning, treatment, 369–370
Cavus foot, 870
CBC. See Complete blood count
CBT. See Cognitive-behavioral therapy
CD3-8-chain deficiency, 1044
CD40 deficiency, 1039t
CD40 ligand (CD154) deficiency, 1039t
CD45 deficiency, 1044
CDC. See Centers for Disease Control and Prevention
Cefotaxime, 1222
for Streptococcus pneumoniae by susceptibility category, 1297t
Ceftriaxone, 1222
for Streptococcus pneumoniae by susceptibility category, 1297t
Celiac disease, 688–689
Cell division, 1134–1135
Cellulitis, 435
group A streptococcal infections and, 1284
Haeomophilus influenzae type B infections and, 1329–1331
orbital, 483
periorbital, 483
peritonsillar, 526
Center for Epideimiologic Studies Depression Scale for Children (CESD-C), 191
Center for Medicare and Medicaid Services (CMS), 2
Centers for Disease Control and Prevention (CDC)
Contact Center at, 271
guidelines in perinatal group B streptococcal infections prevention, 1288–1298, 1288f–1292f
HIV infection categories of children, 1272t
National Center for Immunization and Respiratory Diseases at, 271
recommendations for perinatal group B streptococcal (GBS) disease prevention, 1288–1289, 1288f–1289f
2011 Youth Risk Behavior Survey of, on contraception, 149
Central alpha-2 adrenergic agonists poisoning, treatment, 370
Central cord syndrome, 922
Central core myopathy, 847t
Central diabetes insipidus, 1064–1065
clinical findings, 1064
general considerations, 1064
treatment, 1064–1065
Central hypogonadism, delayed puberty due to, 1083, 1083f
Central nervous system (CNS) assessment, in trauma survey, 344f–345t, 346
degenerative disorders, of infancy and childhood, 818, 819r–823f
illnesses associated with, 1241–1243
nonpolio viral meningitis, 1242–1243
infections and inflammatory disorders, 835–838, 836f
bacterial meningitis, 836–837, 836f
brain abscess, 837–838
clinical findings, 835–836
head injury, 347–349
HIV infection-related encephalopathy, 838–858
imaging studies, 835–836
inflammatory demyelination syndromes, 838t
laboratory findings, 835
multiple sclerosis (MS), 839–840
noninfectious, 838–839
parainfectious encephalopathies, 839
symptoms and signs, 835
syndromes presenting as acute flaccid paralysis, 841–844, 842f–843t.
See also Acute flaccid paralysis, syndromes presenting as viral infections, 838
in sports preparticipation evaluation, 886–892
Central sleep apnea, 582–583
Central venous line, for shock, 405
Central venous pressure (CVP), monitoring, in shock, 405
Cephalic pustulosis, neonatal, 429
Cephalohematoma, 14
Cephalexin, 1211f, 1222
in acute otitis media (AOM) management, 507
adverse reactions, 1200
for group A streptococcal infections, 1286
Cerebellar ataxia, acute, 823
Cerebellar syndrome, toxic, 825
Cerebral angiography, in neurologic assessment, 782
Cerebral edema diabetes and, management, 1105
forms, 410
Cerebral herniation
brain injury and, 413
Cerebral palsy, 833–834
orthopedic aspects, 879–880
Cerebral perfusion pressure (CPP), 411
Cerebrovascular disease, 806–809, 806–809.
See also specific disorders, 807f
stroke
childhood, arterial ischemic, 807f
perinatal, 808–809
Ceruloplasmin, in inflammatory bowel disease (IBD) management, 505
Cervical adenitis, acute, 527–528
Cervical cancer, screening guidelines, 140
Cervical caps, 151
Cervical lymphadenitis, 527
Cervical spine injury, assessment, in trauma survey, 345–346
Cervicitis, 1410
postpubertal female, gonorrheal, 1307
treatment, 1404t, 1406f
CESD-C (Center for Epidemiologic Studies Depression Scale for Children), 191
Cestode infections, 1380–1383
cysticercosis, 1380–1381
echinococcosis, 1382–1383
hymenolepiasis, 1382
taeniasis, 1380–1381
CHADIS (Child Health and Development Interactive System), 103, 186
Chagas disease, 982t, 1356t
Chalazion, 460, 460f
Chancroid, 1417–1418
treatment, 1408f
Chanelopathies, 828
Charcoal, in poisoning treatment, 361–362
Charcot, in poisoning treatment, 361–362
CHARGE syndrome, 1158
Cheilitis, 531
Chemistry reference intervals, 1439–1453
guidelines for use of data in reference study, 1439–1440
INDEX
Chronic illnesses (Cont.):
- coping patterns, 196, 196f
- living with illness, psychosocial impact of, 196
- mental illness and, reactions to, 196
- phase-oriented intervention, 195
- Chronic inflammation, anemia of, 944
- Chronic lung disease defined, 44
  - in preterm infants, 44–45
- Chronic lymphocytic thyroiditis, 1067–1068
- Chronic mucocutaneous candidiasis (CMC), 1051
- Chronic myelogenous leukemia (CML), 1072f
- Chronic mucocutaneous candidiasis (CMC), 1051
- Chronic myelogenous leukemia (CML), 1051
- Chronic non-specific diarrhea, 680
- Chronic osteomyelitis, nontuberculous mycobacteria and, 1338
- Chronic pain, management, 1024–1026
- Chronic pancreatitis, 735–736
  - clinical findings, 735–736
  - complications, 736
  - differential diagnosis, 736
  - prognosis, 736
  - treatment, 736
- Chronic persistent dystonia, 832, 832r
- Chronic polyneuropathy, 857
  - clinical findings, 857
  - general considerations, 857
  - prognosis, 857
  - treatment, 857
- Chronic renal failure, 765–767
  - anemia of, 945
  - complications, 766
  - described, 765–766
  - treatment, 766–767
  - dialysis, 766
- Chronic renal insufficiency, hypocalcemic disorders and, 1072f
- Chronic rhinosinusitis, 519–520
- Chronic suppressive otitis media, acute otitis media and, 510–511
- Chylothorax, 580
- Chylous ascites, 675
- Ciprofloxacin, 1225
- Circadian rhythm, 99
- Circulatory support, mechanical, in heart failure management, 600
- Circumcision, in newborns, 18–19
- Cirrhosis, 722–723
  - clinical findings, 722–723
  - complications, 723
  - differential diagnosis, 723
  - general considerations, 722
  - prognosis, 723
  - treatment, 723
- CISA (Clinical Immunization Safety Assessment), 277
- Citalopram
  - for anxiety, 207f
  - for bulimia nervosa management, 182
  - for depression, 219f
- Civil commitment, 193–194
- Clari-thromycin, 1223
- Classic chondrodystrophy, 867
- Clavicle, fracture, 874
  - sports-related, 904
- Cleft lip, 533, 1163–1164
  - nonsyndromic, empiric risks, 1147f
- Cleft palate, 533, 1163–1164
  - examination in newborns and infants, 496–497, 497f
  - nonsyndromic, empiric risks, 1147f
  - submucous, 533
- Clindamycin, 1211, 1223
  - for group A streptococcal infections, 1286
  - for malaria, 1362f
- Clinical heterogeneity, defined, 1142–1143
- Clomipramine
  - indications, 218f
  - for obsessive-compulsive disorder (OCD), 208
- Clonidine, 210, 231
  - for anxiety, 207f
  - for attention-deficit hyperactivity disorder (ADHD), 107, 214f
  - for post-traumatic stress disorder (PTSD), 210
- Clonidine XR, 214f
- Clostridium difficile infection, 673–674, 674f
- Cloudy cornea, 474
- Clozapine, 238
  - guidelines, 202t
  - Clubbing, of fingers and toes, in extracardiac examination, 591
- Clubfoot, 863
  - empiric risks, 1147f
- CMA (chromosomal microarray analysis), 1136
- CMC (chronic mucocutaneous candidiasis), 1051
- CMDs (congenital muscular dystrophies), 848f–849f, 859f
- CML (chronic myelogenous leukemia), 986–987
- CMS (Center for Medicare and Medicaid Services), 2
- CMV (continuous mandatory ventilation), 392
- CMV infection
  - See Cytomegalovirus infection
- CNS. See Central nervous system
- Coagulase-negative staphylococcal infections, 1300
  - treatment, 1302
  - Coagulation cascade, 963f
  - Coagulation factors, normal values, 968, 969t–970t
  - Coagulopathy, dilutional, transfusion related, 988f
  - Coarctation of aorta, 610–611
  - Cobalamin
    - biologic roles, 316f
    - deficiency causes, 317f
    - clinical features, 318f
    - dietary reference intakes, 314f
    - dietary sources, 317f
  - COC pills. See Combined oral contraceptive pills
  - Cocaine
    - abuse during pregnancy, effects on infants, 32
    - poisoning, treatment, 371
    - systemic effects, 159f, 160f
  - Coccidioidomycosis, 1390–1391
    - clinical findings, 1390–1391
    - complications, 1391
    - differential diagnosis, 1391
    - general considerations, 1390
    - imaging, 1391
    - laboratory findings, 1390–1391
    - prognosis, 1391
    - symptoms and signs, 1390
    - treatment, 1391
  - Cockayne syndrome, phenotype, 1140f
  - Codeine
    - for acute pain, 1023–1024, 1024f
    - Cognitive deficits, brain injury and, 919
    - Cognitive delay, seizures and, 793
    - Cognitive-behavioral therapy (CBT) in adolescents self-reporting scales, 217
    - for depression, 217
    - for obsessive-compulsive disorder (OCD), 208
  - Colic, 96–97
  - Colitis
    - ulcerative inflammatory bowel disease (IBD) and, 691–694, 692f
    - treatment, surgical, 693–694
  - Collaborative care, for emotional and behavioral problems, 186
  - Collagen disorders, 976–977
  - Colon
    - cancer of, 676–677
    - disorders, 669–674
    - anal fissure, 672
    - congenital aganglionic megacolon, 669–670, 672f
    - congenital anorectal anomalies, 672–673
    - constipation, 670–672, 671f
    - Hirschsprung disease, 669–670, 672t
INDEX

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital pulmonary airway malformation, 557–580</td>
<td></td>
</tr>
<tr>
<td>Congenital pulmonary lymphangiectasia, 577–578</td>
<td></td>
</tr>
<tr>
<td>Congenital rubella syndrome, 291</td>
<td></td>
</tr>
<tr>
<td>Congenital skin lesions, candidiasis and, 1387, 1389</td>
<td></td>
</tr>
<tr>
<td>Congenital syphilis, 1345–1347 in children, 1345, 1346 in newborns, 63, 64f, 1345, 1346</td>
<td></td>
</tr>
<tr>
<td>Congenital toxoplasmosis, 1367</td>
<td></td>
</tr>
<tr>
<td>Congenital syphilis, 1345–1347 in children, 1345, 1346 in newborns, 63, 64f, 1345, 1346</td>
<td></td>
</tr>
<tr>
<td>Congenital toxoplasmosis, 1367</td>
<td></td>
</tr>
<tr>
<td>Congestion, respiratory, terminal, palliative care for, 1028f</td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure, 598</td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure, 598 palliative care-related, 424 bioethics-related, 424</td>
<td></td>
</tr>
<tr>
<td>Continuous positive airway pressure (CPAP), 392</td>
<td></td>
</tr>
<tr>
<td>Continuous spontaneous ventilation (CSV), 392</td>
<td></td>
</tr>
<tr>
<td>Controlled ventilation, for increased intracranial pressure (ICP), 412</td>
<td></td>
</tr>
<tr>
<td>benign familial, 790f</td>
<td></td>
</tr>
<tr>
<td>benign idiopathic, 790f</td>
<td></td>
</tr>
<tr>
<td>Coombs test, 20–21 Coordination, in neurologic assessment, 777f</td>
<td></td>
</tr>
<tr>
<td>Copper dietary reference intakes, 311f sources and intake, 312f</td>
<td></td>
</tr>
<tr>
<td>Cor triatriatum, 614</td>
<td></td>
</tr>
<tr>
<td>Cornea cloudy, 474 laceration, 456–457, 457f ulcers, 475, 475f viral keratitis, 474–475</td>
<td></td>
</tr>
<tr>
<td>Corneal abrasion, 454–455</td>
<td></td>
</tr>
<tr>
<td>Corneal suture, 14</td>
<td></td>
</tr>
<tr>
<td>Cornelia de Lange syndrome, 1158</td>
<td></td>
</tr>
<tr>
<td>Coronary artery, abnormalities, 615–616</td>
<td></td>
</tr>
<tr>
<td>Corpus callosum, agensis of, 811</td>
<td></td>
</tr>
<tr>
<td>Cortical development, disorders, 810</td>
<td></td>
</tr>
<tr>
<td>Cortical hyperostosis, infantile, 882–883 Corticosteroid in adrenal cortex, 1087 in adrenal crisis, 1088–1089 in allergic rhinoconjunctivitis management, 1189 in anaphylaxis management, 1198 in angioedema management, 1196 in atopic dermatitis management, 1192–1193 in idiopathic thrombocytopenic purpura (ITP) management, 965 for increased intracranial pressure (ICP), 413 in inflammatory bowel disease (IBD) management, 693 inhaled, in asthma management, 1179, 1181f in intraventricular hemorrhage prevention, in preterm infants, 48 in juvenile idiopathic arthritis (JIA) management, 930 for life-threatening asthma, 401 maternal antenatal, in lung maturation acceleration, 44 in seizure management, 794 in urticaria management, 1196 Corticotropin-releasing hormone (CRH) test in adrenocortical hyperfunction evaluation, 1092 in adrenocortical insufficiency evaluation, 1088</td>
<td></td>
</tr>
<tr>
<td>Cosmetics, poisoning, treatment, 371, 371f</td>
<td></td>
</tr>
<tr>
<td>Cosyntropin stimulation test, in adrenocortical insufficiency evaluation, 1088</td>
<td></td>
</tr>
<tr>
<td>Cough parasitic infections and, 1354f whooping (pertussis), 282–283</td>
<td></td>
</tr>
<tr>
<td>Cough and cold preparations, poisoning, 367</td>
<td></td>
</tr>
</tbody>
</table>

Counseling
genetic
for fragile X syndrome, 115
trisomies-related, 1153
at time of pregnancy testing, 156
Cow’s milk protein intolerance, 690
CPAP (continuous positive airway pressure), 44–45, 389–390
CPP (cerebral perfusion pressure), 411
Cramp, heat
described, 351
management, 352
Cranial nerve, in neurologic assessment, 777t
Cranial nerve injuries, brain injury and, 920
Craniofacial anomalies, orbital effects, 483–484
Craniosynostosis, 812
Craniosynostoses syndromes, 1158
Cranial nerve injuries, brain injury and, 920
Craniofacial anomalies, orbital effects, 483–484
Craniosynostosis, 812
Creatine synthesis disorders, 1132
Cretinism, in renal function evaluation, 752–753
Credé and Valsalva maneuvers, 925
CRH test. See Corticotropin-releasing hormone test
Cryoglobulinemia, 592t
Cryoprecipitate
characteristics, 984t, 989
Cryptococcus, 1392–1393
Cryptococcosis, 1392–1393
clinical findings, 1392
complications, 1392
differential diagnosis, 1392
general considerations, 1392
imaging, 1392
laboratory findings, 1392
prognosis, 1393
symptoms and signs, 1392
Cyclosporiasis, 1372–1373
Cyst
Baker, 883
bone
aneurysmal, 882
unilateral, 882
branchial cleft, 527–528
breast, 136f
bronchogenic, 549–550
choledochal, 705, 728t–729t
dermoid, 442
epidermoid, 442
inclusion, of lips, 531
mesenteric, 677–678
ovarian, 148
subcortical, megalencephalic leukodystrophy with, 822f
thyroglossal duct, 527
Cystic adenomatoid malformation, congenital, 557–580
Cystic fibrosis, 551–552, 1159
clinical findings, 551–552
gastrointestinal and hepatobiliary manifestations, 736, 737t–739t
imaging studies, 552
laboratory findings, 552
neonatal cholestasis due to, 700t
pathogenesis, 551
prognosis, 552
Pseudomonas infections in patients with, prevention, 1318
symptoms and signs, 551
treatment, 552
Cysticercosis, 1372–1373
Cystine, in renal function evaluation, 752–753
Cystinemia, 772–773
Cystinosis, 772–773
Cystosarcoma phyllodes, 136
Cytogenetics, 1134–1140, 1135f, 1137f, 1139f, 1140t. See also specific components, eg, Chromosome
INDEX

Cytogenetics (Cont.):
- cell division, 1134–1135
- chromosomal microarray analysis (CMA), 1136
- chromosomes, 1134, 1135f
- nomenclature, 1136
- preparation and analysis, 1134, 1135f

Cytomegalovirus (CMV) infection,
- 1250–1253
  in children and adolescents, 1252
  in immunocompromised hosts, 1252–1253
  in newborns, 62
  in utero, 1250–1251
  perinatal, 1251

Cytotoxic edema, 410

D
- Dacryocystitis, 463–465, 464f
- Dacryocystostome, congenital, 463–464, 464f
- Damage-associated molecular patterns (DAMPs), 406
- DAMPs (damage-associated molecular patterns), 406
- Dandruff, 441
- Dandy-Walker syndrome, 811
- Dangerous behavior, 232
- Dantralone, 926
- Daptomycin, 1225–1226
- Darkfield microscopy, in syphilis
- evaluation, 1345
- Darunavir, 1278t
- Dawson disease, 822t
- Day care, as risk factor for acute otitis media (AOM), 508
- Daytrana patch, 213t
- DDAVP (desmopressin acetate), 95, 1064–1065

Death
- brain. See Brain death
- children response to, 197, 198t
- children’s concepts of, 1029, 1030t
- injury-related, 260
- seizures and, 793
- sudden, 647–648

Decision making, contraception-related, 149–151

Decompressive craniectomy, for
- intracranial pressure (ICP), 411

Decongestants, in allergic rhinoconjunctivitis management, 1189

Deep tendon reflexes, 15

Deep vein thrombosis, spinal cord injury (SCI) and, 923

Deficient parathyroid hormone (PTH) secretion, 1071

Deformation, defined, 1150

Degeneration, hepatolenticular, 720–721

Degenerative disorders, 860t
- central nervous system (CNS), of infancy and childhood, 818, 819f–823t
- orthopedic-related, 871

Dehydration, 746–747, 746t, 747t
- clinical manifestations, 747t

Delavirdine, 1278t

Delayed hemolytic transfusion reactions, 988t

Delayed menarche, delayed puberty due to, 1083–1084, 1083f

Delayed puberty
- causes, 1083, 1083t
- in females, 1083–1084, 1083t
- clinical evaluation, 1084
- treatment, 1084
- in males, 1085–1086
- clinical evaluation, 1085
- treatment, 1085–1086

Deletion, chromosomal, 1136–1137, 1137f

Deletion disorders, chromosomal, 1155

Deletion 1p36 syndrome, 1155

Deletion 22q11 syndrome, 1155–1156

Delirium, 195
- sedative and angesic agents and in ICU, 421

Demelinating encephalomyelitis, acute,
- 825

Dengue fever
- insects spreading, 1255, 1256t, 1258
- in returned traveler, 1343–1345, 1436t

Dental caries, 492–495, 492f, 493t
- clinical findings, 492–493
- described, 492
- early childhood, 494
- pathogenesis, 492, 492f
- prevention, 493–494, 493t
- treatment, 492–493

Dental emergencies, 499–500, 499f
- orofacial trauma, 499, 499f
- permanent teeth, 499–500
- primary teeth, 499
- swellings, 500

Dentistry, 490–501. See also Oral medicine
- antibiotics in, 500
- bleeding disorders and, 501
- in cancer patients, 500–501
- diabetes and, 501
- at home, concept, 490
- orthodontic referral, 501
- special patient populations, 500–501

Denver Developmental Screening Test II,
- 87, 91f, 776

Deodorizers, poisoning, treatment, 373

DepoProvera (DMPA), 153–154

Depresant, poisoning, treatment, 381

Depression
- in adolescents, 130–131, 215–221
- clinical findings, 130, 215
- clinical manifestations, 215f
- complications, 215–217
- defined, 215
- differential diagnosis, 130–131, 215, 216f
- general considerations, 215
- incidence, 215
- indicators, 118

narcotic, resuscitation following, 38
- prognosis, 220
- substance abuse and, 166f
- suicide and, 215–217
- symptoms, 130, 215
- treatment, 131, 217–220, 217t
- bupropion, 219
- medications, 217–220
- mirtazapine, 219
- selective serotonin reuptake inhibitors (SSRIs), 217–218
- serotonin norepinephrine reuptake inhibitors (SNRIs), 218–219
- tricyclic antidepressants (TCAs), 220

Dermatitis, 439–442
- atopic, 1190–1194. See also Atopic dermatitis
- contact
- eczematous, allergic, 441
- primary irritant, 440–441
- diaper, 440–441
- candidiasis and, 1387, 1389
- dry skin, 441–442
- nummular eczema, 440
- poison ivy, 441
- seborrheic, 441

Dermatomyositis, 932–933
- clinical findings, 932
- prognosis, 932
- treatment, 932

Dermatophyte infections, 436–437, 436t

Dermoid cysts, 442

Desmopressin acetate (DDAVP), 95, 1064–1065

Detergents, poisoning, treatment, 385

Development, 75–93
- in adolescents, 125–128. See also Adolescent, growth and development
- assessment, in health supervision visits, 251, 254
- concerns related to, 96–103. See also
- Developmental concerns
- disturbances, 1056–1063. See also
- Growth, disturbances
- enuresis and encopresis, 94–96
- normal, 75–93, 76f, 85t–87t
- 2–20 years, 80f
  ages 2–4 years, 80f–83f, 85t–86t, 88t, 89t, 90f, 91f, 92
  ages 5–7 years, 80f–83f, 86t, 88t, 89t, 91f, 92
  ages 7–11 years, 80f–83f, 86t, 92–93
  assessment, 87, 88f, 90f, 91f
  behavioral, 87–90
  communication, 84, 87, 90f
  developmental charts, 85t–87t
  first 2 years, 75, 76f–79f, 84, 86f, 85t, 87–90, 92
  language, 84, 87, 88t, 90f
- respiratory tract, 534–535
- variations in, 93–94
- well-child surveillance and screening, 103
Developmental charts, 85t–87t
Developmental concerns, 96–103
breath-holding spells, 102–103
colic, 96–97
feeding disorders, 97–98
sleep disorders, 99–101. See also Sleep disorders
temper tantrums, 102
Developmental delays, evaluation, 1167–1168, 1167t
Developmental disabilities, 112–114, 112t, 113t. See also Intellectual disability
genetic evaluation, 1167–1168, 1167t
Developmental delays, evaluation, 104–105, 186–195
assessment, 104
behavior and emotions signs and symptoms, 189–191, 190t
diagnostic formulation, 192–193
emergent situations requiring, 193–195
findings, interpretation, 192–193
during health maintenance visits, 188–195
history of presenting problem, 190
interview in, techniques, 190–191
mental status examination (MSE), 192
targeted screening tools, 191
consultation-liaison psychiatry in, 195
described, 103
detection during health maintenance visits, 188–195
in mental health screening in office setting, tools, 188–189
medical and neurodevelopmental examination, 104–105
renal, 769–773, 770t
sexual, 1078–1081, 1080f. See also Sexual development disorders
Developmental dysplasia, of hip joint, 863–864
Dexamethasone suppression testing in, 103
described, 103
detection during health maintenance visits, 188–195
in mental health screening in office setting, tools, 188–189
medical and neurodevelopmental examination, 104–105
renal, 769–773, 770t
sexual, 1078–1081, 1080f. See also Sexual development disorders
Dexamethasone, in ICU, 420
Dexmedetomidine, 213t
Dextromethorphan
for attention-deficit hyperactivity disorder (ADHD), 107, 213t
indications, 218t
Dextrocardia, 594
Dextrose, requirements, 329–330
DHA (docosahexaenoic acid), 307
Diabetes insipidus
central, 1064–1065
electrolyte and osmolality imbalance due to, 920
nephrogenic, 772
Diabetes mellitus, 1097–1105
chronic complications, prevention associated autoimmune diseases, 1103
hypertension, 1103
lipid abnormalities, 1103
maintaining low HbA1c levels, 1102–1103
nephropathy, 1103
retinopathy, 1103
dentistry in children with, 501
general considerations, 1097
infants of mothers with, hypoglycemia in, 27
neonatal, general considerations, 1097
pathogenesis, 1097–1098
type 1
clinical findings, 1098
complications
acute, 1104–1105
diabetic ketosis (DKA), 1104–1105
ketonemia, 1104
ketonuria, 1104
general considerations, 1097
management, 1098–1103, 1100t
checklist, 1102t
chronic complications, prevention, 1102–1103
diet, 1101
exercise, 1101
home blood glucose measurements, 1101–1102, 1102t
insulin, 1099–1101, 1100t
patient and family education, 1099
psychological care, 1101
pathogenesis, 1097–1098
prevention, 1098
type 2
clinical findings, 1098
complications
acute, 1104–1105
diabetic ketoacidosis (DKA), 1104–1105
ketonemia, 1104
ketonuria, 1104
general considerations, 1097
management, 1101
chronic complications, prevention, 1102–1103
diet, 1101
exercise, 1101
home blood glucose measurements, 1101–1102, 1102t
psychological care, 1101
pathogenesis, 1098
prevention, 1098
Diabetic ketoacidosis (DKA), 1104–1105
Diabetic retinopathy, 1103
Diabetic ketoacidosis (DKA), 1104–1105
Diabetic retinopathy, 479–480
Diagnostic and Statistical Manual, Primary Care (DSM-PC), areas of focus in, 199–200, 200t
Dialysis
for acute renal failure, 764–765
complications, 765
indications, 764–765
methods, 765
for chronic renal failure, 766
peritoneal, in neonatal renal failure management, 70
in poisoning treatment, 362
Diamond-Blackfan anemia, 941
Diaper dermatitis, 440–441
candidiasis and, 1387, 1389
Diaphragm, 149t, 151
disorders, 578
eventration, 579
Diaphragmatic hernia
congenital, 661
in newborns, 56–57
Diarrhea, 1233
acute, 678–679
parasitologic evaluation, 1357t
allergic, 680
chronic, 679–681
nonspecific, chronic, 680
palliative care for, 1028t
parasitic infections and, 1354t
traveler’s, 1429–1430, 1429t. See also Traveler’s diarrhea
Diazepam, 926
in ICU, 419, 419t
DIC. See Disseminated intravascular coagulation
Dichorial twins, 34–35
Didanosine, 1278t
Diet
assessment, 325, 325t
chronic diarrhea related to, 679–680
in diabetes management

type 1, 1101
type 2, 1101
in hypoparathyroidism management, 1074–1075
in inflammatory bowel disease (IBD) management, 693
ketogenic, in seizure management, 794–796
Dietary fiber, 308–309
Dietary fructose intolerance, 689–690
Dieticians, registered, pediatric, 416
Diffuse damage, described, 918
Diffusion defects, in acute respiratory failure, 388
DiGeorge syndrome, 1045–1046
hypocalcemia associated with, 1073t
Digitalis
in heart failure management, 600–601
poisoning, 601
treatment, 372
toxicity, 601
Dihydroxyalcohol dehydrogenase deficiency, 1117
Dilated cardiomyopathy, 632
DILI (drug-induced liver injury ), 721–722
Dilutional coagulopathy, transfusion related, 988t
Dinitrophenol, poisoning, treatment, 378–379
INDEX

Diphenoxylate with atropine, poisoning, treatment, 373
Diphtheria, 1313–1314
antitoxin for, 284
carriers of, treatment, 1314
clinical findings, 1313–1314
complications, 1314
described, 282
differential diagnosis, 1314
genetic evaluation, 1167–1168, 1167t
general considerations, 1314
laboratory findings, 1314
pharyngeal, 1313
prevention, 1314
diagnosis, 1314
symptoms and signs, 1313
treatment, 1314
Diphtheria-tetanus-acellular pertussis (DTaP) vaccination, 282–285, 284t, 298. See also DTaP
vaccination
Direct current cardioversion, in supraventricular tachycardia (SVT) management, 645
Disability, developmental, 111–113, 113t.
Disability-neurologic deficit, 111–113, 113t.
Disability, developmental, 111–113, 113t.
Disproportionate short stature, 1062
Disorder-specific screening tools, 191
Disruption, defined, 1150
Dissection
Distal urinary tract anomalies, 757
Distal renal tubular acidosis, 770–771, 770t
Distal phalangeal injury, sports-related, 908
Distal interphalangeal injury, sports-related, 908
Distal phalangeal injury, sports-related, 908
Distal renal tubular acidosis, 770–771, 770t
Distal urinary tract anomalies, 757
Distributive shock, 339, 402t
Diuretic
in heart failure management, 600
osmotic, for increased intracranial pressure (ICP), 412
for shock, 408
Diuretics for AKI, 415
Diverterculum, Meckel, 667–668
DKA (diabetic ketoacidosis), 1104–1105
DMAIC, 6
DMD (Duchenne muscular dystrophy), 1160–1161
DMPA (depot-provera), 153–154
DNA repair disorders, 1140t
Dobutamine in heart failure management, 599t, 600
for shock, 408t
Docusahexaenoic acid (DHA), 307
Dog bites, 354–355
Dominant, defined, 1142
Donovanosis, 1418
Dose syndrome, 788t
Dopamine in heart failure management, 599–600, 599t
for shock, 407, 408t
Double-outlet right ventricle, 623
Down syndrome, 860, 1052, 1151
Double-outlet right ventricle, 623
Dopamine for tricuspid atresia, 599t
Dosage, 283–284
Doxycycline for malaria, 1362
Doxepin for angioedema management, 1196
in urticaria management, 1196
Doxycycline for malaria, 1362t
DDx for systemic mastocytosis, 1196
Dysfunction of hypothalamic–pituitary–adrenal axis, 1195
for shock, 408t
Draven syndrome, 788t
Driving, epilepsy and, 797
Drowning defined, 353
prevention, anticipatory guidance, 261
Drug. See also specific agents and indications
absorption, 357
Review, 297–298
abuse, maternal. See Maternal drug abuse/use
adverse reactions, 1199–1203. See also specific drug or drug class, eg. Antimicrobial agents, adverse
blood levels, 358
body burden of, 358
for controlled intubation, in acute respiratory failure, 391t
emergency, 340, 341t
excretion, 358
gynecostasia due to, 139, 139t
hyperlactinemia due to, 707–708
LD50 of, 357
for shock, 407, 408t
1/2 (half-life) of, 357
transmission of, in breast milk, 317–318
volume of distribution, 358
Drug abuse, maternal, 32–33. See also Maternal drug abuse/use, 1168
Drug allergy, red rash in, 1231t
Drug eruptions, 445
Drug-induced liver diseases, 721–722
diagnosis, 722
general considerations, 721–722
symptoms, 722
treatment, 722
Drug-induced liver injury (DILI), 721–722
Dry skin dermatitis, 441–442
DTaP (diphtheria-tetanus-acellular pertussis) vaccination, 282–284, 284t
administration schedule, 283–284
for adolescents and adults, 298
adverse effects, 284
contraindications, 284
diphtheria antibody preparations, 284
dosage, 283–284
precautions, 284
tetanus antibody preparations, 284–285, 284t
travel-related, 1425, 1425t
vaccines available, 283
Duane syndrome, 487
DUB (dysfunctional uterine bleeding), 146–147, 146f, 147t
Dubin-Johnson syndrome, 708
Duchenne muscular dystrophy (DMD), 846f, 1160–1161
Duodenal atresia, 662
Duodenal obstruction, congenital, 661–662
Duodenal stenosis, 662
Duodenal ulcer, 659–661, 660f
Duplication chromosomal, 1137, 1137f
of gastrointestinal tract, 669
Dwarfism, psychosocial, 1062
Dysautonomia, 860f
Dysentery bacillary, 1322–1323
parasitic infections and, 1354t
Dysfibrinogenemias, 972, 978
Dysfunctional uterine bleeding (DUB), 146–147, 146f, 147t
Dysgenesis gonadal. See Turner syndrome
Müllerian, 144
renal, 756
Dyskinesia biliary, 728t–729t
paroxysmal, 832, 832t
primary ciliary, 552–553
tardive, antipsychotics, and, 236
withdrawal, antipsychotics, and, 237
Dyslexia, eye disorders and, 488–489
Dyslipidemia, 636
Dysmenorrhea, 144–146, 145t
Dysmorphology, 1134–1170. See also specific abnormalities/disorders
clinical, 1150–1151, 1152f
evaluation of infant, 1150–1151, 1152f
human embryology and, 1149–1151, 1152f
mechanical factors, 1150
mechanisms, 1149–1150
cellular interactions, 1149
developmental biology, 1149
environmental factors, 1149–1150
prenatal screening, 1169–1170
terminology related to, 1150

Dysphoric mood, depression and, 215

Dysplasia
bronchopulmonary, 559–561. See also
Bronchopulmonary dysplasia
defined, 1150
developmental, of hip joint, 863
fibrous, 882
neurocutaneous, 814–818. See also
specific disorders and
Neurocutaneous dysplasias
Dyspnea, palliative care for, 1028

Dysreflexia, autonomic, spinal cord injury (SCI) and, 922

Dystonia
persistent, chronic, 832, 832f

Dystrophy
muscular. See Muscular dystrophy

Dysuria, parasitic infections and, 1354

E
Ear, 502–515
congenital malformations, 513
congenital deafness, 513–515. See also Hearing loss
infections, 502–512. See also specific types, eg, Acute otitis media
acute otitis media (AOM), 503–509
bullous myringitis, 503
mastoiditis, 511–512
otitis externa, 502–503, 503f
otitis media with effusion, 509–511
middle, acute trauma to, 512
of newborn, examination, 14
pain in, air travel-related, 1423–1424
Ear, nose, and throat (ENT). See Ear; Nose; Throat

Early childhood caries (ECC), 494
Early hospital discharge, of newborns, 18, 18f

Early Language Milestone Scale-2, 87

Early term infant, 51f

Eastern equine encephalitis, insects spreading, 1257f

Eating disorder, 172–184. See also specific disorders, eg, Anorexia nervosa
anorexia nervosa, 174–180, 174f–176f, 178f
avoidant/restrictive food intake disorder (ARFID), 183–184, 183f
bulimia nervosa, 180–182, 180f
debilitating effects of, 173–176
disorder, incidence, 173
disorder, predisposing factors and clinical profiles, 174
prognosis, 184
Eating disorder not otherwise specified (EDNOS), 183

Ebstein malformation of tricuspid valve, 609

EBV (Epstein-Barr virus), 1253–1254

ECC (early childhood caries), 494

ECG. See Electrocardiography

ECHOCARDIOGRAPHY
in cardiovascular system evaluation, 594–595. See also specific indications
M-mode, in cardiovascular system evaluation, 594
transthoracic, in cardiovascular system evaluation, 594

ECMO. See Extracorporeal membrane oxygenation

Ectasia
liquid, systemic effects, 159f, 161f
systemic effects, 159f, 160f

Edema
cytotoxic, 410
in extracardiac examination, 591
hydrostatic, 410
interstitial, 410
in myasthenic syndrome evaluation, 854
vasogenic, 410

EDNOS (eating disorder not otherwise specified), 183

Edrophonium test, in myasthenic syndrome assessment and management of the critically ill patient, 351–352

EEG
in life-threatening asthma, 1099

Electroencephalography (EEG). See also specific indications
in cardiovascular system evaluation, 591–594, 592f, 592t
age-related variations, 591
events recorded on, 592f
impression, 593
interpretation, 591–593, 592f
in life-threatening asthma, 400

Electroencephalography (EEG). See also specific indications
in seizure disorders evaluation, 791

Electrolyte requirements, 331

Electrolytes, replacement, in diabetic ketoacidosis (DKA) management, 1105

Electromyography (EMG), in neurologic assessment, 778

Electrophysiologic studies
epiglottitis, 562–563
in myasthenic syndrome evaluation, 854

embolism, pulmonary, 576–577
regulation, 742–744
requirements, 331

in preterm infants, 41

Emergencies, 334–356. See also specific types, eg, Shock
altered environmental temperature-related, disorders due to, 351–352
assessment and management of the critically ill patient, 334–340
bites, 354–355
burns, 349–351, 351f
of the critically ill child-related. See Critical care; Critically ill patient

dental, 499–500, 499f
drugs in, 340, 340f–341t
emergency, 341f
head injury, 347–349, 347f
metabolic, inborn errors of metabolism and, management, 1110
procedural sedation and analgesia (PSA) for, 355–356
shock, 338–339, 338f
submersion injuries, 353–354

Elbow injuries, sports-related, 906–908
lateral epicondylitis, 908
Little League elbow, 906
medial epicondyle apophysis, 906
osteoarthrosis dissecans, 907
pancreatic disease, 906–907
posterior elbow pain, 908
ulnar collateral ligament tear, 907

Electrical burns, 351

Electrocardiography (ECG). See also specific indications
in cardiovascular system evaluation, 591–594, 592f, 592t
age-related variations, 591
events recorded on, 592f
impression, 593
interpretation, 591–593, 592f

Electrocardiography (ECG). See also specific indications
in cardiovascular system evaluation, 591–594, 592f, 592t
age-related variations, 591
events recorded on, 592f
impression, 593
interpretation, 591–593, 592f
Enzyme deficiencies
congenital methemoglobinemia due to, 958
intrahepatic cholestasis due to, 699–701, 700t
serum, in muscular disorder evaluation, 844–845
Eosinophilia, 963
parasitic infections and, 1353, 1355t, 1357
Eosinophilic esophagitis, 653–654, 653f
Eosinophilic meningitis, 1356f
Ependymoma, 999, 999t
Epilepsy foundation, 797
Epilepsy, 786–799.
See also
Epiglottitis, 546–547
acute, Haemophilus influenzae type B infections and, 1329, 1330
Epilepsy, 786–799. See also Seizure disorders; specific types and seizure
benign epilepsy of childhood with centrotemporal spikes (RECTS), 788t, 790t
childhood absence, 788t, 790t defined, 786
general management of child with, 796–797
juvenile absence, 788t, 790t
juvenile myoclonic, 788t, 790t
nocturnal frontal lobe, 801
nonepileptic paroxysmal events with, 792t
pregnancy in women with, 797
rolandic, 788t, 790t
school intervention related to, 797
Epilepsy foundation, 797
Epinephrine
in anaphylaxis management, 1198
for emergencies, 341t
in heart failure management, 599t
for sepsis, 407
for shock, 408t
Epiphyseal separations, 873
Epiphyseal plate, 431
Epidermolysis bullosa, in newborns, 432, 439–440
Epidermal nevus, in newborns, 431
Epidemic keratoconjunctivitis, 1233
Epidemic meningitis, 999, 999t
Epidural abscess, 432
Epidural hematoma, 432
Epidural injection, 101
Epidural placement, 101
Epidural space, 101
Epidural veins, 529
Epidural venous plexus, 529
Epidural spine, 860, 863
Epidural hematomas, 529
Epidural anesthesia, 529
Epidural space, 101
Epidural abscess, 432
Epidural hematoma, 432
Epidural injection, 101
Epidural placement, 101
Epidural veins, 529
Epidural venous plexus, 529
Epidural space, 101
Epidural hematomas, 529
Epidural anesthesia, 529
Epidural myelography, 101
Epidural puncture, 101
Epidural discitis, 101
Epidural abscess, 432
Epidural hematoma, 432
Epidural injection, 101
Epidural placement, 101
Epidural veins, 529
Epidural venous plexus, 529
Epidural space, 101
Epidural hematomas, 529
Epidural anesthesia, 529
Epidural myelography, 101
Epidural puncture, 101
Epidural discitis, 101
Exercise-induced bronchospasm, management, 1184
Exhaustion, heat described, 351
management, 352
Exogenous osteomyelitis, 875
Exotropia (wall-eyed), 487–488, 487f
Expressivity, defined, 1142
Extensor tendon avulsion, sports related, 908
External drainage, for recurrent rhinosinusitis, 520
Extracorporeal membrane oxygenation (ECMO), 394–395
for acute respiratory distress syndrome (ARDS), 399
in heart failure management, 600
for sepsis, 409
Extracranial bleeding, in newborn, sites, 31, 31f
Extrahepatic bile ducts, spontaneous perforation, 706
Extrahepatic neonatal cholestasis, 703–706
biliary atresia, 703–706
choledochal cyst, 705
spontaneous perforation of extrahepatic bile ducts, 706
Extraintestinal infections, chronic diarrhea due to, 679
Extraocular muscles, function and innervation, 451, 451t
Extrapyramidal crisis, 380
Extrapyramidal disorders, 829–833, 831t, 832t. See also specific types
Extrathoracic airway acquired disorders, 545–548
croup syndrome, 545–547
foreign body aspiration, 545
subglottic stenosis, 548
vocal cord paralysis, 548
congenital disorders, 545
obstruction, causes, 545
Extremities assessment in trauma survey, 346
in assessment and management of the acutely ill patient, 338
cyanosis of, in extracardiac examination, 591
deformities of, 863–865
in shock, 404
Eye, 447–489, 468t. See also Eye disorders crossed, 486–487, 486f
discharge, 447
foreign body, 453–455, 454f, 455f
foreign body sensation, 447
leukocoria, 448
of newborn, examination, 14
ophthalmoscopic examination, 453
alignment and motility evaluation, 451–452, 451f, 451t, 452f
external examination, 450–451, 451f
operative examination, 863–865
in shock, 404
Eye, 447–489, 468t. See also Eye disorders crossed, 486–487, 486f
discharge, 447
foreign body, 453–455, 454f, 455f
foreign body sensation, 447
leukocoria, 448
of newborn, examination, 14
ophthalmoscopic examination, 453
alignment and motility evaluation, 451–452, 451f, 451t, 452f
external examination, 450–451, 451f
operative examination, 863–865
in shock, 404
Eye, 447–489, 468t. See also Eye disorders crossed, 486–487, 486f
discharge, 447
foreign body, 453–455, 454f, 455f
foreign body sensation, 447
leukocoria, 448
of newborn, examination, 14
ophthalmoscopic examination, 453
alignment and motility evaluation, 451–452, 451f, 451t, 452f
external examination, 450–451, 451f
operative examination, 863–865
in shock, 404
Fabry disease, clinical and laboratory features, 1127t

Face, of newborn, examination, 14
Facial nerve paralysis, acute otitis media (AOM) and, 510
Facial weakness, 855–856
Facioscapulohumeral muscular dystrophy, 847t
Factor H deficiency, 1050
Factor V Leiden mutation, 978
Factor VIII deficiency, 968–972
Factor IX deficiency, 972
Factor XI deficiency, 972
Failure Modes and Effects Analyses (FMEA), 8
Failure to thrive, 244–245. See also Growth deficiency defined, 322
Fainting, 650
Familial adenomatous polyposis, 677t
Familial benign hypercalcemia, 1077
Familial hyperparathyroidism, 1071, 1073t
Familial hypertrophic cardiomyopathy, 633
Familial hypercalcemic hyperparathyroidism, 1077
Familial hypophosphatemic rickets, 1074
Familial polydactyly, 957
Familial short stature, 1056–1057, 1057t, 1058f
Family education
terminally ill child-related, 197
in type 1 diabetes management, 1099
Family history, in genetics, 1148–1149
Family therapy, 178
Fanconi anemia, 936–937
phenotype, 1140t
Farber disease, 1127t
Farsightedness, 449
FAS, See Fetal alcohol syndrome
Fascitis necrotizing, group A streptococcal infections and, 1284
plantar, sports-related, 916
FAST (focused assessment with sonography for trauma), 344
Fasting, ideal glucose levels after 2 or more hours of, 1101–1102, 1102t
Fat necrosis, 136f
subcutaneous, in newborns, 430
Fatigue, depression and, 215t
Fat-soluble vitamins, nutritional requirements, 309, 313t–316f
Fatty acid
β-oxidation of, 308
essential, 307–308
Fatty acid oxidation disorders, 1123–1124
Febrile convulsions, described, 787t
Febrile infections, 461
pustis, 461–462, 461f
Fever, 267–269. See also specific types, 268t
causes, 268
viral, 1228t
clinical findings, 268–269
general considerations, 267
initial evaluation, 268
parasitic infections and, 1355t
paratyphoid, 1320–1322
in returned traveler, 1436t
pharyngitis, 523, 1233
Q, 1270
relapsing, 1348–1349
in returned traveler, 1434–1435, 1435f–1437t
rheumatic, 626–628. See also Rheumatic fever
scarlet, 1283–1284
staphylococcal, red rash in, 1232t
streptococcal, red rash in, 1232t
treatment, 269
without focus of infection, 268–269
Fever phobia, 269
Fiber, dietary, 308–309
Fibrin clot formation, 963f
Fibrinolytic system, 964f
Fibroadenoma, 136–137, 136t
Fibrovascular breast changes, 136t, 137
Fibroma, nonossifying, 881
Fibronyalgia, 934–935
Fibrosis congenital hepatic, 724, 728t–729t
cystic. See Cystic fibrosis
Fibrous dysplasia, 882

INDEX
INDEX

Fick principle, 596
Filariasis, 1356f
Finger clubbing of, in extracardiac examination, 591
mallet, sports-related, 908
Fire, injuries from, prevention, anticipatory guidance, 261
First aid, in seizure management, 793–794
First-aid kit, for international travel, 1424, 1424t
First-degree atrioventricular block, 648
FISH (fluorescence in situ hybridization), 648
Floppy infant syndrome, 857–861, 859f
Fits
for anxiety, 207t
supplemental, recommendations, 313t
in dental caries prevention, 493–495, 493f
supplemental, recommendations, 313f
Floretinone, 1212t, 1225
Fluoxetine
for anxiety, 207t
for depression, 219t
indications, 218f
Fluticasone, dosage, 1181f
Fluvirin, 289
Fluvoxamine
for anxiety, 207t
indications, 218t
for obsessive-compulsive disorder (OCD), 208
Fluzone split-virus, 289
FMEA (Failure Modes and Effects Analyses), 8
Focal damage, described, 918
Focal glomerular sclerosis, 761
Focal seizures, 789t
Focalin XR, 213f
Focal seizures, 789t
Focalin XR, 213t
Focused assessment with sonography for trauma (FAST), 344
Folic acid
biologic roles, 316t
deficiency causes, 317f
clinical features, 318f
dietary reference intakes, 314f
dietary sources, 317f
Folliculitis, 435
Food allergy, 1203–1205, 1204t
differential diagnosis, 1204
general considerations, 1203
laboratory findings, 1204
symptoms and signs, 1203–1204
treatment, 1204–1205
Food poisoning, staphylococcal, 1299
Foot (feet)
cavus, 870
Foot and ankle injuries, sports-related, 915–917
torus, 874
supracondylar, of humerus, 909
plantar fasciitis, 916
ankle sprain, 915–916
supracondylar, of humerus, 909
hand, sports-related, 908–909
Boxer’s, 909
torus, 873
trauma-related, 874
Frailty, 114–115, 1162
aggression with, 115
causes, 114–115
described, 114
Fragile X syndrome, 114–115, 1162
aggression with, 115
causes, 114–115
described, 114
Free-living amoebas, 1373–1374
general comments, 874
greenstick, 874
hand, sports-related, 908–909
hip avulsion, sports-related, 909
humeral, 905
supracondylar, of humerus, 874
torus, 873
trauma-related, 874
Fracture.

Fosamprenavir, 1278t
Fracture, See also specific types
Boxer’s, 909
during childbirth, 30
clavicular, 874, 904
crown, patterns, 499, 499f
femoral neck, sports-related, 911–912
general comments, 874
greenstick, 874
hand, sports-related, 908–909
hip avulsion, sports-related, 909
humeral, 905
supracondylar, of humerus, 874
torus, 873
trauma-related, 874
Fragile X syndrome, 114–115, 1162
aggression with, 115
causes, 114–115
described, 114
Genetic evaluation, 1168
management, 116
symptoms, 114
Fragility, chromosomal, 1138, 1140t
Free-living amoebas, 1373–1374
clinical findings, 1373
differential diagnosis, 1373
general considerations, 1373
prevention, 1373–1374
treatment, 1374
Freiberg disease, 878t
Frena, examination in newborns and infants, 496, 496f
Fresh frozen plasma
characteristics, 984t, 987, 989
Friedreich ataxia, 828, 1162
Frozen red cells, characteristics, 984t
Fructose intolerance
dietary, 689–690
hereditary, 1113
neonatal cholestasis due to, 700t
Fucosidosis, clinical and laboratory features, 1126f
Fulminant infections,
Waterhouse-Friderichsen syndrome with treatment, 1088
Functional ataxia, 827
Fungal infections
in newborns, 61–62
opportunistic, 1395–1397, 1396t
types, 1384, 1385f
unusual, 1395–1397, 1396t
Fungal meningitis, cerebrospinal fluid (CSF) in, 779t
Fungal septis, in newborns, 61–62
Furosemide for acute hypertensive emergencies, 769, 769t
in heart failure management, 600
for renal hypertension, 769t
Furry tongue, 532

INDEX

G
Gangliosidosis
for bipolar disorder, 226
in seizure management, 795f
Gait, in neurologic assessment, 777t
Galactorrhea, 137–138, 138t
Gametogenesis, normal, homologous
treatment, 374
Gametogenesis, normal, homologous chromosomes during, 1139f
γ-butyrolactone (GBL), poisoning,
treatment, 374
γ-hydroxybutyrate (GHB), poisoning,
treatment, 374
Gamblon, 883
Gangliosidosis
generalized, 821t
GSL, clinical and laboratory features,
1127f
GSL, clinical and laboratory features,
1128f
Gangrene, gas, 1312–1313
GAPPS (Guidelines for Adolescent Preventive Services), 165
Gardasil, 299
Gas gangrene, 1312–1313
Gastrointestinal bleeding, 681–684, 681f
Gastrointestinal infections, protozoal, 1369–
1374, See also specific infections
Gastrointestinal polyposis syndromes, 677t
Gastrointestinal tract
clinical evaluation, 528–530, 529f, 530f
complications, 530
disorders, 651–694. See also
Gastroesophageal reflux disease; specific areas and disorders, e.g.,
Esophagus
colon, 669–674
esophagus, 651–668
inflammatory bowel disease (IBD),
691–694, 692f
peritoneal cavity, 674–675
small intestine, 662–669
stomach and duodenum, 658–662
duplications, 669
malabsorption syndromes, 686–687,
686f, 687f
management, 529f
surgical conditions of, in newborns, 54–58. See also specific conditions and
Newborn, gastrointestinal and abdominal surgical conditions in
symptoms and signs, 678–697. See also specific types, eg,
Gastrointestinal bleeding
acute abdomen, 686–687
bleeding, 681–684, 681f–682f, 684f.
See also Gastrointestinal bleeding
diarrhea
acute, 678–679
chronic, 679–681
recurrent abdominal pain, 685–686
vomiting, 684–685
tumors, 676–678, 676f, 677t
Gastrochisis, in newborns, 56
Gaucher disease
clinical and laboratory features, 1127t
infantile, 821t
neonatal cholestasis due to, 700f
Gaussian distribution, 1441f
GBL (γ-butyrolactone), 374
GBS infections. See Group B streptococcal infections
GCS. See Glasgow Coma Scale
General chemistry, reference intervals,
1443t–1449t
Generalized anxiety disorder, 204–205,
204f, 205f
complications, 205
general considerations, 204
prognosis, 205
prognosis, 205
treatment, 205
Generalized disorders of skeletal or
mesodermal tissues, 865–867
Generalized gangliosidosis, 821t
Generalized tonic-clonic seizures,
described, 789t, 790f
Genetic anticipation, 1148
Genetic counseling
for fragile X syndrome, 115
trisomies-related, 1153
Genetic deficiencies, recombinase-activating, 1044
Genetic disorders, contiguous, 1155–1156
Genetic heterogeneity, defined, 1142
Genetic syndromes, immunodeficiency-related, 1052–1053
Genetic testing
in chLID syndrome, 573
in muscular disorder evaluation, 845
in myasthenic syndrome evaluation, 854
Genetics, 1134–1170. See also specific abnormalities/disorders
acute otitis media (AOM) and, 504
attention-deficit hyperactivity disorder (ADHD) and, 105–107, 106f
chromosomal disorders. See also specific disorders and Chromosomal disorders, 1151, 1153–1156
clinical, molecular biology in, 1140–1141
common recognizable disorders with variable or unknown cause, 1165–1167
in congenital heart disease, 601
developmental disabilities, evaluation, 1167–1168, 1167t
diagnostic foundations of chromosomes, 1134, 1135f
cytogenetics. See Cytogenetics foundations of, 1134–1142, 1135f,
1137f, 1139f
molecular biology in, 1140–1141
molecular genetics, 1140–1141
in eating disorders, 172
family history, 1148–1149
mendelian disorders, 1156–1161, 1159f. See also Mendelian disorders
mendelian inheritance, 1142–1146,
1143f, 1144f. See also Mendelian inheritance
molecular, 1140–1141
multifactorial inheritance-related disorders, 1146–1147, 1147t
nonmendelian disorders, 1161–1163
nonmendelian inheritance, 1147–1148,
1148f
Genital gonorrhea, uncomplicated, 1306
Genital infections, treatment, 1246
Genital ulcers, 1415–1418
Genital warts, 1419–1420
Genitalia ducts, external, differential, 1078,
1079f
Genitalia of newborn, examination, 10t, 15
Genitourinary system
assessment, in trauma survey, 346
in sports preparticipation evaluation, 893
Genotype, defined, 1142
Genu valgum, 869
Genu varum, 869
GERD (gastroesophageal reflux disease),
treatment, 651–653, 652f
Gestational age, of newborn, assessment,
9–12, 10t, 11f, 12t
GFR (glomerular filtration rate), in renal function evaluation, 752–753
GH (growth hormone), 1057
GHB (γ-hydroxybutyrate), 374
GHD (growth hormone deficiency),
1057–1062, 1060f, 1061f
Ghrelin, 172
GHRH (growth hormone-releasing hormone), 1057
Giant juvenile fibroadenoma, 136t
Giant-cell hepatitis, 701–702
Giardiasis, 1371–1372
clinical findings, 1371
general considerations, 1371
laboratory findings, 1372
Glucose-galactose malabsorption, 689
Glucose
Glucocorticoid
Glucagonoma, 741
Glossitis, migratory, benign, 531–532
Glomerular sclerosis, focal, 761
Glomerular filtration rate (GFR), in renal
Glomerular disease, 754–757–760, 758
Globoid, 819
Glaucoma, 470–471
Glasgow Coma Scale (GCS), 919
Gitelman syndrome, 771
Girls
Body mass index (BMI) in, 81f
head circumference, 77f, 84f
normal development in
birth to 24 months, 77f
precocious puberty in, 1081–1082, 1081f
stature, 80f
2-20 years, 80f, 81f
Gitelman syndrome, 771
Glasgow Coma Scale (GCS), 919
in level of consciousness evaluation, 345t
Glucoma, 470–471
Glioma
brainstem, 999, 999t
chiasm, 999t
Globoid, 819t
Glomerular disease, 754f, 757–760, 758t
Glomerular filtration rate (GFR), in renal
function evaluation, 752–753
Glomerular sclerosis, focal, 761
Glycosylation, congenital disorders of,

Glucose utilization, return to, in diabetic
ketoadidosis (DKA)
management, 1105
Glucosylceramide lipidsynthesis, 821t
β-Glucuronidase deficiency, clinical and
laboratory features, 1126t
Glutamine, supplementation of, for
critically ill patients, 418
Glutaric acidemia type I, 1122–1123
Glutaminase
Noonan syndrome, 1399–1400
floor, 1400t

Graft-versus-host disease (GVHD)
 hematopoietic stem cell transplantation
(HSCT) and, 1017
transfusion-related, 988t
Grand mal seizures, described, 789t
Granule deficiency, specific, 961t
Granulocytes, characteristics, 985t, 989
Granuloma
pyogenic, 442
swimming pool, nontuberculous myco-
bacteria and, 1338
Granuloma annulare, 442
Granuloma inguinale, 1418
treatment, 1407t
Granulomatous disease, chronic, 961t,
1047–1048
Grapal palmar, 15
Graves disease, neonatal, 1070
Great arteries, transposition of,

Growth
in adolescents, 125–128. See also
Adolescent, growth and
development
Heart transplantation, 637–639
Heart rhythms
Heart rate
Heart sounds, in cardiovascular examination, 588–589, 589t
Heart transplantation, 637–639
course, 638–639
graft rejection after, 637–638
immunosuppression and, 637
prognosis, 638–639
quality improvement in, 639
rejection surveillance, 638
Heart cramps
Heart disease
acquired, 626–635. See also specific disorders and Acquired heart disease
congenital, in newborns, 52–53
cyanotic, in newborns, 52–53
and Lyme disease, treatment, 1352
structural, in preterm infants, 52–53
Heart failure, 598–601, 599t
congestive, described, 598
defined, 598
in newborns, 599–601, 599t
afterload reduction, 599
contractility enhancement, 599–600, 599t
extracorporeal membrane oxygenation (ECMO), 600
inotropes, agents, 599–600, 599t
inpatient management, 599–600, 599t
medications, 600
outpatient management, 600–601
ventricular assist devices, 600
Heart murmurs. See also Murmur in cardiovascular examination, 589–590, 590t
in newborns, 30–31, 589
Heart rate
in assessment and management of the acutely ill patient, 338
disorders, 640
in ECG evaluation, 591, 592f
Heart rhythm disorders, 640
in ECG evaluation, 591, 592f
Heart sounds, in cardiovascular examination, 588–589, 589t
Heart stroke, 351–352
Heated high-flow nasal cannula (HHFNC), in acute respiratory failure, 389
Heat-related illnesses, 351–352
Height, target, 1056
Heliox, for life-threatening asthma, 401
Hemangiopericytoma, described, 967
Hemangiosarcoma, described, 956
Hemangioendothelioma, desmoplastic, 967
Hemichromatosis, neonatal, cholestasis with, 967
Hemangioma
capillary, 13
telangiectatic, 967
Hematoma
in ECG evaluation, 591, 592
Hemorrhage, 47
Hemoptysis, parasitic infections and, 1355
Hemorrhage, 47f. See also Bleeding intracranial, in newborns, 72–73
intraocular, in newborns, 72–73
intraocular in preterm infants, 72–73
Hemophilia
A, 968–971
B, 972
C, 972
Hemopoietic stem cell transplantation (HSCT), 1014–1015
Hemostasis system, measurements, 992
Hemorrhage
for increased intracranial pressure (ICP), 413
for acute respiratory distress syndrome (ARDS), 398
Hemoglobinopathies, 946–953, 947f, 947t, 951t, 956t
Hemoglobinopathies, 946–953, 947f, 947t, 951t, 956t
Hemoglobin B, 972
Hemoglobin A, 968–971
Hemoglobin A, 972
Hemoglobin C, 972
Hemoglobin M, 957–958
Hemoglobin B, 972
Hemoglobin A, 968–971
Hemoglobin C, 972
Hemolytic-uremic syndrome, 762
Hemolytic anemias
acute, 988t
delayed, 988t
Hemolytic-uremic syndrome, 762
Hemolytic-uremic syndrome, 762
Hemolytic-uremic syndrome, 762
temporary, 1015
Hemophilia, 1161
classic, 968–971
Hemophilia B, 972
Hemophilia C, 972
Hemorrhage, 47f. See also Bleeding intracranial, in newborns, 72–73
Hemorrhage, 47f. See also Bleeding intracranial, in newborns, 72–73
Hemorrhage, 47f. See also Bleeding intracranial, in newborns, 72–73
Hemorrhage, 47f. See also Bleeding intracranial, in newborns, 72–73
Hemorrhage, 47f. See also Bleeding intracranial, in newborns, 72–73
Hemorrhage, 47f. See also Bleeding intracranial, in newborns, 72–73
Hemorrhage, 47f. See also Bleeding intracranial, in newborns, 72–73
Hemorrhage, 47f. See also Bleeding intracranial, in newborns, 72–73
Hemorrhage, 47f. See also Bleeding intracranial, in newborns, 72–73
Hepatocellular carcinoma, hepatoblastoma and, comparison between, 1015
Hepatomegaly in extracardiac examination, 591 parasitic infections and, 1355
Hepatopathy, mitochondrial, neonatal cholestasis due to, 700
Hereditary angioedema, C1 esterase inhibitor deficiency and, 1049–1050
Hereditary elliptocytosis, 946
Hereditary tyrosinemia, 1117–1118
Hereditary skin disorders, in newborns,
herpes zoster virus, 1246–1249
Hib infections. See Haemophilus influenzae type B infections
Hiv infections. See Haemophilus influenzae type B infections
HIV (human immunodeficiency virus), 1250–1253
High-altitude pulmonary edema (HAPE), 394, 398
High-altitude sickness, 1424
High-frequency oscillatory ventilation (HFOV), 394, 398
for acute respiratory distress syndrome (ARDS), 398
Hip dislocated, 863–864 congenital, empiric risks, 1147
sports-related, 911, 1147
toxic synovitis of, 877–878 transient synovitis of, 877–878 Hip avulsion fractures, sports-related, 909
Hip injuries, sports-related, 909–912
acetabular labral tears, 910
adductor strain, 910
avulsion fractures, 909
femoral neck fractures, 911–912
hamstring strain, 910
hip dislocation, 911
iliotibial band syndrome, 911
pelvic apophysis, 911
quadriceps contusion, 910–911
slipped capital femoral epiphysis, 910
Hip joint, developmental dysplasia of, 863–864
INDEX

Hirschsprung disease, 669–670, 672f
retentive constipation vs, 671, 672f
Histiocytosis, Langerhans cell, 1015–1016
Histoplasmosis, 1393–1394
care, 1393–1394
differential diagnosis, 1394
disseminated, 1393–1394
general considerations, 1393
imaging, 1394
laboratory findings, 1394
prognosis, 1394
symptoms and signs, 1393–1394
treatment, 1394
Historical database, components, 248–249,
250f
HIV infection, 438, 1271–1282, 1420–1421
categories, 1272f
clinical findings, 1272f, 1275f, 1420–1421
disease staging in, 1272f, 1275f
encephalopathy of, 838–858
disease staging in, 1272
1275
1275
treatment, 1277–1280, 1421
transmission risks, blood products
transmission risks, blood products
through universal precautions, 1275
symptoms and signs, 1272–1273
treatment, 1272–1273
mother-to-child-transmission (MTCT),
1271–1272
in newborns, 66
in perinatally exposed infant, 1272f,
1273–1274
in perinatally exposed infant
clinical findings, 1273
diagnosis, 1273–1274, 1273f
management and outcome, 1274
postsexual exposure prophylaxis, 1421
preexposure prophylaxis, 1421
prevention
prevention of mother-to-child trans-
mission (PMTCT), 1281
sexual transmission, 1281
through universal precautions,
1281–1282
progressive disease, 1274–1282
clinical findings, 1274–1275
differential diagnosis, 1276–1277
immunodeficiency-related, 1276
laboratory findings, 1276
malignancy, 1276
of organ systems, 1276
sexual transmission, 1281
symptoms and signs, 1272f, 1275f, 1420
through universal precautions, 1281–1282
toxoplasmosis in, 1367
transmission risks, blood products
screening related to, 982f
travel-related, 1434
treatment, 1277–1280, 1421
antiretroviral drugs, 1277, 1278, 1278f
general measures, 1279–1280
immunizations, 1279–1280
principles, 1277
prophylaxis, 1280
psychosocial support and mental
health, 1280
specific measures, 1277–1279
vaccinations and, 278
hMPV (human metapneumovirus)
infection, 1238–1239
H1N1 influenza, 289
Hodgkin disease, 1001–1003
clinical findings, 1002
general considerations, 1001
laboratory findings, 1002
pathologic findings, 1002
prognosis, 1002–1003
staging, 1002
symptoms and signs, 1002
treatment, 1002–1003
Homicide, 232
Homocystinuria, 1118–1119
Homosexual identity, development of, 128
Hormone.
Hormonal regulation, of metabolic
processes, 1054, 1055f
Hormone. See also specific types
ACTH. See Adrenocorticotropic hormone
amine, 1054
antidiuretic, 742–743
physiology, 1063–1064
tetrahydroisoxyquinoline, 979–980
growth
ACTH, 1054
deficiency, 1057–1062, 1057f
described, 1057
peptide, 1054
secretion, feedback control of,
1055–1056, 1055f
steroid, 1054
thyroid
in angioedema management, 1196
in urticaria management, 1196
specific
measures, 1277–1279
HIV infection. See Human immunodeficiency virus (HIV)
infection. See HIV infection
Human metapneumovirus (hMPV) infec-
tion, 1238–1239
Human papillomavirus (HPV) infection, 1280
Huntington disease, 823f
Hunter syndrome, clinical and laboratory
features, 1126f
Hurricane Katrina, post-traumatic stress
disorder (PTSD) effects, 209
Hyaline membrane disease, in preterm
infants, 43–44, 44f
clinical findings, 44
f
1056
1056
f
43–44
f
44
4
4
Hydralazine, for acute hypertensive
emergencies, 769, 769f
Hydralazine hydrochloride, for renal
hypertension, 769, 769f
Hydration
in atopic dermatitis management, 1192
for life-threatening asthma, 401
Hydrocarbons
chlorinated, poisoning, treatment,
375–376
poisoning, treatment, 374–375
Hydrochlorothiazide, for renal
hypertension, 769, 769f
Hydrocodone, for acute pain, oral dosing,
1025f
Hydrocortisone sodium succinate, for
life-threatening asthma, 401
Hydrocortisone sulfate, in malaria
Hydrochloroquine, for malaria, 1363f
Hydrochloroquine sulfate, in malaria
prevention, 1432f
Hymenologists, 1382
Hyperaldosteronism, primary, 1093
Hyperammonemia, inborn errors of
metabolism and, 1109f, 1110
INDEX

Immunodeficiency (Cont.): phagocyte disorders, 1047–1048 primary. See Primary immunodeficiencies purine nucleoside phosphorylase deficiency, 1047 selective immunoglobulin deficiencies, 1039, 1042 severe combined immunodeficiency diseases (SCIDs), 1040, 1042–1044 transcobalamin 2 deficiency, 1052 transient hypogammaglobulinemia of infancy, 1039, 1041–1042 Turner syndrome, 1052 22q11.2 deletion syndrome, 1045–1046 WHIM syndrome, 1051 Wiskott-Aldrich syndrome, 1044–1045 X-linked agammaglobulinemia, 1038, 1040 X-linked lymphoproliferative syndrome, 1050–1051 Immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome, 1052 Immunoglobulin, 303–304 anti-Rh(D), in idiopathic thrombocytopenic purpura (ITP) management, 966 deficiencies evaluation, 1035–1036, 1037t selective, 1039, 1042 hyper IgM syndrome, 1040–1041 Ig heavy-chain gene deletions, 1039t IgA deficiency, 1039, 1042 nephropathy, 758t, 759 intravenous, in idiopathic thrombocytopenic purpura (ITP) management, 965 normal values, age-related, 1037t tetanus, 284–285, 284t, 1310–1311 Immunologic evaluation, in acute otitis media (AOM) prevention, 508 Immunologic function, laboratory evaluation, 754–755 Immunomodulator in inflammatory bowel disease (IBD) management, 693 in myasthenic syndrome management, 855 Immunosuppression, cardiac transplantation and, 637 Immunotherapy in allergic rhinoconjunctivitis management, 1189–1190 in asthma management, 1183 Impaction, tooth, 498 Impaired contractility, 403 Imperforate anus, 672–673 Impetigo, 435 bullous, 435 group A streptococcal infections and, 1284 Imprinting, 1147 Independent assortment, defined, 1142 Indinavir, 1278t Indinance CNS degenerative disorders of, 818, 819–823 idiopathic hypercalcemia of, 1077 red cell volume in, 939, 940f transient hypogammaglobulinemia of, 1039, 1041–1042 Infant apparent life-threatening events (ALTEs), 583–587, 584t assessment and management of the acutely ill patient, 334–340 colic in, 96 concept of death, 1030t congenital syphilis in, 1345, 1346 disorders in. See specific disorders dysmorphology in, evaluation, 1150–1151, 1152f feeding disorders in, 97–98 formulas for. See Formula narcissistic possessiveness of, 88 newborn, 9–74. See also Newborn nutrition for, 311, 313–314, 316–318, 319t, 320t breast feeding, 311, 313–314, 316–318, 319t, 320t formula additives, 320–321, 320t soy protein formulas, 320 special formulas, 321 oral examination in, 495–497, 495f–497t cleft lip, 496–497 cleft palate, 496–497, 497t freena, 496, 496f soft tissue variations, 497 sucking pads, 495 teeth, 495 oral health in, 491 perinatal exposure to HIV infection, 1272t, 1273–1274. See also HIV infection preterm, 40–50. See also Preterm infants sepsis in, antimicrobial agents for, 1217 skin disorders in, 432–446. See also specific disorders teeth eruption in, 497–498 term, early, 51f vomiting and encephalopathy in, inborn errors of metabolism and, 1107, 1108t Infantile botulism, 859t Infantile cortical hyperostosis, 882–883 Infantile Gaucher disease, 821t Infantile masturbation/gratification movements, 792t Infantile neuropathy, 859t Infantile spasms, described, 787t Infection. See also Eyelid, infections; specific types, eg, Bacterial infections bacterial, 1283–1344 CNS, 835–838, 836t head injury and, 347–349 eyelid, 461, 461f nasal, 521 neonatal thrombocytopenia associated with, 967
INDEX
Intracranial hypertension, treatment (Cont.): algorithm for, 412
mechanical therapies, 411
medical therapies, 411
Intracranial pressure (ICP), increased, management, 411
Intractable pain, palliative care for, 1028
Intraductal papilloma, 136
Intrahepatic cholestasis, 695–703, 696
clinical findings, 696, 696a
complicating, treatment, 698
outcomes, 698
diagnostic studies, 696
complicating, treatment, 698
Intrahepatic portal hypertension, 724
Intrahepatic cholestasis, 695–703, 696
inborn errors of metabolism and, 697–701
Intrahepatic cholestasis due to, 698
Iodine, 312
Intrinsic anticoagulants, deficiencies, 978
Intabulation endotracheal, in acute respiratory failure, 390–391, 391a
Intussusception, 665–666
rotavirus vaccination and, 281–282
In utero cytomegalovirus (CMV) infections, 1250–1251
Inversion, chromosomal, 1137, 1137a
Involuntary mental health “hold,” 193–194
I/O access (intraosseous access), 338–339, 338a
Iodide, in hyperthyroidism management, 1069
Iodine, 312
IOP (intracranial pressure), 136
Intrapulmonary shunt fraction, 405
Intrapulmonary shunt, in acute respiratory failure, 388
Intrapulmonary shunt fraction, 405
Intrarheumatic airways disorders acquired, 550
foreign body aspiration, 550
genital, 548–550
bronchogenic cysts, 549–550
malacia of Airways, 548–549
vascular rings and slings, 549
Intraterine devices (IUDs), 154
Intraterine growth curves, 11f, 12
Intraterine growth restriction (IUGR) infants, hypoglycemia in, 27
multiple births and, 34
Intraterine infections, in newborns, 62–63, 64a
Intraterine systems (IUS), 154
Intravaginal ring, 153
Intravenous access, in shock, 338–339
Intravenous (IV) calcium therapy, in hypoalbuminemia management, 73–74
Intravenous immunoglobulin (IVIG), in idiopathic thrombocytopenic purpura (ITP) management, 965
Intraventricular hemorrhage, in preterm infants, 47–48, 47a
clinical findings, 48
diagnosis, 48
general considerations, 47–48, 47a
pathogenesis, 47–48, 47a
prognosis, 48
treatment, 48
Intrauterine growth restriction (IUGR), 12
Intrauterine infections, in newborns, 301–302
treatment, 1427–1429
Jaundice
breast milk, 706
breast-feeding, 317
neonatal, 19–27. See also Neonatal jaundice
Physiologic, 19–20, 20a
prolonged neonatal cholestatic, 695, 696
JC (Joint Commission), 3
See Japanese encephalitis
JIA. See Juvenile idiopathic arthritis
Jimson weed, systemic effects, 159t, 161t
JMML (juvenile myelomonocytic leukemia), 996t, 997
Joint infections of, 874–878
Joint Commission (JC), 3
Joint fluid, analysis, 928, 928a
Jones criteria, in rheumatic fever, diagnosis, 626, 627
Jumper’s knee, sports-related, 912
Junctional premature beats, 641
Juvenile absence epilepsy, described, 788, 789a
Juvenile diabetes. See Diabetes mellitus, type 1
Juvenile idiopathic arthritis (JIA), 927–930, 928a
clinical findings, 927–928, 928a
described, 927
Jumper’s knee, sports-related, 912
Juvenile myelomonocytic leukemia (JMML), 996t, 997
Juvenile myoclonic epilepsy, described, 789, 790
Juvenile nephrophihsis, 756
Juvenile papillomatosis, 136
Juvenile parotitis, recurrent, 532
Juvenile polyposis syndrome, 677a
Juvenile polyps, 676, 676f, 677
Juvenile recurrent parotitis, 532
Juvenile rheumatoid arthritis, red rash in, 1231a
K
K chain deficiency, 1039
Kabuki syndrome, 1167
Kala-azar, 1356
Kaposiform hemangioendotheliomas, thrombocytopenia associated with, 967
Karyotype, normal male and female, 1135, 1135a
Kasabach-Merritt syndrome, 967
Kawasaki disease, 628–629, 628a
long-term management, 629
red rash in, 1231a
Keloid, 442
Keratitis, viral, 474–475
Keratoconjunctivitis, 1244
epidemic, 1233
treatment, 1246
Keratolytic agents, topical, for acne, 433, 434t
Keratitis, 442
Keratoconus, 19, 23
Ketamine
in ICU, 420
procedural, 356
Ketoacidosis, diabetic, management, 1104–1105
Ketoaciduria, branched-chain, 1118
Ketogenic diet, in seizure management, 794–796
Ketoacidosis, diabetic, management, 1104–1105
Ketamine
Kernicterus, 19, 23
Keratosis pilaris, 442
Keratolytic agents, topical, for acne, 433, 434t
Knee injuries, sports-related, 912–915
collateral ligament injuries
lateral, 913–914
medial, 913–914
cruciate ligament injuries
anterior, 914
posterior, 914–915
meniscal injuries, 913
Osgood-Schlatter disease, 912
patellar tendonitis, 912
patellofemoral overuse syndrome, 912
Sinding-Larsen-Johansen disease, 913
Knee pain
anterior, sports-related, 912–913
posterior, sports-related, 913
Knee sprains, 872
Knick-knee, 869
Köhler bone disease, 878t
Krabbe disease, clinical and laboratory features, 1127t
Krabbe leukodystrophy, 819t
L
LABAs (long-acting bronchodilators), in asthma management, 1182
Labetalol, for acute hypertensive emergencies, 768, 769t
Lalisch sucking tubercle, 531
Labyrinthitis, acute otitis media (AOM)
and, 511
Laceration, ocular, 455
f,
456–457, 457
Lactase deficiency, 689
Lacosamide, in seizure management, 795t
Ladder, described, 1201
Latex, described, 1201
Latex allergy, 1201–1202
clinical findings, 1201–1202
complications, 1202
general considerations, 1201
laboratory findings, 1201–1202
prognosis, 1202
symptoms and signs, 1201
 treatment, 1202
Lavage
antral, for recurrent rhinosinusitis, 520
in poisoning treatment, 361
LD₅₀ of drug, 357
Lead
poisoning, treatment, 377–378
risk questionnaire, elements, 258, 258t
screening, 258, 258t
Leapfrog, 2
Leffleroid, in juvenile idiopathic arthritis (JIA) management, 929
Left coronary artery, anomalous origin, 615–616
Legg-Calvé-Perthes disease, 878–879, 878t
Legionella infection, 1339–1340
Leigh disease, 821t
Leigh subacute necrotizing encephalomyelopathy, 1163
Leishmaniasis spp.
L braziliensis, parasitic infections due to, 1356t
L donovani, parasitic infections due to, 1356t
L mexicana, parasitic infections due to, 1356t
L tropica, parasitic infections due to, 1356t
Length for age
boys, birth to age 24 months, 78f, 79f
girls, birth to age 24 months, 77f
Lennox-Gastaut syndrome, 788t
Lens
dislocated, 476–477
disorders, 475–477
Leptin, in anorexia nervosa, 172
Leptospirosis, 1349–1350
Leptospirosis, 1349–1350
red rash in, 1231t
in returned traveler, 1437t
Lesion
brachial plexus, 923–924
breast, 136–137, 136t
cardiac, cyanotic, pulmonary blood flow in, alternatives, 594t
skin, congenital, candidiasis and, 1387, 1389
vascular, orthopedic-related, 878–879, 878t
Leukemia
lymphoblastic, acute, 990–993. See also
Acute lymphoblastic leukemia
myelogenous, chronic, 996–997, 999t
myeloid, acute, 993–996, 994t. See also
Acute myeloid leukemia
myelomonocytic, juvenile, 996, 997
Leukocoria, 448, 448t
Listeriosis, 1333–1334
Lissencephaly, 810
Lisinopril, for renal hypertension, 769
Lipolysis, inhibition of, in diabetic ketosis
Lipoid nephrosis, 760
Lipidosis
Lipid
Lingual frenum, normal position, 496
Linezolid, 1221
Limb-girdle muscular dystrophy, 846
Limb deficiencies, congenital, 862
Limb-girdle muscular dystrophy, 846
Linezolid, 1221
Lingual frenum, normal position, 496
Lip
Lipocorticosterone, 819
metachromatic, 819
clinical and laboratory features, 1127
Leukotriene-receptor antagonists (LTRAs) in angioedema management, 1196
in asthma management, 1182–1183
in urticaria management, 1196
Levalbuterol, in asthma management, 1182–1183
Leukocyte disorders, 958–960, 958–960
Leukocyte adherence deficiency I, 961
Leukocyte adherence deficiency II, 961
neutrophilia, 960
Leukodystrophy
krabbe, 819
megalecephalic, subcortical cysts with, 822
Levodopa, for parkinsonism, 778
Levalbuterol, in asthma management, 1182–1183
Leucine, nutritional requirements, 307–308
Lipidosis
clinical and laboratory features, 1126–1128
Liposomal amphotericin B, 821
Lipid excretion, systemic effects, 159, 161
Lisdexamfetamine, 213
Lisinopril, for renal hypertension, 769
Lissencephaly, 810
Listeriosis, 1333–1334
Lithium
for bipolar disorder, 224, 225
for mood disorder, 231
indications, 216
Little League elbow, sports-related, 906
Little League shoulder, sports-related, 905–906
Liver abscess
amebic, 730–732
pyogenic, 730–732
Liver disorders, 695–734, 974–975. See also specific disorders
ALF, 714–716, 715
amebic liver abscesses, 730–732
α1-antitrypsin deficiency, 719–720
autoimmune hepatitis, 716–717
biliary tract disease, 726–730, 728t–729t, 731f
cholelithiasis, 726–727, 728t–729t
cirrhosis, 722–723
drug-induced, 721–722
extrahepatic neonatal cholestasis, 703–706
hepatitis A, 708–710, 709t
hepatitis B, 710–712
hepatitis C, 712–713
hepatitis D, 713–714
hepatitis E, 714
hepatolenticular degeneration, 720–721
intrahepatic cholestasis, 695–703, 696f, 698f
nonalcoholic fatty liver disease (NAFLD), 717–718
portal hypertension, 723–726, 726t
prolonged neonatal cholestatic jaundice, 695
pyogenic liver abscesses, 730–732
Wilson disease, 720–721
Liver failure
acute, 714–716, 715f. See also Acute liver failure
bleeding from, in infants, features, 67t
Liver fluke infection, 1356f
Liver transplantation, 733–734, 734f
Liver tumors, 732–733, 1014–1015, 1015f
clinical findings, 732–733
complications, 733
differential diagnosis, 733
general considerations, 732
prognosis, 733
treatment, 733
Living with chronic illness, psychosocial impact of, 196
LMA (laryngeal mask airway), in airway management, 343
Lobar emphysema, congenital, 557
Lobar pneumonitis, 573–574
Lobular puncture
in febrile seizure evaluation, 798–799
in neurologic assessment, 778, 779t–780t
Lund and Browder modification of Berkow scale, in burn extent estimation, 351f
Lung
development, 534–535
function, abnormalities, classification, 535, 536f
injuries, acute, transfusion-related, 988f
of newborn, examination, 14
Lung abscess, 571
Lung diseases
chronic
defined, 44
in preterm infants, 44–45
diagnosis/evaluation, 535–541, 535f, 536f. See also Respiratory tract, diagnosis/evaluation, disorders
treatment, 541–543
airway clearance therapy, 542
environmental hazards avoidance, 542
inhaled medications, 541
oxygen therapy, 541
Lung fluke infection, 1356f
Lung maturity, in preterm infants, acceleration of, maternal corticosteroids for, 44
Lung parenchyma
acquired disorders, 559–563. See also specific disorders
aspiration pneumonia, 568–569, 569f
atypical pneumonias, 563–574
bronchiectasis, 554–555
bronchiolitis, 564–565
bronchopulmonary dysplasia, 559–561
Children’s Interstitial Lung Disease (chiLD), 572–573
community acquired bacterial pneumonia, 561–562
empyema, 562–563
hypersensitivity pneumonitis, 573–574
lung abscess, 571
mycoplasma pneumonia, 566
INDEX

parapneumonic effusion, 562–563
pneumonia in immunocompromised host, 569–571
TB, 566–568
viral pneumonia, 563–564
congenital malformations, 555–559. See also specific disorders
congenital cystic adenomatoid malformation, 557–580
genital lobar emphysema, 557
genital pulmonary airway malformation, 557–580
pulmonary agenesis, 555–556
pulmonary hypoplasia, 555–556
pulmonary sequestration, 556–557
Lupus glomerulonephritis, 758–759
Lymphadenopathy, parasitic infections in
Lymphangectasia intestinal, 690
Lymphatic malformations, 528
in newborns, 431
Lymphangiectasia pulmonary, congenital, 577–578
Lymphatic malformations, 528
in newborns, 431
Lymphoblastic lymphoma, 1004
Lymphoblastic leukemia, acute, 1004
Lymphoblastic leukemia, acute, 1004
Lymphoblastic leukemia, acute, 1004
Lymphocytic thyroiditis, chronic, 1067–1068
Lymphocyte, T, deficiency, evaluation, 1068
Lymphocyte, T, non-Hodgkin, 1003–1005, 1004
Lymphocyte, T, small noncleaved cell, 1004
Lymphoblastic lymphoma, 1004
Lymphoblastic leukemia, acute, 1004
Lymphoma, 1001–1006. See also specific types
anaplastic large cell, 1004
B-cell, large, 1004
Burkitt, endemic vs sporadic, 1003–1004, 1004
Hodgkin disease, 1001–1003
lymphoblastic, 1004
non-Hodgkin, 1003–1005, 1004
small noncleaved cell, 1004
lymphoblastic leukemia, 1004
Lymphoblastic leukemia, acute, 1004
Lymphoproliferative disorders, 1006
Lysosomal diseases, 1125–1129, 1126t–1128t. See also specific diseases
clinical and laboratory features,
1126t–1128t
described, 1125
diagnosis, 1125
treatment, 1128
M
Macrophage, 813–814, 813t
causes of, 813t
Macroglossia, 532
Macrolide, 1212t, 1223
Macronutrient, guidelines for total parenteral nutrition, 329t
Macule, café au lait, in newborns, 430
Magnesium, 310
Magnetic resonance venography (MRV), in
Magnetic resonance imaging (MRI) in
Magnetic resonance angiography (MRA), in
Magnesium sulfate, for life-threatening asthma, 401
Malignancy, HIV infection-related, 1276
Malignant neoplasms, 1276
Males. See Boys
Malformation. See specific types, eg, Congenital cystic adenomatoid malformation capillary, in newborns, 430–431
genital, 809–812. See also specific types and Nervous system, congenital malformations defined, 1150
lymphatic, 528
in newborns, 431
Malignancy, HIV infection-related, 1276
Mallet finger, sports-related, 908
Malnutrition, 860
chronic diarrhea due to, 679
Malrotation, intestinal, 663–664
Mandatory breaths, in mechanical ventilation, 392
Manic-depressive disorder. See Bipolar affective disorder
Mannosidosis, clinical and laboratory features, 1126t
Mantoux test, for TB, 259
Maple syrup urine disease, 1118
Maraviroc, 1278
Marfan syndrome, 614, 860
Marble bone disease, 866–867
Marfan syndrome, 614, 860, 865, 1156–1157
cardiac defects, 589t
Marijuana
abuse during pregnancy, effects on infants, 33
systemic effects, 159t, 160t
Maroteaux-Lamy syndrome, clinical and laboratory features, 1126t
Mass
breast, 136–137, 136t, 136t
See also Breast masses lesions, 826–827
mediastinal, 581–582
Mast cell stabilizers, in allergic rhinoconjunctivitis management, 1188–1189
Mastitis, symptoms, 317
Mastoiditis, 511–512
prognosis, 512
Masturbation/gravitation movements, infantile, 792t
Maternal and Child Health Bureau, 251
Maternal blood analysis, in perinatal genetic effects, 1169
Maternal drug abuse/use anticonvulsants, 1168–1169
genetic effects, 1168
alcohol, 33, 33t
cocaine, 32
marijuana, 33
methamphetamines, 32
opioids, 32–33
while breast feeding, 317–318
INDEX

Maternal lung abuse, effects on infants, 32–33, 33f
Maternal phenylketonuria, 1117
Maternal rubella, cardiac defects, 589f
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, 144
M-CHAT (Modified Checklist for Autism in Toddlers), 109, 110f, 776
MCTs (medium-chain triglycerides), 308
MDMA (ecstasy), systemic effects, 159
MDR3 deficiency, neonatal cholestasis due to, 160f
MDE (middle ear effusion), 504
Medifast
Mee (middle ear effusion), 504
Medico (middle ear effusion), 504
Medications for, 504
Medication errors, 504
Medication lists, 504
Medication management, 504
Medication reconciliation, 504
Medication timing, 504
Medication use, 504
Medication use and adherence, 504
Medication use and misuse, 504
Medication use in pregnancy, 504
Medication use issues, 504
Medication use, safety, 504
Media consumption, 504
Media exposure, counseling about, in health supervision visits, 262–263
Media exposure, counseling about, in medical care, 1423
Medical care, during travel, 1423
Medical care neglect, 245
Medical history
questionnaire, adolescent, 120, 121f–124f
in sports preparticipation evaluation, 892
Medical home, 75, 265
Medical home, 75
Medical home, effects on infants, 32–33, 33f
Medical home, neonatal cholestasis due to, 160f
Medical home, paternal cholestasis due to, 160f
Medical home, pregnancy, 152f
Medical home, pregnancy, safety, 152f
Medical history
questionnaire, adolescent, 120, 121f–124f
in sports preparticipation evaluation, 892
Medical questions
about, in sports preparticipation evaluation, 892–124
Medication use
for, 504
Medication use in pregnancy
for, 504
Medication use issues
for, 504
Medication use, safety
for, 504
Media exposure, counseling about
for, in health supervision visits, 262–263
Medical care neglect
for, 245
Medical history
questionnaire, adolescent
for, 120, 121f–124f
in sports preparticipation evaluation
for, 892
Medical home
for, 75, 265
Medical home, effects on infants
for, 32–33, 33f
Medical home, neonatal cholestasis due to
for, 160f
Medical home, paternal cholestasis due to
for, 160f
Medical home, pregnancy
for, 152f
Medical history
questionnaire, adolescent
for, 120, 121f–124f
in sports preparticipation evaluation
for, 892
Medical questions
for, in sports preparticipation evaluation
for, 892–124
Medication use
for, 504
Medication use in pregnancy
for, 504
Medication use issues
for, 504
Medication use, safety
for, 504
Mental status examination (MSE), 192, 192t
Menveo, 297
Meperidine, in ICU, 419t
6-Mercaptopurine (6MP), in inflammatory bowel disease (IBD) management, 693
MERRF, 1163
Mesangial glomerulonephritis, 761
Mesangial nephropathy, 761
Mescaline, systemic effects, 161
Mesangial glomerulonephritis, 761
Mesangial glomerulonephritis, 761
Methylmalonic acidemia, 1120–1122
Methylphenidate for attention-deficit hyperactivity disorder (ADHD), 107, 213t
indications, 218t
Methotrexate
Methylmalonic acidemia, 1120–1122
Microarray, chromosomal, 1143
Microcephaly, 812–813, 812t
Microhematuria, 754f, 757
Microscopy, darkfield, in syphilis, 1345
Midazolam in ICU, 419, 419t
procedural, 356
Middle ear, acute trauma to, 512
Middle ear effusion (MEE), 504
Middle ear, acute traumatology to, 512
Middle ear effusion, 504
Mitral valve prolapse, 612–613
Mitral stenosis, congenital, 613
Mitral regurgitation, congenital, 614
Mitochondrial inheritance, 1148, f
Mitochondrial hepatopathies, neonatal cholestasis due to, 700t
Mitochondrial inheritance, 1148, 1148f
Mitosis, 1134
Mitril regurgitation, congenital, 614
Mitril stenosis, congenital, 613
Mitril valve prolapse, 612–613
Mittelschmerz, 147
MLC (megallecephalic leukodystrophy with subcortical cysts), 822t
M-mode echocardiography, in cardiovascular system evaluation, 594
MMR vaccination, 291–293
administration schedule, 292
adverse effects, 293
adverse reactions, 1202
contraindications, 292–293
dosage, 292
measles antibody preparations, 293
precautions, 292–293
travel-related, 1425t, 1426
vaccines available, 291
Mobius syndrome, 486–487
Molecular biology
in clinical genetics, 1140–1141
in genetic diagnosis, 1140–1141
in human diseases prevention and treatment, 1141
Molecular genetics, 1140–1141
Molluscum contagiosum, 1425, 1426
Mometasone, dosage, 1181f
Mongolian spots, 13
in newborns, 430
Monitoring the Future study, 158
Monoarticular arthritis, gonorrheal, 1306
Monobactam, 1212t
adverse reactions, 1200
Monochorial twins, 34–35
Monoclonal antibody, anti-CD20, in idiopathic thrombocytopenic purpura (ITP) management, 966
Mortality-onset diabetes of the young (MODY), 1097
Monsac, 1051–1052
Mononucleosis, infectious, 523, 1253–1254
Monosomy rescue, isodisomy by, 1139f
Monosomy X. (Turner syndrome), 1139f
Monosomy X. See Turner syndrome
Montelukast in asthma management, 1182
Montelukast in asthma management, 1183
Mothers, 1426
in newborns, 430
Mood swings, in adolescents, 131
Mood stabilizers
guidelines, 202
for post-traumatic stress disorder (PTSD), 210
Mood swings, in adolescents, 131
Morbid ideation, depression and, 215t
Mood-altering substances, physiologic effects, 159f–161f
Mood disorders, 215–226
bipolar disorder, 221–226
depression, 215–220
Mood stabilizers
guidelines, 202
for post-traumatic stress disorder (PTSD), 210
Mood swings, in adolescents, 131
Morbid ideation, depression and, 215t
Morbidity and Mortality Weekly Report, 272
Moro (startle) reflex, 15
Morphine
for acute pain
IV dosing, 1025t
oral dosing, 1025t
patient-controlled analgesia (PCA) dosing, 1025t
in ICU, 419t
Morquio disease, 867
Morquio syndrome, clinical and laboratory features, 1126f
Mosaicism, 1138
confined placental, 1169
Nasogastric tube, in trauma management, 345
Nasolacrimal duct obstruction, 463, 463f
Nasolacrimal system, disorders, 463–465, 463f, 464f
congenital dacryocystocoele, 463–464, 464f
dacryocystitis, 463–465, 464f
Nasopharyngeal airway, in airway management, 335–336, 336f
National Center for Health Statistics, growth charts for North American children of, 1056
National Center for Immunization and Respiratory Diseases, at CDC, 271
National Childhood Vaccine Injury Act of 1986, 249, 272
National Quality Forum (NQF), 2
National Research Council, on autism spectrum disorders, 109
National SIDS Resource Center, 586
National Center for Health Statistics, growth charts for North American children of, 1056
Nearsightedness, 449
NE (nocturnal enuresis), 94–95
NCV testing (nerve conduction velocity testing), 778
NCL (neuronal ceroid lipofuscinosis), 822
Nasolacrimal system, disorders, 463–465, 463f
Nasolacrimal duct obstruction, 463, 463f
Nasolacrimal duct obstruction, 463, 463f
Necrotizing enterocolitis, in preterm infants, 45–46
clinical findings, 46
course, 46
general considerations, 46
prognosis, 46
treatment, 46
Necrotizing fasciitis, group A streptococcal infections and, 1284
Nedocromil, in asthma management, 1182
Needle cricothyroidotomy, in airway management, 344
Neglect, 244
differential diagnosis, 245–246
mandatory reporting of, by physician, 194
medical care-related, 245
patient history, 244
physical findings, 244
prognosis after, 246–247
radiologic and laboratory findings, 245
reporting of, 246
treatment after, 246
types, 244
Neisseria spp.
N gonorrhoeae infection, 1409
described, 1305
N meningitidis, 296
in newborns, conjunctivitis due to, 61
Nelfinavir, 1278
Nematode infections, 1374–1380. See also specific infections
ascariasis, 1375
together, 1375
hookworm, 1376
raccoon roundworm infections, 1380
strongyloidiasis, 1377
trichinosis, 1379
trichuriasis, 1375–1376
visceral larva migrans, 1378
NEMO (nuclear factor κB–essential modulator), 1046–1047
Neonatal alloimmune thrombocytopenia, 696–967
Neonatal autoimmune thrombocytopenia, 967
Neonatal bacterial hepatitis, 699
Neonatal cephalic pustulosis, 429
Neonatal cholestasis, extrahepatic, 703–706. See also Extrahepatic neonatal cholestasis
Neonatal circulation, 598
Neonatal congenital myopathy, 859
Neonatal convulsions, 790
Neonatal diabetes, general considerations, 1097
Neonatal encephalopathy, features, 39
Neonatal Graves disease, 1070
Neonatal HBV disease, 66, 698–699
Neonatal HCV disease, 66, 699–701
Neonatal hemochromatosis, neonatal cholestasis due to, 700
Neonatal hepatitis
B, 698–699
causative, 699
generation, 699–701, 700f
metabolic, 699–701, 700f
toxic, 698f, 701
idiopathic, 701–702
infection and, 695–698, 696f
Neonatal hyperbilirubinemia, 706–708
Neonatal hypoparathyroidism, transient, 1071–1074
Neonatal infections, 1244–1245
treatment, 1246
Neonatal jaundice, 19–27
bilirubin and, 19
increased production, 20–21, 21f
values, 19, 20f
breast feeding and, 22
cholestatic, prolonged, 695
general considerations, 19
pathologic unconjugated hyperbilirubinemia, 20–22, 21f
physiologic jaundice, 19–20, 20f
prematurity and, 22
prevalence, 19
race as factor in, 22
UTI and, 699
Neonatal meningitis, 59, 1316
Neonatal (transient) myasthenia, 853
Neonatal seizures, described, 787
Neonatal sepsis, 1217, 1316
Neonatal size vs gestational age, 12
Neonatal stroke, 72–73
Neonatal thrombocytopenia, 67–68, 68f, 965f, 966–967
Neonate. See Newborn
Neoplastic diseases, 990–1021. See also specific disorders
cutaneous lymphoblastic leukemia (ALL), 990–993
cutaneous myeloid leukemia (AML), 993–996, 994f
bone tumors, 1010–1011
brain tumors, 997–1001, 999f
chronic myelogenous leukemia (CML), 996–997, 996f
described, 990
hematopoietic stem cell transplantation (HSCT) in, 1016–1018
hepatocellular carcinoma, 1014–1015, 1015f
juvenile myelomonocytic leukemia (JMML), 996f, 997
Langerhans cell histiocytosis, 1015–1016
lymphomas, 1001–1006
lymphoproliferative disorders, 1006
musculoskeletal system-related, 880–881.
See also specific disorders
myeloproliferative diseases, 996–997, 996f
neuroblastoma, 1006–1008, 1007f
retinoblastoma, 1013–1014
rhabdomyosarcoma, 1011–1013, 1012f
transient myeloproliferative disorder, 996f, 997f
treatment modalities
complications, 1018–1020
cardiopulmonary-related, 1019
endocrine-related, 1019
growth-related, 1019
neuropsychological-related, 1020
renal-related, 1020
late effects, 1018–1021
second malignancies after, 1020–1021
Wilms tumor, 1008–1009, 1009f
Neostigmine, in myasthenic syndrome management, 855
Neostigmine test, in myasthenic syndrome evaluation, 854
Nephritis, interstitial, acute, 760
Nephroblastoma, 1008–1009
Nephronophthisis, juvenile, 756
Nephrotic syndrome, 430
INDEX

Nonketotic hyperglycemia, 1119–1120
Nonmendelian disorders
  anticipation-related disorders, 1162
  imprinting disorders, 1161
Nonmendelian inheritance, 1147–1148, 1148f
  epigenetic regulation, 1147
  genetic anticipation, 1148
  imprinting, 1147
  mitochondrial inheritance, 1148, 1148f
Non-nucleoside reverse transcriptase inhibitors (NNRTIs), 1278, 1278f
Nonopioid analgesics
Nonparametric method of establishing reference intervals, 1440–1441
Nonparametric method of establishing reference intervals, 1440–1441
Nonketotic hyperglycinemia, 1119–1120

Nuclear cardiology, 595
Nuclear imaging, in cardiovascular system, 595
Nuclear factor κB–essential modulator (NEMO), mutations of, 1046–1047
Nutritional support, 326–333, 327f, 329f, 331f–332f. See also specific types, eg, Parenteral nutrition
  for critically ill patients, 415–418
  assessment, 416–417
  delivery of nutrition, 417–418
  route, 418
  supplementation, 418
  enteral, 326–327, 327f
  for feeding disorders in infants and young children, 97
  in growth deficiency management, 270
  for necrotizing enterocolitis (NEC), 46
  nutritional requirements/delivery, 329–330, 329f, 331f–332f. See also Nutritional requirements/delivery
  parenteral nutrition, 327–328
  for preterm infants in nursery, 41–42, 42f
Nutriatum, 450, 485
O
Obesity, 323–326, 324f, 325f, 326f
  adolescents, 132–133, 133f, 133f–134f
  background, 132
  defined, 132
  evaluation, 132–133, 133f
  prevalence, 132
  treatment, 133–134, 134f
  assessment, 325, 325f
  clinical findings, 323, 325
  comorbidities, 323, 324f
  complications, 132, 133f, 323, 324f
  defined, 323, 325
  general considerations, 323, 324f
  prevalence, 323
  risk factors, 325
  treatment, 325–326, 326f
Obestatin, 172
Obesitising disorder (OCD), 208–209
  described, 208
  prognosis, 208–209
  treatment, 208
Obstructive shock, 339
Obstructive sleep apnea (OSA) syndrome, 100–101, 528, 582–583
Obstructive uropathy, 757
Occulsive, in atopic dermatitis management, 1192
OCD. See Obsessive-compulsive disorder
Ocular toxoplasmosis, 1367
Oculocerebrorenal syndrome, 771
Office pediatrics, 248–270. See also
  Ambulatory and office pediatrics
  Oklahoma City bombing, post-traumatic stress disorder (PTSD) effects, 209
  Olanzapine, 218t, 224t, 231t, 237
  in anorexia nervosa management, 179
  Oligohydramnios sequence, 1166
  Oligosacccharidoses, clinical and laboratory features, 1126f–11287f

Nose
  disorders, 515–522. See also specific disorders
  acute viral rhinitis, 515–518
  choanal atresia, 520
  epistaxis, 521
  infections, 521
  recurrent rhinitis, 520–521
  rhinosinusitis, 518–520
  trauma, 521–522
  foreign bodies in, 522
  of newborn, examination, 14
Nosocomial infections
  antimicrobial agents for, 1217–1218
  *Pseudomonas* infections in patients with, prevention, 1318
  NQF (National Quality Forum), 2
  NREM sleep (nonrapid eye movement sleep), 99
  NRTIs (nucleoside and nucleotide transcriptase inhibitors), 1278
  NSAIDs. See Anti-inflammatory drugs, nonsteroidal
  Nuclear cardiology, 595
  Nuclear imaging, in cardiovascular system, 595
  Nutritional requirements/delivery, 329–330, 329f, 331f–332f. See also Nutritional requirements/delivery
  Parenteral nutrition, 327–328
  for preterm infants in nursery, 41–42, 42f
Nutriatum, 450, 485
O
Obesity, 323–326, 324f, 325f, 326f
  adolescents, 132–133, 133f, 133f–134f
  background, 132
  defined, 132
  evaluation, 132–133, 133f
  prevalence, 132
  treatment, 133–134, 134f
  assessment, 325, 325f
  clinical findings, 323, 325
  comorbidities, 323, 324f
  complications, 132, 133f, 323, 324f
  defined, 323, 325
  general considerations, 323, 324f
  prevalence, 323
  risk factors, 325
  treatment, 325–326, 326f
Obestatin, 172
Obesitising disorder (OCD), 208–209
  described, 208
  prognosis, 208–209
  treatment, 208
Obstructive shock, 339
Obstructive sleep apnea (OSA) syndrome, 100–101, 528, 582–583
Obstructive uropathy, 757
Occulsive, in atopic dermatitis management, 1192
OCD. See Obsessive-compulsive disorder
Ocular toxoplasmosis, 1367
Oculocerebrorenal syndrome, 771
Office pediatrics, 248–270. See also
  Ambulatory and office pediatrics
  Oklahoma City bombing, post-traumatic stress disorder (PTSD) effects, 209
  Olanzapine, 218t, 224t, 231t, 237
  in anorexia nervosa management, 179
  Oligohydramnios sequence, 1166
  Oligosacccharidoses, clinical and laboratory features, 1126f–11287f

Nose
  disorders, 515–522. See also specific disorders
  acute viral rhinitis, 515–518
  choanal atresia, 520
  epistaxis, 521
  infections, 521
  recurrent rhinitis, 520–521
  rhinosinusitis, 518–520
  trauma, 521–522
  foreign bodies in, 522
  of newborn, examination, 14
Nosocomial infections
  antimicrobial agents for, 1217–1218
  *Pseudomonas* infections in patients with, prevention, 1318
  NQF (National Quality Forum), 2
  NREM sleep (nonrapid eye movement sleep), 99
  NRTIs (nucleoside and nucleotide transcriptase inhibitors), 1278
  NSAIDs. See Anti-inflammatory drugs, nonsteroidal
  Nuclear cardiology, 595
  Nuclear imaging, in cardiovascular system, 595
  Nutritional requirements/delivery, 329–330, 329f, 331f–332f. See also Nutritional requirements/delivery
  Parenteral nutrition, 327–328
  for preterm infants in nursery, 41–42, 42f

Olopatadine, for ocular allergy, 468t

Omalizumab, in asthma management, 1183

Omphalitis, in newborns, 61

Omphalocoele, in newborns, 56

Onychomycosis, 436

candidiasis and, 1387

Ophthalmia neonatorum, 465–466, 465f

Oral contraceptive pills, 149, 151–152, 152t

combined, contraindications, 150t,

151–152

noncontraceptive health benefits, 151, 151t

poisoning, treatment, 371

Oral health

infant, 491

issues in, 490–491

perinatal factors, 490

Oral hypoglycemics, poisoning, treatment, 380

Oral malformations, congenital, 532–533

Oral medicine, 490–501. See also Dental

caries; Dentistry; specific types/diseorders
dental caries, 492–495, 492f, 493t

dental emergencies, 499–500, 499f

examination of newborns and infants, 495–497, 495f–497f. See also

Infant, oral examination, oral

examination; Newborn

orthodontic referral, 501

periodontal disease, 498–499, 498f

special patient populations, 500–501

teeth eruption, 497–498

Oral sex, among adolescents, 1440

Oral ulcers, traumatic, 523

Orbit
diseases, 483–488, 484f, 486f, 487f

amblyopia, 485–486

cellulitis, 483

craniofacial anomalies, 483–484

nystagmus, 485

strabismus, 486–488, 486f, 487f

trauma to, blunt, 455–456

tumors, 484, 484f

Orbital cellulitis, 483

Haemophilus influenzae type B infections

and, 1331

Orchitis, mumps and, 1265

Organ donation, 424

Organic acidemias, 1120–1123

carboxylase deficiency, 1122

described, 1120

glutaric acidemia type I, 1122–1123

isovaleric, 1122

methylmalonic, 1120

propionic, 1120, 1121t

Oranophosphates, poisoning, treatment, 376

Oriental sore, 1356f

Oriental sore, 1356f

Oriental sore, 1356f

Oriental sore, 1356f

Orthopedics, 862–101, 528, 582–583

osteoarthritis, 878–879

osteomyelitis, 874–877

pyogenic arthritis, 876–877

bone diseases, 882–883

degenerative conditions, 871

musculoskeletal system-related

conditions, 867–871

bunions, 870–871

cavus foot, 870

femoral anteverension, 869–870

flatfoot, 870

foot problems, 870–871

genu valgum, 869

genu varum, 869

scoliosis, 867–868

slipped capital femoral epiphysis (SCFE), 868–869

talipes calcaneovalgus, 870

tibial torsion, 869

National QA/Quality initiatives, 883

neoplastic diseases-related, 880–881

neurologic disorders-related, 879–880

cerebral palsy, 879–880

myelodysplasia, 880

prenatal origin-related conditions, 862–867

achondroplasia, 867

arthrogryposis multiplex congenita, 865

clubfoot, 863

congenital amputations, 862

congenital limb deficiencies, 862

deformities of extremities, 863–865

developmental dysplasia of hip joint, 863–864

generalized disorders of skeletal or

eskeletal or mesodermal tissues, 865–867

Klippel-Feil syndrome, 866

Marfan syndrome, 865

metatarsus adductus, 863

Morquio disease, 867

ostogenesis imperfecta, 866

osteopetrosis, 866–867

Sprengel deformity, 866

torticollis, 864–865

trauma-related, 871–874

contusions, 872

dislocations, 873

fractures, 872–873

myositis ossificans, 872

soft tissues, 871–872

sprains, 871–872

subluxations, 872–873

vascular lesions, 878

OSA (obstructive sleep apnea) syndrome,

100–101, 528, 582–583

Osgood-Schlatter disease, 878t

sports-related, 912

Osmotic diuretics, for increased

intracranial pressure (ICP), 411–412

Osteitis condensans generalisata, 866–867

Osteochondritis dissecans, 872, 879

sports-related, 907
Osteochondroma, 880
Osteochondrosis, 878–879, 878t
Osteochondrohydystrophy, 867
Osteogenesis imperfecta, 866, 1157–1158
Osteoid osteoma, 880–881
Osteomyelitis, 874–877, 1299
bone and joint-related infections, 874–877
chronic, nontuberculous mycobacteria and, 1338
exogenous, 875
hematogenous, 875–876
treatment, 1301–1302
Osteopetrosis, 866–867
Osteomyelitis, 874–877, 1299
Oxcarbazepine in seizure management, 1221
Oxidation, of fatty acids, 308
Pain
abdominal parasitic infections and, 1354t
recurrent, 685–686
cases, 1022
defined, 1022
treatment, 1022–1024, 1024t, 1025t
assessment, 1022, 1023f, 1023t, 1024t
in special populations, 1022, 1023t
bone, palliative care for, 1028t
chest, 636–637. See also Chest pain
chronic, management, 1024–1026
dependence, 1026
tolerance, 1026
withdrawal from, 1026
elbow, posterior, sports-related, 908
eye, 447
intractable, palliative care for, 1028t
knee
anterior, sports-related, 912–913
posterior, sports-related, 913
Pain management, 1022–1026
in acute otitis media (AOM) management, 509
case, 1022
management, 509
Pain scales, 1022, 1023f, 1024t
PAL (Partnership Access Line), 187
Palate
clcf. See Cleft palate
disorders, 533. See also Cleft lip; Cleft palate
high-arched, 533
Palliative care, 424, 1026–1031, 1028t, 1030t
children benefiting from, 1027
consultation for, in ICU, 424
introduction, 1026–1027
pain management in, 1027
psychosocial aspects, 1029, 1030t
quality-of-life adjuncts in, 1027–1029
complementary and alternative modalities, 1027–1029
symptom management, 1027, 1028t
Pallid, 792t
Palmar grasp, 15
Palsy
Bell, 856
Lyme disease and, treatment, 1352
cerebra, 833–834
Erb, 924
facial nerve, forceps-related, 30
Klumpke, 924
peripheral nerve, 855–856
PAMPs (pathogen associated molecular patterns), 406
Panayiotopoulos syndrome, 790t
Pancreas, annular, 662
Pancreatic disorders, 734–741. See also specific disorders
gastrointestinal and hepatobiliary manifestations of cystic fibrosis, 736, 737t–739t
isolated exocrine pancreatic enzyme defect, 740
with pancreatic exocrine insufficiency, syndromes with, 740
pancreatic tumors, 740–741, 741t
panreatitis, 734–736
acute, 734–735
chronic, 735–736
Pancreatic exocrine insufficiency, syndromes with, 740
Pancreatic insufficiency, 690–691
Pancreatic tumors, 740–741, 741t
Pancreatitis, 734–736
acute, 734–735
chronic, 735–736
mumps and, 1265
Peneccephalitis, sclerosing, subacute, 822t
Panic disorder, 204t
Panner disease, 878t
Pap screening, American College of Obstetrician and Gynecologists guidelines, 140
Pap smear, in speculum vaginal examination, 141t
Papilledema, 481–482
Papillomavirus, eyelid, 461
Papular urticaria, 439
Papules, red, scattered, candidiasis and, 983t, 987
Pap smear, in speculum vaginal examination, 141t
Paralysis
acute flaccid, syndromes presenting as, 841–844, 842t–843t. See also Acute flaccid paralysis, syndromes presenting as facial nerve, otitis media and, 510 periodic, hyperkalemic, 848t tick-bite, 842t–843t. See also Acute flaccid paralysis, syndromes presenting as in ventilated patient, 393 vocal cord, 548 Parametric method of establishing reference intervals, 1440, 1441f
INDEX

Pityriasis rosea, 443
Plague, 1327–1328. See also specific types, eg, Bubonic plague
clinical findings, 1327–1328
differential diagnosis, 1328
general considerations, 1327
prevention, 1327
prognosis, 1328
treatment, 1328
Plantar fasciitis, sports-related, 916
Plasma
constituents, 742, 743f
fresh frozen, characteristics, 984t, 987, 989
Plasma cortisol, in adrenocortical
hyperfunction evaluation, 1092
Platelet
characteristics, 984t, 987–989
numbers of, abnormalities, 963t,
964–968, 964f
Platelet alloantibodies, thrombocytopenia associated with, 966–967
Platelet concentrates
by apheresis techniques, characteristics,
985t, 987
from whole blood donation, characteristics, 985t
Platelet function
abnormalities, 963t, 964–968, 964t
disorders, 968
Pleiotropy, defined, 1142
Pleuritic, defined, 1142
Pleurisy, disorders, 579–581
Pleuritis, disorders, 579–581
Pleural cavity, disorders, 579–581
Pleura, disorders, 579–581
Pneumonia, 1233
adenostravirus infections and, 1233
aspiration, 568–569, 569t
atypical, 563–574
bacterial, 561–562. See also Bacterial pneumonia
antimicrobial agents for, 1218
community acquired bacterial, 561–562.
See also Bacterial pneumonia congenital, in newborns, 29
histoplasmosis and, 1393
in immunocompromised host, 569–571
mycoplasma, 566
in newborns, 60–61
respiratory distress due to, 29
pneumococcal infections and, treatment,
1297, 1297
Pneumocystis jiroveci, prevention, drug regimen in, 1280, 1280t
Pneumonia, 1233
adenostravirus infections and, 1233
aspiration, 568–569, 569t
atypical, 563–574
bacterial, 561–562. See also Bacterial pneumonia
antimicrobial agents for, 1218
community acquired bacterial, 561–562.
See also Bacterial pneumonia congenital, in newborns, 29
histoplasmosis and, 1393
in immunocompromised host, 569–571
mycoplasma, 566
in newborns, 60–61
respiratory distress due to, 29
pneumococcal infections and, treatment,
1297, 1297
Pneumocystis jiroveci, prevention, drug regimen in, 1280, 1280t
staphylococcal, 1299
treatment, 1302
viral, 563–564
viral causes, 1228t
Pneumonic plague, primary, 1328
Pneumonitis, hypersensitivity, 573–574
Pneumothorax, 337, 580–581
spontaneous, respiratory distress in new-
borns due to, 29–30
Pneumovax23 (PPSV23), 286–288
Poison ivy dermatitis, 441
Poisoning, 357–368. See also specific agents and types
absorption, prevention, 361–362
acetaminophen, 363
acids, 369–370
alkalis, 370
amphetamine, 365–366
anesthetics, local, 366–367
analyte, 378–379
antidepressants, cyclic, 372
antihistamines, 367
antispsychotics, 380–381
arsenic, 367–368
barbiturates, 368
bases, 370
batteries, disk-shaped, 373–374
belladonna alkaloids, 368–369
benzodiazepines, 368
β-blockers, 369
butanediol, 374
calcium channel blockers, 369
carbates, 376
carbon monoxide, 369
caustics, 369–370
differential diagnosis, 1398
general considerations, 1397
imaging, 1398
laboratory findings, 1398
prevention, 1398
prognosis, 1399
symptoms and signs, 1397–1398
treatment, 1398–1399
P jiroveci pneumonia, prevention,drug regimen in, 1280, 1280t
central alpha-2 adrenergic agonists, 370
chlorinated hydrocarbons, 375–376
cocaine, 371
contraceptive hydrocarbons, 375–376
cotocaine, 371
cough and cold preparations, 367
deodorizers, 373
detergents, 385
digoxins, 372, 601
dinitrophenol, 378–379
diphenoxylate with atropine, 373
disinfectants, 373
eythylene glycol, 374
food, staphylococcal, 1299
γ-hydroxybutyrate (GHB), 374
glycosides, 372
hydrocarbons, 374–375
ibuprofen, 375
insect stings, 375
insecticides, 375–376
iron, 376–377
lead, 377–378
magnets, 378
methanol, 374
mushrooms, 378
naphthalene, 373
nitrates, 378–379
nitrites, 378–379
opiates, 379–380
opioids, 379–380
oral hypoglycemics, 380
organophosphates, 376
p-dichlorobenzene, 373
pentachlorophenol, 378–379
pharmacologic principles, 357–358
phenolic acids, 373
prevention, 358, 359–360
psychotropic drugs, 381–382
scorpion stings, 383
serotonin reuptake inhibitors, 383–384
snakebite, 384
soaps, 385
spider bites, 385–386
thyroid preparations, 386
treatment
definitive, 361–362
emergency department contact, 361
general, 358, 361–362
vitamins, 386
warfarin, 386
Policy Statement on Community
Pediatrics, of AAP, 186–187
Polio
eradication, 288
vaccination, travel-related, 1427
Poliodystrophy, 820f
Polioymelitis, 842–843, 1241–1242
vaccination, 288–289
administration schedule, 288–289
adverse effects, 289
contraindications, 289
dosage, 288–289
precautions, 289
vaccines available, 288
INDEX

Polyarthritis
  diphtheria and, 1314
gonorrhea, 1306
rheumatic fever and, 627
Polyctystic kidney disease, 756
Polyctystic ovary syndrome (PCOS), 144, 144t
evaluation, 134
Polyctythemia, 957–958
familial, 957
in newborns, 69, 69t
secondary, 957
Polymasem chain reaction (PCR), 1140
in infectious mononucleosis, 1254
quantitative fluorescent, 1140
Polyneuritis, cerebrospinal fluid (CSF) in,
724–725
differential diagnosis, 725
clinical findings, 724–725
prehepatic, 724
intrahepatic, 724
Polysomnography
in sleep apnea, 527
in OSA syndrome evaluation, 528
Port-wine stains, in newborns, 430–431
Potassium disorders, 749–750
Potassium, 310
primary pulmonary hypertension, 144
Potter sequence, 1166
PPH (primary pulmonary hypertension), 1285
PPHN (persistent pulmonary hypertension), 53
PR interval, in ECG evaluation, 592, 592t
primary care setting, integrated mental and
primary hyperaldosteronism, 1093
Primary care physicians, in psychiatric disorders detection, 183
Primary ciliary dyskinesia, 552–553
Primary hyperaldosteronism, 1093
Primary hyperoxaluria, 773
Primary hypogonadism, delayed puberty
due to, 1083
Primary immunodeficiencies
clinical features, 1033, 1035t
Prenatal screening, for birth defects,
1169–1170
Prenatal visits, 264
Prepubertal gonococcal infections, treat-
ment, 1308
Preschooler
concept of death, 1029, 1030t
immunoglobulins in, normal values, 1037t
interviewing, in developmental problems
assessment in, 191–192
Pressure, in cardiovascular system evalua-
tion, 596f, 597
Pressure autoregulation, 410
Pressure sores, palliative care for, 1028t
Pressure-controlled ventilation, 392
Pressure-support ventilation, 392
Preterm infants, 40–50
anemia in, 46–47
apnea in, 42–43, 43t
care in nursery, 40–42, 40f, 42f
fluid and electrolyte therapy, 41
chronic lung disease in, 44–45
discharge and follow-up of, 49–50
disorders in. See specific disorders
early, 50f
follow-up care, 49–50, 50f
hospital discharge, 49
mortality rates prior to, 49, 50f
hyaline membrane disease in, 43–44, 44f
intraventricular hemorrhage in, 47–48, 47f
late, 50–51, 50f
multiple births, delivery, 34
necrotizing enterocolitis (NEC) in, 45–46
patent ductus arteriosus in, 45
physiologic handicaps, 39–40
resuscitation in, 36–38
retinopathy of prematurity in, 48–49
Pretransfusion testing, 986
Preventive dental treatment, 494–495
Preventive health care, recommendations,
251, 252f–253f
Preventive services, for adolescents,
guidelines, 119–125, 121f–124f.
See also Adolescent guidelines, preventive services
Prevnar13 (PCV13), 286–288
Primamquine, in malaria prevention, 1433f
Primamquine phosphate, for malaria, 1363t
Primary care physicians, in psychiatric disorders detection, 183
Primary ciliary dyskinesia, 552–553
Primary hyperaldosteronism, 1093
Primary hyperoxaluria, 773
Primary hypogonadism, delayed puberty
due to, 1083
Primary immunodeficiencies
clinical features, 1033, 1035t
Preterm infants, 40–50
anemia in, 46–47
apnea in, 42–43, 43t
care in nursery, 40–42, 40f, 42f
fluid and electrolyte therapy, 41
chronic lung disease in, 44–45
discharge and follow-up of, 49–50
disorders in. See specific disorders
early, 50f
follow-up care, 49–50, 50f
hospital discharge, 49
mortality rates prior to, 49, 50f
hyaline membrane disease in, 43–44, 44f
intraventricular hemorrhage in, 47–48, 47f
late, 50–51, 50f
multiple births, delivery, 34
necrotizing enterocolitis (NEC) in, 45–46
patent ductus arteriosus in, 45
physiologic handicaps, 39–40
resuscitation in, 36–38
retinopathy of prematurity in, 48–49
Pretransfusion testing, 986
Preventive dental treatment, 494–495
Preventive health care, recommendations,
251, 252f–253f
Preventive services, for adolescents,
guidelines, 119–125, 121f–124f.
See also Adolescent guidelines, preventive services
Prevnar13 (PCV13), 286–288
Primamquine, in malaria prevention, 1433f
Primamquine phosphate, for malaria, 1363t
Primary care physicians, in psychiatric disorders detection, 183
Primary ciliary dyskinesia, 552–553
Primary hyperaldosteronism, 1093
Primary hyperoxaluria, 773
Primary hypogonadism, delayed puberty
due to, 1083
Primary immunodeficiencies
clinical features, 1033, 1035t
Primarito 632–633
Primarito 632–633
Primarito 632–633
Primarito 632–633
attention-deficit hyperactivity disorder (ADHD), 210–214
conduct disorders, 228–232
consultation-liaison psychiatry in, 195
defined, 199
diagnosis, axes in, 199
diagnosis/detection, primary care physicians in, 185
formal reference text for, 199–200
high-risk patients, 232
homicide and, 232
mood disorders, 215–226
origins, 199
prevalence, 185
psychotic disorders, 235–238
somatiform disorders, 233–234, 233t
suicide and, 226–228
Psychiatry, consultation-liaison, 195
Psychoactive drugs, 218f
poisoning, treatment, 381–382
Psychological care management, in diabetes types 1 and 2
management, 1101
Psychological factors, eating disorders related to, 173
Psychological health, in adolescents, 129–135. See also Adolescent, psychological health
Psychopharmacology, for fragile X syndrome, 114–115
Psychosocial development, in adolescents, 127–128
Psychosocial dwarfism, 1062
Psychosocial problems, 185–202. See also specific problems, eg, Chronic illness
chronic illness, 195–196
developmental disorders, 186–195. See also Developmental disorders
parental concerns, PSYCH in, 188
Partnership Access Line (PAL), 187
pediatrician’s role in, 187, 188
parental concerns, PSYCH in, 188
partnership Access Line (PAL), 187
pediatrician’s role in, 187, 188
Parental concerns, PSYCH in, 188
partner’s role in, 187, 188f
seizure-related, 793
socioemotional problems, 186–195
Surgeon General’s National Action Agenda on Mental Health on, 187
Psychosocial short stature, 1062
Psychosocial support, in HIV infection management, 1280
Psychotic disorders, 235–238
antipsychotics, 235–238, 236t
clinical findings, 235
described, 235
differential diagnosis, 235
incidence, 235
prognosis, 238
treatment, 235–238
Psychotropic drugs, poisoning, treatment, 381
PTEN hamartoma tumor syndrome, 677t
PTLDs (posttransplantation lymphoproliferative disorders), 1006
INDEX

Pulmonary hypertension
persistent, in newborn infants, 53
primary, 639–640
treatment, in bronchopulmonary
dysplasia management, 560
Pulmonary hypoplasia, 555–556
Pulmonary infections
coccidiodomycosis and, 1390
cryptococcosis and, 1392
Pulmonary lobes, projections on chest
surface, 535, 535f
Pulmonary lymphangiectasia, congenital,
577–578
Pulmonary sequestration, 556–557
Pulmonary stenosis
peripheral arterial, 589–590
subvalvular, 608
supravalvular, 608
Pulmonary valve, absence of, 609
Pulmonary valve stenosis, 607–608
Pulmonary vascular obstructive disease,
large ventricular septal defect
with, 603
Pulmonary vascular resistance, 405f
in cardiovascular system evaluation, 597
normal, large ventricular septal defect
with, 603
Pulse, assessment and management of the
acutely ill infant or child, 338
Pulse oximetry, in acute respiratory failure,
536, 536t
Pupils, examination, 451
Pure red cell aplasia, 940–942
Pyridoxine
biologic roles, 316t
deficiency
causes, 317t
clinical features, 318t
dietary reference intakes, 314t
dietary sources, 317t
Pyroglutamic acidemia, 1121f
Pyruvate dehydrogenase deficiency,
1113–1115, 1114t
causes, 1114t
described, 1113
diagnosis, 1114
treatment, 1114–1115
Pyruvate kinase deficiency, 954–955
Q
22q11.2 deletion syndrome, 1045–1046
Q fever, 1270
QRS axis, in ECG evaluation, 592, 592f
592t
QRS complex, in ECG evaluation, 592, 592f
QT interval, 592–593, 592f, 593t
Quadriceps contusion, sports-related,
910–911
Quality of life, adjuncts, in palliative care,
1027–1029
Quantitative fluorescent PCR, 1140
Quetiapine, 218
231, 231t, 237
Quinidine gluconate, for malaria, 1364f
Quinine sulfate, for malaria, 1364f
Quinupristin-dalfopristin, 1221
Rabies, 1266–1267
vaccination, 299–301
travel-related, 1427–1428
Raccoon roundworm infections, 1380
Race, jaundice and, 22
Radial head, subluxation of, 873
Radiation therapy, in hyperthyroidism
management, 1069
Radiocontrast media, adverse reactions,
1202
Radiography
chest
in cardiovascular system evaluation,
593–594, 593f, 593f–594f
in life-threatening asthma, 400
in renal function evaluation, 755–756
Rage attacks, 792f
Raltegravir, 1278f
Rancho, 919
Rancho Los Amigos Levels of Cognitive
Function, 919
Ranula, 528, 532
Rapid eye movement (REM) sleep, 99
Rash, 1233, 1240
cardiac involvement, 1240
causes, viral, 1228f
Lyme disease and, treatment, 1352
parasitic infections and, 1355f
severe neonatal infection due to, 1240

Potosis, eyelid, 461–462, 461f
PTSD. See Post-traumatic stress disorder
PTU, in hyperthyroidism management,
1069
Pubertal development, abnormalities
female, 1081–1084, 1081t, 1083t
delayed puberty, 1083–1084, 1083t
precocious puberty, 1081–1082, 1081t
benign variants, 1082–1083
male, 1081t, 1084–1086
cryptorchidism, 1086
delayed puberty, 1085–1086
gynecomastia, 1086
precocious puberty, 1081t, 1084–1085
Puberty, 125–126. See also Pubertal
development
delayed
causes, 1083, 1083t
in females, 1083–1084, 1083t
in males, 1085–1086
precocious. See Precocious puberty
Pubic lice, 1422
treatment, 1408f
Pulmonary agenesis, 555–556
Pulmonary airway malformation,
congenital, 557–560
Pulmonary artery
absence of, 609
anomalous origin, 615–616
Pulmonary artery catheter, in shock, 405
Pulmonary artery stenosis, peripheral,
608–609
Pulmonary atresia
with intact ventricular septum, 618–619
with ventricular septal defect, 618
Pulmonary blood flow
in cyanotic cardiac lesions, alternatives,
594f
increased/decreased, symptoms,
588, 589f
Pulmonary circulation, diseases, 574–578
congenital pulmonary lymphangiectasia,
577–578
pulmonary edema, 576–577
pulmonary embolism, 576
pulmonary hemorrhage, 574–576
Pulmonary diseases
mortality data, 534
nontuberculous mycobacteria and, 1338
Pulmonary edema, 576–577
high-altitude, 1424
Pulmonary ejection murmur, 590
Pulmonary embolism, 576
Pulmonary function tests, in respiratory
ttract disorders diagnosis and
evaluation, 536, 536f
Pulmonary hemorrhage, 574–576
clinical findings, 575
differential diagnosis, 575
imaging studies, 575
laboratory studies, 575
prognosis, 576
symptoms and signs, 575
treatment, 575–576
Pyrantel pamoate, in ascariasis treatment,
1304f
Pyrazinamide, for TB, 1337
Pyle abscess, 730–732
clinical findings, 731
complications, 731
differential diagnosis, 731
general considerations, 730–731
prognosis, 732
treatment, 732
Pyrazinamide, for TB, 1337
Pyridostigmine bromide, in myasthenic
syndrome management, 854–855
Pyridoxine
biologic roles, 316t
deficiency
causes, 317t
clinical features, 318t
dietary reference intakes, 314t
dietary sources, 317t
Pyroglutamic acidemia, 1121f
Pyruvate dehydrogenase deficiency,
1113–1115, 1114t
causes, 1114t
described, 1113
diagnosis, 1114
treatment, 1114–1115
Pyruvate kinase deficiency, 954–955
Q
22q11.2 deletion syndrome, 1045–1046
Q fever, 1270
QRS axis, in ECG evaluation, 592, 592f
592t
QRS complex, in ECG evaluation, 592, 592f
QT interval, 592–593, 592f, 593t
Quadriceps contusion, sports-related,
910–911
Quality of life, adjuncts, in palliative care,
1027–1029
Quantitative fluorescent PCR, 1140
Quetiapine, 218
224, 231, 237
Quinidine gluconate, for malaria, 1364f
Quinine sulfate, for malaria, 1364f
Quinupristin-dalfopristin, 1221
Rabies, 1266–1267
vaccination, 299–301
travel-related, 1427–1428
Raccoon roundworm infections, 1380
Race, jaundice and, 22
Radial head, subluxation of, 873
Radiation therapy, in hyperthyroidism
management, 1069
Radiocontrast media, adverse reactions,
1202
Radiography
chest
in cardiovascular system evaluation,
593–594, 593f, 593f–594f
in life-threatening asthma, 400
in renal function evaluation, 755–756
Rage attacks, 792f
Raltegravir, 1278f
Rancho, 919
Rancho Los Amigos Levels of Cognitive
Function, 919
Ranula, 528, 532
Rapid eye movement (REM) sleep, 99
Rash, 1233, 1240
cardiac involvement, 1240
causes, viral, 1228f
Lyme disease and, treatment, 1352
parasitic infections and, 1355f
severe neonatal infection due to, 1240
INDEX

Respiratory syncytial virus (RSV), 1236–1238
prophylaxis, 303–304
Respiratory tract, 534–581
disorders, 1239–1240. See also specific disorders, parts, and airways
chest wall, 578
diagnosis/evaluation, 535–541, 535f, 536t
bronchoscopy, 540–541
imaging, 540
laryngoscopy, 540–541
oxxygenation and ventilation assessment, 537–539
physical examination, 535, 535f
pulmonary function tests, 536, 536f
diaphragm, 578
of extrathoracic airway, 544
of intrathoracic airway, 548–550
laryngomalacia, 544
lung parenchyma
acquired abnormalities, 559–563
congenital malformations, 555–559
mortality data, 534
neuromuscular, 578–579
pleura, 579–581
pleural cavity, 579–581
pulmonary circulation, 574–578
treatment, 541–543. See also specific therapy and Lung diseases, treatment
growth and development, 534–535
upper, viral infections, acute otitis media (AOM) related to, 504
Resting energy expenditure (REE), 416–417
Restless legs syndrome, 101, 801
Restrictive cardiomyopathy, 634
Resuscitation
in assessment of the acutely ill patient, 334–338, 335f–336f
airway, 334–336, 335f–336f
circulation, 337–338
breathing, 336–337, 337f
in management of the acutely ill patient, 334–338, 335f–336f
airway, 334–336, 335f–336f
circulation, 337–338
perinatal, 35–39. See also Perinatal resuscitation
Retained fetal lung fluid, respiratory distress in newborns due to, 29
Retina, disorders, 477–480, 477t
diabetic retinopathy, 479–480
hemorrhages in newborn, 477
retinal detachment, 479
retinoblastoma, 478–479
retinopathy of prematurity, 477–478, 477t
Retinal detachment, 479
Retinoblastoma, 478–479, 1013–1014
clinical findings, 1013–1014
general considerations, 1013
treatment, 1014
Retinocerebellar angiomatosis, 817
Retinoic acid embryopathy, 1169
Retinoid, oral, for acne, 433
Retinopathy, diabetic, 479–480, 1103
Retinopathy of prematurity, 48–49, 477–478, 477t
Retraction pockets, acute otitis media (AOM) and, 510
Retroparyngeal abscess, 526
Retrovirals, hypersensitivity to, 1203
Rewarming, for hypothermia, 353, 353t
Rh-isoimmunization, 21
Rhinosinusitis, 518–520
Rhinoconjunctivitis, allergic, 1186–1190. See also Allergic rhinoconjunctivitis
Rhinosinusitis, 518–520
acute bacterial, 517f, 518–519
chronic, 519–520
recurrent, 519–520
Rh-isoinmunization, 21
Rhythm
circadian, 99
heart, in ECG evaluation, 591, 592f
ultradian, 99
Riboflavin
biologic roles, 316f
deficiency
causes, 317t
clinical features, 318t
dietary reference intakes, 314t
dietary sources, 317t
Rickets, 1074
hypocalcemic disorders associated with, 1072, 1074
hypophosphatemia, 1072t
familial, 1074
Rickettsiae, described, 1267
Rickettsial infections, 1267–1270
described, 1267
ehlichiosis, 1267–1268
demic typhus, 1269–1270
Q fever, 1270
Rocky Mountain spotted fever, 1268–1269
 Rifampin, 1212t
for TB, 1337
Right ventricle, double-outlet, 623
Rilpivirine, 1278t
Ring chromosome, 1137, 1137f
Risperidone, 224f, 231t, 237
indications, 218t
Ritalin, 213f
Ritonavir, 1278t
Rocky Mountain spotted fever, 1268–1269
red rash in, 1232t
Roladic epilepsy, described, 789t, 790t
Rusting reflex, 15
Rufinamide, in seizure management, 795
S
S., abnormal splitting, 588, 589t
St. Louis encephalitis, insects spreading, 1260
Salicylates, poisoning, treatment, 382–383
Salivary cortisol, in adrenocortical hyperfunction evaluation, 1092
Salivary gland disorders, 532
mumps, 1265
Salmeterol, in asthma management, 1182
Salmonella gastroenteritis, 1318–1320
clinical findings, 1319
complications, 1319
Second-degree atrioventricular block, 648, 648f–649f
Secondary polycythemia, 957
Sedation
delirium and, 421
in ICU, 419–420, 419f
for pediatrics, 421–422
procedural, for emergencies and injuries, 355–356
in ventilated patient, 394
withdrawal syndromes and, 421–422
Sedative-hypnotics, systemic effects, 161f
Segregation, defined, 1142
Seizure, 786–799. See also Seizure disorders;
specific types and Epilepsy
brain injury and, 413, 919
clinical findings, 786–791
defined, 786
diagnostic evaluation, 790–791
febrile, 798–799
focal, 789f
mortality data, 793
neonatal, 71–72, 72f
clinical findings, 71
described, 787f
prognosis, 72
treatment, 71–72
patient history, 786, 790
physical injuries related to, 793
symptoms and signs, 786, 790
types, by age of onset, 787f–789f
Seizure disorders, 786–799. See also Seizure;
specific types and Epilepsy
altered states of consciousness, EEG in, 791
classification, 786, 787f–789f
clinical findings, 786–791
complications and sequelae, 793
diagnostic evaluation, 790–791
differential diagnosis, 791, 792f
febrile seizures, 798–799
general considerations, 786
patient history, 786, 790
pregnancy in women with, 797
symptoms and signs, 786, 790
treatment, 793–797, 795f–796f
adrenocorticotropic hormone (ACTH), 794
alternative, 794–796
antiepileptic drugs (AEDs), 794, 795f–796f. See also Antiepileptic
drugs corticosteroids, 794
first aid, 793–794
general management, 796–797
ketogenic diet, 794–796
surgery, 796
vagus nerve stimulator (VNS), 796
Selective immunoglobulin deficiencies, 1039f, 1042
Selective mutism, 210
clinical findings, 210
general considerations, 210
prognosis, 210
treatment, 210
Selective serotonin reuptake inhibitors (SSRIs)
in anorexia nervosa management, 179
in bulimia nervosa management, 182
for depression, 217–218
for fragile X syndrome, 115
for obese adolescents, 134
for obsessive–compulsive disorder (OCD), 208
Selenium, 312f
dietary reference intakes, 311f
Self-Report for Childhood Anxiety-Related Emotional Disorders (SCARED), 191
Semi-elemental formulas, for infants, 320
Sensitivities, 1442, 1442f
Sensory hearing loss, 513–514, 1159–1160
Sensory ataxia, 826
Sensory skills, in neurologic assessment, 777f
Separation
cromioclavicular, sports-related, 904
epiphyseal, 873
Separation anxiety, 89
Separation anxiety disorder, 204f
Sepsis, 405–409
bacterial, in newborns, 58–59, 59f, 60f. See also Bacterial sepsis, in newborns
defined, 406
diagnostic criteria, 405, 406f
fungal, in newborns, 61–62
in infants, antimicrobial agents for, 1217
neonatal, 1316
antimicrobial agents for, 1217
nosocomial, antimicrobial agents for, 1217–1218
prevalence, 405
streptococcal, 1284
treatment, 406–409
Septation, defects in, 601–605
September 11, 2001, terrorist attacks of, 209
Post-traumatic stress disorder (PTSD) effects, 209
Septic arthritis, 1299
Haemophilus influenzae type B infections and, 1329, 1330
treatment, 1301–1302
Septic shock, 405
Septicemia, 1328
Sequence, defined, 1150
Sequencing
next-generation, 1143
whole exome, 1143
whole genome, 1143
Sequestration, pulmonary, 556–557
Serotonin norepinephrine reuptake inhibitors (SNRIs), 218–219
Serotonin reuptake inhibitors, poisoning, treatment, 383–384
Sepsis, 129
Scrub typhus, in returned traveler, 1436f
Scorpion stings, treatment, 383
Scrub typhus, in returned traveler, 1436
Scrub typhus, in returned traveler, 1436f
INDEX

Sertraline
for anxiety, 207t
for depression, 219t
indications, 218t
for obsessive-compulsive disorder (OCD), 208
for post-traumatic stress disorder (PTSD), in adults, 210
Serum analysis, in renal function evaluation, 752
Serum chloride and potassium, in adrenocortical hyperfunction evaluation, 1092
Serum enzymes, in muscular disorder evaluation, 878
Serum analysis, in renal function evaluation, 1092
Serum chloride and potassium, in
Serum analysis, in renal function evaluation, 1092
Serum enzymes, in muscular disorder evaluation, 878
Steroidogenesis disorders, 1079–1080, gonadal differentiation disorders, evaluation of, 1081
causes, 1078–1081
androgen action disorders, 1080–1081
adolescent sexuality, 1440
antibiotic-responsive, most common, 1403–1409, 1404t
Chlamydia trachomatis infection, 1403–1409
Neisseria gonorrhoeae infection, 1409
INDEX
INDEX

Steroid hormones, 1054
Steroidogenesis, disorders, 1079–1080, 1080f
Stevens-Johnson syndrome, red rash in, 1252t
Still disease, red rash in, 1231t
Still murrm, 590
Stimulant
for attention-deficit hyperactivity disorder (ADHD), 107, 213t
for fragile X syndrome, 115
guidelines, 202t
poisoning, treatment, 381
Sting. See also specific types, eg, Bee sting
insect, treatment, 375
scorpion, treatment, 383
Stingers, sports-related, 902
STS. See Sexually transmitted infections
Stomatitis
acute, 522–523
aphthous, 445–446
recurrent, 522
Strabismus, 486–488, 486f,
esotropia, 486–487, 486f
esotropia, 487–488, 487f
Strain
adductor, sports-related, 910
hamstring, sports-related, 910
Stronger anxiety, 89
Strength training, 884–885
Strength training, 884–885
defined, 884
Strengths and Difficulties Questionnaires (SDQs), in mental health screening in office setting, 189
Streptococcal infections
Streptococcus, described, 1298
Streptococcus spp., S. aureus
methicillin-resistant, community-associated, in athletes, 900
vancomycin-resistant infections due to, treatment, 1302
Staring spells, 792t
Startle reflex, 15
Station, in neurologic assessment, 777t
Statistical computation of reference intervals, 1440–1441, 1441f
nonparametric method, 1440–1441
parametric method, 1440, 1441f
Stature
boys, 2–20 years, 82f
girls, 2–20 years, 80f
short, 1056–1062, 1057t, 1058f–1059f.
See also Short stature
tall, 1063, 1063t
Status asthmaticus, 399–401. See also Asthma, life-threatening
Status epilepticus, 797–798, 798t
Stavudine, 1278t
STDs (sexually transmitted diseases), travel-related, 1434
Stenosis
Submersion injuries, 353–354
anterior shoulder, sports-related, 905
heat, 351–352
neonatal, 72–73
perinatal, 808–809
posterior circulation, 825
Strongyloidiasis, 1377
Structural heart disease, in preterm infants, 52–53
Sturge-Weber disease, 817
Subacute infective endocarditis, 1294
Subacute necrotizing encephalomyelopathy, 821t
Subacute sclerosis panencephalitis, 822t
Subacute thyroiditis, 1068
Subarachnoid hemorrhage, primary in newborns, 72
Subcutaneous fat necrosis, in newborns, 429
Subdural hemorrhage, in newborns, 72
Subgaleal hemorrhage, during childbirth, 31–32
Subglottic hemangiomas, 544
Subglottic stenosis, 548
Subluxation
anterior shoulder, sports-related, 905
heat, 351–352
comorbidit y, 166
diagnosis, 165–166
drug screens, false-positive causes, 167f
evaluation, CAGE questionnaire in, 165
management, 165–168
office screening, 165
pharmacologic screening, 165
morbidity data, 163–164
physiologic effects, 159–161t
positive psychosocial screening, evaluation of, 166t
prevalence, 158, 162
prevention, 170–171
progression from use to abuse, prediction, 164–165
reasons, 158
referral, 169–170
INDEX

Substance abuse, adolescent (Cont.): scope of problem, 158–162 smoking cessation, 169 stages of change and intervention in, 168t supplement use and abuse, 162 symptoms, 159–161t treatment, 168–170 described, 158 Subvalvular aortic stenosis, 611 Subvalvular pulmonary stenosis, 608 Sucking blisters, in newborns, 429 Sucking pads, examination in newborns and infants, 495 Sucking reflex, 15 Surfactant-replacement therapy Swelling, tooth-related, 500 Swimming pool granuloma, nontuberculous mycobacteria and, 1338 Sydenham chorea, rheumatic fever and, 627, 830 Sydenham post-rheumatic chorea, 830 Symmetrical growth restriction, 12t Synchronized intermittent mandatory ventilation, with pressure support, 392 Syncope, 650 classification, 802t Syndrome, defined, 1150 Syndrome of inappropriate antidiuretic hormone (SIADH) secretion, electrolyte and osmolality imbalance due to, 920 Syndromic short stature, 1062, 1166 Synovitis of hip, 877–878 Syphilis, 1344–1348, 1416–1417 Synovial fluid, examination in newborns and infants, 63, 64t Syndromic short stature, 1064–1065 Syndrome, defined, 1150 Systemic inflammatory response syndrome (SIRS), 405 Systemic lupus erythematosus (SLE), 930–932 Tachycardia. See also Supraventricular tachycardia Tachypnea, transient, respiratory distress in newborns due to, 29 Tacrolimus in atopic dermatitis management, 1193 in inflammatory bowel disease (IBD) management, 693 TADS (Treatment of Adolescent Depression Study), 217 Taeniasis, 1380–1381 Talipes calcaneovalgus, 870 Talipes equinovarus, 863 Tall stature, 1063, 1063f Tantrums, temper, 102, 792t Tar preparations, in atopic dermatitis management, 1193 Tardive dyskinesias (TDs), antipsychotics and, 236 Tay-Sachs disease, 820t, 860t TB. See Tuberculosis TBW (total body water), 742 TCAs. See Tricyclic antidepressants Tearing, eye, 447 Teeth “baby bottle tooth decay,” 494 delayed, 497–498 ectopic, 498 eruption, 497–498 examination in newborns and infants, 495 impacted, 498 normal, 497 number of, variations in, 498 permanent, dental emergencies related to, 499–500 primary, dental emergencies related to, 499 Teicoplanin, 1278 Telephone clinical advice via, 266–267 in emotional/behavioral problems consultation, 186 in poisoning management, 358, 361 Telepsychiatry, for emotional and behavioral problems, 186 Television (TV) exposure, counseling about, in health supervision visits, 262–263 Temper tantrums, 102, 792t Temperament normality and, 93–94 theories of, 94t Temperature regulation, for increased intracranial pressure (ICP), 412 Tendonitis, patellar, sports-related, 912 Tenofovir, 1278t Tenosynovitis, 871 Teratogens, perinatal genetics related to, 1168–1169 Terminal respiratory congestion, palliative care for, 1028t Terminally ill child, 196–199
health care provider’s role for, 197–199
encourage compensatory activities, interests, and skill development, 198–199
encourage normal activities, 197–198
family education, 197
patient education, 197
periodically review family coping, 199
prepare child for changes and procedures, 197
promote child self-reliance, 199
Terror, night, 792
Testicle, function, abnormalities, 1081
Terror, night, 792
Tetanus toxoid, 1310–1311
tetanus-prone wounds, 282
Tetanus-diphtheria-acellular pertussis (Tdap) vaccination. See DTaP vaccination
Tetanus immune globulin (TIG), 284–285, 284f, 1310–1311
Tetanus-prone wounds, 282
care and prophylaxis, 1311
Tetanus toxoid, 1310–1311
Tetracycline, 1212
Tetanus toxoid, 1310–1311
care and prophylaxis, recommendations, 284–285, 284f symptoms and signs, 1311
treatment, 1311–1312
Tetanus-diphtheria-acellular pertussis (Tdap) vaccination. See DTaP vaccination
Tetanus immune globulin (TIG), 284–285, 284f, 1310–1311
Tetanus-prone wounds, 282
care and prophylaxis, 1311
Tetanus toxoid, 1310–1311
Tetracycline, 1212f, 1224
for malaria, 1365f
Tetralogy of Fallot (ToF), 616–617
α-Thalassemia, 947–948, 947f
β-Thalassemia, 949–950
Thalidomide, in inflammatory bowel disease (IBD) management, 693
The Red Book: Report of the Committee on Infectious Diseases, 271
Thelarche, benign premature, 1082–1083
Theophylline, in asthma management, for acute asthma, 401, 1182
Thermal injuries, 349–351, 351f
Thermoregulation
for preterm infants in nursery, 40, 40f problems related to, spinal cord injury (SCI) and, 922–923
Thiamin
biologic roles, 316f
deficiency causes, 317f clinical features, 318f
dietary reference intakes, 314f dietary sources, 317f
Thiazides, in heart failure management, 600
Thirst, 742
Threat to others, mandatory reporting of, by physician, 194
Throat disorders, 522–533. See also specific disorders
acute cervical adenitis, 527–528
acute stomatitis, 522–523
adenoidectomy, 531
herpes simplex ginvovestomatisis, 522
Ludwig angina, 527
mouth breathing, 528–530, 539f, 530f
obstructive sleep apnea (OSA) syndrome, 528–530, 539f, 530f
peritonsillar cellulitis, 526
pharyngitis, 523–526, 524f
retropharyngeal abscess, 526
snoring, 528–530, 539f, 530f
tonsillectomy, 530
upper airway obstruction, 528–530, 539f, 530f sore, 523. See also Pharyngitis
Thrombocytopenia
isoimmune, 68
neonatal, 67–68, 68f
Thrombophilia, inherited, 977–978, 977f
screening questions, 151, 151f
Thrombosis
deep vein, spinal cord injury (SCI) and, 923
hepatic vein, 724
renal vein, 761–762
in newborns, 71
suprahepatic vein, 724
Thrombotic disorders, 977–980
acquired disorders, 978
clinical findings, 977–980
clinical risk factors, 977, 977f
general considerations, 977 imaging studies, 979
inherited thrombophilia states, 977–978, 977f laboratory findings, 979
prognosis, 979–980
symptoms and signs, 978–979
treatment, 979
Thrush, 523, 1387
Thymic gland, 1065–1071
Thyroid cancer, 1070–1071
Thyroid gland, 1065–1071
disorders, 1065–1071
chronic lymphocytic thyroiditis, 1067–1068
hypothyroidism, 1068–1070
neonatal Graves disease, 1070
thyroid cancer, 1070
fetal development of, 1065
physiology, 1065
Thyroid hormone in angioedema management, 1196
in urticaria management, 1196
Thyroid preparations, poisoning, treatment, 386
Thyroiditis, 1067–1068
case, 1068
autoimmune, chronic, 1067–1068
Hashimoto, 1067–1068
lymphocytic, chronic, 1067–1068
nonsuppurative, 1068
subacute, 1068
suppurative, 1068
Tiagabine, in seizure management, 795f
Tibial torsion, 869
Tibial tubercle apophysitis, sports-related, 912
Tic, 463, 792f, 830–832, 832f
Tick-bite paralysis, 842r–843t
TIG (tetanus immune globulin), 284–285, 284f
Tigecycline, 1224
Tinea capitis, 436
Tinea corporis, 436
Tinea cruris, 436
Tinea pedis, 436
Tinea unguium, 436
Tinea versicolor, 437
Tipranavir, 1278f
Tissue
defat, in perinatal genetics, 1169
mesodermal, generalized disorders of, 865–867
skeletal, generalized disorders of, 865–867
Tissue donation, 424
Tizanidine, 926
TMP-SMX (trimethoprim-sulfamethoxazole), 1212f, 1223–1224
Tobacco smoking
cessation, in adolescents, 169, 169f during pregnancy, effects on infants, 33
Toddler
concept of death, 1029, 1030f immunoglobulins in, normal values, 1037f
Toddler’s diaper, 680
Toe, clubbing of, in extracardiac examination, 591
Toeing, 869–870
ToF (tetralogy of Fallot), 616–617
Toll-like receptors, for sepsis, 406
Toluene embryopathy, 33
Tongue
disorders, 531–532
furry, 532
scrotal, 532
Tongue-tie, 532
Tonic neck reflex, 15
Tonic-clonic seizures, generalized, described, 789f, 790f
Tonicity, regulation of, 742–744
Tonsil, size, grading scale for, 530f, 530f
Tonsillectomy, 530, 531
complications, 531
contraindications, 531
described, 530
indications, 530
for PFAPA syndrome, 530
INDEX

risk management, 981
storage and preservation of blood and blood components, 981–986, 983r–985r
transfusion practice, 986–989, 989t. See also Transfusion
Transfusion practice, 986–989, 988t, 988t.
See also Transfusion
Transient erythroblastopenia of childhood, 941–942
Transient hypogammaglobulinemia of infancy, 1039r, 1041–1042
Transient myeloproliferative disorder, 996r, 997
Transient neonatal hypoparathyroidism, 1071–1074
Transient synovitis of hip, 877–878
Transient tachypnea, respiratory distress in newborns due to, 29
Transient tetany of newborn, 1073
late onset, hypocalcemia associated with, 1073r
late onset, hypocalcemia associated with, 1073r
Translocase, chromosomal, 1137–1138, 1137f
Translocation, chromosomal, 1137–1138, 1137f
Transplantation
allogeneic, 1017
autologous, 1017
bone marrow. See Hematopoietic stem cell transplantation (HSCT)
heart, 637–639
hematopoietic stem cell, 1016–1018.
See also Hematopoietic stem cell transplantation
liver, 733–734, 734r
Transposition of great arteries, 621–623
congenitally corrected, 622–623
double-outlet right ventricle, 623
Thoracic aortic coarctation, 594–595
Transverse myelitis, 842±843r
Trauma, 484, 499. See also specific types and Trauma patient
acute, to middle ear, 512
birth, 31–32, 31f
head, abusive, 458–459
nasal, 521–522
nonaccidental, 458–459
ocular injuries due to, 458–459
ocular, 453–459, 454f–458f. See also Eye, traumatic injuries
orbital, 484f
blunt, 455–456
orofacial, 499f
orthopedic-related conditions, 871–874.
See also Orthopedics, trauma-related
travel-related, 1423
Trauma patient, approach to, 342–347
airway, 343
breathing, 343–344
circulation, 344
disability-neurologic deficit, 344, 344t–345r
exposure and equipment, 344
focused assessment with sonography for trauma (FAST) in, 344
initial assessment, 342–343
management, 342–343
mechanism of injury, 342
monitoring, 344–345
primary survey, 343–345
secondary survey, 345–346
ultrasonography in, 344
Trauma survey, in trauma patient assessment, 343–344
Traumatic brain injury, 409–413. See also Brain injury; Head and neck injuries
Travel, 1423–1438
air, 1423
ear pain during, 1423–1424
altitude sickness, 1424
diarrhea related to, 1429–1430, 1429r.
See also Traveler’s diarrhea
fever on return from, 1435–1437
HIV infection and, 1434
illness on return from, 1435r–1437r
international
first aid kit for, 1424, 1424f
prevalence, 1423
malaria due to chemoprophylaxis, 1431
prophylaxis and prevention, 1430–1431, 1433r–1433t
medical care during, 1423
motion sickness during, 1424
preparation, 1423–1424, 1424f
sexually transmitted diseases (STDs) and, 1434
vaccinations, 1427–1429
routine childhood modified for, 1425–1427, 1425r
to visits to friends and relatives, in high-risk areas, 1431
Travel medications/first aid kit for, 1424, 1424r
Travel medicine, 1423–1438. See also Travel
Travel plans, 1423–1424
Traveler’s diarrhea, 1429–1430, 1429t
chemoprophylaxis, 1430, 1430r
prevention, 1429–1430
treatment, 1429r, 1430
Treatment of Adolescent Depression Study (TADS), 217
Trepatode infections, 1383–1384
Tremor, 832–833
Treponema pallidum, 63
syphilis due to, 1344
Triamcinolone, dosage, 1181r
Triamcinolone hexacetonide, 930
Trichinosis, 1379
Trichomonas vaginalis, treatment, 1405r
INDEX

Urinary tract (Cont.):
evaluation, 752–756, 754f, 755f
laboratory evaluation
immunologic function, 754–755
renal function, 752–754, 754f, 755f
patient history, 752
physical examination, 752
radiographic evaluation, 755–756
renal biopsy, 756
in newborns, 70–71
Urinary tract infections (UTIs), 773–775
acute, 1316
antimicrobial agents for, 1218
clinical findings, 773–774
follow-up care, 775
imaging studies, 774
laboratory findings, 773–774
neonatal jaundice with, 699
in newborns, 61
pathogenesis, 773
prevalence, 773
prevalence, 773
prophylactic antimicrobials, 775
symptoms and signs, 773
Urinary tract (Cont.):
treatment, 774–775
Urine
in acute renal failure, studies, 764, 764t
positivity, for selected drugs, 167t
Urine concentrating ability, in renal
function evaluation, 753
Uropathy, obstructive, 757
Urticaria, 1194–1197
clinical findings, 1195
complications, 1195
described, 1194
differential diagnosis, 1195
general considerations, 1194
laboratory findings, 1195
papular, 439
prevalence, 1194
prognosis, 1196
symptoms and signs, 1195
treatment, 1195–1196
antihistamines, 1195–1196
corticosteroids, 1196
doxepin, 1196
general measures, 1195
leukotriene-receptor antagonists, 1196
thyroid hormone, 1196
Usual/typical pediatric care, of emotional
and behavioral problems, 186
Uterine bleeding, dysfunctional, 146–147,
146t–147t
UTIs. See Urinary tract infections
Uveitis, 471–473
anterior, 471–472
intermediate, 473
juvenile idiopathic arthritis (JIA) and, 930
posterior, 472–473
V
Vaccine, 271–304. See also specific
types and indications and
Immunization
abbreviations related to, 272t
in acute otitis media (AOM) prevention,
508–509
adverse reactions, 1202
measles-mumps rubella (MMR), 1202
for allergic or hypersensitive children,
278
bacille Calmette-Guérin (BCG)
in TB prevention, 1336
for children with chronic illnesses, 277
combination, 273
contraindications vs precautions, 277
diphtheria-tetanus-acellular pertussis
(DTaP), 282–284, 284t
Haemophilus influenzae type B (Hib),
285–286, 286t
hepatitis A, 295–296
hepatitis B, 278–280, 280t
human papillomavirus (HPV), 299
for immunodeficient children, 277–278
immunoglobulin, 303–304
influenza, 289–291
prior to travel, 1426
Japanese encephalitis, 301–302
measles-mumps rubella (MMR),
291–293
treatment-related, 1425t, 1426
meningococcal, 296–298, 1425t, 1426–
1427
minor acute illness, 277
neonatal jaundice with, 699
pneumococcal, 286–288, 287t, 1425t,
1427
poliomyelitis, 288–289, 1425t, 1427
rabies, 299–301
risk-benefit communication, 277
rotavirus, 281–282, 1425t, 1427
safe handling of, 273, 277
safety monitoring, 273, 277
for special circumstances, 277–278
TB, 302
thyroid fever, 301
varicella, 293–295, 1425t
yellow fever, 301
Vaccine Adverse Events Reporting System
(VAERS), 273
Vaccine Injury Compensation Program,
272
Valvular aortic stenosis, 611
Vancomycin, 1211, 1221
Vancomycin-resistant
treatedocci infections with, 1293–1294
Vancomycin-resistant S aureus (VRSA)
infections, treatment, 1302
Vanderbilt Assessment Scales for
Attention-Deficit Hyperactivity
Disorder, 191
Vanishing white matter/childhood ataxia
with CNS hypomyelination
(VWM/CACH), 822t
Vaqta, 295
Varicella-zoster virus (VZV) infection,
293–294, 437–438, 1246–1249
clinical findings, 1247
complications, 1248
differential diagnosis, 1247–1248
general considerations, 1247
imaging studies, 1247
laboratory findings, 1247
in newborns, 63
prevention, 1248
prognosis, 1249
sequela, 1248
symptoms and signs, 1247
treatment, 1248–1249
vaccination, 293–295
administration schedule, 294
adverse effects, 294–295
antibody preparations, 295
contraindications, 294
dosage, 294
precautions, 294
vaccines available, 294
Vascular abnormalities, bleeding-related,
976–977
Vascular birthmarks, in newborns, 430–431
Vascular lesions, orthopedic-related,
878–879, 878t
Vascular resistance
pulmonary, in cardiovascular system
evaluation, 597
systemic, in cardiovascular system evalu-
ation, 597
Vascular rings, 549
Vascular slings, 549
Vasculitis, 933–934
classification, 933, 933t
clinical findings, 933
described, 933
prognosis, 934
treatment, 933–934
Vasoconstrictor agents, in allergic
rhinoconjunctivitis management,
1189
Vasogenic edema, 410
Vaginosis, bacterial, 1413–1414
treatment, 1405t
Vagus nerve stimulator (VNS), in seizure
management, 796
Valproate, 224t, 225, 231t
in seizure management, 796t
Valvular aortic stenosis, 611
Vaccination, 293–295
Varicella-zoster virus (VZV) infection,
293–294, 437–438, 1246–1249
clinical findings, 1247
complications, 1248
differential diagnosis, 1247–1248
general considerations, 1247
imaging studies, 1247
laboratory findings, 1247
in newborns, 63
prevention, 1248
prognosis, 1249
sequela, 1248
symptoms and signs, 1247
treatment, 1248–1249
vaccination, 293–295
administration schedule, 294
adverse effects, 294–295
antibody preparations, 295
contraindications, 294
dosage, 294
precautions, 294
vaccines available, 294
Vascular abnormalities, bleeding-related,
976–977
Vascular birthmarks, in newborns, 430–431
Vascular lesions, orthopedic-related,
878–879, 878t
Vascular resistance
pulmonary, in cardiovascular system
evaluation, 597
systemic, in cardiovascular system evalu-
ation, 597
Vascular rings, 549
Vascular slings, 549
Vasculitis, 933–934
classification, 933, 933t
clinical findings, 933
described, 933
prognosis, 934
treatment, 933–934
Vasoconstrictor agents, in allergic
rhinoconjunctivitis management,
1189
Vasogenic edema, 410
INDEX

von Willebrand disease (Cont.):
  laboratory findings, 973
  prognosis, 973
  symptoms and signs, 973
  treatment, 973
V/Q mismatch, in acute respiratory failure, 387–388
VSD (vaccine safety data link), 272r, 273, 277
Vulvovaginal candidiasis, 1415
  treatment, 1406f
Vulvovaginitis, 1244
  prepubertal female, gonorrheal, 1307
VWM/CACH (vanishing white matter/childhood ataxia with CNS hypomyelination), 822r
VZV infection. See Varicella-zoster virus infection
W
  Wall-eyed, 487–488, 487f
  Warfarin, poisoning, treatment, 386
  Wort, 438
  genital, 1419–1420
  Wasp sting, 375
  Water, for respiratory distress in newborn infants, 30
  Waterhouse-Friderichsen syndrome, with fulminant infections, treatment, 1088
  Water-soluble vitamins, nutritional requirements, 309, 311, 316–318f
  WE CARE, in mental health screening in office setting, 189
  Weakness, facial, 855–856
  Web, laryngeal, 544
  Wechsler Intelligence Scale for Children, 1077, 1140
  1155
  Weakness, facial, 855–856
  Water-soluble vitamins, nutritional requirements, 309, 311, 316–318f
  WE CARE, in mental health screening in office setting, 189
  Weakness, facial, 855–856
  Web, laryngeal, 544
  Wechsler Intelligence Scale for Children, 112
  Weight for age
    boys’
      birth to 24 months, 78f, 79f
      2–20 years, 82f
    girls’
      birth to 24 months, 77f
      2–20 years, 80f
  Weight gain, age-related, 270t
  Weight management
    described, 323, 325, 325f
    goals, 325–326, 326t
  Well-child surveillance and screening, 103. See also specific disorders
    American Academy of Pediatrics (AAP) guidelines for, 103
    attention-deficit hyperactivity disorder (ADHD), 105–107, 106f
    autism spectrum disorders, 107–111, 108t, 110f
    CHADIS in, 103
    described, 103
    developmental disorders, 104–105
    fetal alcohol spectrum disorders, 115–116
    fragile X syndrome, 114–115
    intellectual disabilities, 114–116
    intellectual disability (ID), 112–114, 113f. See also Intellectual disability
    pediatric evaluation of developmental status (PEDS) in, 103
    West Nile virus encephalitis, insects spreading, 1255, 1256f
    West Nile virus infection, 982t
    Western blot analysis, 1140
    Western equine encephalitis, insects spreading, 1257f
    Wet dressings in atopic dermatitis management, 1193
    for skin disorders, 426
    WHIM syndrome, 1051
    Whipworm, 1375–1376
    Whole blood, characteristics, 983
    WIC (Women, infants, and children) food packages program, 267
    Williams syndrome, 1077, 1140f, 1155
    Williams-Beuren syndrome, cardiac defects, 589t
    Wilms tumor, 1008–1010, 1009f
    clinical findings, 1008–1009
    future considerations, 1009
    general considerations, 1008
    imaging studies, 1009
    laboratory findings, 1008
    prognosis, 1009
    staging, 1009
    symptoms and signs, 1008
    treatment, 1009, 1009t
    Wilson disease, 720–721, 833
    clinical findings, 720–721
    complications, 721
    differential diagnosis, 721
    general considerations, 720
    prognosis, 721
    treatment, 721
    Wiskott-Aldrich syndrome, 1044–1045
    Withdrawal from chronic pain management, 1026
    medical life support, in end-of-life care, 1029–1031
    Withdrawal dyskinesias, antipsychotics and, 237
    Withdrawal syndromes, 421–422
    Wolff-Parkinson-White (WPW) syndrome, 642–643, 644f
    Wolf-Hirschhorn syndrome, 1155
    Wolman disease, clinical and laboratory features, 1128f
    Women, Infants, and Children (WIC) food packages, 262
    Wong-Baker Pain Scale, 1023f
    Wound, tetanus-prone, 282
    care and prophylaxis, 1311
    WPW (Wolff-Parkinson-White) syndrome, 642–643
    Wrist injury, sports-related, 908–909
    Wuchereria spp., parasitic infections due to, 1356f
    X
    Xeroderma pigmentosum, phenotype, 1140f
    Xerotic, 441–442
    X-linked cerebellar ataxias, 829
    X-linked disorders, 1160–1161
    agammaglobulinemia, 1038, 1039f, 1040
    Becker muscular dystrophy (BMD), 1160–1161
    Duchenne muscular dystrophy (DMD), 1160–1161
    hemophilia, 1161
    hyper-IgM syndrome, 1046
    lymphoproliferative syndrome, 1050–1051
    X-linked inheritance, 1144–1146, 1145f
    dominant inheritance, 1145f, 1146
    recessive inheritance, 1144–1145, 1145f
    X-linked severe combined immunodeficiency (XL-SCID), 1043
    XXX syndrome, 1154
    XYY syndrome, 1154
    Y
    Yellow fever
    Y-linked inheritance, 1146
    in returned traveler, 1437f
    vaccination, 303
    travel-related, 1428
    Youth Risk Behavior Survey, 1400
    Z
    Zafirlukast, in asthma management, 1182
    ZAP-70 deficiency, 1044
    Zellweger syndrome, 1129
    Zidovudine, 1278f
    Zinc, 312f
    in anorexia nervosa management, 179
    dietary reference intakes, 311f
    Ziprasidone, 218f, 224t, 231f, 237
    Zonisamide, in seizure management, 796f